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ABSTRACT

A benzenoid system H is a finite 2-connected plane bipartite graph in which

every interior face is bounded by a regular hexagon. A benzenoid system

is called as cata-condensed if it is outer planar. A perfect matching is a

set of independent edges which cover every vertex exactly once. A set of

disjoint hexagons S of a benzenoid system H is a resonant set if the sub-

graph obtained from H by deleting all vertices of hexagons in S has a perfect

matching. The resonant set is forcing if the subgraph has a unique perfect

matching. In chapter 2, we define a forcing resonance polynomial of H as

f(x) =
∑cl(H)

i=1 aix
i where ai is the number of distinct forcing resonant set

of size i and cl(H) is the Clar number of H. We put all coefficients of this

polynomial in a vector called as coefficient vector. We design a recursive

algorithm to compute the forcing resonance polynomial of cata-condensed

benzenoid systems with n hexagons. The forcing resonance polynomial of

H can be used to enumerate the number of forcing resonant sets and its

coefficient vector can be applied to predict the stability of benzenoid system

more accurately than Clar number and Kekulé count, which are all tradi-

tional stability indicators of molecules. The coefficient vector is also better

than HOMO-LUMO gap in terms of describing the structural characteristics

of molecules. In chapter 3, we also design an algorithm to reconstruct the

cata-condensed benzenoid systems in a specific case.
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Forcing set is concept originated from the research on the application of

Kekulé structure in the resonance theory in chemistry. This concept has been

generalized to any graph G. For example, let G be a graph with m edges

and n vertices. A face of G is forcing face if the subgraph of G obtained

by deleting this face and all edges incident to this face has a unique perfect

matching. In chapter 4, we give a forcing face detection algorithm based on a

well-known unique perfect matching algorithm in O(m2logn4) time. We also

give an algorithm to construct graphs with unique perfect matching through

odd bridges, inspired by reversely thinking this unique perfect matching al-

gorithm. We present a forcing face construction algorithm based on the

proposed unique perfect matching construction algorithm.
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CHAPTER 1

INTRODUCTION

In organic chemistry, aromaticity is a property to describe a conjugated

system, which is usually made by a planar ring with resonance bonds alter-

nating single and double bonds, that increases the stability of the molecules

than other structures. The most common aromatic compounds are benzene

C6H6 and its derivatives. Polycyclic aromatic hydrocarbons (PAHs) are actu-

ally hydrocarbons composed by multiple such aromatic rings. The simplest

PAHs Naphthalene is combined by only two benzene rings which chemical

structure C10H8 is depicted in Figure 1.

Figure 1: Chemical structure description of Naphthalene.

Chemists use HOMO-LUMO gap to predict the stability of chemical

molecule [40, 54, 2, 27]. HOMO denotes the highest occupied molecular

orbital and LUMO denotes the lowest unoccupied molecular orbital. In

other words, the HOMO has the highest energy among orbitals that have

electrons and the LUMO has the lowest energy among orbitals that do not

have electrons. So, a more closer gap between HOMO and LUMO will more

likely excite the electron movement, which makes the molecules not stable.



2

In general, Chemical molecules with a larger HOMO-LUMO gap has better

stability [27, 75]. For example, in paper [19], scientists use HOMO-LUMO

gap as the measurement to determine that Si22 is the most chemical stable

cluster among medium-sized neutral and charged silicon clusters.

The first well-known specifical explanation of the stability for benzene is

proposed by Hückel [35, 34, 36] in 1931, that is a planar ring structure would

have aromatic property if there are 4n+2 electrons in a conjugated system of

p orbitals in the ring, where n is a non-negative integer. This Hückel rule can

be easily verified in a benzene ring, in which six π-electrons are delocalized

over all six carbon atoms.

Later on, Kekulé structure is applied in chemical field. The number of

Kekulé structure is called as Kekulé counts which plays an important role

to measure the stability of benzenoid hydrocarbons [17, 16, 14]. Kekulé

structure is actually same as the concept of perfect matching of a graph G,

that is a set of disjoint edges covering all vertices of G. Researchers have

published many papers talking the perfect matching of benzenoid systems

[55, 69, 21, 60].

In 1972, E. Clar [15] formulated a famous Clar’s π-sextet rule to describe

the characterizations such as aromaticity of PAHs. In Clar’s aromatic sextet

theory, Clar proposed that the Kekulé structure [37] with the largest number
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of disjoint aromatic π-sextets plays a key role to measure the aromaticity

of benzenoid hydrocarbons. This simple rule was summarized based on ex-

perimental observation [71], but has been validated both theoretically and

experimentally in the past 40 years [58]. The quantification of Clary theory

and its derivatives have been successfully tested its correctness on a series of

numerical data like resonance energies, bond lengths, etc [44].

The Clar theory not only can be applied in PAHs like benzenoid system

[43], but also has been applied to various novel conjugated nanostructures

material [44] like graphene. In 2004, the characterization of graphene was

firstly experimental realized [46] and later on became a rapidly rising star in

the modern material science and technology [25]. Scientists in [63] showed

that Clar’s theory of the aromatic sextet is a simple but very powerful tool

to predict the stability and other properties of graphene nanoribbons with

different type of edges. Many other scientists have been working on this

field to explore the Kekulé structure [26], aromaticity [50, 20, 67], and Clar’s

sextet rule [65] of graphene and graphene nanoribbons. Since the edges of

graphene plays a crucial role in determining the chemical, physical, and other

properties [81], Clar sextet and aromaticity analysis are already developed

in triangular, rectangular, honeycomb [48], square [49], and other irregular-

shaped [45] graphene antidot lattices.

A hexagonal system is obtained when all carbon-hydrogen bonds are
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deleted from a benzenoid system [61]. Every interior face in a hexagonal sys-

tem is bounded by a regular hexagon. A benzenoid system is cata-condensed

if all vertices appear on its boundary. Gutman [28] declared three require-

ments to construct Clar formula (Clar structure) through drawing circles in

some hexagons in a hexagonal system. Three constraints of drawing circles

are as follows:

1. Circles must be drew in non-adjacent hexagons.

2. All circles must be arranged in a way such that the remainder of the

hexagonal system after deleting all hexagons with circles inside and

all edges incident to these hexagons is either empty or has a Kekulé

structure.

3. As many circles as possible are drew constrained by (1) and (2).

If we draw circles constrained by all three conditions, the maximum num-

ber of circles we can draw in a hexagonal system is Clar number of this

hexagonal system. For example, Figure 2 shows a cata-condensed benzenoid

system with five hexagons. The Clar number is 2 because we at most can

draw circles in two hexagons like {1, 4} in (d).

If we only draw circles constrained by (1) and (2), we do not need to draw

as many circles as possible. The set of these disjoint hexagons with circles

inside is called as a sextet pattern, resonant set, or generalized Clar formula.
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For example, in Figure 2, {1} in (a), {3} in (c), and {1, 4} in (d) are all

resonant sets. The size of the maximum resonant set is the Clar number.

(a) (b)

(c) (d)

Figure 2: Resonant set and forcing resonant set

Clar noticed that for isomeric benzenoid hydrocarbons, the one has bet-

ter stability if it has larger Clar number [15]. And Kekulé counts is not as

useful in predicting the stability of fullerene as in benzenoid hydrocarbons,

where fullerenes are carbon-cage molecules consisting of only carbon atoms

which are arranged on a sphere with 12 pentagons faces and other hexagons

faces [76]. The most stable fullerene molecule icosahedral C60 (Buckminster-

fullerene) does not have the highest Kekulé number among all its isomers
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[4]. But Clar number still is a great indicator of relative stability of fullerene

isomers of C60. Computations show that the icosahedral C60 has the largest

Kekulé count among isomers achieving the maximum Clar number [77]. The

upper bound for the Clar number of fullerene graphs and extremal fullerene

graphs with the maximum Clar number have been investigated in paper

[76, 66, 24].

Thus, calculating Clar number of benzenoid systems is a very meaningful

and helpful topic in analyzing the aromaticity of isomers of benzenoid sys-

tems. Klavžar, Žigert and Gutman [38] proposed a method to determine the

Clar number of a cata-condensed benzenoid hydrocarbon. This remarkably

simple method states that the Clar number is equal to the minimum num-

ber of straight lines required to intersect all hexagons. Hansen and Zheng

[30] proposed a mixed-integer linear program to compute the Clar number of

benzenoid system. Abeleo and Atkinson[1] proved that computing the Clar

number of benzenoid system is linear and can be computed in polynomial

time. However, calculating the Clar number in general 2-connected plane

graphs has been proved as NP-hard [6, 51].

The upper bound of Clar number of cata-condensed benzenoid system

with h hexagons is b(2h + 1)/3c [29, 5], which is a same conclusion proved

in paper [68]. But in the paper [5], authors showed that there exists a cata-

condensed benzenoid system with h hexagons which can attain the upper
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bound b(2h + 1)/3c. In other words, the maximum Clar number of cata-

condensed benzenoid systems with h hexagons is b(2h+ 1)/3c.

Forcing set [10] including forcing edge [42, 82], forcing number [84] and

forcing hexagon [9] is another very important theoretical topics over the

years. Giving a graph G, a forcing edge is that the remaining graph after

deleting this edge and all incident edges to this edge from graph G has a

unique perfect matching. Analogously, a forcing face is that the remaining

graph after deleting the face and all incident edges to this face from graph

G has a unique perfect matching. This ”forcing” concept is originated from

the research on the application of Kekulé structure in the resonance theory

in chemistry [10], but this concept has been extended on general graphs [18],

such as forcing face in plane bipartite graphs [11]. The forcing related calcu-

lation on fullerene [57] and cata-condensed benzenoid system [84] have been

studied.

Based these theoretical results, many types of polynomials are developed

[71] to systematically count the Kekulé count, forcing set, resonant set and

its generalized derivatives, such as sextet polynomial [33], Clar covering poly-

nomial (Zhang-Zhang polynomial) [12, 64, 13, 74, 78, 79], Clar polynomial

[52, 62], and forcing polynomial [80].

In order to count sextet pattern (resonant set), Hosoya and Yamaguchi
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[33] defined the sextet polynomial RG(x) given a hexagonal system G as

follows:

RG(x) =

cl(G)∑
i=0

rix
i (1)

where cl(G) is the Clar number of G and ri represents the number of sex-

tet pattern with i hexagons in G. It has been proved [47] that the number of

Kekulé structure in G equals to RG(1) when G is cata-condensed. For exam-

ple, the sextet polynomial of the hexagonal system in Figure 2 is 4x2 +5x+1

because it has sextet pattern {∅}, {1}, {2}, {3}, {4}, {5}, {1, 4}, {1, 5},

{2, 4}, {2, 5}. The number of perfect matching of this hexagonal system is

10.

As an extension of sextet polynomial, Randić, Shiu, et al [52, 62] allevi-

ated the condition (3) in constructing the Clar formula by a new condition

(4) that is drawing the circle one be one until no new circle can be drew

constrained by (1) and (2). The set of hexagons obtained under conditions

(1), (2), and (4) is called as extended Clar structure. For example, the num-

ber of circle in (c) of Figure 2 is not Clar number but there is no way to

draw a second circle in (c) constrained by (1) and (2), thus {3} in (c) is an

extended Clar structure. The count polynomial of extended Clar structure of

a hexagonal system G is called as Clar polynomial and is defined as follows:
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CG(x) =

cl(G)∑
i=0

cix
i (2)

where ci represents the number of extended Clar structure with i hexagons

in G. For example, the Clar polynomial of the hexagonal system in Figure 2

is 4x2 + x because it has extended Clar structure {3}, {1, 4}, {1, 5}, {2, 4},

{2, 5}. Clar and sextet polynomial have been calculated on fullerene [56] and

buckminsterfullerene [62].

1.1 Forcing Resonant Polynomial of cata-condensed Ben-

zenoid Systems

Basically, there are three different ways to measure the stability of benzenoid

systems - Kekulé count, Clar number, and HOMO-LOMO gap. Many dif-

ferent counting polynomials are also formulated based on these concepts.

However, using Clar number itself to rank the stability of isomers may en-

counter a problem because there are so many isomers having the same Clar

number. We also cannot reconstruct the most stable molecular structure

solely based on HOMO-LUMO gap or Kekulé count.

A resonant set is a forcing resonant set if the remainder graph after delet-

ing this resonant set has a unique perfect matching. For example, in Figure

2, only {3} in (c) and {1, 4} in (d) are forcing resonant sets, because {1} in
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(a) has another perfect matching in (b).

In chapter 2, we define a forcing resonant set polynomial of a hexagonal

system G that counts the number of forcing resonant sets as follows:

PG(x) =

cl(G)∑
i=1

aix
i (3)

where ai represents the number of forcing resonant set with i hexagons

in G.

We define a new concept - coefficient vector of forcing resonant set polyno-

mial - to not only predict the stability of benzenoid system more accurately,

but also has the ability to describe the structural characteristics of molecules.

We will show that our proposed forcing resonant polynomial is strongly re-

lated to the Clar polynomial when the hexagonal system is cata-condensed.

1.2 Construction of cata-condensed Benzenoid Systems

There are many algorithms to calculate the Clar number of hexagonal sys-

tems, but it is not an easy ”reverse engineering” job to reconstruct hexagonal

systems given a Clar number.

In chapter 3, we propose an algorithm to enumerate all cata-condensed

benzenoid systems given a Clar number in a specific case, based on an enu-
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meration method of benzenoid systems proposed by Brinkmann, Caporossi,

and Hansen [7] in 2002 and a character of cata-condensed hexagonal system

with maximum Clar number proved by Zhai, Alrowaili, and Ye [68] in 2018.

1.3 Forcing Face and Unique Perfect Matching

In chapter 4, inspired by a well-known unique perfect matching algorithm

proposed by Gabow, Kaplan, and Tarjan [22] in 2002, we propose an algo-

rithm to check the existence of forcing face in a graph G for the first time.

This work is based on a conclusion about the relationship between unique

perfect matching and odd bridges [41] and a dynamical connectivity algo-

rithm - top tree [32, 59, 3].

In chapter 4, by reversely thinking the well-known unique perfect match-

ing algorithm, we also propose another algorithm to construct graphs with

unique perfect matching through bridges. Based on this proposed algorithm,

we finally present a forcing face construction algorithm.

We will prove the correctness of all proposed algorithms, calculate their

time complexity, and finally show some applications.
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CHAPTER 2

FORCING RESONANT POLYNOMIAL OF

CATA-CONDENSED BENZENOID SYSTEM

2.1 Introduction

A graph is a set of vertices and edges. A bipartite graph is a graph whose

vertices can be partitioned into two disjoint sets and there is no edge con-

nected any pair of vertices in each set. A planar graph is a graph that

can be embedded in a plane, which means this graph can be drawn without

any crossing edges in a plane. A graph is connected if there is a path be-

tween any pair of vertices. A connected graph is 2-connected if the graph is

still connected after any single vertex is removed from this graph. A perfect

matching of a graph, which is known as Kekulé structure in chemical field,

is a set of disjoint and independent edges that covers all vertices of the graph.

A benzenoid system is cata-condensed if all vertices appear on its bound-

ary. A hexagonal system is obtained when all all carbon-hydrogen bonds

are deleted from a benzenoid system. A hexagonal system is also a finite

2-connected planar bipartite graph in which each interior face bounded by a

regular hexagon of side length one. A set of disjoint hexagons H of a ben-

zenoid system G is a resonant set if the subgraph G′ obtained by deleting

all vertices covered by H from G has a perfect matching. A resonant set
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is forcing if the subgraph obtained by deleting all vertices covered by this

resonant set from G has a unique perfect matching. The maximum resonant

set is called Clar formula of G. The Clar number cl(G) of G is the size of

Clar formula. The spectrum of forcing resonant set (FRS) is defined as:

specFRS(G) = {|H| : H is a forcing resonant set of G}

This following theorem [83] proved that a maximum resonant set of a

hexagonal system is a forcing resonant set.

Theorem 2.1. Let G be a hexagonal system. The subgraph G′ obtained by

deleting all vertices of a maximum resonant set from G has a unique perfect

matching.

But not all forcing resonant sets are maximum resonant set. We define

a counting polynomial of forcing resonant set on cata-condensed benzenoid

systems (forcing resonant polynomial) as following:

Definition 2.2. Let G be a benzenoid system. The forcing resonant polyno-

mial PG(x) can be defined as

PG(x) =

cl(G)∑
i=1

aix
i (4)

where ai is the number of forcing resonant sets of size i.
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The minimum size of forcing resonants is 1 since any non-empty hexago-

nal system itself has more than one unique perfect matching, so that the size

of a forcing set cannot be 0. The maximum size of forcing resonant sets is

Clar number because it is the maximum size of all resonant sets.

In section 2.2, we will provide a recurrence relation to calculate the forc-

ing resonant polynomial of all cata-condensed hexagonal systems. In section

2.3, we will design a data structure weighted tree to implement this algo-

rithm. We will also show one algorithm of calculating the number of perfect

matching based on paper [53] in this section. In section 2.4, we will show

the implementation results of our proposed algorithm. In section 2.5, we will

draw conclusions.

2.2 Recurrence Relation of Forcing Resonant Polyno-

mial

Let Lk be the linear hexagonal chain with length k. Lk is consisted of k

hexagons h1, h2, ..hk where edge hi−1 ∩ hi is in the opposite position of edge

hi+1 ∩ hi. The graph of Lk is showed in Figure 3. We have this following

theorem for linear hexagonal chain from paper [70].

Theorem 2.3. A hexagonal system H has cl(H) = 1 if and only if H is a

linear chain.
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h 1
h 2

h k-1 h k

Figure 3: A linear hexagonal chain Lk with k hexagons

Theorem 2.4. Let Lk be the linear hexagonal chain with k hexagons. Then

specFRS(Lk) = {1} (5)

Proof. Let H be a forcing resonant set of Lk. Suppose that |H| = m.

We know that m ≤ 1 according to Theorem 2.3. Now we need to prove

0 /∈ specFRS(Lk).

Suppose 0 ∈ specFRS(Lk). That means H is an empty set. The rest of

graph Lk′ by deleting all the vertices covered by H is still Lk. Now we proof

Lk does not have a unique perfect matching.

1. when k = 1. Lk has two perfect matchings.

2. when k > 1. Lk can be decomposed into two graphs G1 and G2 which

are showed in Figure 4. G1 has two perfect matchings, denoted by

M1 and M2. Now we use induction to prove G2 has a unique perfect

matchings. Let r be the number of hexagons in G2.
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(a) Let r = 0. There is no hexagon in G2 which is showed in Figure

5. In this case, we rename G2 as G3 (See figure 5). Obviously,

G3 has a unique perfect matching, which means G2 has a unique

perfect matching if it contains 0 hexagon.

(b) Assume G2 has a unique perfect matching for r = n. In this case

we rename G2 as G4. So, G4 has a unique perfect matching.

Let r = n+ 1. The two suspended edges must must belong to the

perfect matching of G2 for r = n + 1. Delete the two suspended

edges, The remaining graph is G4. We can obtain a unique perfect

matching of G2 for r = n+ 1 by adding the two suspended edges

into the unique perfecting of G4.

Thus, G2 has a unique perfect matching, denoted by M3. We can

obtain two perfect matchings of Lk. One of them is combination of

M3 andM1. Another is combination ofM3 andM2. So Lk does not

have a unique perfect matching for k > 1.

Thus, Lk does not have a unique perfect matchings. which contradicts

with the definition of forcing resonant set. Thus, 0 /∈ specFRS(Lk). Thus,

specFRS(Lk) = {1}

Theorem 2.5. Let Lk be a linear hexagonal chain with k hexagons. The

forcing resonant polynomial of Lk is kx. That is

PLk
(x) = kx (6)
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G2
G1

Figure 4: Decomposed linear hexagonal chain into two subgraphs

Figure 5: G3: when the number of hexagons in G2 is 0

Proof. Let hi be the ith hexagon of Lk. By Theorem 2.4 we know the size of

forcing resonant set is 1. So the forcing polynomial can be expressed as

PLk
(x) = a1x

a1 is the number of forcing resonant sets of size 1.

Let K = {hi}. Let Lk′ be the subgraph of by deleting all the vertices

covered by K from G. Then Lk′ has three possible cases.

• Case 1: Lk′ is the graph 1 in Figure 6. According to the proof in

Theorem 2.4, Lk′ has a unique perfect matching.

• Case 2: Lk′ is the graph 2 in Figure 6. Similarly as the proof in Theorem

2.4, we can proof Lk′ has a unique perfect matching.
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• Case 3: Lk′ contains two disjointed components graph 1 and graph 2

in Figure 6. Let M1 be the perfect matching of graph 1. Let M2 be

the perfect matching of graph 2. Combine these two perfect matchings

into one edge set M. M is the unique perfect matching of Lk′ .

So, {hi} is a forcing resonant set of Lk. Thus, a1 = k. Then, we have

PLk
(x) = kx

1 2

Figure 6: Lk′ : subgraph after deleting one hexagon from a linear hexagonal chain

Here are some examples:

G1 is a hexagonal linear chain with five hexagons and G2 is a hexagonal

linear chain with 3 hexagons. (G1 and G2 are showed in Figure 7)

So, the forcing resonant polynomial of G1 is:

PG1(x) = 5x.

So, the forcing resonant polynomial of G2 is:

PG2(x) = 3x.
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G1 G2

Figure 7: Examples of forcing resonant polynomial of linear chains

Proposition 2.6. Let G be a graph with disjointed components G1, G2, ...Gk

which are cata-condensed benzenoid systems. Then

PG(x) =
k∏

i=1

PGi
(x). (7)

Proof. Clearly, G has a unique perfect matching if and only if every disjoined

component Gi has a unique perfect matching.

Let H be the set of forcing resonant sets of G. Let Hi be the set of forcing

resonant sets of Gi. Let M = {H1, H2, ..., Hk|Hi ∈ Hi}. Then, M is a forcing

resonant set of G. Let n denote the total number of M . n =
∏k

i=1 |Hi|. H is

one to one corresponding relationship with {M1,M2, ...Mn}.

Suppose PG(x) =
∑cl(G)

m=0 amx
m. That mean the number of forcing reso-

nant sets of G with length m is am.

Suppose PGi
(x) =

∑cl(Gi)
ji=0 ajix

ji , where i = 1.2...k. In other words, the

number of forcing resonant sets with length ji is aji for anyone of the com-

ponent Gi, i = 1, 2, ...k.
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1 j

a

b

G1

Figure 8: G1 and G2: two components of a hexagonal system

Thus,

amx
m =

cl(Gi)∑
ji=0,j1+j2+...jk=m

k∏
i=1

ajix
xji .

That is, PG(x) =
∏k

i=1 PGi
(x) .

Proposition 2.7. Graph G1 and Graph G2 are showed in Figure 8. The

blue edge of G1 does not belong to the unique perfect matching of G1. The

blue edge of G2 does not to belong the unique perfect matching of G2.

Proof. The set of red edges in G1 is the unique perfect matching M1 of G1.

Clearly, the blue edge does not belong to M1.

The set of red edges in G2 is the unique perfect matching M2 of G2.

Clearly, the blue edge does not belong to M2.

Let G be a cata-condensed benzenoid system. It is well known that every

maximal linear hexagonal chain of G has at least two hexagons if G is not
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a linear hexagonal chain. We define a maximal linear hexagonal chain L as

pendant chain of G if one of the end hexagons of L has only one adjacent

hexagon in G.

Lemma 2.8. Let G be a cata-condensed benzenoid system. Every forcing

resonant set of G contains exactly one hexagon of L if L is not a non-pendant

chain with two hexagons.

Proof. If G is a linear hexagonal chain. According to theorem 2.5, every

forcing resonant set of G must contain exactly one hexagon of L. Otherwise,

we can proof Lemma 2.8 by classifying L into two different conditions.

Let H be the forcing resonant set of G. Assume that any of the hexagon

which is belonged to H does not belong to L. We can construct a subgraph

G′ by deleteing all the vertices covered by H from G. Then G′ consists of

several disjoint components. Let G′1 be the component which contains L.

1. L is a pendant chain except linear hexagonal chain.

G′1 has two possible structures which are showed in Figure 9. Similarly

as the proof in Property 6, the three edges a, b and c do not belong

to the unique perfect matching of the subgraph G′1. Figure 9 can be

disconnected by deleting edges a, b and c. One of the components

of G′1 is a linear hexagon chain. So this component does not have

a unique perfect matching. Thus G′1 does not have a unique perfect

matching. That means G′ does not have a unique perfect matching,
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which contradicts with the definition of the forcing resonant set. Thus,

H contains at least one of the hexagons of L.

By Theorem 2.4 and 2.5, every forcing resonant set of G can not contain

more than one hexagons of L. So, the forcing resonant set of G contains

exactly one hexagon of L.

2. L is a non-pendant chain with at least three hexagons.

G′1 has three possible structures which are showed in Figure 10.

Similarly as the proof in 1, we can proof H contains at least one of the

hexagons of L.

By Theorem 2.4 and 2.5, every forcing resonant set of G can not contain

more than one hexagons of L. So, the forcing resonant set of G contains

exactly one hexagon of L.

Corollary 2.9. Every forcing resonant set H hits every maximal linear

hexagonal chain.

Proof. Let L be a maximal linear hexagonal chain of G if G is a cata-

condensed benzenoid system. If L is not a non-pendant chain with two

hexagons. Then every forcing resonant set H contains exactly one hexagon

of L. In other words, Every forcing resonant set H hits every maximal linear

hexagonal chain.
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b

a

c

b

a

c

Figure 9: L is a pendant chain except linear hexagonal chain

Otherwise, both of the end hexagons of L with exactly two hexagons have

more than one adjacent hexagons in G. We can divide H into two classes:

1. One of the end hexagons of L belongs to H. Clearly, H hits every

maximal linear hexagonal chain.

2. Both of the end hexagons do not belong to H. By Lemma 2.8, one

of the hexagon in the maximal linear hexagonal chains which share a

common hexagon with L must belong to H. Thus H hits the common

hexagons. That means H hits L. Then H hits every maximal linear

hexagonal chain.

Lemma 2.10. Let G be a cata-condensed benzenoid system. Let A be a
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b2

a

c

b

a2

c2

b2

a

c

b

a2

c2

b2

a

c

b

a2

c2

Figure 10: L is a non-pendant chain with at least three hexagons
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hexagon of G. Then,

PG(x) = PG(x,AC) + PG(x,A)

PG(x,AC) denotes the polynomial of forcing resonant sets which do not con-

tain the hexagon A of G. PG(x,A) denotes the polynomial of forcing resonant

sets which contain the hexagon A of G.

Proof. The forcing resonant sets can be classified into two cases. One is the

sets do not contain A. The other one is the sets contain A.

Let,

PG(x) =
∑cl(G)

i=0 aix
i

PG(x,AC) =
∑cl(G)

m=0 amx
m

PG(x,A) =
∑cl(G)

n=0 anx
n

Thus,

PG(x) =
∑cl(G)

i=0 aix
i =

∑cl(G)
m=0 amx

m+
∑cl(G)

n=0 anx
n = PG(x,AC)+PG(x,A).

We propose a recursive formula which is the main idea of our method to

computer the PG(x) in Theorem 2.11. Note that PG(x) equals 1 if G is an

empty graph.

Theorem 2.11. Let G be a cata-condensed benzenoid system and L be a

pendant chain with r hexagons. Let H be the subgraph consisting of all

hexagons of G except these in L, and H ′ be the subgraph of H consisting
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of all hexagons except these contained in the maximal linear chains of G with

a common hexagon with L. Then,

PG(x) = (r − 1)xPH(x) + xPH′(x) (8)

Proof. Let A′ and A be the pair of end hexagons of L. The forcing resonant

sets of G can be classified into two classes. One is the sets that do not contain

hexagon A and the other one is the sets that contain hexagon A.

• Case 1, the forcing resonant sets of G do not contain hexagon A.

Let H be the forcing resonant set of G. Let M be the unique perfect

matching of the subgraph which is constructed by deleting all vertices

covered byH from G. Let G′ be the subgraph consisting of all hexagons

of L except A. Since A does not belong to H, one of the hexagon of G′

must belong to H according to Lemma 2.8.

Let a, b, and c be the three edges of A that do not belong to subgraph

G′ and subgraph H.

According to Property 2.7, edge a and edge b does not belong to the

unique perfect matching M.

The subgraph H consists of at most two disjoint components, denoted

by H1 and H2. Each of the components has even number of the vertices.

Thus, edge c does not belong to the unique perfect matching M.
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Thus, The graph G can be decomposed into two disjoint parts, G′ and

H. According to Property 2.6, we can achieve the following formula,

PG(x,AC) = PG′(x)P (H) = (r − 1)xP (H)

PG(x,AC) denotes the polynomial of forcing resonant sets which do not

contain hexagon A of G.

• Case 2, the forcing resonant sets of G contain hexagon A.

Hexagon A is contained by at most three different linear hexagonal

chains. Let L2 and L3 be the other two maximal linear hexagonal

chains which contain hexagon A. Let A and A2 be the pair of end

vertices of L2. Let A and A3 be the pair of end vertices of L3. Let G′′

be the graph consisting of all hexagons in L,L2 and L3 except hexagon

A2 and hexagon A3.

{A} is the only forcing resonant set that contains A of G′′ by Lemma

2.8.

Similarly, the blue edge a2, b2, c2, a3, b3 and c3 do not belong to the

unique perfect matching M. Thus, graph G can be decomposed into

two disjoint parts G′′ and H ′. Thus,

PG(x,A) = PG′′(x,A)P (H ′) = xP (H ′).

PG(x,A) denotes the polynomial of forcing resonant sets which contain

hexagon A of G. PG′′(x,A) denotes the polynomial of forcing resonant

sets which contain hexagon A of G′′.
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b2
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Figure 11: Decomposition of cata-condensed benzenoid system G

By Lemma 2.10, PG(x) = PG(x,AC) +PG(x,A) = (r− 1)xPH(x) + xPH′(x).

Here is an example:

We use Theorem 2.11 to compute the forcing resonant polynomial of G

in Figure 12.

PG(x) = 2xPG1(x)PG2(x) + x = 2x ∗ x ∗ 3x+ x = 6x3 + x

We list all forcing resonant sets of G:

{1, 4, 5}, {1, 4, 6}, {1, 4, 7}, {2, 4, 5}, {2, 4, 6}, {2, 4, 7}, {3}.

We can observe that there are six forcing resonant sets with size three
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1 2 3

4

5

6

7

G

G1 G2

Figure 12: Example of a cata-condensed benzenoid system

and one forcing resonant set with size 1. This result matches the polynomial

which is obtained based on our method.

2.3 Algorithm Implementation

2.3.1 Weighted Tree of Benzenoid Systems

In this section, we use a weighted tree (T,w) to store the information of a

cata-condensed benzenoid system. The two basic rules are:

1. A vertex of T represents a maximal linear hexagonal chain.

2. The weight of the root of the tree is the number of hexagons in the cor-

responding maximal linear hexagonal chain and the weights of all other

nodes are the 1 less than the number of hexagons in the corresponding

maximal linear hexagonal chains.

We can construct (T,w) step by step:

1. Start with a pendant chain L. L corresponds with the first vertex in

(T,w).
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G

Figure 13: Weighted tree of a benzenoid system

2. The children of a vertex v in (T,w) are defined to be the maximal linear

hexagonal chains which share a common hexagon with the correspond-

ing chain of the vertex v.

3. Continue to do step 2 until the number of vertices equals the number

of maximal linear hexagon chains.

Note that the vertex which corresponds with the initial pendant hexago-

nal chain L is the root of (T,w). Figure 13 shows a cata-condensed benzenoid

system and its corresponding weighted tree. Let G be a cata-condensed ben-

zenoid system with n maximal linear hexagonal chains. Let (T,w) be the

corresponding weighted tree of G. Thus, the number of vertices in T is n.

We use pre-order traversal to save the tree. For example, the list of the

tree in Figure 12 is [4, 2, -1, -1, 2, 2, 3, -1, -1, 4, -1, -1, 2, 2, -1, -1, 3, -1, -1],

where -1 represents an empty child.
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Let node.value be the weight of the node. Note that PT (x) = 1 if (T,w)

is an empty tree. We need to rebuild the tree when node.value is 1, since

the minimum length of a chain is larger than 1 if there are more than one

vertices in the tree. The idea to rebuild the tree is to reverse the relationship

of parent and current as shown in Figure 14, where current is the left child of

parent. After reversing, parent becomes the left child of current and parent’s

right child becomes the right child of current.

Figure 14: Rebuild the tree when the root value is 1

The recursive algorithm is described as below:

Algorithm 1: Calculation of Forcing Resonant Polynomial
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Input : node − root o f the weighted t r e e

Output : a polynomial

poly( node ) :

i f node . va lue = 1 then

r e b u i l d the t r e e from another pendant chain .

end

return ( node . va lue − 1) ∗ x ∗
poly ( node . l e f t ) ∗ poly ( node . r i g h t ) +

x ∗ poly ( node . l e f t . l e f t ) ∗ poly ( node . l e f t . r i g h t )

∗ poly ( node . r i g h t . l e f t ) ∗ poly ( node . r i g h t . r i g h t )

# remove the root 1

rebuild( cur r ent ) :

parent = cur rent

cur r ent = parent . l e f t

set cur r ent . l e f t = ∅
set cur r ent . r i g h t = parent . r i g h t

set parent = cur rent

set cur r ent = cur rent . o r i g i n l e f t

while cur r ent 6= ∅ do

i f cur r ent . l e f t = ∅ then

swap the r i g h t c h i l d as l e f t c h i l d

end

# r e v e r s e the parent−c h i l d ( cur rent ) r e l a t i o n s h i p

# as i l l u s t r a t e d in Figure 13

set cur r ent . l e f t = parent

set cur r ent . r i g h t = parent . r i g h t

set parent = cur rent

set cur r ent = cur rent . o r i g i n l e f t

end
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# i n c r e a s e the value on the l a s t branch by 1

parent . data = parent . data + 1

2.3.2 Count the Number of Perfect Matching

H

Figure 15: Count the number of perfect matching

This is a brief introduction of an algorithm of counting perfect matchings

in a bipartite graph from paper [53]. B and W are two disjoint sets of vertices

of bipartite hexagonal systems. One example of B and W are illustrated in

Figure 15.

Active is a temporary set to hold active vertices of B or W, where a

vertex in B or W is called active if this vertex is being used to add new

vertices to the opposite set W or B. All the new vertices found in one loop

is temporarily saved in a set New. For example, B and W are initialized as

{b1} and ∅. Then the only one active vertex b1 in B is used to add new ver-

tices w1, w2 to W. So, in the next loop, b1 is not active anymore, w1, w2 are

active vertices instead to add b2, b4, b5 to B. Then b2, b4, b5 will be active in
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the next loop, and so on so forth, until all vertices are added to either B or W.

Algorithm 2: Calculation of Number of Perfect Mathcings

Input : a d j l i s t − adjacency l i s t o f a graph G.

matrix − biad jacency matrix i n i t i a l i z e d as

a zero matrix .

Output : npm − the number o f p e r f e c t matching in graph G.

B, W, Active= {0} , ∅ , {0}
i = 0

while V(B) ∪ V(W) ⊂ V(G) do

New = ∅
for each ver tex u ∈ Active do

for each ver tex v ∈ a d j l i s t [ u ] do

i f v /∈ B and v /∈ W and v /∈ New then

New = New ∪ {v}
end

end

end

// add New to B or W a l t e r n a t i v e l y in each loop .

i f i i s odd then

B = B ∪ New

else

W = W ∪ New

end

// i changes to even /odd a l t e r n a t i v e l y in each loop .

i = i + 1
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// New becomes Act ive in next loop .

Active = New

end

for each ver tex b ∈ B do

for each ver tex w ∈ a d j l i s t [ b ] do

matrix [ b , w] = 1

end

end

npm = abs ( det ( matrix ) )

2.3.3 Calculate HOMO-LUMO Gap

LetG be a connected graph with n vertices, v1, v2, ...vn. Let S(G) = {λ1, λ2, λ3...λn}

be the spectrum of G where λi is the ith eigenvalue of the adjacent matrix of

G and λi ≥ λj when i < j. Then, HOMO-LUMO gap equals λH − λL with

H = b(n+ 1)/2c and L = d(n+ 1)/2e.

2.4 Algorithm Result

Let G be a cata-condensed benzenoid system. All cata-condensed benzenoid

systems with n hexagons can be obtained as planar code format based on

this work [7]. We converted planar code of graph to tree and then calculate

the forcing resonant polynomial and other properties based on the in order
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traversal of the tree.

Figure 16 lists cata-condensed benzenoid systems with five hexagons and

Figure 17 lists cata-condensed benzennoid systems with six hexagons.

The coefficient vector of cata-condensed benzenoid system defined as:

a =


acl(G)

acl(G)−1
...
a1


where ai is the coefficient of xi in PG(x), then a is called the the coefficient

vector of G.

Let’s recall the definition of lexicographic order of a vector:

v1 =


x1
x2
...
xn

 > v2 =


y1
y2
...
yn

 ⇐⇒ ∃1 ≤ k ≤ n, such that

x1 = y1, x2 = y2, ..., xk−1 = yk−1, but xk > yk.

We can construct graph based on the Clar number and we can try to

reconstruct graph based on the coefficient vector. But currently it is impos-

sible to reconstruct graph based on the HOMO-LUMO gap and based on
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the number of perfect matchings. The implementation results are showed

in Table 1 (cata-condensed benzenoid systems with five hexagons), Table 2

(cata-condensed benzenoid systems with six hexagons), Table 3 (in appenix)

(cata-condensed benzenoid systems with seven hexagons), Table 4 (in ap-

penix) (cata-condensed bezenoid systems with eight hexagons).

There are 12 cata-condensed benzenoid systems with 5 hexagons, 36 cata-

condensed benzenoid systems with 6 hexagons, 118 cata-condensed benzenoid

systems with 7 hexagons and 411 cata-condensed benzenoid systems with 8

hexagons. Figure 18 show their linear square fitting lines between coefficient

vector and HOMO-LUMO gap respectively with Table 1, Table 2, Table 3

and Table 4. From these four figures, we can see that the coefficient vector

increases as HOMO-LUMO gap increases. Thus, we can use the coefficient

vector to predict the stability of systems. In other words, we find a new

stability predictor. We can also obtain the conclusion that the isomer with a

larger coefficient vector is more stable. We can come out the following con-

clusion by observing the results in these tables that the coefficient vector is a

refined stability predictor than Clar number, because the number of isomers

with the same coefficient vector is smaller than the number of isomers with

the same Clar number.
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Table 1: All cata-condensed Benzenoid Systems with 5 hexagons

Graph

index

Polynomial
Clar

number

Coefficient

vector

x coordinate

HOMO-

LUMO

gap

Number of

perfect

matching
1 2x3 + x2 3 [2, 1, 0] 8 1.0638 14
2 2x3 + x 3 [2, 0, 1] 7 0.9982 13
3 x3 + 3x2 3 [1, 3, 0] 6 1.0997 13
4 x3 + 3x2 3 [1, 3, 0] 6 1.0709 13
5 x3 + 3x2 3 [1, 3, 0] 6 1.0038 13
6 x3 + 2x2 3 [1, 2, 0] 5 0.9835 12
7 x3 + 2x2 3 [1, 2, 0] 5 0.947 12
8 5x2 2 [0, 5, 0] 4 0.8372 11
9 5x2 2 [0, 5, 0] 4 0.8096 11
10 4x2 + x 2 [0, 4, 1] 3 0.8743 10
11 3x2 + x 2 [0, 3, 1] 2 0.6541 9
12 5x 1 [0, 0, 5] 1 0.4394 6

Table 2: All cata-condensed Benzenoid Systems with 6 hexagons

Graph

index

Polynomial
Clar

number

Coefficient

vector

x coordinate

HOMO-

LUMO

gap

Number of

perfect

matching
1 x4 + 2x3 4 [1, 2, 0, 0] 16 1.0229 24
2 x4 + x3 + 2x2 4 [1, 1, 2, 0] 15 1.0901 23
3 x4 + x3 + 2x2 4 [1, 1, 2, 0] 15 1.0727 23
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Table 2: Continued.

4 x4 + x3 + x2 4 [1, 1, 1, 0] 14 1.0449 22
5 5x3 3 [0, 5, 0, 0] 13 1.0929 22
6 5x3 3 [0, 5, 0, 0] 13 1.0083 22
7 5x3 3 [0, 5, 0, 0] 13 0.9411 22
8 4x3 + x2 3 [0, 4, 1, 0] 12 1.0785 21
9 4x3 + x2 3 [0, 4, 1, 0] 12 1.0133 21
10 4x3 + x2 3 [0, 4, 1, 0] 12 1.0044 21
11 4x3 + x2 3 [0, 4, 1, 0] 12 0.9969 21
12 4x3 + x2 3 [0, 4, 1, 0] 12 0.9428 21
13 4x3 + x2 3 [0, 4, 1, 0] 12 0.8933 20
14 4x3 + x2 3 [0, 4, 1, 0] 12 0.8902 20
15 4x3 + x 3 [0, 4, 0, 1] 11 1.0115 19
16 3x3 + 2x2 3 [0, 3, 2, 0] 10 0.9013 19
17 3x3 + 2x2 3 [0, 3, 2, 0] 10 0.9011 19
18 3x3 + 2x2 3 [0, 3, 2, 0] 10 0.8755 19
19 3x3 + 2x2 3 [0, 3, 2, 0] 10 0.8571 19
20 3x3 + 2x2 3 [0, 3, 2, 0] 10 0.791 19
21 3x3 + x 3 [0, 3, 0, 1] 9 0.7114 17
22 2x3 + 4x2 3 [0, 2, 4, 0] 8 0.8643 18
23 2x3 + 4x2 3 [0, 2, 4, 0] 8 0.84 18
24 2x3 + 4x2 3 [0, 2, 4, 0] 8 0.8387 18
25 2x3 + 4x2 3 [0, 2, 4, 0] 8 0.8258 18
26 2x3 + 3x2 3 [0, 2, 3, 0] 7 0.8969 17
27 2x3 + 3x2 3 [0, 2, 3, 0] 7 0.8575 17
28 2x3 + 2x2 3 [0, 2, 2, 0] 6 0.7213 16
29 2x3 + 2x2 3 [0, 2, 2, 0] 6 0.7168 16
30 8x2 2 [0, 0, 8, 0] 5 0.7203 15
31 8x2 2 [0, 0, 8, 0] 5 0.6965 15
32 7x2 2 [0, 0, 7, 0] 4 0.6142 14
33 7x2 2 [0, 0, 7, 0] 4 0.6066 14
34 6x2 + x 2 [0, 0, 6, 1] 3 0.6715 13
35 4x2 + x 2 [0, 0, 4, 1] 2 0.4872 11
36 6x 1 [0, 0, 0, 6] 1 0.3387 7
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1 2 3 4

5 6 7 8

9 10 11 12

Figure 16: 12 cata-condensed benzenoid systems with 5 hexagons

2.5 Conclusion

As a summary, we obtain the following conclusions by comparing the imple-

mentation results:

1. The coefficient vector increases as the HOMO-LUMO gap increases.

2. The stability of G is relative with the coefficient vector. The one that

has larger coefficient has better stability.

3. The coefficient vector is a more accurate indicator than Clar number

to predict the stability of G.
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1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31
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Figure 17: 36 cata-condensed benzenoid systems with 6 hexagons
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5 hexagons 6 hexagons

7 hexagons 8 hexagons

Figure 18: Fit the coefficient vectors and HOMO-LOMO gaps of benzenoid systems

using least square
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CHAPTER 3

CONSTRUCTION OF CATA-CONDENSED BENZENOID

SYSTEMS

3.1 Introduction

In the previous chapter, we calculated many parameters of all cata-condensed

benzenoid systems giving the number of hexagons. However, in many sit-

uations, we are only interested in the benzenoid systems with maximum

clar number. In this chapter, we design an algorithm to construct all cata-

condensed benzenoid systems with maximum clar number when their Clar

number is n/6 where n is the number of vertices.

Let H be a cata-condensed hexagonal system. The inner dual H∗ of H is

a graph such that each vertex of H∗ represents a hexagon of H and each edge

of H∗ connects two vertices if their corresponding hexagons share an edge in

H. A degree of a vertex in H∗ is the number of edges that are incident to

this vertex. Let Vi = {v|degreeH∗(v) = i} for i = 1, 2, 3. Let cl(H) be the

Clar number of H. A vertex set of S of H is independent if and only if any

two vertices of S are not incident. Let Sc be a vertex set that consists of all

the vertices in H but not in S. Zhai, Alrowaili and Ye proved the following

characterization for cata-condensed hexagonal systems maximizing the Clar

number[68].
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Theorem 3.12. Let H be a cata-condensed hexagonal system with n vertices

and let H∗ be the inner dual of H. Then the Clar number of H is n
6

if and

only if H∗ has an independent set S which contains all vertices of degree at

most 2.

In section 3.2, we will design an algorithm based on the above theorem.

In section 3.3, we will show the implementation result of our algorithm when

the number of hexagons is 7, 10, and 13.

3.2 Benzenoid System with Maximum Clar Number

Construction Algorithm

Let h be the number of hexagons and n be the number of vertices in a cata-

condensed hexagonal system H with Clar number n
6
. It is easy to show that

n = 4h+ 2. (9)

Since H∗ is a tree and the degree of every vertex in the independent set

Sc is 3, we have the following equation:

3|Sc| = |S|+ |Sc| − 1 (10)

The number of hexagons in H equals the number of vertices in H∗. So

we have another equation:

|Sc|+ |S| = h (11)
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Based on equations (9),(10) and (11), we can obtain that:
|Sc| = n−6

12
,

|S| = n
6
,

(12)

This indicates that the number of vertices in S = the number of hexagons

in the corresponding forcing the resonant set of H = the Clar number of H

= n
6
.

Let x1 be the number of vertices with degree 1 in S. Let x2 be the number

of vertices with degree 2 in S. Let x3 be the number of vertices with degree

3 in S. Let x′3 be the number of vertices with degree 3 in Sc. Then we can

obtain the following two equations:
x1 + x2 + x3 = |S|,

x1 + 2x2 + 3x3 = h− 1,
(13)

Combing with equations (9), (12), the solution for (13) is:
x1 = n

12
+ 3

2
+ x3,

x2 = n
12
− 3

2
− 2x3,

(14)

Let |Sc| = k, then we can get the following results:
n = 12k + 6,
h = 3k + 1,
|S| = 2k + 1,
x1 = k + 2 + x3,
x2 = k − 1− 2x3,

(15)

Then, we can compute the degree sequence of the inner dual H∗ of cata-

condensed benzenoid systems H with cl(H) = n
6

= 2k+1. For example, when
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n = 42, k = 3, h = 10, x1 = 6, x2 = 0, x3 = 1, x′3 = 3. So the degree sequence

of H∗ is {1, 1, 1, 1, 1, 1, 3, 3′, 3′, 3′} which is showed in Figure 19 where each

dot represents one hexagon. The corresponding cata-condensed benzenoid

systems are showed in Figure 20.

Figure 19: A inner dual H∗ with degree sequence {1, 1, 1, 1, 1, 1, 3, 3′, 3′, 3′}

Figure 20: A hexagonal system H with inner dual H∗ having degree sequence

{1, 1, 1, 1, 1, 1, 3, 3′, 3′, 3′}

We can simply use the following modified brute force method to filter

all cata-condensed benzenoid systems with maximum Clar number based on

these three steps:

• Step 1: Search all benzenoid systems whose number of vertices with
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degree 3 equal to |x3|+ |x′3|.

• Step 2: Given Clar(H) = n
6
, if a vertex v belongs to Sc, where S is the

maximum independent resonant set of H and the degree of one child

of v is 3, we can conclude that degrees of three children of this child of

v are all 3, as explained in Figure 20.

• Step 3: Set of all children of each vertex in SC
⋃
V (SC) = V (H∗).

The corresponding pseudocode is as following:

Algorithm 3: Construction of cata-condensed Hexagonal System with Maximum Clar

Number

Input : h − Number o f hexagons

H − Al l cata−condensed hexagonal systems with

h hexagons

Output : A l l cata−condensed hexagonal system with

h hexagons and maximum Clar number

for Hi ∈ H do

i f V3 = x3 + x′3 then

// I f one c h i l d o f x′3 i s degree 3 ,

// a l l c h i l d r e n o f t h i s c h i l d must be degree 3

for v ∈ V3 do

i f degree ( one c h i l d o f V ) = 3 and

degree ( a l l c h i l d r e n o f V ) = 3 then

v ∈ x′3
end

end

i f s e t (x′3 ) cove r s V (H) then

save t h i s hexagonal system
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end

end

end

3.3 Implementation Result and Conclusion

Figure 21 shows two cata-condensed benzenoid systems of 7 hexagons with

maximum Clar number, Figure 22 shows six cata-condensed benzenoid sys-

tems of 10 hexagons with maximum Clar number, and Figure 23 shows 32

cata-condensed benzenoid systems of 13 hexagons with maximum Clar num-

ber. Given a hexagonal system H with n vertices, based on our algorithm, it

needs O(1) time to check if a vertex is in set of x′3 and O(n) time to check if

the set of x′3 covers the whole graph. So the overall time needed for a single

loop over all hexagonal systems is O(n).

Figure 21: Two cata-condensed benzenoid systems of 7 hexagons with maximum Clar

number
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Figure 22: Six cata-condensed benzenoid systems of 10 hexagons with maximum Clar

number
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Figure 23: 32 cata-condensed benzenoid systems of 13 hexagons with maximum clar

number
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CHAPTER 4

CONSTRUCT GRAPHS WITH FORCING FACE

4.1 Introduction

Let S be a set of edges. S is named as forcing set if G− V (S) has a unique

perfect matching. More and more mathematicians have been attracted by the

concept of Forcing set [10] in the past few decades since Harary, Klein, and

Zivkovic [31] introduced the definitions of forcing edge and forcing number in

1991. This forcing concept is originated from the research on the application

of Kekulé structure in the resonance theory in chemistry by Klein and Randić

[39]. Zhang, Zhang, and Li published a series of papers [72, 73, 42] in 90s

that applied the forcing edge idea in hexagonal systems. Motivated by this

work, Che and Chen proposed the concept of forcing hexagon in hexagonal

systems [9] in 2006. They continued to generalize the idea of forcing hexagon

in hexagonal systems to forcing faces in plane bipartite graphs [11] in 2013.

In recent years, many studies focus on a variety of forcing related topics and

applications such as forcing polynomial [80], forcing and anti-forcing num-

bers in fullerene [57], Clar set and maximum forcing numbers of hexagonal

systems [84], and anti-forcing polynomial in [82].

Let G be a graph. A forcing edge is an edge that the remaining graph

after deleting this edge and all incident edges to this edge from graph G
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has a unique perfect matching. A finite face of G is a forcing face if the re-

maining graph of G after deleting all edges of this face and incident edges to

this face has a unique perfect matching. A bridge is an edge whose removal

will increase the number of connected components of graph G. A connected

component is even if there are even number of vertices in this component,

and odd otherwise. A bridge is even if two new connected components after

its removal are all even. A bridge is odd if two new connected components

after its removal are all odd. A connected component formed by deletion of

all bridges is called as 2-edge-connected component.

In [41], Kotzig proved this following well-known theorem:

Theorem 4.13. Let G be a connected graph with unique perfect matching.

Then G has a bridge that belongs to this matching.

Every component of a graph with a perfect matching must have an even

number of vertices. Hence every even bridge of a graph G is not in M , and

every odd bridge of G is in M if G has a unique perfect matching M . In

[22], Gabow, Kaplan, and Tarjan designed a polynomial time algorithm to

determine if a graph contains a unique perfect matching based on Kotzig’s

theorem. The idea is to consecutively add an odd bridge e to the unique

perfect matching M of G while deleting e and all edges incident to e after

e is added to M . Then G has a unique perfect matching when the final
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graph is empty. They refined this idea by an observation that every new

bridge created after deletion of an edge {v, w} is on every path from v to

w. In order to make the algorithm efficiently, they dynamically add new

bridges, instead of exploring all bridges, after removing edges from G. This

algorithm can achieve time O(mlog4n) by using top tree data structure. The

pseudocode of their algorithm is as following:

Algorithm 4: Unique Prefect Matching Algorithm

Initialize M = ∅ and R to be the s e t o f a l l b r i dge s o f G .

while R 6= ∅ r epeat the f o l l o w i n g s t ep s :

De lete an edge {x, y} from R .

if x, y i s an odd bridge , d e l e t e {x, y} from G ,

add x, y to M , and

repeat the f o l l o w i n g s t ep s

for each edge {v, w} i n c i d e n t to x or y :

De lete {v, w} from G , and from R i f i t i s in R

I f v and w are s t i l l connected but are

in d i f f e r e n t 2−edge−connected components , then

f i n d a path P (v, w) connect ing v and w and add

every br idge on P (v, w) to R .

A graph G is planar if G can be drawn in the plane without crossing edges.

A planar graph divides the plane into multiple regions, which are also named

as faces. A face f of graph G is forcing if G − V (f) has a unique perfect

matching. Che and Chen defined that a graph G with a perfect matching is

said to be elementary if the union of all perfect matchings forms a connected
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subgraph. They proved that any connected plane bipartite graph with a

forcing face is elementary [11]. However, there does not exist an algorithm

to check the existence of forcing face in a general graph. Inspired by this

unique perfect matching algorithm, in section 4.2, we gave an algorithm to

discover all forcing faces of a graph G with m edges and n vertices in time

O(m2log4n). In section 4.3, we apply the algorithm to hexagonal systems.

In each while loop of the unique perfect matching algorithm, an odd

bridge is added to a set M of the graph G. When the while loops stop, the set

M would be the unique perfect matching if there is a unique perfect matching

in G. In other words, the set M is constructed by iteratively deleting odd

bridges and edges incident to odd bridges from the graph one by one until the

graph becomes empty. So, by reversely thinking this unique perfect matching

algorithm, we could construct a graph with unique perfect matching from

empty through iteratively adding odd bridges and edges incident to odd

bridges one by one back to the graph. Chaplick et al provided a constructive

characterization of the claw-free graphs with a unique perfect matching in

[8]. In section 4.4, we propose an algorithm to construct general graphs with

a unique perfect matching through odd bridges. In section 4.5, we present

a forcing face construction algorithm based on the proposed unique perfect

matching construction algorithm.
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4.2 Forcing Face Detection Algorithm

Let G be a plane graph. A finite face f of G is a forcing face if the remain-

ing graph G − V (f) has a unique perfect matching. By the definition, a

straightforward forcing face detection algorithm for a face f in G is to check

if there is a unique perfect matching on G−V (f) using algorithm 4. In order

to make this straightforward algorithm more efficient, we need to detect the

new bridges generated by deleting f and edges incident to f . In Algorithm

4, the key observation in the for loop is that every bridge newly created by

deletion of an edge {v, w} is on every path from v to w. This observation

is still partially true in our forcing face detection algorithm, since we have

another observation that some other new bridges are created by deletion of

the face f and ever such newly created bridge is on every path from one

vertex x on f to another vertex y on f . The graphical example is showed in

Figure 24, where the solid circle represents the face f .

The pseudocode of this algorithm is as following:

Algorithm 5: Forcing Face Detection Algorithm

Initialize M = ∅ , R to be the s e t o f a l l b r i dge s o f G , and

C to be the s e t o f a l l i nne r f a c e s o f G .

while C 6= ∅ do :

Restore G and R as the o r i g i n a l unchanged G and R .

De lete a f a c e f from C .

De lete a l l edges o f t h i s f a c e from G , and
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Figure 24: Forcing face algorithm

from R i f the edge i s in R .

for every pa i r o f v e r t i c e s x and y on t h i s f a c e do

if x and y are s t i l l connected but

are in d i f f e r e n t 2−edge−connected components ,

then f i n d a path P (x, y) connect ing x and y and

add every br idge on t h i s path to R ,

except the edges i n c i d e n t to t h i s f a c e .

end

for each edge v, w i n c i d e n t to t h i s f a c e do

Delete v, w from G , and from R i f i t i s in R .

if v and w are s t i l l connected but

are in d i f f e r e n t 2−edge−connected components ,

then f i n d a path P (v, w) connect ing v and w and

add every br idge on t h i s path to R .

end

Remove d u p l i c a t i o n o f newly added br idge s from R .
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Use unique p e r f e c t matching a lgor i thm to

f i n d a unique p e r f e c t matching

on the remaining graph G .

end

We have following lemmas to prove the correctness of our proposed forc-

ing face algorithm.

Lemma 4.14. In the step of the first for loop in Algorithm 5, every bridge

newly created by deletion of a face is on every path from x to y, where x and

y are a pair of vertices on this face.

Proof. Suppose the newly created bridge is not on any path containing any

pair of vertices of this face. We know that there is no circle in this graph

containing this bridge after the deletion. Adding this face back to the graph

will not form a circle containing this bridge. This means that this bridge

should exist before deleting this face. A contradiction is found and thus this

claim is correct.

Lemma 4.15. In the step of the second for loop in Algorithm 5, every bridge

newly created by deletion of an edge v, w is on every path from v to w.

Proof. Suppose the newly created bridge in the second for loop is not on any

path from v to w. We know that there is no circle in this graph containing

this bridge after the deletion. Adding edge v, w back to the graph will not

form a circle containing this bridge since this bridge is not on any path from
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v to w. This means that this bridge should exist before deleting edge v, w.

A contradiction is found and thus this claim is correct.

Lemma 4.16. Let R be the set of all bridges of a graph G. R contains all

remaining bridges of G after deleting a face with all its incident edges in this

algorithm.

Proof. A bridge will remain a bridge once it is created until it is deleted since

no new edges and vertices will be added to G during the whole algorithm.

Based on Lemma 4.14 and 4.15, every newly created bridges will be added

to R. A newly created bridge is not a bridge before the deletion of face or

edges since this bridge is on a circle of G before the deletion. The second

last step in the while loop of this algorithm removes all duplication of newly

added bridges from R. Based on all above, we can conclude that R contains

all remaining bridges of G after deleting a face with all its incident edges in

this algorithm.

Now we show that Algorithm 5 runs in time O(m2log4n). Based on paper

[22], it will take O(mlog4n) to identify if there is an unique perfect matching

in a graph with m edges and n vertices. The number of faces in a graph is less

than the number of edge m, so the Algorithm 5 will run in time O(m2log4n).
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4.3 Implementation Result of Forcing Face Detection

Algorithm

A non-linear hexagonal system has 0, 1, or 2 forcing face , while a linear

hexagonal has all hexagons as forcing faces [11]. Figure 25 shows a linear

hexagonal system with 5 hexagons. All five hexagons are forcing faces. Fig-

ure 26 shows one forcing face of this linear hexagonal system with the edges

of the unique perfect matching labeled using green lines after this forcing

face deleted.

Figure 28 shows a hexagonal system with only one forcing face. Figure

27 shows a hexagonal system with only two forcing faces.

Figure 25: A linear hexagonal system

Figure 26: A forcing face in a linear hexagonal system
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Figure 27: A hexagonal system with two forcing faces

Figure 28: A hexagonal system with one forcing face

4.4 Unique Perfect Matching Construction Algorithm

First of all, we define a series of terminologies and operations before dis-

cussing the algorithm. We define an element as a combination of a letter L

or R and a positive integer as subscript. A letter S is also an element. For

example, S, L1 and R2 are all elements. We define a sequence as a list of

elements starting from S and S only appear once in the list. For example,

S, SL1, and SR1L1L2R1L3 are all sequences. We define following operations

on a sequence s:

• |s|: the number of elements, length of s

• s[n]: the nth element in s

• s[: n]: a subsequence of s from the first element to the nth element
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• Letter(s[n]): the letter of the nth element in s

For example, given a sequence s = SR1L1L2R1L3, |s| = 6, s[2] = R1,

Letter(s[4]) = L, and s[: 3] = SR1L1, so we can say SR1L1 is a subsequence

of s.

Let s1, s2 be two sequences. We call s1 is an ancestor of s2 (or s2 is a

descendant of s1 otherwise) if s1 is a subsequence of s2. For example, S, SR1,

and SR1L1L2R1 are all ancestors of SR1L1L2R1L3.

We define an operation vertex(s1, s2) between ancestor s1 and descendant

s2 as vertex(s1, s2) = Letter(s2[|s1|+ 1]). In other words, vertex(s1, s2) is the

letter after s1 on s2. For example, vertex(SR1L1L2, SR1L1L2R1L3) is R.

Now we can follow these steps to construct a connected graph G with

unique perfect matching M :

• Step 1, add two vertices x, y and an edge xy to an empty graph G.

Assign sequence S to edge xy. Add edge xy to an empty set M . Name

x as left vertex and name y as right vertex.

• Step 2, add two vertices v, w and an edge vw to G. Assign a sequence

svw to edge vw following these two substeps:

– Step 2.1, choose one edge e from M . Suppose s is the sequence

assigned to e.
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– Step 2.2, append an element Lk or Rk to sequence s as svw, where

k is a positive integer and to make sure that the sequence svw

should not have been assigned to any other edges before.

Add edge vw to M . Name v as left vertex and name w as right vertex.

• Step 3, choose an edge m from M such that the sequence sm of m is

ancestor of svw. Add one edge from v or w to a vertex p, where p is

the left vertex of m if vertex(sm, svw) is L and is the right vertex of m

otherwise. Add this new edge to G.

• Repeat Step 3 to add more edges to G.

• Go back to Step 2.

Let’s see one example in Figure 29 constructed by this method as follow-

ing:

1. Add edge 1 with sequence S to M and to G. We call the vertex on the

left/right position as left/right vertex.

2. Add edge 2 to G. Assign a sequence SL1 based on edge 1. Add edge 2

to M .

3. Add edge 3 from one endpoint of edge 2 to the left vertex of edge 1,

because the sequence of edge 1 is an ancestor of the sequence of edge

2 and vertex(S, SL1) = L. Add edge 3 to G.
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4. Add edge 4 to G. Assign a sequence SL1L1 to edge 4 based on edge 2.

Add edge 4 to M .

5. Add edge 5, 6, 7 from edge 4 to its ancestors. Add edge 5, 6, 7 to G.

6. Add edge 8 to G and then to M . Add edge 9, 10 to G.

7. Continue to add edges until edge 19 is added.

We prove the correctness of our method as following.

Lemma 4.17. A graph G constructed by above algorithm has a unique per-

fect matching.

Proof. Firstly, we prove that the initial edge xy with sequence S is an odd

bridge. Based on the operation vertex(), all the edges connected to the left

vertex of xy have a sequence starting as SL and all the edges connected to the

right vertex of xy have a sequence starting as SR. A sequence starting from

SL does not have ancestor/descendant relationship with a sequence starting

from SR. So there is no edge between the group of edges connected to the

x (left side) and the the group of edges connected to the y (right side). All

other edges without a sequence assigned are connected between two vertices

in one side. So edge xy is a bridge.
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Odd bridge 1
Odd bridge 2

Odd bridge 3
Odd bridge 4

Odd bridge 5
Odd bridge 6 & 7

Figure 29: Example of construction of a graph with unique perfect matching
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Throughout this algorithm, we always add a pair of new vertices v and w

in Step 2. The edge vw will be connected to only one vertex of the edge xy. So

the vertices in either side is an odd number. So, the edge xy is an odd bridge.

Based on the unique perfect matching algorithm, we delete the edge xy

and all edges incident to xy. Now we prove that all edges with length 2

sequences are odd bridges. For instance, we have a bridge vw with sequence

SLk. All the edges from vw to its ancestor xy has been deleted. So, we can

recursively deem SLk like the initial edge S to build all its descendants. This

is saying that edge vw is an odd bridge.

After all odd bridges with length 2 sequences are removed from the graph.

All edges with length 3 sequences are odd bridges. We can recursively repeat

these steps and finally all edges with sequences assigned are deleted, and

consequently all edges without sequences assigned are also deleted. Thus the

final graph is empty. We get a unique perfect matching M of G.

In Step 2 of our method, it needs O(1) time to add an edge with sequence

assigned. In Step 3 of our method, it also needs O(1) time to add an edge

without sequence assigned. So, the method overall needs O(m) time to con-

struct a graph with m edges and a unique perfect matching.
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4.5 Forcing Face Construction Algorithm

A face f of a plan graph G is a forcing face if G− V (f) has a unique perfect

matching. In section 4.4, we present an algorithm to construct graphs with

a unique perfect matching. So, we can intuitively construct a graph with a

forcing face by adding a face to a graph with a unique perfect matching.

We can use an algorithm of Galil et al [23] to test the planarity of the

graph constructed in the algorithm. Galil et al algorithm can test whether

an edge could be added to the graph without violating planarity in time

O(n2/3), where n is the number of vertices of G.

Here are the steps to construct a graph G with a forcing face f :

• Step 1, construct a graph G with a unique perfect matching based on

the algorithm in section 4.4. Galil et al algorithm is applied in Step 3

of the algorithm in section 4.4 to maintain the planarity of G.

• Step 2, add an edge between one vertex of f and one vertex of G.

Galil et al algorithm is applied after adding this edge to maintain the

planarity of G.

• Repeat Step 2 to add more edges.
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CHAPTER 5

FUTURE WORK

In chapter 2, we only calculate the forcing polynomial for cata-condensed

benzenoid system. In the future, we want to design an algorithm for calcu-

lating all benzenoid systems. We also want to build relationships between

forcing resonant polynomial and other counting polynomials such as Clar

polynomials. For example, a forcing resonant set is always maximal, but a

maximal resonant set may be not forcing if the benzenoid system is not cata-

condensed. We want to find a sufficient and necessary condition between

maximal and forcing of a resonant set.

In chapter 3, we only propose a method to enumerate all cata-condensed

benzenoid systems with maximum Clar number n/6, where n is the number

of vertices of benzenoid systems. As a future work, we will continue to de-

sign methods to discover hexagonal systems with maximum Clar number as

(n− 2)/6 and (n− 4)/6. Our current enumeration algorithm is based on the

results obtained from Brinkmann et al. algorithm [7]. Our algorithm only

works for small number of hexagons. In the future, we would like to enu-

merate such benzenoid systems attaining the upper bound directly, instead

of enumerating all benzenoid systems at first.

We also can observe that all cata-condensed benzenoid systems with max-
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imum Clar number n/6 are comprised of ”star” shaped structures. So, we

may define this structure as a basic unit just like a single hexagon. And then

we can build all systems by combing multiple such basic units. For example,

in Fugure 21, two cata-condensed benzenoid system of 7 hexagons are com-

bined by two basic star units in two different ways. The core of this kind of

algorithm is to detect if two graphs are isomorphism or not.

In chapter 4, we prove that our proposed forcing face detection algorithm

runs in time O(m2log4n), but we could implement this algorithm using a

much more efficient dynamical data structure - top tree. Top tree can be

used to maintain many information of a tree dynamically when updating the

tree through adding, deleting, etc. The idea of top tree is to represent a

tree using clusters, where each cluster is a subtree. The implementation in

chapter 4 is not coded in top tree structure. In the future, we will implement

our algorithm using top tree.

In chapter 4, we also propose another algorithm to construct graphs with

unique perfect matchings using odd bridges. We prove that every graph con-

structed by our algorithm will have a unique prefect matching. In the future,

we would like to prove a conjecture that every graph with a unique perfect

matching can be constructed by our algorithm.

In the last section of chapter 4, we present a forcing face construction
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algorithm. In the future, we want to construct graphs according to their

forcing resonant polynomials.
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APPENDIX

Table 3: All cata-condensed Benzenoid Systems with 7 hexagons

Graph

index

Polynomial Clar #
Coefficient

vector

x

HOMO-

LUMO

gap

Number of

perfect

matching
1 x5 + 2x3 + x2 5 [1, 0, 2, 1, 0] 39 1.1801 41
2 x5 + 2x3 5 [1, 0, 2, 0, 0] 38 1.1548 40
3 3x4 + 2x3 4 [0, 3, 2, 0, 0] 37 1.0255 38
4 3x4 + 2x3 4 [0, 3, 2, 0, 0] 37 0.941 38
5 3x4 + x3 + x2 4 [0, 3, 1, 1, 0] 36 1.0356 37
6 3x4 + x3 + x2 4 [0, 3, 1, 1, 0] 36 0.9799 37
7 3x4 + x3 + x2 4 [0, 3, 1, 1, 0] 36 0.9698 37
8 3x4 + 2x2 4 [0, 3, 0, 2, 0] 35 0.979 35
9 3x4 + 2x2 4 [0, 3, 0, 2, 0] 35 0.9268 35
10 2x4 + 4x3 4 [0, 2, 4, 0, 0] 34 1.0431 36
11 2x4 + 4x3 4 [0, 2, 4, 0, 0] 34 1.0406 36
12 2x4 + 4x3 4 [0, 2, 4, 0, 0] 34 1.0291 36
13 2x4 + 4x3 4 [0, 2, 4, 0, 0] 34 1.0242 36
14 2x4 + 4x3 4 [0, 2, 4, 0, 0] 34 0.9796 36
15 2x4 + 4x3 4 [0, 2, 4, 0, 0] 34 0.9782 36
16 2x4 + 4x3 4 [0, 2, 4, 0, 0] 34 0.9371 36
17 2x4 + 3x3 4 [0, 2, 3, 0, 0] 33 0.9592 34
18 2x4 + 3x3 4 [0, 2, 3, 0, 0] 33 0.9424 34
19 2x4 + 3x3 4 [0, 2, 3, 0, 0] 33 0.9281 34
20 2x4 + 3x3 4 [0, 2, 3, 0, 0] 33 0.9163 34
21 2x4 + 3x3 4 [0, 2, 3, 0, 0] 33 0.8499 34
22 2x4 + 2x3 + 2x2 4 [0, 2, 2, 2, 0] 32 0.926 33
23 2x4 + 2x3 + 2x2 4 [0, 2, 2, 2, 0] 32 0.9204 33
24 2x4 + 2x3 + 2x2 4 [0, 2, 2, 2, 0] 32 0.9142 33
25 2x4 + 2x3 + 2x2 4 [0, 2, 2, 2, 0] 32 0.9141 33
26 2x4 + 2x3 + x2 4 [0, 2, 2, 1, 0] 31 0.9832 32
27 2x4 + 2x3 + x2 4 [0, 2, 2, 1, 0] 31 0.9722 32



71

Table 3: Continued.

28 2x4 + 2x3 + x2 4 [0, 2, 2, 1, 0] 31 0.8561 33
29 2x4 + 2x3 + x2 4 [0, 2, 2, 1, 0] 31 0.8521 33
30 2x4 + x3 + 3x2 4 [0, 2, 1, 3, 0] 30 0.8671 32
31 2x4 + x3 + 3x2 4 [0, 2, 1, 3, 0] 30 0.8575 32
32 2x4 + x3 + 2x2 4 [0, 2, 1, 2, 0] 29 0.8781 31
33 2x4 + x3 + x2 4 [0, 2, 1, 1, 0] 28 0.78 30
34 x4 + 7x3 4 [0, 1, 7, 0, 0] 27 1.0559 35
35 x4 + 7x3 4 [0, 1, 7, 0, 0] 27 0.9604 35
36 x4 + 6x3 4 [0, 1, 6, 0, 0] 26 1.0548 34
37 x4 + 6x3 4 [0, 1, 6, 0, 0] 26 1.0361 34
38 x4 + 6x3 4 [0, 1, 6, 0, 0] 26 1.0223 34
39 x4 + 6x3 4 [0, 1, 6, 0, 0] 26 1.0063 34
40 x4 + 6x3 4 [0, 1, 6, 0, 0] 26 0.9927 34
41 x4 + 6x3 4 [0, 1, 6, 0, 0] 26 0.9681 34
42 x4 + 6x3 4 [0, 1, 6, 0, 0] 26 0.963 34
43 x4 + 6x3 4 [0, 1, 6, 0, 0] 26 0.9165 34
44 x4 + 4x3 + x2 4 [0, 1, 4, 1, 0] 25 0.9317 31
45 x4 + 4x3 + x2 4 [0, 1, 4, 1, 0] 25 0.9243 31
46 x4 + 4x3 + x2 4 [0, 1, 4, 1, 0] 25 0.9068 31
47 x4 + 4x3 + x2 4 [0, 1, 4, 1, 0] 25 0.9063 31
48 x4 + 4x3 + x2 4 [0, 1, 4, 1, 0] 25 0.8909 31
49 x4 + 4x3 + x2 4 [0, 1, 4, 1, 0] 25 0.8886 31
50 x4 + 4x3 + x2 4 [0, 1, 4, 1, 0] 25 0.8885 31
51 x4 + 4x3 + x2 4 [0, 1, 4, 1, 0] 25 0.8624 31
52 x4 + 3x3 + x2 4 [0, 1, 3, 1, 0] 24 0.9667 29
53 x4 + 3x3 + x2 4 [0, 1, 3, 1, 0] 24 0.9077 29
54 x4 + 3x3 + x2 4 [0, 1, 3, 1, 0] 24 0.8642 29
55 9x3 3 [0, 0, 9, 0, 0] 23 0.8438 31
56 9x3 3 [0, 0, 9, 0, 0] 23 0.8216 31
57 9x3 3 [0, 0, 9, 0, 0] 23 0.7955 31
58 8x3 + x2 3 [0, 0, 8, 1, 0] 22 0.8666 29
59 8x3 + x 3 [0, 0, 8, 0, 1] 21 1.0314 28
60 8x3 3 [0, 0, 8, 0, 0] 20 0.8439 30
61 8x3 3 [0, 0, 8, 0, 0] 20 0.8439 30
62 8x3 3 [0, 0, 8, 0, 0] 20 0.818 30
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63 8x3 3 [0, 0, 8, 0, 0] 20 0.8173 30
64 8x3 3 [0, 0, 8, 0, 0] 20 0.8074 30
65 8x3 3 [0, 0, 8, 0, 0] 20 0.8033 30
66 8x3 3 [0, 0, 8, 0, 0] 20 0.7956 30
67 8x3 3 [0, 0, 8, 0, 0] 20 0.7907 30
68 8x3 3 [0, 0, 8, 0, 0] 20 0.7889 30
69 8x3 3 [0, 0, 8, 0, 0] 20 0.7619 30
70 7x3 + x2 3 [0, 0, 7, 1, 0] 19 0.8371 29
71 7x3 + x2 3 [0, 0, 7, 1, 0] 19 0.8363 29
72 7x3 + x2 3 [0, 0, 7, 1, 0] 19 0.8155 29
73 7x3 + x2 3 [0, 0, 7, 1, 0] 19 0.8128 29
74 7x3 + x2 3 [0, 0, 7, 1, 0] 19 0.8121 29
75 7x3 + x2 3 [0, 0, 7, 1, 0] 19 0.8084 29
76 7x3 + x2 3 [0, 0, 7, 1, 0] 19 0.7957 29
77 6x3 + 2x2 3 [0, 0, 6, 2, 0] 18 0.8738 27
78 6x3 + 2x2 3 [0, 0, 6, 2, 0] 18 0.8632 27
79 6x3 + 2x2 3 [0, 0, 6, 2, 0] 18 0.8622 27
80 6x3 + 2x2 3 [0, 0, 6, 2, 0] 18 0.8274 27
81 6x3 + 2x2 3 [0, 0, 6, 2, 0] 18 0.7298 27
82 6x3 + 2x2 3 [0, 0, 6, 2, 0] 18 0.7288 27
83 6x3 + x2 3 [0, 0, 6, 1, 0] 17 0.6724 26
84 6x3 + x2 3 [0, 0, 6, 1, 0] 17 0.6694 26
85 6x3 + x 3 [0, 0, 6, 0, 1] 16 0.7266 25
86 5x3 + 3x2 3 [0, 0, 5, 3, 0] 15 0.7629 26
87 5x3 + 3x2 3 [0, 0, 5, 3, 0] 15 0.7558 26
88 5x3 + 3x2 3 [0, 0, 5, 3, 0] 15 0.7361 26
89 5x3 + 3x2 3 [0, 0, 5, 3, 0] 15 0.7303 26
90 5x3 + 2x2 3 [0, 0, 5, 2, 0] 14 0.6756 25
91 5x3 + 2x2 3 [0, 0, 5, 2, 0] 14 0.6751 25
92 5x3 + 2x2 3 [0, 0, 5, 2, 0] 14 0.6664 25
93 5x3 + 2x2 3 [0, 0, 5, 2, 0] 14 0.663 25
94 4x3 + 5x2 3 [0, 0, 4, 5, 0] 13 0.8412 25
95 4x3 + 5x2 3 [0, 0, 4, 5, 0] 13 0.7927 25
96 4x3 + 5x2 3 [0, 0, 4, 5, 0] 13 0.7881 25
97 4x3 + 4x2 3 [0, 0, 4, 4, 0] 12 0.8284 24
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98 4x3 + 4x2 3 [0, 0, 4, 4, 0] 12 0.7881 24
99 4x3 + 3x2 3 [0, 0, 4, 3, 0] 11 0.7383 23
100 4x3 + 3x2 3 [0, 0, 4, 3, 0] 11 0.7281 23
101 4x3 + 3x2 3 [0, 0, 4, 3, 0] 11 0.5871 24
102 4x3 + x 3 [0, 0, 4, 0, 1] 10 0.5242 21
103 3x3 + 5x2 3 [0, 0, 3, 5, 0] 9 0.6286 23
104 3x3 + 5x2 3 [0, 0, 3, 5, 0] 9 0.6228 23
105 3x3 + 5x2 3 [0, 0, 3, 5, 0] 9 0.6216 23
106 3x3 + 5x2 3 [0, 0, 3, 5, 0] 9 0.6199 23
107 3x3 + 4x2 3 [0, 0, 3, 4, 0] 8 0.6603 22
108 3x3 + 4x2 3 [0, 0, 3, 4, 0] 8 0.6544 22
109 3x3 + 2x2 3 [0, 0, 3, 2, 0] 7 0.539 20
110 3x3 + 2x2 3 [0, 0, 3, 2, 0] 7 0.5381 20
111 11x2 2 [0, 0, 0, 11, 0] 6 0.5698 19
112 11x2 2 [0, 0, 0, 11, 0] 6 0.5597 19
113 9x2 + x 2 [0, 0, 0, 9, 1] 5 0.6512 17
114 9x2 2 [0, 0, 0, 9, 0] 4 0.4623 17
115 9x2 2 [0, 0, 0, 9, 0] 4 0.4598 17
116 8x2 + x 2 [0, 0, 0, 8, 1] 3 0.5021 16
117 5x2 + x 2 [0, 0, 0, 5, 1] 2 0.3741 13
118 7x 1 [0, 0, 0, 0, 7] 1 0.2684 8
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Table 4: All cata-condensed Benzenoid Systems with 8 hexagons

Graph

index

Polynomial Clar #
Coefficient

vector

x

HOMO-

LUMO

gap

Number of

perfect

matching
1 2x5 + 2x4 + x3 5 [2, 2, 1, 0, 0] 89 0.961 66
2 2x5 + 2x4 + x2 5 [2, 2, 0, 1, 0] 88 0.982 65
3 2x5 + x4 + 3x3 5 [2, 1, 3, 0, 0] 87 1.0215 64
4 2x5 + x4 + 3x3 5 [2, 1, 3, 0, 0] 87 1.0136 64
5 2x5 + x4 + 3x3 5 [2, 1, 3, 0, 0] 87 1.0066 64
6 2x5 + x4 + 2x3 5 [2, 1, 2, 0, 0] 86 0.9875 62
7 2x5 + x4 + 2x3 5 [2, 1, 2, 0, 0] 86 0.9824 62
8 2x5 + x4 + x3 + x2 5 [2, 1, 1, 1, 0] 85 0.9233 61
9 2x5 + 3x3 + x2 5 [2, 0, 3, 1, 0] 84 0.9509 59
10 2x5 + 3x3 + x2 5 [2, 0, 3, 1, 0] 84 0.9495 59
11 2x5 + 3x3 5 [2, 0, 3, 0, 0] 83 0.9738 58
12 2x5 + 2x3 5 [2, 0, 2, 0, 0] 82 0.8495 56
13 x5 + 4x4 + x3 5 [1, 4, 1, 0, 0] 81 1.0078 62
14 x5 + 4x4 + x3 5 [1, 4, 1, 0, 0] 81 0.9698 62
15 x5 + 4x4 + x3 5 [1, 4, 1, 0, 0] 81 0.9216 62
16 x5 + 3x4 + 4x3 5 [1, 3, 4, 0, 0] 80 1.0015 61
17 x5 + 3x4 + 4x3 5 [1, 3, 4, 0, 0] 80 0.9877 61
18 x5 + 3x4 + 4x3 5 [1, 3, 4, 0, 0] 80 0.9312 61
19 x5 + 3x4 + 3x3 5 [1, 3, 3, 0, 0] 79 1.0502 60
20 x5 + 3x4 + 3x3 5 [1, 3, 3, 0, 0] 79 1.0202 60
21 x5 + 3x4 + 3x3 5 [1, 3, 3, 0, 0] 79 1.0091 60
22 x5 + 3x4 + 3x3 5 [1, 3, 3, 0, 0] 79 0.9994 60
23 x5 + 3x4 + 3x3 5 [1, 3, 3, 0, 0] 79 0.9633 60
24 x5 + 3x4 + 3x3 5 [1, 3, 3, 0, 0] 79 0.9494 60
25 x5 + 3x4 + x3 + x2 5 [1, 3, 1, 1, 0] 78 1.015 57
26 x5 + 3x4 + x3 + x2 5 [1, 3, 1, 1, 0] 78 0.9664 57
27 x5 + 3x4 + x3 + x2 5 [1, 3, 1, 1, 0] 78 0.9618 57
28 x5 + 3x4 + x3 + x2 5 [1, 3, 1, 1, 0] 78 0.9256 57
29 x5 + 3x4 + x3 5 [1, 3, 1, 0, 0] 77 0.9102 58
30 x5 + 3x4 + x3 5 [1, 3, 1, 0, 0] 77 0.88 58



75

Table 4: Continued.

31 x5 + 2x4 + 5x3 5 [1, 2, 5, 0, 0] 76 1.0588 59
32 x5 + 2x4 + 5x3 5 [1, 2, 5, 0, 0] 76 1.0481 59
33 x5 + 2x4 + 5x3 5 [1, 2, 5, 0, 0] 76 1.0217 59
34 x5 + 2x4 + 5x3 5 [1, 2, 5, 0, 0] 76 1.0216 59
35 x5 + 2x4 + 5x3 5 [1, 2, 5, 0, 0] 76 1.0122 59
36 x5 + 2x4 + 5x3 5 [1, 2, 5, 0, 0] 76 1.0096 59
37 x5 + 2x4 + 5x3 5 [1, 2, 5, 0, 0] 76 0.9737 59
38 x5 + 2x4 + 5x3 5 [1, 2, 5, 0, 0] 76 0.9461 59
39 x5 + 2x4 + 3x3 5 [1, 2, 3, 0, 0] 75 0.9968 56
40 x5 + 2x4 + 3x3 5 [1, 2, 3, 0, 0] 75 0.9729 56
41 x5 + 2x4 + 3x3 5 [1, 2, 3, 0, 0] 75 0.9711 56
42 x5 + 2x4 + 3x3 5 [1, 2, 3, 0, 0] 75 0.9645 56
43 x5 + 2x4 + 3x3 5 [1, 2, 3, 0, 0] 75 0.9632 56
44 x5 + 2x4 + 3x3 5 [1, 2, 3, 0, 0] 75 0.9463 56
45 x5 + 2x4 + 3x3 5 [1, 2, 3, 0, 0] 75 0.9455 56
46 x5 + 2x4 + 3x3 5 [1, 2, 3, 0, 0] 75 0.944 56
47 x5 + 2x4 + 2x3 + x2 5 [1, 2, 2, 1, 0] 74 0.9395 55
48 x5 + 2x4 + 2x3 + x2 5 [1, 2, 2, 1, 0] 74 0.9299 55
49 x5 + 2x4 + 2x3 + x2 5 [1, 2, 2, 1, 0] 74 0.9115 55
50 x5 + 2x4 + 2x3 + x2 5 [1, 2, 2, 1, 0] 74 0.8979 55
51 x5 + 2x4 + 2x3 5 [1, 2, 2, 0, 0] 73 1.0218 54
52 x5 + 2x4 + 2x3 5 [1, 2, 2, 0, 0] 73 0.9822 54
53 x5 + 2x4 + 2x3 5 [1, 2, 2, 0, 0] 73 0.9806 54
54 x5 + 2x4 + x3 + x2 5 [1, 2, 1, 1, 0] 72 0.9493 53
55 x5 + 2x4 + x3 + x2 5 [1, 2, 1, 1, 0] 72 0.9048 53
56 8x4 4 [0, 8, 0, 0, 0] 71 1.045 60
57 8x4 4 [0, 8, 0, 0, 0] 71 0.9882 60
58 8x4 4 [0, 8, 0, 0, 0] 71 0.9658 60
59 8x4 4 [0, 8, 0, 0, 0] 71 0.9265 60
60 8x4 4 [0, 8, 0, 0, 0] 71 0.8678 60
61 7x4 + x3 4 [0, 7, 1, 0, 0] 70 1.0467 58
62 7x4 + x3 4 [0, 7, 1, 0, 0] 70 0.9893 58
63 7x4 + x3 4 [0, 7, 1, 0, 0] 70 0.9863 58
64 7x4 + x3 4 [0, 7, 1, 0, 0] 70 0.984 58
65 7x4 + x3 4 [0, 7, 1, 0, 0] 70 0.9794 58
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66 7x4 + x3 4 [0, 7, 1, 0, 0] 70 0.9774 58
67 7x4 + x3 4 [0, 7, 1, 0, 0] 70 0.9708 58
68 7x4 + x3 4 [0, 7, 1, 0, 0] 70 0.9349 58
69 7x4 + x3 4 [0, 7, 1, 0, 0] 70 0.9346 58
70 7x4 + x3 4 [0, 7, 1, 0, 0] 70 0.9316 58
71 7x4 + x3 4 [0, 7, 1, 0, 0] 70 0.8896 58
72 6x4 + 3x3 4 [0, 6, 3, 0, 0] 69 0.9789 57
73 6x4 + 3x3 4 [0, 6, 3, 0, 0] 69 0.9767 57
74 6x4 + 3x3 4 [0, 6, 3, 0, 0] 69 0.9631 57
75 6x4 + 3x3 4 [0, 6, 3, 0, 0] 69 0.9375 57
76 6x4 + 3x3 4 [0, 6, 3, 0, 0] 69 0.9263 57
77 6x4 + 3x3 4 [0, 6, 3, 0, 0] 69 0.9125 57
78 6x4 + 2x3 4 [0, 6, 2, 0, 0] 68 0.8903 54
79 6x4 + 2x3 4 [0, 6, 2, 0, 0] 68 0.8903 54
80 6x4 + 2x3 4 [0, 6, 2, 0, 0] 68 0.8899 54
81 6x4 + 2x3 4 [0, 6, 2, 0, 0] 68 0.8898 54
82 6x4 + 2x3 4 [0, 6, 2, 0, 0] 68 0.8743 54
83 6x4 + 2x3 4 [0, 6, 2, 0, 0] 68 0.8661 54
84 6x4 + 2x3 4 [0, 6, 2, 0, 0] 68 0.8658 54
85 6x4 + 2x3 4 [0, 6, 2, 0, 0] 68 0.8644 54
86 6x4 + 2x3 4 [0, 6, 2, 0, 0] 68 0.858 54
87 6x4 + 2x3 4 [0, 6, 2, 0, 0] 68 0.8501 54
88 6x4 + 2x3 4 [0, 6, 2, 0, 0] 68 0.8252 54
89 6x4 + 2x3 4 [0, 6, 2, 0, 0] 68 0.8231 54
90 6x4 + x3 + x2 4 [0, 6, 1, 1, 0] 67 0.8927 53
91 6x4 + x3 + x2 4 [0, 6, 1, 1, 0] 67 0.8901 53
92 6x4 + x3 + x2 4 [0, 6, 1, 1, 0] 67 0.8763 53
93 6x4 + x3 + x2 4 [0, 6, 1, 1, 0] 67 0.8722 53
94 6x4 + x3 + x2 4 [0, 6, 1, 1, 0] 67 0.8694 53
95 6x4 + x3 + x2 4 [0, 6, 1, 1, 0] 67 0.8688 53
96 6x4 + 2x2 4 [0, 6, 0, 2, 0] 66 0.9894 51
97 6x4 + 2x2 4 [0, 6, 0, 2, 0] 66 0.984 51
98 6x4 + 2x2 4 [0, 6, 0, 2, 0] 66 0.9381 51
99 6x4 + 2x2 4 [0, 6, 0, 2, 0] 66 0.9289 51
100 5x4 + 4x3 4 [0, 5, 4, 0, 0] 65 1.0557 55



77

Table 4: Continued.

101 5x4 + 4x3 4 [0, 5, 4, 0, 0] 65 1.0048 55
102 5x4 + 4x3 4 [0, 5, 4, 0, 0] 65 0.9951 55
103 5x4 + 4x3 4 [0, 5, 4, 0, 0] 65 0.9872 55
104 5x4 + 4x3 4 [0, 5, 4, 0, 0] 65 0.9868 55
105 5x4 + 4x3 4 [0, 5, 4, 0, 0] 65 0.9839 55
106 5x4 + 4x3 4 [0, 5, 4, 0, 0] 65 0.9813 55
107 5x4 + 4x3 4 [0, 5, 4, 0, 0] 65 0.9804 55
108 5x4 + 4x3 4 [0, 5, 4, 0, 0] 65 0.9748 55
109 5x4 + 4x3 4 [0, 5, 4, 0, 0] 65 0.9636 55
110 5x4 + 4x3 4 [0, 5, 4, 0, 0] 65 0.9498 55
111 5x4 + 4x3 4 [0, 5, 4, 0, 0] 65 0.9372 55
112 5x4 + 4x3 4 [0, 5, 4, 0, 0] 65 0.9267 55
113 5x4 + 4x3 4 [0, 5, 4, 0, 0] 65 0.9252 55
114 5x4 + 4x3 4 [0, 5, 4, 0, 0] 65 0.8979 53
115 5x4 + 4x3 4 [0, 5, 4, 0, 0] 65 0.8877 55
116 5x4 + 4x3 4 [0, 5, 4, 0, 0] 65 0.8771 53
117 5x4 + 4x3 4 [0, 5, 4, 0, 0] 65 0.8617 53
118 5x4 + 4x3 4 [0, 5, 4, 0, 0] 65 0.8369 53
119 5x4 + 4x3 4 [0, 5, 4, 0, 0] 65 0.8027 53
120 5x4 + 4x3 4 [0, 5, 4, 0, 0] 65 0.7731 53
121 5x4 + 3x3 4 [0, 5, 3, 0, 0] 64 0.8732 52
122 5x4 + 3x3 4 [0, 5, 3, 0, 0] 64 0.869 52
123 5x4 + 3x3 4 [0, 5, 3, 0, 0] 64 0.8602 52
124 5x4 + 3x3 4 [0, 5, 3, 0, 0] 64 0.8507 52
125 5x4 + 3x3 4 [0, 5, 3, 0, 0] 64 0.8478 52
126 5x4 + 3x3 4 [0, 5, 3, 0, 0] 64 0.8443 52
127 5x4 + 3x3 4 [0, 5, 3, 0, 0] 64 0.8187 52
128 5x4 + 3x3 4 [0, 5, 3, 0, 0] 64 0.8071 52
129 5x4 + 3x3 4 [0, 5, 3, 0, 0] 64 0.8068 52
130 5x4 + 3x3 4 [0, 5, 3, 0, 0] 64 0.8022 52
131 5x4 + 3x3 4 [0, 5, 3, 0, 0] 64 0.802 52
132 5x4 + 3x3 4 [0, 5, 3, 0, 0] 64 0.7831 52
133 5x4 + 3x3 4 [0, 5, 3, 0, 0] 64 0.7802 52
134 5x4 + 3x3 4 [0, 5, 3, 0, 0] 64 0.7733 52
135 5x4 + 2x3 + x2 4 [0, 5, 2, 1, 0] 63 0.8239 51
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136 5x4 + 2x3 + x2 4 [0, 5, 2, 1, 0] 63 0.7973 51
137 5x4 + 2x3 + x2 4 [0, 5, 2, 1, 0] 63 0.7943 51
138 5x4 + 3x2 4 [0, 5, 0, 3, 0] 62 0.791 48
139 5x4 + 3x2 4 [0, 5, 0, 3, 0] 62 0.7633 48
140 5x4 + 2x2 4 [0, 5, 0, 2, 0] 61 0.73 47
141 5x4 + 2x2 4 [0, 5, 0, 2, 0] 61 0.7151 47
142 4x4 + 6x3 4 [0, 4, 6, 0, 0] 60 0.8666 51
143 4x4 + 6x3 4 [0, 4, 6, 0, 0] 60 0.8498 51
144 4x4 + 6x3 4 [0, 4, 6, 0, 0] 60 0.8468 51
145 4x4 + 6x3 4 [0, 4, 6, 0, 0] 60 0.8459 51
146 4x4 + 6x3 4 [0, 4, 6, 0, 0] 60 0.8358 51
147 4x4 + 6x3 4 [0, 4, 6, 0, 0] 60 0.8263 51
148 4x4 + 6x3 4 [0, 4, 6, 0, 0] 60 0.8136 51
149 4x4 + 5x3 4 [0, 4, 5, 0, 0] 59 0.8852 49
150 4x4 + 5x3 4 [0, 4, 5, 0, 0] 59 0.8835 49
151 4x4 + 5x3 4 [0, 4, 5, 0, 0] 59 0.8583 49
152 4x4 + 5x3 4 [0, 4, 5, 0, 0] 59 0.8557 50
153 4x4 + 5x3 4 [0, 4, 5, 0, 0] 59 0.8486 49
154 4x4 + 5x3 4 [0, 4, 5, 0, 0] 59 0.8434 50
155 4x4 + 5x3 4 [0, 4, 5, 0, 0] 59 0.8403 50
156 4x4 + 5x3 4 [0, 4, 5, 0, 0] 59 0.8362 50
157 4x4 + 5x3 4 [0, 4, 5, 0, 0] 59 0.8298 50
158 4x4 + 5x3 4 [0, 4, 5, 0, 0] 59 0.828 50
159 4x4 + 5x3 4 [0, 4, 5, 0, 0] 59 0.8207 50
160 4x4 + 5x3 4 [0, 4, 5, 0, 0] 59 0.8161 49
161 4x4 + 4x3 + 2x2 4 [0, 4, 4, 2, 0] 58 0.9058 48
162 4x4 + 4x3 + 2x2 4 [0, 4, 4, 2, 0] 58 0.8941 48
163 4x4 + 4x3 + x2 4 [0, 4, 4, 1, 0] 57 0.9804 47
164 4x4 + 4x3 4 [0, 4, 4, 0, 0] 56 0.8982 50
165 4x4 + 4x3 4 [0, 4, 4, 0, 0] 56 0.8982 50
166 4x4 + 4x3 4 [0, 4, 4, 0, 0] 56 0.8927 50
167 4x4 + 4x3 4 [0, 4, 4, 0, 0] 56 0.8901 50
168 4x4 + 4x3 4 [0, 4, 4, 0, 0] 56 0.8827 48
169 4x4 + 4x3 4 [0, 4, 4, 0, 0] 56 0.8795 48
170 4x4 + 4x3 4 [0, 4, 4, 0, 0] 56 0.8753 50
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171 4x4 + 4x3 4 [0, 4, 4, 0, 0] 56 0.8751 50
172 4x4 + 4x3 4 [0, 4, 4, 0, 0] 56 0.8721 50
173 4x4 + 4x3 4 [0, 4, 4, 0, 0] 56 0.8664 50
174 4x4 + 4x3 4 [0, 4, 4, 0, 0] 56 0.8648 50
175 4x4 + 4x3 4 [0, 4, 4, 0, 0] 56 0.8595 48
176 4x4 + 4x3 4 [0, 4, 4, 0, 0] 56 0.8556 50
177 4x4 + 4x3 4 [0, 4, 4, 0, 0] 56 0.8549 50
178 4x4 + 4x3 4 [0, 4, 4, 0, 0] 56 0.8548 50
179 4x4 + 4x3 4 [0, 4, 4, 0, 0] 56 0.8509 50
180 4x4 + 4x3 4 [0, 4, 4, 0, 0] 56 0.8356 48
181 4x4 + 4x3 4 [0, 4, 4, 0, 0] 56 0.8307 50
182 4x4 + 4x3 4 [0, 4, 4, 0, 0] 56 0.7597 48
183 4x4 + 4x3 4 [0, 4, 4, 0, 0] 56 0.7596 48
184 4x4 + 3x3 + x2 4 [0, 4, 3, 1, 0] 55 0.8478 47
185 4x4 + 3x3 + x2 4 [0, 4, 3, 1, 0] 55 0.8376 47
186 4x4 + 3x3 + x2 4 [0, 4, 3, 1, 0] 55 0.7799 47
187 4x4 + 3x3 + x2 4 [0, 4, 3, 1, 0] 55 0.779 47
188 4x4 + 3x3 + x2 4 [0, 4, 3, 1, 0] 55 0.7781 47
189 4x4 + 3x3 + x2 4 [0, 4, 3, 1, 0] 55 0.778 47
190 4x4 + 3x3 4 [0, 4, 3, 0, 0] 54 0.7341 46
191 4x4 + 3x3 4 [0, 4, 3, 0, 0] 54 0.7335 46
192 4x4 + 3x3 4 [0, 4, 3, 0, 0] 54 0.7323 46
193 4x4 + 3x3 4 [0, 4, 3, 0, 0] 54 0.7279 46
194 4x4 + 2x3 + 3x2 4 [0, 4, 2, 3, 0] 53 0.8605 46
195 4x4 + 2x3 + 3x2 4 [0, 4, 2, 3, 0] 53 0.8574 46
196 4x4 + 2x3 + 3x2 4 [0, 4, 2, 3, 0] 53 0.8507 46
197 4x4 + 2x3 + 3x2 4 [0, 4, 2, 3, 0] 53 0.847 46
198 4x4 + 2x3 + 2x2 4 [0, 4, 2, 2, 0] 52 0.845 45
199 4x4 + 2x3 + 2x2 4 [0, 4, 2, 2, 0] 52 0.8425 45
200 4x4 + 2x3 + x2 4 [0, 4, 2, 1, 0] 51 0.7962 44
201 4x4 + 2x3 + x2 4 [0, 4, 2, 1, 0] 51 0.7955 44
202 4x4 + x3 + 2x2 4 [0, 4, 1, 2, 0] 50 0.7883 43
203 3x4 + 7x3 4 [0, 3, 7, 0, 0] 49 0.8678 49
204 3x4 + 7x3 4 [0, 3, 7, 0, 0] 49 0.8677 49
205 3x4 + 7x3 4 [0, 3, 7, 0, 0] 49 0.8452 49
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206 3x4 + 7x3 4 [0, 3, 7, 0, 0] 49 0.8446 49
207 3x4 + 7x3 4 [0, 3, 7, 0, 0] 49 0.8441 49
208 3x4 + 7x3 4 [0, 3, 7, 0, 0] 49 0.8394 49
209 3x4 + 7x3 4 [0, 3, 7, 0, 0] 49 0.8349 49
210 3x4 + 7x3 4 [0, 3, 7, 0, 0] 49 0.8315 49
211 3x4 + 7x3 4 [0, 3, 7, 0, 0] 49 0.8306 49
212 3x4 + 7x3 4 [0, 3, 7, 0, 0] 49 0.8259 49
213 3x4 + 7x3 4 [0, 3, 7, 0, 0] 49 0.8251 49
214 3x4 + 7x3 4 [0, 3, 7, 0, 0] 49 0.8195 49
215 3x4 + 7x3 4 [0, 3, 7, 0, 0] 49 0.8153 49
216 3x4 + 7x3 4 [0, 3, 7, 0, 0] 49 0.8136 49
217 3x4 + 7x3 4 [0, 3, 7, 0, 0] 49 0.8006 49
218 3x4 + 7x3 4 [0, 3, 7, 0, 0] 49 0.7936 49
219 3x4 + 7x3 4 [0, 3, 7, 0, 0] 49 0.7916 49
220 3x4 + 7x3 4 [0, 3, 7, 0, 0] 49 0.7901 49
221 3x4 + 7x3 4 [0, 3, 7, 0, 0] 49 0.7889 49
222 3x4 + 7x3 4 [0, 3, 7, 0, 0] 49 0.7767 49
223 3x4 + 7x3 4 [0, 3, 7, 0, 0] 49 0.7761 49
224 3x4 + 7x3 4 [0, 3, 7, 0, 0] 49 0.7562 49
225 3x4 + 5x3 4 [0, 3, 5, 0, 0] 48 0.8919 46
226 3x4 + 5x3 4 [0, 3, 5, 0, 0] 48 0.8919 46
227 3x4 + 5x3 4 [0, 3, 5, 0, 0] 48 0.8758 46
228 3x4 + 5x3 4 [0, 3, 5, 0, 0] 48 0.855 46
229 3x4 + 5x3 4 [0, 3, 5, 0, 0] 48 0.8539 46
230 3x4 + 5x3 4 [0, 3, 5, 0, 0] 48 0.8534 46
231 3x4 + 5x3 4 [0, 3, 5, 0, 0] 48 0.8474 46
232 3x4 + 5x3 4 [0, 3, 5, 0, 0] 48 0.8191 46
233 3x4 + 5x3 4 [0, 3, 5, 0, 0] 48 0.7572 46
234 3x4 + 5x3 4 [0, 3, 5, 0, 0] 48 0.7535 46
235 3x4 + 5x3 4 [0, 3, 5, 0, 0] 48 0.746 46
236 3x4 + 5x3 4 [0, 3, 5, 0, 0] 48 0.7402 46
237 3x4 + 4x3 + x2 4 [0, 3, 4, 1, 0] 47 0.8135 45
238 3x4 + 4x3 + x2 4 [0, 3, 4, 1, 0] 47 0.8036 45
239 3x4 + 4x3 + x2 4 [0, 3, 4, 1, 0] 47 0.7992 45
240 3x4 + 4x3 + x2 4 [0, 3, 4, 1, 0] 47 0.7825 45
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241 3x4 + 4x3 + x2 4 [0, 3, 4, 1, 0] 47 0.7755 45
242 3x4 + 4x3 + x2 4 [0, 3, 4, 1, 0] 47 0.7655 45
243 3x4 + 4x3 4 [0, 3, 4, 0, 0] 46 (0.6474+0j) 44
244 3x4 + 3x3 + 2x2 4 [0, 3, 3, 2, 0] 45 0.6864 43
245 3x4 + 3x3 + 2x2 4 [0, 3, 3, 2, 0] 45 0.683 43
246 3x4 + 3x3 + 2x2 4 [0, 3, 3, 2, 0] 45 0.6824 43
247 3x4 + 3x3 + 2x2 4 [0, 3, 3, 2, 0] 45 0.682 43
248 3x4 + 3x3 + x2 4 [0, 3, 3, 1, 0] 44 0.7152 42
249 3x4 + 3x3 + x2 4 [0, 3, 3, 1, 0] 44 0.713 42
250 3x4 + 3x3 + x2 4 [0, 3, 3, 1, 0] 44 0.6457 43
251 3x4 + 3x3 + x2 4 [0, 3, 3, 1, 0] 44 0.6448 43
252 3x4 + x3 + 4x2 4 [0, 3, 1, 4, 0] 43 0.6354 41
253 3x4 + x3 + 4x2 4 [0, 3, 1, 4, 0] 43 0.6328 41
254 3x4 + x3 + 3x2 4 [0, 3, 1, 3, 0] 42 0.6508 40
255 3x4 + x3 + x2 4 [0, 3, 1, 1, 0] 41 0.5795 38
256 2x4 + 10x3 4 [0, 2, 10, 0, 0] 40 0.8167 48
257 2x4 + 10x3 4 [0, 2, 10, 0, 0] 40 0.8089 48
258 2x4 + 10x3 4 [0, 2, 10, 0, 0] 40 0.7851 48
259 2x4 + 10x3 4 [0, 2, 10, 0, 0] 40 0.7756 48
260 2x4 + 9x3 4 [0, 2, 9, 0, 0] 39 0.8465 47
261 2x4 + 9x3 4 [0, 2, 9, 0, 0] 39 0.8443 47
262 2x4 + 9x3 4 [0, 2, 9, 0, 0] 39 0.8442 47
263 2x4 + 9x3 4 [0, 2, 9, 0, 0] 39 0.8441 47
264 2x4 + 9x3 4 [0, 2, 9, 0, 0] 39 0.8257 47
265 2x4 + 9x3 4 [0, 2, 9, 0, 0] 39 0.8222 47
266 2x4 + 9x3 4 [0, 2, 9, 0, 0] 39 0.8185 47
267 2x4 + 9x3 4 [0, 2, 9, 0, 0] 39 0.8178 47
268 2x4 + 9x3 4 [0, 2, 9, 0, 0] 39 0.8165 47
269 2x4 + 9x3 4 [0, 2, 9, 0, 0] 39 0.8131 47
270 2x4 + 9x3 4 [0, 2, 9, 0, 0] 39 0.8083 47
271 2x4 + 9x3 4 [0, 2, 9, 0, 0] 39 0.8073 47
272 2x4 + 9x3 4 [0, 2, 9, 0, 0] 39 0.7976 47
273 2x4 + 7x3 + x2 4 [0, 2, 7, 1, 0] 38 0.8904 44
274 2x4 + 7x3 + x2 4 [0, 2, 7, 1, 0] 38 0.8782 44
275 2x4 + 7x3 + x2 4 [0, 2, 7, 1, 0] 38 0.878 44
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276 2x4 + 7x3 + x2 4 [0, 2, 7, 1, 0] 38 0.8685 44
277 2x4 + 7x3 + x2 4 [0, 2, 7, 1, 0] 38 0.8576 44
278 2x4 + 7x3 + x2 4 [0, 2, 7, 1, 0] 38 0.843 44
279 2x4 + 7x3 + x2 4 [0, 2, 7, 1, 0] 38 0.8418 44
280 2x4 + 7x3 + x2 4 [0, 2, 7, 1, 0] 38 0.8211 44
281 2x4 + 6x3 + x2 4 [0, 2, 6, 1, 0] 37 0.8645 43
282 2x4 + 6x3 + x2 4 [0, 2, 6, 1, 0] 37 0.8557 43
283 2x4 + 6x3 + x2 4 [0, 2, 6, 1, 0] 37 0.8395 43
284 2x4 + 6x3 + x2 4 [0, 2, 6, 1, 0] 37 0.8326 43
285 2x4 + 6x3 + x2 4 [0, 2, 6, 1, 0] 37 0.8156 43
286 2x4 + 6x3 + x2 4 [0, 2, 6, 1, 0] 37 0.8013 43
287 2x4 + 6x3 + x2 4 [0, 2, 6, 1, 0] 37 0.7977 43
288 2x4 + 5x3 + x2 4 [0, 2, 5, 1, 0] 36 0.8623 41
289 2x4 + 5x3 + x2 4 [0, 2, 5, 1, 0] 36 0.8559 41
290 2x4 + 5x3 + x2 4 [0, 2, 5, 1, 0] 36 0.8207 41
291 2x4 + 5x3 + x2 4 [0, 2, 5, 1, 0] 36 0.8024 41
292 2x4 + 5x3 + x2 4 [0, 2, 5, 1, 0] 36 0.6921 41
293 2x4 + 5x3 + x2 4 [0, 2, 5, 1, 0] 36 0.6908 41
294 2x4 + 5x3 + x2 4 [0, 2, 5, 1, 0] 36 0.6846 41
295 2x4 + 5x3 + x2 4 [0, 2, 5, 1, 0] 36 0.6833 41
296 2x4 + 5x3 + x2 4 [0, 2, 5, 1, 0] 36 0.6819 41
297 2x4 + 5x3 + x2 4 [0, 2, 5, 1, 0] 36 0.6812 41
298 2x4 + 5x3 + x2 4 [0, 2, 5, 1, 0] 36 0.6803 41
299 2x4 + 5x3 + x2 4 [0, 2, 5, 1, 0] 36 0.6765 41
300 2x4 + 4x3 + x2 4 [0, 2, 4, 1, 0] 35 0.7264 39
301 2x4 + 4x3 + x2 4 [0, 2, 4, 1, 0] 35 0.7207 39
302 2x4 + 4x3 + x2 4 [0, 2, 4, 1, 0] 35 0.7182 39
303 2x4 + 4x3 + x2 4 [0, 2, 4, 1, 0] 35 0.7101 39
304 14x3 3 [0, 0, 14, 0, 0] 34 0.723 42
305 14x3 3 [0, 0, 14, 0, 0] 34 0.7076 42
306 14x3 3 [0, 0, 14, 0, 0] 34 0.7026 42
307 14x3 3 [0, 0, 14, 0, 0] 34 0.6816 42
308 13x3 3 [0, 0, 13, 0, 0] 33 0.7934 41
309 13x3 3 [0, 0, 13, 0, 0] 33 0.7425 41
310 13x3 3 [0, 0, 13, 0, 0] 33 0.7316 41
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311 13x3 3 [0, 0, 13, 0, 0] 33 0.731 41
312 13x3 3 [0, 0, 13, 0, 0] 33 0.7244 41
313 13x3 3 [0, 0, 13, 0, 0] 33 0.7188 41
314 13x3 3 [0, 0, 13, 0, 0] 33 0.708 41
315 13x3 3 [0, 0, 13, 0, 0] 33 0.7074 41
316 13x3 3 [0, 0, 13, 0, 0] 33 0.7025 41
317 13x3 3 [0, 0, 13, 0, 0] 33 0.6969 41
318 13x3 3 [0, 0, 13, 0, 0] 33 0.6955 41
319 13x3 3 [0, 0, 13, 0, 0] 33 0.6341 40
320 13x3 3 [0, 0, 13, 0, 0] 33 0.6305 40
321 13x3 3 [0, 0, 13, 0, 0] 33 0.6253 40
322 12x3 + 2x2 3 [0, 0, 12, 2, 0] 32 0.7037 39
323 12x3 + x2 3 [0, 0, 12, 1, 0] 31 0.766 40
324 12x3 + x2 3 [0, 0, 12, 1, 0] 31 0.7594 40
325 12x3 + x2 3 [0, 0, 12, 1, 0] 31 0.7493 40
326 12x3 + x2 3 [0, 0, 12, 1, 0] 31 0.7421 40
327 12x3 + x2 3 [0, 0, 12, 1, 0] 31 0.7328 40
328 12x3 + x2 3 [0, 0, 12, 1, 0] 31 0.6906 38
329 12x3 + x2 3 [0, 0, 12, 1, 0] 31 0.6842 38
330 12x3 + x 3 [0, 0, 12, 0, 1] 30 0.7366 37
331 12x3 3 [0, 0, 12, 0, 0] 29 0.6364 39
332 12x3 3 [0, 0, 12, 0, 0] 29 0.6364 39
333 12x3 3 [0, 0, 12, 0, 0] 29 0.6284 39
334 12x3 3 [0, 0, 12, 0, 0] 29 0.628 39
335 12x3 3 [0, 0, 12, 0, 0] 29 0.622 39
336 12x3 3 [0, 0, 12, 0, 0] 29 0.6192 39
337 11x3 3 [0, 0, 11, 0, 0] 28 (0.5964+0j) 38
338 11x3 3 [0, 0, 11, 0, 0] 28 0.5939 38
339 11x3 3 [0, 0, 11, 0, 0] 28 0.5903 38
340 11x3 3 [0, 0, 11, 0, 0] 28 0.5827 38
341 10x3 + 3x2 3 [0, 0, 10, 3, 0] 27 0.773 37
342 10x3 + 3x2 3 [0, 0, 10, 3, 0] 27 0.7552 37
343 10x3 + 3x2 3 [0, 0, 10, 3, 0] 27 0.7459 37
344 10x3 + 3x2 3 [0, 0, 10, 3, 0] 27 0.7327 37
345 10x3 + 2x2 3 [0, 0, 10, 2, 0] 26 0.6914 36
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346 10x3 + 2x2 3 [0, 0, 10, 2, 0] 26 0.6904 36
347 10x3 + 2x2 3 [0, 0, 10, 2, 0] 26 0.6831 36
348 10x3 + 2x2 3 [0, 0, 10, 2, 0] 26 0.6762 36
349 10x3 + x2 3 [0, 0, 10, 1, 0] 25 0.6194 37
350 10x3 + x2 3 [0, 0, 10, 1, 0] 25 0.6187 37
351 10x3 + x2 3 [0, 0, 10, 1, 0] 25 0.6136 37
352 10x3 + x2 3 [0, 0, 10, 1, 0] 25 0.6122 37
353 10x3 + x2 3 [0, 0, 10, 1, 0] 25 0.6119 37
354 10x3 + x2 3 [0, 0, 10, 1, 0] 25 0.611 37
355 10x3 + x2 3 [0, 0, 10, 1, 0] 25 0.6091 37
356 9x3 + 2x2 3 [0, 0, 9, 2, 0] 24 0.6648 35
357 9x3 + 2x2 3 [0, 0, 9, 2, 0] 24 0.6613 35
358 9x3 + 2x2 3 [0, 0, 9, 2, 0] 24 0.6603 35
359 9x3 + 2x2 3 [0, 0, 9, 2, 0] 24 0.6572 35
360 9x3 + 2x2 3 [0, 0, 9, 2, 0] 24 0.617 35
361 9x3 + 2x2 3 [0, 0, 9, 2, 0] 24 0.6132 35
362 9x3 + x 3 [0, 0, 9, 0, 1] 23 0.7175 33
363 8x3 + 4x2 3 [0, 0, 8, 4, 0] 22 0.7563 33
364 8x3 + 4x2 3 [0, 0, 8, 4, 0] 22 0.7323 33
365 8x3 + 3x2 3 [0, 0, 8, 3, 0] 21 0.6196 34
366 8x3 + 3x2 3 [0, 0, 8, 3, 0] 21 0.6183 34
367 8x3 + 3x2 3 [0, 0, 8, 3, 0] 21 0.6066 34
368 8x3 + 3x2 3 [0, 0, 8, 3, 0] 21 0.6045 34
369 8x3 + 3x2 3 [0, 0, 8, 3, 0] 21 0.5622 34
370 8x3 + 3x2 3 [0, 0, 8, 3, 0] 21 0.562 34
371 8x3 + x2 3 [0, 0, 8, 1, 0] 20 0.505 32
372 8x3 + x2 3 [0, 0, 8, 1, 0] 20 0.5025 32
373 8x3 + x 3 [0, 0, 8, 0, 1] 19 0.534 31
374 7x3 + 4x2 3 [0, 0, 7, 4, 0] 18 0.5876 33
375 7x3 + 4x2 3 [0, 0, 7, 4, 0] 18 0.5851 33
376 7x3 + 4x2 3 [0, 0, 7, 4, 0] 18 0.5776 33
377 7x3 + 4x2 3 [0, 0, 7, 4, 0] 18 0.5764 33
378 7x3 + 2x2 3 [0, 0, 7, 2, 0] 17 0.5105 31
379 7x3 + 2x2 3 [0, 0, 7, 2, 0] 17 0.5103 31
380 7x3 + 2x2 3 [0, 0, 7, 2, 0] 17 0.5073 31
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381 7x3 + 2x2 3 [0, 0, 7, 2, 0] 17 0.5065 31
382 6x3 + 6x2 3 [0, 0, 6, 6, 0] 16 0.6326 32
383 6x3 + 6x2 3 [0, 0, 6, 6, 0] 16 0.6259 32
384 6x3 + 6x2 3 [0, 0, 6, 6, 0] 16 0.6226 32
385 6x3 + 6x2 3 [0, 0, 6, 6, 0] 16 0.621 32
386 6x3 + 5x2 3 [0, 0, 6, 5, 0] 15 0.6428 31
387 6x3 + 5x2 3 [0, 0, 6, 5, 0] 15 0.634 31
388 6x3 + 4x2 3 [0, 0, 6, 4, 0] 14 0.6688 30
389 6x3 + 4x2 3 [0, 0, 6, 4, 0] 14 0.6598 30
390 6x3 + 3x2 3 [0, 0, 6, 3, 0] 13 0.5548 29
391 6x3 + 3x2 3 [0, 0, 6, 3, 0] 13 0.5532 29
392 5x3 + 4x2 3 [0, 0, 5, 4, 0] 12 0.4451 29
393 5x3 + x 3 [0, 0, 5, 0, 1] 11 0.3992 25
394 4x3 + 6x2 3 [0, 0, 4, 6, 0] 10 0.4711 28
395 4x3 + 6x2 3 [0, 0, 4, 6, 0] 10 0.4693 28
396 4x3 + 6x2 3 [0, 0, 4, 6, 0] 10 0.4688 28
397 4x3 + 6x2 3 [0, 0, 4, 6, 0] 10 0.4684 28
398 4x3 + 5x2 3 [0, 0, 4, 5, 0] 9 0.4938 27
399 4x3 + 5x2 3 [0, 0, 4, 5, 0] 9 0.4924 27
400 4x3 + 2x2 3 [0, 0, 4, 2, 0] 8 0.413 24
401 4x3 + 2x2 3 [0, 0, 4, 2, 0] 8 0.4127 24
402 15x2 2 [0, 0, 0, 15, 0] 7 0.5021 24
403 15x2 2 [0, 0, 0, 15, 0] 7 0.4939 24
404 14x2 2 [0, 0, 0, 14, 0] 6 0.4411 23
405 14x2 2 [0, 0, 0, 14, 0] 6 0.4375 23
406 12x2 + x 2 [0, 0, 0, 12, 1] 5 0.5068 21
407 11x2 2 [0, 0, 0, 11, 0] 4 0.3575 20
408 11x2 2 [0, 0, 0, 11, 0] 4 0.3566 20
409 10x2 + x 2 [0, 0, 0, 10, 1] 3 0.3854 19
410 6x2 + x 2 [0, 0, 0, 6, 1] 2 0.2949 15
411 8x 1 [0, 0, 0, 0, 8] 1 0.2176 9
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