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ABSTRACT

The chemistry of amine, imine and nitrile-containing compounds plays a central role in
synthesizing high-value products, e.g., drugs, fertilizer, and fine chemicals. The
unquestionable benefits from these products to our society have prompted pharmaceutical
and agricultural industries to develop better protocols for their synthesis. The traditional
synthetic methods for these chemicals depend on toxic and mutagenic reagents and release
huge waste. Hence, it is desirable to find an alternative way that circumvents these issues.
Catalytic dehydrogenative coupling of alcohols provides an appealing approach since only
water, or hydrogen gas are the possible byproducts, and alcohols are environmentally
benign. So far, this research field has been predominated by catalysts containing noble
metals, e.g., Pd, Ir, Rh, and Ru. These metals are rare, expensive, and toxic. So, it is highly
desirable to search for more sustainable metal alternatives. In recent years, there have been
a few breakthroughs on non-precious metal (Fe, Co, Mn, and Ni) based catalysts. However,
the pincer ligand-supported catalyst dominates this field, and chemo selectivity control
strategies are missing in most studies. Recently, our group developed an air and moisture-
stable cobalt molecular catalyst stabilized by a tripodal mixed P/N donor ligand. The cobalt
metal is earth-abundant, cheap, and less toxic. This cobalt catalyst showed excellent
activities for the dehydrogenation of secondary alcohol into ketone, dehydrogenative
homocoupling of primary alcohol into ester, and coupling of a secondary alcohol and
primary alcohol into corresponding alcohol and ketone products. In my projects, | further
explore the catalytic activities into a dehydrogenative hetero couple of primary alcohol and

amine to secondary imine and amine. Also, the hetero couple of primary alcohol and nitrile



into a-olefinic and a-alkylated nitrile product with water and/or hydrogen as byproducts.
It is discovered that the product's selectivity strongly depends on the amount of base used
in the reaction. A catalytic amount of base leads to an imine and a-olefinic nitrile product,
while an excess base loading results in an amine and a-alkylated nitrile product. We expect
that this study could provide helpful insight into selective organic synthesis and catalyst

design.
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CHAPTER I: INTRODUCTION

1.1 Aim of the project

This project aims to develop a homogeneous earth-abundant metal catalyst for carbon-

carbon and carbon-nitrogen bond formation reactions.
1.2 Sustainability challenges

In the last 40 years, the consumption of the earth's natural resources has tripled.! According
to the report published on Earth Overshoot Day in 2018, natural resources are overdrawn
at an alarming rate. The data showed that it requires nearly two Earths to supply the
resources needed to meet the annual global needs.? The increasing rates at which the natural
resources are extracted will cause a potential clash between the present and future
generations to meet their demands. This problem needs to be addressed urgently before the

irreversible depletion of natural resources.

One approach to address this issue is to look for renewable alternatives and reduce the
dependency on non-renewable natural resources. In this regard, biomass is one such
alternative, and it can be converted into many valuable chemicals. The use of biomass to
produce chemicals has many advantages, such as 1) it is barely used waste material, 2)
indigestible, i.e., it does not alter the food chain, and 3) abundantly available. In this
respect, biomass-derived lignocellulose can be a potential candidate to meet the increasing
demand for chemicals.® Lignocellulose can be processed to alcohols which can further be
converted into the diversity of bulk and fine chemicals containing carbon.! This approach

using alcohol as a carbon source will cut down on the dependency on the limited fossil



resources, such as oil or coal. However, the limited reactivity of alcohol narrows its scope
to be used directly as a starting material. Hence, it is desirable to find a suitable method to
activate the alcohol into its more reactive form, i.e., carbonyl form. The carbonyl form
usually has a much broader range of reactivity than alcohol because it is suitable for
nucleophilic addition reactions and can also act as a nucleophile themselves via enol or

enolate.®

1.3 Common methods for alcohol activation

1.3.1 Dehydrogenation/oxidation by using conventional oxidants

In this method, alcohol is activated into aldehyde or ketone by employing a stoichiometric
amount of inorganic oxidants such as chromium (1V) reagents, peroxide, and other metal
salt additives (scheme 1.1). This method generates a massive amount of undesirable waste

that could directly harm the environment and human health.

PN . Metal salts P Copious
R OH + | Oxidants > 8 + )
Additives 13 0o toxic
waste
Alcohol Aldehyde

Scheme 1.1 Oxidation of alcohol by a conventional method

1.3.2 Hydrogen transfer method

This method requires a catalyst that removes hydrogen from the alcohol to give a carbonyl

compound (scheme 1.2). This method is more environmentally benign than the



conventional method; however, it requires a sacrificial hydrogen acceptor, resulting in the

release of sacrificial waste.®

N /\OH ) Catalyst RAO n /W<
Sacrificial Sacrificial
Alcohol hydrogen Aldehyde
waste
acceptor

Scheme 1.2 Oxidation of alcohol by a hydrogen transfer method

1.3.3 Acceptorless dehydrogenation method

In this method, the catalyst takes hydrogen from the alcohol to give its more reactive
carbonyl form without any oxidants and hydrogen acceptors.® In a one-pot reaction, the so-
formed carbonyl compound can further couple with a nucleophile to give an unsaturated
compound. Finally, the hydrogenated catalyst liberates the hydrogen gas, and the catalyst
regenerates. This process is called acceptorless dehydrogenative coupling Scheme (1.3)
(ADC).>® Alternatively, the hydrogenated catalyst can reduce the unsaturated intermediate
to give the saturated product. This process is recognized as borrowing hydrogen (BH).3-®
Both ADC and BH are environmentally benign methods for synthesizing carbon-carbon
(C-C) and carbon-nitrogen (C-N) bonds, releasing only water or hydrogen gas as the only
possible byproducts. Hence, developing a catalyst that can use alcohol as a starting material
and undergoes ADC/BH (Figure 1.1) process to synthesize C-C and C-N bonds is the

primary goal in the Ding research group..



R/\OH Catalyst R/%O N

Alcohol Aldehyde Only byproduct
(non-poluting, valuable)

©)
|Nuc = Nucleophile = R—NH,, R CN |

‘ R =R, =R, = alkyl or aryl group ’

Fig. 1.0 ADC/BH process for C-C and C-N bonds synthesis from alcohol



1.4 Transition metal-catalyzed acceptorless dehydrogenative coupling of

alcohols with amines/nitriles

1.4.1 Catalysis using transition metal complexes

Transition metals, situated at the middle of the periodic table, have an excellent ability to
lend and take electrons from other molecules. This property makes transition metals
suitable catalytic tools in modern synthetic organic’~1° and organometallic chemistry.”°
After the discovery of organometallic reagents and coordination complexes in the late
1960s, transition metals became implemented in the catalytic process.!! Five years later,
Wilkinson and Coffey first reported a homogeneous organometallic catalyst for
hydrogenation and opened the door for organometallic catalysis in the industry.'?® Since
then, the chemistry of these metals has contributed to growing along with the development
of supporting ligands. The ligands that bind with metals provide stability and tune the
reactivity of the metal complexes (Figure 1.1). In some cases, ligand also participates in
the substrate activation along with the metal and such a process is called metal-ligand

cooperation.'*

P L,M R
M = transition metal
R = reactant
I = intermediate

Lo P = product

L, =ligand

Figure 1.1. Catalytic cycle by transition metal catalysts



1.4.2 Acceptorless dehydrogenative coupling of alcohols with amines/nitriles

Acceptorless dehydrogenative coupling of alcohols with amines/nitriles is an
environmentally benign approach to synthesize substituted amine/imine or a,f-unsaturated
or saturated nitrile products. Amines and imines have broad applications as
pharmaceuticals'®*®, agrochemicals!’, detergents, lubricants, dyes, and other commodity
products.'® The o, f-unsaturated or saturated nitrile products serve as valuable intermediates
in pharmaceuticals and natural products.'® They are also key structural motifs in many

synthetic transformations.?
1.4.3 Precious transition metal-based catalysts for alcohol amine coupling

Grigg?* and Watanabe's?® groups were the first to report the alkylation of amines using
alcohols by homogeneous transition metal-based catalysts. The commonly used noble

transition metals for such reactions are Ru?*-%’, 1r?83!, 0s®, and Pd (Scheme 1.4).3334

Ru, Os, Pd and Ir > R!
R oH R'—NH, - B N OR R ONT
Catalyst H
Alcohol Amine Secondary Imine Secondary Amine

Scheme 1.4 Alkylation of amine with alcohol by precious-metal-based catalysts

Williams group? in 2009 used bidentate phosphine dppf, or DPEphos supported ruthenium

complex to synthesize secondary and tertiary amines including some pharmaceuticals such



as Piribedil, Antergan, Tripelennamine, Pheniramine, and Chlorpheniramine. They
proposed their mechanism under the framework of BH, where alcohol first undergoes
oxidative addition to ruthenium complex to form ruthenium hydride and release of
aldehyde from ruthenium complex. After that, imine is generated from the condensation of
aldehyde and amine. At last, ruthenium hydride hydrogenates imine into amine and water

is released as a byproduct.

P 1 equiv. R'NH, 2.5 mol% [Ru(P-cymene)Cl,], P

5 mol% dppf, toluene, reflux, 24 h

Scheme 1.5. Ruthenium-catalyzed N-alkylation of amines

In 2012, the Maggi and Madsen group?’ employed ruthenium N-heterocyclic carbene
complex [RuClx(lipr)(p-cymene)] along with DABCO ligand and molecular sieves for the
synthesis of imines (Scheme 1.6). They believed that the reaction proceeds by initial
dehydrogenation of alcohol to aldehyde, which stays coordinated to ruthenium. After that,
substrate amine attacks the aldehyde to afford the hemiaminal. Eventually, the hemiaminal

departs from the ruthenium and is converted to an imine.



[RuCl,(IiPr)(p-cymene)] N
R/\OH + R!—NH, > R/\N/
DABCO, 4 A MS
toluene
Alcohol Amine Secondary Imine

Scheme 1.6. Synthesis of imine by ruthenium N-hetorocyclic carbene complex

Moasser and Enyong? in 2014 used amino amide ligand supported ruthenium complex
[Ru(p-cymene)CI.]Cl2 to synthesize secondary and tertiary amine from the coupling of a
primary alcohol with a primary and secondary amine, respectively (Scheme 1.7). In their
reaction, they used alcohol as a solvent, and the alkylation reaction was taking place at a
lower temperature of 45-65 °C. The reaction was also feasible in an organic solvent but

required a high temperature. The authors mentioned that reaction follows the BH pathway.

H cat 6-12 mol%, t-BuOK, r.t.-65 °C R!
N ’ ’ N
N - R N
Ru(p-cymene)Cly], 3 A MS ||?2
(reaction solvent)
H cat 8 mol%, t-BuOK, 110 °C R!
N ’ ’ N
LN O - R N
Ru(p-cymene)Cl,],, toluene ||R2
(2 equiv) byproduct= | H,O

Scheme 1.7. N-alkylation of amine by ruthenium complex under mild conditions



Takacs et al.>* developed a new ruthenium complex in 2016 for the amination of primary
and secondary alcohols to give secondary and tertiary amines, respectively. They used their
ruthenium catalyst to synthesize heterocyclic rings from diols and a primary amine. Also,
their catalyst was able to do regioselective mono- and sequential diamination of diols. They

reported that the products were formed via the BH pathway (Scheme 1.8).

2.0 % Ru complex )\ Rl
+ > i

—
R'—NH, R? OH 0.5 equiv. +-BuOK, toluene, |
110 °C, 24 h H

- —®

Ph,P o
> cl
I’I(u\N/ 0)
Cro\J

Ph

| X

=

Ru complex

2.0 % Ru complex
HO -
Bn—NH, anﬂi>

0.5 equiv. +-BuOK, toluene,
110°C,24 h

Scheme 1.8. Ruthenium-catalyzed amination of secondary alcohols

Nishibayashi et al.?, in 2018, synthesized ruthenium complex supported by N-heterocyclic
carbene and phosphine-based PCP-type pincer ligands for the synthesis of secondary
imines from amines and benzyl alcohol (Scheme 1.9). They proposed an ADC pathway for
imine formation where the first catalyst reacted with 1 eg. of NaO'Pr to give Ru(0)

complex. After that, it undergoes oxidative addition of alcohol to give corresponding



alkoxide and hydride complex. Then, g-hydride elimination gives aldehyde complex. The
dissociation of aldehyde from the ruthenium complex gives ruthenium hydride and free
aldehyde. The free aldehyde reacts with 1 eg. of amine to give secondary imine as a final

product. Finally, the catalyst was regenerated by the extrusion of hydrogen gas.

Ru cat. 0.4 mol%

_ P
R"ONH, T P OH , > R/\N/\Ph
NaO'Pr 0.4 mol%, toluene reflux,
24-39 h
+
H,0 + | H, }

/——PBu,
N l,H
>—R0{-CO
N ¢l |

PBu,
Ru Cat.

Scheme 1.9 Ruthenium complex bearing PCP-type ligand for the synthesis of imine

Kempe group? in 2008 used iridium-P,N complexes for the N-alkylation reaction with
primary alcohols (Scheme 1.10). Under their optimized reaction conditions, primary and

secondary amine were coupled with primary alcohol to give secondary and tertiary amine.

[1rcicop)], (1 mol%)

e
NH i N
Rll_/\/ 2 . ©/\OH Py,NP'Pr; (2 mol%) Rll_/\/

KO'Bu (1.1 equiv)
diglyme, 110 °C, 17 h +

Scheme 1.10. Iridium-catalyzed synthesis of (hetero)aromatic amines



Two years later, Kempe group? synthesized a new iridium complex supported by anionic
P,N ligands for the alkylation of anilines by alcohol. They synthesized a new iridium
complex by treating the previously reported iridium complex in 2008 with 2-amino
pyridine in the presence of KO'Bu. They employed the new iridium catalyst to synthesize

secondary amine at lower reaction temperatures with the BH mechanism (Scheme 1.11).

H
- NH; OH  cat (0.05-0.4 mol%) N N\/©

KO'Bu (1.1 mmol)
diglyme, 70 °C, 24 h

Scheme 1.11 P, N-ligand-stabilized iridium complex for the synthesis of amine

In 2012, the Bruneau group®’ developed a new iridium complex featuring
phosphanesulfonate ligand for the selective synthesis of N-arylpiperidines via the BH
mechanism. This group used their iridium catalyst for the synthesis of tertiary amine by

coupling diols and aniline (Scheme 1.12).

2 Ir. cat. 3 mol% N
+ ? + Hzo
HO ©

OH toluene, 150 °C, 16h



Scheme 1.12 Coupling of diols and aniline by iridium catalyst

Esteruelas group® in 2011 reported POP-type osmium (11) and (IV) complexes. They
mentioned that the tetrahydride osmium complex is an efficient catalyst for synthesizing

imines from alcohols and primary amines (Scheme 1.13).

X _R!

toluene, 150 °C

byproducts = HZT + | H,O

Scheme 1.13 Synthesis of imine by osmium complex

In 2011 Ramen group® used palladium(ll) acetate as a catalyst for the N-alkylation of
nitrogenated compounds with alcohols to give secondary amine, carboxamides, and

sulfonamides by BH approach (Scheme 1.14).

Pd(OAc), (0.5 mol%)

Ar
Ar—NH2 + R/\OH > R/\ i
CsOH (100 mol%) |
PhMe, 150 °C H
12h +
H,O



Scheme 1.14 Palladium(l1) acetate catalyst for the synthesis of amine

1.4.4 Precious transition metal-based catalysts for alcohol nitrile coupling

The coupling of alcohols with nitriles to form «,-saturated nitriles has been dominated by
precious metals such as Rh®3 3738 Ru3, Pd*’ based catalysts. The traditional method
for synthesis of «f-unsaturated nitriles involves the condensation reaction between

aldehyde with arylacetonitriles in the presence of bases.***

In 2015, the Wang group® used a rhodium complex supported by a triphenylphosphine
ligand to synthesize arylacetamides from arylacetonitriles and primary alcohols (Scheme
1.15). Their mechanistic studies show that the product arylacetamides results from the
hydration of a-alkylated arylacetonitriles. They report the BH approach for product

formation.

[Rh(COD)CI], (1 mol%)
PPh; (0.1 equiv.)
KOH (0.4 equiv.)

o

Z

J’_
;U>
o
s

Y

=

tert-amyl alcohol
MW, 130 °C

Scheme 1.15 Rhodium complex for the synthesis of a-alkylated arylacetamide

Wang et al.%, in 2017, used the binuclear rhodium catalyst for the selective synthesis of
olefinic and alkylated nitrile products (Scheme 1.16). Here, they controlled the selectivity

of the reaction by altering the reaction atmosphere. For alkylated nitrile product, the

13



reaction was carried out under argon gas, and for olefinic nitrile product, the reaction was

performed under oxygen.

Rl

>_ in situ formed

1ntermed1ate
H,0 120,
[Rh-H,] [Rh] [Rh-H,]
. \ / R/\OH \_/ 3
i : I
R"“CN Base, 110 °C Base, 110 °C R CN
’ RITCN
Ar O, balloon

H,0 H,0

[ Hydrogen Borrowing ] [Dehydro genative Coupling]

Scheme 1.16 Synthesis of a-olefinic and alkylated nitrile by rhodium complex

In 2006, the Derrick group®’ used iridium catalyst to synthesize substituted acetonitriles in
a solvent-free condition via the BH mechanism (Scheme 1.17). In their finding, they report

that the rate of the reaction was accelerated by irradiation with a microwave source.

2.5 mol% [IrCp*Cly], CN O
CN + OH >
©/\ ©/\ 15 mol% KOH O
100 °C
J’_

Scheme 1.17 Synthesis of a-alkylated nitrile by iridium complex
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Ishii group® in 2007 developed a base-free iridium complex supported by PPhs ligand for
the synthesis of saturated a-alkylated nitrile products (Scheme 1.18). Since their reaction

is base-free, the aldol type of condensation reaction is catalyzed by the iridium catalyst.

O
ne JUW +  R”oH R? R!
R p-xylene, 130 °C CN
+
H,0

Scheme 1.18 Alkylation of active methylene compound with alcohol by iridium complex

Kaneda et al.*® in 2004 used ruthenium nanostructured heterogeneous catalysts for the
coupling of nitriles with the alcohol to give a-alkylated nitriles product. From the
controlled experiment, they found that a-alkylation of nitriles with alcohol takes place in
three consecutive reaction steps (i) the ruthenium complex dehydrogenates the alcohol into
an aldehyde, (ii) HT (hydrotalcite) catalyzed aldol type condensation reaction between
aldehyde and nitrile to give olefinic nitrile intermediate and (iii) ruthenium hydride

hydrogenates the olefinic intermediate into alkylated nitrile product (Scheme 1.19).
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A

/

z
+
\

RwHT, 0.0075 mmol LR2
OH 180 °C, 20 h, Ar., toluene Rl CN

Scheme 1.19 Synthesis of a-alkylated nitrile by Ruthenium nanostructured catalyst

In 2011, the Sabater group*® used a Pd-MgO bifunctional catalyst for the alkylation of
nitriles with alcohol (Scheme 1.20). The reaction mechanism is on par with the Kaneda

group mentioned above.

R Pd-MgO, 0.0075 mmol R?
o -1 I
R Ciy R>  “OH 100-180 °C, 7-20 h RI“CN
N,., trifluorotoluene
+
H,0

Scheme 1.20 Synthesis of a-alkylated nitrile by Pd-MgO bifunctional catalyst

1.5 Base catalyzed synthesis of ,f-unsaturated nitriles

The condensation of carbonyl compounds with acetonitrile in the presence of a base to
synthesize a,f-unsaturated nitriles was done by Gokel et al.*! in 1979. They mentioned that
aliphatic aldehyde did not condense satisfactorily, and base-sensitive functional groups are
incompatible in their reaction (Scheme 1.21). The reaction time varies with the type of

substrates.
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KOH |
+
R,C=0 i
CH;CN 2 1-72 h,25+3 °C CN

Y

Scheme 1.21 Synthesis of a,B-unsaturated nitrile by a KOH

Verkade group* in 1998 used strong nonionic Lewis bases P(MeNCH2CHz)sN and
P(HNCH2CHa)(i-PrNCH2 CH2 )N to synthesize a variety of functionalized «,f unsaturated
nitrile (Scheme 1.22). In their mechanistic study, polar protic and nonpolar aprotic solvent
were tested for the condensation reaction. It was found that primary and secondary aliphatic
aldehydes do not condense satisfactorily with acetonitrile, and ketones are incompatible

substrates in the condensation reaction.

Nonionic superbases _ CN 3 Ar(R)
PRCH,CN |~ (ADRCHCO 624h,40-50°C | o/ o
+
H,0

Scheme 1.22 Synthesis of o,4-unsaturated nitrile by nonionic superbases

1.6 Challenges of precious-metal-based catalysts

Precious metals have played an excellent role in catalysis. However, their high price*,

limited quantity®, and toxicity*®**’ make them challenging to use as catalysts in the

17



agrochemical and pharmaceutical industries. In this regard, 3d-transition metal-based
catalysts are appealing alternatives because they are less toxic*®#’, earth-abundant*®, and
cheap. * However, the challenge is to design an earth-abundant metal-based catalyst with
comparable catalytic activities as precious metals. Achieving this goal requires the
development of novel structured ligand that can bind with the metal and participate in
substrate activation steps. The approach that involves the direct participation of both metal
and ligand for bond activation is called metal-ligand cooperation (MLC). In this approach,
it is hoped that the nonprecious metals may achieve comparable catalytic activities with

those precious metals.

B---—-A] T B A
L—M +A— B —> <_>\Ln M/
L M
L, =ligand
M = metal
A—— B = substrate

Fig.1.2 Bond activation by metal-ligand cooperation
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1.7 Objectives of my research

(1) To synthesize organic ligands with potential metal-ligand cooperativities.

(2) Todevelop a molecular metal catalyst based on an earth-abundant metal (e.g. cobalt)
supported by the above cooperative ligands.

(3) Toemploy the developed metal complex as an alternative to precious metal catalysts
in acceptorless dehydrogenative coupling of alcohols with amines/nitriles.

(4) To perform a mechanistic study of the above-developed catalyst in substrate

activation.
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CHAPTER I

Switchable Imine and Amine Synthesis Catalyzed by a Well-Defined

Cobalt Complex

2.1 Introduction

Homogeneous transition metal-catalyzed carbon-carbon and carbon-heteroatom bond
forming reactions are among the preeminent organic synthetic methods for high value
products.! One such prominent synthetic strategy is acceptorless dehydrogenative coupling
(ADC) which has recently attracted enormous interest in academia and fine-chemical
industries.>® In a typical ADC pathway, a substrate is first dehydrogenated with the catalyst
taking one hydride and one proton (Scheme 1A, step 1 and 2). The dehydrogenated
intermediate is then attacked by a nucleophile, e.g., an amine, leading to an unsaturated
product with loss of a water molecule. In the final step, the hydrogen gas is liberated,
regenerating the catalyst. Alternatively, the catalyst bearing a hydride and a proton could
reduce the unsaturated product at the final step to afford the saturated product. This is
known as the borrowing hydrogen (BH) process (Scheme 1A, steps 1 to 3).2° Both ADC
and BH offer great advantages over conventional methods (Scheme 1B and 1C), as: a) no
hydrogen acceptor or oxidant is required; b) less waste is generated with water and
hydrogen as the only possible byproducts; c¢) high atom efficiency can be achieved; and d)
challenging reactants such as normally unreactive alcohols can be directly used.® In
addition, alcohols are inexpensive, less toxic, readily available, and obtainable from
biomass feedstock.® In the past decades, precious metal catalysts have been studied

intensively for the ADC and BH processes, significantly promoting this field. Due to the
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increasing economic and environmental concerns, earth-abundant metal catalysts as
desirable alternative to the precious metal catalysts have emerged in a surge of recent

discoveries.” 14

A)

Inactive | R

. selective synthesis

. environmentally benign

. atom efficiency

. H,0 and H, as only by-products

Hydrogen Catalyst Hero gen
taken given
y

H
et ) L -t
base
HN—R! H,0 [R, R! = phenyl or alkyl }
B) HXH Oxidant i R!—NH, jl\ multi-step synthesis
X Lo -
R” "OH R0 N\ R N'R . copious waste
H,0
HXH HX H H R'—NH, H - multi-step synthesis
(&) R~ OH X = CL Br. I RXX Y R/kN'R . mutagenic and toxic reagents
T HX H . copious waste

Scheme 2.1 Comparison of ADC/BH with conventional methods for imine/amine
synthesis. A), More sustainable ADC/BH pathways for imine/amine synthesis, B)
conventional method for imine synthesis, and C), The conventional method for amine

synthesis

Imines and amines are important classes of compounds that have found ubiquitous
applications in pharmaceutical, chemical, and agricultural industries.*>*® N-alkylation of

amines with alcohols catalyzed by earth-abundant metal catalysts to access secondary
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imines or amines via ADC or BH, respectively, is a promising and environmentally-
friendly process.’”'* 17-38 However, there remains a great challenge to efficiently tune the
selectivity, e.g., imine is normally identified as a major side product in amine synthesis and
vice versa. Thus, it is highly desirable to explore the factors that favor either imine or amine
product from both practical and mechanistic points of view. Toward this end, new synthetic
methods and catalyst design are required. Unfortunately, current understanding of the

selectivity control over imine or amine synthesis via ADC or BH is still limited.

In their pioneering work, Hanson, Zhang, and co-workers reported that in a cobalt-
catalyzed amine/imine synthesis, addition of molecular sieves shifts the product from imine

to

Co (2 mol%)

2
toluene, reflux N R
R SN
Rl/\OH +| R2—NH, Secondary Imine
Co (2 mol%)
toluene, refl R?
Alcohol Amine - = Rl/\N/
4 AMS
Secondary Amine
H T*BArfy
N byproducts = | H, T + | H,O
Co= PCy2—C|0~PCy2
CstiMe3

Scheme 2.2 Cobalt catalyzed imine and amine synthesis by Hanson, Zang and co-workers
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amine.'”'® However, this method does not seem to be a general one and contradictory
results are known, as molecular sieves were also reported to promote imine product
instead.'®?° Furthermore, the heterogeneous nature of molecular sieves exerts challenges

to understanding the mechanism.

Kirchner and coworkers presented that the choice of metal leads to different products, in
which iron and manganese catalysts afford amine and imine, respectively, in the presence

of molecular sieves.?!

Mn (3 mol%) )
toluene, reflux . /% /R

3 A MS, 16h
140 °C

R! OH + R>—NH, Secondary Imine

Fe (3 mol%)
toluene, 140 °C R?
Alcohol Amine oluene Rl/\N/
3 AMS, 16h H
140 °C

Secondary Amine

byproducts = HZT + | H,O
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Scheme 2.3 Krichner’s manganese and iron catalyst for the selective synthesis of imine

and amine

Kempe and co-workers reported an interesting synthetic method that the change of base
type, i.e., KO'Bu or NaO'Bu, can result in switchable amine/imine synthesis mediated by
a manganese catalyst.?? A large amount of base, i.e., 1.0 and 1.5 equiv. with respect to the
substrate is mandatory for amine and imine synthesis, respectively. It is noted that this

method is not applicable to the cobalt- and iridium-based analogues.

Mn (5 mol%) )
toluene, NaO’Bu | X B

R N
20h, 80 °C
Rl/\OH +| RP—NH, Secondary Imine
Mn (5 mol%)
t 2
Alcohol Amine toluene, KOy Rl/\N/ 3
20h, 80 °C
Ph Secondary Amine
(thf)\ /N)\N\ /(thf)x
PO
N T T byproducts = | H, T + | H,0
Mn =
p P—Mn—P( ’Pr)
( r>2 Pz l \CO 2
oC ¢
| M=K"orNa" |

Scheme 2.4 Switchable synthesis of imine and amine by Kemp’s manganese catalyst using

different bases i.e. NaO'Bu for imine and KO'Bu for amine
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Recently, Srivastava, Srimani, and co-workers reported a similar strategy by changing the

type of bases using a manganese catalyst.3 Harsh reaction conditions, such as 30 mol %

base and 140 °C, are required for imine synthesis. Heterogeneous catalysts based on

precious metals are also known for selective imine/amine formations.®*° Thus, it is highly

desirable to develop more general and sustainable strategies to manipulate the ADC or BH

process for efficient selectivity control under milder conditions employing base transition

metal catalysts.

Mn (5 mol%)
toluene, KOH

24h, 140 °C

Mn (5 mol%)
t
toluene, KO'Bu 4

Secondary Imine

2
B

18-36h, 140 °C

R NoH 4 R2—NH,
Alcohol Amine
+ p—
Ir|I _IBr
A N
Mn = I
N—/l\|/[r\1\
Co
Co Co

R! N
H
Secondary Amine

byproducts = HzT + | H,O

Scheme 2.5 Selective synthesis of imine and amine by srivastava’s manganese catalyst

using different bases i.e KOH for imine and KO'Bu for amine

Recently, we have developed a novel P"PPPNYPyMe tetradentate ligand which is designed

to offer extraordinary stability to base transition metal centers and may actively participate
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in catalysis by metal-ligand cooperativity (MLC).*! We are interested in this tetradentate
tripodal ligand for the following reasons: (1) It may provide extra stability to the reactive
intermediates by enforcing five or six coordination on the metal center. (2) Because of the
different coordination environments, metal complexes by such ligands may have different
from those of tridentate pincer ligand systems, which currently dominate the

dehydrogenation of alcohols.

P'Pr,Cl  P'Pr,

@Bf 1) "BuLi B )rBuLi P
Br 2) CIP'Pr, : 2) PCl,

l
3)-110 °C PPry 3y .65°C
1) NEty
NH,
3)0°C, 80 °C —
2) \ /N
Me
Me ‘ A
P'Pr
COC12 = N P Pr22
\ ’ /P"'I// \
i @
H
iPI‘PPPNHPyMe

Scheme 2.6 Synthesis of tripodal ligand by Ding’s group

The air- and moisture stable cobalt complex | (Scheme 2) has shown great reactivity in
dehydrogenation of secondary alcohols to ketones,** dehydrogenative self-coupling of
primary alcohols to esters,*? and dehydrogenative cross-coupling of primary and secondary

alcohols to ketones.*® Herein, we describe an unprecedented and convenient method using
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| for the highly selective imine/amine synthesis by simply adjusting the base loadings. We
expect to provide useful insights that could enable new strategies in selective organic

synthesis and catalyst design.

/@ I, 2.5 mol% I, 3 mol% /@
@N 7.5 mol %KO'Bu ©/\OH ©/NH2 110 mol %KO'Bu ©/\N
+ I
benzene , 105 °C toluene, 85 °C H

argon flow, 24 h Sealed tube, 24h
3a la 2a 4a
yield* yield*
88% (3a/4a =49:1) 93% (4a/3a=100: 0)

Scheme 2.7 Switchable synthesis of imine and amine by tripodal ligand supported cobalt

catalyst

2.2 Results and Discussion

In the ADC/BH route for the imine/amine formation, amine is afforded from the imine
hydrogenation step (Scheme 1A, step 3), the imine/amine selectivity determining step. We
initiated our study by probing any strategy that could favor or disfavor this key step. In our
previous studies, a base such as KO'Bu is required to activate the cobalt pre-catalyst.*13
Since base is known to promote transition metal-catalyzed hydrogenation reactions,***¢ our
initial speculation is that by adjusting the amount of base the amine/imine selectivity might
be achieved. Toward this end, we examined our cobalt catalyst in response to the base
loadings in transfer hydrogenation of imine. In the model reaction of N-benzylideneaniline
with benzyl alcohol, an 82% yield of N-benzylaniline was obtained using 2.5 mol % I and
110 mol % KO'Bu at 85 °C after 24 h. However, when the KO'Bu loading was reduced to

a catalytic amount of 7.5 mol %, only 1% of N-benzylideneaniline was converted to
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Nbenzylaniline. These results suggest a key role the base, serving as a “switch” for the
imine/amine selectivity with our cobalt catalytic system. Following this hypothesis, we
explored the reaction conditions for switchable imine/amine synthesis (Table 2.1 and Table

2.2).

Table 2.1 Optimization of the Reaction Conditions for Imine Synthesis

oH NH; Ilbase SN
+ > + HyO + Hy

1a 2a 3a
entry? base base temp solvent Yield
(mol%) (°C) (%)°
1 KO'Bu 0 105 benzene 0
2 KO'Bu 2.5 105 benzene 29
3 KO'Bu 5 105 benzene 74
4 KO'Bu 7.5 105 benzene 88, 0,
794, 74¢
5 KO'Bu 10 105 benzene 86
6 NaO'Bu 7.5 105 benzene 82
7 KOH 75 105 benzene 72
8 NaHCOs3 7.5 105 benzene 2
9 K2CO3 7.5 105 benzene 4
10 Cs2C0O3 75 105 benzene 9
11 KO'Bu 75 105 toluene 72
12 KO'Bu 7.5 105 THF 51
13 KO'Bu 7.5 105 1,4- 24
dioxane
14 KO'Bu 75 85 benzene 15
15 KO'Bu 7.5 115 benzene 86

@Reaction conditions: Benzyl alcohol (0.25 mmol), aniline (0.275 mmol), I (2.5 mol%),
base, and solvent (1.2 mL) were heated in a 15 mL reaction tube under Ar flow for 24 h.
PNMR yield using 1,3,5 trimethoxybenzene as internal standard. Without 1. %Isolated yield

on 1 mmol scale. *Mercury (125 mg) was added to the reaction.
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Table 2.2 Optimization of the Reaction Conditions for Amine Synthesis

1a 2a 4a
entry? base base temp solvent Yield
(mol%) (°C) (%)°
1 KO'Bu 0 85 toluene 0
2 KO'Bu 7.5 85 toluene 4
3 KO'Bu 25 85 toluene 47
4 KO'Bu 75 85 toluene 78
5 KO'Bu 110 85 toluene 93, 4°
89,4 77¢
6 KO'Bu 125 85 toluene 93
7 NaO'Bu 110 85 toluene 89
8 KOH 110 85 toluene 78
9 NaOH 110 85 toluene 79
10 K2CO3 110 85 toluene 2
11 KO'Bu 110 85 benzene 72
12 KO'Bu 110 85 THF 48
13 KO'Bu 110 85 1,4- 35
dioxane
14 KO'Bu 110 65 toluene 22
15 KO'Bu 110 105 toluene 85

@Reaction conditions: Benzyl alcohol (0.25 mmol), aniline (0.275 mmol), 1 (3 mol%), base,
and solvent (0.75 mL) were heated in a sealed 15 mL reaction tube for 24 h. "NMR yield
using 1,3,5 trimethoxybenzene as internal standard. *Without I. %Isolated yield on 1 mmol

scale. ®Mercury (125 mg) was added to the reaction.

Gratifyingly, we found that for efficient imine formation, 2.5 mol % I with 7.5 mol % of

KO'Bu at 105 °C under argon flow is required. Alternatively, for selective amine
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generation, 3 mol % I with 110 mol % of KO'Bu at 85 °C in a small, closed reaction vessel
is needed (Scheme 2). Notably, excellent 3a/4a selectivity was observed and vice versa.
Both I and KO'Bu are crucial for the imine/amine formations. 1 mmol scale reaction was
also performed, leading to very good 79% and 89% isolated yields of 3a and 4a,
respectively (Scheme 2). H> was confirmed by GC from the gas phase after the imine
forming reaction, suggesting an ADC process. Mercury tests indicated homogeneous

catalytic processes for both imine and amine formations.

We then examined a comprehensive list of alcohol and amine substrates to explore the
scope of this method (Table 2.3). The presence of electron-donating groups such as —-OMe,
—Me, —'Pr, etc. attached to meta or para positions of benzyl alcohol or aniline substrates
gave good-to-excellent yields of amine or imine products (Table 2.3, 3b-3k; 4b-4k). The
analogous substrates with electron-withdrawing groups like —F and —Cl, also proceeded
smoothly to furnish the corresponding products (Table 2.3, 31-3q; 41-4q). Ortho-substituted
substrates also displayed good-to-excellent activity (Table 2.3, 3r-3s; 4r-4s). The
substrates bearing naphthalene and pyridine rings were well-tolerant with this method
(Table 2.3, 3t-3w; 4t-4w). In addition, amines and imines with alkyl groups could also be
accessed. Interestingly, aliphatic amines reacted with both benzyl and alkyl alcohol
substrates affording the corresponding imines with excellent yields but failed for amine
formation (Table 2.3, 3x3ab; 4x-4ab). This might be due to the hindrance by the bulky
KO'Bu group at the last hydrogenation step in MPV reduction (Figure 2.0). It is noted that
the proposed transition state shown on the mechanism is simplified model, as the identity
of KO'Bu is unclear to us.*” On the contrary, anilines underwent the catalytic reactions

smoothly with alkyl alcohols to give amine products, but not for imine generation (Table
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2.3, 3ac-3ai; 4ac-4ai). The substrates with nitrile, nitro, and furfuryl groups were not
compatible. Also, note that our strategy can be employed to selectively synthesize diimine
3aj or diamine 4aj from alkylation of 1,3-diaminobenzene (0.275 mmol) with benzyl

alcohol (0.5 mmol) in the yields of 83% and 91%, respectively.

R!
N

N

R2

R? K

}f‘ NN

KO'Bu b N Q
K

1 1
1 1
PN — " N )\: :}\ [coordination/activation ]

R
a R! H R

H

A

R €]

[decoordination of aldehyde ]

Figure 2.0 Meerwein-Ponndorf-Verley reduction cycle for amine synthesis

Table 2.3 Switchable Synthesis of Imines 3b — 3ai and Amines 4b — 4ai
from Various Alcohol and Amine Substrates®"¢
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Amine }

TN,

3aa, 73%%

CN@

3ac, trace

4u, 72%
N
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4w, 78%<

S

4y, trace
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H :
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WNQ

3ad-3ai, trace

e

4v, 72%

I

4x, trace

4z, trace

M?E”(v);
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LA @
H

4ad, n =20, 90%
4ae, n =10, 99%
4af, n=28, 98%
4ag, n=6,93%
4ah, n =4, 99%
4ai,n=3,95%

General reaction conditions for imine synthesis: alcohol 1 (0.25 mmol), amine 2 (0.275

mmol), 1 (2.5 mol%), KO'Bu (7.5 mol%), benzene (1.2 mL), Ar flow, 105 °C, 24h.

bGeneral reaction conditions for amine synthesis: 1 (0.25 mmol), amine 2 (0.275 mmol), |

(3 mol%), KO'Bu (110 mol%), toluene (0.75 mL), 15 mL reaction tube, 85 °C, 24h. °NMR

yield using 1,3,5-trimethoxybenzene or nitromethane as internal standard. “Alcohol

(0.3mmol) and amine (0.25 mmol) were used. °1 (0.25 mmol) and 2 (0.35 mmol) were

used. Reactions were run in a 100 mL pressure vessel for 48 h. 9Reaction were run in a

100 mL pressure vessel for 24 h.
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Next, we performed a mechanistic study to understand these reactions. Three derivatives
of I (Il — IV, Scheme 3B) were investigated for the amine alcohol coupling reactions.
Derivative Il bearing a dearomatized pyridine arm is synthesized by reacting | with one
equiv. of KO'Bu or KHBEts.** 11 shows comparable activity to I in both imine and amine
formation reactions with 85% and 79% yields, respectively, demonstrating Il could also

be an efficient pre-catalyst.

® 6
Me Cl . —‘ cl Me (lj1 PiPI‘
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Scheme 2.8 Dearomatization and methylation of Ding’s catalyt

In order to test if MLC from the N-H linker on the ligand plays a role, the

[(P"PPPNMepyM&YICoCI, complex 1114 with the N-Me linker was employed. An amine
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yield of 80% was observed which is comparable with I, suggesting MLC may not have a
crucial effect in amine formation. However, 111 showed dramatically reduced activity
toward imine formation leading to only 1% vyield. Instead, a large amount of amine (29%
yield) and ester(20% yield) side products were generated, indicating poor reactivity and
selectivity using 111 as the pre-catalyst for imine synthesis. To investigate the role of the
coordinating pyridine arm, we synthesized 1V bearing a benzene pendant arm instead. The
solid-state structure of IV featured a distorted trigonal bipyramidal geometry on the cobalt
center (Scheme 3C). As expected, the -NH—Ph arm does not coordinate to the cobalt. The
interaction between one Cl and H on the N—H linker suggests a potential function of MLC.
The IR spectrum displays a vV(N-H) peak at 3365 cm™. 1V showed superior activity towards
amine formation with an excellent 93% vyield but performed poorly in the imine synthesis
without any imine product detected. Interestingly, an amine yield of 75% was observed
under the imine forming conditions using 1V. Taking together, these results indicate the
critical roles of both the pyridyl ring and the N-H linker of | for the switchable imine/amine

synthesis.

When the optimized imine reaction was conducted with benzyl alcohol-a,a-d2 and aniline,
H/D scrambling was detected with a Ph—CH=N-Ph/Ph—CD=N-Ph ratio of about 1:3
(Scheme 3D), suggesting that the alcohol dehydrogenation step is reversible and involves
cobalt hydride species as the intermediate. The amine formation was monitored using a J-
Young NMR tube. A triplet of doublets at —15.99 ppm (J = 53.8 Hz (t) and 40.3 Hz (d))
was observed in the *H NMR spectrum (Scheme 3E). Although | is a paramagnetic Co(ll)
complex, the diamagnetic hydride signal indicates the generation of a Co(l) or Co(lll)

hydride in the presence of KO'Bu and alcohol/amine substrates, which is analogous to other

42



reported Co-based catalytic systems.*®0 Attempts to isolate the hydride species were
unsuccessful. In addition, no product was observed from dehydrogenation of aniline or
benzyl amine in the absence of alcohol under the standard conditions, suggesting the amine
dehydrogenation pathway could be excluded. To explore the generality of our method in
selective amine/imine synthesis, two representative base transition metal catalysts V and
VI (Scheme 3B) originally reported for amine synthesis were examined by our strategy to
form imines. Note that both catalytic systems require excess amount of KO'Bu for amine
synthesis.?®>?8 V and VI were prepared according to the published procedures.®%? Benzyl
alcohol and aniline were chosen as the model substrates. Beller’s manganese pincer
complex V gave a N-benzylideneaniline yield of 80% under the analogous imine synthesis
conditions with 3.5 mol % V and 6 mol % KO'Bu. This demonstrates our strategy is
amenable for Beller’s catalytic system, although more extensive reaction condition
optimization is required to further enhance the productivity. On the other hand, Kempe’s
cobalt pincer complex V1 with the triazine backbone showed poor activity (3% yield) when
subjected to the standard imine synthesis conditions. The stability of the reactive complexes
could play a pivotal role, as catalyst degradation was observed during the reaction. Kempe
and coworkers proposed a possible stabilization effect from the coordination of the
potassium or sodium cation to the nitrogen atoms of the triazine backbone.?? Under our
conditions for imine synthesis, the catalytic amount of KO'Bu may be insufficient to
stabilize the catalyst, leading to catalyst degradation. Collectively, considering other known
catalytic systems that require otherwise a large amount of base for the imine formation,?%
we conclude that our switchable imine/amine synthetic strategy is strongly dependent on

the choice of the metal catalysts.
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4(A) Switchable synthesis of diamine and diimine using benzyl alcohol and
benzenediamine. (B) Base transition metal complexes examined for switchable
imine/amine synthesis. (C) Solid state structure of 1VV. Hydrogen atoms are omitted except
the N-H proton. (D) Deuterium labeling experiment of the imine forming reaction using
(benzyl alcohol)-a,0-d2. (E) Cobalt hydride species detected by *H NMR (left) and 3P

NMR (right) from the in situ amine forming reaction in a J. Young NMR tube.

Scheme2.9 Studies on the switchable imine/amine formation by Ding’s catalyst

2.3 Conclusion

In summary, we reported the couplings of primary alcohols and amines to selectively
synthesize imines or amines catalyzed by a well-defined cobalt catalyst. Intriguingly, the

product selectivity can be simply controlled by the base loadings and strongly depends on
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the catalysts used. Moreover, the imine forming reaction is environmentally benign with
hydrogen and water as the only byproducts. We anticipate that this study could provide
insights that lead for more efficient base transition metal catalysts, potentially opening new

avenues of research on selective transformations in catalysis.
2.4 Experimental Section

2.4.1 General Methods.

Unless specified, all reactions were performed in a MBraun glovebox under an atmosphere
of N2 or using standard Schlenk techniques with Ar atmosphere. Anhydrous solvents were
deoxygenated by sparging with dinitrogen and dried by passing through activated alumina
columns of a Pure Solv solvent purification system. CDClzwas purchased from Cambridge
Isotope Lab and dried over molecular sieves (4 A). Benzyl alcohol-a,a-d2 was purchased
from Sigma Aldrich and used as received. All organic substrates were purchased from
Sigma Aldrich or Fisher Scientific and used as received. KO'Bu (>98%) was purchased
from Sigma Aldrich and vacuum sublimed before use. Comparable results were obtained
as using KO'Bu (99.99%, Aldrich). All other chemicals were purchased and used as
received. NMR spectra were recorded on a JEOL Unity 500 MHz or 300 MHz
spectrometer. 'H NMR spectra were referenced to tetramethylsilane (0.00 ppm) using
CDCl; as solvent. *3C NMR were referenced to solvent carbons at 77.0 ppm for CDCls. 3P
NMR spectra were referenced to 85% H3PO4 at 0 ppm. Metal complexes (I-111, V, VI)
were prepared according to the previously published procedures,***12 and recrystallized
before use. All other reagents were purchased from common suppliers and used without

further purification.
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2.5 Synthesis of P"PPPNHPh Ligand (IV-L). In a N2 filled glovebox, aniline (50 L, 0.55
mmol) and toluene (4 mL) was loaded into a 100 mL Schlenk flask. NEts (76.2 pL, 0.55
mmol) was added to the solution dropwise over 5 min. The flask was sealed with a rubber
septum, taken out of glovebox and cooled at 0 °C with an ice bath. In the glovebox, bis(2-
diisopropylphosphinophenyl)chlorophosphine (247.5 mg, 0.55 mmol) was measured and
dissolved in 3 mL toluene. The solution was charged into a 5 mL syringe and added to the
Schlenk flask under Ar flow dropwise over 10 min. After the addition was complete, the
ice bath was removed and allowed the mixture to warm to room temperature. The rubber
septum was switched with a glass stopper and reaction mixture was heated to 80 °C for 24
h. After that, the solvent was removed under vacuum and the Schlenk flask was taken inside
the glovebox. Diethyl ether (15 mL) was added into the Schlenk flask to dissolve the
powder and the mixture was filtered through Celite. Colorless crystals were obtained from
the concentrated at room temperature (229 mg, 82% yield). *H NMR (500 MHz, 298 K,
CeDs): 6 (ppm) 7.14-7.11 (m, 2H), 7.06-7.04 (m, 2H), 6.84-6.83 (m, 1 H), 6.82 (dd, J = 2.4
and 1.3 Hz, 2H), 6.81-6.80 (m, 1H), 6.77 (t, J = 7.4 Hz, 2H), 6.68-6.65 (m, 2H), 6.44-6.41
(m, 1H), 3.62 (d, 2np = 6.1 Hz, N-H, 1H), 1.81-1.73 (m, 2H), 1.65-1.57 (m, 2H), 0.87-0.77
(m, 12H), 0.64-0.56 (m, 12H). 3P {*H} NMR (121 MHz, 298 K, CsDs):  (ppm) 18.59
(dd, J=164.4 and 156.7 Hz, 1P), —2.23 (d, J =4.5 Hz, 1P), —3.56 (d, J = 5.2 Hz). BC{*H}
NMR (126 MHz, 298K, CsDg): 5 (ppm) 150.6 (dd, J = 11.9, 5.0 Hz), 150.3 (dd, J = 13.9
and 5.2 Hz), 147.3 (d, J = 18.4 Hz), 141.1 (dd, J = 29.6 and 19.2 Hz) 132.2 (s), 131.5 (d, J
= 7.6 Hz), 129.0 (s), 128.7 (), 128.0 (s), 118.6 (s), 115.9 (d, J = 13.1 Hz), 25.4 (d, J = 16.3
Hz), 23.9 (dd, J = 14.6, 5.8 Hz), 20.3 (dd, J = 17.2, 9.8 Hz), 19.9 (d, J = 20.4 Hz), 19.2 (d,
J=
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8.3 Hz). ESI-HRMS-TOF m/z: [M + H]" calc. for CaoH42NP3, 509.2512; found, 509.2518.

2.6 Synthesis of [(P"'PPPN"Ph)CoCI]CI Complex (1V). PPPPN"Ph (34 mg, 0.066
mmol) solution in THF was added dropwise to the slurry of CoCl; (8.5 mg, 0.065 mmol)
in THF, and the mixture was stirred for overnight at room temperature. The resulted dark-
red slurry was filtered via Celite and the filtrate was dried under vacuum to give a red
powder. Red-orange crystals were grown overnight by slow diffusion of ether into the
dichloromethane solution of the complex. *H NMR (500 MHz, 298 K, CD2Cl,): § (ppm)
9.92, 8.61, 7.96, 7.10, 6.24, 4.99, 4.80, 3.19, 1.43, 1.23, 1.12, 0.85, 0.05, —1.08, —2.69,
—5.15. prefr (B.M.): 1.95. UV-vis [CHzCly; 4, nm (e, Mlem™)]: 472 (71.1). Anal. Calcd. for

C, 56.35; H, 6.62; N, 2.19. Found: C, 56.21; H, 6.60; N, 2.18.
2.7 Transfer Hydrogenation of Imine.

2.7.1 Condition A: Inside a N> filled glovebox, an oven-dried 15 mL reaction tube was
charged with N-benzylideneaniline (45 mg, 0.25 mmol), benzyl alcohol (30 uL, 0.275
mmol), I (4.1 mg, 2.5 mol %), KO'Bu (31 mg, 110 mol %), and toluene (0.75 mL). The
tube was sealed by a screw cap fitted with a PTFE septa, and heated at 85 °C for 24 h. The
reaction mixture was filtered through a silica gel plug and analyzed by H NMR

spectroscopy. N-benzylaniline was observed with 82 % vyield.

2.7.2 Condition B: Inside a N2 filled glovebox, an oven-dried 15 mL reaction tube was
charged with N-benzylideneaniline (45 mg, 0.25 mmol), benzyl alcohol (30 uL, 0.275
mmol), 1 (4.1 mg, 2.5 mol %), KO'Bu (2.1 mg, 7.5 mol %), and toluene (0.75 mL). The

tube was sealed by a screw cap fitted with a PTFE septa, and heated at 85 °C for 24 h. The
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reaction mixture was filtered through silica gel plug and analyzed by 'H NMR

spectroscopy. Trace amount (<1%) of N-benzylaniline was observed.
2.8 Synthesis of N-Benzylideneaniline 3a.

2.8.1 Condition A: Inside a N> filled glovebox, an oven-dried 15 mL reaction tube was
charged with I (4.1 mg, 2.5 mol %), KO'Bu (2.1 mg, 7.5 mol %), benzyl alcohol (0.25
mmol), aniline (0.275 mmol) and benzene (1.2 mL). The tube was then sealed by a screw
cap fitted with a PTFE septa, and attached to argon flow through a needle. The reaction
was carried out at 105 °C for 24 h. 1,3,5-Trimethoxybenzene (8.4 mg, 0.05 mmol) was
added to the reaction mixture as internal standard. The mixture was diluted with CDCl3

and filtered through Celite and subjected to NMR analysis. NMR yield: 88%.

2.8.2 Condition B: Inside a N filled glovebox, an oven-dried 100 mL pressure vessel was
charged with 1 (4.1 mg, 2.5 mol %), KO'Bu (2.1 mg, 7.5 mol %), benzyl alcohol (0.25
mmol), aniline (0.275 mmol), and benzene (1.2 mL). The vessel was sealed by a PTFE
valve and heated to 105°C for 24 h. 1,3,5-Trimethoxybenzene (8.4 mg, 0.05 mmol) was
added to the reaction mixture as internal standard. An aliquot of mixture was filtered

through Celite, rinsed with CDCls, and subjected to NMR analysis. NMR yield: 82%.

2.8.3 Condition C (1 mmol scale): Inside a N filled glovebox, an oven-dried 15 mL
reaction tube was charged with | (16.4 mg, 2.5 mol %), KO'Bu (8.4 mg, 7.5 mol %),
benzyl alcohol (1 mmol), aniline (1.1 mmol) and benzene (3 mL). The tube was then
sealed by a screw cap fitted with a PTFE septa, and attached to argon flow through a
needle. The reaction was carried out at 105 °C for 24 h. At the end of the reaction, the

solvent was removed under reduced pressure and the crude mixture was purified by short-
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path vacuum distillation. Light yellow powder of 3a was isolated. Yield: 143 mg (79%).
'H NMR (300 MHz, CDCls) 6 8.47 (s, 1H), 7.93-7.91 (m, 2H), 7.51-7.49 (m, 2H), 7.50-
7.48 (m, 1H), 7.43-7.39 (m, 2H), 7.27 (m, 1H), 7.25-7.22 (m, 2H) ppm; *C NMR (75

MHz, CDCl3) ¢ 160.5, 152.2, 136.3, 131.5, 129.3, 129.0, 128.9, 126.0, 121.0 ppm.

2.8.4 Condition D: Inside a N filled glovebox, an oven-dried 15 mL reaction tube was
charged with 11 (3.9 mg, 2.5 mol %), KO'Bu (1.4 mg, 5 mol %), benzyl alcohol (0.25
mmol), aniline (0.275 mmol) and benzene (1.2 mL). The tube was then sealed by a screw
cap fitted with a PTFE septa, and attached to argon flow through a needle. The reaction
was carried out at 105 °C for 24 h. 1,3,5-Trimethoxybenzene (8.4 mg, 0.05 mmol) was
added to the reaction mixture as internal standard. The mixture was diluted with CDCls and

filtered through Celite and subjected to NMR analysis. NMR vyield: 85%.

2.8.5 Condition E: Inside a N2 filled glovebox, an oven-dried 15 mL reaction tube was
charged with 111 (4.9 mg, 2.5 mol %), KO'Bu (2.1 mg, 7.5 mol %), benzyl alcohol (0.25
mmol), aniline (0.275 mmol) and benzene (1.2 mL). The tube was then sealed by a screw
cap fitted with a PTFE septa, and attached to argon flow through a needle. The reaction
was carried out at 105 °C for 24 h. 1,3,5-Trimethoxybenzene (8.4 mg, 0.05 mmol) was
added to the reaction mixture as internal standard. The mixture was diluted with CDCls and

filtered through Celite and subjected to NMR analysis. NMR vyield: 1%.

2.8.6 Condition F: Inside a N2 filled glovebox, an oven-dried 15 mL reaction tube was
charged with 1V (3.9 mg, 2.5 mol %), KO'Bu (2.1 mg, 7.5 mol %), benzyl alcohol (0.25
mmol), aniline (0.275 mmol) and benzene (1.2 mL). The tube was then sealed by a screw

cap fitted with a PTFE septa, and attached to argon flow through a needle. The reaction
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was carried out at 105 °C for 24 h. 1,3,5-Trimethoxybenzene (8.4 mg, 0.05 mmol) was
added to the reaction mixture as internal standard. The mixture was diluted with CDClI3 and

filtered through Celite and subjected to NMR analysis. NMR vyield: 0%.

2.8.7 Condition G: Inside a N filled glovebox, an oven-dried 15 mL reaction tube was
charged with V (4.4 mg, 3.5 mol %), KO'Bu (1.7 mg, 6 mol %), benzyl alcohol (0.3 mmol),
aniline (0.25 mmol) and benzene (1.2 mL). The tube was then sealed by a screw cap fitted
with a PTFE septa, and attached to argon flow through a needle. The reaction was carried
out at 105 °C for 24 h. 1,3,5-Trimethoxybenzene (8.4 mg, 0.05 mmol) was added to the
reaction mixture as internal standard. The mixture was diluted with CDCIs and filtered

through Celite and subjected to NMR analysis. NMR yield: 80%.

2.8.8 Condition H: Inside a N filled glovebox, an oven-dried 15 mL reaction tube was
charged with VI (3.3 mg, 2.5 mol %), KO'Bu (2.1 mg, 7.5 mol %), benzyl alcohol (0.25
mmol), aniline (0.275 mmol) and benzene (1.2 mL). The tube was then sealed by a screw
cap fitted with a PTFE septa, and attached to argon flow through a needle. The reaction
was carried out at 105 °C for 24 h. 1,3,5-Trimethoxybenzene (8.4 mg, 0.05 mmol) was
added to the reaction mixture as internal standard. The mixture was diluted with CDCls and

filtered through Celite and subjected to NMR analysis. NMR vyield: 3%.
2.9 Synthesis of N-Benzylaniline 4a.

2.9.1 Condition A: Inside a N2 filled glovebox, an oven-dried 15 mL reaction tube was
charged with I (4.9 mg, 3 mol %), KO'Bu (31 mg, 110 mol %), benzyl alcohol (0.25 mmol),
aniline (0.275 mmol) and toluene (0.75 mL). The tube was then sealed by a screw cap fitted

with a PTFE septa, taken out of the box and heated at 85 °C for 24 h. 1,3,5-Trimethoxy
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benzene (8.4 mg, 0.05 mmol) was added to the reaction mixture as internal standard. An
aliquot of mixture was filtered through silica gel and rinsed with diethyl ether (5 mL). The
solvent was removed under reduced pressure and the crude mixture was subjected to NMR

analysis to identify the products and determine product yields. NMR yield: 93%.

2.9.2 Condition B (1 mmol scale): Inside a N> filled glovebox, an oven-dried 15 mL
reaction tube was charged with 1 (19.6 mg, 3 mol %), KO'Bu (124 mg, 110 mol %), benzyl
alcohol (1 mmol), aniline (1.1 mmol) and toluene (2 mL). The tube was then sealed by a
screw cap fitted with a PTFE septa, taken out of the box and heated at 85 °C for 24 h. At
the end of the reaction, the solvent was removed under reduced pressure and the crude
mixture was passed through a silica gel column using ethyl acetate/hexane (1:10, v/v) as
an eluent. Pale yellow oil of 4a was isolated. Yield: 163 mg (89%). *H NMR (500 MHz,
CDCI3) § 7.47-7.52 (m, 4 H), 7.40~7.43 (m, 1 H), 7.31-7.34 (m, 2 H), 6.86-6.89 (m, 1
H), 6.75-6.77 (M, 2 H), 4.43 (s, 2 H), 4.11 (s, 1 H) ppm; 3C NMR (125 MHz, CDCl3) §

148.4, 139.7, 129.5, 128.9, 127.7, 127.4, 117.7, 113.1, 48.5 ppm.

2.9.3 Condition C: Inside a N2 filled glovebox, an oven-dried 15 mL reaction tube was
charged with 11 (4.6 mg, 3 mol %), KO'Bu (31 mg, 110 mol %), benzyl alcohol (0.25
mmol), aniline (0.275 mmol) and toluene (0.75 mL). The tube was then sealed by a screw
cap fitted with a PTFE septa, taken out of the box and heated at 85 °C for 24 h. 1,3,5-
Trimethoxy benzene (8.4 mg, 0.05 mmol) was added to the reaction mixture as internal
standard. An aliquot of mixture was filtered through silica gel and rinsed with diethyl ether

(5 mL). The solvent was removed under reduced pressure and the crude mixture was
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subjected to NMR analysis to identify the products and determine product yields. NMR

yield: 79%.

2.9.4 Condition D: Inside a N filled glovebox, an oven-dried 15 mL reaction tube was
charged with 111 (5.9 mg, 3 mol %), KO'Bu (31 mg, 110 mol %), benzyl alcohol (0.25
mmol), aniline (0.275 mmol) and toluene (0.75 mL). The tube was then sealed by a screw
cap fitted with a PTFE septa, taken out of the box and heated at 85 °C for 24 h. 1,3,5-
Trimethoxy benzene (8.4 mg, 0.05 mmol) was added to the reaction mixture as internal
standard. An aliquot of mixture was filtered through silica gel and rinsed with diethyl ether
(5 mL). The solvent was removed under reduced pressure and the crude mixture was
subjected to NMR analysis to identify the products and determine product yields. NMR

yield: 80%.

2.9.5 Condition E: Inside a N2 filled glovebox, an oven-dried 15 mL reaction tube was
charged with 1V (4.6 mg, 3 mol %), KO'Bu (31 mg, 110 mol %), benzyl alcohol (0.25
mmol), aniline (0.275 mmol) and toluene (0.75 mL). The tube was then sealed by a screw
cap fitted with a PTFE septa, taken out of the box and heated at 85 °C for 24 h. 1,3,5-
Trimethoxy benzene (8.4 mg, 0.05 mmol) was added to the reaction mixture as internal
standard. An aliquot of mixture was filtered through silica gel and rinsed with diethyl ether
(5 mL). The solvent was removed under reduced pressure and the crude mixture was
subjected to NMR analysis to identify the products and determine product yields. NMR

yield: 93%.

2.9.6 Condition F: Inside a N> filled glovebox, an oven-dried 15 mL reaction tube was

charged with V (3.7 mg, 3 mol %), KO'Bu (21 mg, 75 mol %), benzyl alcohol (0.25 mmol),
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aniline (0.275 mmol) and toluene (0.75 mL). The tube was then sealed by a screw cap fitted
with a PTFE septa, taken out of the box and heated at 85 °C for 24 h. 1,3,5-Trimethoxy
benzene (8.4 mg, 0.05 mmol) was added to the reaction mixture as internal standard. An
aliquot of mixture was filtered through silica gel and rinsed with diethyl ether (5 mL). The
solvent was removed under reduced pressure and the crude mixture was subjected to NMR

analysis to identify the products and determine product yields. NMR yield: 74%.

2.9.7 Condition G: Inside a N filled glovebox, an oven-dried 15 mL reaction tube was
charged with VI (4.0 mg, 3 mol %), KO'Bu (31 mg, 110 mol %), benzyl alcohol (0.25
mmol), aniline (0.275 mmol) and toluene (0.75 mL). The tube was then sealed by a screw
cap fitted with a PTFE septa, taken out of the box and heated at 85 °C for 24 h. 1,3,5-
Trimethoxy benzene (8.4 mg, 0.05 mmol) was added to the reaction mixture as internal
standard. An aliquot of mixture was filtered through silica gel and rinsed with diethyl ether
(5 mL). The solvent was removed under reduced pressure and the crude mixture was
subjected to NMR analysis to identify the products and determine product yields. NMR

yield: 86%.

2.10 Hydrogen Detection. Inside a N2 filled glovebox, an ovendried 100 mL pressure
vessel was charged with 1 (16.4 mg, 2.5 mol %), KO'Bu (8.4 mg, 7.5 mol %), benzyl
alcohol (1 mmol), aniline (1.1 mmol), and benzene (2 mL). The vessel was sealed by a
PTFE valve and heated to 105°C for 24 h. The headspace gas sample was taken by a needle
syringe from the side arm and detected by SRI 8610C Gas Chromatograph with a 5 A

molecular sieves column (Restek CP753415) with N2 carrier gas.
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2.11 Homogeneity Test of the Reaction System for Imine Synthesis. Inside a N2 filled
glovebox, an oven-dried 15 mL reaction tube was charged with 1 (4.1 mg, 2.5 mol %),
KO'Bu (2.1 mg, 7.5 mol %), benzyl alcohol (0.25 mmol), aniline (0.275 mmol) and benzene
(1.2 mL). Mercury (125 mg, 0.625 mmol) was added to the tube which was then sealed by
a screw cap fitted with a PTFE septa, and attached to argon flow through a needle. The
reaction was carried out at 105 °C for 24 h. 1,3,5Trimethoxybenzene (8.4 mg, 0.05 mmol)
was added to the reaction mixture as internal standard. The mixture was diluted with CDCl3

and filtered through Celite and subjected to NMR analysis. NMR yield: 74%.

2.12 Homogeneity Test of the Reaction System for Amine Synthesis. Inside a N> filled
glovebox, an oven-dried 15 mL reaction tube was charged with I (4.9 mg, 3 mol %), KO'Bu
(31 mg, 110 mol %), benzyl alcohol (0.25 mmol), aniline (0.275 mmol) and toluene (0.75
mL). Mercury (125 mg, 0.625 mmol) was added to the tube which was then sealed by a
screw cap fitted with a PTFE septa and heated at 85 °C for 24 h. 1,3,5-Trimethoxy benzene
(8.4 mg, 0.05 mmol) was added to the reaction mixture as internal standard. An aliquot of
mixture was filtered through silica gel and rinsed with diethyl ether (5 mL). The solvent
was removed under reduced pressure and the crude mixture was subjected to NMR analysis

to identify the products and determine product yields. NMR vyield: 77%.

2.13 Deuterium Labeling Study of Benzyl Alcohol and Aniline Coupling to N-
Benzylideneaniline. Inside a N2 filled glovebox, an oven-dried 15 mL reaction tube was
charged with benzyl alcohol-a,a-d2 (0.25 mmol), aniline (0.275 mmol), I (4.1 mg, 2.5 mol
%), KO'Bu (2.1 mg, 7.5 mol %), and benzene (1.2 mL). The tube was sealed by a screw

cap fitted with a PTFE septa, and attached to argon flow through a needle. The reaction
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was carried out at 105 °C for 24 h. 1,3,5-Trimethoxybenzene (8.4 mg, 0.05 mmol) was
added to the reaction mixture as internal standard. The mixture was diluted with CDCls,
filtered through Celite and subjected to NMR analysis. H/D scrambling was detected with

a Ph—CH=N-Ph/Ph—CD=N-Ph ratio of 1:3.

2.14 Study of the Cobalt Hydride in the Coupling of Benzyl Alcohol and Aniline to N-
Benzylaniline. Inside a N2 filled glovebox, an oven-dried J-Young NMR tube was charged
with benzyl alcohol (0.125 mmol), aniline (0.125 mmol), 1 (8.2 mg, 10 mol %), KO'Bu
(11.2 mg, 80 mol %), and toluene-d8 (0.5 mL). The tube was sealed with PTFE cap, and

the reaction was monitored by *H NMR (500 MHz) at 85 °C.
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2.16 Synthetic details for imine 3b-3ai and amines 4b-4ai.

- /@ 3b: Inside a N filled glovebox, an oven-dried 15 mL reaction tube
ﬁN was charged with 1 (4.1 mg, 2.5 mol %), KO'Bu (2.1 mg, 7.5 mol
%), 4methylbenzyl alcohol (0.25 mmol), aniline (0.275 mmol) and benzene (1.2 mL). The
tube was sealed by a screw cap fitted with a PTFE septa, and attached to argon flow through
a needle. The reaction was carried out at 105 °C for 24 h. Nitromethane (20 pL, 373 pumol)
was added to the reaction mixture as internal standard. The mixture was diluted with

CDCls, filtered through Celite and subjected to NMR analysis. NMR vyield: 89%.

3c% Inside a N; filled glovebox, an oven-dried 15 mL reaction tube
@N was charged with 1 (4.1 mg, 2.5 mol %), KO'Bu (2.1 mg, 7.5 mol
%), benzyl alcohol (0.25 mmol), 4-methyl aniline (0.275 mmol) and benzene (1.2 mL).
The tube was sealed by a screw cap fitted with a PTFE septa, and attached to argon flow
through a needle. The reaction was carried out at 105 °C for 24 h. 1,3,5-Trimethoxybenzene
(8.4 mg, 0.05 mmol) was added to the reaction mixture as internal standard. The mixture
was diluted with CDCls, filtered through Celite and subjected to NMR analysis. NMR

yield: 80%.

/©/\ 3d3: Inside a N filled glovebox, an oven-dried 15 mL reaction

N\
@N tube was charged with I (4.1 mg, 2.5 mol %), KO'Bu (2.1 mg,

7.5 mol %), benzyl alcohol (0.25 mmol), 4-ethylaniline (0.275 mmol) and benzene (1.2
mL). The tube was sealed by a screw cap fitted with a PTFE septa, and attached to argon
flow through a needle. The reaction was carried out at 105 °C for 24 h. Nitromethane (20

pL, 373 pumol) was added to the reaction mixture as internal standard. The mixture was
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diluted with CDCls, filtered through Celite and subjected to NMR analysis. NMR vyield:

89%.

3e*: Inside a N2 filled glovebox, an ovenwas charged with I (4.1

N mg, 2.5 mol %), KO'Bu (2.1 mg, 7.5 mol %), 4-isopropylbenzyl

alcohol (0.25 mmol), aniline (0.275 mmol) and benzene (1.2

mL). The tube was sealed by a screw cap fitted with a PTFE septa, and attached to argon
flow through a needle. The reaction was carried out at 105 °C for 24 h. Nitromethane (20
pL, 373 pumol) was added to the reaction mixture as internal standard. The mixture was
diluted with CDCls, filtered through Celite and subjected to NMR analysis. NMR vyield:

85%.

3f°: Inside a N filled glovebox, an oven-dried 15 mL reaction
@N tube was charged with I (4.1 mg, 2.5 mol %), KO'Bu (2.1 mg,

N
© 7.5 mol %), 4-methoxybenzyl alcohol (0.25 mmol), aniline
(0.275 mmol) and benzene (1.2 mL). The tube was sealed by a screw cap fitted with a
PTFE septa, and attached to argon flow through a needle. The reaction was carried out at
105 °C for 24 h. 1,3,5-Trimethoxybenzene (8.4 mg, 0.05 mmol) was added to the reaction
mixture as internal standard. The mixture was diluted with CDCls, filtered through Celite

and subjected to NMR analysis. NMR vyield: 95%.

O._ 3¢°% Inside a N filled glovebox, an oven-dried 15 mL reaction
T
o

(0.275 mmol) and benzene (1.2 mL). The tube was sealed by a screw cap fitted with a

tube was charged with I (4.1 mg, 2.5 mol %), KO'Bu (2.1 mg,

7.5 mol %), benzyl alcohol (0.25 mmol), 4-methoxyaniline
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PTFE septa, and attached to argon flow through a needle. The reaction was carried out at
105 °C for 24 h. Nitromethane (20 pL, 373 pumol) was added to the reaction mixture as
internal standard. The mixture was diluted with CDClIs, filtered through Celite and

subjected to NMR analysis. NMR yield: 80%.

/©/O\ 3h": Inside a N2 filled glovebox, an oven-dried 15 mL

/O\QA\N reaction tube was charged with I (4.1 mg, 2.5 mol %),

0 KO'Bu (2.1 mg, 7.5 mol %), 3,5-dimethoxy benzy! alcohol
(0.25 mmol), 4methoxyaniline (0.275 mmol) and benzene (1.2 mL). The tube was sealed
by a screw cap fitted with a PTFE septa, and attached to argon flow through a needle. The
reaction was carried out at 105 °C for 24 h. Nitromethane (20 pL, 373 pumol) was added

to the reaction mixture as internal standard. The mixture was diluted with CDCls3, filtered

through Celite and subjected to NMR analysis. NMR vyield: 89%.

/©/O\ 3i8: Inside a N filled glovebox, an oven-dried 15 mL reaction

tube was charged with I (4.1 mg, 2.5 mol %), KO'Bu (2.1 mg,

o

aniline (0.275 mmol) and benzene (1.2 mL). The tube was sealed by a screw cap fitted with

7.5 mol %), 3-methyl benzyl alcohol (0.25 mmol), 4-methoxy

a PTFE septa, and attached to argon flow through a needle. The reaction was carried out at
105 °C for 24 h. Nitromethane (20 pL, 373 umol) was added to the reaction mixture as
internal standard. The mixture was diluted with CDCIs, filtered through Celite and

subjected to NMR analysis. NMR vyield: 89%.
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3j°: Inside a N filled glovebox, an oven was charged with 1 (4.1 mg,

\N 2.5 mol %), KO'Bu (2.1 mg, 7.5 mol %), benzyl alcohol (0.25 mmol),
@ 3-methyl aniline (0.275 mmol) and benzene (1.2 mL). The tube was
sealed by a screw cap fitted with a PTFE septa, and attached to argon flow through a needle.
The reaction was carried out at 105 °C for 24 h. Nitromethane (20 pL, 373 pumol) was
added to the reaction mixture as internal standard. The mixture was diluted with CDCls,

filtered through Celite and subjected to NMR analysis. NMR vyield: 80%.

3k3: Inside a N filled glovebox, an oven-dried 15 mL reaction tube

\N was charged with 1 (4.1 mg, 2.5 mol %), KO'Bu (2.1 mg, 7.5 mol
@ %), benzyl alcohol (0.25 mmol), 3,5-dimethyl aniline (0.275
mmol) and benzene (1.2 mL). The tube was sealed by a screw cap fitted with a PTFE
septa, and attached to argon flow through a needle. The reaction was carried out at 105 °C
for 24 h. Nitromethane (20 pL, 373 umol) was added to the reaction mixture as internal
standard. The mixture was diluted with CDCls, filtered through Celite and subjected to

NMR analysis. NMR vyield: 89%.

311 Inside a N; filled glovebox, an oven-dried 15 mL reaction

@N tube was charged with I (4.1 mg, 2.5 mol %), KO'Bu (2.1 mg, 7.5
F mol %), 4-fluoro benzyl alcohol (0.25 mmol), aniline (0.275
mmol) and benzene (1.2 mL). The tube was sealed by a screw cap fitted with a PTFE
septa and taken out of the box. An argon balloon was attached on the top. The reaction

was carried out at 105 °C for 24 h. 1,3,5-Trimethoxybenzene (8.4 mg, 0.05 mmol) was
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added to the reaction mixture as internal standard. The mixture was diluted with CDCls,

filtered through Celite and subjected to NMR analysis. NMR vyield: 80%.

@N

mmol) and benzene (1.2 mL). The tube was sealed by a screw cap fitted with a PTFE septa

/©/F 3m?: Inside a N filled glovebox, an oven-dried 15 mL reaction
tube was charged with I (4.1 mg, 2.5 mol %), KO'Bu (2.1 mg, 7.5

mol %), benzyl alcohol (0.25 mmol), 4-fluoro aniline (0.275

and taken out of the box. An argon balloon was attached on the top. The reaction was
carried out at 105 °C for 24 h. Nitromethane (20 puL, 373 umol) was added to the reaction
mixture as internal standard. The mixture was diluted with CDCls, filtered through Celite

and subjected to NMR analysis. NMR vyield: 94%.

3n° Inside a N; filled glovebox, an oven-dried 15 mL reaction

/©AN tube was charged with I (4.1 mg, 2.5 mol %), KO'Bu (2.1 mg,
¢ 7.5 mol %), 4-chloro benzyl alcohol (0.25 mmol), aniline (0.35
mmol) and benzene (1.2 mL). The tube was sealed by a screw cap fitted with a PTFE septa
and taken out of the box. An argon balloon was attached on the top. The reaction was
carried out at 105 °C for 24 h. 1,3,5-Trimethoxybenzene (8.4 mg, 0.05 mmol) was added
to the reaction mixture as internal standard. The mixture was diluted with CDCls, filtered

through Celite and subjected to NMR analysis. NMR yield: 62%.

Cl 30™: Inside a N filled glovebox, an ovenwas charged with 1 (4.1
LT
o

tube was sealed by a screw cap fitted with a PTFE septa, and attached to argon flow through

mg, 2.5 mol %), KO'Bu (2.1 mg, 7.5 mol %), benzyl alcohol (0.25

mmol), 4-chloro aniline (0.275 mmol) and benzene (1.2 mL). The
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a needle. The reaction was carried out at 105 °C for 24 h. 1,3,5-Trimethoxybenzene (8.4
mg, 0.05 mmol) was added to the reaction mixture as internal standard. The mixture was
diluted with CDCls, filtered through Celite and subjected to NMR analysis. NMR vyield:

82%.

/©/Cl 3p*2 Inside a N filled glovebox, an oven-dried 15 mL
N

reaction tube was charged with 1 (4.1 mg, 2.5 mol %),
KO'Bu (2.1 mg, 7.5 mol %), 4-methoxy benzyl alcohol (0.25
mmol), 4-chloro aniline (0.275 mmol) and benzene (1.2 mL). The tube was sealed by a
screw cap fitted with a PTFE septa, and attached to argon flow through a needle. The
reaction was carried out at 105 °C for 24 h. 1,3,5-Trimethoxybenzene (8.4 mg, 0.05 mmol)
was added to the reaction mixture as internal standard. The mixture was diluted with

CDCls, filtered through Celite and subjected to NMR analysis. NMR yield: 69%.

3q®: Inside a N filled glovebox, an oven-dried 15 mL reaction

@N tube was charged with 1 (4.1 mg, 2.5 mol %), KO'Bu (2.1 mg,
FsC 7.5 mol %), 4-trifluoro methyl benzyl alcohol (0.25 mmol),
aniline (0.275 mmol) and benzene (1.2 mL). The tube was sealed by a screw cap fitted with
a PTFE septa, and attached to argon flow through a needle. The reaction was carried out at
105 °C for 24 h. Nitromethane (20 pL, 373 pumol) was added to the reaction mixture as
internal standard. The mixture was diluted with CDCIs, filtered through Celite and

subjected to NMR analysis. NMR vyield: 89%.

3r!*: Inside a N; filled glovebox, an oven-dried 15 mL reaction tube

N was charged with 1 (4.1 mg, 2.5 mol %), KO'Bu (2.1 mg, 7.5 mol %),
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2-methyl benzyl alcohol (0.25 mmol), aniline (0.275 mmol) and benzene (1.2 mL). The
tube was sealed by a screw cap fitted with a PTFE septa, and attached to argon flow through
a needle. The reaction was carried out at 105 °C for 24 h. 1,3,5-Trimethoxybenzene (8.4
mg, 0.05 mmol) was added to the reaction mixture as internal standard. The mixture was
diluted with CDCls, filtered through Celite and subjected to NMR analysis. NMR vyield:

73%.

O._ 3s™: Inside a N filled glovebox, an oven-dried 15 mL reaction

\N/©/ tube was charged with 1 (4.1 mg, 2.5 mol %), KO'Bu (2.1 mg,

7.5 mol %), 2-methyl benzyl alcohol (0.25 mmol), 4-methoxy

aniline (0.275 mmol) and benzene (1.2 mL). The tube was sealed by a screw cap fitted with
a PTFE septa, and attached to argon flow through a needle. The reaction was carried out at
105 °C for 24 h. 1,3,5-Trimethoxybenzene (8.4 mg, 0.05 mmol) was added to the reaction
mixture as internal standard. The mixture was diluted with CDCls, filtered through Celite

and subjected to NMR analysis. NMR vyield: 77%.

NS

O 3t%: Inside a N2 filled glovebox, an oven-dried 15 mL reaction tube

O N was charged with 1 (4.1 mg, 2.5 mol %), KO'Bu (2.1 mg, 7.5 mol
%), 1napthalene methanol (0.25 mmol), aniline (0.275 mmol) and benzene (1.2 mL). The
tube was sealed by a screw cap fitted with a PTFE septa, and attached to argon flow through
a needle. The reaction was carried out at 105 °C for 24 h. 1,3,5-Trimethoxybenzene (8.4
mg, 0.05 mmol) was added to the reaction mixture as internal standard. The mixture was

diluted with CDClg, filtered through Celite and subjected to NMR analysis. NMR yield:

67%.
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/©/O\ 3u™®: Inside a N filled glovebox, an oven-dried 15 mL

reaction tube was charged with 1 (4.1 mg, 2.5 mol %),

o

mmol), 4-methoxy aniline (0.275 mmol) and benzene (1.2 mL). The tube was sealed by a

KO'Bu (2.1 mg, 7.5 mol %), 2-napthalene methanol (0.25

screw cap fitted with a PTFE septa, and attached to argon flow through a needle. The
reaction was carried out at 105 °C for 24 h. Nitromethane (20 pL, 373 umol) was added to
the reaction mixture as internal standard. The mixture was diluted with CDCls, filtered

through Celite and subjected to NMR analysis. NMR yield: 94%.

3vi’: Inside a N filled glovebox, an oven-dried 15 mL reaction

N
@N tube was charged with I (4.1 mg, 2.5 mol %), KO'Bu (2.1 mg,

7.5 mol %), benzyl alcohol (0.25 mmol), 2-naphthylamine (0.275 mmol) and benzene (1.2
mL). The tube was sealed by a screw cap fitted with a PTFE septa, and attached to argon
flow through a needle. The reaction was carried out at 105 °C for 24 h. Nitromethane (20
pL, 373 pumol) was added to the reaction mixture as internal standard. The mixture was
diluted with CDCls, filtered through Celite and subjected to NMR analysis. NMR vyield:

76%.

_N 3w!’: Inside a N filled glovebox, an oven-dried 15 mL reaction tube
@N@ was charged with I (4.1 mg, 2.5 mol %), KO'Bu (2.1 mg, 7.5 mol %),
benzyl alcohol (0.25 mmol), 3-amino pyridine (0.275 mmol) and

benzene (1.2 mL). The tube was sealed by a screw cap fitted with a PTFE septa, and
attached to argon flow through a needle. The reaction was carried out at 105 °C for 24 h.

Nitromethane (20 pL, 373 pumol) was added to the reaction mixture as internal standard.
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The mixture was diluted with CDCls, filtered through Celite and subjected to NMR

analysis. NMR vyield: 67%.

3x'8: Inside a N filled glovebox, an oven-dried 100 mL pressure
@N vessel was charged with | (4.1 mg, 2.5 mol %), KO'Bu (2.1 mg, 7.5
mol %), benzyl alcohol (0.25 mmol), cyclohexyl amine (0.275 mmol) and benzene
(2.2mL). The vessel was closed with a PTFE screw cap and heated at 105 °C for 48 h.
1,3,5-Trimethoxybenzene (8.4 mg, 0.05 mmol) was added to the reaction mixture as
internal standard. The mixture was diluted with CDClIs, filtered through Celite and

subjected to NMR analysis. NMR yield: 61%.

@NM 3y!®: Inside a N filled glovebox, an oven-dried 100 mL pressure
vessel was charged with | (4.1 mg, 2.5 mol %), KO'Bu (2.1 mg, 7.5

mol %), benzyl alcohol (0.25 mmol), n-hexyl amine (0.275 mmol) and benzene (1.2 mL).
The vessel was closed with a PTFE screw cap and heated at 105 °C for 48 h. Nitromethane
(20 pL, 373 pumol) was added to the reaction mixture as internal standard. The mixture was
diluted with CDCls, filtered through Celite and subjected to NMR analysis. NMR vyield:

80%.

\NM 3z%°: Inside a N2 filled glovebox, an oven-dried 100 mL pressure
wes

vessel was charged with | (4.1 mg, 2.5 mol %), KO'Bu (2.1 mg,
7.5 mol %), 4-methoxy benzyl alcohol (0.25 mmol), n-hexyl amine (0.275 mmol) and
benzene (1.2 mL). The vessel was closed with a PTFE screw cap and heated at 105 °C for

48 h. Nitromethane (20 pL, 373 umol) was added to the reaction mixture as internal
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standard. The mixture was diluted with CDCls, filtered through Celite and subjected to

NMR analysis. NMR vyield: 85%.

WNM 3aa?!: Inside a N filled glovebox, an oven-dried 100 mL pressure vessel
was charged with 1 (4.1 mg, 2.5 mol %), KO'Bu (2.1 mg, 7.5 mol %), 1-pentanol (0.25
mmol), hexyl amine (0.275 mmol) and benzene (1.2 mL). The vessel was closed with a
PTFE screw cap and heated at 105 °C for 24 h. 1,3,5-Trimethoxybenzene (8.4 mg, 0.05
mmol) was added to the reaction mixture as internal standard. The mixture was diluted

with CDClg, filtered through Celite and subjected to NMR analysis. NMR vyield: 73%.

WNM 3ab?!: Inside a N2 filled glovebox, an oven-dried 100 mL pressure vessel
was charged with I (4.1 mg, 2.5 mol %), KO'Bu (2.1 mg, 7.5 mol %), 1-octanol (0.25
mmol), n-hexyl amine (0.275 mmol) and benzene (1.2 mL). The vessel was closed with a
PTFE screw cap and heated at 105 °C for 24 h. Nitromethane (20 uL, 373 umol) was added
to the reaction mixture as internal standard. The mixture was diluted with CDCls, filtered

through Celite and subjected to NMR analysis. NMR yield: 85%.

/@\ 3aj 2% : Inside a N filled glovebox, an oven-dried 15 mL

I\{ N reaction tube was charged with 1 (8.2 mg, 2.5 mol %), KO'Bu
©) © (42 mg, 75 mol %), benzyl alcohol (0.5 mmol),
mphenylenediamine (0.275 mmol) and benzene (1.2 mL). The tube was sealed by a screw
cap fitted with a PTFE septa, and attached to argon flow through a needle. The reaction
was carried out at 105 °C for 48 h. 1,3,5Trimethoxybenzene (8.4 mg, 0.05 mmol) was

added to the reaction mixture as internal standard. The mixture was diluted with CDCls,

filtered through Celite and subjected to NMR analysis. NMR vyield: 83%.
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/@ 4b%: Inside a N filled glovebox, an oven-dried 15 mL
ﬁg reaction tube was charged with 1 (4.9 mg, 3 mol %), KO'Bu
(31 mg, 110 mol %), 4methylbenzyl alcohol (0.25 mmol),

aniline (0.275 mmol) and toluene (0.75 mL). The tube was sealed with a screw cap fitted
with a PTFE septa, taken out of the box and heated at 85 °C for 24 h. To the reaction
mixture was added 1,3,5-trimethoxy benzene (8.4 mg, 0.05 mmol) as internal standard.
The reaction mixture was then filtered through silica gel plug and rinsed with diethyl ether

(5 mL).

4c?*: Inside a N2 filled glovebox, an oven-dried 15 mL reaction tube
gﬁ was charged with | (4.9 mg, 3 mol %), KO'Bu (31 mg, 110 mol %),
benzyl alcohol (0.25 mmol), 4-methyl aniline (0.275 mmol) and toluene (0.75 mL). The
tube was sealed with a screw cap fitted with a PTFE septa, taken out of the box and heated
at 85 °C for 24 h. To the reaction mixture was added 1,3,5-trimethoxy benzene (8.4 mg,
0.05 mmol) as internal standard. The reaction mixture was then filtered through silica gel
plug and rinsed with diethyl ether (5 mL). The filtrate was concentrated under reduced
pressure and subjected to NMR analysis to identify the product and determine its yield.

NMR yield: 80%.

/©/\ 4d?: Inside a N filled glovebox, an oven-dried 15 mL reaction

@E tube was charged with 1 (4.9 mg, 3 mol %), KO'Bu (31 mg, 110

mol %), benzyl alcohol (0.25 mmol), 4-ethyl aniline (0.275 mmol) and toluene (0.75
mL). The tube was sealed with a screw cap fitted with a PTFE septa, taken out of

the box and heated at 85 °C for 24 h. To the reaction mixture was added 1,3,5-trimethoxy
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benzene (8.4 mg, 0.05 mmol) as internal standard. The reaction mixture was then filtered
through silica gel plug and rinsed with diethyl ether (5 mL). The filtrate was concentrated
under reduced pressure and subjected to NMR analysis to identify the product and

determine its yield. NMR vyield: 71%.

4e%: Inside a N, filled glovebox, an oven-dried 15 mL reaction
N tube was charged with 1 (4.9 mg, 3 mol %), KO'Bu (31 mg, 110

mol %), 4-isopropyl benzyl alcohol (0.25 mmol), aniline (0.275
mmol) and toluene (0.75 mL). The tube was sealed with a screw cap fitted with a PTFE
septa, taken out of the box and heated at 85 °C for 24 h. To the reaction mixture was added
1,3,5-trimethoxy benzene (8.4 mg, 0.05 mmol) as internal standard. The reaction mixture
was then filtered through silica gel plug and rinsed with diethyl ether (5 mL). The filtrate
was concentrated under reduced pressure and subjected to NMR analysis to identify the

product and determine its yield. NMR yield: 80%.

4f%": Inside a N filled glovebox, an oven-dried 15 mL reaction
gﬁ tube was charged with 1 (4.9 mg, 3 mol %), KO'Bu (31 mg, 110
~

© mol %), 4-methoxy benzyl alcohol (0.25 mmol), aniline (0.275

mmol) and toluene (0.75 mL). The tube was sealed with a screw cap fitted witha PTFE
septa, taken out of the box and heated at 85 °C for 24 h. To the reaction mixture was added
1,3,5-trimethoxy benzene (8.4 mg, 0.05 mmol) as internal standard. The reaction mixture
was then filtered through silica gel plug and rinsed with diethyl ether (5 mL). The filtrate
was concentrated under reduced pressure and subjected to NMR analysis to identify the

product and determine its yield. NMR yield: 97%.
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O._ 4g?: Inside a N2 filled glovebox, an oven-dried 15 mL reaction
gﬁg tube was charged with 1 (4.9 mg, 3 mol %), KO'Bu (31 mg, 110
mol %), benzyl alcohol (0.25 mmol), 4-methoxy aniline (0.275

mmol) and toluene (0.75 mL). The tube was sealed with a screw cap fitted with a PTFE
septa, taken out of the box and heated at 85 °C for 24 h. To the reaction mixture was added
1,3,5-trimethoxy benzene (8.4 mg, 0.05 mmol) as internal standard. The reaction mixture
was then filtered through silica gel plug and rinsed with diethyl ether (5 mL). The filtrate
was concentrated under reduced pressure and subjected to NMR analysis to identify the

product and determine its yield. NMR yield: 91%.

O._ 4h®: Inside a N filled glovebox, an oven-dried 15 mL
/O\Qﬁlﬁl/@/ reaction tube was charged with 1 (4.9 mg, 3 mol %), KO'Bu
(31 mg, 110 mol %), 3,5-dimethoxy benzyl alcohol (0.25

mmol), 4-methoxy aniline (0.275 mmol) and toluene (0.75 mL). The tube was sealed with
a screw cap fitted with a PTFE septa, taken out of the box and heated at 85 °C for 24 h. To
the reaction mixture was added 1,3,5-trimethoxy benzene (8.4 mg, 0.05 mmol) as internal
standard. The reaction mixture was then filtered through silica gel plug and rinsed with

diethyl ether (5 mL). The filtrate was concentrated under reduced pressure and subjected

to NMR analysis to identify the product and determine its yield. NMR yield: 91%.

/©/O\ 4i%®: Inside a N filled glovebox, an oven-dried 15 mL reaction

\gg tube was charged with 1 (4.9 mg, 3 mol %), KO'Bu (31 mg,

110 mol %), 3-methyl benzyl alcohol (0.3 mmol), 4-methoxy

aniline (0.25 mmol) and toluene (0.75 mL). The tube was sealed with a screw cap fitted
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with a PTFE septa, taken out of the box and heated at 85 °C for 24 h. To the reaction
mixture was added 1,3,5-trimethoxy benzene (8.4 mg, 0.05 mmol) as internal standard.
The reaction mixture was then filtered through silica gel plug and rinsed with diethyl ether
(5 mL). The filtrate was concentrated under reduced pressure and subjected to NMR

analysis to identify the product and determine its yield. NMR yield: 92%.

4% Inside a N filled glovebox, an oven-dried 15 mL reaction tube

N was charged with I (4.9 mg, 3 mol %), KO'Bu (31 mg, 110 mol %),
gH benzyl alcohol (0.25 mmol), 3-methyl aniline (0.275 mmol) and
toluene (0.75 mL). The tube was sealed with a screw cap fitted with a PTFE septa, taken
out of the box and heated at 85 °C for 24 h. To the reaction mixture was added 1,3,5-
trimethoxy benzene (8.4 mg, 0.05 mmol) as internal standard. The reaction mixture was
then filtered through silica gel plug and rinsed with diethyl ether (5 mL). The filtrate was
concentrated under reduced pressure and subjected to NMR analysis to identify the product

and determine its yield. NMR yield: 99%.

4k32: Inside a N filled glovebox, an oven-dried 15 mL reaction

N tube was charged with 1 (4.9 mg, 3 mol %), KO'Bu (31 mg, 110
gH mol %), benzyl alcohol (0.25 mmol), 3,5-dimethyl aniline (0.275
mmol) and toluene (0.75 mL). The tube was sealed with a screw cap fitted with a PTFE
septa, taken out of the box and heated at 85 °C for 24 h. To the reaction mixture was added
1,3,5-trimethoxy benzene (8.4 mg, 0.05 mmol) as internal standard. The reaction mixture

was then filtered through silica gel plug and rinsed with diethyl ether (5 mL). The filtrate
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was concentrated under reduced pressure and subjected to NMR analysis to identify the

product and determine its yield. NMR yield: 68%.

41%: Inside a N filled glovebox, an oven-dried 15 mL reaction

gg tube was charged with 1 (4.9 mg, 3 mol %), KO'Bu (31 mg, 110
F mol %), 4fluorobenzyl alcohol (0.25 mmol), aniline (0.275 mmol)
and toluene (0.75 mL) The tube was sealed with a screw cap fitted with a PTFE septa,
taken out of the box and heated at 85 °C for 24 h. To the reaction mixture was added 1,3,5-
trimethoxy benzene (8.4 mg, 0.05 mmol) as internal standard. The reaction mixture was
then filtered through silica gel plug and rinsed with diethyl ether (5 mL). The filtrate was
concentrated under reduced pressure and subjected to NMR analysis to identify the product

and determine its yield. NMR yield: 77%.

F 4m3: Inside a N filled glovebox, an oven-dried 15 mL reaction
@HO tube was charged with 1 (4.9 mg, 3 mol %), KO'Bu (31 mg, 110
mol %), benzyl alcohol (0.25 mmol), 4-fluoroaniline (0.275 mmol)

and toluene (0.75 mL). The tube was sealed with a screw cap fitted with a PTFE septa,
taken out of the box and heated at 85 °C for 24 h. To the reaction mixture was added 1,3,5-
trimethoxy benzene (8.4 mg, 0.05 mmol) as internal standard. The reaction mixture was
then filtered through silica gel plug and rinsed with diethyl ether (5 mL). The filtrate was
concentrated under reduced pressure and subjected to NMR analysis to identify the product

and determine its yield. NMR vyield: 76%.

4n*: Inside a N filled glovebox, an oven-dried 15 mL reaction

gﬁ tube was charged with 1 (4.9 mg, 3 mol %), KO'Bu (31 mg, 110
Cl

77



mol %), 4chlorobenzyl alcohol (0.25 mmol), aniline (0.275 mmol) and toluene (0.75 mL).
The tube was sealed with a screw cap fitted with a PTFE septa, taken out of the box and
heated at 85 °C for 24 h. To the reaction mixture was added 1,3,5-trimethoxy benzene (8.4
mg, 0.05 mmol) as internal standard. The reaction mixture was then filtered through silica
gel plug and rinsed with diethyl ether (5 mL). The filtrate was concentrated under reduced
pressure and subjected to NMR analysis to identify the product and determine its yield.

NMR yield: 72%.

Cl 40%: Inside a N2 filled glovebox, an oven-dried 15 mL reaction
@HO tube was charged with 1 (4.9 mg, 3 mol %), KO'Bu (31 mg, 110
mol %), benzyl alcohol (0.25 mmol), 4-chloroaniline (0.35 mmol)

and toluene (0.75 mL). The tube was sealed with a screw cap fitted with a PTFE septa,
taken out of the box and heated at 85 °C for 24 h. To the reaction mixture was added 1,3,5-
trimethoxy benzene (8.4 mg, 0.05 mmol) as internal standard. The reaction mixture was
then filtered through silica gel plug and rinsed with diethyl ether (5 mL). The filtrate was
concentrated under reduced pressure and subjected to NMR analysis to identify the product

and determine its yield. NMR yield: 84%.

Cl 4p'!: Inside a N filled glovebox, an oven-dried 15 mL

ggg reaction tube was charged with 1 (4.9 mg, 3 mol %), KO'Bu
"o (31 mg, 110 mol %), 4-methoxybenzyl alcohol (0.25 mmol),
4-chloroaniline (0.35 mmol) and toluene (0.75 mL). The tube was sealed with a screw cap
fitted with a PTFE septa, taken out of the box and heated at 85 °C for 24 h. To the reaction

mixture was added 1,3,5- trimethoxy benzene (8.4 mg, 0.05 mmol) as internal standard.
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The reaction mixture was then filtered through silica gel plug and rinsed with diethyl ether
(5 mL). The filtrate was concentrated under reduced pressure and subjected to NMR

analysis to identify the product and determine its yield. NMR yield: 84%.

4r3: Inside a N filled glovebox, an oven-dried 15 mL reaction tube
E was charged with I (4.9 mg, 3 mol %), KO'Bu (31 mg, 110 mol %),
2methylbenzyl alcohol (0.25 mmol), aniline (0.275 mmol) and toluene (0.75 mL). The tube
was sealed with a screw cap fitted with a PTFE septa, taken out of the box and heated at
85 °C for 24 h. To the reaction mixture was added 1,3,5-trimethoxy benzene (8.4 mg, 0.05
mmol) as internal standard. The reaction mixture was then filtered through silica gel plug
and rinsed with diethyl ether (5 mL). The filtrate was concentrated under reduced pressure

and subjected to NMR analysis to identify the product and determine its yield. NMR yield:

93%.

O 4s*": Inside a N filled glovebox, an oven-dried 15 mL reaction

H/©/ tube was charged with 1 (4.9 mg, 3 mol %), KO'Bu (31 mg, 110

mol %), 2-methylbenzyl alcohol (0.3 mmol), 4-methoxyaniline

(0.25 mmol) and toluene (0.75 mL). The tube was sealed with a screw cap fitted with a
PTFE septa, taken out of the box and heated at 85 °C for 24 h. To the reaction mixture was
added 1,3,5-trimethoxy benzene (8.4 mg, 0.05 mmol) as internal standard. The reaction
mixture was then filtered through silica gel plug and rinsed with diethyl ether (5 mL). The
filtrate was concentrated under reduced pressure and subjected to NMR analysis to identify

the product and determine its yield. NMR yield: 99%.
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O 4t%: Inside a N filled glovebox, an oven-dried 15 mL reaction tube

O E was charged with I (4.9 mg, 3 mol %), KO'Bu (31 mg, 110 mol %),
1naphthalenemethanol (0.25 mmol), aniline (0.275 mmol) and toluene (0.75 mL). The
tube was sealed with a screw cap fitted with a PTFE septa, taken out of the box and heated
at 85 °C for 24 h. To the reaction mixture was added 1,3,5-trimethoxy benzene (8.4 mg,
0.05 mmol) as internal standard. The reaction mixture was then filtered through silica gel
plug and rinsed with diethyl ether (5 mL). The filtrate was concentrated under reduced
pressure and subjected to NMR analysis to identify the product and determine its yield.

NMR yield: 90%.

O._ 4u®: Inside a N2 filled glovebox, an oven-dried 15 mL
I}\II/©/ reaction tube was charged with 1 (4.9 mg, 3 mol %), KO'Bu
(31 mg, 110 mol %), 2-naphthalenemethanol (0.3 mmol),

4-methoxyaniline (0.25 mmol) and toluene (0.75 mL). The tube was sealed with a screw
cap fitted with a PTFE septa, taken out of the box and heated at 85 °C for 24 h. To the
reaction mixture was added 1,3,5-trimethoxy benzene (8.4 mg, 0.05 mmol) as internal
standard. The reaction mixture was then filtered through silica gel plug and rinsed with
diethyl ether (5 mL). The filtrate was concentrated under reduced pressure and subjected

to NMR analysis to identify the product and determine its yield. NMR yield: 72%.

4v'': Inside a N filled glovebox, an oven-dried 15 mL reaction

@ﬁ tube was charged with 1 (4.9 mg, 3 mol %), KO'Bu (31 mg, 110

mol %), benzyl alcohol (0.25 mmol), 2-naphthylamine (0.275 mmol) and toluene (0.75

mL). The tube was sealed with a screw cap fitted with a PTFE septa, taken out of the box
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and heated at 85 °C for 24 h. To the reaction mixture was added 1,3,5-trimethoxy benzene
(8.4 mg, 0.05 mmol) as internal standard. The reaction mixture was then filtered through
silica gel plug and rinsed with diethyl ether (5 mL). The filtrate was concentrated under
reduced pressure and subjected to NMR analysis to identify the product and determine its

yield. NMR yield: 72%.

_N 4w*: Inside a N; filled glovebox, an oven-dried 15 mL reaction tube
@N@ was charged with 1 (4.9 mg, 3 mol %), KO'Bu (31 mg, 110 mol %),
benzyl alcohol (0.25 mmol), 3-aminopyridine (0.275 mmol) and

toluene (0.75 mL The tube was sealed with a screw cap fitted with a PTFE septa, taken out
of the box and heated at 85 °C for 24 h. To the reaction mixture was added 1,3,5-trimethoxy
benzene (8.4 mg, 0.05 mmol) as internal standard. The reaction mixture was then filtered
through silica gel plug and rinsed with diethyl ether (5 mL). The filtrate was concentrated
under reduced pressure and subjected to NMR analysis to identify the product and

determine its yield. NMR vyield: 78%.

4ac®: Inside a N filled glovebox, an oven-dried 15 mL reaction tube
@E was charged with I (4.9 mg, 3 mol %), KO'Bu (31 mg, 110 mol %),
cyclohexyl methanol (0.25 mmol), aniline (0.275 mmol) and toluene (0.75 mL). The tube
was sealed with a screw cap fitted with a PTFE septa, taken out of the box and heated at
85 °C for 24 h. To the reaction mixture was added 1,3,5- trimethoxy benzene (8.4 mg, 0.05
mmol) as internal standard. The reaction mixture was then filtered through silica gel plug

and rinsed with diethyl ether (5 mL). The filtrate was concentrated under reduced pressure
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and subjected to NMR analysis to identify the product and determine its yield. NMR yield:

99%.

4ad?*: Inside a N filled glovebox, an oven-dried 15 mL reaction tube
W%T was charged with 1 (4.9 mg, 3 mol %), KO'Bu (31 mg, 110 mol %), 1-
docosanol (0.25 mmol), aniline (0.275 mmol) and toluene (0.75 mL). The tube was sealed
with a screw cap fitted with a PTFE septa, taken out of the box and heated at 85 °C for 24
h. To the reaction mixture was added 1,3,5- trimethoxy benzene (8.4 mg, 0.05 mmol) as
internal standard. The reaction mixture was then filtered through silica gel plug and rinsed
with diethyl ether (5 mL). The filtrate was concentrated under reduced pressure and
subjected to NMR analysis to identify the product and determine its yield. NMR vyield:

90%.

4ae*!: Inside a N filled glovebox, an oven-dried 15 mL reaction tube
M/IEE was charged with 1 (4.9 mg, 3 mol %), KO'Bu (31 mg, 110 mol %), 1-
dodecanol (0.25 mmol), aniline (0.275 mmol) and toluene (0.75 mL). The tube was sealed
with a screw cap fitted with a PTFE septa, taken out of the box and heated at 85 °C for 24
h. To the reaction mixture was added 1,3,5- trimethoxy benzene (8.4 mg, 0.05 mmol) as
internal standard. The reaction mixture was then filtered through silica gel plug and rinsed
with diethyl ether (5 mL). The filtrate was concentrated under reduced pressure and
subjected to NMR analysis to identify the product and determine its yield. NMR Yyield:

99%.

4af*?: Inside a N filled glovebox, an oven-dried 15 mL reaction tube

ME\E was charged with 1 (4.9 mg, 3 mol %), KO'Bu (31 mg, 110 mol
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%),decanol (0.25 mmol), aniline (0.275 mmol) and toluene (0.75 mL). The tube was sealed
with a screw cap fitted with a PTFE septa, taken out of the box and heated at 85 °C for 24
h. To the reaction mixture was added 1,3,5- trimethoxy benzene (8.4 mg, 0.05 mmol) as
internal standard. The reaction mixture was then filtered through silica gel plug and rinsed
with diethyl ether (5 mL). The filtrate was concentrated under reduced pressure and
subjected to NMR analysis to identify the product and determine its yield. NMR yield:

98%.

4ag™: Inside a N filled glovebox, an oven-dried 15 mL reaction tube
Mg\g was charged with 1 (4.9 mg, 3 mol %), KO'Bu (31 mg, 110 mol %), 1-
octanol (0.25 mmol), aniline (0.275 mmol) and toluene (0.75 mL). The tube was sealed
with a screw cap fitted with a PTFE septa, taken out of the box and heated at 85 °C for 24
h. To the reaction mixture was added 1,3,5- trimethoxy benzene (8.4 mg, 0.05 mmol) as
internal standard. The reaction mixture was then filtered through silica gel plug and rinsed
with diethyl ether (5 mL). The filtrate was concentrated under reduced pressure and
subjected to NMR analysis to identify the product and determine its yield. NMR yield:

93%.

4ah*: Inside a N filled glovebox, an oven-dried 15 mL reaction tube
M?E was charged with 1 (4.9 mg, 3 mol %), KO'Bu (31 mg, 110 mol %), 1-
hexanol (0.25 mmol), aniline (0.275 mmol) and toluene (0.75 mL). The tube was sealed
with a screw cap fitted with a PTFE septa, taken out of the box and heated at 85 °C for 24
h. To the reaction mixture was added 1,3,5- trimethoxy benzene (8.4 mg, 0.05 mmol) as

internal standard. The reaction mixture was then filtered through silica gel plug and rinsed
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with diethyl ether (5 mL). The filtrate was concentrated under reduced pressure and
subjected to NMR analysis to identify the product and determine its yield. NMR yield:

99%.

4ai®: Inside a N filled glovebox, an oven-dried 15 mL reaction tube
M?E was charged with 1 (4.9 mg, 3 mol %), KO'Bu (31 mg, 110 mol %), 1-
pentanol (0.25 mmol), aniline (0.275 mmol) and toluene (0.75 mL). The tube was sealed
with a screw cap fitted with a PTFE septa, taken out of the box and heated at 85 °C for 24
h. To the reaction mixture was added 1,3,5- trimethoxy benzene (8.4 mg, 0.05 mmol) as
internal standard. The reaction mixture was then filtered through silica gel plug and rinsed
with diethyl ether (5 mL). The filtrate was concentrated under reduced pressure and
subjected to NMR analysis to identify the product and determine its yield. NMR yield:

95%.

/@\ 4aj?®: Inside a N filled glovebox, an oven-dried 15 mL
HN NH

reaction tube was charged with I (9.8 mg, 3 mol %), KO'Bu
©) K@ (62 mg, 110 mol %), benzyl alcohol (0.5 mmol), m-
phenylenediamine (0.275 mmol) and toluene (1.2 mL). The tube was sealed with a screw
cap fitted with a PTFE septa, taken out of the box and heated at 85 °C for 48 h. To the
reaction mixture was added 1,3,5-trimethoxy benzene (8.4 mg, 0.05 mmol) as internal
standard. The reaction mixture was then filtered through silica gel plug and rinsed with
diethyl ether (5 mL). The filtrate was concentrated under reduced pressure and subjected

to NMR analysis to identify the product and determine its yield. NMR yield: 90%.
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2.17 Supplementary figures

500 —

@ 400

[

c |

S 3004

S i

% 200 -

ﬂc_), . H2/1.2 min

€ 100
e e e P —
0.0 0.5 1.0 15 20 25 3.0 35 4.0

Retention Time / min

Figure 2.1 H detection by GC chromatography.
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aniline coupling to N-benzylaniline. A cobalt hydride species was observed at— 15.99 ppm.
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CHAPTER IllI

a-Alkylation of Nitriles with Primary Alcohols by a Well-Defined

Molecular Catalyst

3.1 Introduction

With a unique -CN functional group, nitriles are a class of organic compounds that have
found ubiquitous applications in chemical and pharmaceutical industries.!* a-Alkylated
nitriles are key building blocks for the synthesis of various compounds such as carboxylic
acids, amides, amines, ketones, etc.)®* Homogeneous transition-metal-mediated
construction of the carbon—carbon bond belongs to one of the most imperative synthetic
strategies for the products of added value.* Traditional alkylation requires toxic alkyl
halides and stoichiometric amounts of bases, generating the copious amount of waste.>®
An attractive alternative is to utilize alcohol as the alkylating agent via a borrowing
hydrogen (BH) process.’”*® In a typical BH process to a-alkylated nitriles, a primary alcohol
is first dehydrogenated to an aldehyde with the catalyst “borrowing” a hydride and a proton.
The aldehyde undergoes a nucleophilic attack by the nitrile in the presence of a base to
generate an a,B-unsaturated nitrile, which is subsequently hydrogenated to the a-alkylated
nitrile product by the catalyst “returning” the hydride and the proton. The BH strategy is
more sustainable, environmentally friendly, and atom-efficient, with water as the only

byproduct.’°

In this regard, catalysts based on precious transition metals, such as Rh,22 |r,2223 Qg 24

Ru,® and Pd,?® have significantly promoted this field (Scheme 3.1). With increasing
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concerns on sustainability and economy, base transition-metal surrogates like Fe, Co, Mn,

Ni, and Cu are becoming more appealing.?’ It is just recently that such base transition-

metal-catalyzed transformations are revealed.?®34

CO(BF4)2. 6H20
Me
PP,/K,COs;

CN + Me—OH
©/\ 100 °C, 24 h CH

Liu et al., Org. Lett. 2017, 19, 5228-5231

Y
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Scheme 3.1 Synthesis of a-alkylated nitriles by different groups
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A transition-metal-free method was recently reported using 80 mol % KO'Bu under aerobic

conditions (Scheme 3.2).%

KO'Bu (80 mol%) C O
©/\CN - ©/\OH toluene, 120 °C, air o ‘

time

Kundu et al. Chem. Asian J. 2019, 14, 2215-2219

Scheme 3.2 Synthesis of a-alkylated nitriles by a KO'Bu under aerobic condition

As part of the study on methylation of C(sp®)—H/C(sp?)—H bonds, Liu and co-workers
reported their seminal work on the nitrile alkylation by a cobalt salt Co(BF4)2:6H20,
P(CH2CH2PPh)s (PP3) ligand, and a stoichiometric amount of base, which is the only
known cobalt example in literature.?® However, the reported substrates were very limited,
and methanol was the only alcohol used.?® In addition, no mechanistic study on the a-
alkylation of nitrile was disclosed.?® Herein, we present a systematic study on the selective
nitrile alkylation with primary alcohols mediated by a well-defined molecular cobalt

catalyst A (Scheme 3.3).
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Scheme 3.3 Ding’s cobalt catalyst for the synthesis of a-alkylated nitriles

We have recently developed a new tetradentate mixed P/N donor ligand "PPPN"py™Me 36
The air-stable cobalt complex A is an efficient precatalyst for dehydrogenation of
secondary alcohols to ketones,*® dehydrogenative self-coupling of primary alcohols to
esters,®” and B-alkylation of secondary alcohols with primary alcohols to ketones.®® We
envision that the A-based catalytic system has potential for the selective nitrile alkylation

with primary alcohols to a-alkylated nitriles.

3.2 Results and discussion

We initiated the work to explore the reaction of the model substrates benzyl alcohol (0.5
mmol) and phenylacetonitrile (0.25 mmol) under various conditions. A temperature of 140
°C was required to obtain an optimized yield (Table 3.1, entries 1-3). After investigating
various bases for the reaction, KOH turned out to be the most suitable base (Table 3.1,

entries 3—6). It was shown that A, base, and KHBEtz were essential for this reaction (Table
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3.1, entries 7-9). The KHBEt3is necessary for the reaction because it could regenerate the
inactive cobalt catalyst by providing hydrides to form an activated cobalt catalyst, i.e.,
cobalt hydride (Table 3.1, entries 7°). Twenty-mole percent KOH was needed to optimize
the yield (Table 3.1, entries 5 and 10). Interestingly, doubling A and KHBEtz loading gave
a comparable yield (Table 3.1, entry 11). Solvents were also screened, and toluene was
found to be the most suitable one (Table 3.1, entries 5, 12—14). Notably, a good 83% vyield
was observed in only 6 h, demonstrating the great reactivity of the catalytic system (Table
3.1, entry 16). Thus, the optimized conditions were obtained (Table 3.1 entry 5). Mercury

test suggested a homogeneous catalytic process (Table 3.1, entry 17).

Table 3.1 Optimization of the Reaction Conditions?

A (1.3 mol%)
KHBEt; (3.5 mol%) ‘ ‘
©/\OH - ©/\CN Base (20 mol%) - ‘ * 20
solvent, temperature, 24 h CN
1a 2a 3a
entry? Cat. base solvent temp Yield
(°C) (%)°

1 A KO'Bu toluene 105 15

2 A KO'Bu toluene 125 65

3 A KO'Bu toluene 140 68

4 A NaO'Bu toluene 140 74

5 A KOH toluene 140 88 (85)
6 A K2CO3 toluene 140 13

7° A KOH toluene 140 65

8 A toluene 140 16

9 KOH toluene 140 11
10¢ A KOH toluene 140 68

11 A KOH toluene 140 85

12 A KOH benzene 140 74
13 A KOH THF 140 66

14 A KOH t-AmOH 140 50
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15 A KOH toluene 140 82
169 A KOH toluene 140 83
17" A KOH toluene 140 83

#Reaction conditions: A (1.3 mol %), KHBEt3 (3.5 mol %), base (20 mol%), 1a (0.5
mmol), 2a (0.25 mmol), and solvent (1.25 mL) were heated in a sealed 15 mL reaction tube
for 24 h. ®Yields were determined by *H NMR analysis of the crude reaction mixture with
1,3,5-trimethoxybenzene as an internal standard. Isolated yield is in parenthesis. “Reaction
was carried out in the absence of KHBEts “KOH (10 mol%) was used. A (2.6 mol%) and
KHBEt3 (7 mol%) were used. "1a (2.0 mmol) and 2a (1.0 mmol) were used. 96 h. "Mercury

(125 mg) was added to the reaction.

With the optimized conditions in hand, we then probed the scope of the reaction by
examining a wide range of primary alcohols and nitriles. First, we explored the scope of
primary alcohols. Aromatic primary alcohols bearing electron-donating groups such as
—OMe, —'Pr, and —Me at the para position afforded the desired nitriles in good 70-80%
yields (Table 3.2, entries 3b, 3c, and 3g). Aromatic primary alcohols with electron-
withdrawing groups like —ClI and —CFs at the para position also transformed smoothly
(Table 3.2, entries 3d and 3w). 2-Methyl benzyl alcohol showed a diminished activity in a
57% vyield probably due to the steric hindrance (Table 3.2, entry 3r). Notably, 2-naphthyl
methanol proceeds successfully in a very good 88% yield (Table 3.2, entry 3v). Heteroaryl
alcohols, such as piperonyl alcohol and 2-furyl methanol, furnished the corresponding
nitriles in moderate yields (Table 3.2, entries 3e, 3f, 3p, and 3t). Moreover, aliphatic

primary alcohols could also be applied to give the desired nitrile products in good to
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excellent yields (80—95%) using 2.6 mol % A and 15 mol % KO'Bu (Table 3.2, entries
3x—3ae). It is worth noting that the alkene functional group is intact (Table 3.2, entries 3x).
A methanol/4-methoxybenzonitrile ratio of 10 was required to reach an 80% yield of 2-(4-
methoxyphenyl)propanenitrile (Table 3.2, entry 3ae). Next, we investigated the scope of
nitriles. Similarly, a variety of aromatic nitriles with electron donating or -withdrawing
groups at different positions could be utilized for the alkylation reactions with 50-90%
yields (Table 3.2, entries 3g—3ae). Importantly, nitriles bearing pyridyl and naphthyl ring
delivered the corresponding products in 60 and 71% yields, respectively (Table 3.2, entries
3n and 30). Unfortunately, benzenepropanenitrile and aliphatic nitriles did not work under

these conditions (Table 3.2, entry 3af).

Table 3.2 a-Alkylation of Nitriles with Primary Alcohols®®¢

A (1.3 mol%)
KHBE(; (3.5 mol%) . ~_R?
KOH (20 mol%) o B \(
toluene, 140 °, 24 h

RI™OH +  R2CN
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O CN o O CN ‘ CN

3a, 85% 3b, 75% 3¢, 70% 3d, 74%
¢ ™ >
<0 \ o
0 CN NC O CN O CN
3e, 62% 3f, 56% 3g, 90% 3h, 78%
r r g
3i, 75% 3j, 70% 3k, 55% 31, 55%
& 0
g Q! 0, S
O CN CN O CN <o O CN
3m, 70% 3n, 60% 30, 71% 3p, 60%
@ ¢ ° 0
o oo
O CN O CN CN NC
3q, 80% 3r, 57% 3s,79% 3t, 50%
0
s J o™ ~ oA ~
~
NN
) CN F,C CN
~N
3u, 92% 3v, 88% 3w, 2% 3x, 82%

3aa,n=28,91%" 32ae,n =0, 80%"°
07 3abn=7,90%" 33af, 0%

#Reaction conditions: A (1.3 mol%), KHBEtz (3.5 mol%), KOH (20 mol%), alcohol (0.5

CN 3y,n=11, 95%" 30ac, n = 3, 88%"
3z,n =10, 85%" 31ad, n = 1, 79%" CN
n ~
0
mmol), nitrile (0.25 mmol), and toluene (1.25 mL), were heated in a 15 mL reaction tube
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for 24 h. Isolated yields are given. "Reaction was carried out using A (2.6 mol%) and

KO'Bu (15 mol%). °Reaction was carried out using MeOH (2.5 mmol) for 60 h.

Next, we performed a mechanistic study to understand the nitrile alkylation reaction. We
first explored the reactivity of A derivatives B and C using the model substrates® (Figure
1). B is air-sensitive, but C is air-stable. B, with a dearomatized pyridine arm, demonstrated
a slightly diminished activity compared to A (73% yield), indicating B is also a precatalyst.
C that bears a N—Me linker on the pyridine arm efficiently mediated the reaction leading
to an 82% vyield, suggesting metal—-ligand cooperativity (MLC) that might originate from

the N—H linker on A did not play an essential role.

We have shown that A can mediate the self-coupling of primary alcohols to esters.®
Mechanistic study suggests a pathway that involves dehydrogenation of primary alcohols
to aldehydes followed by the Tishchenko reaction to esters. We also reported
dehydrogenation of secondary alcohols to ketones catalyzed by A.*¢ Thus, aldehyde is
likely an intermediate in the a-alkylation of nitriles with primary alcohols. The
condensation of benzaldehyde and phenylacetonitrile under the optimal of 88% was also
obtained (Scheme 2B). These results suggest that o,B-unsaturated nitrile is a possible
intermediate,® and its formation can be mediated by base alone. Interestingly, the transfer
hydrogenation of 2,3-diphenylacrylonitrile with benzyl alcohol (2 equiv) proceeded to

completion by 20 mol % KOH in the standard conditions, with or without A/KHBEts. This
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unexpected result supports a base mediated Meerwein-Ponndorf-Verley (MPV)

hydrogenation pathway.>%44
® o
Me Cl Me (ljl OTf
—P'Pr —P'Pr
ZIN—$Opipr,’ ZIN—Copipr,?
A P N sl P AN
N X
Me
B C

Figure 3.1. A derivatives B and C examined.

Further investigations showed that the transfer hydrogenation can be finished in an hour
by 20 mol % KOH. The deuterium labeling experiment utilizing benzyl alcohol-a,a-dz in
the 2,3-diphenylacrylonitrile transfer hydrogenation resulted in a ku/kp ratio of 2.16
(Scheme 3.4), indicating that the cleavage of the a-C—H bond of benzyl alcohol is a slow
step. The H/D ratio is close to unit, which suggests that the deuterium at the benzyl position
transfers to the B position of the nitrile group in the MPV process. However, a H/D ratio
close to 1:4 was obtained in the a-alkylation of phenylacetonitrile with benzyl alcohol-a,a-
d2 (Scheme 3.4). The incorporation of hydrogen infers that A-mediated dehydrogenation
of primary alcohol may be reversible. A kn/kp ratio of 1.88 was acquired, which is in line
with the result from the 2,3diphenylacrylonitrile transfer hydrogenation. Different bases

were also examined. Employing only 3 mol % KO'Bu with or without A both gave a full

183



conversion of 2,3-diphenylacrylonitrile in 24 h (Scheme 3.4), suggesting that A might not

play a crucial role in the o,-unsaturated nitrile hydrogenation step.
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A (1.3 mol%)

KHBE(; (3.5 mol%) O
©/\ ©/\CN KOH (20 mol%) I “ +H,0

Toluene, 140 °C, 24 h CN
4a 2a 5a, yield = 86%
B
) X0 CN KOH (20 mol%) ‘
+ ? X + H,0
Toluene, 140 °C, 24 h CN
4a 2a 5a, yield = 88%

A (1.3 mol%)

KHBEL; (3.5 mol%)
C) O KOH (20 mol%)
O X N ©/\ OH » 4 4a
CN Toluene, 140 °C, 24 h O eN

5a Ia 3a, yield = 99%
O KOH (20 mol%) ‘
! ©/\OH > + 4a
Toluene, 140 °C, 24 h O CN
5a la 3a, yield = 99%
4
. b 53// 7
Cl H/D
KOH (20 mol% O
N + ©)<OH ( 0)> + 4a
CN Toluene, 140 °C, 15 min O eN
5a la-d 3a-d, yield = 38% | Ky/Kp = 2.16

A (1.3 mol%)
KHBEL; (3.5 mol%)

D
F) D H/D
0
on . ©/\CN KOH (20 mol%) X
Toluene, 140 °C, 24 h O
la-d 2a

53/47

CN
3a-d, yield = 44% |Ku/Kp =188

KOtBu (3 mol%)

with or without
A (1.3 mol%) O
> + 4a
0,
Toluene, 140 °C, 24 h O CN

5a 1a 2c¢, yield = 99%

Scheme 3.4 Control experiments for the synthesis of a-alkylated nitriles
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MPYV Pathway

Fig. 3.2 Proposed reaction mechanism

Based on the mechanistic study, a plausible catalytic cycle is proposed as depicted in
Scheme 3.2. Initial A-mediated primary alcohol dehydrogenation leads to aldehyde, which
undergoes a nucleophilic attack by the nitrile substrate affording a,p unsaturated nitrile in
the presence of base. Finally, the o, unsaturated nitrile is reduced to the nitrile product via
a base mediated MPV pathway. To the best of our knowledge, such a mechanism has not
yet been revealed for the a-alkylation of nitriles. A more in-depth mechanistic investigation

is ongoing in our laboratory.
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3.3 Conclusion

In summary, we disclosed a well-defined molecular cobalt catalyst for the selective nitrile
alkylation with primary alcohols to a-alkylated nitriles. Notably, this method is atom-
efficient and environmentally friendly with water as the only byproduct. We expect this
work will contribute to the development of base transition-metal catalysts in green

synthesis.
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3.4 Experimental Section

3.4.1 General Methods.

Unless otherwise is stated, all reactions were set up in an MBraun glovebox under an
atmosphere of N2. Anhydrous solvents were deoxygenated by sparging with Nz and dried
by passing through activated alumina columns of a Pure Solv solvent purification system.
CDClswas purchased from Cambridge Isotope Lab and dried over molecular sieves (4 A).
Cobalt complexes (A—C) were prepared according to our published procedures.%
Chemicals used in this paper were purchased from Sigma-Aldrich, Oakwood Chemical, or
Fisher Scientific and used as received. NMR spectra were recorded on a JEOL Unity 500
or 300 MHz spectrometer. *H NMR spectra were referenced to tetramethy! silane (0.00
ppm) using CDClsas a solvent. 3C NMR were referenced to solvent carbons at 77.0 ppm
for CDCls. F NMR spectra were referenced to fluorobenzene at —113.15 ppm. HRMS
were acquired from the Mass Spectrometry and Proteomics Facility at University of Notre

Dame.

3.5 General Procedure for the a-Alkylation of Nitriles with Aryl Primary Alcohols

Using A.

Inside a Na-filled glovebox, a mixture of A (1.3 mol %), KHBEt3 (3.5 mol %), KOH (20
mol %), nitrile (0.25 mmol), primary alcohol (0.5 mmol), and toluene (1.25 mL) was
loaded into a 15 mL reaction vessel. The reaction vessel was sealed by a screw cap and
brought out of the glovebox. The reaction tube was placed in a preheated oil bath at 140

°C for 24 h. After the reaction was finished and cooled down, the reaction mixture was
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filtered through a silica gel plug and the collected filtrate was concentrated by a rotavap.
The obtained residue was purified by a silica gel column using ethyl acetate/hexane (1:20,

v/v) as an eluent, giving the pure alkylated nitrile product.

3.6 General Procedure for the a-Alkylation of Nitriles with Aliphatic Primary

Alcohols Using A.

Inside a N-filled glovebox, a mixture of A (2.6 mol %), KO'Bu (15 mol %), nitrile (0.25
mmol), primary alcohol (0.5 mmol), and toluene (1.25 mL) was loaded into a 15 mL
reaction vessel. The reaction vessel was sealed by a screw cap and brought out of the
glovebox. The reaction tube was placed in a preheated oil bath at 140 °C for 24 h. After
the reaction was finished and cooled down, the reaction mixture was filtered through a
silica gel plug and the collected filtrate was concentrated by a rotavap. The obtained residue
was purified by a silica gel column using ethyl acetate/hexane (1:20, v/v) as an eluent,

giving the pure alkylated nitrile product.

3.7 Procedure for the a-Alkylation of 4-Methoxybenzonitrile with Methanol Using A.

Inside a No-filled glovebox, a mixture of A (2.6 mol %), KO'Bu (15 mol %), 4-
methoxybenzonitrile (0.25 mmol), methanol (2.5 mmol), and toluene (1.25 mL) was loaded
into a 15 mL reaction vessel. The reaction vessel was sealed by a screw cap and brought
out of the glovebox. The reaction tube was placed in a preheated oil bath at 140 °C for 60
h. After the reaction was finished and cooled down, the reaction mixture was filtered

through a silica gel plug and the collected filtrate was concentrated by a rotavap. The
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obtained residue was purified by a silica gel column using ethyl acetate/hexane (1:20, v/v)

as an eluent, giving the pure alkylated nitrile product.

3.8 Procedure for the a-Alkylation of Phenylacetonitrile with Benzyl Alcohols Using

B.

Inside a N2-filled glovebox, a mixture of B (1.3 mol %), KHBEt3 (3.5 mol %), KOH (20
mol %), phenylacetonitrile (0.25 mmol), benzyl alcohol (0.5 mmol), and toluene (1.25 mL)
was loaded into a 15 mL reaction vessel. The reaction vessel was sealed by a screw cap
and brought out of the glovebox. The reaction tube was placed in a preheated oil bath at
140 °C for 24 h. After the reaction was finished and cooled down, the reaction mixture was
filtered through a silica gel plug and the collected filtrate was concentrated by a rotavap.
The obtained residue was purified by a silica gel column using ethyl acetate/hexane (1:20,

v/v) as an eluent, giving the pure alkylated nitrile product.

3.9 Procedure for the a-Alkylation of Phenylacetonitrile with Benzyl Alcohols Using

C.

Inside a N2-filled glovebox, a mixture of C (1.3 mol %), KHBEt3 (3.5 mol %), KOH (20
mol %), phenylacetonitrile (0.25 mmol), benzyl alcohol (0.5 mmol), and toluene (1.25 mL)
was loaded into a 15 mL reaction vessel. The reaction vessel was sealed by a screw cap
and brought out of the glovebox. The reaction tube was placed in a preheated oil bath at
140 °C for 24 h. After the reaction was finished and cooled down, the reaction mixture was

filtered through a silica gel plug and the collected filtrate was concentrated by a rotavap.
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The obtained residue was purified by a silica gel column using ethyl acetate/hexane (1:20,

v/V) as an eluent, giving the pure alkylated nitrile product.

3.10 Procedure for the a-Alkylation of Phenylacetonitrile with Benzyl Alcohols Using

A in 1.0 mmol Scale.

Inside a N2-filled glovebox, a mixture of A (1.3 mol %), KHBEt3 (3.5 mol %), KOH (20
mol %), phenylacetonitrile (1.0 mmol), benzyl alcohol (2.0 mmol), and toluene (2.0 mL)
was loaded into a 15 mL reaction vessel. The reaction vessel was sealed by a screw cap
and brought out of the glovebox. The reaction tube was placed in a preheated oil bath at
140 °C for 24 h. After the reaction was finished and cooled down, the reaction mixture was
filtered through a silica gel plug and the collected filtrate was concentrated by a rotavap.
The obtained residue was purified by a silica gel column using ethyl acetate/hexane (1:20,

v/v) as an eluent, giving the pure alkylated nitrile product: 166 mg (80%).

3.11 Procedure for Homogeneity Test.

Inside a N2-filled glovebox, a mixture of A (1.3 mol %), KHBEt3 (3.5 mol %), KOH (20
mol %), phenylacetonitrile (0.25 mmol), benzyl alcohol (0.5 mmol), and toluene (1.25 mL)
was loaded into a 15 mL reaction vessel and stirred at room temperature for 10 min.
Mercury (125 mg, 0.625 mmol) was added to the vessel. The reaction vessel was sealed by
a screw cap and brought out of the glovebox. The reaction tube was placed in a preheated
oil bath at 140 °C for 24 h. After the reaction was finished and cooled down, the reaction

mixture was filtered through a silica gel plug and the collected filtrate was concentrated by
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a rotavap. The obtained residue was purified by a silica gel column using ethyl

acetate/hexane (1:20, v/v) as an eluent, giving the pure alkylated nitrile product.

3.12 Procedure for Condensation of Benzaldehyde and Phenylacetonitrile by KOH or

A/KHBEt:/KOH.

Inside a N2-filled glovebox, a mixture of A (0 or 1.3 mol %), KHBEt3 (0 or 3.5 mol %),
KOH (20 mol %), phenylacetonitrile (0.25 mmol), benzaldehyde (0.25 mmol), and toluene
(1.25 mL) was loaded into a 15 mL reaction vessel. The reaction vessel was sealed by a
screw cap and brought out of the glovebox. The reaction tube was placed in a preheated oil
bath at 140 °C for 24 h. After the reaction was finished and cooled down, 1,3,5-
trimethoxybenzene (8.4 mg, 0.05 mmol) dissolved in diethyl ether was added to the
reaction mixture, stirred, and filtered through a silica gel plug. The plug was washed with
diethyl ether, and the collected filtrate was concentrated under vacuum using a rotavapor.

The obtained residue was dissolved in CDClz and subjected to NMR analysis.

3.13 Procedure for Transfer Hydrogenation of 2,3-Diphenylacrylonitrile with Benzyl

Alcohol by A/KO'Bu or KO'Bu.

Inside a No-filled glovebox, a mixture of A (1.3 mol %), KO'Bu (3 mol %),
2,3diphenylacrylonitrile (0.25 mmol), benzyl alcohol (0.5 mmol), and toluene (1.25 mL)
was loaded into a 15 mL reaction vessel. The reaction vessel was sealed by a screw cap
and brought out of the glovebox. The reaction tube was placed in a preheated oil bath at
140 °C for 24 h. After the reaction was finished and cooled down, 1,3,5trimethoxybenzene
(8.4 mg, 0.05 mmol) dissolved in diethyl ether was added to the reaction mixture, stirred,
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and filtered through a silica gel plug. The plug was washed with diethyl ether, and the
collected filtrate was concentrated under vacuum using a rotavapor. The obtained residue

was dissolved in CDCls and subjected to NMR analysis.

3.14 Procedure for Transfer Hydrogenation of 2,3-Diphenylacrylonitrile with Benzyl

Alcohol by KOH or A/IKHBEt:/KOH.

Inside a N-filled glovebox, a mixture of A (0 or 1.3 mol%), KHBEt3 (0 or 3.5 mol %),
KOH (20 mol %), 2,3-diphenylacrylonitrile (0.25 mmol), benzyl alcohol (0.5 mmol), and
toluene (1.25 mL) was loaded into a 15 mL reaction vessel. The reaction vessel was sealed
by a screw cap and brought out of the glovebox. The reaction tube was placed in a preheated
oil bath at 140 °C for 24 h. After the reaction was finished and cooled down, 1,3,5-
trimethoxybenzene (8.4 mg, 0.05 mmol) dissolved in diethyl ether was added to the
reaction mixture, stirred, and filtered through a silica gel plug. The plug was washed with
diethyl ether, and the collected filtrate was concentrated under vacuum using a rotavapor.

The obtained residue was dissolved in CDClz and subjected to NMR analysis

3.15 Deuterium Labeling Experiment for the Transfer Hydrogenation of 2,3-

Diphenylacrylonitrile with Benzyl Alcohol or Benzyl Alcohol-a,a-d2 by KOH.

Inside a N»-filled glovebox, a mixture of KOH (20 mol %), 2,3-diphenylacrylonitrile (0.25
mmol), benzyl alcohol or benzyl alcohol-a,a-d2 (0.5 mmol), and toluene (1.25 mL) was
loaded into a 15 mL reaction vessel. The reaction vessel was sealed by a screw cap and
brought out of the glovebox. The reaction tube was placed in a preheated oil bath at 140
°C for 15 min. After the reaction was finished and cooled down, 1,3,5-trimethoxybenzene
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(8.4 mg, 0.05 mmol) dissolved in diethyl ether was added to the reaction mixture, stirred,
and filtered through a silica gel plug. The plug was washed with diethyl ether, and the
collected filtrate was concentrated under vacuum using a rotavapor. The obtained residue

was dissolved in CDCls and subjected to NMR analysis.

3.16 Deuterium Labeling Experiment for the a-Alkylation of Phenylacetonitrile with

Benzyl Alcohols or Benzyl Alcoholo,a-d2 by A/KHBEt:/KOH.

Inside a N2-filled glovebox, a mixture of A (1.3 mol %), KHBEt3 (3.5 mol %), KOH (20
mol %), phenylacetonitrile (0.25 mmol), benzyl alcohol or benzyl alcoholo,a-d2 (0.5
mmol), and toluene (1.25 mL) was loaded into a 15 mL reaction vessel. The reaction vessel
was sealed by a screw cap and brought out of the glovebox. The reaction tube was placed
in a preheated oil bath at 140 °C for 6 h. After the reaction was finished and cooled down,
1,3,5-trimethoxybenzene (8.4 mg, 0.05 mmol) dissolved in diethyl ether was added to the
reaction mixture, stirred, and filtered through a silica gel plug. The plug was washed with
diethyl ether, and the collected filtrate was concentrated under vacuum using a rotavapor.

The obtained residue was dissolved in CDCIlz and subjected to NMR analysis.

3.17 Characterization data

2,3-Diphenylpropanenitrile3! (3a): White solid; 44 mg (85%); *H NMR (CDCls, 500
MHz): § 7.37-7.25 (m, 8H), 7.14-7.13 (m, 2H), 3.99 (dd, 1H, J = 8.4, 6.4 Hz), and
3.21-3.11 (m, 2H); and *C{*H} NMR (CDCls, 125 MHz): § 136.3, 135.3, 129.2, 129.1,

128.7,128.2, 127.5, 127.4, 120.4, 42.2, and 39.8.
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3-(4-Methoxyphenyl)-2-phenylpropanenitrile3! (3b): White solid; 45 mg (75%); ‘H
NMR (CDCls, 500 MHz): & 7.37-7.31 (m, 3H), 7.26-7.25 (m, 2H), 7.04 (d, 2H, J = 10.5
Hz), 6.82 (d, 2H, J = 10.9 Hz), 3.96 (t, 1H, J = 7.7 Hz), 3.79 (s, 3H), and 3.16-3.07 (m,
2H); and *C{*H} NMR (CDClIs, 125 MHz): § 158.9, 135.3, 130.3, 129.0, 128.4, 128.2,

127.5, 120.5, 114.0, 55.3, 41.5, and 40.1.

3-(4-1sopropylphenyl)-2-phenylpropanenitrile® (3c): White solid; 44 mg (70%); m.p.
65-67 °C; 'H NMR (CDCls, 500 MHz): § 7.38— 7.33 (m, 3H), 7.30-7.28 (m, 2H), 7.16 (d,
2H, J =8.1 Hz), 7.09 (d, 2H, J = 8.1 Hz), 3.97 (dd, 1H, J = 8.7, 6.2 Hz), 3.18-3.07 (m, 2H),
2.93-2.84 (m, 1H), and 1.24 (d, 6H, J = 6.9 Hz); and 3C{*H} NMR (CDCls, 125 MHz): &

148.1, 135.5, 133.7, 129.1, 129.0, 128.2, 127.5, 126.7, 120.5, 41.9, 40.0, 33.8, and 24.0.

3-(4-Chlorophenyl)-2-phenylpropanenitrile?® (3d): White solid; 45 mg (74%); *H NMR
(CDCl3, 500 MHz): 6 7.38—7.33 (m, 3H),7.27-7.23 (m, 4H), 7.04 (d, 2H, J =8.4 Hz), 3.99
(dd, 1H, J=7.9, 6.5 Hz), and 3.18-3.10 (m, 2H); and *C{*H} NMR (CDCls, 125 MHz):

0134.8,134.6, 133.4, 130.6, 129.1, 128.8, 128.4, 127.5, 120.1, 41.5, and 39.6.

3-(Benzo[d][1,3]dioxol-5-yl)-2-phenylpropanenitrile®? (3e):Colorless oil; 39 mg (62%);
IH NMR (CDCls, 500 MHz): § 7.37-7.33 (m, 3H), 7.27-7.26 (m, 2H), 6.73 (d, 1H, J = 7.9
Hz), 6.62-6.60 (m, 2H), 5.94 (s, 2H), 3.95 (dd, 1H, J = 8.3, 6.5 Hz), and 3.13-3.03 (m,
2H); and BC{*H} NMR (CDClIs, 125 MHz): § 147.8, 146.9, 135.2, 130.0, 129.1, 128.3,

127.5,122.5, 120.4, 109.5, 108.4, 101.1, 42.0, and 40.1.

3-(Furan-2-yl)-phenylpropanenitrile?® (3f):Pale yellow oil; 28 mg (56%); *H NMR
(CDCls, 500 MHz): & 7.40—7.31 (m, 4H), 7.30—-7.27 (m, 2H), 6.29 (dd, 1H, J = 3.1, 2.0
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Hz), 6.11 (d, 1H, J = 3.4 Hz), 4.15 (dd, 1H, J = 8.5, 6.6 Hz), and 3.30-3.13 (m, 2H); and
13C{H} NMR (CDCls, 125 MHz): 5 150.0, 142.2, 134.9, 129.1, 128.4, 127.3, 120.1, 110.5,

108.2, 37.1, and 34.7.

2-(4-Methoxyphenyl)-3-phenylpropanenitrile3! (3g): White Solid; 53 mg (90%); ‘H
NMR (CDCls, 500 MHz): & 7.29-7.25 (m, 3H), 7.17-7.12 (m, 4H), 6.87 (d, 2H, J = 8.6
Hz), 3.95 (dd, 1H, J = 8.2, 6.6 Hz), 3.80 (s, 3H), and 3.19-3.08 (m, 2H); and *C{*H} NMR
(CDCl3, 125 MHz): 6 159.5, 136.4, 129.3, 128.7, 128.6, 127.3, 127.3, 120.6, 114.4, 55.4,

42.3, and 39.0.

2-(Benzo[d][1,3]dioxol-5-yl)-3-phenylpropanenitrile® (3h): Colorless oil; 49 mg (78%);
IH NMR (CDCls, 500 MHz): § 7.32-7.26 (m, 3H), 7.15-7.13 (m, 2H), 6.76—6.75 (m, 2H),
6.69 (dd, 1H, J = 8.1, 1.7 Hz), 5.98 (s, 2H), 3.90 (dd, 1H, J = 8.2, 6.5 Hz), and 3.19— 3.07
(m, 2H); and *C{*H} NMR (CDCls, 125 MHz): § 148.2, 147.6, 136.3, 129.2, 128.9, 128.7,

127.4,121.0, 120.4, 108.6, 107.9, 101.4, 42.3, and 39.5.

2-(4-Fluorophenyl)-3-phenylpropanenitrile3? (3i): White solid; 42 mg (75%); *H NMR
(CDCls, 500 MHz): & 7.31-7.26 (m, 3H), 7.21-7.19 (m, 2H), 7.10 (dd, 2H, J = 7.6, 1.5
Hz), 7.03 (t, 2H, J = 8.6 Hz), 3.99 (dd, 1H, J = 7.8, 6.9 Hz), and 3.21-3.09 (m, 2H); 3C{H}
NMR (CDCls, 125 MHz): & 162.5 (d, Jo-F = 247.5 Hz), 135.9, 131.0 (d, Jc-r = 6.0 Hz),
129.3 (d, Je-¢ = 6.0 Hz), 129.2, 128.7, 127.5, 120.2, 116.0 (d, Jc-r = 21.8 Hz), 42.2, and

39.0; and *F NMR (283 MHz, CDCls): § —113.4.

2-(4-Chlorophenyl)-3-phenylpropanenitrile3! (3j): White Solid; 42 mg (70%); *H NMR
(CDCls, 500 MHz): ¢ 7.33—7.25 (m, 5H), 7.16 (d, 2H, J = 8.5 Hz), 7.10 (dd, 2H, J = 7.6,
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1.7 Hz), 3.99 (dd, 1H, J = 7.8, 6.8 Hz), and 3.21-3.08 (m, 2H); and 3C{*H} NMR (CDCls,

125 MHz): 6 134.7, 133.2, 132.5, 128.1, 128.1, 127.8, 127.6, 126.4, 118.8, 40.9, and 38.1.

3-Phenyl-2-(3-(trifluoromethyl)phenyl)propanenitrile (3k): Colorless oil; 38 mg
(55%); 'H NMR (CDCls, 500 MHz): & 7.60 (d, 1H, J = 7.7 Hz), 7.49(t, 1H, J = 8.0 Hz),
7.46-7.44 (m, 2H), 7.32-7.28 (m, 3H), 7.11 (dd, 2H, J = 7.4, 1.8 Hz), 4.08 (dd, 1H, J =
8.1, 6.5 Hz), and 3.25-3.13 (m, 2H); 3C{*H} NMR (CDCls, 125 MHz): & 136.2, 135.5,
131.5 (g, Je—r = 33.1 Hz), 130.9, 129.6, 129.2, 128.8, 127.7, 125.9 (q, Jc-r = 272.0 Hz),
125.2 (d, Jc-r = 3.7 Hz), 124.5 (d, Jc-r = 3.7 Hz), 119.6, 42.0, and 39.6; °F NMR (283
MHz, CDCls):  —62.6; HRMS (ESI+): m/z [M]* calcd for C1sH12NF3, 275.0922; found

275.0912.

4-(Benzyl-cyano-methyl)-benzonitrile (31): White solid; 33 mg (57%); m.p. 84 °C; 'H
NMR (CDCls, 500 MHz) & 7.65 (d, 2H, J = 8.4 Hz), 7.34 (d, 2H, J = 8.4 Hz), 7.30-7.27
(m, 3H,), 7.07 (dd, 2H, J = 7.0, 2.3 Hz), 4.08 (t, 1H, J = 7.2 Hz), and 3.19 (ddd, 2H, J =
20.3, 13.6, 7.2 Hz); 3C{*H} NMR (CDCls, 125 MHz): 140.2, 135.2, 132.8, 129.2, 128.8,
128.5, 127.8, 119.2, 118.1, 112.6, 41.8, and 39.7; HRMS (ESI+): m/z [M]* calcd for

C16H13N2, 233.1073; found 233.1077.

3-Phenyl-2-(o-tolyl)propanenitrile* (3m): Colorless oil; 39 mg (70%); *H NMR (CDCls,
500 MHz): & 7.44-7.42 (m, 1H), 7.33— 7.27 (m, 3H), 7.25-7.22 (m, 2H), 7.18-7.16 (m,
3H), 4.15 (dd, 1H, J = 8.9, 6.0 Hz), 3.18-3.06 (m, 2H), and 2.26 (s, 3H); and *C{*H} NMR
(CDCls, 125 MHz): 6 136.6, 135.1, 133.7, 131.0, 129.1, 128.7, 128.3, 127.7, 127.4, 126.9,

120.7, 41.0, 36.6, and 19.0.
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3-Phenyl-2-(pyridin-3-yl)propanenitrile?? (3n): Colorless solid; 31 mg (60%); *H NMR
(CDCls, 500 MHz): & 8.59 (dd, 1H, J = 4.9, 1.5 Hz), 8.46 (d, 1H, J = 2.4 Hz), 7.61-7.55
(m, 1H), 7.35-7.27 (m, 4H), 7.11 (dd, 2H, J = 7.4, 1.8 Hz), 4.06 (t, 1H, J = 7.2 Hz), and
3.26-3.13 (m, 2H); *C{*H} NMR (CDCls, 125 MHz): & 149.7, 148.9, 135.4, 135.0, 131.0,

129.3, 128.8, 127.8, 123.7, 119.4, 41.9, and 37.3.

2-(Naphthalen-2-yl)-3-phenylpropanenitrile (30): White solid; 46 mg (71%); m.p.
95-96 °C; 'H NMR (CDCls, 500 MHz): § 7.86— 7.83 (m, 2H), 7.81-7.79 (m, 1H), 7.73 (d,
1H, J = 1.3 Hz), 7.51 (dd, 2H, J = 6.1, 3.2 Hz), 7.35 (dd, 1H, J = 8.5, 1.8 Hz), 7.31-7.26
(m, 3H), 7.16 (dd, 2H, J = 7.6, 1.8 Hz), 4.17 (dd, 1H, J = 8.2, 6.5 Hz), and 3.30-3.21 (m,
2H); ¥*C{*H} NMR (CDCls, 125 MHz): § 136.3, 133.3, 132.9, 132.5, 129.3, 129.0, 128.7,
127.9,127.8, 127.5, 126.7, 126.7, 126.6, 125.0, 120.4, 42.2, and 40.0; HRMS (ESI+): m/z

[M]* calcd for C1gH15N, 257.1204; found 257.1212.

2,3-bis(Benzo[d][1,3]dioxol-5-yl)propanenitrile (3p): Colorless oil; 44 mg (60%); m.p.
64-66 °C; 'H NMR (CDCls, 500 MHz): § 6.69 (dd, 3H), 6.62—6.58 (m, 2H), 5.98 (s, 2H),
5.95 (s, 2H), 3.85 (dd, 1H, J = 8.2, 6.6 Hz), and 3.09-2.99 (m, 2H); *C{*H} NMR (CDCls,
125 MHz): 6 148.2, 147.8, 147.6, 146.9, 129.9, 128.8, 122.5, 121.0, 120.4, 109.5, 108.6,
108.4, 107.9, 101.4, 101.1, 42.0, and 39.7; HRMS (ESI+): m/z [M + Na]* calcd for

C17H13NNaOs, 318.0737; found 318.0735.

2-(4-Methoxyphenyl)-3-(p-tolyl)propanenitrile3! (3g): Colorless oil; 50 mg (80%); 'H
NMR (CDCl3, 500 MHz): 6 7.17 (d, 2H, J = 8.7 Hz), 7.10 (d, 2H, J = 7.9 Hz), 7.02 (d, 2H,

J=8.0 Hz), 6.87 (d, 2H, J = 8.6 Hz), 3.92 (dd, 1H, J = 8.3, 6.5 Hz), 3.81 (s, 3H), 3.15—
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3.04 (m, 2H), and 2.32 (s, 3H); and *C{*H} NMR (CDCls, 125 MHz): & 159.4, 137.0,

133.4,129.3,129.1, 128.7, 127.4, 120.7, 114.4, 55.4, 41.9, 39.2, and 21.1.

2-(4-Methoxyphenyl)-3-(o-tolyl)propanenitrile (3r): Colorless oil; 36 mg (57%); ‘H
NMR (CDCls, 500 MHz): § 7.22-7.08 (m, 6H), 6.87 (d, 2H, J = 8.6 Hz), 3.91 (dd, 1H, J =
8.5, 6.6 Hz), 3.81 (s, 3H), 3.23-3.07 (m, 2H), and 2.22 (s, 3H); *C{*H} NMR (CDCls,
125 MHz): $ 159.5, 136.3, 134.8, 130.6, 130.1, 128.6, 127.5, 126.3, 120.8, 114.4, 55.4,
39.6, 38.0, and 19.3; HRMS (ESI+): m/z [M + H]" calcd for C17H1sNO, 252.1382; found

252.1374.

3-(4-1sopropylphenyl)-2-(4-methoxyphenyl) phenylpropanenitrile®! (3s): White solid;
55 mg (79%); m.p. 67-69 °C; 'H NMR (CDCls, 500 MHz): & 7.19 (d, 2H, J = 8.7 Hz),
7.16 (d, 2H, J = 8.1 Hz), 7.08 (d, 2H, J = 8.1 Hz), 6.88 (d, 2H, J = 8.7 Hz), 3.92 (dd, 1H, J
= 8.7, 6.2 Hz), 3.81 (s, 3H), 3.15-3.04 (m, 2H), 2.93-2.84 (m, 1H), and 1.24 (d, 6H, J =
6.9 Hz); and *C{*H} NMR (CDCls, 125 MHz): § 159.4, 148.0, 133.8, 129.1, 128.6, 127.5,

126.7, 120.8, 114.4,55.4, 42.0, 39.2, 33.8, and 24.0.

3-(Furan-2-yl)-2-(4-methoxyphen-yl)propanenitrile (3t): Colorless oil; 28 mg (50%);
IH NMR (CDCls, 500 MHz): § 7.38-7.32 (m, 1H), 7.19 (d, 2H, J = 8.7 Hz), 6.88 (d, 2H, J
= 8.6 Hz), 6.29 (dd, 1H, J = 3.1, 1.9 Hz), 6.11 (d, 1H, J = 3.7 Hz), 4.09 (dd, 1H, J = 8.3,
6.7 Hz), 3.81 (s, 3H), and 3.27-3.10 (m, 2H); 3C{*H} NMR (CDCls, 125 MHz): & 159.6,
150.1,142.1,128.4,126.9, 120.4, 114.5, 110.5, 108.2, 55.4, 36.3, and 34.8; HRMS (ESI+):

m/z [M + Na]" calcd for C14H13NNaO», 250.0838; found 250.0840.
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3-(3,5-Dimethoxyphenyl)-2-(4-methoxyphenyl)propanenitrile (3u): Pale yellow oil; 68
mg (92%); 'H NMR (CDCls, 500 MHz): & 7.18(d, 2H, J = 8.7 Hz), 6.88 (d, 2H, J = 8.6
Hz), 6.36 (t, 2H, J = 2.2 Hz), 6.28 (d, 2H, J = 2.3 Hz), 3.94 (dd, 1H, J = 8.3, 6.5 Hz), 3.81
(s, 3H), 3.74 (s, 6H), and 3.13-3.01 (m, 2H); 3C{*H} NMR (CDCls, 125 MHz): § 160.9,
159.5, 138.7, 128.7, 127.3, 120.7, 114.4, 107.3, 99.49, 55.4, 55.3, 42.6, and 38.8; HRMS

(ESI+): m/z [M + Na]* calcd for C1gH19NNaOs3, 320.1257; found 320.1256.

2-(4-Methoxyphenyl)-3-(naphthal-en-2-yl)propanenitrile3! (3v): Pale yellow oil; 63 mg
(88%); *H NMR (CDCls, 500 MHz): & 7.84— 7.80 (m, 1H), 7.77 (d, 2H, J = 8.0 Hz), 7.60
(s, 1H), 7.49-7.43 (m, 2H), 7.23 (dd, 1H, J = 8.3, 1.8 Hz), 7.18 (d, 2H, J = 8.7 Hz), 6.86
(d, 2H, J = 8.6 Hz), 4.05 (dd, 1H, J = 8.1, 6.7 Hz), 3.80 (s, 3H), and 3.36-3.24 (m, 2H);
and C{*H} NMR (CDCls, 125 MHz): § 159.5, 133.9, 133.4, 132.6, 128.7, 128.3, 128.2,

127.8,127.7,127.2, 126.2, 125.9, 120.7, 114.4, 55.4, 42.5, and 39.0.

2-(4-Methoxyphenyl)-3-(4-(trifluoromethyl)phenyl)propanenitrile3* (3w): Colorless
oil; 55 mg (72%); 'H NMR (CDCls, 500 MHz): & 7.55 (d, 2H, J = 8.1 Hz), 7.23 (d, 2H, J
= 8.1 Hz), 7.15 (d, 2H, J = 8.7 Hz), 6.88 (d, 2H, J = 8.6 Hz), 3.9 (t, 1H, J = 7.5 Hz), 3.81
(s, 3H), and 3.24-3.15 (m, 2H); *C{*H} NMR (CDCls, 125 MHz): § 159.6, 140.2, 129.7,
128.6, 126.5, 125.6 (q, Jc-F = 3.7 Hz), 124.1 (q, Jc—r = 270.0 Hz), 120.2, 114.5, 55.4, 41.9,

and 38.6; and °F NMR (283 MHz, CDCls): § —62.4.

2-(4-Methoxyphenyl)hept-6-enenitrile (3x): Colorless oil; 44 mg (82%); *H NMR
(CDCls, 500 MHz) 6 7.23 (d, 2H, J = 8.6 Hz), 6.90 (d, 2H, J = 8.6 Hz), 5.75 (ddt, 1H, J =

16.9, 10.1, 6.7 Hz), 5.07—4.89 (m, 2H), 3.81 (s, 3H) 3.73 (dd, 1H, J = 8.2, 6.5 Hz), 2.09 (q,
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2H, J = 7.1 Hz), 1.96-1.76 (m, 2H), and 1.63-1.45 (m, 2H); ¥C{*H} NMR (CDCls, 125
MHz): 159.4, 137.6, 128.4, 127.9, 121.1, 115.4, 114.5, 55.4, 36.5, 35.3, 33.0, and 26.1;

HRMS (ESI+): m/z [M]" calcd for C14H1sNO, 216.1383; found 216.1388.

2-(4-Methoxyphenyl)tetradecanenitrile (3y): Colorless oil; 75 mg (95%); *H NMR
(CDCls, 500 MHz): & 7.23 (d, 2H, J = 8.7 Hz), 6.90 (d, 2H, J = 8.6 Hz), 3.81 (s, 3H), 3.71
(dd, 1H, J = 8.5, 6.3 Hz), 1.93-1.78 (m, 2H), 1.50-1.37 (m, 2H), 1.30-1.25 (m, 18H), and
0.88 (t, 3H, J = 6.9 Hz); ®°C{"H} NMR (CDCls, 125 MHz): & 158.4, 127.5, 127.3, 120.3,
113.5,54.5, 35.7, 35.1, 31.0, 28.8, 28.7, 28.6, 28.5, 28.5, 28.1, 26.1, 21.8, and 13.2; HRMS

(ESI+): m/z [M + H]" calcd for C21H34NO, 316.2635; found 316.2631.

2-(4-Methoxyphenyl)tridecanenitrile (3z): Colorless oil; 64 mg (85%); *H NMR (CDCls,
500 MHz): 6 7.23 (d, 2H, J = 8.7 Hz), 6.90 (d, 2H, J = 8.8 Hz), 3.81 (s, 3H), 3.71 (dd, 1H,
J =825, 6.4 Hz), 1.93-1.78 (m, 2H), 1.50-1.37 (m, 2H), 1.31-1.25 (m, 16H), and 0.88 (t,
3H, J = 6.9 Hz); *C{*H} NMR (CDCls, 125 MHz): § 159.4, 128.4, 128.2, 121.3, 114.5,
55.4, 36.7, 36.0, 32.0, 29.7, 29.7, 29.6, 29.4, 29.0, 29.0, 27.1, 22.8, and 14.2; HRMS

(ESI+): m/z [M + Na]" calcd for C20H31NNaO, 324.2297; found 324.2289.

2-(4-Methoxyphenyl)undecanenitrile3! (3aa): Colorless oil; 62 mg (91%); *H NMR
(CDCls, 500 MHz): & 7.23 (d, 2H, J = 8.7 Hz), 6.90 (d, 2H, J = 8.8 Hz), 3.81 (s, 3H), 3.71
(dd, 1H, J = 8.5, 6.3 Hz), 1.93-1.78 (m, 2H), 1.50-1.37 (m, 2H), 1.30-1.25 (m, 12H), and
0.88 (t, 3H, J = 6.9 Hz); and 3C{*H} NMR (CDCls, 125 MHz): § 159.3, 128.4, 128.1,

121.2,114.4,55.4, 36.6, 36.0, 31.9, 29.5, 29.3, 29.3, 29.0, 27.0, 22.7, and 14.1.
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2-(4-Methoxyphenyl)decanenitrile (3ab): Colorless oil; 58 mg (90%); *H NMR (CDCls,
500 MHz): 6 7.23 (d, 2H, J = 8.7 Hz), 6.90 (d, 2H, J = 8.7 Hz), 3.81 (s, 3H), 3.71 (dd, 1H,
J=8.3, 6.5 Hz), 1.93-1.78 (m, 2H), 1.51-1.38 (m, 2H), 1.30-1.25 (m, 10H), and 0.87 (t,
3H, J = 6.8 Hz); *C{*H} NMR (CDCls, 125 MHz): § 159.3, 128.4, 128.1, 121.2, 114.4,
55.4, 36.6, 36.0, 31.8, 29.3, 29.2, 29.0, 27.0, 22.6, and 14.1; HRMS (ESI+): m/z [M + Na]*

calcd for C17H25sNNaO, 282.1828; found 282.1824.

2-(4-Methoxyphenyl)hexanenitrile3! (3ac): Colorless oil; 45 mg (88%); 'H NMR
(CDCls, 500 MHz): & 7.24 (d, 2H, J = 8.7 Hz), 6.90 (d, 2H, J = 8.8 Hz), 3.81 (s, 3H), 3.71
(dd, 1H, J = 8.5, 6.4 Hz), 1.94-1.79 (m, 2H), 1.47-1.31 (m, 4H), and 0.90 (t, 3H, J = 7.2
Hz); and *C{*H} NMR (CDCls, 125 MHz): § 158.2, 127.3, 127.0, 120.1, 113.3, 54.3, 35.5,

34.6, 28.0, 21.0, and 12.7.

2-(4-Methoxyphenyl)butanenitrile3! (3ad): Colorless oil; 35 mg (79%); 'H NMR
(CDCl3, 500 MHz): 6 7.24 (d, 2H, J = 8.5 Hz), 6.90 (d, 2H, J = 8.8 Hz), 3.81 (s, 3H), 3.68
(dd, 1H, J = 7.8, 6.6 Hz), 1.95-1.87 (m, 2H), and 1.06 (t, 3H, J = 7.4 Hz); and *C{*H}

NMR (CDClgz, 125 MHz): § 159.3, 128.4, 127.8, 121.0, 114.4,55.4, 38.2, 29.3, and 11.5.

2-(4-Methoxyphenyl)propanenitrile?® (3ae): Yellowish oil; 33 mg (80%); 'H NMR
(CDCls, 500 MHz): & 7.28-7.25 (m, 2H), 6.93— 6.88 (m, 2H), 3.85 (q, 1H, J = 7.3 Hz),
3.81 (s, 3H), and 1.62 (d, 3H, J = 7.1 Hz); and BC{*H} NMR (CDCls, 125 MHz): § 159.4,

129.1, 127.9, 121.8, 114.5, 55.4, 30.5, and 21.5.
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the 2,3-diphenylacrylonitrile transfer hydrogenation using benzyl alcohol.

268



000
19T\
2T
SET
aL'e
LLE
86'c
00k
60'9
zreL
ETL f
pTL
bT'L
szl
sef
(L
(7L
JET
8L
8L
6L
oc'L
€L
€L
€L
€€t
€€t
€€t
beL
SEL
oL
(L
8L
6E'L
Ob'L
e
bb'L
bb'L
Sb'L
Sb'/]
'/
Lb'LA
L'l
6b'L 7
2L
G/
b2l
S5'L]
vor
(9L
8921
69'¢1
88'
mw.g
88,
06'L

Lk

90

FE90

85 80 75 70 65 60 55 50 45 40 35 3.0 25 20 15 10 05 0.0

9.0

Figure 3.69 *H NMR Spectra (CDCls, 500 MHz) of the deuterium labeling experiment for

the 2,3-diphenylacrylonitrile transfer hydrogenation using benzyl alcohol-a,a-d>.
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CHAPTER IV

Switchable Cobalt-Catalyzed a-Olefination and a-Alkylation of Nitriles

with Primary Alcohols

4.1 Introduction

a,B-Substituted acrylonitriles are a family of organic compounds that are primarily applied
as important building blocks, intermediates, and functional molecules for a range of
products such as fragrances, dyes, polymeric materials, pharmaceuticals, natural products,
etc.l”’ Traditionally, the synthesis of the o,Bsubstituted acrylonitriles involves base-
mediated condensation of carbonyl compounds and nitriles, which is normally
accompanied by several competitive side-reactions, e.g., aldol reaction of aldehydes, self-
condensation of nitriles, hydrolysis of nitriles to amides, etc.®'3 Alternative synthetic
methods of the condensation of nitriles and carbonyl compounds toward the a,B-substituted
acrylonitriles have been disclosed, which, however, suffer from several issues such as low
yields, the involvement of toxic reagents, generation of plentiful wastes, limited
availability of the substrates, and tedious procedures.'*?? Thus, there is an emerging need

to develop new synthetic methods to address these challenges.

Homogeneous transition-metal-catalyzed carbon—carbon bond formation belongs to one
imperative synthetic strategy for value-added products.® An attractive method is to utilize
the cheap, low-toxic, and readily available alcohols as the alkylating agents through an
acceptorless dehydrogenative coupling (ADC) process.?*3® The typical procedure of ADC

toward a,f-substituted acrylonitriles involves the dehydrogenation of primary alcohols to
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aldehydes, liberating H> to regenerate the catalytically active species. Then, the in situ
formed aldehydes undergo condensation with the nitriles, furnishing the a,B-unsaturated
acrylonitrile products and H2O. Alternatively, the o,f3-substituted acrylonitriles can be
hydrogenated by the catalyst, leading to the saturated nitrile products. This process is

recognized as the borrowing hydrogen (BH).2+-%

There are a few examples of the synthesis of a,B-substituted acrylonitriles via the ADC
process, the majority of which are based on precious transition-metal catalysts.3’*> With
the growing concerns on sustainability and economy, replacements of these precious
metals with earth-abundant alternatives, e.g., Mn, Fe, Co, etc., are becoming more
appealing.*>** To the best of our knowledge, there is just a single case disclosed by Milstein
and co-workers using primary alcohols as the alkylating agents by a pincer Mn complex.*
However, the reaction is sluggish with an average reaction time of over 40 h. Very recently,
Balaraman and co-workers reported a Mn-catalyzed a-olefination of nitriles with
secondary alcohols.*® Examples of a-alkylation of nitriles with primary alcohols to

saturated nitriles by base transition-metal catalysts are also limited.*"-%2

We have established a bench-stable Co complex (A) supported by a tetradentate N,P
mixed-donor ligand iPrPPPNHPyMe. 5 A has proven to be an efficient and versatile
precatalyst for secondary alcohol dehydrogenation to ketones,>® primary alcohol
dehydrogenative self-coupling to esters,> switchable couplings of primary and secondary
alcohols to ketones and alcohols,>*® and switchable couplings of alcohols and amines to
imines and amines.>” We recently demonstrated that A can efficiently catalyze couplings

of primary alcohols and nitriles to selectively form saturated nitriles®® (Scheme 1, top).

279



A (1.3 mol%)

o 2
KHBEL; (3.5 mol%) Rl\rR [0
KOH (20 mol%) ON
RI™OH
Chapter 11"
® O
Me Ql l.—| Cl
+ A= @\I/Cofﬂ)ﬁﬁ?
A P AN
N
)
S A (1 mol%) 2
mol7e R
RSN +| HyO |+ | H,
NaO’Bu, 3 mol% CN
This work

Scheme 4.1 Switchable a-Alkylation and a-olefinatiom of Nitriles with Primary Alcohols

Catalyzed by Ding’s cobalt catalyst

Encouraged by our recent studies, we herein present the cobalt-based catalytic system for
the selective synthesis of a,B-substituted acrylonitriles via the ADC process with Hz and
H>0 as the only byproducts (Scheme 1, bottom). To the best of our knowledge, Co-
catalyzed a-olefination of nitriles with primary alcohols has not been known so far. It is
noteworthy that a short reaction time of 6 h suffices. This work also represents the first
switchable a-olefination and a-alkylation of nitriles with primary alcohols to o,B-
substituted acrylonitriles and nitriles, respectively, catalyzed by any base transition-metal

catalyst.

4.2 Results and Discussion

Previously, we disclosed that A can catalyze a-alkylation of nitriles using primary alcohols

to nitriles in the presence of 20 mol % KOH and 3.5 mol % KHBEt3.% Mechanistic study
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showed that KOH plays a crucial role in the hydrogenation of the acrylonitrile intermediate
to nitrile via the Meerwein— Ponndorf—Verley (MPV) pathway.>®®> We surmise that at the
reduced base loading, whereas the MPV process is efficiently suppressed, the reaction
could be delicately controlled at the acrylonitrile level. Indeed, the reaction of benzyl
alcohol (0.25 mmol) and benzyl cyanide (0.35 mmol) in the presence of 1 mol % A and 3
mol % KOH without KHBEt3 resulted in a 67% yield of 2,3-diphenylacrylonitrile in 6 h

at 140 °C (Table 1, entry 1).

A (1 mol%)
base (3 mol%) - O
@OH ’ @CN Base (20 mol%) g = TR0
solvent, temperature, 6 h CN

Scheme 4.2 Selective synthesis of olefinic nitrile product by Ding’s catalyst
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Table 4.1 Reaction Screening?

entry Cat. base solvent temp Yield
(°C) (%)°

1 A KOH toluene 140 67

2 A KO'Bu toluene 140 82

3 A KO'Bu toluene 125 52

4 A NaO'Bu toluene 140 90, 85°

5 A NaO'Bu toluene 140 90,985¢

6 A K2CO3 toluene 140 0

7 A KHBEt3 toluene 140 83

8 A LiHBEt; toluene 140 63

9 A - toluene 140 0

10 — NaO'Bu toluene 140 0

11 A NaO'Bu benzene 140 90

12 A NaO'Bu THF 140 44

13f A NaO'Bu toluene 140 87

149 A NaO'Bu toluene 140 83

#Reaction conditions: 1a (0.25 mmol), 2a (0.35 mmol), A (1 mol %), base (3 mol%), and
solvent (1.2 mL) were heated in a reaction vessel (15 mL) with an argon balloon on top for
6 h. ®Yields were determined by *H NMR analysis of the crude reaction mixture with 1,3,5-
trimethoxybenzene as an internal standard. CIsolated yield of 3a. 915 h. 5 h. flsolated yield

of 3a on a 1 mmol scale reaction. ®Mercury (125 mg) was added to the reaction.

Intrigued by this result, we performed the optimization of the reactions. Among various
types of bases, NaO'Bu was proven to be more suitable, leading to an excellent 90% NMR
yield and 85% isolated yield after purification by column chromatography (Table 4.1,
entries 1, 2, 4, and 6—8). Control experiments showed that both A and base are essential
for the reaction (Table 4.1, entries 9 and 10). A temperature of 140 °C and solvents such
as toluene and benzene are more favorable for the reaction (Table 4.1, entries 2—4, 11, and
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12). Remarkably, 6 h is sufficient for the completion of the reaction (Table 4.1, entries 4
and 5), which is in stark contrast to the reported Mn case, where a long reaction time of
about 40 h is required.* The *H NMR indicates the product is the Z-isomer. An 87%
isolated yield was obtained on the 1 mmol scale reaction (Table 4.1, entry 13). Mercury
testing suggested a homogeneous catalytic system® (Table 4.1, entry 14). H, was
confirmed by the analysis of gas phase by GC, indicating an ADC pathway (see

experimental section).

After obtaining the optimized reaction conditions, we then explored the substrate scope of
the reaction. First, we focused on the scope of aromatic primary alcohols. Aromatic
primary alcohols bearing electron-donating groups such as —-OMe, —Me, —i Pr at the para
position transformed smoothly to give the corresponding products in good to very good
60%—87% yields with Z-selectivity (Table 4.2, entries 3b—3d, 3s, and 3t). Here, we believe
that the reason for getting Z-selective product is due to the thermodynamic of the reaction.
Similarly, aromatic primary alcohols with electron-withdrawing groups such as —Cl, —F,
—CF3 at the para position afforded desired products in good to excellent 76—92% yields
(Table 4.2, entries 3f—3h). Pleasingly, sterically hindered 2-methyl benzyl alcohol and 2-
naphthyl methanol also proceeded well, leading to 81% and 82% vyields, respectively
(Table 4.2, 3e and 3k). Heteroaryl alcohols like piperonyl alcohol and 2-furfuryl methanol
rendered the olefinic nitrile products in moderate to very good yields (Table4. 2, entries 3i,
3], and 3u). Next, we investigated the scope of nitriles. Pleasingly, various aromatic nitriles
with various electronic properties gave the corresponding products with 60—87% yields
(Table 4.2, entries 3h, 3l, 3m, 3q, 3r, and 3s). Interestingly, nitriles with pyridyl and

naphthyl ring delivered the desired acrylonitriles in 73% and 89% vyields, respectively
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(Table 4.2, entries 30 and 3p). It is noteworthy that the cyanide functionality is well
tolerated (Table 4.2, entry 3t). With regards to the aliphatic primary alcohols, such as 1-
hexanol and 1-dodecanol, the reactions turned out to be sluggish under the standard
conditions. Gratifyingly, upon doubling the loadings of A and NaO'Bu and prolonging the
reaction time to 24 h, the reactions were significantly enhanced, revealing excellent 95%
and 90% yields, respectively (Table 4.2, entries 3v and 3w). Notably, unsaturated aliphatic
primary alcohols are also viable substrates with the C=C bond remaining intact (Table 4.2,
entry 3x). Unfortunately, benzenepropanenitrile and aliphatic nitrile were not compatible

with this method (Table 4.2, entry 3y).
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Table 4.2 a-Olefination of Nitriles with Primary Alcohols?®

A (1 mol%)

NaO'Bu (3 mol%) R?
1™ + RGN = | RIS +| H,0 + H
RO toluene, 140°,6 h /\IC/N % 2
1 2 3
_Q 3 3 _Q
CN o CN CN CN
3a, 85% 3b, 87% 3¢, 85% 3d, 79%
O O O O
CN cl CN . CN e CN
3e, 81% 3f, 88% 3g, 76% 3h, 92%
¢ ¢ oy
0] A R S
<0 CN CN CN
3j,52 % 3k, 82 % 31,87 %
> g 9@
S 0] XN S
CN CN CN
3m, 78 % 3n, 65 % 30,73 % 3p, 89 %
98 ) <8
X X X
CN CN CN
3q,78 % 3r, 78 % 3s, 60 % 3t,76 %
O\
W\/@ m/@ XN
CN 2 CN CN
3u, 76 % 3v.n=4, 95 %° 3x, 68 %° 3y,0 %

3w, n =10, 90 %°
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#Reaction conditions: primary alcohol (0.25 mmol), nitrile (0.35 mmol), A (1 mol%),
NaOtBu (3 mol%), and toluene (1.2 mL) were heated at 140 °C in a reaction vessel (15
mL) with an argon balloon on top for 6 h. blsolated yields. °A (2 mol%) and NaOtBu (6

mol%) for 24 h.

Next, we performed a mechanistic exploration to understand this reaction. A deuterium
labeling experiment using 1a-d> and 2a resulted in 90% D-incorporation at the  position
of the nitrile group, indicating the alcohol dehydrogenation step is reversible (Scheme 2).
The kinetic isotope effect (KIE) of 1.65 was obtained, which indicates that the breakage of
the a-C—H bond of 1a is moderately slow. The KIE number echoes the one from our prior
study on the selective nitrile forming reaction, which is 1.88.%

(10/90)

Do A (1 mol%) H/D
CN  NaO'Bu (3 mol%) x
OH O + H,0 + H,

toluene, 140 °C, 0.5h CN

la-d, 2a 3a-d, yield = 29%

Scheme 4.3 Deuterium labeling experiment using 1a- d2

In the switchable acrylonitrile and nitrile synthesis, the base loadings play a critical and
unique role in the selectivity determination. High base loadings that facilitate the MPV
hydrogenation process result in the saturated nitrile products;®® on the contrary,

acrylonitriles are selectively formed employing a catalytic amount of base as revealed in
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the present work. We have successfully leveraged this strategy to achieve switchable
imine/amine and ketone/alcohol synthesis based on A.>5> The series of studies apparently
demonstrate the high efficiency, selectivity, and versatility of our Co catalytic system
affording a range of valuable products. In addition to the effects of the base loadings, the
lack of hydrogenation ability of A at low base loadings is crucial for the product-switching.
To test this hypothesis, the transfer hydrogenation of 2,3-diphenylacrylonitrile by benzyl
alcohol was performed in the presence of 1 mol % A and 3 mol % of NaO'Bu at 140 °C for
6 h (Scheme 3). A poor 12% yield of 2,3-diphenylpropanenitrile resulted. In stark contrast,
with 20 mol % base alone, a significantly enhanced 82% yield was reached in just 15 min.®
These results shed light on the roles of base loadings on the selectivity. A comprehensive

mechanistic study is currently underway in our laboratory.

A (1 mol%)

- ‘ ©/\OH NaO'Bu (3 mol%) ‘ ©Ao
+ +
O toluene, 140 °C, 0.5h O CN

CN

Scheme 4.4. Transfer hydrogenation of 2,3 Diphenylacrylonitrile

To explore if the metal-ligand cooperativity (MLC) participates through the N—H linker
on A, we employed complex B as the precatalyst, which bears an N-Me moiety*? (Figure
1). Interestingly, a comparable 84% yield of 3a was obtained, suggesting that MLC may

not play a crucial role.

Previously, we have shown that A is capable of dehydrogenation of alcohols,>*%* and base

alone can mediate the condensation of aldehydes and nitriles.>® Benzaldehydes were
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observed in the a-olefination of benzyl cyanide with benzyl alcohol, suggesting that the
condensation is a relatively slow step. Based on the literature,?*¢ and our studies, a
plausible reaction mechanism is given (Scheme 4). Initially, the Co precatalyst A is
activated by a base through the salt elimination.>® The catalytically active Co species
mediates the dehydrogenation of primary alcohols to form the aldehyde intermediates,
which subsequently undergo the base-mediated condensation with the nitriles to yield the
acrylonitriles and H2O. Finally, the liberation of H regenerates the catalyst. Alternatively,
at high base loadings, the base mediated MPV process further reduces the acrylonitriles to

the nitrile products.®®

Fig. 4.1 Complex B examined.

288



CN
1 4
Co
A 0 RlAO
~ Hy
MPYV Pathway
COHZ
Ry OH
1
base
R
RIAO Rl X 2
5 m 3CN
RZ/\CN Hzo
2

Scheme 4.5 Proposed mechanism (a-Olefination in Blue and a-alkylation in Red)

4.3 Conclusions

We present the first Co-catalyzed switchable formations of a,Bsubstituted acrylonitriles
and nitriles. A large variety of nitriles and primary alcohols are viable substrates with this
protocol. Notably, this reaction is environmentally friendly and atom efficient with H> and
H20 being the sole byproducts. We anticipate that this study will contribute to the catalyst

designs, especially the ones that take advantage of the earth-abundant transition metals.
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4.4 Experimental Section

4.4.1 General Methods.

Unless otherwise is stated, all reactions were set up in an MBraun glovebox under an atm
of N2. Anhydrous solvents were deoxygenated by sparging with N2 and dried by passing
through activated alumina columns of a Pure Solv solvent purification system. CDCls was
purchased from Cambridge Isotope Lab and dried over molecular sieves (4 A). Cobalt
complexes (A and B) were prepared according to our published procedures.> The alcohol
and nitrile substrates were purchased from Sigma Aldrich and used as received. All other
chemicals were purchased from Fisher Scientific. Bases such as KO'Bu and NaO'Bu were
vacuum sublimed before use. Comparable results were obtained as using >99.9%
commercial ones. NMR spectra were recorded on a JEOL Unity 500 MHz or 300 MHz
spectrometer. *H NMR spectra were referenced to tetramethyl silane (0.00 ppm) using
CDCl; as solvent. **C NMR were referenced to solvent carbons at 77.0 ppm for CDCls. *°F
NMR spectra were referenced to fluorobenzene at —113.15 ppm. The NMR spectra for the
known compounds are comparable with the previously reported ones.??*> 6772 High
resolution mass spectrometry (HRMS) analyses were performed on Waters GCT Premier
orthogonal acceleration time of flight (oa-TOF) mass spectrometer in positive EI method

using MassLynx Software control.

4.5 General procedures for a-olefination of nitriles with primary

alcohols:

290



Inside the N filled glove box, an oven-dry 15 mL reaction tube was charged with the
mixture of A (1.6 mg, 2.44 umol, 1 mol%), NaO'Bu (0.7 mg, 7.3 umol, 3 mol%), nitrile
(0.35 mmol), primary alcohol (0.25 mmol), and toluene (1 mL). The reaction tube was
sealed by a screw cap fitted with PTFE septa and taken out from the box. An argon filled
balloon was fitted on the top of the reaction tube and placed in a pre-heated oil bath at 140
°C for 6 h. After the reaction was finished and cooled down, the reaction mixture was
filtered through a silica gel plug and washed with DCM. The collected filtrate was
concentrated under reduced pressure. The obtained crude mixture was purified by a silica

gel column using ethyl acetate /hexane (1:50, v/v) as an eluent to obtain the isolated yield.

4.5.1 Procedures for a-olefination of nitriles with primary alcohols by

complex B:

Inside the N filled glove box, an oven-dry 15 mL reaction tube was charged with the
mixture of B (1.9 mg, 2.44 pmol, 1 mol%), NaO'Bu (0.7 mg, 7.3 umol, 3 mol%), nitrile
(0.35 mmol), primary alcohol (0.25 mmol), and toluene (1 mL). The reaction tube was
sealed by a screw cap fitted with PTFE septa and taken out from the box. An argon filled
balloon was fitted on the top of the reaction tube and placed in a pre-heated oil bath at 140
°C for 6 h. After the reaction was finished and cooled down, the reaction mixture was
filtered through a silica gel plug and washed with DCM. The collected filtrate was
concentrated under reduced pressure. The obtained crude mixture was purified by a silica

gel column using ethyl acetate /hexane (1:50, v/v) as an eluent to obtain the isolated yield.

4.6 Procedures for a-olefination of benzyl nitrile with benzyl alcohol at 1

mmol scale:
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Inside the N filled glove box, an oven-dry 15 mL reaction tube was charged with the
mixture of A (6.4 mg, 9.76 umol, 1 mol%), NaOtBu (2.8 mg, 29.2 umol, 3 mol%), benzyl
nitrile (1.4 mmol), benzyl alcohol (1.0 mmol), and toluene (1 mL). The reaction tube was
sealed by a screw cap fitted with PTFE septa and taken out from the box. An argon filled
balloon was fitted on the top of the S3 reaction tube and placed in a pre-heated oil bath at
140 °C for 6 h. After the reaction was finished and cooled down, the reaction mixture was
filtered through a silica gel plug and washed with DCM. The collected filtrate was
concentrated under reduced pressure. The obtained crude mixture was purified by a silica

gel column using ethyl acetate /hexane (1:50, v/v) as an eluent to obtain the isolated yield.
4.7 Mercury test:

Inside the N filled glove box, an oven-dry 15 mL reaction tube was charged with the
mixture of A (1.6 mg, 2.44 umol, 1 mol%), NaO'Bu (0.7 mg, 7.3 umol, 3 mol%), nitrile
(0.35 mmol), primary alcohol (0.25 mmol), Hg (125 mg), and toluene (1 mL). The reaction
tube was sealed by a screw cap fitted with PTFE septa and taken out from the box. An
argon filled balloon was fitted on the top of the reaction tube and placed in a pre-heated oil
bath at 140 °C for 6 h. After the reaction was finished and cooled down, 1,3,5-
trimethoxybenzene (8.4 mg, 0.05 mmol) dissolved in diethyl ether was added to the
reaction mixture, stirred, and filtered through silica gel plug. The plug was washed with
diethyl ether and the collected filtrate was concentrated under vacuum using rotavapor. The

obtained residue was dissolved in CDCls and subjected for NMR analysis.

4.8 Filtration experiment:

292



Inside the N filled glove box, an oven-dry 15 mL reaction tube was charged with the
mixture of A (1.6 mg, 2.44 umol, 1 mol%), NaO'Bu (0.7 mg, 7.3 umol, 3 mol%), nitrile
(0.35 mmol), primary alcohol (0.25 mmol), and toluene (1 mL). The reaction tube was
sealed by a screw cap fitted with PTFE septa and taken out from the box. An argon filled
balloon was fitted on the top of the reaction tube and placed in a pre-heated oil bath at 140
°C for 10 min. The reaction tube was cooled down and taken back to the glove box. The
solution was filtered through a PTFE filtering disc and loaded into a new reaction vessel
(to avoid possible nanoparticles sticked on the wall) and allowed to run for 6 h. After the
reaction was finished and cooled down, 1,3,5-trimethoxybenzene (8.4 mg, 0.05 mmol)
dissolved in diethyl ether was added to the reaction mixture, stirred, and filtered through
silica gel plug. The plug was washed with diethyl ether and the collected filtrate was
concentrated under vacuum using rotavapor. The obtained residue was dissolved in CDCl3
and subjected for NMR analysis. A good 78% yield was recorded. In the control
experiment for 10 min, only 19% yield was obtained. These results suggest that the reaction

is not mediated by nanomaterials.
4.9 Hydrogen gas detection:

Inside the N2 filled glove box, an oven-dry 100 mL pressure vessel was charged with the
mixture of A (6.4 mg, 9.76 umol, 1 mol%), NaO'Bu (2.8 mg, 29.2 umol, 3 mol%),
benzeneacetonitrile (1.4 mmol), benzyl alcohol (1 mmol), and toluene (1.5 mL). The
pressure vessel was sealed and taken out from the box and placed in a pre-heated oil bath

at 140 °C for 6 h. The headspace gas sample was taken by a needle syringe from the side
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arm and detected by SRI 8610C Gas Chromatograph with a 5 A molecular sieves column

(Restek CP753415) with N carrier gas.

4.10 Deuterium labeling experiments for a-olefination of nitriles with

primary alcohols:

Inside the N filled glove box, an oven-dry 15 mL reaction tube was charged with the
mixture of A (1.6 mg, 2.44 pumol, 1 mol%), NaO'Bu (0.7 mg, 7.3 umol, 3 mol%),
benzeneacetonitrile (0.35 mmol), benzyl alcohol or benzyl alcohol-a,0-d2 (0.25 mmol),
and toluene (1 mL). The reaction tube was S4 sealed by a screw cap fitted with PTFE septa
and taken out from the box. An argon filled balloon was fitted on the top of the reaction
tube and placed in a pre-heated oil bath at 140 °C for 0.5 h. After the reaction was finished
and cooled down, 1,3,5-trimethoxybenzene (8.4 mg, 0.05 mmol) dissolved in diethyl ether
was added to the reaction mixture, stirred, and filtered through silica gel plug. The plug
was washed with diethyl ether and the collected filtrate was concentrated under vacuum
using rotavapor. The obtained residue was dissolved in CDCIz and subjected for NMR

analysis.
4.11 Transfer hydrogenation of 2,3-diphenylacrylonitrile by NaO'Bu:

Inside the N filled glove box, an oven-dry 100 mL reaction tube was charged with the
mixture of NaO'Bu (0.7 mg, 1 mol%), 2,3-diphenylacrylonitrile (0.75 mmol), benzyl
alcohol (1.5 mmol) and toluene (2 mL). The reaction tube was sealed, taken out from the
box, and placed in a pre-heated oil bath at 140 °C for 6 h. After the reaction was finished

and cooled down, 1,3,5-trimethoxybenzene (8.4 mg, 0.05 mmol) dissolved in diethyl ether
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was added to the reaction mixture, stirred, and filtered through silica gel plug. The plug
was washed with diethyl ether and the collected filtrate was concentrated under vacuum
using rotavapor. The obtained residue was dissolved in CDCl3z and subjected for NMR

analysis.

4.12 Transfer hydrogenation of 2,3-diphenylacrylonitrile in the presence

of NaO'Bu and A:

Inside the N filled glove box, an oven-dry 100 mL reaction tube was charged with the
mixture of A (1.6 mg, 1 mol%), NaO'Bu (0.7 mg, 3 mol%), benzyl alcohol (0.5 mmol) and
toluene (2 mL). The reaction tube was sealed, taken out from the box, and placed in a pre-
heated oil bath at 140 °C for 1 min, and the color changed from dark red to light yellow.
The tube was taken back to the box, and 2,3-diphenylacrylonitrile (0.25 mmol) was added.
After heating for 6 h at 140 °C and cooling down, 1,3,5-trimethoxybenzene (8.4 mg, 0.05
mmol) dissolved in diethyl ether was added to the reaction mixture, stirred, and filtered
through silica gel plug. The plug was washed with diethyl ether and the collected filtrate
was concentrated under vacuum using rotavapor. The obtained residue was dissolved in

CDCl3 and subjected for NMR analysis.
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4.13 Synthetic Details for a-Olefinic Nitriles 3a — 3x

O 3a%. Inside the N filled glove box, an oven-dry 15 mL reaction tube
XN

J 4

40 pL), benzyl alcohol (0.25 mmol, 26 pL), and toluene (1 mL). The reaction tube was

was charged with the mixture of A (1.6 mg, 2.44 pmol, 1 mol%),

NaO'Bu (0.7 mg, 7.3 umol, 3 mol%), benzeneacetonitrile (0.35 mmol,

sealed by a screw cap fitted with PTFE septa and taken out from the box. An argon filled
balloon was fitted on the top of the reaction tube and placed in a pre-heated oil bath at 140
°C for 6 h. After the reaction was finished and cooled down, the reaction mixture was
filtered through a silica gel plug and washed with DCM. The collected filtrate was
concentrated under reduced pressure. The obtained crude mixture was purified by a silica
gel column using ethyl acetate/hexane (1:50, v/v) as an eluent. White solid of 3a was
isolated. Yield: 43.6 mg (85%). *H NMR (500 MHz, CDCl3) § 7.89 (d, J = 7.2 Hz, 2H),
7.68 (d, J = 7.4 Hz, 2H), 7.54 (s, 1H), 7.49 - 7.37 (m, 6H) ppm; C NMR (126 MHz,

CDClI3) 6 142.4, 134.6, 133.8, 130.6, 129.4, 129.3, 129.2, 129.1, 126.1, 118.1, 111.8 ppm.

3b®. Inside the N; filled glove box, an oven-dry 15 mL reaction
A O tube was charged with the mixture of A (1.6 mg, 2.44 umol, 1

~ CN
0 mol%), NaO'Bu (0.7 mg, 7.3 pumol, 3 mol%),
benzeneacetonitrile (0.35 mmol, 40 L), 4-methoxybenzyl alcohol (0.25 mmol, 31 uL),
and toluene (1 mL). The reaction tube was sealed by a screw cap fitted with PTFE septa
and taken out from the box. An argon filled balloon was fitted on the top of the reaction

tube and placed in a pre-heated oil bath at 140 °C for 6 h. After the reaction was finished
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and cooled down, the reaction mixture was filtered through a silica gel plug and washed
with DCM. The collected filtrate was concentrated under reduced pressure. The obtained
crude mixture was purified by a silica gel column using ethyl acetate/hexane (1:50, v/v) as
an eluent. White solid of 3b was isolated. Yield: 51.2 mg (87%). *H NMR (500 MHz,
CDCl3) & 7.89 (d, J = 8.8 Hz, 2H), 7.65 (d, J = 7.6 Hz, 2H), 7.50 - 7.32 (m, 4H), 6.98 (d, J
=8.8 Hz, 2H), 3.87 (s, 3H) ppm; **C NMR (126 MHz, CDCl3) § 160.4, 140.9, 133.9, 130.2,

128.0, 127.8, 125.6, 124.8, 117.6, 113.4, 107.7, 54.5 ppm.

3c®. Inside the N filled glove box, an oven-dry 15 mL reaction

O N O tube was charged with the mixture of A (1.6 mg, 2.44 umol, 1
N mol%), NaO'Bu (0.7 mg, 7.3 pmol, 3 mol%), benzeneacetonitrile

(0.35 mmol, 40 pL), 4- methylbenzyl alcohol (0.25 mmol, 30.5 mg), and toluene (1 mL).
The reaction tube was sealed by a screw cap fitted with PTFE septa and taken out from the
box. An argon filled balloon was fitted on the top of the reaction tube and placed in a pre-
heated oil bath at 140 °C for 6 h. After the reaction was finished and cooled down, the
reaction mixture was filtered through a silica gel plug and washed with DCM. The collected
filtrate was concentrated under reduced pressure. The obtained crude mixture was purified
by a silica gel column using ethyl acetate/hexane (1:50, v/v) as an eluent. White solid of
3c was isolated. Yield: 46.5 mg (85%). *H NMR (500 MHz, CDCls) § 7.80 (d, J = 8.1 Hz,
2H), 7.67 (d, J = 8.8 Hz, 2H), 7.51 (s, 1H), 7.44 (t, J = 7.5 Hz, 2H), 7.38 (t, = 7.3 Hz, 1H),
7.28 (d, J = 8.1 Hz, 2H), 2.42 (s, 3H) ppm; 3C NMR (126 MHz, CDCl3) § 141.2, 140.0,

133.6, 129.9, 128.6, 128.2, 127.9, 127.9, 124.8, 117.1, 109.3, 20.5 ppm.
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3d. Inside the N2 filled glove box, an oven-dry 15 mL reaction

O SN O tube was charged with the mixture of A (1.6 mg, 2.44 umol, 1

eN mol%), NaO'Bu (0.7 mg, 7.3 pmol, 3 mol%),
benzeneacetonitrile (0.35 mmol, 40 uL), 4-isopropylbenzyl alcohol (0.25 mmol, 38 uL),
and toluene (1 mL). The reaction tube was sealed by a screw cap fitted with PTFE septa
and taken out from the box. An argon filled balloon was fitted on the top of the reaction
tube and placed in a pre-heated oil bath at 140 °C for 6 h. After the reaction was finished
and cooled down, the reaction mixture was filtered through a silica gel plug and washed
with DCM. The collected filtrate was concentrated under reduced pressure. The obtained
crude mixture was purified by a silica gel column using ethyl acetate/hexane (1:50, v/v) as
an eluent. Colorless liquid of 3d was isolated. Yield: 49 mg (79%). *H NMR (500 MHz,
CDCl3) & 7.84 (d, ] = 8.2 Hz, 2H), 7.67 (d, J = 7.3 Hz, 2H), 7.52 (s, 1H), 7.47 - 7.42 (m,
2H), 7.38 (t, J = 6.8 Hz, 1H), 7.33 (d, J = 8.2 Hz, 2H), 3.03 — 2.89 (m, 1H), 1.28 (d, J = 6.9
Hz, 6H) ppm; 3C NMR & 152.0, 142.3, 131.4, 129.4, 129.0, 127.0, 125.9, 118.2, 110.5,
34.2, 23.7 ppm; HRMS (ESI+): m/z [M+H]+calcd for C18H17NNa, 270.1258; found

270.1253.

3e®. Inside the N filled glove box, an oven-dry 15 mL reaction

O N O tube was charged with the mixture of A (1.6 mg, 2.44 umol, 1 mol%),

CN NaO'Bu (0.7 mg, 7.3 umol, 3 mol%), benzeneacetonitrile (0.35 mmol,

40 pL), 2- methylbenzyl alcohol (0.25 mmol, 30 pL), and toluene (1 mL). The reaction
tube was sealed by a screw cap fitted with PTFE septa and taken out from the box. An
argon filled balloon was fitted on the top of the reaction tube and placed in a pre-heated oil

bath at 140 °C for 6 h. After the reaction was finished and cooled down, the reaction
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mixture was filtered through a silica gel plug and washed with DCM. The collected filtrate
was concentrated under reduced pressure. The obtained crude mixture was purified by a
silica gel column using ethyl acetate/hexane (1:50, v/v) as an eluent. White solid of 3e was
isolated. Yield: 44.4 mg (81%). *H NMR (500 MHz, CDCls) § 7.94 (d, J = 7.0 Hz, 1H),
7.86 (d, J=7.4 Hz, 1H), 7.76 (s, 1H ), 7.69 (d, J = 8.2 Hz, 2H), 7.44 (dt, J = 14.7, 7.8 Hz,
3H), 7.34 (dd, J = 11.3, 7.4 Hz, 2H), 2.40 (s, 3H) ppm; *C NMR (126 MHz, CDCls) &
114.2, 137.6, 134.4, 133.3, 130.6, 130.3, 129.4, 129.2, 128.2, 126.5, 126.2, 117.8, 114.0,

20.1 ppm.

O 3f%" . Inside the N filled glove box, an oven-dry 15 mL reaction
O ~ tube was charged with the mixture of A (1.6 mg, 2.44 umol, 1

of CN -
mol%), NaO'Bu (0.7 mg, 7.3 pmol, 3 mol%), benzeneacetonitrile
(0.35 mmol, 40 pL), 4- chlorobenzyl alcohol (0.25 mmol, 36 mg), and toluene (1 mL). The
reaction tube was sealed by a screw cap fitted with PTFE septa and taken out from the box.
An argon filled balloon was fitted on the top of the reaction tube and placed in a pre-heated
oil bath at 140 °C for 6 h. After the reaction was finished and cooled down, the reaction
mixture was filtered through a silica gel plug and washed with DCM. The collected filtrate
was concentrated under reduced pressure. The obtained crude mixture was purified by a
silica gel column using ethyl acetate/hexane (1:50, v/v) as an eluent. White solid of 3f was
isolated. Yield: 52.7 mg (88%). *H NMR (500 MHz, CDCls) § 7.83 (d, J = 8.5 Hz, 2H),
7.68 (d, J = 8.7 Hz, 2H), 7.51 - 7.37 (m, 6H) ppm; 3C NMR (126 MHz, CDCls) § 140.8,

136.5, 134.3, 132.3, 130.6, 129.5, 129.4, 129.2, 126.1, 117.8, 112.4 ppm.
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39°%. Inside the N; filled glove box, an oven-dry 15 mL reaction

O \CN tube was charged with the mixture of A (1.6 mg, 2.44 pmol, 1

" mol%), NaO'Bu (0.7 mg, 7.3 umol, 3 mol%), benzeneacetonitrile
(0.35 mmol, 40 pL), 4- fluorobenzyl alcohol (0.25 mmol, 27 uL), and toluene (1 mL). The
reaction tube was sealed by a screw cap fitted with PTFE septa and taken out from the box.
An argon filled balloon was fitted on the top of the reaction tube and placed in a preheated
oil bath at 140 °C for 6 h. After the reaction was finished and cooled down, the reaction
mixture was filtered through a silica gel plug and washed with DCM. The collected filtrate
was concentrated under reduced pressure. The obtained crude mixture was purified by a
silica gel column using ethyl acetate/hexane (1:50, v/Vv) as an eluent. White solid of 3g was
isolated. Yield: 42.4 mg (76%). *H NMR (500 MHz, CDClz) § 7.90 (dd, J = 8.8, 5.3 Hz,
2H), 7.67 (d, J = 7.2 Hz, 2H), 7.50 (s, 1H), 7.43 (dt, J = 25.7, 7.2 Hz, 3H), 7.16 (t, J = 8.6
Hz, 2H) ppm; 3C NMR (126 MHz, CDCls) & 163.8 (d, 1J C-F = 253 Hz), 141.0, 134.4,
131.4 (d, 3 C-F = 8.6 Hz), 130.1, 129.4, 129.2, 126.0, 118.0, 116.3 (d, 2J C-F = 21.9 Hz),

115.6 ppm. 19F NMR (283 MHz, CDCI3) & -108.1 ppm

N O 3h® . Inside the N filled glove box, an oven-dry 15 mL
FsC O CN reaction tube was charged with the mixture of A (1.6 mg, 2.44
umol, 1 mol%), NaO'Bu (0.7 mg, 7.3 umol, 3 mol%), benzeneacetonitrile (0.35 mmol, 40
ML), 4-trifluoromethylbenzyl alcohol (0.25 mmol, 34 pL), and toluene (1 mL). The reaction
tube was sealed by a screw cap fitted with PTFE septa and taken out from the box. An

argon filled balloon was fitted on the top of the reaction tube and placed in a pre-heated oil
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bath at 140 °C for 6 h. After the reaction was finished and cooled down, the reaction
mixture was filtered through a silica gel plug and washed with DCM. The collected filtrate
was concentrated under reduced pressure. The obtained crude mixture was purified by a
silica gel column using ethyl acetate/hexane (1:50, v/v) as an eluent. White solid of 3h was
isolated. Yield: 63 mg (92%). *H NMR (500 MHz, CDCl3) & 7.98 (d, ] = 8.4 Hz, 2H), 7.79
— 7.65 (m, 4H), 7.57 (s, 1H), 7.53 — 7.40 (m, 3H) ppm; *C NMR (126 MHz, CDCI3) §
140.2, 137.1, 133.9, 132.0 (g, 2JC-F = 33.3 Hz), 129.9, 129.3 (d, 3JC-F = 22.5 Hz), 126.3,
126.0, 123.7 (d, 1JC-F = 272.5 Hz), 117.5, 114.6 ppm. °F NMR (283 MHz, CDCl3) & -

62.9 ppm.

] 3i% . Inside the N filled glove box, an oven-dry 15 mL

<0 O A reaction tube was charged with the mixture of A (1.6 mg, 2.44
CN
0

benzeneacetonitrile (0.35 mmol, 40 uL), 3,4 methylenedioxybenzyl alcohol (0.25 mmol,

umol, 1 mol%), NaO'Bu (0.7 mg, 7.3 pmol, 3 mol%),

38 mg), and toluene (1 mL). The reaction tube was sealed by a screw cap fitted with PTFE
septa and taken out from the box. An argon filled balloon was fitted on the top of the
reaction tube and placed in a pre-heated oil bath at 140 °C for 6 h. After the reaction was
finished and cooled down, the reaction mixture was filtered through a silica gel plug and
washed with DCM. The collected filtrate was concentrated under reduced pressure. The
obtained crude mixture was purified by a silica gel column using ethyl acetate/hexane
(1:50, v/v) as an eluent. Yellow solid of 3i was isolated. Yield: 50.4 mg (81%). *H NMR
(500 MHz, CDCls) & 7.64 (d, J = 7.6 Hz, 2H), 7.60 (d, J = 7.6 Hz, 1H), 7.48 — 7.35 (m,

4H), 7.30 (d, J = 9.4 Hz, 1H), 6.89 (d, J = 8.1 Hz, 1H), 6.05 (s, 2H) ppm; 3C NMR (126
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MHz, CDClz) 6 149.8, 148.4,141.9, 134.8, 129.1, 129.0, 128.2, 125.9,

O
| - 118.4, 109.3, 108.7, 108.2, 101.9 ppm.
\ CN

3j%. Inside the N2 filled glove box, an oven-dry 15 mL reaction tube was charged with the
mixture of A (1.6 mg, 2.44 umol, 1 mol%), NaO'Bu (0.7 mg, 7.3 umol, 3 mol%),
benzeneacetonitrile (0.35 mmol, 40 uL), 2-furfuryl alcohol (0.25 mmol, 22 uL), and
toluene (1 mL). The reaction tube was sealed by a screw cap fitted with PTFE septa and
taken out from the box. An argon filled balloon was fitted on the top of the reaction tube
and placed in a pre-heated oil bath at 140 °C for 6 h. After the reaction was finished and
cooled down, the reaction mixture was filtered through a silica gel plug and washed with
DCM. The collected filtrate was concentrated under reduced pressure. The obtained crude
mixture was purified by a silica gel column using ethyl acetate/hexane (1:50, v/v) as an
eluent. Yellow liquid of 3j was isolated. Yield: 25.3 mg (52%). *H NMR (500 MHz,
CDCl3) § 7.65 (dd, J = 7.6, 1.8 Hz, 2H), 7.60 (d, J = 1.6 Hz, 1H), 7.43 (t, J = 7.6 Hz, 2H),
7.40 - 7.34 (m, 2H), 7.21 (d, J = 3.5 Hz, 1H), 6.59 (dd, J = 3.5, 1.7 Hz, 1H) ppm; 3C NMR

(126 MHz, CDClz) 6 149.1, 143.8, 132.6, 128.0, 128.0, 127.0,

OO X O 1245, 116.7, 114.1, 111.7, 106.6 ppm.
CN

3k™. Inside the N; filled glove box, an oven-dry 15 mL reaction
tube was charged with the mixture of A (1.6 mg, 2.44 umol, 1 mol%), NaO'Bu (0.7 mg,
7.3 pmol, 3 mol%), benzeneacetonitrile (0.35 mmol, 40 uL), 2-naphthylmethyl alcohol
(0.25 mmol, 34 pL), and toluene (1 mL). The reaction tube was sealed by a screw cap fitted
with PTFE septa and taken out from the box. An argon filled balloon was fitted on the top

of the reaction tube and placed in a pre-heated oil bath at 140 °C for 6 h. After the reaction
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was finished and cooled down, the reaction mixture was filtered through a silica gel plug
and washed with DCM. The collected filtrate was concentrated under reduced pressure.
The obtained crude mixture was purified by a silica gel column using ethyl acetate/hexane
(1:50, v/v) as an eluent. White solid of 3k was isolated. Yield: 52.3 mg (82%). *H NMR
(500 MHz, CDCls) & 8.30 (s, 1H), 8.09 (dd, J = 8.6, 1.7 Hz, 1H), 7.92 (d, J = 8.5 Hz, 2H),
7.86 (d, J = 7.4 Hz, 1H), 7.73 (d, J = 7.1 Hz, 2H ), 7.69 (s, 1H), 7.59 - 7.51 (m, 2H), 7.47
(t,J = 7.5 Hz, 2H), 7.44 - 7.38 (m, 1H) ppm; 3C NMR (126 MHz, CDCl3) & 142.3, 134.7,

O F134.2, 133.2, 131.4, 130.5, 129.3, 129.2, 128.9, 128.8, 127.9,

O N 127.8,126.9, 126.1, 125.4, 118.3, 111.8 ppm.
CN

31 . Inside the N filled glove box, an oven-dry 15 mL reaction tube
was charged with the mixture of A (1.6 mg, 2.44 pmol, 1 mol%), NaO'Bu (0.7 mg, 7.3
pmol, 3 mol%), 4-fluorobenzeneacetonitrile (0.35 mmol, 42 uL), benzyl alcohol (0.25
mmol, 26 pL), and toluene (1 mL). The reaction tube was sealed by a screw cap fitted with
PTFE septa and taken out from the box. An argon filled balloon was fitted on the top of
the reaction tube and placed in a pre-heated oil bath at 140 °C for 6 h. After the reaction
was finished and cooled down, the reaction mixture was filtered through a silica gel plug
and washed with DCM. The collected filtrate was concentrated under reduced pressure.
The obtained crude mixture was purified by a silica gel column using ethyl acetate/hexane
(1:50, v/v) as an eluent. White solid of 3l was isolated. Yield: 48.5 mg (87%). *H NMR
(500 MHz, CDCl3) & 7.88 (d, J = 6.9 Hz, 2H), 7.67 — 7.64 (m, 2H), 7.57 — 7.36 (m, 4H),
7.23 - 7.08 (m, 2H) ppm; 13C NMR (126 MHz, CDCls) & 163.3 (d, 1J C-F = 250.1 Hz),
142.3, 133.6, 130.7, 129.3, 129.1, 128.0 (d, 3J C-F = 8.2 Hz), 118.0, 116.2 (d, 2J C-F =

21.9 Hz), 110.7 ppm. **F NMR (283 MHz, CDCls3) § -112.9 ppm.
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CF3

O 3m. Inside the N2 filled glove box, an oven-dry 15 mL reaction tube
O \CN was charged with the mixture of A (1.6 mg, 2.44 umol, 1 mol%),
NaO'Bu (0.7mg, 7.3 pmol, 3 mol%), 3-trifluoromethylbenzeneacetonitrile (0.35 mmol, 52
pL), benzyl alcohol (0.25 mmol, 26 uL), and toluene (1 mL). The reaction tube was sealed
by a screw cap fitted with PTFE septa and taken out from the box. An argon filled balloon
was fitted on the top of the reaction tube and placed in a pre-heated oil bath at 140 °C for
6 h. After the reaction was finished and cooled down, the reaction mixture was filtered
through a silica gel plug and washed with DCM. The collected filtrate was concentrated
under reduced pressure. The obtained crude mixture was purified by a silica gel column
using ethyl acetate/hexane (1:50, v/v) as an eluent. White solid of 3m was isolated. Yield:
53 mg (78%). *H NMR (500 MHz, CDCls) & 7.87 — 7.92 (m, 4H), 7.66 (d, J = 7.1 Hz, 1H),
7.60 (s, 2H), 7.49 (s, 3H) ppm; 3C NMR (126 MHz, CDCls) 5 143.9, 135.5, 133.3, 131.7
(9, J C—-F=335Hz), 131.2, 129.8, 129.6, 129.5, 129.1, 125.9 (q, J C — F = 272.0 Hz),
125.8 (d, J C — F = 3.7 Hz), 122.7 (d, J C — F = 3.7 Hz), 117.6, 110.4 ppm. F NMR (283

MHz, CDClz) & -62.7 ppm; HRMS (ESI+): m/z [M+H]+calcd for C16H10F3NNa,

0}

Ly

X 0]
(J &

tube was charged with the mixture of A (1.6 mg, 2.44 umol, 1 mol%), NaO'Bu (0.7 mg,

296.0666; found 296.0658.

3n. Inside the N> filled glove box, an oven-dry 15 mL reaction

7.3 umol, 3 mol%), (benzodioxol-5-yl)acetonitrile (0.35 mmol, 40 mg), benzyl alcohol
(0.25 mmol, 26 pL), and toluene (1 mL). The reaction tube was sealed by a screw cap fitted

with PTFE septa and taken out from the box. An argon filled balloon was fitted on the top
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of the reaction tube and placed in a pre-heated oil bath at 140 °C for 6 h. After the reaction
was finished and cooled down, the reaction mixture was filtered through a silica gel plug
and washed with DCM. The collected filtrate was concentrated under reduced pressure.
The obtained crude mixture was purified by a silica gel column using ethyl acetate/hexane
(1:50, v/v) as an eluent. White solid of 3n was isolated. Yield: 40.5 mg (65%). *H NMR
(500 MHz, CDCl3) & 7.85 (d, J = 6.9 Hz, 2H), 7.56 — 7.34 (m, 4H), 7.21 (dd, J = 8.1, 1.9
Hz, 1H), 7.14 (d, J = 2.0 Hz, 1H), 6.87 (d, J = 8.1 Hz, 1H), 6.03 (s, 2H) ppm; 3C NMR
(126 MHz, CDCls) 148.7, 148.6, 140.8, 133.9, 130.4, 129.2, 129.0, 128.9, 120.8, 118.1,

111.5, 108.7, 106.0, 101.8 ppm; HRMS (ESI+): m/z [M+H]+calcd

=
|
XN for C1I6H11NNaO2, 272.0690; found 272.0682.

CN
30®. Inside the N filled glove box, an oven-dry 15 mL reaction

tube was charged with the mixture of A (1.6 mg, 2.44 umol, 1 mol%), NaO'Bu (0.7 mg,
7.3 umol, 3 mol%), 3-pyridylacetonitrile (0.35 mmol, 38 pL), benzyl alcohol (0.25 mmol,
26 L), and toluene (1 mL). The reaction tube was sealed by a screw cap fitted with PTFE
septa and taken out from the box. An argon filled balloon was fitted on the top of the
reaction tube and placed in a pre-heated oil bath at 140 °C for 6 h. After the reaction was
finished and cooled down, the reaction mixture was filtered through a silica gel plug and
washed with DCM. The collected filtrate was concentrated under reduced pressure. The
obtained crude mixture was purified by a silica gel column using ethyl acetate/hexane
(1:50, v/v) as an eluent. White solid of 30 was isolated. Yield: 37.6 mg (73%). *H NMR
(500 MHz, CDCls) & 8.94 (s, 1H), 8.65 (d, J = 4.6 Hz, 1H), 7.99 — 7.97 (m, 1H), 7.95 —

7.87 (m, 2H), 7.58 (s, 1H), 7.55 — 7.45 (m, 3H), 7.40 (dd, J = 8.3, 4.7 Hz, 1H) ppm; 13C
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NMR (126 MHz, CDCls) 150.2, 147.2, 143.9, 133.6, 133.3, 131.3, 130.7, 129.5, 129.2,

123.7,117.3, 108.6 ppm.

O 3p™ . Inside the N2 filled glove box, an oven-dry 15 mL reaction
O \CN tube was charged with the mixture of A (1.6 mg, 2.44 umol, 1
mol%), NaO'Bu (0.7 mg, 7.3 umol, 3 mol%), 2-naphthylacetonitrile (0.35 mmol, 59 mg),
benzyl alcohol (0.25 mmol, 26 pL), and toluene (1 mL). The reaction tube was sealed by a
screw cap fitted with PTFE septa and taken out from the box. An argon filled balloon was
fitted on the top of the reaction tube and placed in a pre-heated oil bath at 140 °C for 6 h.
After the reaction was finished and cooled down, the reaction mixture was filtered through
a silica gel plug and washed with DCM. The collected filtrate was concentrated under
reduced pressure. The obtained crude mixture was purified by a silica gel column using
ethyl acetate/hexane (1:50, v/v) as an eluent. White solid of 3p was isolated. Yield: 56.8
mg (89%). *H NMR (500 MHz, CDCls) & 8.18 (s, 1H), 8.06 — 7.82 (m, 5H), 7.77 (d, J =
8.6 Hz, 1H), 7.69 (s, 1H), 7.62 — 7.41 (m, 5H) ppm; 3C NMR (126 MHz, CDCl3) 5 142.3,
133.9, 133.5, 133.4, 131.7, 130.7, 129.4, 129.1, 129.0, 128.6, 127.8, 127.2, 127.1, 126.4,

122.6,118.2, 111.9 ppm.

o 3g%. Inside the N2 filled glove box, an oven-dry 15 mL reaction

O SN O tube was charged with the mixture of A (1.6 mg, 2.44 umol, 1
N mol%), NaO'Bu (0.7 mg, 7.3 upmol, 3 mol%), 4-
methoxybenzeneacetonitrile (0.35 mmol, 46 uL), benzyl alcohol (0.25 mmol, 26 uL), and

toluene (1 mL). The reaction tube was sealed by a screw cap fitted with PTFE septa and

taken out from the box. An argon filled balloon was fitted on the top of the reaction tube
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and placed in a pre-heated oil bath at 140 °C for 6 h. After the reaction was finished and
cooled down, the reaction mixture was filtered through a silica gel plug and washed with
DCM. The collected filtrate was concentrated under reduced pressure. The obtained crude
mixture was purified by a silica gel column using ethyl acetate/hexane (1:50, v/v) as an
eluent. Colorless liquid of 3q was isolated. Yield: 43.0 mg (78%). *H NMR (500 MHz,
CDCl3) 6 7.86 (d, J = 8.8 Hz, 2H), 7.62 (d, J = 9.0 Hz, 2H), 7.45 (dt, J = 14.9, 7.6Hz, 4H),
6.97 (d, J = 7.1 Hz, 2H), 3.85 (s, 3H) ppm; 3C NMR (126 MHz, CDCl3) § 160.5, 140.2,

134.1, 130.2, 129.1, 129.0, 127.4, 127.1, 118.2, 114.5, 111.4, 55.5 ppm.

O 3r. Inside the N filled glove box, an oven-dry 15 mL reaction tube
X

CN

(0.35 mmol, 46 uL), benzyl alcohol (0.25 mmol, 26 uL), and toluene (1 mL). The reaction

was charged with the mixture of A (1.6 mg, 2.44 umol, 1 mol%),

NaO'Bu (0.7 mg, 7.3 pmol, 3 mol%), 2-methylbenzeneacetonitrile

tube was sealed by a screw cap fitted with PTFE septa and taken out from the box. An
argon filled balloon was fitted on the top of the reaction tube and placed in a pre-heated oil
bath at 140 °C for 6 h. After the reaction was finished and cooled down, the reaction
mixture was filtered through a silica gel plug and washed with DCM. The collected filtrate
was concentrated under reduced pressure. The obtained crude mixture was purified by a
silica gel column using ethyl acetate/hexane (1:50, v/v) as an eluent. Colorless liquid of 3r
was isolated. Yield: 43.2 mg (78%). *H NMR (500 MHz, CDCls) § 7.88 (d, J = 7.6 Hz,
2H), 7.47 (d, 3 = 7.0 Hz, 4H), 7.31 (d, J = 6.8Hz, 3H), 7.15 (s, 1H), 2.49 (s, 3H) ppm; 3C
NMR (126 MHz, CDClzs) 6 147.0, 136.4, 135.5, 133.7, 131.0, 130.7, 129.5, 129.3, 129.2,
129.1, 126.6, 118.0, 111.3, 20.2 ppm; HRMS (ESI+): m/z [M+H]+calcd for CL6H13NNa,

242.0939; found 242.0940.
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o 3% . Inside the N filled glove box, an oven-dry 15 mL

N O reaction tube was charged with the mixture of A (1.6 mg, 2.44

O CN umol, 1 mol%), NaO'Bu (0.7 mg, 7.3 umol, 3 mol%), 4-
chlorobenzeneacetonitrile (0.35 mmol, 44 pL), 4-methylbenzyl alcohol (0.25 mmol, 30
pL), and toluene (1 mL). The reaction tube was sealed by a screw cap fitted with PTFE
septa and taken out from the box. An argon filled balloon was fitted on the top of the
reaction tube and placed in a pre-heated oil bath at 140 °C for 6 h. After the reaction was
finished and cooled down, the reaction mixture was filtered through a silica gel plug and
washed with DCM. The collected filtrate was concentrated under reduced pressure. The
obtained crude mixture was purified by a silica gel column using ethyl acetate/hexane
(1:50, v/v) as an eluent. White solid of 3s was isolated. Yield: 38.0 mg (60%). *H NMR
(500 MHz, CDCl3) & 7.79 (d, J = 8.1 Hz, 2H), 7.59 (d, J = 9.6 Hz, 2H), 7.47 (s, 1H), 7.42
—7.39 (M, 2H), 7.27 (d, J = 8.0 Hz, 2H), 2.41 (s, 3H) ppm; 3C NMR (126 MHz, CDCl5)

142.7, 141.6, 135.1, 133.3, 130.8, 129.8, 129.5, 129.3, 127.2, 118.0, 109.3, 21.7 ppm.

cN  3t’ Inside the N filled glove box, an oven-dry 15 mL

O SN ‘ reaction tube was charged with the mixture of A (1.6 mg,

~o N 2.44 pmol, 1 mol%), NaO'Bu (0.7 mg, 7.3 pmol, 3 mol%),
4-cyanobenzeneacetonitrile (0.35 mmol, 50mg), 4-methoxylbenzyl alcohol (0.25 mmol, 32
ML), and toluene (1 mL). The reaction tube was sealed by a screw cap fitted with PTFE
septa and taken out from the box. An argon filled balloon was fitted on the top of the
reaction tube and placed in a pre-heated oil bath at 140 °C for 6 h. After the reaction was
finished and cooled down, the reaction mixture was filtered through a silica gel plug and

washed with DCM. The collected filtrate was concentrated under reduced pressure. The
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obtained 11crude mixture was purified by a silica gel column using ethyl acetate/hexane
(1:50, v/v) as an eluent. Yellow solid of 3t was isolated. Yield: 49.5 mg (76%). *H NMR
(500 MHz, CDCl3) & 7.93 (d, J = 8.7 Hz, 2H), 7.77 (d, J = 8.7 Hz, 2H), 7.72 (d, J = 8.2 Hz,
2H), 7.56 (s, 1H), 7.01 (d, J = 8.9 Hz, 2H), 3.90 (s, 3H) ppm; 3C NMR (126 MHz, CDCls)
162.4, 144.5, 139.4, 132.9, 131.9, 126.3, 125.8, 118.4, 117.8, 114.7, 112.2, 106.7, 55.6

ppm.

o 3u. Inside the N> filled glove box, an oven-dry 15 mL

<o O N O o> reaction tube was charged with the mixture of A (1.6 mg,
0o N 2.44 pmol, 1 mol%), NaO'Bu (0.7 mg, 7.3 umol, 3 mol%),
(benzodioxol-5-yl)acetonitrile (0.35 mmol, 38 mg), 3,4-methylenedioxybenzyl alcohol
(0.25 mmol, 40 mg), and toluene (1 mL). The reaction tube was sealed by a screw cap fitted
with PTFE septa and taken out from the box. An argon filled balloon was fitted on the top
of the reaction tube and placed in a pre-heated oil bath at 140 °C for 6 h. After the reaction
was finished and cooled down, the reaction mixture was filtered through a silica gel plug
and washed with DCM. The collected filtrate was concentrated under reduced pressure.
The obtained crude mixture was purified by a silica gel column using ethyl acetate/hexane
(1:50, v/v) as an eluent. White solid of 3u was isolated. Yield: 56.0 mg (76%). *H NMR
(500 MHz, CDCl3)  7.55 (d, J = 1.7 Hz, 1H), 7.16 (dd, J = 8.2, 1.9 Hz, 2H), 7.10 (d, ] =
1.8 Hz, 1H), 6.87 (t, J = 1.7 Hz, 3H), 6.04 (s, 2H), 6.02 (s, 2H) ppm; *3C NMR (126 MHz,
CDCI3) 0 149.5, 148.5, 148.4, 148.3, 140.4, 129.1, 128.2, 125.6, 121.3, 120.5, 118.4, 108.9,
108.7, 108.1, 105.8, 101.8, 101.7 ppm. HRMS (ESI+): m/z [M+H]+calcd for

C17H11NNaO4, 316.0575; found 316.0580.
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3v®. Inside the N filled glove box, an oven-dry 15 mL reaction tube

W was charged with the mixture of A (3.2 mg, 4.88 umol, 2 mol%),
toow NaO'Bu (1.4 mg, 14.6 umol, 6 mol%), benzeneacetonitrile (0.35 mmol,

40 L), 1-hexyl alcohol (0.25 mmol, 31 pL), and toluene (1 mL). The reaction tube was
sealed by a screw cap fitted with PTFE septa and taken out from the box. An argon filled
balloon was fitted on the top of the reaction tube and placed in a pre-heated oil bath at 140
°C for 24 h. After the reaction was finished and cooled down, the reaction mixture was
filtered through a silica gel plug and washed with DCM. The collected filtrate was
concentrated under reduced pressure. The obtained crude mixture was purified by a silica
gel column using ethyl acetate/hexane (1:50, v/v) as an eluent. Colorless liquid of 3v was
isolated. Yield: 47.3 mg (95%). *H NMR (500 MHz, CDCls) & 7.53 (d, J = 7.3 Hz, 2H),
7.45 - 7.30 (m, 3H), 6.83 (t, J = 7.8 Hz, 1H), 2.59 (dd, J = 15.1, 7.7 Hz, 2H), 1.62 — 1.54
(m, 2H), 1.39 — 1.36 (m, 4H), 0.92 (t, J = 7.0 Hz, 3H) ppm; 3C NMR (126 MHz, CDCl3)

0147.4,133.4,129.0, 128.9, 125.7, 116.8, 115.9, 32.3, 31.4, 28.5, 22.5, 14.0 ppm.

3w. Inside the N2 filled glove box, an oven-dry 15 mL reaction tube was

A charged with the mixture of A (3.2 mg, 4.88 pumol, 2 mol%), NaO'Bu
o (1.4 mg, 14.6 pmol, 6 mol%), benzeneacetonitrile (0.35 mmol, 40 uL),
1-dodecyl alcohol (0.25 mmol, 56 uL), and toluene (1 mL). The reaction tube was sealed
by a screw cap fitted with PTFE septa and taken out from the box. An argon filled balloon
was fitted on the top of the reaction tube and placed in a pre-heated oil bath at 140 °C for
24 h. After the reaction was finished and cooled down, the reaction mixture was filtered

through a silica gel plug and washed with DCM. The collected filtrate was concentrated

under reduced pressure. The obtained crude mixture was purified by a silica gel column
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using ethyl acetate/hexane (1:50, v/v) as an eluent. Colorless liquid of 3w was isolated.
Yield: 63.7 mg (90%). *H NMR (500 MHz, CDCls) 6 7.53 (dd, J = 7.2, 1.5 Hz, 2H), 7.41
- 7.34 (m, 3H), 6.83 (t, J = 7.8 Hz, 1H), 2.58 (dd, J = 15.0, 7.5 Hz, 2H), 1.59 — 1.53 (m,
2H), 1.40 — 1.26 (m, 16H), 0.88 (t, J = 7.0 Hz, 3H) ppm; *C NMR (126 MHz, CDCl3) §
147.4, 133.4, 129.0, 128.9, 125.7, 116.8, 115.9, 32.3, 32.0, 29.7, 29.6, 29.5, 29.4, 29.3,
29.3, 28.8, 22.8, 14.2 ppm; HRMS (ESI+): m/z [M+H]+calcd for C20H29NNa, 306.2183;

found 306.2192.

o 3x. Inside the N2 filled glove box, an oven-dry 15 mL reaction
/\M/\KO/ tube was charged with the mixture of A (3.2 mg, 4.88 umol, 2
" on mol%), NaO'Bu (L4 mg, 146 pmol, 6 mol%), 4-
methoxybenzeneacetonitrile (0.35 mmol, 49 uL), 4-pentenol (0.25 mmol, 26 pL), and
toluene (1 mL). The reaction tube was sealed by a screw cap fitted with PTFE septa and
taken out from the box. An argon filled balloon was fitted on the top of the reaction tube
and placed in a pre-heated oil bath at 140 °C for 12 h. After the reaction was finished and
cooled down, the reaction mixture was filtered through a silica gel plug and washed with
DCM. The collected filtrate was concentrated under reduced pressure. The obtained crude
mixture was purified by a silica gel column using ethyl acetate/hexane (1:50, v/v) as an
eluent. Colorless liquid of 3x was isolated. Yield: 36.0 mg (68%). *H NMR (500 MHz,
CDCl3) 8 7.45 (d, J = 8.9 Hz, 2H), 6.91 (d, J = 8.9 Hz, 2H), 6.68 (t, J = 7.7 Hz, 1H), 5.89
—5.81 (M, 1H), 5.12 — 5.05 (m, 2H), 3.83 (s, 3H), 2.67 (dd, J = 14.8, 7.4 Hz, 2H), 2.31 (dd,
J=14.0,7.1 Hz, 2H) ppm; C NMR (126 MHz, CDCls) 160.2, 143.8, 136.7, 127.0, 125.9,
116.8, 116.2, 115.9, 114.4, 55.5, 32.8, 31.3 ppm; HRMS (ESI+): m/z [M+H]+calcd for

C14H15NNao, 236.1043; found 236.1046.
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4.14 Supplementary Figures
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Figure 4.2 H detection by GC chromatography.
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CHAPTER V

5.1 Conclusions

In summary, we developed N, P mixed-donor ligands and their cobalt complexes. These
air and moisture-stable cobalt complexes are great pre-catalysts for the acceptorless
dehydrogenative coupling reactions to synthesize substituted amine, imine, a-alkylated,

and olefinic nitriles.

Chapter Il presented the selective synthesis of amine and imine by tripodal ligand-
supported cobalt complexes. In this work, we coupled a large variety of primary alcohols
and amines to get secondary imines and amines in good to excellent yields. The product
selectivity was controlled by the amount of an external base used in the reaction. The
catalytic amount of a base is sufficient to activate the cobalt pre-catalyst into a cobalt
catalyst. The cobalt catalyst then dehydrogenates the alcohol into an aldehyde. The
aldehyde and aniline undergo condensation reactions in situ to give imine products. In the
presence of excess loading of a base and alcohol, it undergoes MPV type of reduction to
give amine product exclusively. The mechanistic study showed that the alcohol
dehydrogenation step is reversible and involves cobalt hydride species as the intermediate.
Moreover, the amine/imine forming reaction is environmentally benign, with only

hydrogen or/and water as byproducts.

Chapter 111 presented the selective synthesis of a-alkylated nitriles from alcohols and
nitriles using the same cobalt molecular catalyst mentioned in chapter Il. Different types
of a-alkylated nitriles were synthesized in good to excellent yields by coupling various

alcohols and nitriles. We used the same strategy developed in chapter Il for the product
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selectivity, i.e., excess amount of base for the saturated product. The mechanistic study
showed that first, alcohol is converted into aldehyde and then undergoes condensation
reaction with nitrile in the presence of a base to give «f unsaturated nitrile as an
intermediate. Finally, the intermediate is reduced to the nitrile product via the MPV
pathway. Remarkably, this transformation is environmentally friendly and atom

economical with water as the only byproduct.

Chapter 1V presented the selective synthesis of a,f-substituted acrylonitriles by our well-
defined cobalt catalyst mentioned in chapter Il. This chapter introduced the coupling of a
wide variety of nitriles and primary alcohols to their corresponding products. It is
noteworthy that the transformation is environmentally benign and atom efficient, with H,O

and H: being the only byproducts.

5.2 Future Outlook

This research has demonstrated the versatile catalytic activities of our cobalt catalyst in the
synthesis of C-C and C-N bonds. Although this catalyst has excellent catalytic properties,
it lacks the MLC properties and requires external base additives for activation. As a future
perspective, the developed ligand can be modified by introducing MLC modes having
higher basicity than the current pendant arm. This can be done by installing more basic

imidazole or Benzimidazole moiety in the pendant arm.
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Scheme 5.1 Synthesis of a new cobalt complex |11

We were able to synthesize the cobalt complex Il (Scheme 5.1). The cobalt complex Il1
showed promising results towards amine synthesis with a reduced base loading than the
current cobalt catalyst. However, we saw the decomposition of the metal complex during

the reaction. We hypothesize that the imidazole pendant arm may be broken due to a weak
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phosphorous nitrogen bond. To support this hypothesis, we exposed our ligand to the air
and took the NMR. Indeed, we saw the ligand decomposition into imidazole, and
phosphine oxide peak was also observed in NMR. To synthesize the oxidized version of
the ligand, we add water to the | from scheme 5.1. As expected, we obtained the phosphine
oxide containing ligand (Scheme 5.2). After that, we made a cobalt complex by using
ligand IV and used it in the catalysis. The preliminary study showed that complex V
requires 85 mol% less added base than the current cobalt catalyst reported in chapter 11l
for amine synthesis. Further exploration of the catalytic activities of this new cobalt

catalyst and the iron catalyst development is ongoing in our lab.

PPr,Cl  PPr, PPr,||  PiPr,
P H,0 p

Scheme 5.2 Synthesis of cobalt complex V
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