Assessment Of Traditional Chinese Herbal Medicine Plant Extracts' Potential To Inhibit

Activity Of Herpes Simplex Virus Type 1

by

Trang Huynh

A thesis presented to the Honors College of Middle Tennessee State University in partial fulfillment of the requirements for graduation from the University Honors College

Spring 2016

Assessment Of Traditional Chinese Herbal Medicine Plant Extracts' Potential To Inhibit

Activity Of Herpes Simplex Virus Type 1

by

Trang Huynh

APPROVED:

Dr. Stephen M. Wright Biology Department

Dr. Lynn Boyd Chair, Biology Department

Dr. E. Anthon Eff Department of Economics and Finance

Dr. Robert Sieg Honors Council Representative

ABSTRACT

Herpes simplex virus type 1 (HSV-1) is associated with oral and genital lesions as well as more serious, even fatal, infections in immunocompromised patients or when transmitted to infants. Currently, there is no cure or preventative vaccine available for HSV. Acyclovir is used for treatment of HSV infections but resistance to this drug is common in immunocompromised patients and severe side effects can develop when used by pregnant mothers and infants. The lack of a preventative option and limited treatments demonstrate the need for more effective treatment measures. Many studies have demonstrated the effectiveness of TCM plants against various illnesses, but little has been done to evaluate TCM plant extracts against HSV-1. This study tested 51 TCM extracts from 13 different plants for their potential to inhibit HSV-1. Extracts were separated into fractions and dissolved in the solvents petroleum ether, ethyl acetate, 95% ethanol or water. Vero cells were used to evaluate plant extracts for anti HSV-1 activity. Extracts were combined with virus and protection of cells was determined by using PrestoBlue, a cell viability fluorescent dye. Extracts were tested for toxic effects on host cells and were diluted to non-toxic levels prior to antiviral testing. A total of 51 extracts from 13 different plants were tested. Out of these 51 extracts, 14 were found to have at least 50% viral inhibition with 3 of them showing above 95% viral inhibition. The ultimate goal of this study is to isolate and identify a pure compound that can combat HSV-1.

ACKNOWLEDGEMENTS

I would like to thank the Guangxi Botanical Garden of Medicinal Plants in China and the Tennessee Center for Botanical Medicine Research for providing TCM plant extracts for research. I also would like to thank the Honors College and the members of my committee for dedicating their time and expertise towards the evaluation of my thesis. Finally, I extend my greatest gratitude to Dr. Stephen Wright for his tremendous patience, mentorship, and expertise in advising my research, and aiding me in the completion of this entire process.

TABLE OF CONTENTS

LIS	ST OF TABLES	vi
LIS	ST OF FIGURES	vii
I.	INTRODUCTION	
	A. Herpes Viruses	1
	B. Herpes Virus Life Cycle	2
	C. Latency	3
	D. Transmission	4
	E. Significance	5
	F. Treatment	6
	G. Traditional Chinese Medicine	7
	H. Current Study	7
II.	MATERIALS AND METHODS	
	A. Laboratory Standards	9
	B. Media Preparation	10
	C. Cell Maintenance	10
	D. Preparing a Plate	11
	E. Cytotoxicity Testing	11
	F. Virus Dilution Testing	14
	G. Extract Screening	14

III.	RESULTS	16
IV.	DISCUSSION	24
V.	APPENDICES	
	A. Appendix 1	30
	B. Appendix 2	32
VI.	REFERENCES	65

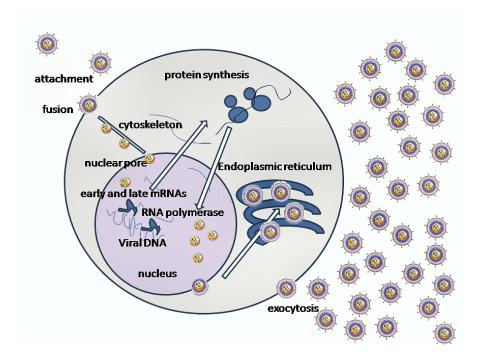
LIST OF TABLES

Table	Title	Page
1	Non-Cytotoxic Working Concentrations of Extracts	16
2	Extracts Showing Moderate Antiviral Activity	18
3	Extracts Showing Highest Antiviral Activity	19

LIST OF FIGURES

Figure	Title	Page
1	HSV-1 Mechanism of Infection	3
2	Plate Setup	12
3	Negative Control	20
4	Positive Control	20
5	Cells Exposed to Extract and HSV-1	21
6	Graph Depicting the Serial Dilution of Extract 22B	22
7	Graph Depicting the Serial Dilution of Extract 23B	23
8	Proportion of Solvents with Number of Effective Extracts	28

INTRODUCTION


A. Herpes Viruses

Herpes simplex virus type 1 (HSV-1) is a common pathogen transmitted through direct contact with an infected person or by contaminated secretions. Herpes simplex virus type 1 and type 2 (HSV-2), varicella-zoster virus, cytomegalovirus, Epstein-Barr virus, and human herpes viruses 6, 7, and 8 are all herpes viruses within *Herpesviridae* that infect humans. While HSV-1 is more commonly associated with oral lesions and HSV-2 with genital lesions, both are interchangeable (1). It is estimated that HSV-1 is responsible for about one-third of new genital herpes cases (1). HSV-1 infections are widespread among the human population with a seroprevalence ranging from 60 to over 95% in some places (2). The high prevalence of HSV-1 infections may be due to the virus's ability to be asymptomatic in its host during the latent stage, where the virus is dormant in the host's neurons (3). Besides causing cold sores, more serious outcomes of infection include encephalitis, aseptic meningitis, and corneal scarring leading to blindness (4). HSV-1 is also a concern among HIV patients, as the virus takes advantage when the host's immune system is stressed, causing pneumonia, esophagitis, hepatitis, or meningoencephalitis (5). In other cases, mother-to-child transmission of the herpes virus is possible during birth, which can cause oral or ocular infections, central nervous system disease, and possibly other fatal infections to the infant (6). All herpes viruses set up latency and may reactivate periodically throughout life.

B. Herpes Virus Life Cycle

The structure of HSV-1 is composed of linear, double-stranded DNA that is packed inside its icosahedral shaped capsid (7). On the outermost layer of the virus, surrounding the capsid is an envelope made of a lipid bi-layer with glycoproteins and other embedded proteins attached to it (7). HSV-1 uses these proteins, such as glycoprotein C, to bind to a receptor called heparan sulfate that is present on the surface of the host cells (8). Heparan sulfate is a glycosaminoglycan present on cell surfaces and extracellular matrix of virtually every animal cell (9). Both glycoprotein C and heparan sulfate are not absolutely required for virus entry, but efficiency of entry is reduced if either is absent (10).

After attaching to a receptor on the host cell, the virus fuses its envelope with the host cell membrane so that viral DNA can be released and transported to the host nucleus (7). Once viral DNA is inside the host nucleus, it will be replicated as the host cell replicates its own DNA (7). The viral DNA will then be transcribed and translated into capsids and proteins that will assemble and package the replicated viral genome. These new herpes viruses will eventually bud out of the host cell to obtain attachment glycoproteins and infect other cells (7). Because of this, herpes virus can spread cell to cell, and eventually infect the neurons in the central nervous system where it remains latent until an opportune time (7). Figure 1 below demonstrates the mechanism of HSV-1 infection of host cells.

Figure 1. HSV-1 Mechanism of Infection. The virus will release viral DNA and capsid into the host cell after successful fusion with the host cell membrane by using proteins present on its surface. Viral DNA will then be transported to the nucleus where replication occurs. Afterwards, new viruses will assemble and bud out of the host cell, obtaining its envelope and spread to other cells. Image by Graham Colm (11).

C. Latency

All herpes viruses have the ability to remain latent and may reactivate periodically throughout life. Reactivation of HSV-1 and HSV-2 can manifest as oral or genital lesions or may be asymptomatic (5). Following infection, HSV-1 enters the nucleus of trigeminal ganglia sensory neurons through rapid axonal transport and becomes latent (12). HSV-2 is commonly found in the lumbosacral ganglia in its latent stage (1). Once HSV-1 has entered the neurons, most viral gene expression stops, with the exception of latency-associated transcript (LAT) (13). During latency, viral gene expression required for

productive infection does not occur (13). It is hypothesized that LAT RNA is expressed in large quantities during latency and is used to inhibit productive infection by HSV-1 (13). LAT may also be responsible for acting against apoptotic stimuli during maintenance of latency since it is the only gene that is abundantly expressed during this stage (13). A variety of factors, such as stress, hormones, ultraviolet radiation, or being immunocompromised can increase the risk of reactivation (14).

D. Transmission

Herpes viruses can be transmitted through direct contact with a person's skin lesions or respiratory secretions. Another major factor in transmission of herpes is through asymptomatic shedding, which occurs when one does not show any symptoms but is contagious (15). HSV-1 is usually spread through non-sexual transmission with the peak age of infection during childhood (1). Although HSV-1 can also cause genital herpes, HSV-2 is more commonly transmitted through sexual contact (1). In the U.S., there has been an increase in cases of genital herpes caused by HSV-1 among college students (1). Both herpes simplex viruses type 1 and 2 can be acquired vertically through mother-to-child transmission during childbirth (16). Mothers who acquire primary HSV genital infection during pregnancy are at greater risk of transmitting the disease to their infants than those with recurrent infections (16). HSV infections in neonates can cause long-term complications and may even be fatal (16).

E. Significance

1. Disease

Although both HSV-1 and HSV-2 commonly cause herpetic lesions, they also lead to more serious consequences like blindness, aseptic meningitis, and encephalitis (4). Pregnant women can transmit the disease to their infants during birth causing complications such as oral or ocular infections, and other disorders of the central nervous system (6). In rare but serious cases, the child may acquire disseminated neonatal herpes infection, which has a mortality rate of 85% if left untreated (17). Survivors may display sequelae including mental retardation, autism, epilepsy, cerebral palsy, and other neurological disorders (18). A link between HSV-1 and Alzheimer's disease has been suggested since similar regions of the brain are involved and because of HSV-1's ability to stay latent in the neurons of the central nervous system (13). The biggest concern with HSV-1 infections is in patients who are immunocompromised, such as HIV/AIDS patients, burn victims, and organ transplant patients (19).

2. Impact

HSV-1 currently affects around 70% of the world population, with a prevalence of 60 to over 95% in various places (2). HSV-1 seropositivity was found to be greater than 97% across all age groups in South African countries (20). In sub-Saharan African countries, such as Uganda and Eritrea, HSV-2 infections affect as high as 80% of the sexually active population (20). This is a concern because HSV-2 infections can more than double the risk for acquiring HIV infections (21). Immunocompromised individuals, such as those with HIV/AIDS, are at an increased risk for recurrent HSV infections with severe outcomes (19).

Besides being a major problem in African countries, herpes simplex type 1 also affects a large amount of the U.S. population. It was reported in 2006 that HSV-1 has a seroprevalence of 57.7% in the U.S., which is three times more than the percentage of HSV-2 infection (21). Out of the 110 million sexually transmitted infections (STIs) diagnosed in the U.S., 24 million of them are caused by HSV-2 (22). The CDC estimates that about 20 million new STIs occur each year and about 45% of these are HSV-2 infections (22). With high numbers of HSV infections all over the world, there is a need for appropriate treatment and prevention.

F. Treatment

There is currently no cure or preventative vaccine available for HSV (3). The primary drug of choice is acyclovir (ACV), which can be administered orally or topically (23). Although ACV works to treat some herpes lesions, immunocompromised patients can easily become resistant to this drug (24). A ten-year survey in France found that resistance to ACV in immunocompromised patients has risen significantly from 3.8% during 2002-2006 to 15.7% in 2007-2011 (25). In addition, ACV is not recommended for neonates or pregnant women due to its unfavorable drug reactions and possible serious side effects (26). Due to the many drawbacks of using ACV as a drug, there is a need to discover new agents that can fight against herpes simplex virus without the side effects and resistance that comes with ACV.

G. Traditional Chinese Medicine

Some studies done to find new agents that can fight against HSV-1 have evaluated Traditional Chinese Medicine (TCM). TCM has been used throughout China for hundreds of years to cure diseases, and some TCM have been reported to have antiviral activity (27). One example is Berberine, a compound extracted from a TCM plant named *Coptidis rhizome* (28). Berberine was suggested to have antiviral activity by inhibiting HSV replication, but further research needs to be done to confirm its mechanism (28). Another example of an effective TCM is *Tripterygium hypoglaucum*, which demonstrated activity against HSV-1 in addition to being used to treat inflammation and tumors (29). However, additional research to identify the active compound and its mechanism has not been carried out (29). Gnetum parvifolium is another TCM plant that has been found to have both anticarcinogenic and antiinflammatory properties (30). One study found that the TCM plant, *Scutelleria radix*, could be used to effectively suppress hepatitis B virus (31). A study that looked at the effects of phloroglucinol glycosides from Eucalyptus maideni on HSV-1 found 3 compounds showing weak antiviral activity against the virus (32).

H. Current Study

Many studies have demonstrated the effectiveness of TCM plants against various illnesses, but little has been done to test TCM extracts specifically against HSV-1 on a wider scale. The basis of this current study will be to test TCM extracts for their activity against HSV-1. Traditional Chinese Medicine plant extracts have been provided through partnership between the Guangxi Botanical Garden of Medicinal Plants in China and the

Tennessee Center for Botanical Medicine Research (TCBMR). Purification of extracts and evaluation of HSV compounds was undertaken through collaborative effort with faculty and students in the Chemistry department at MTSU. A total of 51 extracts from 13 different TCM plants were tested. The long-term goal is to identify antiviral compounds for treatment of HSV-1 infections.

MATERIALS AND METHODS

A. Laboratory Standards

All work involving cells, virus, and extracts was done under a biological safety cabinet. Bottles and flasks were wiped with 70% ethanol and flamed under the hood before use to prevent any contamination. Cytotoxicity testing was done on all extracts before continuing with testing against cells and viruses. Based on our laboratory standards, extracts must show less than 20% reduction in cell viability to be considered non-toxic. If greater than 20% of cells die, the extract was diluted 2-fold until no more than 20% cell loss occurred.

Positive control wells containing only virus and cells showing approximately 50 to 75% cell death were acceptable. Extracts exhibiting above 50% viral inhibition were considered moderately effective. The half maximal inhibitory concentration (IC50) was determined for those extracts that showed above 95% viral inhibition.

Additional standards that had been established previously in our laboratory were also applied to this study. Extracts were resuspended in dimethyl sulfoxide (DMSO, Sigma, Chemical Company, St. Louis, MO). Dimethyl sulfoxide was tested alone on cells without extract to verify that DMSO had no toxic effect on cells.

To ensure that our process for determination of anti-viral activity was valid, the known anti-HSV-1 drug acyclovir (Sigma) was also tested. Previous studies in our laboratory indicated that acyclovir was effective at inhibiting virus and the concentration was in good agreement with reported acyclovir anti-herpes activity (33).

B. Media Preparation

Phosphate Buffered Saline (PBS) was prepared by mixing 991 mL deionized water (dH₂O), 8 g of NaCl (Fisher Scientific, Suwanee, GA), 1.15 g of Na₂HPO₄ (Fisher Scientific), 0.2 g of KCl (Fisher Scientific), and 0.2 g of KH₂PO₄ (Fisher Scientific). The solution was then sterilized by autoclaving.

To prepare fresh supplemented M199 Hanks' or M199 Earle's medium, approximately 90 mL of M199 Hanks' or M199 Earle's media (Sigma) was poured into an autoclaved glass bottle. In addition, 8 mL of fetal bovine serum (Gibco Life Technologies, Grand Island, NY), 1 mL of glutamine (Sigma), 1 mL of penicillinstreptomycin (Sigma), and 0.5 mL of fungizone (Invitrogen Life Technologies) were added to the solution. Prepared supplemented media in glass bottles were labeled, dated, and stored at 4°C along with unsupplemented media.

C. Cell Maintenance

Host cells used to grow HSV-1 were Vero cells (African Green Monkey Kidney, American Type Culture Collection certified cell line #81). Vero cells were incubated at 37°C (Revco Scientific Inc., Asheville, NC) and were maintained in 25 cm² tissue culture flasks (Corning Costar Corp., Cambridge, MA) with M199 Hanks' and M199 Earle's medium. After about a week, cells grew to a confluent monolayer on the bottom of the flask. These cells can be passed into new flasks or used in new plates. Cells were passed by washing twice in 5 mL of PBS for a minute each time, decanting PBS after each wash. Following washing, 5 mL of 0.1% trypsin (Sigma) was added and incubated at 37°C for about 5-10 minutes to begin detachment of cells from the bottom of flask. Afterwards, the trypsin solution was discarded and the empty flask containing cells was incubated again at 37°C for about 15-20 minutes. Once cells were able to easily slide off the flask, 5 mL of M199 Hanks' media was added to flask and triturated using a pipette, allowing clumps of cells to break up. At this point, a plate can be made from the re-suspended cells. Cells can also be passed onto new flasks by adding 1 mL of re-suspended cells and 4 mL of M199 Hanks' media. After 2 or 3 days, M199 Hanks' media in the new flask was discarded and 5 mL M199 Earle's media, containing a stronger buffer, was added.

D. Preparing a Plate

To prepare a plate, cells in a confluent monolayer in a 25 cm² culture flask were washed twice with PBS, detached with 0.1% trypsin, then triturated with 5 mL of M199 Hanks' media as described previously. After trituration, 2 mL of cell suspension and 8 mL of M199 Earle's media were added to a sterile plastic tray (Aquafill, Swedesboro, NJ).

Using a micropipette, 100 μ L of the cell suspension was added to each well that required cells on a 96 well plate (Corning). The plate was then incubated for 24 hours in 5% CO₂ at 37°C (Fisher Scientific). Following incubation, fresh media containing virus or extract was added to the cell monolayer for testing.

E. Cytotoxicity Testing

Whole plants or plant parts had been previously ground up and separated into fractions that were dissolved into different solvents with increasing polarity (petroleum ether, ethyl acetate, 95% ethanol or water). Dried extracts were resuspended in DMSO at

a concentration of 10 mg/mL. A 96 well plate was prepared using a suspension of cells followed by incubation for 24 hours as described previously. After incubation, extracts were added to wells, in sets of 3 (Fig. 2). Extracts were tested starting at 100 μ g/mL concentration by adding 396 μ L of M199 Earle's and 4 μ L of extract into a 1.5 mL Eppendorf microfuge tube. After extracts were used, they were removed from the hood and stored in the freezer. Stock virus was then removed from the freezer and thawed under the hood.

	1	2	3	4	5	6	7	8	9	10	11	12
A		←BLANK→			←Sample 1→							
B		←BLANK→			←Sample 2→							
С		←Cells Only→			←Continue→							
D		←Cells Only→										
E		←Virus+Cells→										
F		←Virus+Cells→										
G												
Η												

Figure 2. Plate Setup. Example of how each plate was set up for cytotoxicity testing, virus testing, and extract testing. Each extract and control was screened in triplicate as shown by the colors in the table above. Twenty-four different samples could be tested using this configuration.

A total of 6 wells were reserved as the virus only control. Virus control wells were prepared by adding 8 μ L of virus and 792 μ L of M199 Earle's media into a microfuge tube. The stock virus tube was then marked as used and put back in the freezer. When stock virus tubes were used for the second time to prepare the virus only control wells, 10 μ L of virus and 790 μ L of M199 Earle's media were added to the microfuge tube. Stock virus tubes were discarded after the second use.

After all microfuge tubes were prepared with the appropriate volume of viruses and extracts, the 96 well plate which had been prepared 24 hours previously, was removed from incubation. Medium was aspirated from 6 wells at a time using a Pasteur pipette and vacuum (Cole Parmer, Vernon Hills, IL), then 100 μ L of appropriate extract/control was added to each well and the plate was incubated for 48 hours at 37°C in 5% CO₂.

After the 48 hour incubation period, the plate was ready to be read. About 1 mL of PrestoBlue dye (Invitrogen) was added to a sterile plastic tray and 11.1 μ L of the dye was pipetted into each well on the plate. PrestoBlue is a cell permeable dye that changes color from blue to red when resazurin in the dye is reduced to resorufin by viable cells. The plate was then incubated for 30 minutes at 37°C in 5% CO₂. After incubation, the plate was read for fluorescence using a spectrophotometer (Molecular Devices, Sunnydale, CA) that measured the intensity of light by using Softmax Pro software.

This procedure was repeated as necessary. Extracts were diluted 2-fold until the working concentration was found that caused less than 20% cell death. The working concentration of extract was then used for virus testing.

F. Virus Dilution Testing

A plate was prepared using a confluent monolayer of cells and incubated for 24 hours as described previously. Virus was added to cells at a multiplicity of infection (MOI) of 0.1, meaning 1 virus particle per every 10 cells. Each well was estimated to contain 5000 cells, so a dilution containing 500 HSV-1 was added to each well. Following incubation, PrestoBlue was added to verify appropriate exposure to virus. Any virus dilution that killed more than 50% but less than 75% of cells was considered acceptable.

G. Extract Screening

To test an extract's ability to inhibit HSV-1, the appropriate amount of virus and a non-toxic concentration of the extract were added to wells with a confluent monolayer. The non-toxic or working concentration of extracts was determined by performing cytotoxicity testing as described.

To test for the antiviral potential of extracts, a 96 well plate was prepared using a suspension of cells and incubated for 24 hours as described previously. After the 24-hour incubation period, extracts were removed from the freezer. Microfuge tubes were labeled with names of all media, extracts, and controls being used. Fresh M199 Earle's was used for blank wells and cells only controls.

For extracts that were not toxic at 100 μ g/mL, 4 μ L of the appropriate extract was added to a microfuge tube. For extracts with working concentration of 50 μ g/mL, 2 μ L was added and for those with working concentration of 25 μ g/mL, 1 μ L was added to

tubes. Virus to be used in controls and in tubes with extracts was prepared by diluting the viral stock solution to an appropriate level to achieve an MOI of 0.1 when added to extract and control tubes. M199 Earle's media was added to sample tubes until the total volume of fluid was 400 μ L, and for control tubes, M199 Earle's media was added until the total volume was 800 μ L.

The prepared 96 well plate was then removed from incubation. Medium was aspirated from 6 wells at a time using a vacuum. Next, 100 μ L of appropriate extract/virus or control was added to each well and the plate was incubated for 48 hours at 37°C in 5% CO₂.

Following 48 hours of incubation at 37°C in 5% CO_2 , the plate was ready to be read. About 1 mL of PrestoBlue dye was added to a sterile plastic tray and 11.1 µL of the dye was pipetted into each well on the plate. The plate was then incubated for 30 minutes at 37°C in 5% CO_2 . After incubation, the plate was read for fluorescence using a spectrophotometer and the percent of virus inhibition was calculated. Extracts had to inhibit at least 50% of virus to be considered effective.

This experiment was done for all extracts at their appropriate non-cytotoxic concentrations at least three times to ensure valid results. IC50s were performed on extracts showing above 95% viral inhibition by diluting the extract 2-fold to show antiviral activity.

RESULTS

A total of 51 extracts from 13 different plants were evaluated for their cytotoxicity on cells and their potential to inhibit HSV-1. A list of all extracts evaluated appears in Appendix 1. All extracts were screened for cytotoxicity starting at a concentration of 100 μ g/mL. Table 1 below summarizes the results of cytotoxicity studies.

Table 1. Non-Cytotoxic Working Concentrations of Extracts. While a majority of extracts were used at working concentrations of 100 μ g/mL, others had to undergo subsequent 2-fold dilutions to result in less than 20% cell death.

Working concentration (µg/mL)	# of extracts
100	30
50	14
25	5
12.5	2

After determining the non-toxic working concentrations, all extracts were tested for their potential to inhibit HSV-1. Data for all evaluations are included in Appendix 2. Out of the 51 extracts tested, 14 extracts exhibited above 50% viral inhibition and were considered effective at inhibiting HSV-1. A total of 11 out of these 14 extracts showed from 50 to 95% viral inhibition, while the other three extracts inhibited over 95% of virus. Table 2 lists the extracts that showed between 50 to 95% viral inhibition and their working concentrations. Table 3 lists the three extracts that inhibited over 95% of virus and their working concentration. Extract 32B displayed unusual results. Three separate evaluations were done. Its antiviral average includes two numbers over 100%, and one below 40%. With those three numbers averaged together, 32B still demonstrated antiviral activity of 98% and is included in Table 2 below.

Table 2. Extracts Showing Moderate Antiviral Activity. These extracts showed between

 50 to 95% viral inhibition. Their working concentration, cytotoxicity, percentage of viral

 inhibition, and their standard error are shown below.

Extract	Working	% Cytotoxicity at	% Viral Inhibition and
	Concentration at	Working	Standard Error
	μg/mL	Concentration	
23D	100	-2*	50 ± 25
26B	100	16	57 ± 3
27B	100	20	70 ± 1
28B	100	11	75 ± 7
28C	100	-7*	62 ± 19
29B	50	4	55 ± 22
31C	100	6	58 ± 17
32C	50	1	50 ± 25
33A	100	17	62 ± 7
33B	50	5	51 ± 21
33C	100	-1*	78 ± 14

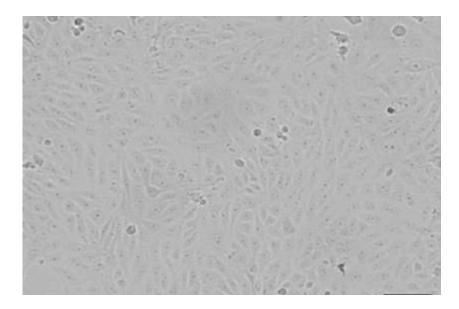
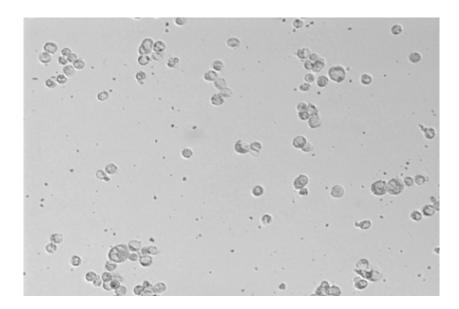

* Negative values for cytotoxicity indicate that the extract resulted in greater cell growth than cells grown in the absence of extract.

Table 3. Extracts Showing Highest Antiviral Activity. These extracts inhibited over 95% of HSV-1. Their working concentration, cytotoxicity, percentage of viral inhibition and their standard error are shown below.


Extract Working		% Cytotoxicity at	% Viral Inhibition		
	Concentration at	Working Concentration	and Standard Error		
	μg/mL				
22B	25	12	107 ± 13		
23B	25	-3*	99 ± 27		
32B	100	-58*	98 ± 29		

* Negative values for cytotoxicity indicate that the extract resulted in greater cell growth than cells grown in the absence of extract.

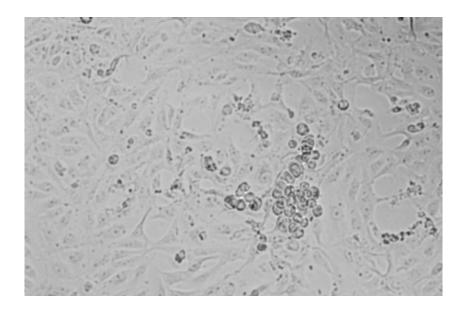

Direct images of cells were taken to show the qualitative effects of virus and extracts on the cells. Figure 3 shows the negative control well containing only viable cells. Figure 4 shows the positive control well containing both viruses and cells. Very few intact cells can be seen in Figure 4 as most host cells have been destroyed by HSV-1. In Figure 5, the protective effect of an extract can be seen as the cell destruction has been reduced.

Figure 3. Negative Control. This is an image of a negative control containing only cells and media. Only healthy cells can be seen in this image.

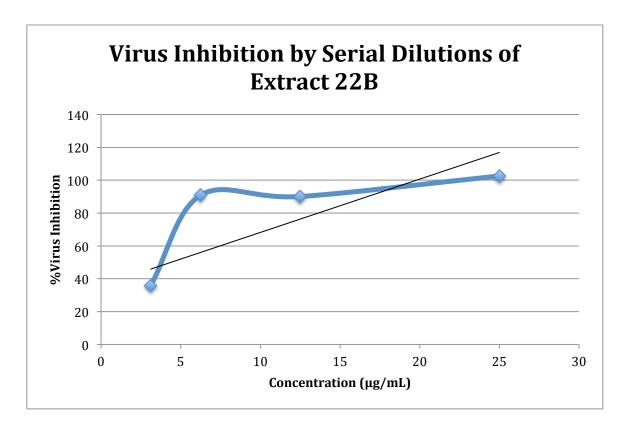


Figure 4. Positive Control. This is an image of a positive control containing cells, media and HSV-1. Very few intact cells can be seen in the image due to the destructive effects of the virus.

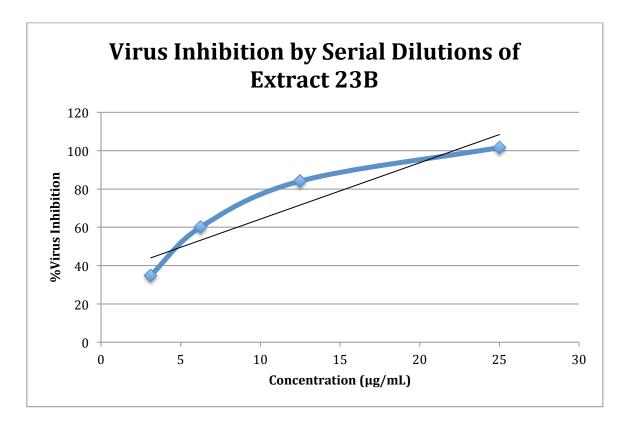


Figure 5. Cells Exposed to Extract and HSV-1. The protective effects of an extract can be seen in this image, as the cell destruction has been reduced.

Two out of the three extracts showing above 95% viral inhibition were serially diluted and graphed to determine each extract's IC50 using a line of best fit (Fig. 6, 7). Extract 22B displayed the lowest IC50 at 4.39 μ g/mL, and extract 23B showed an IC50 at 5.15 μ g/mL. Both extracts have a working concentration at 25 μ g/mL. The IC50 curve for extract 32B is not presented here due to laboratory errors and the extreme variability of virus inhibition.

Figure 6. Graph Depicting the Serial Dilution of Extract 22B. Extract 22B was diluted 2fold starting at 25 μ g/mL concentration and ending with 3.125 μ g/mL concentration. Percentage of viral inhibition was determined at each concentration. The IC50 was determined to be 4.39 μ g/mL.

Figure 7. Graph Depicting the Serial Dilution of Extract 23B. Extract 23B was diluted 2fold starting at 25 μ g/mL concentration and ending with 3.125 μ g/mL concentration. Percentage of viral inhibition was determined at each concentration. The IC50 was determined to be 5.15 μ g/mL.

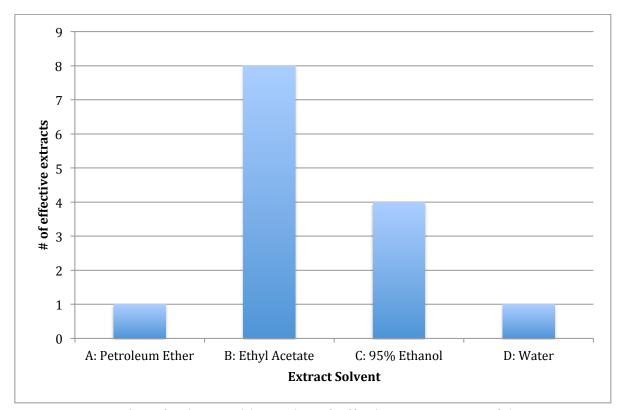
DISCUSSION

Herpes simplex virus type 1 can cause a significant range of diseases worldwide and is especially troublesome for immunocompromised individuals and neonates. After attaching to its specific host cell receptor, HSV-1 commonly enters the cell through receptor-mediated endocytosis or by fusion. The virus then enters the nucleus and begins replication. New viruses are assembled and eventually bud out of the cell to spread the infection to other cells. The virus may become latent in neurons. The HSV-1 life cycle presents many opportunities where the virus could be inhibited.

Extracts exhibiting antiviral activity may inhibit the virus through several mechanisms such as blocking specific proteins for viral entry or by working directly on the virus itself. The current drug of choice, acyclovir, works by acting as a substitute for a nucleotide. Acyclovir is activated by the viral enzyme, thymidine kinase, which stops viral DNA polymerase in infected cells (34). Although successful at inhibiting HSV-1, increasing resistance to acyclovir, especially in immunocompromised individuals, demonstrates a need for new agents that can combat HSV-1. TCM plants have been historically successful in treating antiviral infections and provide potential as anti-HSV-1 drugs. The results of this study support this statement. Out of the 51 Traditional Chinese Medicine (TCM) extracts tested, 11 were shown to be moderately effective at inhibiting HSV-1 and two, perhaps three, other extracts are highly effective against the virus.

The majority of the extracts tested did not show any anti-HSV-1 activity. Although most of these plants have not been previously tested for antiviral activity, some have been reported to have other therapeutic effects. There were no reports regarding the antiviral activity of *Tinospora sinensis* but this plant has been reported to be effective against protozoan infection of Leishmania (35). Studies on *Sarcandra glabra* extract have reported it to have both antiinflammatory and antiinfluenza properties (36,37). Extract from the fruit of *Melaleuca leucadendra* has been reported to have anti-HSV-1 activity (38), but in this study, extract from the stem of the same plant was inactive against the virus. Lastly, there have been no reports of any therapeutic properties associated with the plant *Mappianthus iodoides*. Extracts of *M. iodoides* failed to show any anti-HSV-1 activity in this study.

Extracts that were moderately effective against HSV-1 showed between 50-78% viral inhibition. The ethyl acetate extract of the plant *Ramulus uncariac* inhibited HSV-1 at 57% but has not been previously evaluated for its antiviral properties. Extract 27B, the ethyl acetate fraction of the plant *Wedelia calendulacea*, showed 70% viral inhibition. This plant has not been previously tested for its antiviral activity but one study stated it has neuroprotective effects (39). The ethyl acetate and ethanol extract of *Uncaria macrophylla* showed moderate antiviral activity at 75% and 62% respectively. Besides *R. uncariac*, this, too, was the first study that evaluated *U. macrophylla* for antiviral activity.


A wide range of studies have been done on *Plantago major* and *Syzygium cumini*. Extract 29B is the ethyl acetate fraction of *P. major*, which exhibited 55% viral inhibition. One study evaluated *P. major* against HSV-1, HSV-2, and adenoviruses and found slight antiviral activity against all three viruses (40), which is in agreement with this study. Another extract showing moderate antiviral activity at 58% was extract 31C, which is the ethanol fraction of *S. cumini*. Although no previous antiviral work has been done on this plant, it is reported to have many other therapeutic properties such as being antidiabetic, antiulcer, hepatoprotective, an antioxidant, and other protective activities (41).

Extracts 32B and 32C are the ethyl acetate and ethanol fraction of *Rubus reflexus*. These extracts inhibit HSV-1 at 98% and 50% respectively. Unfortunately, perhaps due to laboratory errors, an IC50 curve was not obtained for extract 32B. Results suggest that the IC50 for 32B should be somewhere in between 50 µg/mL and 100 µg/mL. Further investigation is needed to determine the exact IC50 concentration. No previous studies were found on this plant. Lastly, extracts 33A, 33B, and 33C all inhibit HSV-1 at 62%, 51%, and 78%. These are the petroleum ether, ethyl acetate, and ethanol fraction of the plant *Cissus pteroclada*. This plant has not been tested for antiviral activity, but it is reported to have antioxidant and hepatoprotective properties (42).

Extract 22B showed the highest HSV-1 inhibition in this study at 107%. This is the ethyl acetate fraction of the plant *Bidens pilosa*. Studies on *B. pilosa* have reported this plant to be useful in the treatment of more than 40 disorders including cancer, immunological disorders, wounds, digestive disorders, bacterial infections, and other maladies (43). Although much research has been done on the beneficial properties of *B. pilosa*, only one study was found evaluating its antiviral activity (44). This investigation evaluated a hot water extract of *B. pilosa* against HSV-1 and HSV-2 (44). The extract was found to significantly inhibit HSV replication at a concentration of 100 μ g/mL, a concentration that was cytotoxic for Vero cells (44). The positive antiviral results of the previous study support the evaluation of the current research on *B. pilosa*. The difference is that the ethyl acetate fraction *of B. pilosa* was used in this study, which has a working concentration at 25 μ g/mL. Extract 22B presents the lowest IC50 in this study at 4.39 µg/mL, suggesting it may be more effective at lower concentrations. These properties of 22B suggest that this is a promising extract for future investigation.

The second extract that was highly effective, inhibiting HSV-1 at 99%, was 23B. This is the ethyl acetate fraction of the plant *Mangifera persiciformis*. Extract 23D, the water fraction from this same plant, also shows moderate inhibition at 50%. Not many previous studies have been done on this plant, and none were found that evaluated its antiviral properties. The limited study of this plant may be due to *M. persiciformis* being currently labeled as a threatened species (45). This may limit future investigation of extract 23B in spite of its effective anti-HSV-1 activity and IC50 at 5.15 µg/mL.

Out of 51 extracts evaluated, 14 showed moderate to high antiviral activity. From the 14 extracts, the majority of the fractions that were effective were extracts containing ethyl acetate solvent. Figure 8 below shows the proportion of extracts in different solvents that were effective.

Figure 8. Proportion of Solvents with Number of Effective Extracts. Out of the 14 effective extracts, 8 were the ethyl acetate fraction, 4 were in 95% ethanol, 1 was in petroleum ether, and 1 was in water.

The majority of the effective extracts were present in the ethyl acetate fraction, including the two that showed the highest viral inhibition. The water and petroleum ether fraction had the fewest anti-HSV-1 activity. The disproportional distribution of solvents with effective extracts suggests that ethyl acetate may be binding to some active compound in plants, allowing it to more effectively inhibit HSV-1. A study that investigated the chemical composition of the ethyl acetate fraction of *B. pilosa* using High Performance Liquid Chromatography reported the presence of two flavonoids, quercetin and iso-okanin (46). One study evaluated the chemical composition of *M. persiciformis*, and the same flavonoid, quercetin, was also isolated from this plant (47). These are just two molecules that *B. pilosa* and *M. persiciformis* have in common. There may be many other active compounds from these two plants that are present in the ethyl acetate fraction.

This study has reported several effective antiviral extracts with potential for drug development. Additional investigation that includes guided fractionation and identification of active compounds is needed for further development. Three of the effective extracts exhibited above 95% inhibition, making them great candidates for future investigation. Overall, these extracts merit further study to identify the active compounds that may act as novel agents against HSV-1.

Appendix 1 – List of TCM Plants Used.

Name of the plant 植 物名	Materials 取材 部位	Extraction solvent and weight (g)	Code
		petroleum ether: 0.06	22A
Bidens pilosa L. 百	whole aloat	ethyl acetate: 0.07	22B
花鬼针草	whole plant	95% ethanol: 0.01	22C
		water: 0.10	22D
Mangifera		petroleum ether: 0.13	23A
persiciformis C. Y.	harach leef	ethyl acetate: 0.06	23B
Wu et T. L. Ming	branch, leaf	95% ethanol: 0.05	23C
扁桃		water: 0.03	23D
Tinognoro		petroleum ether: 0.05	24A
<i>Tinospora</i> <i>sinensis(Lour)Merr.</i>	stam	ethyl acetate: 0.08	24B
	stem	95% ethanol: 0.04	24C
青九牛		water: 0.04	24D
Mannianthus		petroleum ether: 0.04	25A
Mappianthus iodoides Hand—	atom	ethyl acetate: 0.05	25B
Mazz. 铜钻	stem	95% ethanol: 0.06	25C
		water: 0.08	25D
Ramulus Uncariac		petroleum ether: 0.03	26A
Rhynchophyllae Cum	1 1 1 0	ethyl acetate: 0.03	26B
Uncis.	branch, leaf	95% ethanol: 0.05	26C
钩藤		water: 0.11	26D
W-d-1:-		petroleum ether: 0.04	27A
Wedelia	11	ethyl acetate: 0.06	27B
calendulacea Less. 雌幼雌 毋	whole plant	95% ethanol: 0.07	27C
蟛蝶菊		water: 0.04	27D
Unacria macrophyll.		petroleum ether: 0.04	28A
Uncaria macrophylla	have a last	ethyl acetate: 0.07	28B
Wall. 大	branch, leaf	95% ethanol: 0.14	28C
叶钩藤		water: 0.04	28D

Name of the plant 植物名	Materials 取材部 位	Extraction solvent and weight (g)	Code
		petroleum ether: 008	29A
Plantago major	whole plant	ethyl acetate: 0.08	29B
Linn. 大叶车前	whole plant	95% ethanol: 0.05	29C
		water: 0.08	29D
Sarcandra glabra		petroleum ether: 0.06	30A
(Thunb.) Nakai	whole plant	ethyl acetate: 0.08	30B
(IIIIIID.) Nakai 九节风	whole plant	95% ethanol: 0.07	30C
		water: 0.06	30D
Syzygium		petroleum ether: 0.07	31A
cumini(L.)	Ani - A francis	ethyl acetate: 0.11	31B
Skeels. 海	dried fruit	95% ethanol: 0.08	31C
南蒲桃		water: 0.08	31D
Rubus reflexus		petroleum ether: 0.05	32A
Ker var.	stem	ethyl acetate: 0.06	32B
lanceolobus metc 七爪风	stem	95% ethanol: 0.04	32C
Cissus pteroclada		petroleum ether: 0.03	33A
Hayata	stem	ethyl acetate: 0.0595%	33B
mayata 四方钻	Stelli	ethanol: 0.11	33C
四月扣		water: 0.04	33D
Melaleuca		petroleum ether: 0.04	34A
leucadendra Linn.	stem	ethyl acetate: 0.0795%	34B
Teucauenara Linn. 百千层	510111	ethanol: 0.08	34C
		water: 0.05	34D

Appendix 2 – Raw Data from Extract and Virus Testing

Plate 1

Sample	Well	Values	MeanValue	Std.Dev.	CV%
01	C1	6374	7448.803	862.796	11.5
	C2	8523			
	C3	7414			
	D1	8277			
	D2	6598			
	D3	7503			

Cells and Virus

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death
01	E1	1678	1957.421	261.365	13.3	73.722
	E2	2232				
	E3	2107				
	F1	1622				
	F2	2185				
	F3	1918				

22A

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
1	01	A4	6368	6226.994	225.196	3.616	16.403	2	77.750
		A5	5967						
		A6	6345						

22B

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
ſ	01	A7	9527	9187.693	1198.212	13.0	-23.345	-3	131.666
		A8	7856						
		A9	10179						

22C

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	A10	4678	3399.684	1119.049	32.9	54.359	7	26.264
	A11	2597						
	A12	2923						

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	B4	3630	3240.259	657.614	20.2	56.500	7	23.361
	B5	3608						
	B6	2481						

3	э.	Λ.
2	J.	н

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	B7	5444	4854.051	585.588	12.0	34.834	4	52.749
	B8	4273						
	B9	4844						

23B

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	B10	10122	10390.029	920.074	8.855	-39.486	-5	153.561
	B11	11414						
	B12	9633						

23C

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	C4	6770	6246.825	747.931	11.9	16.137	2	78.112
	C5	6579						
	C6	5390						

23D

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
1	01	C7	6420	7435.858	887.060	11.9	0.174	0	99.764
		C8	8059						
		C9	7827						

24A

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	C10	4258	3738.124	846.614	22.6	49.816	6	32.427
	C11	2761						
	C12	4194						

24B

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	D4	2127	2049.476	101.066	4.931	72.486	9	1.676
	D5	2084						
	D6	1935						

24C

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
ſ	01	D7	2179	2214.049	172.387	7.786	70.276	9	4.673
		D8	2061						
		D9	2401						

24D

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	D10	2143	1990.620	137.195	6.892	73.276	9	0.605
	D11	1948						
	D12	1879						

.

Sample	Well	Values	MeanValue	Std.Dev.	CV%
01	C1	15361	17366.549	1449.731	8.348
	C2	16652			
	C3	17956			
	D1	17040			
	D2	19715			
	D3	17472			

Cells and Virus

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death
01	E1	5866	6706.950	756.976	11.2	61.380
	E2	6689				
	E3	6950				
	F1	5826				
	F2	7131				
	F3	7776				

22A

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
1	01	A4	10917	10219.221	759.738	7.434	41.156	6	32.949
		A5	9410						
		A6	10330						

22B

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
1	01	A7	15027	16543.392	1456.590	8.805	4.740	7	92.278
		A8	17931						
		A9	16671						

22C

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
ſ	01	A10	4087	3916.496	157.273	4.016	77.448	1	-26.178
		A11	3778						
		A12	3883						

Sampl	e Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
0	1 B4	4908	4916.345	76.328	1.553	71.691	1	-16.798
	B5	4996						
	B6	4844						

35

23A	

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
ſ	01	B7	8578	8328.245	430.463	5.169	52.044	8	15.210
		B8	8574						
		B9	7831						

23B

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	B10	13745	14883.408	1081.406	7.266	14.298	2	76.705
	B11	15007						
	B12	15897						

23C

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	C4	9996	9776.859	656.094	6.711	43.703	7	28.799
	C5	9039						
	C6	10295						

23D

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
1	01	C7	8806	8802.547	227.342	2.583	49.313	8	19.659
		C8	9027						
		C9	8573						

24A

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
1	01	C10	2673	3070.139	705.853	22.9	82.322	1	-34.118
		C11	2651						
		C12	3885						

24B

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	D4	3418	2887.369	495.003	17.1	83.374	1	-35.832
	D5	2438						
	D6	2805						

24C

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	D7	4015	4001.859	261.809	6.542	76.957	1	-25.377
	D8	4256						
	D9	3733						

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
1	01	D10	7474	7560.953	173.636	2.296	56.463	9	8.012
		D11	7447						
		D12	7760						

Sample	Well	Values	MeanValue	Std.Dev.	CV%
01	C1	12013	14790.678	1772.524	11.9
	C2	15014			
	C3	16259			
	D1	13271			
	D2	16311			
	D3	15873			

Plate 3

Cells and Virus

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death
01	E1	5041	5401.440	1198.137	22.1	63.481
	E2	7295				
	E3	5560				
	F1	3553				
	F2	5541				
	F3	5414				

22A

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	A4	6733	7614.065	785.833	10.3	48.521	7	23.566
	A5	7863						
	A6	8245						

22B

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	A7	13806	14506.302	1082.465	7.462	1.923	3	96.971
	A8	15753						
	A9	13959						

22C

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
1	01	A10	3843	3983.204	296.222	7.437	73.069	1	-15.105
		A11	3782						
		A12	4323						

22D

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	B4	5105	4932.198	457.346	9.273	66.653	1	-4.998
	B5	5277						
	B6	4413						

23A

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
ſ	01	B7	5133	5823.713	711.194	12.2	60.626	9	4.497
		B8	5784						
		B9	6553						

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	B10	10292	11777.414	2862.009	24.3	20.373	3	67.907
	B11	9962						
	B12	15076						

23C

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	C4	7676	7360.510	394.824	5.364	50.235	7	20.865
	C5	6918						
	C6	7486						

23D

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	C7	9447	8336.018	1006.840	12.0	43.640	6	31.255
	C8	8074						
	C9	7486						

24A

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
1	01	C10	1983	2070.435	210.591	10.1	86.002	1	-35.477
		C11	1917						
		C12	2310						

24B

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	D4	2244	2412.610	190.066	7.878	83.688	1	-31.833
	D5	2618						
	D6	2374						

24C

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	D7	2615	3422.719	742.014	21.6	76.859	1	-21.074
	D8	3577						
	D9	4074						

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	D10	5501	5920.712	444.307	7.504	59.970	9	5.530
	D11	6386						
	D12	5873						

Sample	Well	Values	MeanValue	Std.Dev.	CV%
01	C1	20391	20614.561	713.063	3.459
	C2	21708			
	C3	20581			
	D1	19847			
	D2	19986			
	D3	21172			

Cells and Virus

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death
01	E1	3561	3668.451	301.288	8.213	82.205
	E2	3248				
	E3	3838				
	F1	4128				
	F2	3717				
	F3	3516				

22B 1

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
1	01	A4	15945	18567.537	2457.265	13.2	9.930	1	87.920
		A5	18940						
		A6	20816						

22B .5

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
1	01	A7	21818	20879.746	1307.877	6.264	-1.286	-1	101.565
		A8	21435						
		A9	19385						

22B .25

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
[01	A10	20883	18128.784	2705.352	14.9	12.058	1	85.331
		A11	18027						
		A12	15475						

22B.125

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	B4	7816	8715.315	779.991	8.950	57.723	7	29.782
	B5	9120						
	B6	9209						

220	1	
ZJD	τ.	

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	B7	20162	21405.263	1569.275	7.331	-3.836	-4	104.666
	B8	23168						
	B9	20884						

23B.5

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	B10	21146	19496.958	1645.993	8.442	5.421	6	93.405
	B11	19490						
	B12	17854						

23B .25

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
1	01	C4	12162	15639.291	5156.174	32.9	24.135	2	70.641
		C5	13192						
		C6	21563						

23B .125

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	C7	7884	9017.438	1269.097	14.0	56.257	6	31.565
	C8	10388						
	C9	8778						

25A

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
1	01	C10	10744	9747.165	900.095	9.234	52.717	6	35.871
		C11	9500						
		C12	8995						

25B

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	D4	7548	7511.216	407.139	5.420	63.564	7	22.676
	D5	7086						
	D6	7898						

25C

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
ſ	01	D7	5536	5961.945	400.734	6.722	71.079	8	13.534
		D8	6015						
		D9	6332						

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
1	01	D10	5817	6123.725	316.776	5.173	70.294	8	14.489
		D11	6103						
		D12	6450						

3	c	Λ.	
z	D	А	
-	~	•••	

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
ſ	01	E4	12540	12932.970	812.239	6.280	37.263	4	54.670
		E5	13866						
		E6	12391						

26B

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	E7	15311	14236.665	1703.957	11.9	30.939	3	62.364
	E8	15126						
	E9	12272						

26C

Samp	e Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
0	1 E10	9484	9710.684	742.135	7.642	52.894	6	35.656
	E11	10539						
	E12	9107						

26D

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	F4	11171	11143.776	102.914	0.924	45.942	5	44.112
	F5	11229						
	F6	11029						

27A

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
ſ	01	F7	9354	9197.641	137.039	1.490	55.383	6	32.628
		F8	9137						
		F9	9100						

27B

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
ĺ	01	F10	12847	15298.171	2182.874	14.2	25.789	3	68.628
		F11	17033						
		F12	16013						

27C

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
Γ	01	G1	9459	10267.087	922.662	8.987	50.195	6	38.939
		G2	10069						
		G3	11272						

2	7	n	
		D	
_	-	-	

Sar	mple	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	% virus inhibition
	01	G4	4992	5692.682	842.772	14.8	72.385	Error
		G5	5457					
		G6	6627					

28A

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	G7	15146	14058.297	1518.364	10.8	31.804	3	61.311
	G8	14704						
	G9	12323						

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	G10	16170	16008.435	1661.632	10.3	22.344	2	72.819
	G11	17583						
	G12	14271						

Samp	le	Well	Values	MeanValue	Std.Dev.	CV%
(01	C1	19112	20400.499	1493.177	7.319
		C2	19288			
		C3	22292			
		D1	22092			
		D2	20551			
		D3	19064			

Cells and Virus

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death
01	E1	4472	5943.651	1544.325	25.9	70.865
	E2	7254				
	E3	5935				
	F1	8311				
	F2	4749				
	F3	4938				

22B 1

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	A4	19938	22101.615	1947.028	8.809	-8.339	-1	111.767
	A5	23714						
	A6	22652						

22B 0.5

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
1	01	A7	17935	14794.720	2915.459	19.7	27.479	3	61.224
		A8	12175						
		A9	14273						

22B 0.25

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
ſ	01	A10	20071	20314.607	2404.209	11.8	0.421	0	99.406
		A11	22831						
		A12	18041						

22B 0.125

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	B4	14515	12890.519	2262.158	17.5	36.813	5	48.052
	B5	13849						
	B6	10306						

2	2	R	1	
2	J	υ		

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	B7	19273	19237.259	31.809	0.165	5.702	8	91.954
	B8	19226						
	B9	19212						

23B 0.5

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	B10	18498	17212.654	2575.085	14.9	15.626	2	77.949
	B11	14247						
	B12	18891						

23B 0.25

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	C4	15481	11517.045	3436.934	29.8	43.545	6	38.552
	C5	9682						
	C6	9386						

23B 0.125

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
1	01	C7	9852	11911.714	3269.177	27.4	41.611	5	41.282
		C8	10201						
		C9	15681						

25A

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
1	01	C10	11140	10524.330	726.042	6.899	48.411	6	31.685
		C11	10708						
		C12	9723						

25B

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
1	01	D4	7103	7192.897	83.858	1.166	64.742	9	8.641
		D5	7205						
		D6	7270						

25C

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
1	01	D7	8438	7890.343	649.892	8.237	61.323	8	13.466
		D8	7172						
		D9	8059						

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
1	01	D10	8577	8412.951	165.489	1.967	58.761	8	17.080
		D11	8414						
		D12	8246						

-	-		
7	'n	А	
2	U	m	١.

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	E4	8078	9271.791	1957.636	21.1	54.551	7	23.021
	E5	11531						
	E6	8205						

26B

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
1	01	E7	12043	13618.464	1947.803	14.3	33.244	4	53.088
		E8	13015						
		E9	15796						

26C

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	E10	9429	9490.456	723.832	7.627	53.479	7	24.534
	E11	10242						
	E12	8798						

26D

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
1	01	F4	8639	9737.967	985.071	10.1	52.266	7	26.246
		F5	10032						
		F6	10542						

27A

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	F7	9159	9883.444	636.745	6.443	51.553	7	27.252
	F8	10136						
	F9	10354						

27B

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	F10	15031	15785.199	1690.074	10.7	22.623	3	68.075
	F11	17720						
	F12	14602						

27C

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
1	01	G1	8769	8559.183	214.482	2.506	58.044	8	18.092
		G2	8341						
		G3	8566						

Si	ample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	% virus inhibition
	01	G4	6546	6810.500	248.854	3.654	66.616	Error
		G5	7041					
		G6	6843					

-	-	
	×	л
~	0	~

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	G7	17635	13665.615	3448.648	25.2	33.013	4	53.414
	G8	11956						
	G9	11405						

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	G10	15972	15188.733	924.458	6.086	25.547	3	63.949
	G11	15424						
	G12	14169						

Sample	Well	Values	MeanValue	Std.Dev.	CV%
01	C1	20527	20962.529	1379.360	6.580
	C2	19139			
	C3	21745			
	D1	20080			
	D2	21183			
	D3	23097			

Cells and Virus

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death
01	E1	12608	10508.416	1105.107	10.5	49.870
	E2	10304				
	E3	10213				
	F1	9532				
	F2	10654				
	F3	9736				

22B 1

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	A4	20633	21804.438	1095.508	5.024	-4.016	-8	108.053
	A5	21974						
	A6	22805						

22B .5

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
ſ	01	A7	21678	21738.789	378.848	1.743	-3.703	-7	107.425
		A8	21393						
		A9	22144						

22B .25

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
ſ	01	A10	20048	19686.384	338.070	1.717	6.088	1	87.793
		A11	19378						
		A12	19631						

22B.125

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
Γ	01	B4	13515	13583.287	560.693	4.128	35.202	7	29.413
		B5	13059						
		B6	14174						

2	э		1	
2	J	D	τ.	

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
ſ	01	B7	22135	21812.470	298.705	1.369	-4.055	-8	108.130
		B8	21546						
		B9	21755						

23 B .5

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	B10	20473	18968.254	1350.676	7.121	9.514	1	80.924
	B11	18568						
	B12	17862						

23 B .25

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
1	01	C4	17531	17931.198	348.598	1.944	14.461	2	71.003
		C5	18089						
		C6	18172						

23B .125

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	C7	13091	13825.626	642.303	4.646	34.046	6	31.731
	C8	14103						
	C9	14282						

25A

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
ſ	01	C10	14057	15274.727	1321.123	8.649	27.133	5	45.593
		C11	15086						
		C12	16679						

25B

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	D4	10126	10417.207	255.164	2.449	50.306	1	-0.872
	D5	10602						
	D6	10523						

25C

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	D7	12005	13551.198	1342.660	9.908	35.355	7	29.106
	D8	14216						
	D9	14431						

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	D10	14385	13584.401	1119.073	8.238	35.197	7	29.424
	D11	14061						
	D12	12305						

2	F		L
~	υ	r	٩.

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
1	01	E4	13521	13671.934	130.762	0.956	34.779	6	30.261
		E5	13756						
		E6	13737						

26B

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	E7	16348	16336.942	81.308	0.498	22.066	4	55.753
	E8	16411						
	E9	16250						

26C

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	E10	11767	13010.389	1076.194	8.272	37.935	7	23.933
	E11	13648						
	E12	13614						

26D

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	F4	13440	13541.244	1079.917	7.975	35.403	7	29.011
	F5	14777						
	F6	12162						
	F7	13784						

27A

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	F8	13363	13111.863	355.409	2.711	37.451	7	24.904
	F9	12860						

27B

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	F10	18634	18063.967	558.388	3.091	13.827	2	72.273
	F11	18039						
	F12	17518						

27C

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
1	01	G1	12065	12218.915	571.698	4.679	41.711	8	16.362
		G2	12851						
		G3	11739						

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	% virus inhibition
ſ	01	G4	11854	11488.828	328.786	2.862	45.194	Error
		G5	11394					
		G6	11217					

2	0	
z	ō,	А

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
1	01	G7	14525	14054.430	408.882	2.909	32.955	6	33.920
		G8	13797						
		G9	13839						

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	G10	18027	19779.227	2589.140	13.0	5.645	1	88.681
	G11	18556						
	G12	22753						

Sample	Well	Values	MeanValue	Std.Dev.	CV%
01	C1	23555	23795.700	1313.889	5.522
	C2	23469			
	C3	25575			
	D1	21837			
	D2	23397			
	D3	24938			

Cells and Virus

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death
01	E1	9443	9256.252	590.917	6.384	61.101
	E2	9553				
	E3	8288				
	F1	9127				
	F2	10053				
	F3	9071				

28C

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
ſ	01	A4	21307	23194.604	1662.651	7.168	2.526	4	95.866
		A5	24445						
		A6	23829						

28D

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
1	01	A7	17983	18385.856	713.437	3.880	22.735	3	62.792
		A8	19209						
		A9	17964						

29A

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
1	01	A10	21198	20685.704	861.443	4.164	13.070	2	78.610
		A11	21167						
		A12	19691						

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	B4	21039	21652.515	999.079	4.614	9.007	1	85.260
	B5	21113						
	B6	22805						

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	B7	18505	17751.547	903.044	5.087	25.400	4	58.429
	B8	17998						
	B9	16750						

29D

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	B10	12287	13742.900	1966.255	14.3	42.246	6	30.858
	B11	12961						
	B12	15979						

30A

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	C4	10943	12586.097	1449.213	11.5	47.108	7	22.902
	C5	13684						
	C6	13130						

30B

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
1	01	C7	17553	17582.203	426.981	2.428	26.112	4	57.265
		C8	18022						
		C9	17170						

30C

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	C10	16590	16686.567	94.514	0.566	29.876	4	51.105
	C11	16779						
	C12	16689						

30D

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
ſ	01	D4	13223	13787.634	719.745	5.220	42.058	6	31.166
		D5	13541						
		D6	14598						

31A

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
1	01	D7	16101	15650.120	410.607	2.624	34.231	5	43.976
		D8	15299						
		D9	15549						

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
1	01	D10	18148	18717.101	496.331	2.652	21.343	3	65.070
		D11	19065						
		D12	18936						

Sample	Well	Values	MeanValue	Std.Dev.	CV%
01	C1	18472	18132.361	353.340	1.949
	C2	18376			
	C3	17635			
	D1	18406			
	D2	17776			
	D3	18125			

Plate 8

Cells and Virus

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death
01	E1	5258	5718.357	366.620	6.411	68.463
	E2	5475				
	E3	5995				
	F1	5584				
	F2	5723				
	F3	6272				

28C

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	A4	11973	13271.154	1168.837	8.807	26.810	3	60.841
	A5	14241						
	A6	13598						

28D

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	A7	8312	8583.794	235.521	2.744	52.660	7	23.082
	A8	8708						
	A9	8730						

29A

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
1	01	A10	9228	9934.600	855.994	8.616	45.211	6	33.964
		A11	10886						
		A12	9688						

29B

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	B4	15160	14267.629	860.447	6.031	21.314	3	68.868
	B5	14198						
	B6	13443						

29C

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
1	01	B7	8916	9253.310	295.196	3.190	48.968	7	28.476
		B8	9468						
		B9	9374						

29	

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	B10	8301	8135.638	290.479	3.570	55.132	8	19.472
	B11	7800						
	B12	8305						

30A

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	C4	4602	5055.370	452.905	8.959	72.120	1	-5.341
	C5	5056						
	C6	5507						

30B

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
ſ	01	C7	6890	7248.111	316.251	4.363	60.027	8	12.323
		C8	7489						
		C9	7365						

30C

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
1	01	C10	9988	10223.198	563.906	5.516	43.619	6	36.288
		C11	10866						
		C12	9814						

30D

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	D4	8629	8305.146	421.869	5.080	54.197	7	20.838
	D5	7828						
	D6	8457						

31A

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
ſ	01	D7	5913	6159.359	225.300	3.658	66.031	9	3.552
		D8	6355						
		D9	6208						

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	D10	12772	13230.507	400.054	3.024	27.034	3	60.514
	D11	13407						
	D12	13511						

Sample	Well	Values	MeanValue	Std.Dev.	CV%
01	C1	11686	12613.452	569.294	4.513
	C2	13064			
	C3	13013			
	D1	12138			
	D2	12791			
	D3	12986			

Cells and Virus

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death
01	E1	3724	3716.934	390.815	10.5	70.532
	E2	3655				
	E3	3505				
	F1	4435				
	F2	3708				
	F3	3271				

28C

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
ſ	01	A4	6152	6247.680	102.822	1.646	50.468	7	28.446
		A5	6234						
		A6	6356						

28D

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
1	01	A7	3037	3057.781	201.087	6.576	75.758	1	-7.409
		A8	3268						
		A9	2867						

29A

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
1	01	A10	612.151	781.428	153.342	19.6	93.805	1	-32.996
		A11	821.091						
		A12	911.041						

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	. B4	4379	4746.565	995.514	20.9	62.369	8	11.573
	B5	5873						
	B6	3986						

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	B7	5393	4937.643	414.280	8.390	60.854	8	13.721
	B8	4584						
	B9	4835						

29D

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	B10	4098	4795.984	671.761	14.0	61.977	8	12.129
	B11	4851						
	B12	5438						

30A

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
1	01	C4	412.136	883.534	542.426	61.3	92.995	1	-31.848
		C5	762.071						
		C6	1476						

30B

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
1	01	C7	674.648	832.594	137.979	16.5	93.399	1	-32.421
		C8	929.683						
		C9	893.449						

30C

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
1	01	C10	5040	5026.976	412.406	8.204	60.146	8	14.725
		C11	4607						
		C12	5432						

30D

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
ſ	01	D4	5179	4942.040	278.068	5.627	60.819	8	13.771
		D5	5010						
		D6	4636						

31A

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
ſ	01	D7	940.071	2473.829	1344.503	54.3	80.387	1	-13.973
		D8	3448						
		D9	3032						

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
ſ	01	D10	4072	4497.067	367.945	8.182	64.347	9	8.769
		D11	4713						
		D12	4705						

	Sample	Well	Values	MeanValue	Std.Dev.	CV%
Γ	01	C1	14696	15873.306	1203.990	7.585
		C2	15680			
		C3	17680			
		D1	14444			
		D2	16258			
		D3	16481			

Cells and Virus

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death
01	E1	5161	5749.441	940.153	16.3	63.779
	E2	5302				
	E3	5255				
	F1	4896				
	F2	7121				
	F3	6759				

31C

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
1	01	A4	11175	10747.612	442.461	4.117	32.291	5	49.370
		A5	10776						
		A6	10291						

31D

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
- [01	A7	6693	6429.185	281.774	4.383	59.497	9	6.714
		A8	6461						
		A9	6132						

32A

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
1	01	A10	4042	4022.993	90.295	2.244	74.656	1	-17.053
		A11	3924						
		A12	4101						

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
Γ	01	B4	7236	9765.479	5455.338	55.8	38.479	6	39.669
		B5	6033						
		B6	16026						

-6	.,	н (
-	~	~

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	B7	6790	7825.837	945.143	12.0	50.698	7	20.510
	B8	8043						
	B9	8642						

33A

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
1	01	B10	11527	10749.012	717.661	6.677	32.282	5	49.384
		B11	10606						
		B12	10113						

33B

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	C4	8355	8308.452	820.632	9.877	47.658	7	25.277
	C5	9104						
	C6	7465						

33C

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
1	01	C7	12861	14939.787	1802.003	12.0	5.881	9	90.779
		C8	15882						
		C9	16074						

33D

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	C10	8762	9183.799	408.158	4.444	42.143	6	33.923
	C11	9577						
	C12	9211						

34A

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
ſ	01	D4	3317	2715.736	581.717	21.4	82.891	1	-29.966
		D5	2673						
		D6	2156						

34B

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
ſ	01	D7	2120	1898.632	203.672	10.7	88.039	1	-38.037
		D8	1720						
		D9	1855						

34C

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
ſ	01	D10	2009	1780.592	308.910	17.3	88.782	1	-39.203
		D11	1903						
		D12	1429						

240
34U

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	E4	9342	9568.154	371.219	3.880	39.722	6	37.720
	E5	9365						
	E6	9996						

	Sample	Well	Values	MeanValue	Std.Dev.	CV%
Γ	01	C1	18944	19923.328	1716.325	8.615
		C2	20457			
		C3	22234			
		D1	17274			
		D2	19673			
		D3	20954			

Cells and Virus

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death
01	E1	4048	4781.565	659.192	13.7	76.000
	E2	4737				
	E3	4423				
	F1	6002				
	F2	4666				
	F3	4810				

31C

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	A4	8362	10112.864	1714.802	16.9	49.241	6	35.209
	A5	11789						
	A6	10185						

31D

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	A7	7501	8872.603	2006.737	22.6	55.466	7	27.018
	A8	7940						
	A9	11175						

32A

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	A10	13312	12066.863	1345.619	11.1	39.433	5	48.114
	A11	12249						
	A12	10639						

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	. B4	24216	24661.781	2884.972	11.6	-23.783	-3	131.294
	B5	22025						
	B6	27743						

э	n	c	
э	z	s.	

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	B7	10620	9382.146	1419.904	15.1	52.909	6	30.383
	B8	9693						
	B9	7832						

33A

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	B10	14430	14492.863	363.536	2.508	27.257	3	64.136
	B11	14164						
	B12	14883						

33B

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
ĺ	01	C4	11509	10363.266	1260.654	12.1	47.984	6	36.863
		C5	9013						
		C6	10567						

33C

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
ſ	01	C7	12788	12342.286	614.393	4.978	38.051	5	49.933
		C8	11641						
		C9	12597						

33D

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
1	01	C10	13401	13306.479	852.616	6.408	33.212	4	56.301
		C11	14107						
		C12	12410						

34A

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	D4	9701	9787.837	424.522	4.337	50.872	6	33.063
	D5	10248						
	D6	9413						

34B

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
ſ	01	D7	11680	11554.512	899.678	7.786	42.005	5	44.730
		D8	12384						
		D9	10598						

34C

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	D10	8688	9899.815	1529.842	15.4	50.310	6	33.802
	D11	11618						
	D12	9392						

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	E4	9894	10680.838	828.983	7.761	46.390	6	38.960
	E5	10601						
	E6	11546						

	Sample	Well	Values	MeanValue	Std.Dev.	CV%
Γ	01	C1	19301	18576.768	1090.894	5.872
		C2	19235			
		C3	19663			
		D1	16722			
		D2	17966			
		D3	18571			

Cells and Virus

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death
01	E1	6809	7050.376	554.194	7.860	62.047
	E2	7986				
	E3	7423				
	F1	6873				
	F2	6477				
	F3	6730				

31C

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
1	01	A4	17718	17579.903	172.407	0.981	5.366	8	91.351
		A5	17386						
		A6	17634						

31D

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
- [01	A7	12336	13919.212	1564.875	11.2	25.072	4	59.592
		A8	15465						
		A9	13956						

32A

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
ſ	01	A10	15456	15542.973	190.574	1.226	16.331	2	73.680
		A11	15411						
		A12	15761						

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	B4	20091	21263.219	1287.897	6.057	-14.461	-2	123.307
	B5	21055						
	B6	22642						

э	7	r
э	2	L

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
1	01	B7	19109	18535.303	923.135	4.980	0.223	0	99.640
		B8	19026						
		B9	17470						

33A

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
1	01	B10	15700	15370.938	414.719	2.698	17.257	2	72.187
		B11	15506						
		B12	14905						

33B

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	C4	16392	17611.294	1282.405	7.282	5.197	8	91.624
	C5	18949						
	C6	17491						

33C

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
1	01	C7	18249	17705.994	491.859	2.778	4.687	7	92.445
		C8	17292						
		C9	17576						

33D

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
1	01	C10	13883	13279.100	523.558	3.943	28.518	4	54.039
		C11	12964						
		C12	12989						

34A

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
ſ	01	D4	13339	13579.903	224.630	1.654	26.898	4	56.648
		D5	13614						
		D6	13785						

34B

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	D7	10344	11152.006	707.279	6.342	39.968	6	35.585
	D8	11450						
	D9	11661						

34C

	Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
ſ	01	D10	13436	12599.018	856.711	6.800	32.179	5	48.139
		D11	11724						
		D12	12635						

Sample	Well	Values	MeanValue	Std.Dev.	CV%	% cell death	Т	% virus inhibition
01	E4	11174	11019.863	439.556	3.989	40.679	6	34.438
	E5	11361						
	E6	10523						

LITERATURE CITED

- Anzivino E, Fioriti D, Mischitelli M, Bellizzi A, Barucca V, Chiarini F, Pietropaolo V. 2009. Herpes simplex virus infection in pregnancy and in neonate: status of art of epidemiology, diagnosis, therapy and prevention. Virol J 6:40.
- Faral-Tello P, Mirazo S, Dutra C, Pérez A, Geis-Asteggiante L, Frabasile S, Koncke E, Davyt D, Cavallaro L, Heinzen H, Arbiza J. 2012. Cytotoxic, virucidal, and antiviral activity of South American plant and algae extracts. ScientificWorldJournal 2012:174837.
- Laing KJ, Dong L, Sidney J, Sette A, Koelle DM. 2012. Immunology in the Clinic Review Series; focus on host responses: T cell responses to herpes simplex viruses. Clin Exp Immunol 167(1):47-58.
- Bradley H, Markowitz LE, Gibson T, Mcquillan GM. 2014. Seroprevalence of herpes simplex virus types 1 and 2 United States, 1999-2010. J Infect Dis 26(10):740-5.
- Piret J, Boivin G. 2011. Resistance of herpes simplex viruses to nucleoside analogues: mechanisms, prevalence, and management. Antimicrob Agents Chemother 55(2):459-72.
- Pepose JS, Keadle TL, Morrison LA. 2006. Ocular herpes simplex: changing epidemiology, emerging disease patterns, and the potential of vaccine prevention and therapy. Am J Ophthalmol 141(3):547-557.
- Akhtar J, Shukla D. 2009. Viral entry mechanisms: cellular and viral mediators of herpes simplex virus entry. FEBS J 276(24):7228-36.

- Geraghty RJ, Krummenacher C, Cohen GH, Eisenberg RJ, Spear PG. 1998.
 Entry of alphaherpesviruses mediated by poliovirus receptor-related protein 1 and poliovirus receptor. Science 280(5369):1618-20.
- Xu D, Esko JD. 2014. Demystifying heparan sulfate–protein interactions. Annu. Rev. Biochem. Annu Rev Biochem 83:129-57.
- 10. Spear PG, Eisenberg RJ, Cohen GH. 2000. Three classes of cell surface receptors for alphaherpesvirus entry. Virology 275(1):1-8.
- 11. Figure 1. Graham Colm [Internet]. Wikipedia [cited 2014 Sept 19]. Available from http://en.wikipedia.org/wiki/File:HSV replication.png.
- 12. Li L, Li Z, Li X, Wang E, Lang F, Xia Y, Fraser NW, Gao F, Zhou J. 2015.Reactivation of HSV-1 following explant of tree shrew brain. J Neuroviro [Epub ahead of print].
- Jones C. 2003. Herpes simplex virus type 1 and bovine herpesvirus 1 latency. Clin Microbiol Rev 16(1):79-95.
- Oakley C, Epstein JB, Sherlock CH. 1997. Reactivation of oral herpes simplex virus: Implications for clinical management of herpes simplex virus recurrence during radiotherapy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 84(3):272-8.
- Kaufman HE, Azcuy AM, Varnell ED, Sloop GD, Thompson HW, Hill JM.
 2005. HSV-1 DNA in tears and saliva of normal adults. Invest Ophthalmol Vis Sci 6(1):241-7.
- James SH, Sheffield JS, Kimberlin DW. 2014. Mother-to-child transmission of herpes simplex virus. J Pediatric Infect Dis Soc 3 Suppl 1:S19-23.

- Knezevic A, Martic J, Stanojevic M, Jankovic S, Nedeljkovic J, Nikolic L,
 Pasic S, Jankovic B, Jovanovic T. 2007. Disseminated neonatal herpes caused
 by herpes simplex virus types 1 and 2. Emerg Infect Dis 13(2):302-4.
- Enright A. 2002. Neonatal herpes infection: diagnosis, treatment and prevention. Semin Neonatol 7(4):283-91.
- Kuo YC, Lin LC, Tsai WJ, Chou CJ, Kung SH, Ho YH. 2002. Samarangenin B from Limonium sinense suppresses herpes simplex virus type 1 replication in vero cells by regulation of viral macromolecular synthesis. Antimicrob Agents Chemother 46(9):2854-64.
- 20. Smith JS, Robinson NJ. 2002. Age-specific prevalence of infection with herpes simplex virus types 2 and 1: a global review. J Infect Dis 186 Suppl 1:S3-28.
- 21. Xu F, Sternberg MR, Kottiri BJ, McQuillan GM, Lee FK, Nahmias AJ, Berman SM, Markowitz LE. 2006. Trends in herpes simplex virus type 1 and type 2 seroprevalence in the United States. JAMA 296(8):964-73.
- 22. CDC. Incidence, prevalence, and cost of sexually transmitted infections in the United States. 2013 Feb.
- 23. Wilson SS, Fakioglu E, Herold BC. 2009. Novel approaches in fighting herpes simplex virus infections. Expert Rev Anti Infect Ther 7(5):559-68.
- 24. Tolo FM, Rukunga GM, Muli FW, Njagi EN, Njue W, Kumon K, Mungai GM, Muthaura CN, Muli JM, Keter LK, Oishi E, Kofi-Tsekpo MW. 2006. Anti-viral activity of the extracts of a Kenyan medicinal plant Carissa edulis against herpes simplex virus. J Ethnopharmacol 104(1-2):92-9.

- 25. Frobert E, Burrel S, Ducastelle-Lepretre S, Billaud G, Ader F, Casalegno J-S, Nave V, Boutolleau D, Michallet M, Lina B, Morfin F. 2014. Resistance of herpes simplex viruses to acyclovir: An update from a ten-year survey in France. Antiviral Res 111:36–41.
- 26. Bag P, Chattopadhyay D, Mukherjee H, Ojha D, Mandal N, Sarkar M, Chatterjee T, Das G, Chakraborti S. 2012. Anti-herpes virus activities of bioactive fraction and isolated pure constituent of Mallotus peltatus: an ethnomedicine from Andaman Islands. Virol J 9:98.
- 27. Ojwang JO, Wang Y-H, Wyde PR, Fischer NH, Schuehly W, Appleman JR, Hinds S, Shimasaki CD. 2005. A novel inhibitor of respiratory syncytial virus isolated from ethnobotanicals. Antiviral Res 68(3):163-72.
- 28. Chin LW, Cheng Y-W, Lin S-S, Lai Y-Y, Lin L-Y, Chou M-Y, Chou M-C, Yang C-C. 2010. Anti-herpes simplex virus effects of berberine from Coptidis rhizoma, a major component of a Chinese herbal medicine, Ching-Wei-San. Arch Virol 155(12):1933-41.
- 29. Ren Z, Zhang C-H, Wang L-J, Cui Y-X, Qi R-B, Yang C-R, Zhang Y-J, Wei X-Y, Lu D-X, Wang Y-F. 2010. In vitro anti-viral activity of the total alkaloids from Tripterygium hypoglaucum against herpes simplex virus type 1. Virol Sin 25(2):107-14.
- 30. Cheng K-W, Wang M, Chen F, Ho C-T. 2008. Oligostilbenes from Gnetum species and anticarcinogenic and antiinflammatory activities of oligostilbenes. ACS Symposium Series Dietary Supplements:36–58.

- 31. Guo Q, Zhao L, You Q, Yang Y, Gu H, Song G, Lu N, Xin J. 2007. Antihepatitis B virus activity of wogonin in vitro and in vivo. Antiviral Res 74(1):16-24.
- 32. Tian L-W, Zhang Y-J, Qu C, Wang Y-F, Yang C-R. 2010. Phloroglucinol glycosides from the fresh fruits of Eucalyptus maiden. J Nat Prod 73(2):160-3.
- 33. Safrin S, Elbeik T, Phan L, Robinson D, Rush J, Elbaggari A, Mills K. 1994. Correlation between response to acyclovir and foscarnet therapy and in vitro susceptibility result for isolates of herpes simplex virus from human immunodeficiency virus-infected patients. Antimicrob Agents Chemother 38(6):1246-50.
- 34. Pan D, Kaye SB, Hopkins M, Kirwan R, Hart IJ, Coen DM. 2013. Common and new acyclovir resistant herpes simplex virus-1 mutants causing bilateral recurrent herpetic keratitis in an immunocompetent patient. J Infect Dis 209:345-349.
- 35. Singh N, Kumar A, Gupta P, Chand K, Samant M, Maurya R, Dube A. 2008. Evaluation of antileishmanial potential of Tinospora sinensis against experimental visceral leishmaniasis. Parasitol Res 102(3): 561–565.
- 36. Wang M, Zhao J, Zhao Y, Huang RY, Li G, Zeng X, Li X. 2015. A new coumarin isolated from Sarcandra glabra as potential anti-inflammatory agent. Nat Prod Res September 1 : 1–6.
- 37. Cao HJ, Tan RR, He RR, Tang LP, Wang XL, Yao N, Duan WJ, Hu YA, Yao XS, Kurihara H. 2012. Sarcandra glabra extract reduces the susceptibility and

severity of influenza in restraint-stressed Mice. Evid Based Complement Alternat Med 2012: 236539.

- 38. Nawawi A, Nakamura N, Hattori M, Kurokawa M, Shiraki K. 1999. Inhibitory effects of Indonesian medicinal plants on the infection of herpes simplex virus type 1. Phytother Res 13(1):37-41.
- 39. Prakash T, Kotresha D, Nedendla RR. 2011. Neuroprotective activity of Wedelia calendulacea on cerebral ischemia/reperfusion induced oxidative stress in rats. Indian J Pharmacol 43(6):676-82.
- 40. Chiang LC, Chiang W, Chang MY, Ng LT, Lin CC. 2002. Antiviral activity of Plantago major extracts and related compounds in vitro. Antiviral Res 55(1):53-62.
- 41. Srivastava S, Chandra D. 2013. Pharmacological potentials of Syzygium cumini: a review. J Sci Food Agric 93(9):2084-93.
- 42. Li YJ, Lin DD, Jiao B, Xu CT, Qin JK, Ye GJ, Su GF. 2015. Purification, antioxidant and hepatoprotective activities of polysaccharide from Cissus pteroclada Hayata. Int J Biol Macromol 77:307-13.
- 43. Bartolome AP, Villaseñor IM, Yang WC. 2013. Bidens pilosa L. (Asteraceae): botanical properties, traditional uses, phytochemistry, and pharmacology. Evid Based Complement Alternat Med 2013:340215.
- 44. Chiang LC, Chang JS, Chen CC, Ng LT, Lin CC. 2003. Anti-Herpes simplex virus activity of Bidens pilosa and Houttuynia cordata. Am J Chin Med 31(3):355-62.

- World Conservation Monitoring Centre. 1998. Mangifera persiciformis. 2006
 IUCN Red List of Threatened Species.
- 46. Fotso AF, Longo F, Djomeni PD, Kouam SF, Spiteller M, Dongmo AB, Savineau JP. 2014. Analgesic and antiinflammatory activities of the ethyl acetate fraction of Bidens pilosa(Asteraceae). Inflammopharmacology 22(2):105-14.
- 47. Si X, Wei S, Xu X, Fang X, Wu W. 1995. [Chemical constituents in the leaves of Mangifera persiciformis C.Y. Wu et Y.L. Ming]. Zhongguo Zhong Yao Za Zhi 20(5):295-6, 320.