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ABSTRACT 

 In the twenty-first century, significant advancements in the field of computer 

vision facilitated a surge in the application of image classification in different industries. 

This work proposes an image classification technique that utilizes a Convolutional Neural 

Network (CNN) to simplify training by transforming raw images into reduced 

representations. This proposed technique is used in developing two CNN models. The 

first model is applied in a human-robot interactive game of Simon Says. In contrast, the 

second is applied in a fall detection system classifying human subjects’ actions as sitting, 

falling, or on-feet. An accuracy of 92.55% was achieved for the human-robot interactive 

game, while the fall detection algorithm yielded an accuracy of 90.79%. We hope this 

work will be a great addition to the research community as it can further be expanded to 

incorporate different areas of computer vision, such as human gesture recognition for 

autonomous vehicles. 
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CHAPTER I 

INTRODUCTION 

Since its inception, machine learning has seen substantial growth in its real-world 

applications within different technology realms. These realms include speech recognition, 

medical diagnosis, statistical arbitrage, predictive analysis, and image classification [1]. 

Deep learning is one of the subsets of machine learning that uses layers to structure 

algorithms and create neural networks [2]. Among the areas where deep learning can be 

applied is image classification. Image classification is defined as the ability of a 

computer/machine to analyze and group images in certain predefined classes [3]. This 

can be accomplished using artificial neural networks (ANN), the most widely used one 

being the convolutional neural network (CNN).  

Various CNN-based systems have been utilized for image classification, such as 

cancer cell recognition and classification [4], blood cell image classification [5], bacteria 

classification [6], and human pose detection [7]. Human pose detection algorithms have 

been implemented in many ways and for different purposes like determining a human 

subject's activity, relative size, or joint locations.  

This work proposes an image classification technique that utilizes CNN to 

simplify training by transforming raw images into reduced representations. Most CNN 

image classification algorithms employ raw or augmented images to perform training and 

classification. However, in this work, the images are transformed into skeletal binary 

sequences before undergoing training. This project aims to investigate whether images 

produced from the proposed image reduction algorithm can be harnessed to perform 
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image classification and yield comparable results to traditional CNN image classification 

models.  

The proposed technique is utilized to create a CNN model used for a human-robot 

interactive game. Nowadays, AI applications involving robots are rapidly increasing their 

involvement in the day-to-day lives of human beings. These robots communicate with 

human beings to aid us in tasks such as delivering items, assembling products, picking 

orders in warehouses, and cleaning our houses without needing our presence. In these 

applications, gesture recognition is vital as these robots must assess their environment 

before and during their tasks. In this work, we experiment with CNN gesture/pose 

recognition by implementing the proposed image reduction technique and applying it to a 

human-robot interactive game. Aside from CNN image classification, this game utilizes a 

humanoid robot to develop an interactive game between a human and a robot. The robot 

used in this system was the NAO robot which was equipped with sensors supporting 

sound, vision, speech, and movements. This interactive game was based on a popular 

children’s game called Simon Says. In this game, the robot has the role of Simon and 

instructs the human player(s) to make pose(s) and determines whether the postures are 

correct by snapping a picture of the player(s) and utilizing image classification to 

determine which pose the player(s) exhibited.  

Similarly, the proposed image classification technique is used to create a human 

fall detection algorithm. Due to the increasing levels of life expectancy and decreasing 

levels of fertility, the population of senior citizens in the world is on the rise. 

Simultaneously, the number of caregivers for the elderly is stagnant [8]. According to the 

World Health Organization [9], accidental falling is one of the most common reasons for 
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declining elderly citizens’ health. According to [10], up to 75% of senior citizens in 

nursing homes fall annually. Due to the increased substantial risk factors associated with 

falling, the need for surveillance systems is indisputable. Therefore, a fall detection 

algorithm that utilizes the proposed image classification technique, along with a CNN 

model, is presented. Instead of relying on a humanoid robot as a visual data source, this 

portion uses a regular RGB (Red, Green, Blue) camera. With the utilization of CNN 

image classification, this system categorizes the actions of a human subject as Sitting, 

On-Feet, or Falling.   

The remainder of this paper is structured as follows: Section two presents the 

background; section three presents the methodologies used to achieve desired results; 

section four presents the results of the methods and the discussion of the results; finally, 

section five presents the conclusion of the paper.  
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CHAPTER II 

BACKGROUND 

Computer Vision 

Computer vision is a field of artificial intelligence that allows computers and 

systems to gather meaningful information from visual data such as images and videos and 

use that information to take next steps [11]. Computer vision is applied in industries such 

as retail, healthcare, security, video gaming, and automotive. 

Object/Pose Detection using CNN 

Object detection is a subset of computer vision defined as the collection of tasks 

leading to the identification of multiple objects in an image. These objects can be 

humans, animals, or inanimate objects. Using CNN, object detection can be implemented 

to calculate relative distances between objects and count the number of objects in an 

image. In [12], CNN object detection is utilized to calculate distances between human 

subjects. This tool was developed to halt the spread of the Coronavirus by detecting if the 

distance between two people adheres to social distancing guidelines.  

This work uses a pretrained two-branch CNN model [13, 14] for pose detection. 

This two-branch pretrained model takes a color image as an input, and the first branch 

establishes a set of two-dimensional confidence maps. Meanwhile, the second branch 

establishes a set of two-dimensional part affinity maps. Greedy inference is then used to 

parse the confidence maps and the part affinity maps resulting in two-dimensional key 

points representing the joint locations of the human subject in the image. Using the 

Common Objects in Context (COCO) dataset as a training set, consisting of more than 
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300K labeled images [15], this model produces 18 key points, including the nose, neck, 

right/left elbows, and right/left shoulders.  

Image Classification using CNN 

One of the subsets of computer vision is image classification, which is the ability 

of a computer to analyze and group images in certain predefined classes [3]. This can be 

accomplished by utilizing neural networks. One of the most widely used neural network 

models for image classification is the convolutional neural network (CNN).  

CNN is beneficial as it reduces the number of parameters required to set up a 

model, and features are spatially independent [16]. CNN has three main types of layers: 

convolution layers, pooling layers, and fully connected layers. The convolution layer 

applies a convolution operation to the input image and passes the result to the following 

layer [17]. This convolution operation takes a kernel/filter and passes it over the input 

image to transform it based on the filter values. The subsequent feature maps are 

computed with the formula presented below, where the kernel is denoted by h, the input 

image is represented by f, and the rows and columns indexes of the resulting matrix are 

denoted by m and n [18]: 

          𝐺[𝑚, 𝑛] = (𝑓 ∗ ℎ)[𝑚, 𝑛] =  ∑ 𝑓𝑗 ∑ ℎ[𝑗, 𝑘]𝑓[𝑚 − 𝑗, 𝑛 − 𝑘]𝑘            (1) 

The pooling layer follows the convolution layer and conducts down-sampling to 

decrease the spatial size of the input further. A prevalent pooling method is Max Pooling, 

which down-samples the input by taking the maximum value over the window size 

specified. Following that, the fully connected (Dense) layer assembles class scores to be 

utilized for classification. The rectified linear unit (ReLU) activation function is applied 

to feature maps produced from the previous layers to ensure the feature maps’ contents 
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are zero and above. That is accomplished by the formula presented below. If this function 

receives a negative input, it will return 0. However, if a positive input is received, it will 

return that value. 

                                         𝑓(𝑥) = max (0, 𝑥)                                 (2) 

 Sigmoid is another activation function common in CNN architectures where the 

output is the prediction probability as it exists between 0 and 1. Sigmoid is defined by the 

formula below, where Euler’s number is denoted by e: 

                                                                     𝑆(𝑥) =
1

1+𝑒−𝑥                                      (3) 

   A frequent CNN architecture for image classification is structured where 

pooling layers follow the convolutional layers in a redundant fashion before feeding 

forward to the fully connected layers [19]. Figure 1 shows the structure of a typical CNN 

model. This model is used to classify an input image as duck or not duck. In this 

structure, two convolution layers with the ReLU activation function are used to apply a 

convolution operation on the input image. The max pooling layer is then used to down-

sample the output of the convolution layers while the fully connected layers perform the 

classification of the input image. 

Figure 1. Common CNN structure with convolution layers, pooling layers, and fully 

connected layers 
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CNN image classification can be applied in many areas. In [20], it is involved in 

the classification of 102 flower species by using the DenseNet121 deep learning model. 

This is important as it helps in the management and protection of biodiversity. It is also 

applied in healthcare as it has been used to recognize deadly viruses, such as the 

Coronavirus, in computed tomography scans of lungs [21]. Also, CNN is useful in 

systems involving robots with the ability to perform tasks such as manufacturing, 

transportation, providing assistance, and interacting with human beings. In [22], a 

prototype of a socially assistive robot was created to interact verbally and recognize 

several objects, such as smartphones, bottles, clocks, and faces, using CNN. This robot is 

helpful as it can assist children in learning to interact socially by talking and recognizing 

objects. 

Applications involving CNN image classification and object detection can help 

track the well-being of elderly citizens by monitoring several aspects of an individual, 

including the identification of falling. In [23], a fall detection system is developed by 

extracting a human silhouette from an image using mask R-CNN (mask regional CNN) 

and recognizing it as sitting, bending, standing, or lying. Similarly, in [24], a real-time 

skeleton-based fall detection algorithm is proposed where a human subject’s skeleton 

sequence is encoded onto an RGB image while maintaining spatial structure and time-

dynamic information. In this paper, CNN encodes the images' reduced skeletal 

representations and classifies them into different classes using the Keras API. 
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CHAPTER III 

METHODOLOGY 

This methodology discusses an image classification algorithm applied to two 

different pose recognition processes. The first application is a human-robot interactive 

game. This algorithm is then expanded to be applicable in the medical field as it is 

utilized in a fall detection system. Figure 1 outlines the model framework of these two 

applications. 

 

Figure 2. The model framework for the human-robot interactive game and the fall 

detection algorithm 

 

Image Processing 

Data Collection 

The data/images utilized for the human-robot interactive game were collected 

from team members who modeled these poses. While capturing these pictures, each team 

member did a slight variation of a particular pose by standing at different locations to 

mimic players standing at various locations during the game. In total, 429 labeled images 

belonging to eight pose classes were collected. Table 1 lists the eight poses along with 

their descriptions and counts. 
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Table 1. The eight different pose classes for the human-robot interactive game, 

along with their description and count 

 

 

The dataset used to train and test the fall detection algorithm is the Multiple 

Cameras Fall Dataset [25]. This dataset contains videos consisting of 24 scenarios 

recorded with eight video cameras. For all the scenarios, the possible positions or 

movements are sitting, lying on sofa, moving up, falling, walking/standing up, etc. 

Because still images were needed to train our fall detection algorithm, these videos were 

converted into images using Python’s OpenCV library.  

After the videos were converted into images, they were manually labeled into 

three categories. Table 2 shows the three categories, along with their description and 

count. Some images were flipped horizontally to achieve a balanced dataset and address 

the lack of images in the sitting category. Finally, we had a total of 564 training images. 

 

Pose Name Description Count 

Pose1 Player(s) put both arms out by their sides 38 

Pose2 Player(s) put both hands on their waist 63 

Pose3 Player(s) put both hands on their head 58 

Pose4 Player(s) raise both arms like a football goal post 72 

Pose5 Player(s) raise right arm straight out to their side 72 

Pose6 Player(s) raise left arm straight out to their side 67 

Pose7 Player(s) lie on the ground on their side 10 

Pose8 Player(s) raise right arm above head 49 
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Table 2. The three different pose classes for the fall detection algorithm, along 

with their description and count 

 

 

Image Processing Approach for Data Preparation 

The next step in our approach is to prepare the labeled images to achieve 

suitability for training. Gupta’s multi-person pose estimation package, OpenPose [14], 

was adopted to process these images to make them best suited for training. Using the 

COCO dataset and the OpenPose package, we obtained a collection of 18-pixel 

coordinate points representing important skeletal points of the body. Some of these 

essential skeletal points of the body are the nose, neck, right/left elbows, right/left 

shoulders, and so on. This model takes a color image as input and returns an array 

consisting of matrices with the confidence maps of key points and part affinity heatmaps 

of each joint pair. These joint locations are computed as actual pixel coordinates of the 

image. 

Following the creation of the key points, our method creates a binary image of 

line segments by connecting the pairwise coordinate points generated previously. Using 

OpenCV, a blank image was created, and each key point coordinate generated was 

located and drawn in this image. Line segments were then formed between valid joint 

pairs to create a binary skeletal representation of the image. We then compute the height 

Action Name Description Count 

Fall Human subject is lying on the ground, horizontally 187 

Sit Human subject is sitting 187 

On-Feet Human subject is on their feet, either walking or standing 190 
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and width of the stick figure-like image and crop it to occupy the entire image (no extra 

blank space). Figure 2 illustrates this image processing technique for one of the poses 

associated with the human-robot interactive game. Additionally, Figure 3 represents the 

image processing technique for the three classes related to the fall detection system.  

 

 

 

 

 

 

 

 

 

 

Figure 3. Image processing steps to create suitable images for training 
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Figure 4. Image processing steps representing three different classes 

 

From Two-Player to Multi-Player Game 

Initially, the human-robot interactive game allowed for one player at a time. That 

was upgraded to a two-player game, allowing the two players to play side-by-side. The 

two-player game was made possible by cropping the raw image into two halves and 

processing each half to generate each player’s joint location. However, this method 

proved inefficient as situations where the players were overlapping or standing too close 

produced incorrect coordinates. An alternate image cropping approach was developed to 
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solve this issue and upgrade the algorithm to handle multiple players efficiently. In this 

new approach, instead of dividing the raw image into halves, the picture was cropped 

based on each player’s location. The steps of this approach are as follows: 

1. Use Gupta’s OpenPose[14] to identify the joint locations of multiple players 

2. Use the image processing method mentioned in the previous subsection to obtain 

the binary skeletal images of the players  

3. In the binary image, locate the players' overall maximum and minimum height 

coordinates. This was accomplished using the joint coordinates of the ankles and 

the eyes. This step was added to achieve the most efficient image extraction, as it 

will give us the ability to dispose of the blank spaces found at the top and bottom 

of the image 

4. Locate the minimum and maximum joint location coordinates of each player. The 

minimum joint location of a player is the joint closest to the left edge of the 

image, while the maximum location is the furthest from the image's left edge. For 

example, in Figure 4, the minimum and maximum joint locations for Player 1 are 

the coordinates located on the left wrist and right elbow. Similarly, for Player 2, 

the minimum and maximum joint locations are the coordinates located on the left 

and right wrists. 

5. By utilizing the minimum/maximum height coordinates and the 

minimum/maximum joint locations, extract each player from the binary image by 

cropping (See Figure 4). 
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Figure 5. Image processing steps to support multi-player functionality 

 

After these steps, each cropped image is fed into the CNN classification model and 

classified into one of the eight poses. By using this approach, tracking each player during 

the game is simplified. However, if the players were to switch places during the course of 

the game, this method does not have the ability to differentiate the players. 

Pose Recognition 

The Convolutional Neural Network Model 

Besides some hyperparameter differences, the CNN models used for the robot-

human interactive game and the fall detection algorithm have identical structures. Based 

on the skeletal representations produced from our image processing technique, CNN is 

utilized to classify these images into different classes. These binary images were resized 

to 150x150 pixels to be input into the CNN model. This CNN model (see Figure 4) has 

three convolutional layers, each followed by a max pooling layer. The convolution layers 

consist of kernel sizes of 3x3, while the max pooling layers consist of pool sizes of 2x2. 
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A flattening layer then converts the output into a one-dimensional array to be input to the 

next layer. A fully connected layer follows that with the ReLU activation function. We 

then add a dropout layer to regularize the model and avoid overfitting. Finally, this CNN 

model has another fully-connected layer with the Sigmoid activation function that 

performs the classification of the classes. The categorical cross entropy loss function and 

the Adam optimizer were used in the compilation of this model. 

 

Figure 6. CNN architecture used to perform image classification 
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CHAPTER IV 

RESULTS AND DISCUSSION 

Hyperparameter Tuning 

The proposed model was trained and tested on Google Colab with the NVIDIA-

SMI GPU. It was evaluated using k-fold cross-validation with k=10. To ensure the most 

optimal hyperparameters were being utilized, different hyperparameter values, such as 

batch size, epoch number, learning rate, optimizer function, and dropout rate, were 

experimented with. Figure 6 shows some experimented hyperparameters for the fall 

detection and human-robot interactive game algorithm. Table 3 shows the optimal 

hyperparameters obtained from our experiment and thus used in the CNN model. 

 

Figure 7. Results of hyperparameter (batch size, epoch number, and dropout rate) tuning 

for the human-robot game model and the fall detection model 
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Table 3. Optimal hyperparameters selected for the human-robot game model and 

the fall detection model 

 

Human-Robot Interactive Game 

After implementing the abovementioned methodologies and selecting the optimal 

hyperparameters, the CNN model associated with the human-robot interactive game was 

evaluated using a 10-fold cross-validation. This evaluation provided an average 

validation accuracy of 92.55% (See Figure 7).  

 

 

Figure 8. 10-fold cross-validation results for the human-robot game and the fall detection 

algorithm 

 

 

 

Hyperparameter Human-Robot 

Interactive Game 

Fall Detection Algorithm 

Epoch Number 11 15 

Batch Size 8 4 

Dropout Rate 0.5 0.4 
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Fall Detection Algorithm 

The CNN model associated with the fall detection algorithm underwent 

evaluation using 10-fold cross-validation and achieved an average validation accuracy of 

90.79% (See Figure 7). The same CNN fall detection model was run with raw 

unprocessed images as input. These raw images contained identical class distribution as 

the processed images. This model performed better than the model with the processed 

images and achieved an average 10-fold cross-validation accuracy of 94.66%. This model 

performed better as there is more image information in the raw images than in the 

processed binary images. However, this model's training and validation time was more 

than four times that of the processed binary images model. The faster rate at which the 

processed binary image model trains is beneficial in scenarios where adaptive learning is 

implemented. 

 

 

 

 

 

 

 

Figure 9. Confusion matrix for the fall detection model 

As can be seen from the confusion matrix in Figure 8, our fall detection CNN 

model exhibits difficulty classifying the fall-labeled images, as 15% (6 out of 40) of these 
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images are misclassified. Out of the 15% of the misclassified images, 50% are 

misclassified as Sitting, while the other half are misclassified as On-Feet.  

Further Investigation on Misclassification of Images 

 

Figure 10. Fall-labeled images and their misclassification 

 

We ran the same binary skeletal image CNN model three times but with different 

input data. The first model was trained with only Fall and On-Feet images, the second 

one with Fall and Sit images, and the third one with On-Feet and Sit images. As can be 

seen from Table 4, these three models all yield better validation accuracies than that of 

the three-class fall detection model. Figure 10 displays the three confusion matrices for 
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these three models. It can be observed that the binary images of a Fall-labeled image and 

an On-Feet-labeled image have similarities that the model does not classify very well, as 

12.5% (5 out of 40) of the Fall-labeled images were misclassified as On-Feet. By 

observing Figure 9, it is reasonable to conclude that the main factor for the 

misclassification of the falling images is the lack of accuracy in creating the skeletal 

representations of the human subjects in the images. The skeletal representations of the 

images are constructed incorrectly, as the key joint locations of the humans are not 

identified correctly. 

Table 4. Accuracies of the three models trained with binary data 

 

 

 

 

 

Figure 11. Confusion matrices of the three models trained with binary data 

 

 

Model Classes Accuracy 

Fall and On-Feet 0.93 

Fall and Sit 0.93 

On-Feet and Sit  0.96 
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CHAPTER V 

CONCLUSION 

The image processing technique proposed in this work utilizes machine learning, 

specifically image classification, to create a human-robot interactive game and a fall 

detection system. These systems were based on the binary human skeletal representation 

of raw RGB images. A three-layer CNN model was built on these binary images to detect 

different human poses. These human poses include the eight poses used for the human-

robot interactive game (see Table 1) and the three poses used for the fall detection system 

(see Table 3). The experimental results show that an accuracy of 92.55% is obtained for 

the human-robot interactive game, while an accuracy of 90.79% is obtained for the fall 

detection system. The image processing method proposed in this work is beneficial as the 

information in images is not affected by background noise or lighting conditions, and the 

training and validation times of the applied models decrease. For future work, we would 

like to expand the fall detection algorithm to detect multiple falls in one scene/image. Our 

fall detection system currently only processes images with one human subject. This issue 

can be addressed by using a similar process used to give the human-robot interactive 

game multi-player functionality.  
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