
A STUDY OF SKELETAL-BASED IMAGE PROCESSING TECHNIQUE FOR CNN-

BASED IMAGE CLASSIFICATION

By

Tsega Tsahai

A thesis submitted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE

in

Computer Science

Middle Tennessee State University

December 2022

ii

ACKNOWLEDGEMENTS

 I would like to thank Dr. Cen Li for providing excellent guidance through writing

this paper. I would also like to thank my committee members, Dr. Suk Seo and Dr. Yi

Gu, for providing me with valuable support.

iii

ABSTRACT

 In the twenty-first century, significant advancements in the field of computer

vision facilitated a surge in the application of image classification in different industries.

This work proposes an image classification technique that utilizes a Convolutional Neural

Network (CNN) to simplify training by transforming raw images into reduced

representations. This proposed technique is used in developing two CNN models. The

first model is applied in a human-robot interactive game of Simon Says. In contrast, the

second is applied in a fall detection system classifying human subjects’ actions as sitting,

falling, or on-feet. An accuracy of 92.55% was achieved for the human-robot interactive

game, while the fall detection algorithm yielded an accuracy of 90.79%. We hope this

work will be a great addition to the research community as it can further be expanded to

incorporate different areas of computer vision, such as human gesture recognition for

autonomous vehicles.

iv

TABLE OF CONTENTS

LIST OF TABLES .. v

LIST OF FIGURES ... vi

LIST OF SYMBOLS AND ABBREVIATIONS ... vii

Chapter

I. INTRODUCTION ... 1

II. BACKGROUND ... 4

III. METHODOLOGY ... 8

IV. RESULTS AND DISCUSSION ... 16

V. CONCLUSION .. 21

BIBLIOGRAPHY ... 22

v

LIST OF TABLES

Table 1 – The eight different pose classes for the human-robot interactive game, along

with their description and count ... 9

Table 2 – The three different pose classes for the fall detection algorithm, along with their

description and count .. 10

Table 3 – Optimal hyperparameters selected for the human-robot game model and the fall

detection model ... 17

Table 4 – Accuracies of the three models trained with binary data 20

vi

LIST OF FIGURES

Figure 1 – Common CNN structure with convolution layers, pooling layers, and fully

connected layers .. 6

Figure 2 – The model framework for the human-robot interactive game and the fall

detection algorithm ... 8

Figure 3 – Image processing steps to create suitable images for training 11

Figure 4 – Image processing steps representing three different classes 12

Figure 5 – Image processing steps to support multi-player functionality 14

Figure 6 – CNN architecture used to perform image classification 15

Figure 7 – Results of hyperparameter (batch size, epoch number, and dropout rate) tuning

for the human-robot game model and the fall detection model 16

Figure 8 – 10-fold cross-validation results for the human-robot game and the fall

detection algorithm ... 17

Figure 9 – Confusion matrix for the fall detection model .. 18

Figure 10 – Fall-labeled images and their misclassification ... 19

Figure 11 - Confusion matrices of the three models trained with binary data 20

vii

LIST OF SYMBOLS AND ABBREVIATIONS

CNN – Convolutional Neural Network

ANN – Artificial Neural Network

RGB – Red, Green Blue

AI – Artificial Intelligence

1

CHAPTER I

INTRODUCTION

Since its inception, machine learning has seen substantial growth in its real-world

applications within different technology realms. These realms include speech recognition,

medical diagnosis, statistical arbitrage, predictive analysis, and image classification [1].

Deep learning is one of the subsets of machine learning that uses layers to structure

algorithms and create neural networks [2]. Among the areas where deep learning can be

applied is image classification. Image classification is defined as the ability of a

computer/machine to analyze and group images in certain predefined classes [3]. This

can be accomplished using artificial neural networks (ANN), the most widely used one

being the convolutional neural network (CNN).

Various CNN-based systems have been utilized for image classification, such as

cancer cell recognition and classification [4], blood cell image classification [5], bacteria

classification [6], and human pose detection [7]. Human pose detection algorithms have

been implemented in many ways and for different purposes like determining a human

subject's activity, relative size, or joint locations.

This work proposes an image classification technique that utilizes CNN to

simplify training by transforming raw images into reduced representations. Most CNN

image classification algorithms employ raw or augmented images to perform training and

classification. However, in this work, the images are transformed into skeletal binary

sequences before undergoing training. This project aims to investigate whether images

produced from the proposed image reduction algorithm can be harnessed to perform

2

image classification and yield comparable results to traditional CNN image classification

models.

The proposed technique is utilized to create a CNN model used for a human-robot

interactive game. Nowadays, AI applications involving robots are rapidly increasing their

involvement in the day-to-day lives of human beings. These robots communicate with

human beings to aid us in tasks such as delivering items, assembling products, picking

orders in warehouses, and cleaning our houses without needing our presence. In these

applications, gesture recognition is vital as these robots must assess their environment

before and during their tasks. In this work, we experiment with CNN gesture/pose

recognition by implementing the proposed image reduction technique and applying it to a

human-robot interactive game. Aside from CNN image classification, this game utilizes a

humanoid robot to develop an interactive game between a human and a robot. The robot

used in this system was the NAO robot which was equipped with sensors supporting

sound, vision, speech, and movements. This interactive game was based on a popular

children’s game called Simon Says. In this game, the robot has the role of Simon and

instructs the human player(s) to make pose(s) and determines whether the postures are

correct by snapping a picture of the player(s) and utilizing image classification to

determine which pose the player(s) exhibited.

Similarly, the proposed image classification technique is used to create a human

fall detection algorithm. Due to the increasing levels of life expectancy and decreasing

levels of fertility, the population of senior citizens in the world is on the rise.

Simultaneously, the number of caregivers for the elderly is stagnant [8]. According to the

World Health Organization [9], accidental falling is one of the most common reasons for

3

declining elderly citizens’ health. According to [10], up to 75% of senior citizens in

nursing homes fall annually. Due to the increased substantial risk factors associated with

falling, the need for surveillance systems is indisputable. Therefore, a fall detection

algorithm that utilizes the proposed image classification technique, along with a CNN

model, is presented. Instead of relying on a humanoid robot as a visual data source, this

portion uses a regular RGB (Red, Green, Blue) camera. With the utilization of CNN

image classification, this system categorizes the actions of a human subject as Sitting,

On-Feet, or Falling.

The remainder of this paper is structured as follows: Section two presents the

background; section three presents the methodologies used to achieve desired results;

section four presents the results of the methods and the discussion of the results; finally,

section five presents the conclusion of the paper.

4

CHAPTER II

BACKGROUND

Computer Vision

Computer vision is a field of artificial intelligence that allows computers and

systems to gather meaningful information from visual data such as images and videos and

use that information to take next steps [11]. Computer vision is applied in industries such

as retail, healthcare, security, video gaming, and automotive.

Object/Pose Detection using CNN

Object detection is a subset of computer vision defined as the collection of tasks

leading to the identification of multiple objects in an image. These objects can be

humans, animals, or inanimate objects. Using CNN, object detection can be implemented

to calculate relative distances between objects and count the number of objects in an

image. In [12], CNN object detection is utilized to calculate distances between human

subjects. This tool was developed to halt the spread of the Coronavirus by detecting if the

distance between two people adheres to social distancing guidelines.

This work uses a pretrained two-branch CNN model [13, 14] for pose detection.

This two-branch pretrained model takes a color image as an input, and the first branch

establishes a set of two-dimensional confidence maps. Meanwhile, the second branch

establishes a set of two-dimensional part affinity maps. Greedy inference is then used to

parse the confidence maps and the part affinity maps resulting in two-dimensional key

points representing the joint locations of the human subject in the image. Using the

Common Objects in Context (COCO) dataset as a training set, consisting of more than

5

300K labeled images [15], this model produces 18 key points, including the nose, neck,

right/left elbows, and right/left shoulders.

Image Classification using CNN

One of the subsets of computer vision is image classification, which is the ability

of a computer to analyze and group images in certain predefined classes [3]. This can be

accomplished by utilizing neural networks. One of the most widely used neural network

models for image classification is the convolutional neural network (CNN).

CNN is beneficial as it reduces the number of parameters required to set up a

model, and features are spatially independent [16]. CNN has three main types of layers:

convolution layers, pooling layers, and fully connected layers. The convolution layer

applies a convolution operation to the input image and passes the result to the following

layer [17]. This convolution operation takes a kernel/filter and passes it over the input

image to transform it based on the filter values. The subsequent feature maps are

computed with the formula presented below, where the kernel is denoted by h, the input

image is represented by f, and the rows and columns indexes of the resulting matrix are

denoted by m and n [18]:

 𝐺[𝑚, 𝑛] = (𝑓 ∗ ℎ)[𝑚, 𝑛] = ∑ 𝑓𝑗 ∑ ℎ[𝑗, 𝑘]𝑓[𝑚 − 𝑗, 𝑛 − 𝑘]𝑘 (1)

The pooling layer follows the convolution layer and conducts down-sampling to

decrease the spatial size of the input further. A prevalent pooling method is Max Pooling,

which down-samples the input by taking the maximum value over the window size

specified. Following that, the fully connected (Dense) layer assembles class scores to be

utilized for classification. The rectified linear unit (ReLU) activation function is applied

to feature maps produced from the previous layers to ensure the feature maps’ contents

6

are zero and above. That is accomplished by the formula presented below. If this function

receives a negative input, it will return 0. However, if a positive input is received, it will

return that value.

 𝑓(𝑥) = max (0, 𝑥) (2)

 Sigmoid is another activation function common in CNN architectures where the

output is the prediction probability as it exists between 0 and 1. Sigmoid is defined by the

formula below, where Euler’s number is denoted by e:

 𝑆(𝑥) =
1

1+𝑒−𝑥 (3)

 A frequent CNN architecture for image classification is structured where

pooling layers follow the convolutional layers in a redundant fashion before feeding

forward to the fully connected layers [19]. Figure 1 shows the structure of a typical CNN

model. This model is used to classify an input image as duck or not duck. In this

structure, two convolution layers with the ReLU activation function are used to apply a

convolution operation on the input image. The max pooling layer is then used to down-

sample the output of the convolution layers while the fully connected layers perform the

classification of the input image.

Figure 1. Common CNN structure with convolution layers, pooling layers, and fully

connected layers

7

CNN image classification can be applied in many areas. In [20], it is involved in

the classification of 102 flower species by using the DenseNet121 deep learning model.

This is important as it helps in the management and protection of biodiversity. It is also

applied in healthcare as it has been used to recognize deadly viruses, such as the

Coronavirus, in computed tomography scans of lungs [21]. Also, CNN is useful in

systems involving robots with the ability to perform tasks such as manufacturing,

transportation, providing assistance, and interacting with human beings. In [22], a

prototype of a socially assistive robot was created to interact verbally and recognize

several objects, such as smartphones, bottles, clocks, and faces, using CNN. This robot is

helpful as it can assist children in learning to interact socially by talking and recognizing

objects.

Applications involving CNN image classification and object detection can help

track the well-being of elderly citizens by monitoring several aspects of an individual,

including the identification of falling. In [23], a fall detection system is developed by

extracting a human silhouette from an image using mask R-CNN (mask regional CNN)

and recognizing it as sitting, bending, standing, or lying. Similarly, in [24], a real-time

skeleton-based fall detection algorithm is proposed where a human subject’s skeleton

sequence is encoded onto an RGB image while maintaining spatial structure and time-

dynamic information. In this paper, CNN encodes the images' reduced skeletal

representations and classifies them into different classes using the Keras API.

8

CHAPTER III

METHODOLOGY

This methodology discusses an image classification algorithm applied to two

different pose recognition processes. The first application is a human-robot interactive

game. This algorithm is then expanded to be applicable in the medical field as it is

utilized in a fall detection system. Figure 1 outlines the model framework of these two

applications.

Figure 2. The model framework for the human-robot interactive game and the fall

detection algorithm

Image Processing

Data Collection

The data/images utilized for the human-robot interactive game were collected

from team members who modeled these poses. While capturing these pictures, each team

member did a slight variation of a particular pose by standing at different locations to

mimic players standing at various locations during the game. In total, 429 labeled images

belonging to eight pose classes were collected. Table 1 lists the eight poses along with

their descriptions and counts.

9

Table 1. The eight different pose classes for the human-robot interactive game,

along with their description and count

The dataset used to train and test the fall detection algorithm is the Multiple

Cameras Fall Dataset [25]. This dataset contains videos consisting of 24 scenarios

recorded with eight video cameras. For all the scenarios, the possible positions or

movements are sitting, lying on sofa, moving up, falling, walking/standing up, etc.

Because still images were needed to train our fall detection algorithm, these videos were

converted into images using Python’s OpenCV library.

After the videos were converted into images, they were manually labeled into

three categories. Table 2 shows the three categories, along with their description and

count. Some images were flipped horizontally to achieve a balanced dataset and address

the lack of images in the sitting category. Finally, we had a total of 564 training images.

Pose Name Description Count

Pose1 Player(s) put both arms out by their sides 38

Pose2 Player(s) put both hands on their waist 63

Pose3 Player(s) put both hands on their head 58

Pose4 Player(s) raise both arms like a football goal post 72

Pose5 Player(s) raise right arm straight out to their side 72

Pose6 Player(s) raise left arm straight out to their side 67

Pose7 Player(s) lie on the ground on their side 10

Pose8 Player(s) raise right arm above head 49

10

Table 2. The three different pose classes for the fall detection algorithm, along

with their description and count

Image Processing Approach for Data Preparation

The next step in our approach is to prepare the labeled images to achieve

suitability for training. Gupta’s multi-person pose estimation package, OpenPose [14],

was adopted to process these images to make them best suited for training. Using the

COCO dataset and the OpenPose package, we obtained a collection of 18-pixel

coordinate points representing important skeletal points of the body. Some of these

essential skeletal points of the body are the nose, neck, right/left elbows, right/left

shoulders, and so on. This model takes a color image as input and returns an array

consisting of matrices with the confidence maps of key points and part affinity heatmaps

of each joint pair. These joint locations are computed as actual pixel coordinates of the

image.

Following the creation of the key points, our method creates a binary image of

line segments by connecting the pairwise coordinate points generated previously. Using

OpenCV, a blank image was created, and each key point coordinate generated was

located and drawn in this image. Line segments were then formed between valid joint

pairs to create a binary skeletal representation of the image. We then compute the height

Action Name Description Count

Fall Human subject is lying on the ground, horizontally 187

Sit Human subject is sitting 187

On-Feet Human subject is on their feet, either walking or standing 190

11

and width of the stick figure-like image and crop it to occupy the entire image (no extra

blank space). Figure 2 illustrates this image processing technique for one of the poses

associated with the human-robot interactive game. Additionally, Figure 3 represents the

image processing technique for the three classes related to the fall detection system.

Figure 3. Image processing steps to create suitable images for training

12

Figure 4. Image processing steps representing three different classes

From Two-Player to Multi-Player Game

Initially, the human-robot interactive game allowed for one player at a time. That

was upgraded to a two-player game, allowing the two players to play side-by-side. The

two-player game was made possible by cropping the raw image into two halves and

processing each half to generate each player’s joint location. However, this method

proved inefficient as situations where the players were overlapping or standing too close

produced incorrect coordinates. An alternate image cropping approach was developed to

13

solve this issue and upgrade the algorithm to handle multiple players efficiently. In this

new approach, instead of dividing the raw image into halves, the picture was cropped

based on each player’s location. The steps of this approach are as follows:

1. Use Gupta’s OpenPose[14] to identify the joint locations of multiple players

2. Use the image processing method mentioned in the previous subsection to obtain

the binary skeletal images of the players

3. In the binary image, locate the players' overall maximum and minimum height

coordinates. This was accomplished using the joint coordinates of the ankles and

the eyes. This step was added to achieve the most efficient image extraction, as it

will give us the ability to dispose of the blank spaces found at the top and bottom

of the image

4. Locate the minimum and maximum joint location coordinates of each player. The

minimum joint location of a player is the joint closest to the left edge of the

image, while the maximum location is the furthest from the image's left edge. For

example, in Figure 4, the minimum and maximum joint locations for Player 1 are

the coordinates located on the left wrist and right elbow. Similarly, for Player 2,

the minimum and maximum joint locations are the coordinates located on the left

and right wrists.

5. By utilizing the minimum/maximum height coordinates and the

minimum/maximum joint locations, extract each player from the binary image by

cropping (See Figure 4).

14

Figure 5. Image processing steps to support multi-player functionality

After these steps, each cropped image is fed into the CNN classification model and

classified into one of the eight poses. By using this approach, tracking each player during

the game is simplified. However, if the players were to switch places during the course of

the game, this method does not have the ability to differentiate the players.

Pose Recognition

The Convolutional Neural Network Model

Besides some hyperparameter differences, the CNN models used for the robot-

human interactive game and the fall detection algorithm have identical structures. Based

on the skeletal representations produced from our image processing technique, CNN is

utilized to classify these images into different classes. These binary images were resized

to 150x150 pixels to be input into the CNN model. This CNN model (see Figure 4) has

three convolutional layers, each followed by a max pooling layer. The convolution layers

consist of kernel sizes of 3x3, while the max pooling layers consist of pool sizes of 2x2.

15

A flattening layer then converts the output into a one-dimensional array to be input to the

next layer. A fully connected layer follows that with the ReLU activation function. We

then add a dropout layer to regularize the model and avoid overfitting. Finally, this CNN

model has another fully-connected layer with the Sigmoid activation function that

performs the classification of the classes. The categorical cross entropy loss function and

the Adam optimizer were used in the compilation of this model.

Figure 6. CNN architecture used to perform image classification

16

CHAPTER IV

RESULTS AND DISCUSSION

Hyperparameter Tuning

The proposed model was trained and tested on Google Colab with the NVIDIA-

SMI GPU. It was evaluated using k-fold cross-validation with k=10. To ensure the most

optimal hyperparameters were being utilized, different hyperparameter values, such as

batch size, epoch number, learning rate, optimizer function, and dropout rate, were

experimented with. Figure 6 shows some experimented hyperparameters for the fall

detection and human-robot interactive game algorithm. Table 3 shows the optimal

hyperparameters obtained from our experiment and thus used in the CNN model.

Figure 7. Results of hyperparameter (batch size, epoch number, and dropout rate) tuning

for the human-robot game model and the fall detection model

17

Table 3. Optimal hyperparameters selected for the human-robot game model and

the fall detection model

Human-Robot Interactive Game

After implementing the abovementioned methodologies and selecting the optimal

hyperparameters, the CNN model associated with the human-robot interactive game was

evaluated using a 10-fold cross-validation. This evaluation provided an average

validation accuracy of 92.55% (See Figure 7).

Figure 8. 10-fold cross-validation results for the human-robot game and the fall detection

algorithm

Hyperparameter Human-Robot

Interactive Game

Fall Detection Algorithm

Epoch Number 11 15

Batch Size 8 4

Dropout Rate 0.5 0.4

18

Fall Detection Algorithm

The CNN model associated with the fall detection algorithm underwent

evaluation using 10-fold cross-validation and achieved an average validation accuracy of

90.79% (See Figure 7). The same CNN fall detection model was run with raw

unprocessed images as input. These raw images contained identical class distribution as

the processed images. This model performed better than the model with the processed

images and achieved an average 10-fold cross-validation accuracy of 94.66%. This model

performed better as there is more image information in the raw images than in the

processed binary images. However, this model's training and validation time was more

than four times that of the processed binary images model. The faster rate at which the

processed binary image model trains is beneficial in scenarios where adaptive learning is

implemented.

Figure 9. Confusion matrix for the fall detection model

As can be seen from the confusion matrix in Figure 8, our fall detection CNN

model exhibits difficulty classifying the fall-labeled images, as 15% (6 out of 40) of these

19

images are misclassified. Out of the 15% of the misclassified images, 50% are

misclassified as Sitting, while the other half are misclassified as On-Feet.

Further Investigation on Misclassification of Images

Figure 10. Fall-labeled images and their misclassification

We ran the same binary skeletal image CNN model three times but with different

input data. The first model was trained with only Fall and On-Feet images, the second

one with Fall and Sit images, and the third one with On-Feet and Sit images. As can be

seen from Table 4, these three models all yield better validation accuracies than that of

the three-class fall detection model. Figure 10 displays the three confusion matrices for

20

these three models. It can be observed that the binary images of a Fall-labeled image and

an On-Feet-labeled image have similarities that the model does not classify very well, as

12.5% (5 out of 40) of the Fall-labeled images were misclassified as On-Feet. By

observing Figure 9, it is reasonable to conclude that the main factor for the

misclassification of the falling images is the lack of accuracy in creating the skeletal

representations of the human subjects in the images. The skeletal representations of the

images are constructed incorrectly, as the key joint locations of the humans are not

identified correctly.

Table 4. Accuracies of the three models trained with binary data

Figure 11. Confusion matrices of the three models trained with binary data

Model Classes Accuracy

Fall and On-Feet 0.93

Fall and Sit 0.93

On-Feet and Sit 0.96

21

CHAPTER V

CONCLUSION

The image processing technique proposed in this work utilizes machine learning,

specifically image classification, to create a human-robot interactive game and a fall

detection system. These systems were based on the binary human skeletal representation

of raw RGB images. A three-layer CNN model was built on these binary images to detect

different human poses. These human poses include the eight poses used for the human-

robot interactive game (see Table 1) and the three poses used for the fall detection system

(see Table 3). The experimental results show that an accuracy of 92.55% is obtained for

the human-robot interactive game, while an accuracy of 90.79% is obtained for the fall

detection system. The image processing method proposed in this work is beneficial as the

information in images is not affected by background noise or lighting conditions, and the

training and validation times of the applied models decrease. For future work, we would

like to expand the fall detection algorithm to detect multiple falls in one scene/image. Our

fall detection system currently only processes images with one human subject. This issue

can be addressed by using a similar process used to give the human-robot interactive

game multi-player functionality.

22

BIBLIOGRAPHY

[1] L. Guerrouj, “Machine Learning: 6 Real-World Examples,” Salesforce EMEA

Blog, Sep. 09, 2021. https://www.salesforce.com/eu/blog/2020/06/real-world-

examples-of-machine-learning.html

[2] “Deep learning vs machine learning,” Zendesk.

https://www.zendesk.com/blog/machine-learning-and-deep-learning

[3] “Image Recognition with Deep Neural Networks and its Use Cases,”

AltexSoft. https://www.altexsoft.com/blog/image-recognition-neural-networks-

use-cases/

[4] Y. Yu, E. Favour, and P. Mazumder, “Convolutional Neural Network Design

for Breast Cancer Medical Image Classification,” 2020 IEEE 20th International

Conference on Communication Technology (ICCT), pp. 1325–1332, Oct.

2020, doi: 10.1109/icct50939.2020.9295909.

[5] G. Liang, H. Hong, W. Xie, and L. Zheng, “Combining Convolutional Neural

Network With Recursive Neural Network for Blood Cell Image

Classification,” IEEE Access, vol. 6, pp. 36188–36197, 2018, doi:

10.1109/access.2018.2846685.

[6] T. Shaily and S. Kala, “Bacterial Image Classification Using Convolutional

Neural Networks,” 2020 IEEE 17th India Council International Conference

(INDICON), pp. 1–6, Dec. 2020, doi: 10.1109/indicon49873.2020.9342356.

[7] N. D. Navghare and L. M. Gladence, “End to End Learning Human Pose

Detection Using Convolutional Neural Networks,” Machine Learning and

Information Processing, pp. 135–142, 2021, doi: 10.1007/978-981-33-4859-

2_13.

[8] “By 2030, U.S Demographic Milestone Begins to Lower Caregiver Ratio –

West View Nursing and Rehabilitation Center,” WEST VIEW NURSING

AND REHABILITATION CENTER. http://westviewnursing.com/by-2030-u-

s-demographic-milestone-begins-to-lower-caregiver-ratio (accessed Nov. 11,

2022).

[9] “Integrated care for older people: guidelines on community-level interventions

to manage declines in intrinsic capacity,” www.who.int.

https://www.who.int/publications/i/item/9789241550109

[10] M. C. Author, “Fall Injuries,” Fight Nursing Home Abuse.

https://www.fightnursinghomeabuse.com/nursing-home-abuse-and-

neglect/fall-injuries/

https://www.salesforce.com/eu/blog/2020/06/real-world-examples-of-machine-learning.html
https://www.salesforce.com/eu/blog/2020/06/real-world-examples-of-machine-learning.html
https://www.altexsoft.com/blog/image-recognition-neural-networks-use-cases/
https://www.altexsoft.com/blog/image-recognition-neural-networks-use-cases/

23

[11] IBM, “Computer Vision,” Ibm.com, 2019.

https://www.ibm.com/topics/computer-vision

[12] S. K, B. S, and P. M. B, “Social Distance Identification Using Optimized

Faster Region-Based Convolutional Neural Network,” 2021 5th International

Conference on Computing Methodologies and Communication (ICCMC), pp.

753–760, Apr. 2021, doi: 10.1109/iccmc51019.2021.9418478.

[13] Z. Cao, G. Hidalgo Martinez, T. Simon, S.-E. Wei, and Y. A. Sheikh,

“OpenPose: Realtime Multi-Person 2D Pose Estimation using Part Affinity

Fields,” IEEE Transactions on Pattern Analysis and Machine Intelligence, pp.

172–186, 2019, doi: 10.1109/tpami.2019.2929257.

[14] V. Gupta, “Multi Person Pose Estimation in OpenCV using OpenPose,”

LearnOpenCV, Sep. 11, 2018. https://learnopencv.com/multi-person-pose-
estimation-in-opencv-using-openpose/ (accessed Nov. 11, 2022).

[15] T.-Y. Lin et al., “Microsoft COCO: Common Objects in Context,”

arXiv:1405.0312 [cs], Feb. 2015, Accessed: Nov. 06, 2022. [Online].

Available: http://arxiv.org/abs/1405.0312

[16] S. Albawi, T. A. Mohammed, and S. Al-Zawi, “Understanding of a

Convolutional Neural Network,” 2017 International Conference on

Engineering and Technology (ICET), pp. 1–6, Aug. 2017, doi:

10.1109/icengtechnol.2017.8308186.

[17] “What is a Convolutional Layer?,” Databricks.

https://www.databricks.com/glossary/convolutional-

layer#:~:text=Convolutional%20layers%20apply%20a%20convolution

[18] Piotr Skalski, “Gentle Dive into Math Behind Convolutional Neural

Networks,” Medium, Apr. 12, 2019. https://towardsdatascience.com/gentle-

dive-into-math-behind-convolutional-neural-networks-79a07dd44cf9

[19] K. O'shea and R. Nash, “An Introduction to Convolutional Neural Networks,”

2015. [Online]. Available: https://arxiv.org/pdf/1511.08458.pdf

[20] N. Alipour, O. Tarkhaneh, M. Awrangjeb, and H. Tian, “Flower Image

Classification Using Deep Convolutional Neural Network,” 2021 7th

International Conference on Web Research (ICWR), pp. 1–4, May 2021, doi:

10.1109/icwr51868.2021.9443129.

[21] B. V. Krishna, P. N. R. Bodavarapu, P. Santhosh, and P. V. V. S. Srinivas,

“Chest Computed Tomography Scan Images for Classification of Coronavirus

by Enhanced Convolutional Neural Network and Gabor Filter,” 2021 5th

International Conference on Intelligent Computing and Control Systems

(ICICCS), pp. 825–831, May 2021, doi: 10.1109/iciccs51141.2021.9432345.

https://www.ibm.com/topics/computer-vision
https://www.databricks.com/glossary/convolutional-layer#:~:text=Convolutional%20layers%20apply%20a%20convolution
https://www.databricks.com/glossary/convolutional-layer#:~:text=Convolutional%20layers%20apply%20a%20convolution

24

[22] D. H. Fuadi, D. Novita, and M. Taufik, “Socially Assistive Robot Interaction

by Objects Detection and Face Recognition on Convolutional Neural Network

for Parental Monitoring,” 2021 International Conference on Artificial

Intelligence and Mechatronics Systems (AIMS), pp. 1–6, Apr. 2021, doi:

10.1109/aims52415.2021.9466091.

[23] R. Hasib, K. N. Khan, M. Yu, and M. S. Khan, “Vision-based Human Posture

Classification and Fall Detection using Convolutional Neural Network,” 2021

International Conference on Artificial Intelligence (ICAI), pp. 74–79, Apr.

2021, doi: 10.1109/icai52203.2021.9445263.

[24] J. Wu, K. Wang, B. Cheng, R. Li, C. Chen, and T. Zhou, “Skeleton Based Fall

Detection with Convolutional Neural Network,” 2019 Chinese Control And

Decision Conference (CCDC), pp. 5266–5271, Jun. 2019, doi:

10.1109/ccdc.2019.8832565.

[25] E. Auvinet, C. Rougier, J. Meunier, A. St-Arnaud, and J. Rousseau, “Multiple

Cameras Fall Data Set,” Technical report 1350, DIRO - Université de

Montréal, Jul. 2010

