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ABSTRACT 

This is a two-article dissertation structure which comprises of four chapters. Chapter one gives the 

general overview of the research interest, motivation and identified gaps in the literature. The 

chapter two and three compose of the first and second papers submitted for publication 

respectively. Chapter four discussed the conclusion drawn on the results obtained from the 

research and how this result compares to previous studies on X-ray scattering factor calculation. 

For this dissertation, two papers have been submitted for publications on revisited relativistic 

Dirac-Hartree-Fock X-ray scattering factor for neutral atoms with Z = 2 – 118 (He – Og) and 

Chemically-Relevant Ions: All Cations, Selected Monovalent Anions, and the Excited (Valence) States of 

Carbon & Silicon. The X-ray scattering factor calculation used the recently developed DBSR_HF 

program [Zatsarinny & Froese Fischer (2016). Comput. Phys. Comm. 202, 287 – 303] to calculate 

the fully relativistic Dirac-Hartree-Fock ground-state wavefunctions for all atoms with Z = 2 – 118 

(He – Og) and 318 chemically relevant ions. The calculations use the extended average level 

scheme and include both the Breit interaction correction to the electronic motion due to magnetic 

and retardation effects, and the Fermi distribution function for the description of the nuclear charge 

density.   

Using the total and orbital (spinor) energies, charge density maxima, atomic mean radii and means 

spherical radii (Guerra et al., 2017) for the neutral atoms and total electronic & ionization energies 

for ions, adequate comparison have been made between the results obtained and several previous 

studies. A newly developed Fortran program SF was used for a precise integration of the X-ray 

scattering factors by employing the DBSR_HF’s B-spline representation of the relativistic one-

electron orbitals.  Interpolation of the obtained X-ray scattering factor has also been done in the 
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0 ≤ sin 𝜃 /𝜆 ≤ 2  Å−1  and 2 ≤ sin 𝜃 /𝜆 ≤ 6  Å−1  ranges using the recommended analytical 

functions for a four-term and five-term expansions.  

The X-ray scattering factor values obtained from the uniform treatments of the all the species seem 

to represent an excellent compromise among all the previous studies and should be a good 

replacement for values in Volume C of the 2006 edition of International Table for Crystallography 

(Maslen, Fox & O’Keefe, 2006).   
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Chapter 1. INTRODUCTION1 

 1.1 Preface 
X-ray diffraction is one of the most powerful and widely used experimental 

physicochemical techniques for studying the crystalline state of matter (Stout & Jensen, 1989; 

Giacovazzo et al., 1992; Schwarzenbach, 1996; Coppens, 1997; Ladd & Palmer, 2013).  Indeed, 

most of the universities in the United States, including MTSU, and abroad operate at least one 

single crystal or a powder X-ray diffractometer, or both.  The powder X-ray diffraction 

technique excels at qualitative and quantitative identification of crystalline phases in a sample, 

while single-crystal X-ray diffraction reveals identities and precise locations of atoms in a 

crystal structure with a further possibility to explore the chemical bonding (Stout & Jensen, 

1989; Giacovazzo et al., 1992; Schwarzenbach, 1996; Coppens, 1997; Ladd & Palmer, 2013).  

The X-ray diffraction method is based on the idea that the incident beam of X-rays 

interacts with and is scattered by the electronic shells of atoms in a crystal structure.  The 

incoming X-rays cause electrons of atoms to oscillate which in turn produces a secondary 

(scattered) electromagnetic wave.  X-ray scattering from a crystal is elastic which means that 

while the directions of the incident and scattered X-rays are different, the energy stays constant.  

The ability of an atom to scatter X-rays depends on the number and the distribution of its 

electrons – the heavier atoms with a greater number of electrons produce a stronger X-ray 

scattering signal.  For a basic X-ray crystal structure analysis, it is safe to assume that each 

atom in a crystal structure occurs in its ground electronic state.  If so, each atom type displays 

a characteristic scattering picture which is called the X-ray scattering (form) factor.  The X-

ray scattering factor is defined as a Fourier transform of the electron density of an atom (Stout 

 
1 Several parts of this introduction also appear in Acta Crystallographica Section A: Foundations and Advances 

(Olukayode, Froese Fischer & Volkov, 2022; 2023) 
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& Jensen, 1989; Giacovazzo et al., 1992; Schwarzenbach, 1996; Coppens, 1997; Ladd & 

Palmer, 2013): 

𝑓(𝐒) = ∫ 𝜌(𝐫)𝑒2𝜋i𝐒∙𝐫d3𝐫 (1) 

where 𝐫 is a vector in direct space, 𝐒 is the so-called scattering vector, i is the imaginary unit 

(i = √−1) and 𝜌(𝐫) is the electron density of an atom or a particular electronic shell.  The 

scattering vector 𝐒 has the length 𝑆 = |𝐒| = 2 sin 𝜃 /𝜆, where the angle 𝜃 is defined in such a 

way that 2𝜃  is the angle between the directions of the incident and scattered (diffracted) X-

rays (Giacovazzo et al., 1992; Schwarzenbach, 1996; Coppens, 1997), and 𝜆 is the wavelength 

of the incident X-ray beam.  Switching to the spherical coordinate system, i.e. 𝐫 ≡ (𝑟, 𝜃, 𝜙) 

and 𝜌(𝐫) = 𝜌(𝑟, 𝜃, 𝜙) , and assuming that 𝐒  is directed along the z-axis of the Cartesian 

coordinate system, in which case 

𝐒 ∙ 𝐫 = 𝑆 𝑟 cos 𝜃 = 2 sin(𝜃) /𝜆 𝑟 cos 𝜃 = 2 𝑠 𝑟 cos 𝜃 (2) 

where 𝑠 = sin 𝜃 /𝜆 = 𝑆/2, the integral (1) can be re-written as 

𝑓(𝑠) = ∫ ∫ ∫ 𝜌(𝑟, 𝜃, 𝜙)𝑒4𝜋i𝑠𝑟 cos 𝜃𝑟2 sin 𝜃 d𝜃 d𝜙 d𝑟

𝜋

0

2𝜋

0

∞

0

 (3) 

In Table 1, we show the X-ray scattering factors 𝑓(𝑠) at the selected 𝑠 = sin 𝜃 /𝜆  points 

between 0 and 6 Å-1 for five species that have the same number of electrons but different 

nuclear charge (these are called “isoelectronic” species). 
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Table 1 X-ray scattering factors of the isoelectronic species F–, Ne, Na+, Mg2+ and Al3+ from 

the Rez, Rez & Grant (1994) study. 

 

sin 𝜃 /𝜆 (Å-1) F– Ne Na+ Mg2+ Al3+ 

0.00   10.0000 10.0000 10.0000 10.0000 10.0000 

0.05  9.7338  9.8303  9.8832  9.9139  9.9336 

0.10  9.0157  9.3519  9.5463  9.6625  9.7383 

0.15  8.0324  8.6442  9.0262  9.2655  9.4257 

0.20  6.9742  7.8062  8.3746  8.7523  9.0137 

0.25  5.9712  6.9291  7.6475  8.1571  8.5239 

0.30  5.0878  6.0809  6.8961  7.5149  7.9800 

0.35  4.3430  5.3039  6.1614  6.8576  7.4053 

0.40  3.7318  4.6187  5.4724  6.2115  6.8209 

0.45  3.2389  4.0308  4.8464  5.5968  6.2450 

0.50  2.8461  3.5365  4.2917  5.0268  5.6916 

0.60  2.2910  2.7912  3.3965  4.0480  4.6905 

0.70  1.9475  2.2964  2.7535  3.2890  3.8604 

0.80  1.7312  1.9720  2.3058  2.7248  3.2040 

0.90  1.5872  1.7572  1.9978  2.3160  2.7018 

1.00  1.4825  1.6098  1.7852  2.0234  2.3260 

1.20  1.3236  1.4180  1.5246  1.6621  1.8427 

1.40  1.1856  1.2808  1.3673  1.4605  1.5740 

1.60  1.0530  1.1586  1.2464  1.3265  1.4102 

1.80  0.9262  1.0416  1.1371  1.2185  1.2931 

2.00  0.8080  0.9292  1.0325  1.1198  1.1955 

2.50  0.5625  0.6808  0.7909  0.8902  0.9776 

3.00  0.3881  0.4896  0.5912  0.6892  0.7808 

3.50  0.2695  0.3514  0.4380  0.5260  0.6128 

4.00  0.1895  0.2540  0.3247  0.3998  0.4770 

5.00  0.0994  0.1377  0.1827  0.2330  0.2890 

6.00  0.0547  0.0787  0.1074  0.1409  0.1789 

 

 

 

 

Table 1 illustrates the ability of the X-ray diffraction analysis to distinguish the various atom 

and ion types. Indeed, despite all five species having the same number of electrons, the 

scattering factors for sin 𝜃 /𝜆 > 0 are different. 
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Because the X-ray scattering factors are usually calculated for a fixed set of sin 𝜃 /𝜆 grid points 

(see, for example, Table 1), it is convenient to introduce a simple interpolating function that 

allows one to evaluate the X-ray scattering factor at the arbitrary sin 𝜃 /𝜆 value, thus bypassing 

a time-consuming integration of the electron density.  The conventional interpolations of the 

X-ray scattering factors (Doyle & Turner, 1968; Cromer & Mann, 1968b; Cromer & Waber, 

1968; Thakkar & Smith, 1992; Maslen, Fox & O’Keefe, 2006) include the function  

𝑓(sin 𝜃 /𝜆) = ∑ 𝑎𝑖 exp(−𝑏𝑖 sin 𝜃2 /𝜆2)

𝑚

𝑖=1

+ 𝑐 (4) 

with 𝑚 = 4 in the 0 ≤ sin 𝜃 /𝜆 ≤ 2  Å−1 interval as proposed by Vand, Eiland & Pepinsky 

(1957), and the function 

𝑓(sin 𝜃 /𝜆) = exp (∑ 𝑎𝑖(sin 𝜃 /𝜆)𝑖

𝑛

𝑖=0

) (5) 

with 𝑛 = 3 for the 2 ≤ sin 𝜃 /𝜆 ≤ 6  Å−1 range as suggested by Fox, O’Keefe & Tabbernor 

(1989). 

 

1.2 The importance of the electron density in the X-ray scattering factors calculation 

The electron density is an important property of an atom or a molecule as it provides 

useful information about the reactivity of the species.  These include the potential sites of 

nucleophilic and electrophilic attack, multipole moments of charge distribution, partial atomic 

electronic charge, electrostatic potential and electric field (Coppens, 1997). 

Theoretically, the simplest way to obtain the electron density of an atom is through the 

atomic orbital wavefunctions which are the solutions of the non-relativistic many-electron 

time-independent electronic Schrödinger equation (Atkins & de Paula, 2006): 

𝐻̂Ψ(𝒓1, 𝒓2, … , 𝒓𝑁) = 𝐸Ψ(𝒓1, 𝒓2, … , 𝒓𝑁) (6) 
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𝐻̂ = ∑ (−
1

2
𝛻𝑖

2 −
𝑍

𝑟𝑖
)

𝑁

𝑖=1

+ ∑
1

𝑟𝑖𝑗

𝑁

𝑖<𝑗

 (7) 

where 𝑁 is the number of electrons, 𝑍 is the nuclear charge, 𝐻̂ is the Hamiltonian operator (or 

simply “Hamiltonian”), 𝛻𝑖
2 is the kinetic energy operator for the 𝑖-th electron, 𝐫𝑖 is the position 

of the 𝑖 -th electron relative to the atomic nucleus, 𝑟𝑖𝑗 = |𝐫𝑖 − 𝐫𝑗|, 1/𝑟𝑖𝑗  is the two-particle 

interaction operator, and Ψ(𝒓1, 𝒓2, … , 𝒓𝑁)  is the 𝑁 -electron wavefunction, that is, 

𝛹(𝒓1, 𝒓2, … , 𝒓𝑁) depends on the locations of all 𝑁 electrons (Atkins & de Paula, 2006).  In 

general, Ψ should also include the spin function of each electron but for now we ignore this 

dependence (Atkins & de Paula, 2006).  This Schrödinger equation cannot be solved exactly 

because of the presence of the 1/𝑟𝑖𝑗  term which describes the interelectronic (Coulomb) 

repulsion.  Within the Hartree-Fock approximation, it is assumed that each electron is moving 

in an average field created by all other electrons (Atkins & de Paula, 2006).  Thus, 

Ψ(𝒓1, 𝒓2, … , 𝒓𝑛) is replaced by a set of wavefunctions {𝜓}, each describing a behavior of one 

or two electrons, and each wavefunction is a function of the three spatial coordinates, 𝐫 ≡

(𝑥, 𝑦, 𝑧) ≡ (𝑟, 𝜃, 𝜙), and a spin coordinate (𝛼 or 𝛽) (Atkins & de Paula, 2006).  For example, 

the notation 𝜓1 (𝒓1, 𝛼) and 𝜓1 (𝒓1, 𝛽) means that two electrons are described by the same 

spatial wavefunction 𝜓1(𝒓1) but according to the Pauli exclusion principle, they must have 

different spins (𝛼 and 𝛽).  These wavefunctions are called the atomic orbitals (AO), and the 

approximation is known as the orbital approximation (Atkins & de Paula, 2006).  The 

advantage of the orbital approximation is that it replaces a single Schrödinger equation that 

includes Ψ(𝒓1, 𝒓2, … , 𝒓𝑛)  that describes all electrons in the system with 𝑁AO  Schrödinger 

equations (Atkins & de Paula, 2006): 

𝐻̂1𝜓1(𝒓1) = 𝐸1𝜓1(𝒓1) 

𝐻̂2𝜓2(𝒓2) = 𝐸2𝜓2(𝒓2) 

(8) 
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… … … … … … … … … 

𝐻̂𝑁AO
𝜓𝑁AO

(𝒓𝑁AO
) = 𝐸𝑁AO

𝜓𝑁AO
(𝒓𝑁AO

) 

where 𝑁AO is the number of atomic orbitals, and 𝐸𝑖 and 𝐻̂𝑖 are the energy and the Hamiltonian 

of the 𝑖-th atomic orbital, respectively.  The latter is defined as (Atkins & de Paula, 2006): 

𝐻̂𝑖 = −
1

2
𝛻𝑖

2 −
𝑍

𝑟𝑖
+ ∑

1

𝑟𝑖𝑗

𝑁

𝑗≠𝑖

 (9) 

Note that despite increasing the number of equations that we need to solve, each equation 

describes the behavior of only one or two electrons.  In the case when the wavefunction 𝜓𝑖 

describes two electrons, the spatial part of the wavefunction is the same for both electrons, and 

only the spin part is different. 

Using the non-relativistic quantum mechanical treatment of an atom, the electron 

density 𝜌(𝐫) ≡ 𝜌(𝑟, 𝜃, 𝜙)  can be expressed in terms of the atomic orbital wavefunctions 

𝜓(𝐫) ≡ 𝜓(𝑟, 𝜃, 𝜙) 

𝜌(𝑟, 𝜃, 𝜙) = ∑ 𝑛𝑖|𝜓𝑖(𝑟, 𝜃, 𝜙)|2

𝑁occ

𝑖=1

 (10) 

where 𝜓𝑖  and 𝑛𝑖  are the wavefunction and the electron population (occupancy) of the i-th 

orbital, respectively, 𝑁occ is the number of the occupied orbitals, and the square modulus |𝑥|2 

is equal to 𝑥2 if the quantity 𝑥 is real and 𝑥∗𝑥 if it is complex (symbol * denotes the complex-

conjugate).  Representing wavefunction of the i-th atomic orbital, 𝜓𝑖(𝑟, 𝜃, 𝜙), as a product of 

the radial function 𝑅𝑖(𝑟), which is always real and normalized,  

∫ 𝑅𝑖
2(𝑟)𝑟2 d𝑟 = 1

∞

0

 (11) 

, and the complex spherical harmonic angular function 𝑌𝑖(𝜃, 𝜙)  (Weissbluth, 1978), the 

expression for the electron density becomes  
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𝜌(𝑟, 𝜃, 𝜙) = ∑ 𝑛𝑖𝑅𝑖
2(𝑟)|𝑌𝑖(𝜃, 𝜙)|2

𝑁occ

𝑖=1

 (12) 

For a spherically symmetric atom, which appears to be an excellent first-order approximation 

(Giacovazzo et al., 1992; Schwarzenbach, 1996; Coppens, 1997), the angular part is just 

𝑌(𝜃, 𝜙) = (4𝜋)−1/2 (13) 

Introducing a simplified notation for the radial part of the non-relativistic atomic electron 

density 

ℝ(𝑟) = 𝑟2 ∑ 𝑛𝑖𝑅𝑖
2(𝑟)

𝑁occ

𝑖=1

 (14) 

, the final expression for the atomic X-ray scattering factor becomes: 

𝑓(𝑠) =
1

4𝜋
∫ ℝ(𝑟)

sin(4𝜋𝑠𝑟)

𝑠𝑟
𝑑𝑟

∞

0

 (15) 

There have been a number of studies (Clementi & Roetti, 1994, Stewart, 1976, Fischer, 

1977, Hansen & Coppens, 1978, Bunge, Barrientos & Bunge, 1992, Bunge, Barrientos & 

Bunge, 1993, Koga, Tatewaki & Thakkar, 1993, Koga, Watanabe, Kanayama, Yasuda & 

Thakkar, 1995, Koga, Watanabe, Kanayama, & Thakkar, 1999) that used the non-relativistic 

Schrödinger equation to determine the atomic orbital wavefunctions from which the electron 

density and ultimately the atomic X-ray scattering factors could be calculated.  However, it has 

been observed that accuracy of the X-ray scattering factors can be improved by including the 

relativistic effects which are particularly important for heavier atoms.  Indeed, the inner 

electrons in heavy atoms are moving so fast that their speeds approach that of light (the speed 

of light).  

 

1.3 Why the relativistic X-ray scattering factors 

Relativity can have a profound effect on properties of heavy elements such as the 

lanthanides and actinides (Kaldor & Wilson, 2003).  However, even for lighter elements, such 
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as those in the second period, the relativistic effects may be extremely important.  Consider a 

neutral carbon atom with the nuclear charge 𝑍 = 6 in the ground-state electronic configuration 

1s2 2s2 2p2, where 1s, 2s and 2p are the electronic subshells, each occupied by two electrons 

represented by the superscripts.  The inner 1s shell is called the core shell, while the outer 2s 

and 2p subshells comprise a valence shell.  Electrons occupying core shell(s) are called the 

core electrons, and those occupying valence shell(s) are called the valence electrons.  While 

the two 1s electrons are the closest to the nucleus, they experience Coulomb repulsion not only 

from each other but also due to a small penetration of the 2s and 2p electrons into the core 

region.  By the same token, the 1s electrons shield both the 2s and 2p electrons from the nucleus 

but this effect is much more significant. Finally, due to a deeper penetration into the core region, 

the 2s electrons are expected to experience a slightly higher nuclear charge as compared to the 

2p electrons.  The combined effect of the electron repulsion, penetration and shielding can be 

modeled by lowering the true nuclear charge, 𝑍, to the effective nuclear charge, 𝑍eff, separately 

for each subshell: 

𝑍eff = 𝑍 − 𝜎 (16) 

where 𝜎 is known as the shielding constant of a subshell.  The shielding constant 𝜎 is a positive 

quantity constrained such as 0 ≤ 𝜎 < 𝑍.  When 𝜎 = 0, the electrons are exposed to (“see” or 

“feel”) the entire nuclear charge 𝑍  because 𝑍eff = 𝑍 , while when 𝜎 → 𝑍  and 𝑍eff → 0, the 

electrons “feel” or “see” very little of the true nuclear charge.  Both the non-relativistic 

(Clementi & Raimondi, 1963) and relativistic (Guerra et al., 2017) calculations of the effective 

nuclear charge parameter 𝑍eff for electrons in the three subshells of the carbon atom (Table 2) 

correctly predict the greatest 𝑍eff for the 1s electrons and the lowest 𝑍eff for the 2p electrons, 

though the relativistic calculations show a much more pronounced differences between 𝑍eff for 

the 2s and 2p subshells.  
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Table 2 The effective nuclear charge parameter 𝑍eff for electronic subshells in the ground-

state carbon and silicon atoms from the non-relativistic (Clementi & Raimondi, 1963) and 

relativistic (Guerra et al., 2017) calculations. 

Subshells 

Carbon atom (𝑍 = 6) 

1s2 2s2 2p2 

Silicon atom (𝑍 = 14) 

1s2 2s2 2p6 3s2 3p2 

Non-relativistic Relativistic Non-relativistic Relativistic 

1s 5.67 5.59 13.58 13.46 

2s 3.22 3.78 9.03 10.67 

2p 3.14 2.92 9.95 9.34 

3s ― ― 4.90 6.13 

3p ― ― 4.29 4.54 

 

 

 

Now consider a silicon atom (Z=14) located in the third period of the periodic table just below 

carbon (Table 2).  The non-relativistic calculations (Clementi & Raimondi, 1963) give 𝑍eff for 

the 2s subshell (9.03) which is actually lower (!) than that for the 2p shell (9.95).  However, 

the relativistic calculations (Guerra et al., 2017) not only correctly predict the sequence of the 

𝑍eff parameters for all subshells, but also show a more pronounced differences for 𝑍eff between 

the 3s and 3p subshells in comparison to their non-relativistic counterparts.  In fact, the 

differences in 𝑍eff obtained from the non-relativistic and relativistic calculations start to show 

up as early in the third period as sodium (𝑍 = 11).  This example shows that the relativistic 

effects may be important even for lighter elements.  

While not necessarily true, Autschbach (2012) argued that the effect of relativity on 

properties of some elements is not given sufficient attention apart from in spectroscopy and 

structural chemistry.  Since the effect of gravity on very small mass particles such as proton, 

neutron and electron are infinitesimally negligible, gravitational effects on the chemical 

properties of atoms and molecules are insignificant (Autschbach, 2012).  However, the effect 
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of relativity starts becoming apparent as the speed with which the electrons move tend to the 

speed of light.  Relativistic effect is not due to the size of the screened nuclear charge, which 

is small for heavy atoms (Dirac, 1929), but due to possibly large kinetic and potential energies 

of the heavy atoms (Schwarz, 1989).  

Relativity can significantly affect the chemical and physical properties of heavy 

elements and that is particularly obvious in the lower third elements of the periodic table 

(Autschbach, 2012).  Even for elements that are light, factoring in the effect of relativity can 

produce a more accurate result as shown in the example above and as discussed, for instance, 

in the works of Kołos & Wolniewic (1964, 1965, 1968) and Michauk & Gauss (2007).  As 

such, including the relativistic effect when calculating X-ray scattering factors should yield 

more accurate results.  

In order to account for the relativistic effects, the Schrödinger equation is replaced with 

the Dirac-Hartee-Fock equation.  For an 𝑁-electron atom or ion, the total Dirac-Coulomb 

Hamiltonian 𝐻̂ includes (Grant et al., 1980; Zatsarinny & Froese Fischer, 2016)  

𝐻̂ =  ∑ 𝐻𝑖

𝑁

𝑖=1

(𝐫𝑖) +  ∑
1

𝑟𝑖𝑗

𝑁

𝑖<𝑗

 (17) 

where 𝐫𝑖  is the position of the 𝑖-th particle (electron) relative to the atomic nucleus, 𝑟𝑖𝑗 =

|𝐫𝑖 − 𝐫𝑗| , 1/𝑟𝑖𝑗  is the two-particle interaction operator, and 𝐻𝑖  is the one-electron Dirac 

operator for the 𝑖-th particle (Grant et al., 1980; Zatsarinny & Froese Fischer, 2016): 

𝐻𝑖(𝐫𝑖) = 𝑐𝛂. 𝐩𝑖 +  𝛽𝑐2 + 𝑉nuc(𝑟𝑖) (18) 

where 𝐩𝑖  is momentum operator of the 𝑖-th electron, c is the speed of light, 𝑉nuc(𝑟𝑖) is the 

nuclear potential and 𝛂 and 𝛽 are Dirac matrices (Grant et al., 1980; Zatsarinny & Froese 

Fischer, 2016).  Within the point model of a nucleus of charge 𝑍, 𝑉nuc(𝑟𝑖) is given by the 

Coulomb potential (Grant et al., 1980; Zatsarinny & Froese Fischer, 2016) 
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𝑉nuc(𝑟) = −𝑍/𝑟  (19) 

However, several more advanced models that take into account the finite size of a nucleus, 

such as the uniform or Fermi charge distribution (Grant et al., 1980; Zatsarinny & Froese 

Fischer, 2016), can also be used.  The total 𝑁-electron wavefunction is now represented by the 

anti-symmetrized products of Dirac four-component spinors (Grant et al., 1980; Zatsarinny & 

Froese Fischer, 2016): 

𝛷𝑛𝑘𝜇(𝐫) =
1

𝑟
[

𝑃𝑛𝑘(𝑟) 𝜒𝑘𝜇(𝜃, 𝜙)

i𝑄𝑛𝑘(𝑟) 𝜒−𝑘𝜇(𝜃, 𝜙)
] (20) 

where 𝜒𝑘𝜇(𝜃, 𝜙) is the spin-angular function called the spinor spherical harmonic (Grant et al., 

1980; Zatsarinny & Froese Fischer, 2016) which is analogous to the spherical harmonic 

function 𝑌(𝜃, 𝜙)  used in non-relativistic quantum mechanics.  The radial density ℛ(𝑟)  in 

relativistic calculation is formed from two relativistic subshells called the major, 𝑃(𝑟), and 

minor, 𝑄(𝑟), components, and is subject to the following normalization condition: 

∫ [𝑃2(𝑟) + 𝑄2(𝑟)] d𝑟 = 1

∞

0

 (21) 

 

1.4 The literature survey 

Several studies have been published on the relativistic X-ray scattering factors for neutral atoms 

and chemically relevant ions.  These include the works of Doyle & Turner (1968), Cromer & 

Waber (1968), Rez, Rez & Grant (1994), Wang, Smith, Bunge & Jáiregui (1996), Su & 

Coppens (1994, 1997, and 1998) and Macchi & Coppens (2001).  

The original Dirac-Hartree-Fock atomic X-ray scattering factors were calculated for all 

neutral atoms with 𝑍 = 2 − 98  by Doyle & Turner (1968) based on wavefunctions of 

Coulthard (1967), and by Cromer & Waber (1968) using the wavefunctions of Mann (1968).  

The Coulthard (1967) approach included the point-charge model while Mann (1968) accounted 

for a finite charge distribution of the atomic nucleus, and both neglected the magnetic and 
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retardation effects.  The Doyle & Turner (1968) calculations also included several cations and 

anions (Li+, Be2+, Na+, Mg2+, Cl–, K+, Ca2+, V2+, Mn2+, Fe2+, Fe3+, Co2+, Ni2+, Cu+, Zn2+, Br–, 

Rb+, Sr2+, Sn2+, Sn4+, I–, Cs+), while the rest of the chemically-relevant cations were calculated 

by Cromer & Mann (1968a) using the non-relativistic numerical Hartree-Fock wavefunctions 

of Mann (1967) and by Cromer & Waber (1968) using the relativistic Dirac-Slater method.   

In 1994, Rez, Rez & Grant (1994, 1997) redetermined the X-ray scattering factors for 

naturally occurring elements and their selected ions using multiconfiguration Dirac-Hartree-

Fock combined with the extended average level (EAL) model (Grant, Mayers & Pyper, 1976) 

as was implemented in the Oxford MCP/MCDF package (Grant et al., 1980) and later included 

in the GRASP suite of programs (Dyall et al., 1989).  Regrettably, it is not known which nuclear 

model was used by Rez, Rez & Grant (1994) and whether the Breit interaction correction was 

applied.  In addition, their work covered only a subset of ions calculated in the earlier studies 

(Doyle & Turner, 1968; Cromer & Waber, 1968; Cromer & Mann, 1968a) though they did 

include the X-ray scattering factors for Cr4+ and O2– that had not been reported before.  The 

calculations of Dirac-Hartree-Fock wavefunctions for anions (O2–, F–, Cl–, Br–, and I–) in the 

Rez, Rez & Grant (1994) work required the use of the Watson sphere approximation (Watson, 

1958) which involves surrounding of anions by a sphere of positive charge.  The authors found 

“very little difference (less than 0.1%) between [their] results and those of Doyle & Turner 

(1968) except for some heavy elements at high values of 𝑠𝑖𝑛 𝜃 /𝜆 ” despite the expected 

differences between their multiconfiguration DHF wavefunctions and single-configuration 

DHF wavefunctions used by Doyle & Turner (1968) and Cromer & Waber (1968).  For 

interpolation, Rez, Rez & Grant (1994, 1997) used parametrization (39) with 𝑚 = 4  but 

excluded the constant 𝑐.  The two interpolating functions were designed to provide a high 

accuracy fit for 0 ≤ sin 𝜃 /𝜆 ≤ 2  Å−1 and a lower accuracy fit for the entire 0 – 6 Å-1 range 

(Rez, Rez & Grant, 1994, 1997). 



13 
 

 
 

The 1996 calculations by Wang et al. (1996) were also performed at the 

multiconfiguration DHF level but were limited to neutral atoms with Z = 2 (He) – 18 (Ar), six 

ions (Li+, Be2+, F–, Na+, Mg2+ and Cl–), and the excited (valence) states of carbon (Cval) and 

silicon (Sival), though no additional approximations were included when calculating the two 

anions.  An important feature of the study was that the relativistic wavefunctions approached 

the ground-state non-relativistic wavefunctions as the speed of light approached the infinity.  

The authors also chose to generate scattering factors on a fine grid instead of providing 

analytical interpolating functions. 

Su & Coppens (1997) pointed out that the Rez, Rez & Grant (1994, 1997) 

wavefunctions may not correspond to the optimized ground states of the atoms and offered 

their own X-ray scattering factors (Su & Coppens, 1997, 1998) for neutral atoms with Z = 1 – 

54 (Xe) computed using the multiconfiguration DHF method with the optimal level (OL) model 

in GRASP92 (Parpia, Froese Fischer & Grant, 1996).  In 2001, Macchi & Coppens (2001) 

extended the work of Su & Coppens (1997, 1998) to all chemically relevant ions up to I‒.  As 

in the work of Wang et al. (1996), no additional approximations were introduced when 

calculating the monovalent anions (O–, F–, Cl–, Br–, and I–) but unlike the Rez, Rez & Grant 

(1994) study, the O2– and Cr4+ ions were not calculated.  It is a little surprising that Volume C 

of the 2006 edition of International Tables for Crystallography (Maslen, Fox & O’Keefe, 2006) 

does not include the values from Su & Coppens (1997, 1998) and Macchi & Coppens (2001).  

Perhaps, it is related to the fact that Su they did not process all the atoms and ions listed in the 

currently used tables (Maslen, Fox & O’Keefe, 2006), and/or because the interpolating 

procedure for the scattering factors employed in their studies was somewhat different from the 

established approach: they used the function (39) with 𝑚 = 6 and 𝑐 = 0 in each of the 0 ‒ 2, 2 

‒ 4 and 4 ‒ 6 Å−1 sin 𝜃 /𝜆 intervals.  Even after the passing of Prof. Coppens in 2017, the 

scattering factors from these studies are available online at 
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http://harker.chem.buffalo.edu/group/ptable.html.  However, one should be aware that for 

several atoms some parts of the data are missing.  

In the light of the above, there is clearly a need for a set of more uniformly calculated 

relativistic X-ray scattering factors for all neutral atoms and chemically relevant ions including 

those missing in the previous studies, which is the main goal of this work.  

 

1.5 Using the B-spline Dirac-Hartree-Fock approach 

The main goal outlined above will be reached by i) calculating the fully-relativistic 

wavefunctions of neutral atoms and ions using the B-spline Dirac-Hartree-Fock approach 

recently proposed and coded in the Fortran program DBSR_HF by Zatsarinny & Froese Fischer 

(2016), and ii) using the newly developed Fortran program SF (Olukayode, Fischer & Volkov, 

2022) to integrate the X-ray scattering factors and to create the analytical interpolating 

functions. 

B-spline is a piecewise polynomial function defined as follows: 

𝐵𝑖,1(𝑟) = {
1, 𝑡𝑖 ≤ 𝑟 ≤ 𝑡𝑖+1

0, otherwise
 (22) 

𝐵𝑖,𝑘(𝑟) =  
𝑟 −  𝑡𝑖

𝑡𝑖+𝑘−1 − 𝑡𝑖
𝐵𝑖,𝑘−1(𝑟) −  

𝑡𝑖+𝑘 − 𝑟

𝑡𝑖+𝑘 − 𝑡𝑖+1
𝐵𝑖+1,𝑘−1(𝑟)  (23) 

The functions are divided into intervals with end points 𝑡𝑖 as the knots.  Equation (23) is the de 

Boor algorithm (de Boor, 1971) for evaluation of the values of 𝐵𝑖,𝑘(𝑟). 

B-splines have been successfully used in both the non-relativistic (Froese Fischer, 2007; 

2011) and relativistic (Johnson & Sapirstein, 1986) electronic structure calculations.  One of 

the major advantages offered by a B-spline expansion is that the calculations are reduced to 

matrix algebra methods instead of the more complicated differential equations when using 

other basis sets (Zatsarinny & Froese Fischer, 2016).  Perhaps, the only serious issue associated 

with using B-splines is the appearance of the pseudo-states when solving the Dirac equations 

though this problem is shared by all finite-element bases (Drake & Goldman, 1981; Zatsarinny 

http://harker.chem.buffalo.edu/group/ptable.html
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& Froese Fischer, 2016).  In DBSR_HF, that problem is solved by using different B-spline 

orders for the small (𝑘𝑞) and large (𝑘𝑝) components with 𝑘𝑞 = 𝑘𝑝 + 1 (Froese Fischer & 

Zatsarinny, 2009).  Then, the major and minor components of the radial function for the 𝑗-th 

relativistic atomic orbital (spinor) can be obtained from the B-spline expansion as follows 

𝑃𝑗(𝑟) =  ∑[𝑝𝑗𝑖𝐵𝑖
𝑘𝑝(𝑟)]

𝑛𝑝

𝑖=1

 (24) 

𝑄𝑗(𝑟) =  ∑[𝑞𝑗𝑖𝐵𝑖
𝑘𝑞(𝑟)]

𝑛𝑞

𝑖=1

 (25) 

By default, the DBSR_HF code sets the values of 𝑘𝑝 and 𝑘𝑞 to 8 and 9, respectively.  However, 

the B-spline bases for the major and minor components are formed on the same number of 

intervals.  The 𝑝𝑗𝑖 and 𝑞𝑗𝑖 are orbital expansion coefficients and the 𝑛𝑝  and 𝑛𝑞 are the grid 

points.  The relativistic radial electron density ℛ(𝑟) can then be evaluated as  

ℛ(𝑟) = ∑ 𝑛𝑗[𝑃𝑗(𝑟)2 + 𝑄𝑗(𝑟)2 ]

𝑁occ

𝑗=1

 (26) 

where 𝑛𝑗  is the number of electrons of the 𝑗-th relativistic atomic orbital (spinor), and 𝑁occ is 

number of the relativistic atomic orbitals.  Then, the expression for the relativistic atomic or 

ionic X-ray scattering factor becomes essentially identical to its non-relativistic counterpart: 

𝑓(𝑠) =
1

4𝜋
∫ ℛ(𝑟)

sin(4𝜋𝑠𝑟)

𝑠𝑟
𝑑𝑟

∞

0

 (27) 

 

1.6 The motivation, goal and objectives of the dissertation 

There are two major reasons for revisiting the existing relativistic Dirac-Hartree-Fock 

X-ray scattering factors.  The first is to produce the X-ray scattering factors for all atoms and 

chemically relevant ions that have not been previously published.  The second motivation is to 

provide corrections for a number of errors and typos, and to improve the accuracy of the 
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existing X-ray scattering factors.  We note that despite a number of more recent publications, 

the International Tables for Crystallography, vol. C, section 6.1.1, 554 – 589 (Maslen, Fox & 

O’Keefe, 2006) still includes the X-ray scattering factors from 1968 calculations that were 

either performed at the non-relativistic level or replaced the Dirac-Hartree-Fock method with 

the Dirac-Slater approximation, or ignored important relativistic corrections to the electronic 

motion due to magnetic and retardation effects.  Perhaps, the main reason for retaining the old 

data is that the newer calculations did not cover the same range of atoms and ions as the 1968 

studies, and deviated from the established procedures for analytical interpolations.   

 

As such, the overarching goal of the present work is to complete a uniform treatment of the X-

ray scattering factors at the relativistic Dirac-Hartree-Fock level for  

1) all neutral atoms with 𝑍 = 2 (He) − 118 (Og),  

2) all chemically relevant cations of the elements with Z = 3 (Li) – 104 (Rf) 

(Greenwood & Earnshaw, 1997),  

3) selected monovalent anions (O–, F–, Cl–, Br–, I–, which were included in most of the 

earlier studies, plus At–),  

4) the ns1np3 excited (valence) states of carbon and silicon, and  

5) several exotic cations (Db5+, Sg6+, Bh7+, Hs8+ and Cn2+),  

thus, significantly extending the list of species that were treated in all the previous studies.   

 

The objectives of this study are to  

a) integrate the X-ray scattering factors with a high precision at all points of a fine sin 𝜃 /𝜆 

grid between 0 and 6 Å-1 (Wang et al., 1996); 

b) determine the conventional (Maslen, Fox & O’Keefe, 2006) interpolating functions (4) 

and (5) for 0 ≤ sin 𝜃 /𝜆 ≤ 2  Å−1  and 2 ≤ sin 𝜃 /𝜆 ≤ 6  Å−1  ranges, respectively, 
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which will allow the users [should there be interest] include the expansions into X-ray 

diffraction software with only minor modifications; 

c) optimize the extended interpolating functions (4) and (5) ( 𝑚 = 5  and 𝑛 = 4 , 

respectively) in order to increase the accuracy of the interpolated X-ray scattering 

factors. 

1.7 Two-article dissertation structure 

For this dissertation, an article-style format shall be used.  It includes an introduction 

(Chapter1) which gives a general overview of the research interest and motivation and 

identifies gaps in the existing knowledge that our work trying to fill.  Chapters 2 and 3 include 

the two research papers on the relativistic Dirac-Hartree-Fock X-ray scattering factors.   

The first paper titled “Revisited Relativistic Dirac-Hartree-Fock X-ray Scattering 

Factors For Ground State Neutral Atoms with Z = 2 – 118, using wavefunctions from B-spline 

Dirac-Hartree-Fock program” (Olukayode, Fischer &Volkov, 2022) introduces our approach 

and includes a calculation of the fully relativistic Dirac-Hartree-Fock X-ray scattering factors 

for all neutral atoms with Z = 2 – 118.  The paper has been submitted to Acta Crystallographica 

Section A: Foundations and Advances in July of 2022.  In September of 2022, we have received 

the two referee reports that suggest publication of the paper after a “minor revision”.  That 

work is now in progress.  

The second paper titled “Revisited Relativistic Dirac-Hartree-Fock X-ray Scattering 

Factors. II. Chemically-Relevant Cations and Selected Monovalent Anions for Z = 2 – 112”  

(Olukayode, Fischer &Volkov, 2023) has been written and shall be submitted immediately 

after the acceptance of the first paper.  It is dedicated to the calculation of the fully relativistic 

Dirac-Hartree-Fock X-ray scattering factors for a total of 318 species that include a) all cations 

of the elements with Z = 3 (Li) – 104 (Rf) listed in Greenwood & Earnshaw (1997) (Figure 2.5, 
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page 28), b) six monovalent anions (O–, F–, Cl–, Br–, I–, At–), c) the ns1np3 excited (valence) 

states of carbon and silicon, and d) several exotic cations (Db5+, Sg6+, Bh7+, Hs8+ and Cn2+). 

The final chapter (Chapter 4) offers a set of concluding remarks, a summary of the 

results obtained, and some of the future plans.  
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Synopsis Using relativistic wavefunctions from a B-spline Dirac-Hartree-Fock program 

DBSR_HF [Zatsarinny & Froese Fischer (2016). Comput. Phys. Comm. 202, 287 – 303] we 

have re-determined the X-ray scattering factors and the corresponding interpolating 

approximations in the 0 – 2 and 2 – 6 Å-1 sin 𝜃 /𝜆 ranges for all neutral atoms between He 

(Z=2) and Og (Z=118).  The results seem to represent an excellent compromise among all the 

previous studies and should (hopefully) be free of typos and inconsistencies.  The generated 

data have been tabulated using the same format and expansions (as well as more accurate 

extended expansions) as used in the 2006 edition of Volume C of International Tables for 

Crystallography, and thus can be readily incorporated into the existing X-ray diffraction 

software 
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Abstract In this first of a series of publications, we revisit the X-ray scattering factors for 

neutral atoms. Using the recently developed DBSR_HF program [Zatsarinny & Froese Fischer 

(2016). Comput. Phys. Comm. 202, 287 – 303] we have calculated the fully relativistic Dirac-

Hartree-Fock ground-state wavefunctions for all atoms with Z = 2 – 118 (He – Og) using the 

extended average level scheme and including both the Breit interaction correction to the 

electronic motion due to magnetic and retardation effects, and the Fermi distribution function 

for the description of the nuclear charge density.  The comparison of our wavefunctions with 

those obtained in several previous studies in terms of the total and orbital (spinor) energies, 

and a number of local and integrated total and orbital properties, confirmed the quality of the 

generated wavefunctions.  The employed dense radial grid combined with the DBSR_HF’s B-

spline representation of the relativistic one-electron orbitals allowed for a precise integration 

of the X-ray scattering factors using a newly developed Fortran program SF.  Following the 

established procedure [Maslen, Fox & O’Keefe (2006) in International Tables for 

Crystallography, vol. C, section 6.1.1, 554 – 589], the resulting X-ray scattering factors have 

been interpolated in the 0 ≤ sin 𝜃 /𝜆 ≤ 2  Å−1  and 2 ≤ sin 𝜃 /𝜆 ≤ 6  Å−1  ranges using the 

recommended analytical functions with both the four- (which is a current convention) and five-

term expansions. An exhaustive comparison of the newly generated X-ray scattering factors 

with the IUCr-recommended values and those from a number of previous studies showed an 

overall good agreement and allowed us to identify a number of typos and inconsistencies in the 

recommended quantities.  A detailed analysis of the results suggests that the newly derived 

values may represent an excellent compromise among all the previous studies.  The determined 

conventional interpolating functions for the two sin 𝜃 /𝜆 intervals show, on average, the same 

accuracy as the recommended parametrizations.  However, an extension of each expansion by 

only a single term provides a significant improvement in the accuracy of the interpolated values 

for an overwhelming majority of the atoms.  As such an updated set of the fully relativistic X-
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ray scattering factors and the interpolating functions for neutral atoms with Z = 2 – 118 can be 

easily incorporated into the existing X-ray diffraction software with only minor modifications.  

The outcomes of the undertaken research should be of interest to the members of 

crystallographic community who push the boundaries of the accuracy and precision of the X-

ray diffraction studies.   

Keywords: Relativistic X-ray scattering factors for neutral atoms; relativistic Dirac-

Hartree-Fock; interpolation of X-ray scattering factors.  
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2.1 Introduction 
Since the pioneering work of Sir William Henry Bragg (1862-1942) and his son Sir William 

Lawrence Bragg (1890-1971) that was recognized by their joint 1915 Nobel Prize in Physics, 

the X-ray crystal diffraction has become one of the most accurate, precise, and perhaps the 

most commonly used technique for studying the crystalline state of matter at the atomic scale.  

At the heart of the method is the atomic X-ray scattering (form) factor (XRSF) defined as a 

Fourier transform of the atomic electron density 𝜌(𝐫)  (Giacovazzo et al., 1992; 

Schwarzenbach, 1996; Coppens, 1997):  

𝑓(𝐒) = ∫ 𝜌(𝐫)𝑒2𝜋i𝐒∙𝐫d3𝐫 (28) 

where 𝐫 is a vector in direct space given as 𝐫 ≡ (𝑟, 𝜃, 𝜙) in the spherical coordinate system, 𝐒 

is the so-called scattering vector, i is the imaginary unit (i = √−1) and 𝜌(𝐫) = 𝜌(𝑟, 𝜃, 𝜙) is the 

electron density of an atom (or a particular electronic shell).  The scattering vector 𝐒 has the 

length 𝑆 = |𝐒| = 2 sin 𝜃 /𝜆, where the angle 𝜃 is defined in such a way that 2𝜃 is the angle 

between the directions of the incident and diffracted X-rays (Giacovazzo et al., 1992; 

Schwarzenbach, 1996; Coppens, 1997), and 𝜆 is the wavelength of the incident X-ray beam.  

Following Giacovazzo et al. (1992) and Coppens (1997), we assume that 𝐒 is directed along 

the 𝑧-axis of the spherical coordinate system, in which case 

𝐒 ∙ 𝐫 = 𝑆 𝑟 cos 𝜃 = 2 sin(𝜃) /𝜆 𝑟 cos 𝜃 = 2 𝑠 𝑟 cos 𝜃 

where 𝑠 = sin 𝜃 /𝜆 = 𝑆/2 .  Then, the integral (28) can be re-written as 

𝑓(𝑠) = ∫ ∫ ∫ 𝜌(𝑟, 𝜃, 𝜙)𝑒4𝜋i𝑠𝑟 cos 𝜃𝑟2 sin 𝜃 d𝜃 d𝜙 d𝑟

𝜋

0

2𝜋

0

∞

0

 (29) 

Using the non-relativistic quantum mechanical treatment of an atom, the electron density can 

be expressed in terms of the atomic orbital wavefunctions 𝜓(𝑟, 𝜃, 𝜙) 
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𝜌(𝑟, 𝜃, 𝜙) = ∑ 𝑛𝑖|𝜓𝑖(𝑟, 𝜃, 𝜙)|2

𝑁occ

𝑖=1

 (30) 

where 𝜓𝑖  and 𝑛𝑖  are the wavefunction and the electron population of the i-th orbital, 

respectively, 𝑁occ is the number of the occupied orbitals, and the square modulus |𝑥|2 is equal 

to 𝑥2  if the quantity 𝑥  is real and 𝑥∗𝑥  if it is complex (symbol * denotes the complex-

conjugate).  Representing wavefunction of the i-th atomic orbital, 𝜓𝑖(𝑟, 𝜃, 𝜙), as a product of 

the radial function 𝑅𝑖(𝑟), which is always real and normalized, 

∫ 𝑅𝑖
2(𝑟)𝑟2 d𝑟 = 1

∞

0

 (31) 

, and the complex spherical harmonic angular function 𝑌𝑖(𝜃, 𝜙)  (Weissbluth, 1978), the 

expression for the electron density becomes  

𝜌(𝑟, 𝜃, 𝜙) = ∑ 𝑛𝑖𝑅𝑖
2(𝑟)|𝑌𝑖(𝜃, 𝜙)|2

𝑁occ

𝑖=1

 (32) 

For a spherically symmetric atom, which appears to be an excellent first-order approximation 

(Giacovazzo et al., 1992; Schwarzenbach, 1996; Coppens, 1997), the angular part is just 

𝑌(𝜃, 𝜙) = (4𝜋)−1/2 (33) 

Introducing a simplified notation for the radial part of the non-relativistic atomic electron 

density 

ℝ(𝑟) = 𝑟2 ∑ 𝑛𝑖𝑅𝑖
2(𝑟)

𝑁occ

𝑖=1

 (34) 

, inserting the definitions (34), (33), and (32) into the integral (29), and integrating over 𝜃 and 

𝜙, the final expression for the atomic XRSF becomes: 

𝑓(𝑠) =
1

4𝜋
∫ ℝ(𝑟)

sin(4𝜋𝑠𝑟)

𝑠𝑟
𝑑𝑟

∞

0

 (35) 
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In relativistic quantum mechanics (Swirles, 1935; Grant, 1961, 1970) the radial part of the 

relativistic i-th orbital (spinor) includes two components: the large component 𝑃𝑖(𝑟) and a 

small component 𝑄𝑖(𝑟) normalized as (Grant, 1961) 

∫[𝑃𝑖(𝑟)2 + 𝑄𝑖(𝑟)2 ] d𝑟 = 1

∞

0

 (36) 

As such, the atomic XRSF based on relativistic wavefunction for a spherically symmetric atom 

is 

𝑓(𝑠) =
1

4𝜋
∫ ℛ(𝑟)

sin(4𝜋𝑠𝑟)

𝑠𝑟
𝑑𝑟

∞

0

 (37) 

where 

ℛ(𝑟) = ∑ 𝑛𝑖[𝑃𝑖(𝑟)2 + 𝑄𝑖(𝑟)2 ]

𝑁occ

𝑖=1

 (38) 

The X-ray scattering factors for neutral atoms with Z = 2 (He) – 98 (Cf) recommended by IUCr 

(Maslen, Fox & O’Keefe, 2006) were calculated at the single-configuration relativistic Hartree-

Fock (Dirac-Hartree-Fock, DHF) level (Swirles, 1935; Grant, 1961, 1970) by Doyle & Turner 

(1968) based on wavefunctions of Coulthard (1967), and by Cromer & Waber (1968) using the 

wavefunctions of Mann (1968).  The Coulthard (1967) approach included the point-charge 

model while Mann (1968) accounted for a finite charge distribution of the atomic nucleus, and 

both neglected the magnetic and retardation effects.  The original Cromer & Waber (1968) 

XRSFs that terminated at sin 𝜃 /𝜆 = 2 Å−1 were extrapolated to 6 Å-1 by Fox, O’Keefe & 

Tabbernor (1989).  The Doyle & Turner (1968) scattering factors are labelled as RHF in 

Volume C of the 2006 edition of International Tables for Crystallography (Maslen, Fox & 

O’Keefe, 2006), while the Cromer & Waber (1968) / Fox, O’Keefe & Tabbernor (1989) data 

are denoted as *RHF.  The X-ray scattering for a neutral hydrogen atom were calculated from 

an exact non-relativistic quantum mechanical treatment (Maslen, Fox & O’Keefe, 2006). 
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The conventional interpolations of XRSFs (Maslen, Fox & O’Keefe, 2006) include the function 

(Vand, Eiland & Pepinsky, 1957) 

𝑓(𝑠) = ∑ 𝑎𝑖 exp(−𝑏𝑖𝑠
2)

𝑚

𝑖=1

+ 𝑐 (39) 

with 𝑚 = 4 for interpolation of the scattering factors in the 0 ≤ 𝑠 ≤ 2  Å−1 interval (Doyle & 

Turner, 1968), and  

𝑓(𝑠) = exp (∑ 𝑎𝑖𝑠𝑖

𝑛

𝑖=0

) (40) 

with 𝑛 = 3 for the 2 ≤ 𝑠 ≤ 6  Å−1 range (Fox, O’Keefe & Tabbernor, 1989). 

The recommended XRSFs for chemically significant ions (Maslen, Fox & O’Keefe, 

2006) were evaluated at different levels of theory, including the non-relativistic Hartree-Fock 

and correlated methods, and relativistic Dirac-Hartree-Fock and Dirac-Slater techniques. 

 The importance of including in quantum chemical calculations the relativistic effects 

that arise due to velocities of moving electrons approaching the speed of light have been 

emphasized, for example, in a series of recent reviews by Pyykkö (2012), Autschbach (2012), 

and Pyper (2020).  A significant part of each one of these publications is dedicated to a 

discussion of the substantial differences in the electron density distribution between the 

relativistic and non-relativistic predictions, with relativistic ones pretty much always being 

closer or perfectly matching the experimental observations.  

While there have been several attempts to improve XRSFs, in the following only the 

studies that include the relativistic calculations are briefly discussed. 

In 1994, Rez, Rez & Grant (1994, 1997) redetermined XRSFs for naturally occurring 

elements and ions using multiconfiguration Dirac-Hartree-Fock combined with the extended 

average level (EAL) model (Grant, Mayers & Pyper, 1976) as was implemented in the Oxford 

MCP/MCDF package (Grant et al., 1980) and later included in the GRASP suite of programs 
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(Dyall et al., 1989).  The authors found “very little difference (less than 0.1%) between [their] 

results and those of Doyle & Turner (1968) except for some heavy elements at high values of 

𝑠𝑖𝑛 𝜃 /𝜆 ” despite the expected differences between their multiconfiguration DHF 

wavefunctions and single-configuration DHF wavefunctions used by Doyle & Turner (1968) 

and Cromer & Waber (1968).  For interpolation, Rez, Rez & Grant (1994, 1997) use 

parametrization (39) with 𝑚 = 4 but excluded the constant 𝑐.  The two interpolating functions 

were designed to provide a high accuracy fit for 0 ≤ 𝑠 ≤ 2  Å−1 and a lower accuracy fit for 

the entire 0 – 6 Å-1 range (Rez, Rez & Grant, 1994, 1997). 

The 1996 calculations by Wang et al. (1996) were also performed at the 

multiconfiguration DHF level but were limited to neutral atoms with Z = 2 (He) – 18 (Ar).  An 

important feature of the study was that the relativistic wavefunctions approached the ground-

state non-relativistic wavefunctions as the speed of light approached the infinity.  The authors 

also chose to generate scattering factors on a fine grid instead of providing analytical 

interpolating functions. 

Su & Coppens (1997) argued that the Rez, Rez & Grant (1994, 1997) wavefunctions 

may not “correspond to the optimized ground states of the atoms” and offered their own XRSFs 

(Su & Coppens, 1997, 1998) for neutral atoms with Z = 1 – 54 (Xe) computed using the 

multiconfiguration DHF method with the optimal level (OL) model in GRASP92 (Parpia, 

Froese Fischer & Grant, 1996).  In 2001, Macchi & Coppens (2001) extended the work of Su 

& Coppens (1997, 1998) to all chemically relevant ions up to I‒.  It is a little surprising that 

Volume C of the 2006 edition of International Tables for Crystallography (Maslen, Fox & 

O’Keefe, 2006) does not include the values from those two studies.  Perhaps, it is related to the 

fact that Su & Coppens (1997, 1998) and Macchi & Coppens (2001) did not process all the 

atoms and ions listed in the currently used tables (Maslen, Fox & O’Keefe, 2006), or because 

the interpolating procedure for XRSFs employed in their studies was somewhat different from 
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the established approach: they used the function (39) with 𝑚 = 6 and 𝑐 = 0 in each of the 0 ‒ 

2, 2 ‒ 4 and 4 ‒ 6 Å−1 sin 𝜃 /𝜆 intervals.  Even after the passing of Prof. Coppens in 2017, the 

scattering factors from these studies are available online at 

http://harker.chem.buffalo.edu/group/ptable.html.  However, one should be aware that for 

several atoms some parts of the data are missing.  

In the last two decades, there has been a significant increase in the level and number of 

available software for relativistic atomic calculations and an enormous progress in computing 

power, to the point that accurate relativistic atomic calculations have become almost routine 

and can be performed on an average desktop or laptop computer.  In addition to the atomic 

relativistic codes with a long history that are still being supported and improved, such as for 

example, MCDFGME (Desclaux, Mayers & O’Brien, 1971; Desclaux, 1975; Indelicato & 

Desclaux, 1990; Guerra et al., 2017) and GRASP (Grant et al., 1980; Dyall et al., 1989; Jönsson 

et al., 2007; Jönsson et al., 2013; Froese Fischer et al., 2019), there have been a number of new 

codes developed including DFRATOM (Matsuoka & Watanabe, 2001), FAC (Gu, 2008), 

AMBiT (Kahl & Berengut, 2019), and DBSR_HF (Zatsarinny & Froese Fischer, 2016).   

 A general Dirac-Hartree-Fock program DBSR_HF written by Zatsarinny & Froese 

Fischer (2016) uses a B-spline basis (Bachau et al., 2001; Froese Fischer, 2007, 2021) for the 

large and small components of the relativistic orbitals (spinors) which makes it ideal for studies 

involving the electron density distribution as the electron density at any point in space can be 

calculated very precisely directly from a B-spline representation without additional 

interpolation, and when combined with a fine grid, allows a straightforward evaluation with a 

high precision of a pretty much any integral that involves the electron density.  The Breit 

interaction model which accounts for the relativistic corrections to the electronic motion due 

to magnetic and retardation effects can be included in the setup of the Hamiltonian matrix 

(Zatsarinny & Froese Fischer, 2016) which makes the effect present in the calculated 

http://harker.chem.buffalo.edu/group/ptable.html
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wavefunctions.  The program supports several nuclear models including the point charge-based 

Coulomb function, and two schemes that account for the finite size of an atomic nucleus: the 

uniform ball of charge model, and the Fermi distribution function (Johnson & Soff, 1985; 

Zatsarinny & Froese Fischer, 2016).  The built-in utility allows for a flexible energy functional 

input: the code can automatically expand a specified non-relativistic configuration into a list of 

corresponding relativistic configuration state functions (CSFs) with appropriate statistical 

weights.  Alternatively, a user can create his/her own list of relativistic CSFs with custom 

weights.  The DBSR_HF program has a simple, keyword-driven input and a user-friendly 

output.  The former is especially useful when calculating the atomic excited states.  The code 

is written in a plain Fortran90 and is well commented which makes it easy to modify when a 

custom output or interface is needed.  Perhaps, the DBSR_HF’s only weakness is that while 

the quantum electrodynamical (QED) corrections due the self-energy of the electrons and 

vacuum polarization, evaluated using the same approximations as in GRASP (Jönsson et al, 

2007), can be included in the calculations of energies, due to theoretical limitations of the 

methods implemented in DSBR_HF, they cannot be applied to the resulting one-electron 

wavefunctions (Zatsarinny & Froese Fischer, 2016).  Dr. Zatsarinny passed away before he 

was able to extend the functionality of the code. 

 In this first of a series of papers, we i) calculate the Dirac-Hartree-Fock ground-state 

wavefunctions of neutral atoms with Z = 2 (He) – 118 (Og) using the DBSR_HF code of 

Zatsarinny & Froese Fischer (2016), ii) evaluate the X-ray scattering factors from the resulting 

one-electron densities represented in a B-spline basis, and iii) determine the coefficients of the 

interpolating functions following the same approach as given in  International Tables for 

Crystallography (Maslen, Fox & O’Keefe, 2006).  For those users who require higher accuracy 

interpolation, we provide the extended expansions within the same general formalism.  In a 

future study, we plan to apply the described approach to all chemically relevant ions so that the 
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X-ray scattering factors for all neutral atoms with Z = 2 – 118 and their ions will be determined 

at the relativistic Dirac-Hartree-Fock level of theory in a consistent manner.   

 

2.2 Methods 

2.2.1 Relativistic calculations  

The relativistic atomic calculations at the Dirac-Hartree-Fock level were performed using the 

DBSR_HF program (Zatsarinny & Froese Fischer, 2016) that was downloaded from the 

GitHub repository (https://github.com/compas/dbsr_hf).  The code was slightly modified to a) 

process atoms up to Z = 118 (Og), b) include up-to-date physical constants and weights of the 

most abundant or most stable isotopes (CRC Handbook of Chemistry and Physics, 2021), and 

c) provide an interface to the newly written Fortran code SF (see description below) that 

calculates XRSFs, determines coefficients of the interpolating functions, and calculates a 

number of integrated local and atomic properties.  Finally, a newly written Fortran program 

ANALYSIS collects the SF output files, performs statistical analysis, compares results with 

those from the previous studies, and prints out a number of tables in a user-friendly format.  A 

flow chart that shows the sequence of steps and the associated software used is shown in Figure 

1.  

The ground-state electron configurations for all atoms were specified in the non-

relativistic LS notation (Table S1).  For atoms with Z = 2 (He) – 104 (Rf) the electron 

configurations were taken from the latest edition of CRC Handbook of Chemistry and Physics 

(Martin, 2021), while for heavier elements we used the proposed configurations based on those 

in the 6th period of the Mendeleev Periodic Table (WebElements, 2022).  The ground-state 

electron configurations employed in our work are in complete agreement with those used in a 

recent study by Guerra et al. (2017).  In contrast, Tatewaki, Yamamoto & Hatano (2017), who 

limited their calculations to Z = 1 ‒ 103 (Lr), used different electron configurations for Bk and 

Lr, as shown in Table S1 and summarized below: 

https://github.com/compas/dbsr_hf
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Bk (Z=97) [Rn] 5f9 7s2  Visscher & Dyall (1997), Guerra et al. (2017), this work 

[Rn] 5f8 6d 7s2  Tatewaki et al. (2017) 

Lr (Z=103) [Rn] 5f14 7s2 7p  Guerra et al. (2017), this work 

  [Rn] 5f14 6d 7s2  Visscher & Dyall (1997), Tatewaki et al. (2017) 

Visscher & Dyall (1997) whose calculations extend to Mt (Z=109) also used the [Rn] 5f14 6d 

7s2 configuration for Lr.  However, the electronic ground state of Lr was determined to be [Rn] 

5f14 7s2 7p by Desclaux & Fricke (1980) using relativistic calculations though Martin (2021) 

marks it (together with [Rn] 5f14 6d2 7s2 for Rf) as “uncertain”.   

For a given non-relativistic LS configuration, the DBSR_HF code automatically 

generates all the appropriate relativistic configuration state function (CSFs) with the 

corresponding statistical weights which are listed in Table S2.  The statistical weights are 

defined with respect to the number of Slater determinants used in the configuration expansion 

(Desclaux, 1973; Zatsarinny & Froese Fischer, 2016).  For example, the ground state electronic 

configuration of sulfur (Z=16) [Ne]3s23p4 is expanded in terms of three CSFs: 

3s2 3p1/2
2  3p3/2

2        𝑤 = 0.40000 

3s2 3p1/2
1  3p3/2

3   𝑤 = 0.53333 

3s2 3p3/2
4                   𝑤 = 0.06667 

where the subscript of the orbital symbol denotes the quantum number 𝑗 (𝑗 = 𝑙 ± 𝑠) and 𝑤 is 

the CSF weight.  For, chlorine (Z=17, [Ne]3s23p5), there are two CSFs: 

3s2 3p1/2
2  3p3/2

3        𝑤 = 0.66667 

3s2 3p1/2
1  3p3/2

4   𝑤 = 0.33333 

while for argon (Z=18), a closed-shell atom with the ground state electronic configuration 

[Ne]3s23p6, there is only one CSF: 

3s2 3p1/2
2  3p3/2

4        𝑤 = 1.00000 
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In that respect, our calculations are similar to the average level (AL) and extended average 

level (EAL) formalisms developed by Grant, Mayers & Pyper (1976) and incorporated in 

GRASP (Grant et al., 1980; Dyall et al., 1989).  Even though Su & Coppens (1997) argued that 

“multiconfiguration wavefunctions from the average level model […] do not correspond to the 

optimized ground states of the atoms”, the EAL formalism was used by Rez, Rez and Grant 

(1994) in their work on XRSFs.  The AL approach was also employed by Visscher & Dyall 

(1997) who performed calculations for the first 109 elements in GRASP thus providing a 

benchmark set of the total electronic ground-state energies, as well as the radial expectation 

values and energies of the spinors.  Unfortunately, the spinor parameters were not included in 

the paper and instead were made available at 

“http://theochem.chem.rug.nl/~luuk/FiniteNuclei/” that is no longer accessible.  As stated in 

Dyall et al. (1989), “[t]he object of the E/AL options is to determine a set of orbitals which are 

optimal for the average energy of a set of CSFs”, which from our point of view, provides a 

more realistic description for the electron distribution of an atom in a crystal as due to bonding 

effects, it will not be always confined to the lowest energy level of the ground state 

configuration that is optimized in the OL method: “[a]n OL calculation produces only one 

reliable energy level, namely the one being optimized” (Grant et al., 1980). 

 The DBSR_HF calculations were performed using the default values for the order of 

B-splines (which is equal to 9), energy convergence tolerance of 1.010-10 atomic units (a.u.), 

and the orbital convergence tolerance of 1.010-7 a.u.  In contrast to the original code 

(Zatsarinny & Froese Fischer, 2016) in which the maximum number of iterations was set at 25, 

in the latest version of DBSR_HF that number is increased to 75.  In order to achieve a desired 

precision of the resulting wavefunctions (see discussion below) we significantly increased the 

density of the default “semi-logarithmic” grid (Zatsarinny & Froese Fischer, 2016) relative to 

the default settings.  It involved a reduction of the initial step hi (specified in atomic units) and 
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the factor he that is responsible for exponential growth of the grid in the “middle-radii region” 

from their default values of 0.25 to 0.05, and the reduction of the maximum step size at “high 

radii” from 1 to 0.5 atomic units.   

The calculated wavefunctions include the Breit interaction thus accounting for the 

relativistic corrections to the electronic motion due to magnetic and retardation effects 

(“mbreit=2” option in DBSR_HF).  We note that the original code developed by Coulthard 

(1967) which was used to generate the wavefunctions from which Doyle & Turner (1968) 

calculated the IUCr-recommended XRSFs (Maslen, Fox & O’Keefe, 2006) neglected not only 

the magnetic interactions between electrons (which can be simulated in DBSR_HF using the 

”mbreit=0” option) but also the finite radius of the nucleus (Coulthard, 1967).  There are very 

few details about the relativistic calculations of Mann (1968), whose wavefunctions were used 

by Cromer & Waber (1968), except that the approach included “the potential due to a finite 

nucleus, rather than a point nucleus”.  It is likely that Mann’s (1968) calculations included the 

homogeneously charged sphere model of a nucleus (Desclaux, 1973).  In contrast, our 

DBSR_HF calculations employed the Fermi distribution function (“nuclear=Fermi” option) for 

the description of the nuclear charge density (Johnson & Soff, 1985; Zatsarinny & Froese 

Fischer, 2016).  However, as mentioned in the Introduction section, the quantum 

electrodynamical (QED) corrections due the self-energy of the electrons and vacuum 

polarization were included in the energies only.  

The convergence issues encountered for Cu, Pd, Tm and Yb were solved by first 

completing the calculation in a different state (Cu – [Ar] 3d9 4s2, Pd – [Kr] 4d9 5s1, Tm – [Xe] 

4f12 5d1 6s2, Yb – [Xe] 4f13 5d1 6s2) and then using wavefunctions from those calculations as a 

starting point for the ground-state calculations: Cu – [Ar] 3d10 4s1, Pd – [Kr] 4d10, Tm – [Xe] 

4f13 6s2, Yb – [Xe] 4f14 6s2 (Table S1).  In addition, the orbital convergence tolerance for the 
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ground-state calculations of Cu and Yb had to be increased to 5.010-7 and 1.110-7 a.u., 

respectively.   

2.2.2 X-ray scattering factors calculations  

The X-ray scattering factors were calculated in a newly developed Fortran code SF (Figure 1) 

that is interfaced to DBSR_HF via a binary file that contains all the information necessary to 

work with relativistic one-electron orbitals in the B-spline representation.  For consistency, the 

SF code includes DBSR_HF’s subroutines “BVALU2” and “INTERV1”, which are the 

modifications of de Boor’s subroutines “BVALU” and “INTRV” (de Boor, 1977), that are used 

to evaluate a B-spline and its derivatives at any point.    

The integration of XRSFs and other properties (such as the mean orbital and atomic 

radii) in SF can be performed on a fixed Gaussian-type quadrature which employs the same 

abscissas and weights as used in DBSR_HF, or with the help of subroutines GAUS8 or QAG, 

both taken from the SLATEC package (Vandevender & Haskell, 1982; Fong et al., 1993).  

GAUS8 (Jones, 1981) is an automatic numerical integrator of a single variable that uses an 

adaptive 8-point Legendre-Gauss algorithm and is designed “for high accuracy integration or 

integration of smooth functions” (Jones, 1981).  The subroutine QAG (Piessens & de Doncker, 

1980) serves the same purpose and shares a similar philosophy with GAUS8, but is globally 

adaptive and for a local integration it uses the Gauss-Kronrod rule with a user-defined number 

of points (7 – 61).  The exhaustive numerical tests showed that a fine radial grid had to be 

employed in DBSR_HF in order to achieve the desired agreement of at least eight decimal 

digits in XRSFs for heavy atoms at high sin 𝜃 /𝜆 values (at or above 3 − 4 Å−1) between the 

two adaptive integrators and DBSR_H’s fixed-points quadrature.  This was the main reason for 

significantly increasing the density of the radial grid in the DBSR_HF calculations relative to 

the default settings.  In this work, all integrations including orbital and atomic mean radii, and 

the XRSFs calculations were performed using subroutine QAG (Piessens & de Doncker, 1980) 
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which also returns what appears to be a reliable estimate of the precision of the evaluated 

integral, though essentially the same results are obtained with the other two integrators. 

The X-ray scattering factors for each atom were generated using the sin 𝜃 /𝜆  grid 

proposed by Wang et al. (1996) and used in Table 6.1.1.1 of Volume C of International Tables 

for Crystallography (Maslen, Fox & O’Keefe, 2006).  The fitting (described in the following 

section) in the 0 ≤ 𝑠 ≤ 2  Å−1  range included the same sin 𝜃 /𝜆  grid as used in Doyle & 

Turner (1968).  For fitting in the 2 ≤ 𝑠 ≤ 6  Å−1 range our approach was different from the 

one described by Fox, O’Keefe & Tabbernor (1989): we generated 41  scattering factors with 

𝑠 = sin 𝜃 /𝜆 = 2.0, 2.1, 2.2 … 6.0 Å−1  and used those to optimize the coefficients in equation 

(40).  However, the user of the SF code has a full control over the sin 𝜃 /𝜆 grid parameters 

which can be conveniently specified in an input file.  

2.2.3 X-ray scattering factor interpolating functions 

Interpolation of the integrated XRSFs employed the same expansions as given in section 6.1 

of volume C of International Tables for Crystallography (Maslen, Fox & O’Keefe, 2006).  For 

0 ≤ 𝑠 ≤ 2  Å−1  we used the function (39) (Vand, Eiland & Pepinsky, 1957) in which the 

parameter 𝑚 was set to 4 as in Doyle & Turner (1968) and Maslen, Fox & O’Keefe (2006), 

and then extended to 𝑚 = 5.  In the expansion (40) used to fit the scattering factors in 2 ≤ 𝑠 ≤

6  Å−1, the fits were performed with 𝑛 = 3 following Fox, O’Keefe & Tabbernor (1989) and 

Maslen, Fox & O’Keefe (2006), and then extended to 𝑛 = 4.  We find these choices to be more 

practical than the six-Gaussian expansions in three different sin 𝜃 /𝜆 regions used in Su & 

Coppens (1997, 1998) and Macchi & Coppens (2001) since the results can be incorporated in 

the currently used X-ray structure refinement software with very minor modifications.  That 

said, the fitting schemes used in our code are very general and can handle any number of terms 

in each of the expansions (39) and (40). 
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 In the original work by Doyle & Turner (1968) and a later study by Rez, Rez & Grant 

(1994, 1997) the fitting was done using the Marquardt method (Marquardt, 1963; Bevington & 

Robinson, 2002) which also known as the Levenberg-Marquardt method (Levenberg, 1944; 

Fletcher, 1987; Press et al., 2007).  In brief, the Levenberg-Marquardt algorithm adaptively 

varies the parameter updates between the gradient (steepest) descent update and the Gauss-

Newton update.  Fox, O’Keefe & Tabbernor (1989) for their high sin 𝜃 /𝜆 extrapolations and 

interpolations used a proprietary Apple Macintosh software “Cricket Graph” (Rafferty & 

Norling, 1986).  The studies by Su & Coppens (1997, 1998) and Macchi & Coppens (2001) 

employed the L-BFGS-B optimization code (Zhu et al. 1994; Byrd et al., 1995) which also 

enables one to constrain the fitted parameter within the user-specified bounds.   

 The non-linear least squares fitting protocol incorporated in our Fortran code SF is 

described in detail in Appendix A. 

2.3 Assessment of the quality of the calculated wavefunctions 
The quality of the performed DBSR_HF calculations was a subject of a rigorous comparison 

in terms of the i) total electronic energies, ii) atomic radii, and iii) multiple properties of the 

orbitals (spinors) such as the electronic energy, mean radius, and location of the charge density 

maximum, with a number of previous studies (Wang et al., 1996; Su & Coppens, 1997; 

Visscher & Dyall, 1997; Tatewaki, Yamamoto & Hatano, 2017; Guerra et al., 2017).  The 

outcome of this analysis, presented in Appendix B, confirms the quality of the generated 

wavefunctions. 

 

2.4 X-ray scattering factors and interpolations 
The discussion of the newly generated X-ray scattering factors is separated into three sections.  

In section 4.1 we describe the differences between the DBSR_HF-based XRSFs for neutral 

atoms within the 0 ≤ 𝑠 ≤ 6  Å−1 range calculated in this study relative to the ones included in 
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the 2006 edition of International Tables for Crystallography (Maslen, Fox & O’Keefe, 2006) 

that are based on the works of  

a) Doyle & Turner (1968) who used the wavefunctions of Coulthard (1967); these are 

designated as RHF in Table 6.1.1.1 in Maslen, Fox & O’Keefe (2006), 

b) Cromer & Waber (1968) who used the wavefunctions of Mann (1968), with the 

extrapolations to 6  Å−1 performed by Fox, O’Keefe & Tabbernor (1989); these are 

labelled as *RHF in Table 6.1.1.1 in Maslen, Fox & O’Keefe (2006). 

, as well as with those from the later studies by Rez, Rez & Grant (1994), Wang et al. (1996), 

Su & Coppens (1997) / Macchi & Coppens (2001).  We note that the acronym “RHF” used in 

International Tables for Crystallography (Maslen, Fox & O’Keefe, 2006) is somewhat 

misleading as in quantum chemistry it usually refers to a “restricted Hartree-Fock” calculation.  

We think that a “DHF” (Dirac-Hartree-Fock) abbreviation is more appropriate.   

 In sections 4.1 and 4.2 we present the results of the analytical interpolations of the new 

XRSFs in the 0 ≤ 𝑠 ≤ 2  Å−1 and 2 ≤ 𝑠 ≤ 6 Å−1 intervals, respectively.  As mentioned above, 

equation (39) with 𝑚 = 4 and 𝑚 = 5 was used to fit the scattering factors in the 0 ≤ 𝑠 ≤

2  Å−1 range, while the scattering factors in the 2 ≤ 𝑠 ≤ 6 Å−1 interval were fitted via equation 

(40) with 𝑛 = 3 and 𝑛 = 4.  

2.4.1 X-ray scattering factors 

The X-ray scattering factors for neutral atoms with Z = 2 (He) ‒ 118 (Og) are listed in Table 

S3 using the Wang et al. (1996) sin 𝜃 /𝜆 grid and the same format as in Maslen, Fox & O’Keefe 

(2006).  A detailed comparison of the two sets of values for the elements with Z = 2 ‒ 98 (He 

‒ Cf) is given in Figures 2 – 11 in the main body of the manuscript and Figure S1 in the 

Supporting Information section using the sin 𝜃 /𝜆 grid of Doyle & Turner (1968).  We note 

that while in Table S3 we report the new scattering factors to five decimal places, the precision 

of the calculated values should be at least eight decimal digits. 
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In Figures 2 – 11 and S1, and the discussion below we make use of the absolute 

differences, 

∆𝑓 = |𝑓this work − 𝑓benchmark| (41) 

, and the relative differences,  

∆𝑓% =
|𝑓this work − 𝑓benchmark|

𝑓benchmark
× 100% (42) 

, between the two sets of scattering factors.  In these equations, 𝑓benchmark  represents the 

scattering factors from one of the benchmark studies that are labelled in the figures as follows: 

DT - Doyle & Turner (1968), CW - Cromer & Waber (1968), RRG - Rez, Rez & Grant (1994), 

WSBJ - Wang et al. (1996), SCM - Su & Coppens (1997) and Macchi & Coppens (2001).  In 

several figures, the abbreviation DT/CW is used to denote the entire set of the Doyle & Turner 

(1968) and Cromer & Waber (1968) values as given in Maslen, Fox & O’Keefe (2006).  In 

Figures 2 – 5 the maximum and mean ∆𝑓  and ∆𝑓% quantities are plotted as a function of the 

atomic number Z, and the mean differences were calculated for each atom over all the sin 𝜃 /𝜆 

points in the Doyle & Turner (1968) grid.  The graphs in Figures 6 – 11 show the same 

quantities plotted as a function of sin 𝜃 /𝜆 using the Doyle & Turner (1968) grid, and the 

averaging for each sin 𝜃 /𝜆  grid point was done over all specified atoms.  Because it is 

cumbersome to plot all atoms on the same graph, each figure includes only one group of atoms.  

As such, it is convenient to discuss each group separately.  

2.4.1.1 He (Z=2) ‒Ar (Z=18) 

In Figures 2a, 3a, 4a and 5a we plot the maximum and mean differences ∆𝑓 and ∆𝑓% for the 

elements up to Ar (Z=18).  Note that while in Figures 2a and 3a that show the maximum and 

mean ∆𝑓 as a function of Z we start with He (Z=2), in Figures 4a and 5a that display the graphs 

of the maximum and mean ∆𝑓%, the first atom plotted is boron (Z=5).  This is done in order to 

avoid unreasonably large percentile differences ∆𝑓% for He, Li and Be that originate from a 

limited precision with which XRSFs are reported in some of the benchmark studies: DT give 
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the values to three decimal places, while RRG and WSBJ use four decimal digits.  As evident 

from Figures 2a and 3a, for most of these atoms the agreement between our work and the 

benchmark data, especially with the DT and RRG studies, is very good.  The largest maximum 

and mean ∆𝑓 values are observed for atoms in the middle of the periods: C, N, O, Si, P, and S.  

The WSBJ and SCM values are very close to each other but show noticeable deviations for the 

atoms in the middle of the two periods from the DT, RRG and our values.  These differences 

are likely related to a different approximation level used in the relativistic calculations: OL in 

WSBJ and SCM, and AL/EAL in DT, RRG and this study.  When the differences ∆𝑓 are 

plotted as a function of sin 𝜃 /𝜆 for each of these atoms (Figures S1-6 – S1-8 and S1-14 – S1-

16) the differences are restricted to sin 𝜃 /𝜆 ≤ 0.4 Å−1 which is an indication that it is the 

valence charge density distribution effect.  It is interesting to note that while for atoms in the 

middle of a period our results agree almost perfectly with the values reported in the RRG study 

yet deviate noticeably from the WSBJ and SCM data, at the beginning and end of each period 

the situation is opposite: our values are in a complete agreement with the WSBJ and SCM data, 

while the RRG numbers show noticeable deviations.  The ∆𝑓 values for the DT study pretty 

much always lie in between the RRG and SCM deviations.   

In terms of the percentile XRSF differences (∆𝑓%) (Figures 4a) the largest deviations 

of 1.5% and 2% are observed for the DT scattering factors at 6 Å-1 for the C and N atoms, 

respectively, and are due to a limited precision (three decimals) of the DT data.  Note that He, 

Li and Be were excluded from these graphs because of that very same issue.  However, Figures 

S1-1 – S1-3 show that for He, Li and Be all studies give essentially identical results.  The mean 

values of |∆𝑓%| obtained by averaging over all sin 𝜃 /𝜆 grid points (Figure 5a), are below 0.5% 

for all studies and all atoms between B (Z=5) and Ar (Z=18).  It is interesting to note that the 

mean ∆𝑓% between our work and the DT study decreases steadily as the atomic number Z 
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increases.  It makes sense: as Z increases the magnitude of XRSF increases as well, so the 

limited precision of the DT data becomes less relevant.   

 In Figures 6a, 7a, 8a and 9a we plot the maximum and mean ∆𝑓 and ∆𝑓% values as a 

function of sin 𝜃 /𝜆 where the averaging at each sin 𝜃 /𝜆 grid point was done over all atoms 

between B (Z=5) and Ar (Z=18).  In Figures 6a and 8a we also list atoms for which the 

maximum ∆𝑓 and ∆𝑓% values were observed at each sin 𝜃 /𝜆 grid point.  In agreement with 

the trends seen in Figures S1-2 – S1-18, the WSBJ and SCM values are very close to each other 

but for several atoms deviate noticeably from the other studies at sin 𝜃 /𝜆 ≤ 0.4 Å−1.  This is 

likely due to differences in the valence density distributions between the OL and EAL 

wavefunctions.  However, on a relative scale, these differences are very small: below 1% for 

the maximum and 0.2% for the mean ∆𝑓% values.  The RRG data agree with our values very 

well, while DT study shows slightly larger overall deviations.  The unusually large mean and 

maximum percentile differences in the DT study at high sin 𝜃 /𝜆 (Figures 8a and 9a) are due 

to a limited precision (three decimal digits) that significantly affects the boron (Z=5) scattering 

factor values. Perhaps, in addition to He, Li and Be, we should have excluded from these graphs 

the boron data as well.  Aside from the issues with boron at high sin 𝜃 /𝜆, the mean ∆𝑓% is well 

below 0.2% at all sin 𝜃 /𝜆 values, while the maximum ∆𝑓% values never exceed 2% and for 

most sin 𝜃 /𝜆 grid points are within 1%.   

   

2.4.1.2 K (Z=19) ‒ Rn (Z=86) / Cf (Z=98) 

When calculating the mean ∆𝑓 and ∆𝑓% values at a given sin 𝜃 /𝜆 grid point, the same group 

of atoms must be selected.  However, the DT/CW data extend to Cf (Z=98), RRG data – to U 

(Z=92), and the SCM atom coverage terminates at Rn (Z=86).  As such, while the graphs of ∆𝑓 

and ∆𝑓% as a function of the atomic number Z (Figures 2b, 3b, 4b and 5b) extend to Cf (Z=98) 

(XRSFs for all atoms were calculated for the same sin 𝜃 /𝜆 points, so the averaging of ∆𝑓 and 
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∆𝑓% over sin 𝜃 /𝜆 values for each atom is not an issue), for the graphs that show the same 

parameters plotted as a function of sin 𝜃 /𝜆 where the averaging over the same atoms is desired 

(Figures 7b and 9b), we used all atoms between K (Z=19) and Rn (Z=86) with the exception of 

Tc (Z=43) and Pm (Z=61) as the values for those species were not given in the RRG study.  

The Wang et al. (1996) data do not extend beyond Ar (Z=18) and thus were not included in any 

of these graphs.  The individual plots of ∆𝑓 as a function of sin 𝜃 /𝜆 for this group of atoms 

are given in Figures S1-19 – S1-98.  

 As seen in Figures 2b and 3b, the maximum and mean differences ∆𝑓 for these atoms 

are significantly higher than those for the lighter elements.  Both graphs show that the 

deviations in general increase with the atomic number Z.  The largest maximum ∆𝑓 differences 

not shown in Figure 2b (which was done in order to resolve the fine structure of the plot) 

include -1.34, -0.62 and -0.44 electrons from the SCM study for Gd (Z=64), Ce (Z=58), and Bi 

(Z=83), respectively, and +0.33, +0.28 and +0.26 electrons from the CW work for Ho (Z=67), 

Cf (Z=98) and Bk (Z=97), respectively.  The large discrepancies in the SCM study are observed 

at sin 𝜃 /𝜆 ≤ 2.5 Å−1 for Gd (Figure S1-64), at sin 𝜃 /𝜆 < 5 Å−1 for Bi (Figure S1-83), and 

below 0.6 Å-1 for Ce (Figure S1-58).  The issues in the SCM study with Gd may be related to 

the numerical integration as the scattering factor evaluated at sin 𝜃 /𝜆 = 0 is 63.99997 instead 

of the expected exact value of 64.  However, it does not explain the shape of the ∆𝑓 vs sin 𝜃 /𝜆 

curve shown in Figure S1-64.  The largest deviations in the CW work, occur below 0.5 Å-1 for 

Ho (Figure S1-67), and below 0.3 Å-1 and above 2 Å-1 for Bk (Figure S1-97) and Cf (Figure 

S1-98).  The large discrepancies in the CW data at high sin 𝜃 /𝜆 (> 2 Å−1) that we observe for 

Am, Cm, Bk and Cf (Figures S1-95 – S1-98) are likely due to issues with extrapolations of 

XRSFs (Fox, O’Keefe & Tabbernor, 1989) because for all these (and other heavy atoms, such 

Fr, Ra, Ac, Np and Pu) there is an abrupt and inconsistent increase in ∆𝑓 above 2 Å-1 (see also 

Figures 10 and 11). 
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In general, Figures 2b and 3b show a very good agreement for many atoms between our 

results and those from the other three studies.  However, it is surprising to see how the SCM 

data show the smallest ∆𝑓 deviations for some atoms and the largest ∆𝑓 deviations for others.  

A similar trend is observed for the DT/CW data but without the extremes.  The RRG results 

display the most consistent behaviour: the mean ∆𝑓 deviations are never too low and never too 

high  

In terms of the percentile deviations ∆𝑓% plotted as a function of Z (Figures 4b and 5b), 

the largest maximum ∆𝑓% deviations are found in the SCM study for Gd (-4%), Ce (-1.3%), 

and Bi (-1.2%).  It is not unexpected because the very same species showed the largest ∆𝑓 

deviations.  For the CW, study there is a surprising maximum ∆𝑓% value of 2.1% for Nb (Z=41), 

a number of ∆𝑓% values between -1.1 and -1.17% for a group of atoms between Tb and Hf (Z 

= 65 – 72), and 1 < ∆𝑓% < 3% for the atoms with Z > 94 (Am, Cm, Bk and Cf).  As mentioned 

below, the RRG data show the most consistent behaviour as the maximum ∆𝑓% values almost 

never exceed 0.5%: the only three exceptions are Ca, Sc and Ti (Z = 20 – 22) in which the 

maximum ∆𝑓% values are still under 0.6%.   

The graph of mean ∆𝑓% plotted as a function of Z (Figure 5b) shows a trend that was 

already seen in Figure 3b.  The mean ∆𝑓% in the RRG study is consistently between 0.03% and 

0.06%.  The SCM data display the lowest ∆𝑓% values of below 0.01% for some atoms and the 

highest ∆𝑓% for others.  The DT ∆𝑓% quantities are consistently below those from the RRG 

study but never go as low as the SCM ∆𝑓% values.  The mean ∆𝑓% discrepancies for the CW 

study for most atoms are above those from the RRG work.   

The maximum and mean ∆𝑓 are ∆𝑓% quantities are plotted as a function of sin 𝜃 /𝜆 in 

Figures 6b, 7b, 8b and 9b.  As mentioned above, the mean ∆𝑓 was calculated by averaging over 

all atoms between K (Z=19) and Rn (Z=86) excluding Tc (Z=43) and Pm (Z=61) as the data 
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for these atoms were not calculated in the RRG study.  The largest maximum and mean ∆𝑓 

deviations are observed in the SCM study below approximately 1 Å-1 (Figures 6b and 7b), and 

the largest ∆𝑓 deviations are observed for Gd.  The DT/CW (for consistency, we had no choice 

but to combine the data from these two studies as they are mutually exclusive) and RRG 

maximum and mean ∆𝑓  values are very similar to each other and significantly smaller at 

sin 𝜃 /𝜆 < 0.8 Å−1  than those from the SCM study.  However, at sin 𝜃 /𝜆 > 2.0 Å−1  the 

maximum and mean ∆𝑓  deviations from the SCM work become comparable to and even 

smaller than those for the DT/CW and RRG studies. 

The highest ∆𝑓% deviations (Figure 8b) are observed for the SCM below 2.5 Å-1 and 

may reach up to 3.5% between 0.4 and 0.8 Å-1 in Gd.  The largest DT/CW ∆𝑓% values of around 

2% are found at 2.5 Å-1 for Ho and at 4 Å-1 for Nb.  The largest maximum ∆𝑓% deviations for 

the RRG study are always relatively small, below 0.6%.  The situation is somewhat different 

for the mean ∆𝑓% deviations (Figure 9b). The RRG mean ∆𝑓% deviations are small (<0.3%) 

and for sin 𝜃 /𝜆 ≤ 3.0 Å−1 are always below 0.1%.  However, while below 1 Å-1 the mean 

DT/CW and RRG ∆𝑓% deviations are consistently lower than those from the SCM study, at 

sin 𝜃 /𝜆 ≥ 2.5 Å−1 the situation is reversed, i.e. the SCM ∆𝑓% deviations become the lowest.  

Indeed, Figure 9b clearly shows that the mean ∆𝑓% deviations above 2 Å-1 increase in the 

DT/CW and RRG studies but decrease in the SCM work.  It also is somewhat troubling to see 

an unusually high mean ∆𝑓% of 0.27% at 2.5 Å-1 in the DT/CW data and 0.24% at 5 Å-1 in the 

RRG values.  The former issue has been traced to relatively large deviations at 2.5 Å-1 for a 

number of atoms in the CW data (Table 1).  These appear to be outliers as none of the other 

three studies (this work, RRG and SCM) show a similar behaviour.  The problem is likely 

related to some issues with extrapolation of XRSFs in the study by Fox, O’Keefe & Tabbernor 

(1989).  
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2.4.1.3 Fr (Z=87) ‒ Cf (Z=98) 

In Figure 10a we show both the maximum and mean ∆𝑓 deviations for the atoms between Fr 

(Z=87) and U (Z=92) plotted as a function of sin 𝜃 /𝜆, while Figure 10b shows the maximum 

and mean ∆𝑓% quantities for the same group of atoms.  Because the SCM data terminate at Rn 

(Z=86), only the DT/CW and RRG values are included.  Surprisingly, for these atoms the 

maximum and mean ∆𝑓 deviations are very similar in magnitude.  At 0.2 ≤ 𝑠 ≤ 3.5 Å−1, the 

mean ∆𝑓 deviations in the DT/CW study are consistently lower than 0.01 electrons and below 

those from the RRG work, while at the other sin 𝜃 /𝜆 grid points they are between 0.01 and 

0.02 electrons and essentially the same as in the RRG data.  The maximum ∆𝑓 deviations may 

reach approximately 0.04 electrons at sin 𝜃 /𝜆 < 0.3 Å−1 for both studies (almost exclusively, 

for U), but there is an expected increase of the maximum ∆𝑓 in the DT/CW data to 0.056 

electrons for Ac at 5 Å-1.  The latter is likely to an extrapolation issue in Fox, O’Keefe & 

Tabbernor (1989): the reported value is 5.933 electrons while the numbers from this and RRG 

studies are 5.989 and 6.000 electrons, respectively (Table 1).  

 In terms of the maximum and mean percentile deviations (∆𝑓%) (Figure 10b), the 

values for both the DT/CW and RRG studies remain below 0.05% up to approximately 2.5 Å-

1, beyond which the agreement starts to deteriorate.  The mean ∆𝑓% deviations increase steadily 

up to 0.2% at 5 Å-1 but then drop to below 0.06% at 6 Å-1.  The maximum ∆𝑓% deviation in the 

DT/CW study reaches 0.94% at 5 Å-1 for Ac (which is likely due to an extrapolation issue 

discussed above), while that in the RRG work maxes out at -0.22% for Th, also at 5 Å-1.   

 Finally, in Figure 11 we present results of the same analysis for the elements with Z = 

93 – 98 (Np, Pu, Am, Cm, Bk and Cf) but this time using only the CW scattering factors with 

the Fox, O’Keefe & Tabbernor (1989) extrapolations above 2 Å-1 (the RRG and DT data 

terminate at U).  Not unexpectedly, the largest maximum ∆𝑓 deviations are observed for Cf 

(the heaviest element in the group) and reach 0.28 electrons at 0.15 Å-1 and -0.22 electrons at 
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3 and 3.5 Å-1 (Figure 11a).  It is interesting to note how the agreement between our values and 

CW data consistently improves between 0.4 and 2 Å-1 but immediately starts to deteriorate in 

the sin 𝜃 /𝜆 region of the extrapolated values (Fox, O’Keefe & Tabbernor, 1989).  

The maximum and mean percentile deviations (∆𝑓%) (Figure 11b), stay more or less 

constant and well below 0.5% up to sin 𝜃 /𝜆 = 2 Å−1 but then both start to increase abruptly 

and randomly, which is very likely due to extrapolation issues.  The same effect is clearly 

observed in Figures S1-93 – S1-98. 

 Overall, we are very pleased to see the extent to which our new XRSFs compare with 

the previously determined values (Doyle & Turner, 1968; Cromer & Waber, 1968; Rez, Rez & 

Grant, 1994; Wang et al., 1996; Su & Coppens, 1997 / Macchi & Coppens, 2001; Maslen, Fox 

& O’Keefe, 2006).  The differences that we observe are likely due to different approaches such 

as a single-configuration vs multiconfiguration Dirac-Hartree-Fock, OL/EOL/AL/EAL 

schemes, nuclear models and the extent of the Breit and QED corrections, as well as precision 

of the integration of X-ray scattering factors.  Regarding the latter, the B-spline representation 

of one-electron orbitals used in DBSR_HF (Zatsarinny & Froese Fischer, 2016) allows for a 

very precise radial integration of XRSFs which may not be the case in all the earlier studies, 

especially when extrapolations were involved.   

A summary of possible typos and inconsistencies identified in Maslen, Fox & O’Keefe 

(2006) are listed in Table 1.  We note that because for this analysis we employed the Doyle & 

Turner (1968) sin 𝜃 /𝜆 grid, which has fewer points than that used in Maslen, Fox & O’Keefe 

(2006), the list may not be complete.  However, Table S3 should contain the correct X-ray 

scattering factors for all the sin 𝜃 /𝜆 values listed in Maslen, Fox & O’Keefe (2006). 

2.4.2 Analytical interpolation in the 𝟎 ≤ 𝐬𝐢𝐧 𝛉 /𝛌 ≤ 𝟐 Å−𝟏 range 

2.4.2.1 Four-Gaussian expansion 

Results of the fitting of the calculated X-ray scattering factors in the 0 ≤ 𝑠 ≤ 2 Å−1 range 

using equation (39) with 𝑚 = 4  are given in Tables S4 and S5.  The latter includes the 
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comparison of our results in terms of the fitted parameters and the quality of the fit with the 

benchmark values of Doyle & Turner (1968), Cromer & Waber (1968), and Maslen, Fox & 

O’Keefe (2006).  We note that in both tables, our statistics of the fit are reported with one extra 

digit as compared to the previously published values.   

Because the starting parameters for fitting in our work were taken from the previous 

studies (Doyle & Turner, 1968; Cromer & Waber, 1968; Maslen, Fox & O’Keefe, 2006), our 

optimized values are not too different from the original data.  The comparison of the two sets 

of fits for atoms with Z = 2 – 98 in terms of the differences in the maximum and mean errors 

of the interpolating function is presented in Table S5 and conveniently summarized in Figure 

12a.  The negative quantities identify a better fit achieved in this work.  Note that for Es (Z=99) 

– Og (Z=118), we started with the coefficients for Cf (Z=98) from Cromer & Waber (1968) 

since it seems that no interpolation coefficients are available in literature for these atoms, which 

is why they are not included in the comparison presented in Table S5 and Figure 12a.   

The analysis of Figure 12a shows that while the maximum error of the interpolating 

function (●) in our study decreases for some atoms, it increases for some others.  Especially 

disturbing are the noticeable increases in the maximum error for Tl (Z=81) and Pb (Z=82) by 

0.01 and 0.0075 electrons, respectively.  An exhaustive search in the parameter space for a 

lower minimum of the error function for these two atoms was not successful.  It seems that the 

despite using a more sophisticated fitting approach, the differences in the numerical values of 

XRSFs relative to the works of Doyle & Turner (1968) and Cromer & Waber (1968) cause 

decline in the quality of the fit in our study for a number of atoms.   

 A similar behaviour is observed for the mean error (Figure 12a, ) though the increases 

for Tl and Pb are not as drastic – the mean error for these atoms increases by 0.0025 and 0.0019 

electrons, respectively.  The statistical parameter 𝐸 defined by Doyle & Turner (1968) as the 
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“root mean square value of the deviation 𝛿𝑖 between theoretical and fitted 𝑓-values expressed 

as a percentage of 𝑓(0)”: 

𝐸 =
100

𝑓(0)
[
∑ 𝛿𝑖

2𝑁𝑓

𝑖=1

𝑁𝑓
]

1/2

 (43) 

where 𝑁𝑓 is the number of the scattering factors that is equal to 201 in Doyle & Turner (1968) 

and this work, shows that indeed the quality of the fit for Pb (Z=82) is slightly worse in this 

work (𝐸 =  0.0324) than in Doyle & Turner (1968) (𝐸 = 0.0296).  A similar situation is 

observed for Bi (Z=83) for which 𝐸 in our study (0.0289) is higher than that (0.0279) in Doyle 

& Turner (1968).  However, for some other heavy atoms, such as Hg (Z=80), Rn (Z=86) and 

U (Z=92), the parameter 𝐸 is essentially identical in the two studies: 0.0247 and 0.0247 for Hg, 

0.0166 and 0.0167 for Rn, and 0.0139 and 0.0143 for U for our work and the Doyle & Turner 

(1968) study, respectively.  It is interesting to note that for Ho (Z=67) the mean error in our 

work is higher by 0.0013 while the maximum error is lower by 0.0015 electrons. 

 In summary, out of a total of 194 maximum and mean errors, in 104 instances the error 

is lower in in our study.  The mean negative difference (a better fit in this work), is -0.0005 

electrons while the mean positive difference is +0.0007 electrons.  As mentioned above, the 

fact that we do not always get a better fit despite using more advanced computing methods is 

attributed to the differences in the calculated scattering factors relative to the previous studies. 

2.4.2.2 Five-Gaussian expansion 

 Extending the expansion (39) to 𝑚 = 5 by including an additional Gaussian function, 

𝑎5 exp(−𝑏5 sin 𝜃2 /𝜆2) , significantly lowers the maximum and mean errors of the 

interpolating function for an overwhelming majority of the atoms (Tables S6 and S7, Figure 

12b).  For this fit, the starting parameters were taken from our optimized parameters with 𝑚 =

4 (Table S4) and thus the comparison includes all atoms with Z = 2 ‒ 118.  We note that in the 

fitting procedure for 𝑚 = 5, only those optimization methods that allow boundary constraints 
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on the variables (DMNxB, NL2SOL and NL2SO; see Appendix A) were used.  The optimized 

parameters were constrained between the values of ‒300 and +300 and the number of 

optimization iterations (steps) was limited to 1,000.  A series of trial unconstrained 

optimization runs with unlimited number of iterations did not lead to a meaningful reduction 

in the error functions but resulted in a few parameters exceeding a magnitude of 500 which 

may introduce numerical issues when such a parameter is obtained for an exponential 

coefficient 𝑏𝑖  in expansion (39).  As such, the interpolating coefficients listed in Table S6 

represent a compromise between accuracy and precision. 

For lighter elements (Z is approximately below 22), the maximum error (Figure 12b, ●) 

is reduced only slightly (except for several atoms such as Mg, Al, Ar, Cu – Se for which the 

improvement is noticeable) while the mean error () reduction is within 0.1 electrons.  This is 

not unexpected because for lighter elements even a four-Gaussian fit is able to fairly accurately 

reproduce the dependence of XRSF on sin 𝜃 /𝜆.   

For heavier elements, the maximum error is reduced (often, significantly) for most 

atoms.  Surprisingly, for K, Mn, Pd and Ce the maximum error is slightly increased while the 

mean error is somewhat reduced.  In fact, for many atoms with Z < 60 there is a noticeable 

improvement in the maximum error while the mean error is reduced only marginally.  At this 

time, we do not have a reasonable explanation for these observations.  We did try to explore 

the parameter space for several of these atoms by starting with a number of different initial 

guesses but were unable to find a lower minimum for the error function.   

The most dramatic improvement in both the mean and maximum errors of the 

interpolating function is observed for heavy elements with Z > 60.  For example, for Tl (Z=81), 

the maximum and mean errors are reduced from 0.069 to 0.013 and from 0.024 to 0.004 

electrons, respectively.  The same is true for Pb (Z=82), for which the maximum and mean 

errors decrease from 0.068 to 0.012, and from 0.023 to 0.004 electrons, respectively.  
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Improvements of a similar magnitude are also observed for Bi (Z=83).  For Cs (Z=55), Ba 

(Z=56), Fr (Z=87) and Ra (Z=88) the decreases in the errors are smaller but still quite noticeable.  

Recall that all these atoms (especially Tl and Pb) showed an increase in the maximum error in 

our 𝑚 = 4 fit relative to the literature data (Doyle & Turner, 1968; Cromer & Waber, 1968). 

In general, we think that the significant improvement in accuracy of the interpolating 

function when increasing the number of the terms in the expansion (39) from four (𝑚 = 4) to 

five (𝑚 = 5), especially in terms of the mean error, warrants the presence of an extra Gaussian 

function as compared to the literature data (Doyle & Turner, 1968; Cromer & Waber, 1968; 

Maslen, Fox & O’Keefe, 2006).  The accuracy of the analytical interpolations with 𝑚 = 5 in 

expansion (39) achieved in this work should be more than adequate for even precise X-ray 

structural work.  We also note that the new parametrizations using expansion (39) with 𝑚 = 4 

and 𝑚 = 5 are based on the updated relativistic wavefunctions of a higher quality than those 

used in some of the previous studies.  Finally, using the developed SF code and the calculated 

DBSR_HF wavefunctions, it is straightforward to extend the expansion (39) to 𝑚 ≥ 6 if more 

accurate interpolations in the 0 ≤ 𝑠 ≤ 2 Å−1 interval are desired.  

 

2.4.3 Analytical interpolation in the 𝟐 ≤ 𝐬𝐢𝐧 𝜽 /𝝀 ≤ 𝟔 Å−𝟏 range 

The optimized coefficients for the analytical interpolation of the X-ray scattering factors in the 

2 ≤ 𝑠 ≤ 6 Å−1 range using expansion (40) with 𝑛 = 3 and 𝑛 = 4 are given in Tables S8 and 

S10, respectively.  The comparison with the literature data (Fox, O’Keefe & Tabbernor, 1989; 

Maslen, Fox & O’Keefe, 2006) for 𝑛 = 3 is presented in Tables S9 and Figure 13a in terms of 

the correlation coefficient (C) which we define as 

𝐶 = √1 −
∑ (𝑓𝑖

target
− 𝑓𝑖

fit)
2𝑁𝑓

𝑖=1

∑ (𝑓𝑖
target

− 𝑓̅target)
2𝑁𝑓

𝑖=1

 (44) 
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𝑓̅target =
1

𝑁𝑓
∑ 𝑓𝑖

target

𝑁𝑓

𝑖=1

 (45) 

where 𝑓target  and 𝑓fit  are the X-ray scattering factors obtained from the DBSR_HF 

wavefunction and the analytical interpolation, respectively.  The parameter 𝑁𝑓 is the number 

of XRSFs used in the fit, which for the 2 ≤ 𝑠 ≤ 6 Å−1 range was equal to 41 (sin 𝜃 /𝜆 step of 

0.1 Å−1).  However, Table S9 also lists the maximum and mean errors of the interpolating 

function (40) with 𝑛 = 3 obtained in this work.  The changes in these quantities upon extending 

the expansion (40) from 𝑛 = 3 to 𝑛 = 4 are illustrated in Figure 14, while the change in the 

correlation coefficient C is shown in Figure 13b.   

2.4.3.1 Four-term expansion 

The analysis of Table S9 and Figure 13a in which we plot the differences in the correlation 

coefficient, C (a positive value represents higher C and thus a better fit in our work), shows 

that for 54 atoms our fit is somewhat better, for 2 atoms it is essentially the same, and for 41 

atoms it is slightly worse than that in Fox, O’Keefe & Tabbernor (1989) and Maslen, Fox & 

O’Keefe (2006).  The maximum positive improvement for C (C) is 0.0011 for Cf (Z=98), 

while the maximum negative C of ‒0.0003 is observed for Cr (Z=24).  The mean reduction 

of C is ‒0.0001 which is not significant because of the rounding issues related to the fact that 

the benchmark values for C in Fox, O’Keefe & Tabbernor (1989) and Maslen, Fox & O’Keefe 

(2006) have been reported to only four decimal digits.  The mean correlation coefficient 

improvement (positive C) of 0.0003 is slightly more substantial than the decrease in C.   

2.4.3.2 Five-term expansion 

When extending the expansion (40) to five terms (𝑛 = 4) the improvement in the quality of the 

fit is significant as shown in Tables S10 and Figures 13b and 14.  Note that because we compare 

the results of fits with 𝑛 = 4 with our own data for 𝑛 = 3, we are able to analyse not only the 
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differences in the correlation coefficient C (Figure 13b), but also the changes in the maximum 

and mean errors of the interpolating function (Figure 14).   

Extending expansion (40) to 𝑛 = 4, improves the correlation coefficient C for 114 out 

of 117 atoms (for the remaining three atoms, C=0) with the mean improvement (positive C) 

of 0.0003.  The maximum improvement of 0.00097 is observed for Te (Z=52) in which the 

correlation coefficient increases from 0.998978 for 𝑛 = 3 to 0.999947 for 𝑛 = 4.  Figure 13b 

also shows a very peculiar periodic trend: the most significant improvements are observed for 

the atoms with Z around 21, 33, 52, 73, 99, forming five well-defined maxima around these 

atoms, while in between the maxima (Z < 15, Z  27, 41, 60, 82 and 110) there is very little to 

no improvement.   

In Figure 14 we show the maximum (Figure 14a) and mean (Figure 14b) errors of the 

interpolating function (40) with 𝑛 = 3 (●) and 𝑛 = 4 (○), respectively (see also Tables S9 and 

S11).  For both expansions the errors increase with the atomic number Z but not linearly – there 

is a “sinusoidal” trend similar to that observed for C in Figure 13b.  It seems that the form of 

the expansion (40) works well for certain atoms (with Z around 20, 32, 51, 70 and 95 and 118) 

and increasing the number of terms from three to four significantly improves the quality of the 

fit, which is clearly reflected in all the statistical parameters.  For example, the maximum errors 

decrease by as much as 0.2 – 0.3 electrons for the elements with 90 ≤ 𝑍 ≤ 105 (Th – Db).  

Even for lighter elements such as for example, those between Ag and Cs (Z = 47 – 55) the 

maximum error is reduced by 0.10 – 0.14 electrons.  However, for the atoms with Z around 25, 

40, 60, 82 and 110, the form of the expansion (40) does not seem to be ideal and thus increasing 

the level of the expansion does not lead to a better fit.   

 Because expansion (40) is very simple and computationally not expensive, the 

presented parametrization with 𝑛 = 4 (Table S10) is clearly a preferred option over that for 
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𝑛 = 3 (Table S8) as for the overwhelming majority of the atoms it provides a more accurate 

interpolation (higher correlation coefficient, and lower maximum and mean errors).  If one 

desires even higher accuracy of the interpolating functions between 2 and 6 Å-1, the SF code 

can be used to model the extended function (40) with 𝑛 ≥ 4 or function (39) with 𝑛 ≥ 5.   

2.5 Summary and Concluding remarks 
An updated set of the X-ray scattering factors (XRSFs) for neutral atoms (elements) with Z = 

2 (He) – 118 (Og) have been determined from the fully relativistic Dirac-Hartree-Fock 

wavefunctions calculated in the recently developed computer program DBSR_HF (Zatsarinny 

& Froese Fischer, 2016) in which the radial components of the relativistic orbitals are 

represented via a B-spline basis.  The non-relativistic electron ground state configurations of 

the atoms (Martin, 2021; Guerra et al., 2017; WebElements, 2022) were automatically 

expanded in DBSR_HF into suitable sets of relativistic configuration state function (CSFs) 

with appropriate statistical weights which makes the used approach similar to the average level 

(AL) and extended average level (EAL) formalisms originally developed by Grant, Mayers & 

Pyper (1976) and available in GRASP (Grant et al., 1980; Dyall et al., 1989).  In comparison 

to the relativistic wavefunctions of Coulthard (1967) and Mann (1968) that provided a source 

for the currently recommended XRSFs (Doyle & Turner, 1968; Cromer & Waber, 1968; Fox, 

O’Keefe & Tabbernor, 1989; Maslen, Fox & O’Keefe , 2006) and are limited to Z = 98 (Cf), 

the DBSR_HF calculations were performed for all elements with Z = 2 – 118, used a dense B-

spline radial grid for the one electron orbital wavefunctions, included the Breit interaction 

correction, and employed the Fermi distribution function for the description of a nuclear charge 

density.  A detailed comparison of the generated relativistic wavefunctions in terms of energies, 

and local and integrated charge density properties with those from a number of previous studies 

(Rez, Rez & Grant, 1994; Visscher & Dyall, 1997; Guerra et al., 2017; Tatewaki, Yamamoto 

& Hatano, 2017) confirmed the quality of the calculations. 
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The X-ray scattering factors were generated in a newly developed Fortran program SF 

interfaced to DBSR_HF (Zatsarinny & Froese Fischer, 2016).  A combination of the B-spline 

basis and a fine radial grid employed in the calculations allowed for an integration of XRSFs 

to a precision of at least eight decimal digits though in the final set of tables we have rounded 

off the numerical values to five decimals. 

The comparison of the redetermined X-ray scattering factors with those listed in the 2006 

edition of volume C of International Tables for Crystallography (Maslen, Fox & O’Keefe, 

2006) revealed a number of possible typos and inconsistencies in the published data that we 

have summarized in Table 1 of this manuscript.  However, because the analysis was based on 

a “truncated” sin 𝜃 /𝜆 grid of Doyle & Turner (1968), the list may not be complete.  That said, 

the new X-ray scattering factors included in Table S3 cover all sin 𝜃 /𝜆 values listed in Maslen, 

Fox & O’Keefe (2006).   

The X-ray scattering factors obtained in this study show a very reasonable agreement with 

those determined by Doyle & Turner (1968) using relativistic wavefunctions of Coulthard 

(1967), and Rez, Rez & Grant (1994) who used the multiconfiguration Dirac-Hartree-Fock in 

the extended average level (EAL) mode (Grant et al., 1980; Dyall et al., 1989).  When 

compared with the values reported by Wang, Smith, Bunge & Jáiregui (1996) (that 

unfortunately are limited to He – Ar) and Su & Coppens (1997) / Macchi & Coppens (2001) 

(that terminate at Z = 86, Rn), the agreement is excellent for the majority of atoms at high 

sin 𝜃 /𝜆  values (above ~0.8 Å-1), but for atoms located in the middle of a block of the Periodic 

Table and at sin 𝜃 /𝜆  below 0.8 Å-1, the discrepancies may be quite significant (which is 

especially evident for Ce, Gd, and Tl).  It is interesting to note that the agreement between our 

scattering factors and those from Rez, Rez & Grant (1994) show the opposite trend: the 

agreement is usually better for atoms in the middle of a block and deteriorates toward the 

periphery.  The agreement with the data of Maslen, Fox & O’Keefe (2006) worsens for the 
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atoms for which XRSFs were derived by Cromer & Waber (1968) using the wavefunctions of 

Mann (1968).  It is a little strange as the Mann (1968) calculations included a more advanced 

nuclear charge density model than that used in the Coulthard (1967) wavefunctions of Doyle 

& Turner (1968).  The disagreement increases at sin 𝜃 /𝜆 > 2 Å−1  because the original 

Cromer & Waber (1968) scattering factors terminate at 2 Å-1 and the values above 2 Å-1 had to 

be obtained by Fox, O’Keefe & Tabbernor (1989) via extrapolation.  In general, whenever 

significant differences are observed among the X-ray scattering factors from Doyle & Turner 

(1968) / Cromer & Waber (1968), Rez, Rez & Grant (1994), Wang, Smith, Bunge & Jáiregui 

(1996) and/or Su & Coppens (1997) / Macchi & Coppens (2001), our values “fall in between” 

which may be an indication that the derived values represent the best compromise among all 

the previous studies.   

 Following the works of Doyle & Turner (1968), Cromer & Waber (1968) and Maslen, 

Fox & O'Keefe (2006) we have applied a four-Gaussian expansion, equation (39) (Vand, Eiland 

& Pepinsky, 1957) with 𝑚 = 4, to generate the interpolating functions for the atomic scattering 

factors in the 0 ≤ sin 𝜃 /𝜆 ≤ 2  Å−1  range.  Despite using a more sophisticated non-linear 

optimization approach and significantly more powerful computer hardware, our four-Gaussian 

interpolations are, on average, of the same accuracy as the benchmark data.  A noticeable 

increase in the maximum error of the interpolating function for several atoms (Tl, Pb, Bi, Cs, 

and Ba) relative to the benchmark numbers seems to be a consequence of the differences in the 

newly generated XRSFs relative to the published values.  

 Extending the expansion (39) to five Gaussian functions, 𝑚 = 5, leads to a significant 

decrease in the maximum and mean errors of the interpolating functions for most of the atoms 

when compared to a four-Gaussian expansion.  The improvements are especially pronounced 

for heavy elements with Z > 60.  Surprisingly, for several atoms (K, Mn, Pd and Ce) the 



56 
 

 
 

decrease in the mean error leads to a tiny (below 0.005 electrons) increase in the maximum 

error.   

 For the 2 ≤ sin 𝜃 /𝜆 ≤ 6  Å−1  range, the atomic X-ray scattering factors were 

approximated using the function (40) with four terms (𝑛 = 3) as proposed by Fox, O’Keefe & 

Tabbernor (1989) and Maslen, Fox & O’Keefe (2006).  The quality of the analytical 

approximation was estimated based on the magnitudes of the correlation coefficient (C) as well 

as the maximum and minimum errors of the interpolating function.  A comparison with the 

previous studies in terms of changes in the correlation coefficient C (unfortunately, the two 

types of errors were not reported in Fox, O’Keefe & Tabbernor (1989) and Maslen, Fox & 

O’Keefe (2006)) showed a noticeable improvement in the correlation coefficient for 54 

elements (mean C is 0.0003), for two atoms the fit is essentially of the same quality, and for 

41 atoms there is a slight reduction in the correlation coefficient (mean C = −0.0001).  

 Increasing the number of terms in the expansion (40) to five (𝑛 = 4) results in a 

significant improvement of the correlation coefficient for the overwhelming majority of the 

atoms, including C of 0.0009 – 0.0010 for Sc, Sb, Te, I and Xe.  As expected, no improvement 

in C is observed for lighter elements (Z < 15) as for these species even the expansion with 𝑛 =

3 is already quite accurate.  A somewhat surprising result is a “sinusoidal” trend observed in 

the plot of C as a function of the atomic number Z (Figure 13b), which shows virtually no 

improvement upon extension of the expansion (40) from 𝑛 = 3 to 𝑛 = 4 for atoms with Z  27 

(Co), 41 (Nb), 60 (Nd), 82 (Pb) and 110 (Ds).  The analysis of the improvements in the 

maximum and mean interpolation errors (Figure 14) confirms a significant advantage of the 

five-term interpolating function (𝑛 = 4) over the four-term expansion (𝑛 = 3) for all atoms 

except the ones listed above, for which no improvement in the correlation coefficient was 

achieved.  It is interesting to note how for these atoms (Z  27, 41, 60, 82 and 110) the four-
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term expansion (𝑛 = 3) gives the lowest maximum and mean errors relative to other heavy 

atoms, while it is the opposite in the five-term interpolation (𝑛 = 4).  At this time, we do not 

have a plausible explanation for this behaviour.  

 For those who require even higher accuracy of the interpolating functions, the SF code 

can be easily used to extend the function (39) to 𝑚 ≥ 6 in the 0 ≤ sin 𝜃 /𝜆 ≤ 2  Å−1 interval, 

while for the 2 ≤ sin 𝜃 /𝜆 ≤ 6  Å−1 range, one can either extend the expansion (40) to 𝑛 ≥ 5 

or use the function (39) with 𝑚 ≥ 6.   

 In summary, we believe that the newly derived relativistic Dirac-Hartree-Fock X-ray 

scattering factors and the accompanied analytical interpolations using the well-established 

expansions may be useful in the X-ray diffraction studies.  For users who require a higher 

accuracy, we also present extended expansions that require a very minor modification of the 

existing crystallographic X-ray diffraction software. 

 For the second part of the study, we plan to use the described approach to re-determine 

the X-ray scattering factors for all chemically significant ions.  Unlike the currently used 

XRSFs that for different ions were evaluated at different levels of theory, including the non-

relativistic Hartree-Fock and relativistic Dirac-Slater techniques (Maslen, Fox & O’Keefe, 

2006), our values will be based on the fully relativistic Dirac-Hartree-Fock method with the 

inclusion of both the Breit interaction correction and the Fermi distribution function for the 

description of the nuclear charge density (Zatsarinny & Froese Fischer, 2016).   
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APPENDIX A: Non-linear least squares fitting protocol in the program SF 
The fitting procedure in our software SF (Figure 1) uses a straightforward “brute-force” 

approach.  The program includes all the following non-linear least squares minimization 

options: 

1) The Levenberg-Marquardt algorithm is provided via subroutines LMDER and LMDIF 

adapted from the package MINPACK (Moré, Garbow & Hillstrom, 1981; Moré et al., 

1984; Moré, Garbow & Hillstrom, 1999).  The former uses the analytical Jacobian 

matrix while in the latter the Jacobian is calculated via a forward-difference 

approximation.   

2) An unconstrained optimization package UNCMIN (Dennis & Schnabel, 1996; 

Schnabel, Koontz & Weiss, 1982) can make use of both the analytical gradient and 

analytical Hessian matrix of the error function though from our experience, it was more 

beneficial to use the code’s functionality to construct the Hessian matrix via the secant 

update method (Dennis & Schnabel, 1996; Schnabel, Koontz & Weiss, 1982).   

3) The adaptive least-squares codes NL2SOL and NL2SNO (Dennis, Gay & Welsch, 

1981a, Dennis, Gay & Welsch, 1981b; Gay, 1983) implement a variation on Newton’s 

method “in which part of the Hessian matrix is computed exactly and part is 

approximated by a secant (quasi-Newton) updating method”.  The NL2SOL requires 

an analytical Jacobian while NL2SNO computes the Jacobian using a finite difference 

approximation.  A significant advantage of these two codes is the ability to improve 

convergence from poor starting guesses using a “model/trust-region technique along 

with an adaptive choice of the model Hessian” (Dennis, Gay & Welsch, 1981b).   

4) The family of three advanced non-linear optimizers, DMNFB, DMNGB and DMNHB, 

were taken from the package PORT (Fox, 1984).  These are modified versions of the 

NL2SOL and NL2SNO codes (Dennis, Gay & Welsch, 1981a, Dennis, Gay & Welsch, 

1981b; Gay, 1983) that can also apply a simple upper and lower bound constraints on 
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each variable (Gay, 1981).  The subroutine DMNFB needs only the minimization 

function values as the gradient is calculated via finite-differences (forward and central) 

and the secant approximation is used for construction of the Hessian matrix.  DMNGB 

is similar to DMNFB but uses an analytical gradient of the minimization function, while 

DMNHB makes use of the analytical gradient and analytical Hessian.  

5) Finally, we have also tested the conjugate gradient-based subroutine CGFAM (Gilbert 

& Nocedal, 1992), a simulated annealing program by Corana et al. (1987), and an 

updated version of the L-BFGS-B code (Morales & Nocedal, 2011), an older version 

of which was employed by Su & Coppens (1997, 1998) and Macchi & Coppens (2001), 

but neither of the codes performed for our minimization problems as well as the ones 

listed above. 

The SF program can call all these subroutines in sequence for a given optimization problem 

and will automatically select the solution that corresponds to the lowest error function.  In most 

cases, the minimizers LMDER, NL2SOL, UNCMIN and DMNHG, and DMNGB produced 

very similar error functions and optimized parameters, but DMNHB (that uses the analytical 

gradient and Hessian) achieved the best solution in the majority of the cases, with the other 

subroutines performing at about the same level and trailing behind.  

 The starting parameters for the analytical scattering factors interpolations in the two 

sin 𝜃 /𝜆 ranges (0‒2 Å-1 and 2‒6 Å-1) were taken from Maslen, Fox & O’Keefe (2006).  During 

optimization in the DMNxB and NL2Sxy families of subroutines, the parameters were 

constrained to the -300…+300 range.  When extending the expansions (39) and (40) to 𝑚 = 5 

and 𝑛 = 4, respectively, the starting values for the new parameters (for which no literature 

values are readily available - Su & Coppens (1997, 1998) and Macchi & Coppens (2001) use 

six-Gaussian expansions) were generated using the following recipe.  First, we optimized 
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parameters for the 𝑚 = 4 and 𝑛 = 3 expansions.  Second, for each new parameter, a series of 

initial values were created: 

a) for expansion (39): ±100, ±50, ±10, ±5, ±1, ±0.5, ±0.1, 

b) for expansion (40): 

±1, ±0.5, ±0.1, ±0.05, ±0.01, ±0.005, ±0.001, ±0.0005, ±0.0001. 

Third, a number of initial guesses were produced that included the already optimized 

parameters from the 𝑚 = 4 and 𝑛 = 3 expansions and all permutations of the generated values 

for the new parameters.  Thus, for the expansion (39), a total of 196  initial sets for the 

optimized parameters were created (14 × 14 : two parameters with 14  initial guesses for 

each parameter), while that number for the expansion (40) was 18 (a single new parameter 

with 18  initial guesses).  Finally, all the generated initial guesses were supplied to each of 

the five optimization subroutines (DMNHB, DMNGB, DMNFB, NL2SOL and NL2SNO) that 

allow simple bounds on the variables – the unconstrained optimizers were not used in the 

extended fits.  Initial guesses that produced an overflow in the error function were immediately 

discarded.   

While the procedure may seem computationally expensive, it takes up to an hour 

(depending on the optimization input parameters) on an AMD Ryzen 9 5950X desktop 

processor to integrate and fit scattering factors for all 117 atoms (Z = 2 – 118), including the 

𝑚 = 5 and 𝑛 = 4 expansions. 
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Appendix B: Assessment of the quality of the calculated wavefunctions 
The quality of the wavefunctions generated in DBSR_HF has been accessed by an exhaustive 

comparison with the previous studies in terms of the following properties: 

1) total electronic energies (Wang et al., 1996; Su & Coppens, 1997; Visscher & Dyall, 

1997; Tatewaki, Yamamoto & Hatano, 2017), 

2) orbital (spinor) energies and mean radii (Tatewaki, Yamamoto & Hatano, 2017), 

3) orbital (spinor) charge density maxima radii (Guerra et al., 2017), and 

4) atom mean radii and mean spherical radii (Guerra et al., 2017). 

For clarity, the comparison for entries 2) and 3) was performed separately for the core and 

valence orbitals. The expression for the mean radius of the 𝑖-th orbital (spinor) 〈𝑟𝑖〉 is 

〈𝑟𝑖〉 = ∫ 𝑟 [𝑃𝑖(𝑟)2 + 𝑄𝑖(𝑟)2 ] d𝑟

∞

0

 (46) 

where 𝑃𝑖(𝑟) and 𝑄𝑖(𝑟) are the large and the small components of the radial wavefunction of 

the 𝑖-th orbital, respectively.  These values are printed out by default in DBSR_HF and for 

debugging purposes are also recalculated in our SF code (a warning is given in SF when the 

two values disagree by more than 10−6 atomic units).  Following (Guerra et al., 2017) we 

construct the total radial electron density  

𝑟2𝜌(𝑟) = ∑ 𝑛𝑖

𝑁occ

𝑖

[𝑃𝑖(𝑟)2 + 𝑄𝑖(𝑟)2 ] (47) 

where 𝑛𝑖 is the “effective” population of the 𝑖-th orbital (spinor) and the summation proceeds 

over all 𝑁occ occupied orbitals, which is normalized as (Guerra et al., 2017) 

𝑁e = ∫ 𝑟2𝜌(𝑟) d𝑟

∞

0

 (48) 

where 𝑁e is the total number of electrons in an atom.  Then, the atomic mean radius 〈𝑟at.〉 and 

the atomic mean spherical radius √〈𝑟at.
2 〉 are calculated as in Guerra et al. (2017): 
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〈𝑟at.
(𝑝)〉 =

1

𝑁e
∫ 𝑟(𝑝) 𝑟2𝜌(𝑟) d𝑟

∞

0

 (49) 

where 𝑝 = 1 for the atomic mean radius, and 𝑝 = 2 for the atomic mean spherical radius.   

B1: Total atom energies 

The total electronic energies of atoms determined in this study are compared to those from 

Wang et al. (1996), Su & Coppens (1997), Visscher & Dyall (1997), and Tatewaki, Yamamoto 

& Hatano (2017) in Table S12 and the summary is given in Table 2.  Since different studies 

include a different number of atoms, the maximum and mean energy differences with respect 

to the values obtained in this work are examined for several groups of atoms.   

 For He (Z=2) – Ar (Z=18), the agreement between the energies obtained in this work 

are in an excellent agreement with those from Visscher & Dyall (1997) and Tatewaki, 

Yamamoto & Hatano (2017) which is not surprising as the Visscher & Dyall (1997) 

calculations employed the average level (AL) model (Grant et al., 1980; Dyall et al., 1989) and 

Tatewaki, Yamamoto & Hatano (2017) used the average-of-configuration (AOC) 

approximation (Desclaux, 1973).  That said, our energies are closer the Visscher & Dyall 

(1997) values because both calculations used the Fermi charge distribution function for a 

nuclear charge density (Johnson & Soff, 1985; Zatsarinny & Froese Fischer, 2016) while 

Tatewaki, Yamamoto & Hatano (2017) employed the uniform nuclear charge distribution 

model.  We note that Visscher & Dyall (1997) also reported the total electronic energies for 

the uniform sphere model of the nuclear charge density, the same as used by Tatewaki, 

Yamamoto & Hatano (2017), but since the Fermi model is considered to be more accurate, we 

did not use the uniform charge distribution model in our calculations.  The energies from Wang 

et al. (1996) and Su & Coppens (1997) show significant deviations from our work and from 

each other: the mean energy difference between those two studies is 4.010-2 hartrees and the 

maximum difference of 0.14 hartrees is observed for Mg (Z=12).  While the differences 
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between our work and these two studies can be explained by a different level of approximation 

used (EAL vs OL), it is not clear why the two studies that were performed at the same level 

(OL) show significant discrepancies.  In addition, except for C, N, O, and P, the energies of Su 

& Coppens (1997) are always higher (less negative) than our values, which is somewhat 

surprising as Su & Coppens (1997) performed multiconfiguration DHF calculations, and just 

like in our study, included both the Breit and vacuum polarization corrections (our energies 

also include the electrons self-polarization correction which is usually smaller in magnitude 

than the Breit correction but larger than the vacuum polarization term). 

 The discrepancies between our energies and those from Su & Coppens (1997) get much 

larger for K (Z=19) – Xe (Z=54): the mean energy difference is almost 2 hartrees and the 

maximum deviation of 5.1 hartree is found for Xe (with our value being more negative).  For 

this group of atoms, the agreement between our work and Visscher & Dyall (1997) and 

Tatewaki, Yamamoto & Hatano (2017) also starts to slightly deteriorate though the mean 

energy differences are on the order of 10-4 – 10-3 hartree, and the maximum deviation is below 

0.01 hartree, which are several orders of magnitude smaller than the differences with respect 

to the values of Su & Coppens (1997).   

 For Cs (Z=55) – Lr (Z=103), the energy differences between our work and Visscher & 

Dyall (1997) and Tatewaki, Yamamoto & Hatano (2017) increase to 0.08 and 0.7 hartrees for 

the mean and maximum values, respectively.  Surprisingly, for Bk (Z=97) and Lr (Z=103) the 

discrepancies between our work and Tatewaki, Yamamoto & Hatano (2017) are only 0.120 

and 0.042 hartree, respectively, despite the differences in the employed energy configurations 

(see Table S1 and discussion in section 2.1).  The energy difference for Lr (Z=103) between 

our work and Visscher & Dyall (1997) is about 0.15 hartree despite the differences in the 

electronic configurations employed in the calculations.  Unfortunately, Macchi & Coppens 
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(2001) who extended the Su & Coppens (1997) calculations to beyond Xe, did not report the 

total energies for neutral atoms, so no comparison with their data is possible.  

 Finally, for the heavy elements between Rf (Z=104) and Mt (Z=109) the mean and 

maximum energy differences between our work and Visscher & Dyall (1997) reach 0.6 and 

1.4 hartree (for Mt), respectively, with our energy values being consistently higher.  However, 

considering that the energies for these atoms are on the order of 4104 hartrees, the maximum 

difference of 1.4 hartree accounts for only about 0.004%.  

B2: Orbital energies 

Tables S13 and S14 include the comparison of the orbital (spinor) energies between our 

calculations and the work of Tatewaki, Yamamoto & Hatano (2017) for the core and valence 

shells, respectively.  Because in the previous study the heaviest element calculated was Lr, only 

the elements with Z = 2 – 103 are included.  As mentioned earlier, the spinor parameters from 

the Visscher & Dyall (1997) calculations were not included in the paper and instead were made 

available at “http://theochem.chem.rug.nl/~luuk/FiniteNuclei/” that is, unfortunately, no longer 

accessible.   

The average energy difference for a core orbital between the two studies calculated 

over 1334 values is about 0.2 hartree.  The largest difference of 8.591 hartree is observed for 

1s orbital of Lr (Z=103).  In general, the difference in the orbital energy increases with Z and 

decreases with the quantum numbers n and l.  For example, for No (Z=102), the energy 

difference for 1s is ~8.5 hartree but only 610-4 hartree for 6p3/2.  In fact, the energy difference 

for the outermost core orbital is on the order of 0.0005 hartree for essentially all atoms with 

two notable exceptions: Bk (Z=97) and Lr (Z=103).  These atoms show large deviations for all 

orbitals relative to all other atoms, even for the outermost 6p3/2 orbital the differences are about 

0.1 hartree.  However, it is expected considering that different electronic configurations were 

used in the two studies.  The large differences in energies for the innermost orbitals have a 
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simple origin: the Tatewaki, Yamamoto & Hatano (2017) study employed the uniform nuclear 

charge distribution model and the Gaussian-type functions, while we used the Fermi-type 

distribution scheme and the B-spline basis.  As such, the observed significant differences in 

energies for the innermost orbitals that increase with the atomic number is fully expected. 

 The agreement for the valence orbitals (Table S14) is excellent: the mean energy 

difference calculated over 359 values is just 0.002 hartree which includes contributions even 

from Bk (Z=97) and Lr (Z=103).  In fact, out of 359 differences, the highest six values that 

exceed 0.005 hartree belong to the 5f and 7s orbitals of these two atoms.  The next eleven 

largest discrepancies are on the order of 0.001 – 0.002 hartree.  When the Bk and Lr energies 

are excluded from the calculation of statistics, the mean valence orbital energy difference 

between our work and Tatewaki, Yamamoto & Hatano (2017) is reduced to 0.0004 hartree 

with the largest difference of 0.002 hartree observed for 4f7/2 of Rn. 

B3: Mean orbital radii 

The comparison of the mean orbital radii defined in equation (46) with the values obtained by 

Tatewaki, Yamamoto & Hatano (2017) is presented in Tables S15 and S16 for the core and 

valence orbitals, respectively.  The agreement for the mean radii of the core orbitals in the two 

studies is excellent (Table S15).  The mean difference calculated over all 1334 values, 

including those for Bk and Lr, is about 0.0001 bohr.  There are only four differences above 

0.005 bohr: 6s, 6p1/2 and 6p3/2 orbitals of Bk, and 6p3/2 orbital of Lr, which are clearly due to 

different electronic configurations.  Out of the remaining 1330 calculated differences, 1300 are 

below 0.001 bohr, which is a little surprising considering the extent of differences in the 

energies for the innermost core orbitals (see discussion above). 

 The analysis of Table S16 that lists mean radii of the valence orbitals shows that the 

largest discrepancies are observed, as already expected, for Bk (0.27 bohr for 7s, 0.057 for 5f7/2, 

0.046 bohr for 5f5/2) and Lr (0.19 bohr for 7s).  Once these exceptions due to different electronic 
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configurations are excluded from the calculation of statistics, the average difference for the 

mean radius of a valence orbital between the two studies drops to about 0.002 bohr.  Out of 

353 values, only 31 are above 0.005 bohr with the largest difference of 0.044 bohr found for 

the 6p1/2 orbital of Tl (Z=81).  

B4: Radii of the orbital charge density maxima 

Tables S17 and S18 include the comparison for the radii of the orbital charge density maxima.  

As before the comparison is done separately for the core (Table S17) and valence (Table S18) 

orbitals.  Unlike in the previous sections, we compare our results to only those given in Guerra 

et al. (2017) because Tatewaki, Yamamoto & Hatano (2017) did not report these parameters.  

However, the comparison with the Guerra et al. (2017) data includes all elements with Z = 2 – 

118.  

 The agreement between the two studies for the core orbital charge density maxima is 

excellent (Table S17).  The mean difference calculated over 1694 entries is only 0.001 bohr 

with the largest difference of 0.011 bohr being observed for the 6p3/2 orbital of Pu (Z=94).  In 

fact, that difference is the only one above 0.01 bohr with 44 more ranging between 0.005 and 

0.0099 bohr.  The overwhelming majority of the differences (1144 out of calculated 1694) fall 

below 0.001 bohr.  

 Surprisingly, the situation is not as good for the valence orbitals (Table S18).  The mean 

difference calculated over 436 values is 0.01 bohr.  The largest difference of 0.45 bohr is 

observed for the 7p3/2 orbital of Fl (Z=114).  The remaining eleven differences of 0.10 ‒ 0.44 

bohr are found for the following orbitals: 4s of Cr (Z=24), 5s of Nb (Z=41) and Mo (Z=42), 

6p3/2 of Pb (Z=82), 6d5/2 and 6d5/2 of Pa (Z=91), U (Z=92) and Np (Z=93), and 6d5/2 of Cm 

(Z=96).  That said, out of 436 calculated differences, 326 were found to be below 0.005 bohr.  

 At this time, we are attributing these discrepancies a different set of QED corrections 

included in our calculations with the DBSR_HF code and the Guerra et al. (2017) calculations 
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in MCDFGME (Desclaux, Mayers & O’Brien, 1971; Desclaux, 1975; Indelicato & Desclaux, 

1990).  Guerra et al. (2017) clearly state that their calculations included both the self-energy 

and vacuum polarization “self consistently” even though it is noted that those effects on the 

effective nuclear charges are “almost negligible”.  Moreover, it is not clear from Guerra et al. 

(2017) whether their calculations included the Breit correction even though it is very likely that 

it was the case.  In addition, it also possible that we misunderstand the statement in Guerra et 

al. (2017) regarding the “monoconfiguration mode” used in MCDFGME (Desclaux, Mayers & 

O’Brien, 1971; Desclaux, 1975; Indelicato & Desclaux, 1990): if the “monoconfiguration 

mode” in MCDFGME is similar to the optimal level (OL) model in GRASP92 (Grant et al., 

1980; Dyall et al., 1989), it would explain the differences with our EAL calculations.  

B5: Atomic mean radii and Atomic mean spherical radii 

The final set of benchmark values listed in Table S19 include both the atomic mean and atomic 

mean spherical radii as defined in equation (49).  The agreement between DBSR_HF (this 

study) and MCDFGME (Guerra et al., 2017) is good but not perfect: the average difference 

between the two sets of parameters calculated over all atoms is 0.0015 bohr for 〈𝑟at.〉 and 

0.0049 bohr for √〈𝑟at.
2 〉 .  For 〈𝑟at.〉 , the largest discrepancy of 0.014 bohr is observed, 

surprisingly, for N (Z=7) though it amounts for only about 1% of the mean atomic radius of 

that atom.  Two more differences of above 0.01 bohr are 0.013 for Cr (Z=24) and 0.011 bohr 

for Fl (Z=114).  As expected, the differences for √〈𝑟at.
2 〉 are larger than those for 〈𝑟at.〉.  The 

most significant discrepancy is 0.054 bohr for Fl (Z=114), and there are seven more √〈𝑟at.
2 〉 

differences in the range of 0.01 – 0.04 bohr for N, Cr, Nb, Mo, Pb, Lr and Nh.   

 It is a little disturbing to find noticeable differences in the two types of the mean atomic 

radii for lighter elements such as N (Z=7) and Cr (Z=24) between the two sets of relativistic 

calculations.  As mentioned above, we attribute these disagreements to a different treatment of 

QED corrections in our work and in Guerra et al. (2017), or due to differences between the 
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“monoconfiguration mode” in MCDFGME and EAL method in DSBR_HF.  That said, an 

excellent agreement between our results and those obtained by Visscher & Dyall (1997) and 

Tatewaki, Yamamoto & Hatano (2017), and a good overall agreement with the Guerra et al. 

(2017) data instils confidence in the quality of the DBSR_HF wavefunctions used for the 

determination of the X-ray scattering factors.  
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Table 3 The mean and maximum differences in total electronic energies 𝐸 (atomic units) of the 

elements relative to the values obtained in this work.  A negative maximum ∆𝐸 means that the energy 

in this work is lower.  For each maximum value, the element for which that value is observed is listed 

in parentheses.  

 
Wang et al. 

(1996) 

Su & Coppens 

(1997) 

Visscher & 

Dyall (1997) 

Tatewaki, 

Yamamoto & 

Hatano (2017) 

He (Z=2) – Ar (Z=18) 

Mean |∆𝐸| 1.710-2 4.210-2 7.410-6 4.610-4 

Maximum ∆𝐸 ( element ) 0.10 ( N ) -0.14 ( Mg ) 4.510-5 ( Cl ) -1.110-3 ( Ar ) 

K (Z=19) – Xe (Z=54) 

Mean |∆𝐸| ― 1.8 6.810-4 2.210-3 

Maximum ∆𝐸 ( element ) ― -5.1 ( Xe ) -4.410-3 ( Te ) -6.910-3 ( Te ) 

Cs (Z=55) – Lr (Z=103) 

Mean |∆𝐸| ― ― 7.610-2 † 7.810-2 † 

Maximum ∆𝐸 ( element ) ― ― 0.71 ( Am ) † 0.68 ( Am ) † 

Rf (Z=104) – Mt (Z=109) 

Mean |∆𝐸| ― ― 0.62 ― 

Maximum ∆𝐸 ( element ) ― ― 1.4 ( Mt ) ― 

† For Bk (Z=97), Tatewaki, Yamamoto & Hatano (2017) used the [Rn]5f86d7s2 electronic state while Visscher 

& Dyall (1997) and we used [Rn]5f97s2.    For Lr (Z=103), Tatewaki, Yamamoto & Hatano (2017) and 

Visscher & Dyall (1997) used [Rn]5f146d7s2 while we used [Rn]5f147s27p as was determined by Desclaux & 

Fricke (1980). 
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Table 4 Possible typos and inconsistencies identified in Maslen, Fox & O’Keefe (2006).  Because 

the analysis was based on the Doyle & Turner (1968) sin 𝜃 /𝜆 grid, the list may not be complete. 

Atom 𝐬𝐢𝐧 𝜽 /𝝀 

(Å−𝟏) 

Reported 

f-value 

This work DT/CW RRG WSBJ SCM 

Ne 0.60 2.517 2.790 2.790 2.791 2.790 2.790 

 3.50 0.331 0.351 0.351 0.351 0.351 0.351 

Si 4.00 0.566 0.556 0.556 0.555 0.556 0.556 

Nb 4.00 2.405 2.455 ― 2.455 ― 2.456 

In 6.00 1.746 1.764 1.764 1.762 ― 1.764 

Ce 2.50 7.117 7.139 ― 7.144 ― 7.139 

Pr 2.50 7.333 7.363 ― 7.368 ― 7.363 

Nd 2.50 7.567 7.601 ― 7.606 ― 7.601 

 3.00 5.930 5.956 ― 5.960 ― 5.956 

Pm 2.50 7.817 7.845 ― ― ― 7.844 

Gd 2.50 8.683 8.610 ― 8.617 ― 8.597 

Tb 2.50 8.983 8.858 ― 8.865 ― 8.858 

Dy 2.50 9.267 9.114 ― 9.121 ― 9.114 

Ho 2.50 9.533 9.370 ― 9.376 ― 9.370 

Er 2.50 9.783 9.623 ― 9.629 ― 9.622 

Tm 2.50 10.033 9.872 ― 9.879 ― 9.873 

Yb 2.50 10.267 10.118 ― 10.125 ― 10.120 

Lu 2.50 10.500 10.367 ― 10.374 ― 10.369 

Hf 2.50 10.733 10.613 ― 10.619 ― 10.614 

Ta 2.50 10.950 10.854 ― 10.860 ― 10.855 

W 2.50 11.167 11.089 ― 11.095 ― 11.090 

Re 2.50 11.383 11.318 ― 11.324 ― 11.320 

Ac 5.00 5.933 5.989 ― 6.000 ― ― 

Pu 3.00 12.656 12.587 ― ― ― ― 

 3.50 10.895 10.838 ― ― ― ― 

Am 3.00 12.838 12.731 ― ― ― ― 

 3.50 11.095 11.004 ― ― ― ― 

 5.00 6.713 6.795 ― ― ― ― 
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Table 4 (continued). 

Atom 𝐬𝐢𝐧 𝜽 /𝝀 

(Å−𝟏) 

Reported 

f-value 

This work DT/CW RRG WSBJ SCM 

Cm 2.50 14.988 15.046 ― ― ― ― 

 3.00 13.019 12.875 ― ― ― ― 

 3.50 11.295 11.168 ― ― ― ― 

 5.00 6.825 6.945 ― ― ― ― 

 6.00 5.414 5.477 ― ― ― ― 

Bk 2.50 15.150 15.239 ― ― ― ― 

 3.00 13.200 13.016 ― ― ― ― 

 3.50 11.495 11.323 ― ― ― ― 

 5.00 6.937 7.096 ― ― ― ― 

 6.00 5.484 5.572 ― ― ― ― 

Cf 2.50 15.311 15.442 ― ― ― ― 

 3.00 13.381 13.157 ― ― ― ― 

 3.50 11.695 11.476 ― ― ― ― 

 5.00 7.049 7.250 ― ― ― ― 

 6.00 5.553 5.671 ― ― ― ― 

 

DT - Doyle & Turner (1968) 

CW – Cromer & Waber (1968) 

RRG - Rez, Rez & Grant (1994) 

WSBJ - Wang, Smith, Bunge & Jáiregui (1996) 

SCM - Su & Coppens (1997) and Macchi & Coppens (2001) 
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Figure 1 The sequence of steps and the associated software used in the present study.   
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a)  

 

 
b) 

Figure 2 The maximum differences in the X-ray scattering factors (∆𝑓) between this work and the 

previous studies for a) He (Z=2) –Ar (Z=18) and b) K (Z=19) – Cf (Z=98) plotted as a function of the 

atomic number, Z.  The previous studies are identified as follows: ● DT - Doyle & Turner (1968), ○ 

CW - Cromer & Waber (1968), ▲ RRG - Rez, Rez & Grant (1994), ■ WSBJ - Wang, Smith, Bunge & 

Jáiregui (1996), and ♦ SCM - Su & Coppens (1997) and Macchi & Coppens (2001).  The sin 𝜃 /𝜆 grid 

from the Doyle & Turner (1968) study was used.  Not shown in b) are the differences of -1.34, -0.62 

and -0.44 in the SCM study for Gd (Z=64), Ce (Z=58), and Bi (Z=83), respectively, and +0.33, +0.28 

and +0.26 in the CW work for Ho (Z=67), Cf (Z=98) and Bk (Z=97), respectively. 
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a)  

 

 
b) 

Figure 3 The mean absolute differences in the X-ray scattering factors (|∆𝑓|) between this work and 

the previous studies for a) He (Z=2) – Ar (Z=18) and b) K (Z=19) – Cf (Z=98) plotted as a function of 

the atomic number, Z.  The previous studies are identified as follows: ● DT - Doyle & Turner (1968), 

○ CW - Cromer & Waber (1968), ▲ RRG - Rez, Rez & Grant (1994), ■ WSBJ - Wang, Smith, Bunge 

& Jáiregui (1996), and ♦ SCM - Su & Coppens (1997) and Macchi & Coppens (2001).  The averaging 

was done over all the sin 𝜃 /𝜆 grid points between 0 and 6 Å-1 as given in the Doyle & Turner (1968) 

study.  For convenience, a logarithmic base-2 scale is used for the y-axis in both graphs.   
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a)  

 

 

b) 

Figure 4 . The maximum percent differences in the X-ray scattering factors (∆𝑓%) between this work 

and the previous studies for a) B (Z=5) – Ar (Z=18) and b) K (Z=19) – Cf (Z=98) plotted as a function 

of the atomic number, Z.  The previous studies are identified as follows: ● DT - Doyle & Turner (1968), 

○ CW - Cromer & Waber (1968), ▲ RRG - Rez, Rez & Grant (1994), ■ WSBJ - Wang, Smith, Bunge 

& Jáiregui (1996), and ♦ SCM - Su & Coppens (1997) and Macchi & Coppens (2001).  The sin 𝜃 /𝜆 

grid from the Doyle & Turner (1968) study was used.  Not shown in a) is the difference of 5% in the 

DT study for B (Z=5) at 6 Å-1 due to the limited number of reported digits (0.00631 vs 0.006), which is 

also the case for C (0.01274 vs 0.013) and N (0.02267 vs 0.023) at 6 Å-1.  Not shown in b) is the 

difference of -4% for Gd (Z=64) in the SCM work.  
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a)  

 

 

b) 

Figure 5 . The mean absolute percent differences in the X-ray scattering factors (|∆𝑓%|) between this 

work and the previous studies for a) B (Z=5) – Ar (Z=18) and b) K (Z=19) – Cf (Z=98) plotted as a 

function of the atomic number, Z.  The previous studies are identified as follows: ● DT - Doyle & 

Turner (1968), ○ CW - Cromer & Waber (1968), ▲ RRG - Rez, Rez & Grant (1994), ■ WSBJ - Wang, 

Smith, Bunge & Jáiregui (1996), and ♦ SCM - Su & Coppens (1997) and Macchi & Coppens (2001).  

The averaging was done over all the sin 𝜃 /𝜆 grid points between 0 and 6 Å-1 as given in the Doyle & 

Turner (1968) study.  For convenience, a logarithmic base-2 scale is used for the y-axis in both graphs.   
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a)  

 

 

b) 

Figure 6 . The maximum differences in the X-ray scattering factors (∆𝑓) between this work and the 

previous studies for each sin 𝜃 /𝜆 grid point in the 0 – 6 Å-1 range (Doyle & Turner, 1968) for a) B 

(Z=5) – Ar (Z=18) and b) K (Z=19) – Rn (Z=86).  The previous studies are identified as follows: ● 

DT/CW - Doyle & Turner (1968) and Cromer & Waber (1968), ▲ RRG - Rez, Rez & Grant (1994), ■ 

WSBJ - Wang, Smith, Bunge & Jáiregui (1996), and ♦ SCM - Su & Coppens (1997) and Macchi & 

Coppens (2001).  The elements Tc (Z=43) and Pm (Z=61) were excluded as no data are given in the 

RRG study for these species.  For convenience, a logarithmic base-2 scale is used for the x-axis in both 

graphs.  The symbols above each graph identify elements for which the maximum differences ∆𝑓 were 

observed at the sin 𝜃 /𝜆 grid points. 
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a) 

 

 

b) 

Figure 7 . The mean absolute differences in the X-ray scattering factors (|∆𝑓|) between this work and 

the previous studies for a) B (Z=5) – Ar (Z=18) and b) K (Z=19) – Rn (Z=86) plotted as a function of 

sin 𝜃 /𝜆.  The elements Tc (Z=43) and Pm (Z=61) were excluded as no data are given in the RRG study 

for these species.  The averaging at each sin 𝜃 /𝜆 grid point between 0 and 6 Å-1 (Doyle & Turner, 

1968) was done over a specified group of atoms: a) B – Ar, and b) K – Rn.  The previous studies are 

identified as follows: ● DT/CW - Doyle & Turner (1968) and Cromer & Waber (1968), ▲ RRG - Rez, 

Rez & Grant (1994), ■ WSBJ - Wang, Smith, Bunge & Jáiregui (1996), and ♦ SCM - Su & Coppens 

(1997) and Macchi & Coppens (2001).  For convenience, a logarithmic base-2 scale is used for the x-

axis in both graphs.   
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a)  

 

 

b) 

Figure 8 . The maximum percent differences in the X-ray scattering factors (∆𝑓%) between this work 

and the previous studies for each sin 𝜃 /𝜆 grid point between 0 and 6 Å-1 (Doyle & Turner, 1968) for 

a) B (Z=5) – Ar (Z=18) and b) K (Z=19) – Rn (Z=86).  The elements Tc (Z=43) and Pm (Z=61) were 

excluded as no data are given in the RRG study for these species.  The previous studies are identified 

as follows: ● DT/CW - Doyle & Turner (1968) and Cromer & Waber (1968), ▲ RRG - Rez, Rez & 

Grant (1994), ■ WSBJ - Wang, Smith, Bunge & Jáiregui (1996), and ♦ SCM - Su & Coppens (1997) 

and Macchi & Coppens (2001).  For convenience, a logarithmic base-2 scale is used for the x-axis in 

both graphs.  The symbols above each graph identify elements for which the maximum percent 

differences ∆𝑓% were observed at the sin 𝜃 /𝜆 grid points.  
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a)  

 

 

b) 

Figure 9 . The mean absolute percent differences in the X-ray scattering factors (|∆𝑓%|) between this 

work and the previous studies for a) B (Z=5) – Ar (Z=18) and b) K (Z=19) – Rn (Z=86) plotted as a 

function of sin 𝜃 /𝜆.  The elements Tc (Z=43) and Pm (Z=61) were excluded as no data were given in 

the RRG study for these species.  The averaging at each sin 𝜃 /𝜆 grid point between 0 and 6 Å-1 (Doyle 

& Turner, 1968) was done over a specified group of atoms: a) B – Ar, and b) K – Rn.  The previous 

studies are identified as follows: ● DT/CW - Doyle & Turner (1968) and Cromer & Waber (1968), ▲ 

RRG - Rez, Rez & Grant (1994), ■ WSBJ - Wang, Smith, Bunge & Jáiregui (1996), and ♦ SCM - Su 

& Coppens (1997) and Macchi & Coppens (2001).  For convenience, a logarithmic base-2 scale is used 

for the x-axis in both graphs. 
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a)  

 

 

b) 

Figure 10 a) The maximum and mean differences (∆𝑓) and b) the maximum and mean percent 

differences in the X-ray scattering factors between this work and the previous studies for each sin 𝜃 /𝜆 

grid point between 0 and 6 Å-1 (Doyle & Turner, 1968) for Fr (Z=87) – U (Z=92).  The mean quantities 

were obtained be averaging over all elements between Fr and U.  The previous studies are identified as 

follows: DT/CW - Doyle & Turner (1968) and Cromer & Waber (1968), and RRG - Rez, Rez & Grant 

(1994).  The symbols above each graph identify elements for which the maximum a) differences ∆𝑓 and 

b) percent difference ∆𝑓% were observed at the sin 𝜃 /𝜆 grid points.  For convenience, a logarithmic 

base-2 scale is used for the x-axis in both graphs.    
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a)  

 

 

b) 

 

Figure 11 a) The maximum and mean differences (∆𝑓) and b) the maximum and mean percent 

differences (∆𝑓%) in the X-ray scattering factors between this work and the previous study for each 

sin 𝜃 /𝜆 grid point between 0 and 6 Å-1 (Doyle & Turner, 1968) for Np (Z=93) – Cf (Z=98).  The mean 

quantities were obtained be averaging over all elements between Np and Cf.  The previous study is 

identified as follows: DT/CW - Doyle & Turner (1968) and Cromer & Waber (1968).  The symbols 

above each graph identify elements for each the maximum a) differences ∆𝑓 and b) percent differences 

∆𝑓% were observed at the sin 𝜃 /𝜆 grid points.  For convenience, a logarithmic base-2 scale is used for 

the x-axis in both graphs.  
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a)  

 

 

b) 

Figure 12 (a) The differences in the maximum and mean errors of the interpolating function (39) 

with 𝑚 = 4 for atoms with Z = 2 – 98 between this work and the literature (Doyle & Turner, 1968; 

Cromer & Waber, 1968; Maslen, Fox & O'Keefe, 2006).  Negative values indicate a lower error (better 

fit) in this work.  (b) The differences in the maximum and mean errors of the interpolating function (39) 

with 𝑚 = 4 and 𝑚 = 5 (both from this study) for atoms with Z = 2 – 118.  Negative values indicate a 

lower error in the 𝑚 = 5 expansion.  The interpolated sin 𝜃 /𝜆 range for both fits is 0 − 2 Å−1.  
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a) 

 

 

b) 

Figure 13  (a) The differences in the correlation coefficient C (C) of the interpolating function 

(40) with 𝑛 = 3 for atoms with Z = 2 – 98 between this work and the literature (Fox, O’Keefe & 

Tabbernor, 1989; Maslen, Fox & O’Keefe, 2006).  Positive values indicate higher C (better fit) in this 

work.  (b) The differences in the correlation coefficient C (C) of the interpolating function (40) with 

𝑛 = 3 and 𝑛 = 4 (both from this study) for atoms with Z = 2 – 118.  Positive values indicate a higher 

C (better fit) in the 𝑛 = 4 expansion.  The interpolated interval is 2 ≤ sin 𝜃 /𝜆 ≤ 6 Å−1 in both fits. 
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a) 

 

 

b)  

Figure 14 The (a) maximum and (b) mean errors of the interpolating function (40) with 𝑛 = 3 

(●) and 𝑛 = 4 (○) for the atomic X-ray scattering factors in the 2 ≤ sin 𝜃 /𝜆 ≤ 6 Å−1 interval.  
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Synopsis Fully relativistic X-ray scattering factors for all chemically relevant cations, the 

monovalent anions of the halogens, the excited (valence) ns1np3 states of carbon and silicon, 

and several exotic cations for atoms with Z > 104 have been determined in the 0 ≤ sin 𝜃 /𝜆 ≤

6 Å−1 range using the B-spline Dirac-Hartree-Fock method of Zatsarinny & Froese Fischer 

(2016) [Comput. Phys. Comm. 202, 287 – 303].  The study also reports the analytical 

conventional and extended interpolating functions for the 0 – 2 and 2 – 6 Å-1 sin 𝜃 /𝜆 intervals, 

and includes a thorough comparison with the results from the earlier investigations. 
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Abstract The previously described approach for determination of the atomic X-ray scattering 

factors at the Dirac-Hartree-Fock level [Olukayode, Froese Fischer & Volkov, A. (2022) Acta 

Cryst. A, submitted] has been used to evaluate the X-ray scattering factors for a total of 318 

species including all chemically-relevant cations [Greenwood & Earnshaw (1997). Chemistry 

of the Elements], six monovalent anions (O–, F–, Cl–, Br–, I–, At–), the ns1np3 excited (valence) 

states of carbon and silicon, and several exotic cations (Db5+, Sg6+, Bh7+, Hs8+ and Cn2+) for 

which the chemical compounds have been recently identified, thus significantly extending the 

coverage of species relative to all the earlier studies.  Unlike the currently recommended IUCr 

data [Maslen, Fox & O’Keefe (2006). In International Tables for Crystallography, vol. C, 

section 6.1.1, 554 – 589] which originate from different levels of theory including the non-

relativistic Hartree-Fock and correlated methods, as well as the relativistic Dirac-Slater 

calculations, the re-determined X-ray scattering factors come from a uniform treatment of all 

species within the same relativistic B-spline Dirac-Hartree-Fock approach [Zatsarinny & 

Froese Fischer (2016). Comput. Phys. Comm. 202, 287 – 303] that includes the Breit interaction 

correction and the Fermi nuclear charge density model.  While it was not possible to compare 

the quality of the generated wavefunctions with those from the previous studies due to a lack 

(to the best of our knowledge) of such data in the literature, a careful comparison of the total 

electronic energies and the estimated ionization energies with the experimental and theoretical 

values from other studies instils confidence in the quality of the calculations.  A combination 

of the B-spline approach and a fine radial grid allowed for a precise determination of the X-ray 

scattering factors for each species in the entire 0 ≤ sin 𝜃 /𝜆 ≤ 6  Å−1 range thus avoiding the 

necessity for extrapolation in the 2 ≤ sin 𝜃 /𝜆 ≤ 6  Å−1 which, as was shown in our first study, 

may lead to inconsistencies.  In contrast to the Rez, Rez & Grant [(1994). Acta Cryst. A50, 481 

‒ 497] work, no additional approximations were introduced when calculating the 

wavefunctions of the anions.  The conventional and extended expansions were employed to 
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produce interpolating functions for each species in both the 0 ≤ sin 𝜃 /𝜆 ≤ 2  Å−1 and  2 ≤

sin 𝜃 /𝜆 ≤ 6  Å−1  intervals, with the extended expansions offering a significantly better 

accuracy at a minimal computational overhead.  The outcomes of the undertaken research 

should be of interest to the members of crystallographic community who push the boundaries 

of the accuracy and precision of the X-ray diffraction studies.   

Keywords: Relativistic X-ray scattering factors for ions; relativistic Dirac-Hartree-Fock; 
interpolation of X-ray scattering factors.  
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3.1 Introduction 
In the previous paper (Olukayode, Froese Fischer & Volkov, 2022; called Paper I in the 

following) we presented a straightforward and what appears to be a reliable procedure for 

determination of the atomic X-ray scattering factors at the relativistic Dirac-Hartree-Fock level 

(Swirles, 1935; Grant, 1961, 1970) using the B-spline DBSR_HF code recently developed by 

Zatsarinny & Froese Fischer (2016).  The DBSR_HF-based wavefunctions for the ground-state 

electronic configurations of all elements with the atomic number Z = 2 (He) – 118 (Og) were 

determined using the extended average level (EAL) approximation (Grant, Mayers & Pyper, 

1976; Grant et al., 1980; Dyall et al., 1989), and included both the Breit interaction correction 

and the Fermi nuclear charge density model (Johnson & Soff, 1985; Zatsarinny & Froese 

Fischer, 2016).  ).  The X-ray scattering factors for each species were evaluated in the entire 

0 ≤ sin 𝜃 /𝜆 ≤ 6  Å−1 range, and were interpolated using the conventional (Maslen, Fox & 

O’Keefe, 2006) and extended expansions in the separate 0 ≤ sin 𝜃 /𝜆 ≤ 2  Å−1  and 2 ≤

sin 𝜃 /𝜆 ≤ 6  Å−1 intervals using the newly developed Fortran code SF (Paper I).  In this study 

the approach is extended to the treatment of cations and the selected monovalent anions.   

 To the best of our knowledge, the first more or less complete set of the relativistic X-

ray scattering factors for ions were calculated by Cromer & Waber (1965) using the Dirac-

Slater approach (Liberman, Waber & Cromer, 1965).  The calculations included 101 neutral 

atoms (Li – No) and 107 ions ranging from H– to Am3+ including five anions (H–, F–, Cl–, Br–, 

and I–).  The scattering factors for each species were calculated to two decimal digits on a fairly 

coarse sin 𝜃 /𝜆 grid between 0 and 2 Å-1.  Because at this time those values are considered 

essentially obsolete, we shall exclude the results of the Cromer & Waber (1965) study from 

further discussions.    

The earliest set of the relativistic Dirac-Hartree-Fock scattering factors that are still 

being used today (Maslen, Fox & O’Keefe, 2006) were determined by Doyle & Turner (1968) 
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for 0 ≤ sin 𝜃 /𝜆 ≤ 6  Å−1  to three decimal digits using wavefunctions obtained from the 

Coulthard (1967) code; these are labelled as “RHF” in Table 6.1.1.3 in volume C of the 2006 

edition of International Tables for Crystallography (Maslen, Fox & O’Keefe, 2006).  

Unfortunately, the Doyle & Turner (1968) calculations neglected the Breit interaction 

correction and the finite radius of the atomic nucleus, and due to convergence issues, only the 

selected ions (Li+, Be2+, Na+, Mg2+, Cl–, K+, Ca2+, V2+, Mn2+, Fe2+, Fe3+, Co2+, Ni2+, Cu+, Zn2+, 

Br–, Rb+, Sr2+, Sn2+, Sn4+, I–, Cs+) were successfully processed.   

The IUCr-recommended X-ray scattering factors for H–, Li+ and Be2+ come from non-

relativistic but correlated wavefunctions of Thakkar & Smith (1992) and labelled as “C” in 

Maslen, Fox & O’Keefe (2006).  The values of Thakkar & Smith (1992) for Li+ and Be2+ are 

essentially identical to those of Doyle & Turner (1968) but because the two sets of values are 

reported to a different number of decimal places (four and three, respectively), the mean 

average difference over the common sin 𝜃 /𝜆 grid points is 0.0004 atomic units for both ions.  

It suggests that the relativistic and correlation effects are not important for these species due to 

a low atomic weight and the presence of only two electrons, respectively.  In addition, the 

Thakkar & Smith (1992) X-ray scattering factors for H–, Li+ and Be2+ were calculated for 0 ≤

sin 𝜃 /𝜆 ≤ 6  Å−1 using a finer grid (especially in the low sin 𝜃 /𝜆 region) than that used by 

Doyle & Turner (1968). 

 For the remaining ions between O– and Ge4+ and the ns1np3 excited (valence) states of 

carbon and silicon, denoted in Maslen, Fox & O’Keefe (2006) as Cval and Sival, respectively, 

the X-ray scattering factors were calculated by Cromer & Mann (1968a) using the non-

relativistic numerical Hartree-Fock wavefunctions of Mann (1967), and are labelled as “HF” 

in Maslen, Fox & O’Keefe (2006).  These were evaluated to three decimal digits on a fine 

sin 𝜃 /𝜆 grid between 0 and 1.5 Å-1.  For the higher sin 𝜃 /𝜆 values, the relativistic Dirac-

Hartree-Fock scattering factors for neutral atoms of Doyle & Turner (1968) or Cromer & 
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Waber (1968) are supposed to be used.  The latter study accounted for a finite size of the 

nucleus using the uniform charge distribution model.  However, while the Doyle & Turner 

(1968) X-ray scattering factors cover the entire 0 – 6  Å−1 range, the Cromer & Waber (1968) 

data terminate at 2 Å−1 and were extrapolated to 6  Å−1 by Fox, O’Keefe & Tabbernor (1989).  

Unfortunately, as demonstrated in Paper I, the extrapolation leads to some numerical 

inconsistencies. 

 Finally, for all the remaining ions (Maslen, Fox & O’Keefe, 2006) the X-ray scattering 

factors were evaluated by Cromer & Waber (1968) using the relativistic Dirac-Slater method 

for the 0 ≤ sin 𝜃 /𝜆 ≤ 2  Å−1 range, and are labelled as “*DS” in Maslen, Fox & O’Keefe 

(2006).  Beyond 2  Å−1, the X-ray scattering factors for ions need to be augmented by the 

relativistic Dirac-Hartree-Fock values for neutral atoms from the Doyle & Turner (1968) 

(RHF) study and by the extrapolated values of Fox, O’Keefe & Tabbernor (1989).  The X-ray 

scattering factors of both Cromer & Waber (1968) and Fox, O’Keefe & Tabbernor (1989) were 

reported to three decimal digits. 

 According to International Tables for Crystallography (Maslen, Fox & O’Keefe, 

2006), the X-ray scattering factors of ions, Cval, and Sival have been interpolated in 0 ≤

sin 𝜃 /𝜆 ≤ 2  Å−1 range (Doyle & Turner, 1968; Cromer & Mann, 1968b; Cromer & Waber, 

1968; Thakkar & Smith, 1992) using the expression  

𝑓(sin 𝜃 /𝜆) = ∑ 𝑎𝑖 exp(−𝑏𝑖 sin 𝜃2 /𝜆2)

𝑚

𝑖=1

+ 𝑐 (50) 

with 𝑚 = 4 as proposed by Vand, Eiland & Pepinsky (1957).  For sin 𝜃 /𝜆 ≥ 2  Å−1 , the 

interpolating functions of Fox, O’Keefe & Tabbernor (1989) 

𝑓(sin 𝜃 /𝜆) = exp (∑ 𝑎𝑖(sin 𝜃 /𝜆)𝑖

𝑛

𝑖=0

) (51) 

with 𝑛 = 3 as determined for neutral atoms are employed.  
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 The complexity of the existing X-ray scattering data for ions was recognized previously 

by Rez, Rez & Grant (1994), Wang et al.(1996), and Macchi & Coppens (2001).   

Rez, Rez & Grant (1994) used the multiconfiguration relativistic Dirac-Hartree-Fock 

to rectify the problem.  Their calculations were performed in the MCDF program (Grant et al., 

1980), which later became known as GRASP (Dyall et al., 1989), using the extended average 

level (EAL) model (Grant, Mayers & Pyper, 1976; Grant et al., 1980; Dyall et al., 1989).  The 

resulting X-ray scattering factors were calculated on the same sin 𝜃 /𝜆 grid as used in the Doyle 

& Tuner (1968) study and were reported to four decimal places.  Regrettably, it is not known 

which nuclear model was used by Rez, Rez & Grant (1994) and whether the Breit interaction 

correction was applied.  In addition, their work covered only a subset of ions calculated in the 

earlier studies (Cromer & Waber, 1968) though they did include the X-ray scattering factors 

for Cr4+ and O2– that had not been reported before.  The calculations of Dirac-Hartree-Fock 

wavefunctions for anions (O2–, F–, Cl–, Br–, and I–) in the Rez, Rez & Grant (1994) work 

required the use of the Watson sphere approximation (Watson, 1958) which involves 

surrounding of anions by a sphere of positive charge.  Finally, Rez, Rez & Grant (1994) used 

expansion (50) with 𝑚 = 4  with 𝑐 = 0  to produce both a conventional fit in the 0 ≤

sin 𝜃 /𝜆 ≤ 2  Å−1 range and a “lower-accuracy fit over an extended range to 6.0 Å-1”.   

Wang et al. (1996) also used the multiconfiguration relativistic Dirac-Hartree-Fock 

method but their calculations included only eight species: six ions (Li+, Be2+, F–, Na+, Mg2+ 

and Cl–) and the excited (valence) states of carbon (Cval) and silicon (Sival), though no additional 

approximations were included when calculating the two anions.  The X-ray scattering were 

computed to four decimal digits on a fine sin 𝜃 /𝜆 grid between 0 and 6 Å-1, but no interpolating 

expansions were provided.  

 Macchi & Coppens (2001) extended the work of Su & Coppens (1997; 1998a) for 

neutral atoms to most “chemically important ions up to I–” except for Mo5+ for which 
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“convergence could not be achieved”.  These studies used the multiconfiguration relativistic 

Dirac-Hartree-Fock method in the optimal level (OL) mode as implemented in the program 

GRASP92 (Parpia et al., 1996) and included the Fermi nuclear charge model, though it is not 

clear from the publication whether the Breit interaction correction was applied to the generated 

wavefunctions.  The X-ray scattering factors were produced for the 0 ≤ sin 𝜃 /𝜆 ≤ 10  Å−1 

range with a grid spacing of 0.05 Å-1 and were reported to nine decimal digits (Macchi & 

Coppens, 2001).  While the original Su & Coppens (1997) work mentions that the X-ray 

scattering factor integrals were evaluated numerically to five decimal digits using a 

combination of the cubic spline interpolation and the composite-Simpson approach (Burden & 

Faires, 1989), a careful inspection of the 𝑓(0) values in the Macchi & Coppens (2001) data 

suggests that at least in the low sin 𝜃 /𝜆 region, the precision of the numerically integrated X-

ray scattering factors is indeed 8 – 9 decimal digits.  However, from our experience (Paper I), 

precision of the numerical integration usually deteriorates with increasing sin 𝜃 /𝜆.  As in the 

work of Wang et al. (1996), no additional approximations were introduced when calculating 

the monovalent anions (O–, F–, Cl–, Br–, and I–) but unlike the Rez, Rez & Grant (1994) study, 

the O2– and Cr4+ ions were not calculated.   Finally, in contrast to the adopted conventions 

(Maslen, Fox & O’Keefe, 2006), the interpolating functions for all the calculated ions included 

expansion (50) with 𝑚 = 6 and the coefficient 𝑐 set to zero for the three separate sin 𝜃 /𝜆 

intervals of 0 – 2 Å-1, 2 – 4 Å-1, and 4 – 6 Å-1 as was proposed by Su & Coppens (1997; 1998a).  

 The overarching goal of the present work is to complete a unform treatment of the X-

ray scattering factors at the relativistic Dirac-Hartree-Fock level for all chemically-relevant 

cations (Greenwood & Earnshaw, 1997) and the selected monovalent anions (O–, F–, Cl–, Br–, 

I–, which were included in most of the earlier studies, plus At–), thus significantly extending 

the list of ions that were treated in all the previous studies.  The objectives of this study are to  
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d) integrate the X-ray scattering factors with a high precision at all points of a fine sin 𝜃 /𝜆 

grid between 0 and 6 Å-1 (Wang et al., 1996); 

e) determine the conventional (Maslen, Fox & O’Keefe, 2006) interpolating functions 

(50) and (51) for 0 ≤ sin 𝜃 /𝜆 ≤ 2  Å−1  and 2 ≤ sin 𝜃 /𝜆 ≤ 6  Å−1  ranges, 

respectively, which will allow the users [should there be interest] include the 

expansions into X-ray diffraction software with only minor modifications; 

f) optimize the extended interpolating functions (50) and (51) ( 𝑚 = 5  and 𝑛 = 4 , 

respectively) in order to increase the accuracy of the interpolated X-ray scattering 

factors. 
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3.2 Methods 

3.2.1 Relativistic calculations  

In this work, we have performed calculations of the X-ray scattering factors for the following 

318 species: 

a) all cations of the elements with Z = 3 (Li) – 104 (Rf) listed in Greenwood & Earnshaw 

(1997) (Figure 2.5, page 28) thus significantly extending the coverage as compared to 

Maslen, Fox & O’Keefe (2006), Rez, Rez & Grant (1994), and Macchi & Coppens 

(2001), 

b) six monovalent anions: O–, F–, Cl–, Br–, I–, At–;  

c) excited (valence) states of carbon ([He]2s12p3) and silicon ([Ne]3s13p3 ) – these are 

denoted as Cval and Sival in Cromer & Waber (1968), Wang et al. (1996), and Macchi 

& Coppens (2001), 

d) several exotic cations beyond Rf (Z=104) for which chemical compounds are known: 

Db5+ (Z=105) (Gäggeler & Türler, 2014), Sg6+ (Z=106) (Hübener et al., 2001; Pershina, 

Kratz & Fricke, 2000; Gäggeler & Türler, 2014), Bh7+ (Z=107) (Eichler et al., 2000; 

Pershina, Kratz, Fricke & Bastug, 2000; Gäggeler & Türler, 2014), Hs8+ (Z=108) 

(Gäggeler & Türler, 2014) and Cn2+ (Z=112) (Chiera et al., 2015). 

The ground non-relativistic electronic LS states of all the calculated species are listed in Table 

S1.  The values for the cations were taken from the NIST Atomic Spectra Database (Kramida 

et al., 2021) and Rodrigues et al. (2004).  A careful examination of the configurations reveals 

several discrepancies between the two sources even though the NIST Atomic Spectra Database 

(NASD) does include selected data from Rodrigues et. al. (2004): 

1) For Os2+ (Z=76), the ground state electronic configuration listed in NSAD is [Xe] 

4f14 5d6 while Rodrigues et. al. (2004) report it as [Xe] 4f14 5d5 6s1.  We used the 
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NSAD configuration as it comes from a recent experimental study (Azarov, 

Tchang-Brillet & Gayasov, 2018). 

2) The ground state electronic configuration of Th2+ (Z=90) is given in NSAD as [Rn] 

6d1 5f1 and as [Rn] 6d2 in Rodrigues et. al. (2004).  We used the NSAD value since 

it is based on a more recent experimental investigation (Redman, Nave & 

Sansonetti, 2014). 

3) For Np7+ (Z=93), Pu6+ and Pu7+ (Z=94), we chose to use the configurations reported 

by Rodrigues et. al. (2004): [Xe] 4f14 5d10 6s2 6p6, [Rn] 5f2 and [Rn] 5f1, 

respectively, as the NSAD data ( [Xe] 4f14 5d10 6s2 6p5 5f1, [Xe] 4f14 5d10 6s2 6p5 

5f3, and [Xe] 4f14 5d10 6s2 6p4 5f3 ) were taken from a fairly old theoretical study. 

The electronic configuration of Cn2+, [Rn] 5f14 6d10, was modelled after that of Hg2+, [Xe] 4f14 

5d10.  The electronic configurations of the anions (O– , F–, Cl–, Br–, I–, At– ) were formed by 

adding an extra electron to the partially occupied p-orbital.  The electronic configurations for 

the excited (valence) states of carbon and silicon are specified above.  

 The relativistic Dirac-Hartree-Fock calculations were performed in the DBSR_HF 

program of Zatsarinny & Froese Fischer (2016) following the same procedure and using the 

same parameters as in the previous study (Olukayode, Froese Fischer & Volkov, 2022).  As 

before, the energy and orbital convergence tolerance criteria were set to their default values of 

10-10 and 10-7 atomic units, respectively.  For Cu+ and Yb2+ cations, the orbital convergence 

criterion had to be increased to 310-7.  Unfortunately, the original DBSR_HF code has a bug 

when working with anions.  A temporary workaround involved calculating the neutral atom 

first and then using the neutral atom’s radial functions as initial guess when calculating anion.  

Using this technique, we were able to successfully complete the calculations for not only the 

six anions listed above, but also for C–, C4–, Si–, P–, S–, Ge–, As–, Se–, Mo–, Sn–, Sb–, Ir–, Au–, 
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and Po–.  However, since DBSR_HF was not able to calculate the more common multivalent 

anions such as N3–, O2–, Si4–, P3–, S2–, Ge4–, As3– etc. (Greenwood & Earnshaw, 1997) we shall 

not discuss any of these species in this manuscript. The remaining monovalent and multivalent 

anions will be a subject of a separate investigation.   

 As in the previous study (Paper I), the DBSR_HF calculations were performed at the 

extended average level (Grant, Mayers & Pyper, 1976; Grant et al., 1980; Dyall et al., 1989), 

and included the Breit correction and the nuclear charge density Fermi distribution function, 

but the quantum electrodynamical self-energy and vacuum polarization were applied to the 

energies only.  The extended average level model (EAL), which is essentially identical to the 

average-of-configuration (AOC) approximation introduced by Desclaux, Moser & Verhaegen 

(1917) and Desclaux (1973), expands a non-relativistic LS configuration in terms of a number 

of appropriate jj configurations, each taken with a weight that is proportional to the degeneracy 

of each configuration (Desclaux, 1973; Zatsarinny & Froese Fischer, 2016).  The resulting 

configuration state functions (CSFs) and the weights for all ions are listed in Table S2.  For 

example, Mn+ ([Ar] 3d5 4s1, isolectronic with chromium) has five CSFs: 

3d3/2
4  3d5/2

1  4s1       𝑤 = 0.02381 

3d3/2
3  3d5/2

2  4s1       𝑤 = 0.23810 

3d3/2
2  3d5/2

3  4s1       𝑤 = 0.47619 

3d3/2
1  3d5/2

4  4s1       𝑤 = 0.23810 

3d5/2
5  4s1        𝑤 = 0.02381 

where the quantum number 𝑗 (𝑗 = 𝑙 ± 𝑠) is given in the subscript of the orbital symbol and 𝑤 

is the statistical weight of CSF.  The Mn5+ cation with the ground state LS-configuration [Ar] 

3d2 has three CSFs: 



101 
 

 
 

3d3/2
2         𝑤 = 0.13333 

3d3/2
1  3d5/2

1         𝑤 = 0.53333 

3d5/2
2          𝑤 = 0.33333 

, while Mn7+, which is isolelectronic with argon ([Ne] 3s2 3p6), has only one CSF,  

3s2 3p1/2
2  3p3/2

4        𝑤 = 1.00000 

, because all subshells are filled.   

3.2.2 X-ray scattering factors calculations and interpolations 

The X-ray scattering factors, and interpolating functions calculations were performed in the 

Fortran program SF, described in detail in the previous publication (Paper I), which was 

slightly modified to work with ions.  The integration of the scattering factors was performed 

using the adaptive integrator QAG (Piessens & de Doncker, 1980) from the SLATEC package 

(Vandevender & Haskell, 1982; Fong et al., 1993) which, when combined with a fine B-spline 

grid in DSBR_HF integrates the scattering factors with a precision of at least eight decimal 

digits.   

 As in Paper I, we employed the sin 𝜃 /𝜆 grid proposed by Wang et al. (1996) which is 

also used for neutral atoms as given in Table 6.1.1.1 of volume C of International Tables for 

Crystallography (Maslen, Fox & O’Keefe, 2006).   As discussed above, such a grid is 

somewhat different from the sin 𝜃 /𝜆 grid used for ions in Table 6.1.1.3 of International Tables 

for Crystallography (Maslen, Fox & O’Keefe, 2006).  The relativistic Dirac-Slater X-ray 

scattering factors of Cromer & Waber (1968b) are truncated at 2.00 Å-1 while the non-

relativistic Hartree-Fock values of Cromer & Mann (1968a) values terminate at 1.50 Å-1.  

Beyond those cut-off sin 𝜃 /𝜆 values, the scattering factors for the neutral atoms are supposed 

to be used.  
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 Following the same procedure employed in Paper I for neutral atoms, the function (50) 

with 𝑚 = 4  and 𝑚 = 5  was used for interpolation of the scattering factors in the 0 ≤

sin 𝜃 /𝜆 ≤ 2  Å−1 interval, while the expansion (51) of Fox, O’Keefe & Tabbernor (1989) with 

𝑛 = 3 and 𝑛 = 4 was utilized in the 2 ≤ sin 𝜃 /𝜆 ≤ 6  Å−1 range. 

 The starting values for the parameters in the functions (50) and (51) were formed by 

combining the literature values (Maslen, Fox & O’Keefe, 2006) with those obtained via 

exhaustive scans of the parameter space in our SF program.  The latter were performed on the 

“VOLTRON” cluster in the MTSU Department of Chemistry that utilizes the AMD Opteron 

6378 and 6348 computing processors.  

3.3 Assessment of the quality of the calculations 

3.3.1 Total electronic energies 

Since much less data are available in literature for the relativistic wavefunctions of ions 

than for neutral atoms, the assessment of the quality of the calculated wavefunctions included 

the total electronic energies and the ionization energies only.   

Table S3 lists the total electronic energies for all the species calculated in this work 

along with the values (where available) from Macchi & Coppens (2001), Rodrigues et al. 

(2004), and Wang et al. (1996), while the summary of the statistics for the 51 ions common to 

the first three studies are given in Table 1.  We have excluded the Wang et al. (1996) values 

from the calculation of statistics as it shares only two common ions (Na+ and Mg2+) with all 

the other studies. 

The discrepancy between our energies and those from Rodrigues et al. (2004) increases 

steadily with the increase in the atomic number with our values always being lower (more 

negative).  For example, the for B2+ (Z=5) the energy difference is just 0.011 hartree (0.04%), 

which then increases to about 7.8 hartrees (0.12%) for Sb3+ and Sb5+ (Z=51), and reaches a 

massve 118 hartrees (0.3%) for Hs8+ (Z=108).  This is likely due to different levels of 
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approximation used in this work and Rodrigues et al. (2004).  For example, the latter includes 

several additional QED corrections (Uelhing, Wichmann & Kroll and Källén & Sabry 

contributions) missing in our work.  Rodrigues et al. (2004) also employed the uniform charge 

nuclear model for the ions with Z  42, while all the remaining species in their work and all 

ions in our study were calculated with the Fermi model.   

The differences in the total electronic energies between our work and Macchi & 

Coppens (2001) are in general smaller as compared to the values of Rodrigues et al. (2004).  

The Wang et al. (1996) values are similar to those from Macchi & Coppens (2001) and show 

similar yet slightly larger deviations from our data. Table 1 lists the maximum and mean 

discrepancies for the energies obtained by Macchi & Coppens (2001) and Rodrigues et al. 

(2004) relative to our values for the 51 cations common to all three studies, which range from 

Na+ to Sb5+.   

The largest energy difference for these species between our values and those from 

Macchi & Coppens (2001) is 7.75 hartree (~0.26%) for Rb+.  For comparison, the discrepancy 

in energy for Rb+ between this work and Rodrigues et al. (2004) is 2.60 hartree (0.09%).  

 For Rodrigues et al. (2004), the largest difference of 7.82 hartrees (0.12%) is found for 

Sb3+ and Sb5+ (Z=51) which is not unexpected as these are the two heaviest species in the group 

of 51 common cations.  Indeed, for the next heaviest species, the ions of Te (Z=52), the 

difference increases to about 8.3 hartrees.  However, it is impressive that for the same two Sb 

cations, the agreement between our work and Macchi & Coppens (2001) is ~0.002 hartree.  

The mean absolute energy difference calculated for the common group of 51 ions 

between our work and the previous studies is noticeably smaller for the Macchi & Coppens 

(2001) values (0.71.4 hartree) as compared to those from Rodrigues et al. (2004) data (2.52.5 

hartree).  However, the differences in energies between our work and Macchi & Coppens 
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(2001) may seem sporadic at first glance.  For example, for Ti2+ and Ti3+, our values differ 

from those from Macchi & Coppens (2001) by about 0.2 hartree, while for Ti4+ the energies 

are essentially identical.  For Ag+, the difference is about 0.002 hartree, whereas for Ag2+ it 

increases to 3.2 hartree.  Both studies use the Breit and vacuum polarization corrections, and 

the Fermi nuclear model, and such differences can not be explained by (likely) the lack of self-

energy correction in the Macchi & Coppens (2001) study.  However, the Macchi & Coppens’ 

(2001) calculations were performed at the optimal level (OL) while we employed the extended 

average level (EAL).  Since the OL method optimizes a single energy level, while the EAL 

technique works with an average energy of a set of CSFs, the energy (and wavefunction!) 

differences are expected to be pronounced for states with several CSFs.  Indeed, each of the 

Ti2+ and Ti3+ cations has several CSFs (Table S2):  

Ti2+ ( [Ar] 3d2 ) CSFs:    Ti3+ ( [Ar] 3d1) CSFs: 

3d3/2
2         𝑤 = 0.13333   3d3/2

1         𝑤 = 0.40000 

3d3/2
1  3d5/2

1   𝑤 = 0.53333   3d5/2
1         𝑤 = 0.60000 

3d5/2
2        𝑤 = 0.33333 

while, Ti4+ is isoelectronic with Ar, a closed-shell configuration, and thus has only one CSF.  

The same explanation applies to the two ions of silver (Table S2):  

Ag+ ( [Kr] 4d10 ) CSFs:    Ag2+ ( [Kr] 4d9 ) CSFs: 

4d3/2
4  4d5/2

6   𝑤 = 1.00000        4d3/2
4  4d5/2

5     𝑤 = 0.60000 

      4d3/2
3  4d5/2

6     𝑤 = 0.40000 

As such, our energies are expected to show a good agreement with the values of Macchi & 

Coppens (2001) for the ions with a single CSF, and some discrepancies for the species with 

multiple CSFs.  This explanation applies to essentially all significant energy differences 
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between our work and Macchi & Coppens (2001) including the valence states of carbon (Cval) 

and silicon (Sival).  The discrepancies for the two latter species between our work and Want et 

al. (1996) are explained analogously.  That said, it is unexpected to see a very large difference 

of 7.75 hartree for Rb+ which has a closed-shell electronic configuration of krypton.  

Considering that for Sr2+ (which is isoelectronic with Rb+ and Kr), the agreement between the 

two calculations is below 0.001 hartree, we suspect either a typo in the reported energy for Rb+ 

in Macchi & Coppens (2001) or an error in their calculation (the comparison of the scattering 

factors for Rb+ suggests the latter).  

3.3.2 Ionization energies 

The total electronic energies for a series of cations of an element can be used to estimate the 

ionization energies.  The first atomic ionization energy, 𝐼1, is defined as a difference between 

the total electronic energy of a neutral species, 𝑋, and that of its monovalent cation, 𝑋+: 

𝐼1 = 𝐸(𝑋+) − 𝐸(𝑋) (52) 

The second ionization energy is difference in energy between the monovalent and divalent 

cations: 

𝐼2 = 𝐸(𝑋2+) − 𝐸(𝑋+) (53) 

By the same token we define the third, 𝐼3, and higher atomic ionization energies up to 𝐼8 

𝐼3 = 𝐸(𝑋3+) − 𝐸(𝑋2+) (54) 

𝐼4 = 𝐸(𝑋4+) − 𝐸(𝑋3+)  

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯  

𝐼8 = 𝐸(𝑋8+) − 𝐸(𝑋7+)  
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For chemically important ions, the latter is only relevant to ruthenium (Z=45) and osmium 

(Z=76) that can exist in all oxidation states between +1 and +8 (Greenwood & Earnshaw, 1997).  

All ionization energies are positive as should be for an endothermic quantity, i.e. the energy of 

𝑋𝑚+ is lower (more negative) than that of 𝑋𝑛+ for 𝑚 < 𝑛.   

 In Figure S1 and Table S4 we compare the ionization energies (𝐼1…𝐼8, in electronvolt, 

eV) calculated in this work with those from a relatively recent theoretical study by Rodrigues 

et al. (2004) and NIST Atomic Spectra Database (NASD) (Kramida et al., 2021).  The latter 

contains up-to-date values (and their uncertainties) from the most accurate and precise 

experimental and theoretical studies.  That said, for many elements, the higher ionization 

energies have been estimated from theoretical studies only, including the work by Rodrigues 

et al. (2004).  In Table 2 we summarize the agreement for each ionization energy in terms of 

the maximum and mean absolute differences relative to the NASD values.  For consistency, 

the NASD entries taken from Rodrigues et al. (2004) have been excluded from the analysis.  

Figure S1 and Tables 2 and S4 also include several entries calculated from the Macchi & 

Coppens (2001) data though they are limited to 𝐼3 and 𝐼4.  Figure S1a also includes the first 

ionization energies for Li and Na calculated from the Wang et al. (1996) data.  Unfortunately, 

we could not obtain meaningful 𝐼1  values from the Macchi & Coppens (2001) study by 

combining their cation data with the neutral atom data of Su & Coppens (1997), and the only 

two second ionization energies (𝐼2) calculated from their data for Cu and Ag (34.4 eV and 

106.9 eV, respectively) differ significantly from the NASD data (20.3 eV and 21.5 eV, 

respectively). 

 Overall, the ionization energies obtained in this work show very similar deviations from 

the benchmark NASD data as those of Rodrigues et al. (2004), though for higher ionization 

energies their values are slightly more accurate which is likely a consequence of including 

additional QED corrections that are missing in our work (see above).  Both theoretical studies 
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pretty much always underestimate the magnitude of the ionization energy, often significantly.  

Surprisingly, both works show very large discrepancies of above 10 eV for 𝐼6 and 𝐼7 of Pu 

(Z=94) and 𝐼7 of Np (Z=93) relative to the NASD values taken from an old theoretical study 

(Carlson et al., 1970), though the estimated uncertainties for the ionization energies of these 

species listed in NASD are also very large (4-5 eV).  For clarity, these entries have been 

excluded from the calculation of statistics presented in Table 2, though they are listed in Table 

S4 and Figure S1.  For the remaining entries, the largest deviations relative to the NASD data 

is -7.l eV for this work and -5.7 eV for Rodrigues et al. (2004), both for 𝐼4 of U (Z=92,  𝐼4,NASD 

= 36.7 eV).  For the Macchi & Coppens (2001) study, excluding unreasonably large differences 

for 𝐼1 and 𝐼2, the largest discrepancy relative to the NASD data is -7.8 eV for 𝐼4 of Ti (Z=22, 

𝐼4,NASD = 43.3 eV).  For comparison the 𝐼4(Ti) values from this work and Rodrigues et al. 

(2004) show much smaller discrepancies with the NASD data of 1.1 and 1.3 eV, respectively.   

 In general, the ionization energies from this work and Rodrigues et al. (2004) agree 

with each slightly better in comparison to the agreement of each study with the NASD data, 

which is not surprising as both these studies are theoretical though Rodrigues et al. (2004) 

included more extensive QED corrections.  The Macchi & Coppens (2001) work provides a 

very limited sample of the ionization energies and shows several unreasonably large deviations 

relative to the NASD benchmark data.  It is interesting to note that the first ionization energy 

of Li is predicted at 5.34 eV by this work and the Macchi & Coppens (2001) and Wang et al. 

(1996) calculations which is very close to the literature value of 5.39 eV.  For the first ionization 

energy of Na, this work and Wang et al. (1996) predict essentially identical value of 4.957 eV 

which is close to 5 eV from Rodrigues et al. (2004) and the experimental value of 5.14 eV.  

Overall, the analysis suggests that the quality of our relativistic calculations is on 

approximately the same level as those of Rodrigues et al. (2004) which, when combined with 
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the previous results obtained for the wavefunctions of neutral atoms (Olukayode, Froese 

Fischer & Volkov, 2022), instils confidence in the calculated ionic wavefunctions.   

3.3.3 Local and integrated wavefunction properties, and orbital energies 

For the sake of completeness and as a reference for future studies, we include in Supporting Information 

a number of tables with  

1) the orbital (spinor) energies (core - Table S5, valence - Table S6),  

2) the orbital (spinor) mean radii (core – Tables S7, valence – Table S8),  

3) the orbital (spinor) charge density maxima (core – Tables S9, valence – Table S10), and  

4) the atomic mean radii and mean spherical radii (Table S11). 

All these quantities were defined and discussed for the neutral atoms in Paper I. 

3.4 X-ray scattering factors and interpolations 

As in the previous study, we present separately the discussions of  

a) the X-ray scattering factors (section 4.1),  

b) the analytical interpolations in the 0 ≤ sin 𝜃 /𝜆 ≤ 2 Å−1 range (section 4.2), and  

c) the analytical interpolations in the 2 ≤ sin 𝜃 /𝜆 ≤ 6 Å−1 range (section 4.3). 

3.4.1 X-ray scattering factors 

The X-ray scattering factors for all 318 ions calculated in this work are given in Table 

S12 using the sin 𝜃 /𝜆 grid proposed by Wang et al. (1996) and used for neutral atoms in Table 

6.1.1.1 of volume C of International Tables for Crystallography (Maslen, Fox & O’Keefe, 

2006). 

A comparison of the X-ray scattering factors for 113 ions common to this study and the 

previous studies (Table 4) is shown in Figure S2.  These include 112 ions (excluding H–) listed 

in Table 6.1.1.3 of volume C of the 2006 edition of International Tables for Crystallography 

(Maslen, Fox & O’Keefe, 2006) as well as Cr4+ calculated by Rez, Rez & Grant (1994).  Note 
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that because a different set of ions was processed in each of the previous studies, many graphs 

include data from one or two studies only.  Also, while the Doyle & Turner (1968), Thakkar & 

Smith (1992), Rez, Rez & Grant (1994), Wang at el. (1996) and Macchi & Coppens (2001) 

studies cover the entire 0 ≤ sin 𝜃 /𝜆 ≤ 6 Å−1 range, the Cromer & Waber (1968) and Cromer 

& Mann (1968) data extend to 2 Å−1 only.  For the ions calculated in those two studies, the X-

ray scattering factor data for 2 ≤ sin 𝜃 /𝜆 ≤ 6 Å−1 were obtained from either Doyle & Turner 

(1968) or Fox, O’Keefe & Tabbernor (1989).  We note that unlike the Doyle & Turner (1968) 

scattering factor data that correspond to an ion or a neutral atom, the Fox, O’Keefe & Tabbernor 

(1989) values were obtained via extrapolation of the Cromer & Waber (1968) which, 

unfortunately, introduces another layer of complexity to the discussion.   

We also note that because the Wang at el. (1996) X-ray scattering factors are essentially 

identical to those from the Macchi & Coppens (2001) study, but the latter includes many more 

species, we will not provide a separate discussion for the Wang at el. (1996) data.  

The results presented in Figure S2 are summarized in Figures 1 – 4.  The maximum 

structure factor differences relative to values obtained in this work are shown in Figure 1a.  It 

is pleasing to see a very good agreement between the values obtained in this work, and the 

Doyle & Turner (1968) and Thakkar & Smith (1992) data.  Except for anions and several heavy 

ions such as Tb3+ and Lu3+, our scattering factors also agree well with the Rez, Rez & Grant 

(1994) values.  The discrepancies for anions in the Rez, Rez & Grant (1994) study are very 

likely due to the Watson sphere approximation (Watson, 1958) which was also pointed out by 

Macchi & Coppens (2001).  For many species, the agreement is also very good with the Macchi 

& Coppens (2001) results.  In fact, a careful inspection of plots in Figure S2 shows that for all 

atoms the two studies provide essentially the same scattering factors values for sin 𝜃 /𝜆 ≥

0.8 Å−1.  The noticeable discrepancies for a number of species (for example, Cval, Sival, Cr2+, 

Mn2+, Fe3+ etc.) are observed below 0.8 Å−1 (Figure S2) which indicates that it is a valence 
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electron density effect.  These discrepancies are evidently due to the differences between the 

EAL method used in our study and the OL method employed in Macchi & Coppens (2001).  

As discussed in section 3.1, the EAL and OL methods are expected to give slightly different 

results for the configurations with several CSFs.  For example, both the Cval and Sival 

configurations include three CSFs while Mn2+ ( [Ar] 3d5 ) includes five CSFs (Table S2).  In 

comparison, the number of CSFs in Mn4+ ( [Ar] 3d3 ) is reduced to four, which in turn improves 

the agreement between the two studies (Figure S2-26).  As mentioned in Paper I, from our 

point of view, the EAL technique provides a more realistic description of the electron 

distribution for the ground state of an atom/ion in a crystal because it is very unlikely that even 

an unbonded atom/ion in a crystal is always going to be confined to the lowest energy level of 

the ground state configuration which is what is optimized in the OL method.  For the remaining 

majority of the ions, the agreement between our work and Macchi & Coppens (2001) is very 

good.  Unfortunately, this is not the case for the non-relativistic Hartree-Fock (Cromer & Mann, 

1968) and the relativistic Dirac-Slater (Cromer & Waber, 1968) scattering factors, which show 

pronounced discrepancies with our values.  The deviations for non-relativistic Hartree-Fock 

values increase with the increase in the atomic number Z which is clearly seen for the Sc3+ 

(Z=21) – Ge4+ (Z=32) sequence in Figures 1a and S2.  As such, switching to the relativistic 

Dirac-Slater approximation at Y3+ (Z=39), as was done by Cromer & Waber (1968), is certainly 

warranted.  However, as Figures 1a and S2 show, the discrepancies between the Dirac-Slater 

(Cromer & Waber, 1968) and Dirac-Hartree-Fock (this work) results are quite noticeable in 

both the low sin 𝜃 /𝜆  region and in the high sin 𝜃 /𝜆  range when for the latter, the Fox, 

O’Keefe & Tabbernor (1989) extrapolations are used.  Finally, we note that for Sival (Z=14) for 

which the non-relativistic Hartree-Fock approximation may still be valid, our scattering factors 

fall in between the non-relativistic scattering factors of Cromer & Mann (1968) and relativistic 
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OL-based Hartree-Fock values of Macchi & Coppens (2001) and Wang et al. (1996) thus 

providing a reasonable compromise (Figure S2-9). 

The mean |∆𝑓| differences averaged all sin 𝜃 /𝜆 grid points (Rez, Rez & Grant, 1994) 

for each atom are plotted in Figure 1b.  While these are several times smaller than the maximum 

|∆𝑓| values, they show essentially the same trends as were observed in Figure 1a: the Doyle & 

Turner (1968), Thakkar & Smith (1992), and the Rez, Rez & Grant (1994) data for the cations 

agree with our values very well.  The scattering factors for anions from the Rez, Rez & Grant 

(1994) show noticeable deviations due to the employed Watson sphere approximation.  The 

Macchi and Coppens (2001) values are also in a good agreement with our data for the majority 

of the species, excluding those with a large number of CSFs.  The deviations for the non-

relativistic Cromer & Mann (1968) values become pronounced at approximately Z=21 (Sc) and 

increase with Z.  The relativistic Dirac-Slater data of Cromer & Mann (1968) show significant 

deviations for a number of species, especially when augmented in the sin 𝜃 /𝜆 > 2 Å−1 range 

with the extrapolations for the neutral atoms by Fox, O’Keefe & Tabbernor (1989) instead of 

the neutral atom data of Doyle & Turner (1968). 

 The largest maximum percentile deviations ∆𝑓%  (Figure 2a) from this work are 

observed for the non-relativistic Hartree-Fock data for ions starting with Sc3+ (0.7 – 1%) and 

the Dirac-Slater results for a number of species (up to ~2% in Nb3+ and Nb5+).  The latter are 

attributed primarily to the issues with extrapolations of the neutral atom data in Fox, O’Keefe 

& Tabbernor (1989) that complement the Dirac-Slater data of Cromer & Mann (1968) at 

sin 𝜃 /𝜆 > 2 Å−1.  The agreement between this work and a) Doyle & Turner (1968), b) Thakkar 

& Smith (1992), c) Rez, Rez & Grant (1994) (except for anions), and d) Macchi & Coppens 

(2001), except for Cval and Sival, is very good.  
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 Essentially the same trends are observed for the mean |∆𝑓%| values (Figure 2b).  Except 

for the anions in the Rez, Rez & Grant (1994) study, and Cval and Sival in Macchi & Coppens 

(2001), the three relativistic Dirac-Hartree-Fock studies (Doyle & Turner, 1968; Rez, Rez & 

Grant, 1994; Macchi & Coppens, 2001) show a noticeably better agreement with our values 

than the non-relativistic Hartree-Fock (Cromer & Mann, 1968) and relativistic Dirac-Slater 

(Cromer & Waber, 1968) data.  Our values are also in a very good agreement with the non-

relativistic data for Li+ and Be2+ from Thakkar & Smith (1992) obtained from correlated 

wavefunctions.  Since these are very light atoms, the relativistic effects are expected to be very 

small, and because each ion contains only two electrons, the correlation effects should be small 

as well.  

 In order to investigate the discrepancies between our work and the previous studies as 

a function of sin 𝜃 /𝜆, we employed the procedure developed in Paper I.  We have identified a 

set of ions common to our work, the data listed in volume C of International Tables for 

Crystallography (Maslen, Fox & O’Keefe, 2006), and the Rez, Rez & Grant (1994) and Macchi 

& Coppens (2001) studies, and for each ion we have selected the scattering factors at the 

sin 𝜃 /𝜆 points common to all four studies which happens to be the grid used by Rez, Rez & 

Grant (1994).  In order to avoid issues due to a limited precision of the reported in the literature 

scattering factors Li+ and Be2+ those ions were excluded from the analysis which resulted in a 

group of 27 ions that are listed Table 5. For these ions, using the Rez, Rez & Grant (1994) 

sin 𝜃 /𝜆 grid we have evaluated both 

a) the maximum ∆𝑓 and ∆𝑓% deviations relative to our values (Figures 3a and 4a), and  

b) the mean ∆𝑓 and ∆𝑓% deviations relative to our work averaged over the given group 

of ions at each sin 𝜃 /𝜆 point (Figures 3b and 4b).   
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In terms of the maximum ∆𝑓 values (Figure 3a), the largest discrepancies between this work 

and the Rez, Rez & Grant (1994) and Macchi & Coppens (2001) studies are limited to below 

approximately 0.5 Å-1.  In the Rez, Rez & Grant (1994) data these are observed, not 

unexpectedly, for the F– and I– anions due to the use of the Watson sphere approximation.  For 

the Macchi & Coppens (2001) work, the largest discrepancies are found for Mn2+ due to 

conceptual differences between the EAL and OL methods employed in this work and Macchi 

& Coppens (2001), respectively.  Because the Watson sphere and EAL/OL techniques affect 

primarily the valence charge density, the impact on the core density is very small which in turn 

results in essentially the same scattering factors in the high sin 𝜃 /𝜆 region.  The Maslen, Fox 

& O’Keefe (2006) data show more pronounced maximum ∆𝑓 deviations in a wider sin 𝜃 /𝜆 

range (0.1 – 2 Å-1) than the other two studies which is attributed to using either the Dirac-Slater 

(Cd2+) or non-relativistic Hartree-Fock (V5+ and Cu2+) methods.  Beyond 2 Å-1, the agreement 

for many species improves significantly (see, for example, Figure S2-20 for V5+, S2-34 for 

Cu2+ and S2-56 for Cd2+) because the Maslen, Fox & O’Keefe (2006) data switch to the 

relativistic Hartree-Fock values for neutral atoms from Doyle & Turner (1968).  For the ions, 

for which the Doyle & Turner (1968) neutral atom data for sin 𝜃 /𝜆 > 2 Å−1 are not available, 

the Maslen, Fox & O’Keefe (2006) values are taken from extrapolations by Fox, O’Keefe & 

Tabbernor (1989) which, as discussed in Paper I, display issues for several atoms, including 

niobium (Z=41) which explains the discrepancies for Nb5+ shown in Figure 3a.  

 The analysis of the mean |∆𝑓| discrepancies averaged over 27 common ions (Table 4) 

at each sin 𝜃 /𝜆 point (Figure 3b) reinforces the conclusions listed above.  There is an excellent 

agreement between this work and the Macchi & Coppens (2001) study at sin 𝜃 /𝜆 ≥ 0.6 Å−1, 

while the discrepancies below 0.6 Å−1 are due to the differences between the EAL and OL 

approaches.  The Rez, Rez & Grant (1994) data show a good agreement with our study at 

sin 𝜃 /𝜆 > 0.3 Å−1 , though not as good as Macchi & Coppens (2001).  The significant 
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discrepancies for the Rez, Rez & Grant (1994) values below 0.35 Å-1 are primarily due to the 

four anions (F–, Cl–, Br– and I–) calculated using the Watson method (Watson, 1958) in their 

study.  The Watson approximation introduces a bias in the valence electron density distribution 

which in turn affect the structure factors in the low sin 𝜃 /𝜆 region, which was also pointed out 

by Macchi & Coppens (2001).  Noticeable discrepancies in the Maslen, Fox & O’Keefe (2006) 

structure factors are observed for the most important sin 𝜃 /𝜆 range of 0.1 – 2 Å-1 which is a 

consequence of using the non-relativistic Hartree-Fock (Cromer & Mann, 1968) and relativistic 

Dirac-Slater (Cromer & Waber, 1968) approaches.  The agreement improves at sin 𝜃 /𝜆 >

2 Å−1 due to the use of the Doyle & Turner (1968) values for neutral atoms which are very 

close to our data for ions.  However, for the ions that were not calculated by Doyle & Turner 

(1968) the discrepancies are due to the use of the extrapolated values of Fox, O’Keefe & 

Tabbernor (1989). 

 When the maximum percentile ∆𝑓%  discrepancies are considered (Figure 4a), the 

agreement for the 27 common ions between our scattering factors and those from the previous 

studies is well within 1.5% except for Nb5+ at 4.0 Å-1.  The scattering factor for Nb5+ from our 

study is 2.460 while the value from Maslen, Fox & O’Keefe (2006) taken from an extrapolation 

for a neutral atom by Fox, O’Keefe & Tabbernor (1989) is 2.405, which, as pointed out in 

Paper I, is likely a typo (perhaps, it should have been 2.455).  The agreement between our work 

and Rez, Rez & Grant (1994) and Macchi & Coppens (2001) at sin 𝜃 /𝜆 ≥ 0.4 Å−1 is excellent 

except for the scattering factors for F– from Rez, Rez & Grant (1994) at 5 and 6 Å-1 which may 

be a combination of the Watson sphere approximation issues and the limited precision of the 

reported values.  In the low sin 𝜃 /𝜆 region, the maximum ∆𝑓% for the Rez, Rez & Grant (1994) 

study are larger (but still within 1%) than those for the Macchi & Coppens (2001) work, and 

are observed exclusively for F–.  It suggests that the difference between the EAL/OL methods 

is not as significant as the use of the Watson sphere approximation.  In the sin 𝜃 /𝜆 ≤ 0.4 Å−1 
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region, the Maslen, Fox & O’Keefe (2006) discrepancies are very similar in magnitude to or 

even small than those found for the Macchi & Coppens (2001) study.  Because the Maslen, 

Fox & O’Keefe (2006) data in this sin 𝜃 /𝜆 range come from the non-relativistic Hartree-Fock 

and relativistic Dirac-Slater wavefunctions, one may argue that a) ignoring the relativistic 

effects, and b) replacing the Hartree-Fock potential with the Dirac potential is more than 

satisfactory.  However, it would be misleading because i) the ions common to all the studies 

used in this analysis (Table 4) are not too heavy (Z = 9 – 53), and ii) Figures 1, 2, 3, and S2 

clearly show the differences between the relativistic Dirac-Hartree-Fock calculations, and the 

non-relativistic Hartree-Fock and relativistic Dirac-Slater results.  In the 0.4 < sin 𝜃 /𝜆 ≤

2 Å−1  range, the Maslen, Fox & O’Keefe (2006) values show much more pronounced 

maximum ∆𝑓%  deviations from our values than the other two studies which reinforces the 

importance of using the relativistic Hartree-Fock method.  A noticeable improvement in the 

Maslen, Fox & O’Keefe (2006) data at sin 𝜃 /𝜆 > 2 Å−1 are due to switching to the relativistic 

Dirac-Hartree-Fock values but the extrapolations used for Nb5+, Zr4+ and Pd2+ hinder the 

agreement.  

 Finally, the analysis of the mean |∆𝑓% | discrepancies averaged over all common ions 

(Table 5) at each sin 𝜃 /𝜆  grid point (Figure 4b) shows a good overall agreement for all 

methods as the mean |∆𝑓% | values never exceed 0.2%.  Below 0.2 Å-1, our values agree well 

with the Maslen, Fox & O’Keefe (2006) and Macchi & Coppens (2001) data.  At 0.2 <

sin 𝜃 /𝜆 ≤ 0.4 Å−1, the best agreement is observed with the Rez, Rez & Grant (1994) values.  

Above 0.4 Å-1 the Macchi & Coppens (2001) study shows the smallest discrepancies never 

exceeding 0.05%.  The deviations for the Rez, Rez & Grant (1994) data increase almost linearly 

from 0.02% at 0.45 Å-1 to approximately 0.07 – 0.06% at 3.5 – 4 Å-1, and then go up to 0.14 

and 0.13% at 5 and 6 Å-1, respectively, which is due to essentially all halogens’ anions (see 

Figure 4a for F-, and Figures S2-11, S2-38, and S2-62 for Cl–, Br– and I–, respectively).  The 
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“hybrid” Maslen, Fox & O’Keefe (2006) data show the most significant mean |∆𝑓% | 

discrepancies at sin 𝜃 /𝜆 > 0.4 Å−1 which, as mentioned above, is a combination of multiple 

factors including using the non-relativistic Hartree-Fock (Cromer & Mann, 1968) and 

relativistic Dirac-Slater (Cromer & Waber, 1968) scattering factors for up to 2 Å-1, and 

extrapolations for the neutral atoms between 2 and 6 Å-1 (Fox, O’Keefe & Tabbernor, 1989). 

 In summary, the present work not only significantly extends the range of the ions for 

which the scattering factors are available, but also avoids the issues associated with  

a) employing the Watson sphere approximation for monovalent anions, 

b) using non-relativistic Hartree-Fock for some atoms and relativistic Dirac-Slater values 

for others, 

c) combining the scattering factors of ions for 0 ≤ sin 𝜃 /𝜆 ≤ 2 Å−1 with those for neutral 

atoms at sin 𝜃 /𝜆 > 2 Å−1 especially when the latter were obtained via extrapolations.  

3.4.2 Analytical interpolation in the 𝟎 ≤ 𝐬𝐢𝐧 𝜽 /𝝀 ≤ 𝟐 Å−𝟏 range 

3.4.2.1 Four-Gaussian expansion 

The optimized parameters for the interpolating function (50) with 𝑚 = 4  along with the 

maximum and mean interpolation errors for all 318 calculated species (Table 1) are listed in 

Table S13 which is analogous to Table 6.1.1.4 in volume C of the 2006 edition of International 

Tables for Crystallography (Maslen, Fox & O’Keefe, 2006).   

The maximum and mean errors of the interpolating function (50) with 𝑚 = 4 for all 

calculated species are also shown with open circles (○) in Figures 5a and 5b, respectively.  Note 

that for convenience a logarithmic scale of base 2 is used in both Figure 5 graphs.  In general, 

there is a significant spread in the magnitude of the maximum and mean errors among the 

atoms with the largest values being observed for At−  (0.0764 and 0.0194, respectively) 

followed by At+ (0.0476 and 0.0126, respectively).  A closer inspection of Table S13 and 
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Figure 5 shows that the largest errors are found for the monovalent anions and monovalent 

cations, and for most species, the errors decrease with the reduction of the number of electrons.  

Perhaps, the most representative example is astatine: 

   Maximum error: Mean error: 

At−       0.0764       0.0194 

At+       0.0476       0.0126 

At3+       0.0239       0.0080 

At5+       0.0075       0.0033 

At7+       0.0007       0.0004 

These results suggest that the four-Gaussian expansion, equation (50) with 𝑚 = 4 , is not 

flexible enough to provide an accurate description of a relatively steep dependence of the 

scattering factor on sin 𝜃 /𝜆 for anions and low-charge cations.  As the number of electrons in 

a species decreases (thus increasing the charge of the cation), the 𝑓(sin 𝜃 /𝜆) curve becomes 

smoother, which leads to an improvement of the four-Gaussian fit.   

For 112 out of 318 the calculated species, it was possible to compare the maximum and 

mean errors with the values given in Maslen, Fox & O’Keefe (2006).  The differences between 

our values and those reported in literature are plotted in Figure 6.  Out of 224 calculated errors 

(max and mean errors per each atom), in 148 cases the error is lower in this work.  The mean 

improvement is 0.0024 with the most pronounced decreases of 0.0277 and 0.0072 for the 

maximum and mean interpolating errors, respectively, found for Sb5+.  The mean increase in 

error (worse fit in this work) is 0.0012 which is smaller than the mean improvement.  The 

largest increase in the maximum error is observed for Sival (0.0081), while that for the mean 

error is found for Cr2+ (0.0027).  As mentioned in Paper I, the changes in the calculated X-ray 

scattering factors relative to the published values may indeed lead to small deterioration of the 

fitting results despite using more sophisticated optimization techniques.  However, Figure 6 
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shows that there are more species for which the interpolating errors, especially the maximum, 

are smaller in this work as compared to the literature values (Maslen, Fox & O’Keefe, 2006).   

 

3.4.2.2 Five-Gaussian expansion 

Increasing the number of Gaussian functions in expansion (50) to five (𝑚 = 5) results in a 

significant improvement in the quality of the interpolations.  The resulting parameters of the 

interpolating functions are listed in Table S15, while in Figure 5 the maximum and mean errors 

of these functions are shown with solid circles (●) for all calculated species.  For example, 

while the largest maximum and mean errors are still observed for At−, their magnitudes are 

reduced from 0.0764 to just 0.0156 and from 0.0194 to only 0.0050, respectively.  The next 

largest maximum error at 𝑚 = 5 is 0.0114 in Th2+ versus 0.0476 in At+ at 𝑚 =  4.  The second 

largest mean error is reduced from 0.0126 in At+ at 𝑚 = 4 to 0.0037 in Rh+ at 𝑚 = 5.  

 There are several species for which the maximum error rises slightly as the number of 

Gaussians in expansion (50) is increased from four to five, however in each case there is an 

accompanying reduction of the mean error.  For example, in Cl–, the maximum error is 

increased from 0.0065 to 0.0082 but at the same time, the mean error decreases from 0.0029 to 

0.0019.  A similar situation is observed for U5+, Pa5+, Np5+, Nb2+, Dy3+, Zr2+, Ni+, P+, At7+, 

Zn2+, Sg6+, Bh7+, U6+, Cf4+, Hs8+, Ho3+ and Bk4+.  For another group of atoms (Li+, Be2+, B3+, 

C+, C4+, N2+, N4+, N5+, O+, O2+, Al3+, Si4+, P5+, S6+, Cl5+, Cl7+, Mn7+, Ga3+, Ge4+, As5+, Se6+, 

Br7+, Os8+, Pu4+, Pu5+, Am4+, Cm4+, Db5+) the changes in the maximum and mean errors upon 

extending expansion (50) to five Gaussian are negligible.   

 Overall, out of a total of 636 errors (maximum and minimum errors per each atom), in 

590 cases the error is reduced (mean error reduction of 0.0043), for 12 cases there are no 

changes in the errors (within the used precision of four decimal digits), and in 34 cases the 
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error is increased with the mean value of 0.0003 which is significantly smaller than the mean 

error decrease.   

 These results confirm the superiority of the five-Gaussian interpolating function (50) 

relative to the expansion with 𝑚 = 4.  Because an addition of a single Gaussian function per 

atom/ion type does not carry a significant computational overhead while producing more 

accurate scattering factors, the five-Gaussian expansion (50) is highly recommended over the 

four-Gaussian expansion which is agreement with one of the conclusions in Paper I.  

3.4.3 Analytical interpolation in the 𝟐 ≤ 𝐬𝐢𝐧 𝜽 /𝝀 ≤ 𝟔 Å−𝟏 range 

The volume C of International Tables for Crystallography (Maslen, Fox & O’Keefe, 2006) 

does not list separate interpolating functions for ions in the 2 ≤ sin 𝜃 /𝜆 ≤ 6 Å−1  range.  

Instead, the recommendation is to use the free-atom scattering factors “because high-angle 

scattering is dominated by core electrons and is therefore very little affected by ionicity” 

(Maslen, Fox & O’Keefe, 2006).  We agree with this statement and it is also supported by our 

data.  For example, the scattering factors for the neutral osmium (Paper I) and cations at 

sin 𝜃 /𝜆 ≥ 2 Å−1 are shown in Table 6.  Even when comparing the neutral osmium with Os8+, 

the differences start in the second decimal digit.  Considering that the maximum error of the 

four-term (𝑛 = 3) expansion (51) for neutral osmium is around 0.19 atomic units, and the mean 

error is approximately 0.002 atomic units (Paper I) having separate fits for the cations does not 

look practical.  However, upon extending the interpolation function (51) to five terms (𝑛 = 4) 

the errors reduce to 0.04 and 0.0003 atomic units (Paper I), respectively, which warrants the 

existence of separate fitting functions for the cations.   
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3.4.3.1 Four-term expansion 

In Table S16 we report parameters of the four-term (𝑛 = 3) expansions (51) for all 318 species 

calculated in this work.  Because the table mimics Table 6.1.1.4 in volume C of International 

Tables for Crystallography (Maslen, Fox & O’Keefe, 2006) the only statistical parameter 

reported for each fit is the correlation coefficient, 𝐶.  The quality of our fits for ions can be 

compared with those for neutral atoms as given in Fox, O’Keefe & Tabbernor (1989) and 

Maslen, Fox & O’Keefe (2006).  In Figure 7a we plot the difference between the correlation 

coefficients for ions obtained in this work and the correlation coefficients for neutral atoms 

reported in the literature (Fox, O’Keefe & Tabbernor, 1989) and Maslen, Fox & O’Keefe 

(2006).  Thus, for a series of ions of a given atom, the “literature” value is constant.  A positive 

difference in the correlation coefficient, ∆𝐶, indicates that our fit for an ion is better than the 

one for a neutral atom reported in the literature.  Figure 7a displays many features that are 

similar to those in Figure 13a in Paper I that included neutral atoms.  That is, improvements 

and reductions in the quality of the fits are observed essentially for the same groups of neutral 

atoms and ions.  For example, better quality fits are found for Cl / K, and Cl– / K+, Cu – Br and 

Cu+ – Br–, Dy – W and Dy3+ – W6+ etc.  By the same token, for Ti / Cr and Ti2+ – Cr3+, Rb – 

Mo and Rb+ – Mo6+, Nd – Eu and Nd3+ – Eu3+ etc., we see a reduction of the quality of the fit 

as compared to the literature data.  It is not surprising because in this sin 𝜃 /𝜆  range the 

scattering factors of ions are very similar to those of neutral atoms, and thus the fits must be of 

a similar quality as well.  Overall, out of 112 calculated ∆𝐶 differences, a better-quality fit is 

observed in 61 cases with a mean improvement ∆𝐶 of 0.00025, while the quality of the fit was 

reduced in 50 cases with a mean reduction of 𝐶  by 0.00012.  In the remaining case, the 

correlation coefficient did not change.  The maximum improvement of the fit was observed for 

Dy3+ (𝐶 = 0.999614) as compared to neutral Dy (𝐶 = 0.9990) (Fox, O’Keefe & Tabbernor, 

1989; Maslen, Fox & O’Keefe, 2006).  The maximum reduction of the correlation coefficient 
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was found for Cr2+ (𝐶 = 0.999689) vs neutral Cr (𝐶 = 1.0000) (Fox, O’Keefe & Tabbernor, 

1989; Maslen, Fox & O’Keefe, 2006).  In general, our four-term fits using expansion (51) are 

of a similar quality or perhaps overall slightly more accurate as compared to the literature data 

(Fox, O’Keefe & Tabbernor, 1989; Maslen, Fox & O’Keefe, 2006). 

 In addition to the correlation coefficient, our fitting code also calculates and prints out 

the maximum and mean errors of the interpolating function (51), the same way it is done for 

function (51).  These are plotted for all 318 species (Table 1) in Figures 8a and 8b, respectively, 

using open circles (○).  The distributions for the two errors for ions follow essentially the same 

patterns found for neutral atoms in Paper I.  The magnitudes of errors for the ions are also very 

similar to those of neutral atoms (Paper I) which means that the largest errors are found for the 

ions of the middle of the 5d block.  Regrettably, we are still not sure how to explain the 

observed trends for the interpolating errors. 

 

3.4.3.2 Five-term expansion 

As it was found for the neutral atoms (Paper I), extending expansion (51) by one term (𝑛 = 4) 

improves the quality of the fit for the majority of the atoms (for many, quite significantly) while 

for few species the increase in the number of terms does not lead to an improvement.  The 

parameters for the five-term expansion (51) for all 318 calculated species (Table 1) are listed 

in Table S17.  The changes in the correlation coefficient 𝐶 , ∆𝐶 , upon expansion of the 

interpolating function (51) from 𝑛 = 3 to 𝑛 = 4 are graphed for all calculated species in Figure 

7b.  Finally, in Figures 8a and 8b the mean and maximum errors of the interpolating function 

with 𝑛 = 4 (solid circles, ●) are plotted alongside those from the 𝑛 = 3 fits (open circles, ○).  

 As expected, the curves for 𝑛 = 4 shown in Figures 7b, 8a and 8b display essentially 

the same features as those for the neutral atoms discussed in Paper I.  The most significant 
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improvements in the correlation coefficient 𝐶 are observed for the ions of atoms around Sc, 

Ge/As, Te/I, Ta/W and Bk – Es (Figure 7b).  The largest overall positive change for 𝐶 of 

0.000967 is found for Te2+ (from 0.998980 at 𝑛 = 3  to 0.999947 at 𝑛 = 4 ) which is 

accompanied by a decrease in the maximum/mean errors from 0.17941/0.00149 to 

0.03692/0.00035, respectively.  Improvements of a similar magnitude are also found for the 

other cations of Te (Te4+, Te5+ and Te6+) as well as ions of iodine (I–, I+, I3+, I5+, and I7+), 

antimony (Sb3+, Sb5+), scandium (Sc+, Sc2+, Sc3+) and xenon (Xe2+, Xe4+, Xe6+ and Xe8+) etc.  

Essentially no improvement is observed for Be2+, Li+, and the ions of boron, carbon, nitrogen, 

oxygen, aluminium, silicon, niobium, molybdenum, samarium, astatine, and some others.  As 

discussed in Paper I, the lack of improvement for the lighter elements is due to the fact that 

even the 𝑛 = 3  expansion interpolates the scattering factors of those species with a high 

precision.  For the heavier elements, such as Nb, Mo, Sm, At, and their ions, we do not currently 

have a reasonable explanation. 

 A considerable advantage of the extended expansion (51) is clearly demonstrated in 

Figures 8a and 8b that show a significant reduction for the majority of the calculated species 

of both the maximum (Figure 8a) and mean (Figure 8b) errors for the five-term function as 

compared to the four-term expansion.  That said, for a number of species the decrease in the 

maximum error may lead to slight increase in the mean error (for example, Sm2+, Sm3+, Eu2+, 

Eu3+, and essentially all ions of Co, Mo and At) and vice versa (cations of Fe, Nb, Nd, Pm, Bi, 

Po, and Cn).  We also note that while the largest mean error of about 0.0014 (Cn2+) is very 

satisfactory, the largest maximum interpolation errors of 0.10 – 0.19 electrons for many heavy 

ions despite extending the expansion (51) to five terms may be considered unreasonable.  We 

will rely on feedback from the X-ray crystallography community whether there is a need to 

improve the accuracy of the interpolating functions before initiating a new study.  
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3.5 Summary and Concluding remarks 

The B-spline Dirac-Hartree-Fock method (Zatsarinny & Froese Fischer, 2016) combined with 

the extended average level (EAL) approach (Grant et al., 1980; Dyall et al., 1989) was used to 

re-evaluate fully-relativistic wavefunctions and the corresponding X-ray scattering factors in 

the 0 ≤ sin 𝜃 /𝜆 ≤ 6 Å−1  range for all chemically relevant cations and monovalent anions 

(Greenwood & Earnshaw, 1997) as well as the excied (valence) ns1np3 states of the carbon and 

silicon atoms.  From our point of view, this work offers a number of advantages over all the 

previous studies (Doyle & Turner, 1968; Cromer & Waber, 1968; Cromer & Mann, 1968; 

Thakkar & Smith, 1992; Rez, Rez & Grant, 1994; Macchi & Coppens, 2001): 

1) In comparison to all the earlier studies including those by Rez, Rez & Grant (1994) and 

Macchi & Coppens (2001), the number of the calculated species has been significantly 

extended by including all chemically relevant cations and monovalent anions 

(Greenwood & Earnshaw, 1997). 

2) Even though we were unable to compare (due to lack of the available data in literature) 

the generated wavefunctions for ions the same way it was done for neutral atoms 

(Olukayode, Froese Fischer & Volkov, 2022), the total electronic energies were subject 

to a thorough comparison with the previous theoretical studies (Rodrigues et al., 2004 

and to a lesser extent, Macchi & Coppens, 2001) in terms of the absolute values and the 

atomic ionization energies.  While our total energies are much closer to the Macchi & 

Coppens (2001) values, the determined ionization energies match well those of 

Rodrigues et al. (2004) and show very similar deviations from the experimentally 

determined quantities (Kramida et al., 2021).  A number of local and integrated 

properties of the calculated wavefunctions that include integrated ionic mean and mean 
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spherical radii, and locations of the charge density maxima and mean radii of both the 

core and valence orbitals (spinors) along with their energies, have been deposited as 

Supplementary Information in order to provide a reference point for future studies.  

3) Unlike the X-ray scattering factors presently recommended by IUCr (Maslen, Fox & 

O’Keefe, 2006) that originate from different sources (Doyle & Turner, 1968; Cromer 

& Waber, 1968; Cromer & Mann, 1968; Thakkar & Smith, 1992) and were determined 

at different levels of theory including non-relativistic correlated (Thakkar & Smith, 

1992) and Hartree-Fock methods (Cromer & Mann, 1968), and relativistic Dirac-

Hartree-Fock (Doyle & Turner, 1968) and Dirac-Slater (Cromer & Waber, 1968) 

approaches, our values come from a single relativistic Dirac-Hartree-Fock study that 

includes both the Breit interaction correction and the Fermi nuclear charge model. 

4) Just like in our study of the neutral atoms (Olukayode, Froese Fischer & Volkov, 2022) 

the B-spline representation of the radial functions combined with a dense radial grid 

allowed for a precise determination of the X-ray scattering factors values thus avoiding 

ambiguity associated with the numerical integration procedures used in essentially all 

the previous investigations.  

5) In contrast to the recommended approach (Maslen, Fox & O’Keefe, 2006) in which the 

X-ray scattering factors for ions beyond 2 Å-1 (in several instances, above 1.50 Å-1) are 

approximated by the values derived for neutral atoms that for many species were 

obtained via the extrapolation procedure (Fox, O’Keefe & Tabbernor, 1989), our X-ray 

scattering factors , just like the Rez, Rez & Grant (1994) and Macchi & Coppens (2001) 

values, have been obtained directly from the ionic wavefunctions for the entire 0 – 6 Å-

1 range.  The issues with the extrapolation approach were discussed in detail in our 

previous study (Olukayode, Froese Fischer & Volkov, 2022). 
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6) While Rez, Rez & Grant (1994) had to resolve to the Watson sphere approximation 

when calculating anions, the present study did not require that and included a uniform 

treatment of all cations and monovalent anions. 

7) The X-ray scattering factors in both the 0 ≤ sin 𝜃 /𝜆 ≤ 2 Å−1 and the 2 ≤ sin 𝜃 /𝜆 ≤

6 Å−1 ranges have been interpolated using the recommended functions (50) (Vand, 

Eiland & Pepinsky, 1957; Doyle & Turner, 1968; Cromer & Waber, 1968; Maslen, Fox 

& O'Keefe, 2006) and (51) (Fox, O’Keefe & Tabbernor, 1989; Maslen, Fox & O’Keefe, 

2006) at the conventional and extended levels.  In comparison, the interpolating 

functions were not included in the Rez, Rez & Grant (1994) study, while Macchi & 

Coppens (2001) used the unconventional six-Gaussian expansions in the 0 – 2, 2 – 4, 

and 4 – 6 Å-1 intervals.   

8) The presented extended expansions (50) and (51) with 𝑚 = 5 and 𝑛 = 4, respectively, 

offer a significant improvement in the accuracy of the interpolated values for the X-ray 

scattering factors while preserving the general mathematical form of the established 

equations.  

9) The generated relativistic Dirac-Hartree-Fock wavefunctions for neutral atoms 

(Olukayode, Froese Fischer & Volkov, 2022) and ions (this work) stored in the B-spline 

representations can be easily used to create custom fits of desired accuracy.  For 

example, six-Gaussian fits used in the Su & Coppens (1997, 1998a) and Macchi & 

Coppens (2001) studies can be readily obtained.  

10) A thorough comparison of the X-ray scattering factors of ions obtained in this work 

with those from all the previous studies allowed for a better understanding of the effects 

of the average / extended average level (AL/EAL) and optimal level (OL) 
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approximations used in the relativistic Dirac-Hartree-Fock calculations.  As a reference 

for future studies, we include in the Supplementary Information a complete list of the 

employed ground state electronic configurations of the ions with the associated 

configuration state functions (CSFs) and their weights. 

The future plans include a) calculation of the relativistic Dirac-Hartree-Fock scattering factors 

for all chemically relevant multivalent anions (Greenwood & Earnshaw, 1997), and b) 

determination of the analytical representations of the relativistic Dirac-Hartree-Fock 

wavefunctions for all neutral atoms and ions using a linear combination of Slater-type functions 

as was done in the studies by Su & Coppens (1998b) and Macchi & Coppens (2001). 
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Table 5 The list and numbering of the species (cations, monovalent anions, and the excited (valence) 

states of carbon and silicon) included in this work.  

Numb

er 

Specie

s 

Numb

er 

Specie

s 

Numb

er 

Specie

s 

Numb

er 

Specie

s 

Numb

er 

Specie

s 1 Li+ 41 Cl2+ 81 Co2+ 121 Zr4+ 161 In3+ 

2 Be2+ 42 Cl3+ 82 Co3+ 122 Nb2+ 162 Sn2+ 

3 B+ 43 Cl4+ 83 Co4+ 123 Nb3+ 163 Sn4+ 

4 B2+ 44 Cl5+ 84 Co5+ 124 Nb4+ 164 Sb3+ 

5 B3+ 45 Cl6+ 85 Ni+ 125 Nb5+ 165 Sb5+ 

6 C+ 46 Cl7+ 86 Ni2+ 126 Mo+ 166 Te2+ 

7 C2+ 47 Cl- 87 Ni3+ 127 Mo2+ 167 Te4+ 

8 C3+ 48 K+ 88 Ni4+ 128 Mo3+ 168 Te5+ 

9 C4+ 49 Ca2+ 89 Cu+ 129 Mo4+ 169 Te6+ 

10 Cval 50 Sc+ 90 Cu2+ 130 Mo5+ 170 I+ 

11 N+ 51 Sc2+ 91 Cu3+ 131 Mo6+ 171 I3+ 

12 N2+ 52 Sc3+ 92 Cu4+ 132 Tc+ 172 I5+ 

13 N3+ 53 Ti2+ 93 Zn2+ 133 Tc2+ 173 I7+ 

14 N4+ 54 Ti3+ 94 Ga+ 134 Tc3+ 174 I- 

15 N5+ 55 Ti4+ 95 Ga2+ 135 Tc4+ 175 Xe2+ 

16 O+ 56 V+ 96 Ga3+ 136 Tc5+ 176 Xe4+ 

17 O2+ 57 V2+ 97 Ge+ 137 Tc6+ 177 Xe6+ 

18 O- 58 V3+ 98 Ge2+ 138 Tc7+ 178 Xe8+ 

19 F- 59 V4+ 99 Ge3+ 139 Ru+ 179 Cs+ 

20 Na+ 60 V5+ 100 Ge4+ 140 Ru2+ 180 Ba2+ 

21 Mg2+ 61 Cr+ 101 As2+ 141 Ru3+ 181 La2+ 

22 Al+ 62 Cr2+ 102 As3+ 142 Ru4+ 182 La3+ 

23 Al3+ 63 Cr3+ 103 As5+ 143 Ru5+ 183 Ce2+ 

24 Si+ 64 Cr4+ 104 Se2+ 144 Ru6+ 184 Ce3+ 

25 Si2+ 65 Cr5+ 105 Se4+ 145 Ru7+ 185 Ce4+ 

26 Si3+ 66 Cr6+ 106 Se6+ 146 Ru8+ 186 Pr2+ 

27 Si4+ 67 Mn+ 107 Br+ 147 Rh+ 187 Pr3+ 

28 Sival 68 Mn2+ 108 Br3+ 148 Rh2+ 188 Pr4+ 

29 P+ 69 Mn3+ 109 Br4+ 149 Rh3+ 189 Nd2+ 

30 P2+ 70 Mn4+ 110 Br5+ 150 Rh4+ 190 Nd3+ 

31 P3+ 71 Mn5+ 111 Br7+ 151 Rh5+ 191 Pm3+ 

32 P4+ 72 Mn6+ 112 Br- 152 Rh6+ 192 Sm2+ 

33 P5+ 73 Mn7+ 113 Kr2+ 153 Pd2+ 193 Sm3+ 

34 S+ 74 Fe+ 114 Rb+ 154 Pd4+ 194 Eu2+ 

35 S2+ 75 Fe2+ 115 Sr2+ 155 Ag+ 195 Eu3+ 

36 S3+ 76 Fe3+ 116 Y2+ 156 Ag2+ 196 Gd+ 

37 S4+ 77 Fe4+ 117 Y3+ 157 Ag3+ 197 Gd2+ 

38 S5+ 78 Fe5+ 118 Zr+ 158 Cd2+ 198 Gd3+ 

39 S6+ 79 Fe6+ 119 Zr2+ 159 In+ 199 Tb+ 

40 Cl+ 80 Co+ 120 Zr3+ 160 In2+ 200 Tb3+ 
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Table 6. Continued 

Numb

er 

Specie

s 

Numb

er 

Specie

s 

Numb

er 

Specie

s 

Numb

er 

Specie

s 

Numb

er 

Specie

s 201 Tb4+ 226 Re3+ 251 Au3+ 276 Pa4+ 301 Cf2+ 

202 Dy2+ 227 Re4+ 252 Au5+ 277 Pa5+ 302 Cf3+ 

203 Dy3+ 228 Re5+ 253 Hg+ 278 U3+ 303 Cf4+ 

204 Ho3+ 229 Re6+ 254 Hg2+ 279 U4+ 304 Es2+ 

205 Er3+ 230 Re7+ 255 Tl+ 280 U5+ 305 Es3+ 

206 Tm2+ 231 Os+ 256 Tl3+ 281 U6+ 306 Fm2+ 

207 Tm3+ 232 Os2+ 257 Pb2+ 282 Np3+ 307 Fm3+ 

208 Yb2+ 233 Os3+ 258 Pb4+ 283 Np4+ 308 Md2+ 

209 Yb3+ 234 Os4+ 259 Bi3+ 284 Np5+ 309 Md3+ 

210 Lu3+ 235 Os5+ 260 Bi5+ 285 Np6+ 310 No2+ 

211 Hf2+ 236 Os6+ 261 Po2+ 286 Np7+ 311 No3+ 

212 Hf3+ 237 Os7+ 262 Po4+ 287 Pu3+ 312 Lr3+ 

213 Hf4+ 238 Os8+ 263 Po6+ 288 Pu4+ 313 Rf4+ 

214 Ta2+ 239 Ir+ 264 At+ 289 Pu5+ 314 Db5+ 

215 Ta3+ 240 Ir2+ 265 At3+ 290 Pu6+ 315 Sg6+ 

216 Ta4+ 241 Ir3+ 266 At5+ 291 Pu7+ 316 Bh7+ 

217 Ta5+ 242 Ir4+ 267 At7+ 292 Am2+ 317 Hs8+ 

218 W+ 243 Ir5+ 268 At- 293 Am3+ 318 Cn2+ 

219 W2+ 244 Ir6+ 269 Fr+ 294 Am4+   

220 W3+ 245 Pt2+ 270 Ra2+ 295 Am5+   

221 W4+ 246 Pt4+ 271 Ac3+ 296 Am6+   

222 W5+ 247 Pt5+ 272 Th2+ 297 Cm3+   

223 W6+ 248 Pt6+ 273 Th3+ 298 Cm4+   

224 Re+ 249 Au+ 274 Th4+ 299 Bk3+   

225 Re2+ 250 Au2+ 275 Pa3+ 300 Bk4+   
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Table 6 The mean and maximum differences in the total electronic energies 𝐸 (atomic units) for the 

51 common ions calculated in this work relative to those in Macchi & Coppens (2001) and Rodrigues 

et al. (2004).  A negative maximum ∆𝐸 means that the energy in this work is lower.  For each maximum 

value, the ion for which that value is observed is listed in parentheses.  

 Rodrigues et al. (2004) Macchi & Coppens (2001) 

Mean |∆𝐸| 2.55 0.70 

Standard deviation of the mean |∆𝐸| 2.48 1.38 

Maximum ∆𝐸 ( ion ) -7.82 ( Sb3+ / Sb5+ ) -7.75 ( Rb+ ) 
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Table 7 The mean and maximum differences for the selected ionization energies (eV) calculated in 

this work, Macchi & Coppens (2001) and Rodrigues et al. (2004) relative to the NIST Atomic Spectra 

Database (NASD) data (Kramida et al., 2021).  

 This work 
Rodrigues et al. 

(2004) 

Macchi & 

Coppens (2001) 

First ionization energy, 𝐼1 

Number of entries 42 42 ― 

Mean |∆𝐼1| 0.9 1.0 ― 

Maximum ∆𝐼1 ( atom / 𝐼1,NASD) -1.9 (Hg / 10.4) -2.4 (Os / 8.4) ― 

Second ionization energy, 𝐼2 

Number of entries 32 32 ―1 

Mean |∆𝐼2| 1.5 1.3 ―1 

Maximum ∆𝐼2 ( atom / 𝐼2,NASD) -3.0 (Cr / 16.5) -3.3 (Cu / 20.3) ―1 

Third ionization energy, 𝐼3 

Number of entries 51 51 72 

Mean |∆𝐼3| 1.7 1.5 1.72 

Maximum ∆𝐼3 ( atom / 𝐼3,NASD) -4.9 (Eu / 24.8) -5.7 (Tm / 23.7) -2.6 (Ni/ 35.19)2 

Fourth ionization energy, 𝐼4 

Number of entries 323 323 44 

Mean |∆𝐼4| 2.03 1.63 2.54 

Maximum ∆𝐼4 ( atom / 𝐼4,NASD) -7.1 (U / 36.7)3 -5.7 (U / 36.7)3 -7.8 (Ti / 43.3)4 

Fifth ionization energy, 𝐼5 

Number of entries 153 153 ― 

Mean |∆𝐼5| 1.93 1.13 ― 

Maximum ∆𝐼5 ( atom / 𝐼5,NASD) -4.1 (Co / 79.5)3 -3.3 (Te / 59.3)3 ― 

Sixth ionization energy, 𝐼6 

Number of entries 63,5 63,5 ― 

Mean |∆𝐼6| 1.83,5 1.03,5 ― 

Maximum ∆𝐼6 ( atom / 𝐼6,NASD) -2.6 (Mn / 95.6)3,5 -1.9 (Cl / 96.9)3,5 ― 

Seventh ionization energy, 𝐼7 

Number of entries 33,6 33,6  

Mean |∆𝐼7| 1.23,6 1.03,6 ― 

Maximum ∆𝐼7 ( atom / 𝐼7,NASD) -1.9 (Re / 82.7)3,6 
-1.2 (Cl / 114.2 and 

Mn / 119.2)3,6 
― 

Eighth ionization energy, 𝐼8 (Ru and Os only) 

∆𝐼8 (Ru) -0.24  07  

∆𝐼8 (Os) (𝐼8,NASD) -2.0 (102.0) -1.0 (102.0)  

1 For the only two species for which 𝐼2 can be calculated using the Macchi & Coppens (2001) data, 

Cu and Ag, the values (34.4 eV and 106.9 eV, respectively) differ significantly from the NASD data 

(20.3 eV and 21.5 eV, respectively). 

2 The 𝐼3 values were calculated for only seven species: Ti, V, Cr, Mn, Fe, Co, and Ni. 

3 Because for several species, NASD includes the Rodrigues et al. (2004) data, those values were 

excluded from the calculation of statistics. 

4 The 𝐼4 values were calculated for only four species: Ti, Mn, Ru, and Rh. 
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5 Due to significant discrepancies between the NASD 𝐼6 value for Pu (80 eV) and those from this 

work (64.7 eV) and Rodrigues et al. (2004) (67 eV) these values have been excluded from the 

statistics calculation. 

6 Due to significant discrepancies between the NASD 𝐼7 values for Np (92 eV) and Pu (95 eV) and 

those from this work (80.1 and 82.5 eV, respectively) and Rodrigues et al. (2004) (81 and 84 eV, 

respectively) these values have been excluded from the statistics calculation. 

7 The NASD value for 𝐼8 of Ru includes the Rodrigues et al. (2004) value.  
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Table 8 The numbering of 113 species used for the analysis presented in Figures 15, 16, 19 and 22a.   

Number Species Number Species Number Species Number Species 

1 Li+ 31 Ni2+ 61 Sb5+ 91 Pt4+ 

2 Be2+ 32 Ni3+ 62 I- 92 Au+ 

3 Cval 33 Cu+ 63 Cs+ 93 Au3+ 

4 O- 34 Cu2+ 64 Ba2+ 94 Hg+ 

5 F- 35 Zn2+ 65 La3+ 95 Hg2+ 

6 Na+ 36 Ga3+ 66 Ce3+ 96 Tl+ 

7 Mg2+ 37 Ge4+ 67 Ce4+ 97 Tl3+ 

8 Al3+ 38 Br- 68 Pr3+ 98 Pb2+ 

9 Sival 39 Rb+ 69 Pr4+ 99 Pb4+ 

10 Si4+ 40 Sr2+ 70 Nd3+ 100 Bi3+ 

11 Cl- 41 Y3+ 71 Pm3+ 101 Bi5+ 

12 K+ 42 Zr4+ 72 Sm3+ 102 Ra2+ 

13 Ca2+ 43 Nb3+ 73 Eu2+ 103 Ac3+ 

14 Sc3+ 44 Nb5+ 74 Eu3+ 104 Th4+ 

15 Ti2+ 45 Mo3+ 75 Gd3+ 105 U3+ 

16 Ti3+ 46 Mo5+ 76 Tb3+ 106 U4+ 

17 Ti4+ 47 Mo6+ 77 Dy3+ 107 U6+ 

18 V2+ 48 Ru3+ 78 Ho3+ 108 Np3+ 

19 V3+ 49 Ru4+ 79 Er3+ 109 Np4+ 

20 V5+ 50 Rh3+ 80 Tm3+ 110 Np6+ 

21 Cr2+ 51 Rh4+ 81 Yb2+ 111 Pu3+ 

22 Cr3+ 52 Pd2+ 82 Yb3+ 112 Pu4+ 

23 Cr4+ 53 Pd4+ 83 Lu3+ 113 Pu6+ 

24 Mn2+ 54 Ag+ 84 Hf4+   

25 Mn3+ 55 Ag2+ 85 Ta5+   

26 Mn4+ 56 Cd2+ 86 W6+   

27 Fe2+ 57 In3+ 87 Os4+   

28 Fe3+ 58 Sn2+ 88 Ir3+   

29 Co2+ 59 Sn4+ 89 Ir4+   

30 Co3+ 60 Sb3+ 90 Pt2+   
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Table 9 The list of 27 ions, excluding Li+ and Be2+, common to this work, and the IUCr (Maslen, 

Fox & O’Keefe, 2006), Rez, Rez & Grant (1994) and Macchi & Coppens (2001) publications used for 

the analysis presented in Figures 17 and 18.  

Number Species Number Species Number Species Number Species 

1 F- 8 Sc3+ 15 Cu2+ 22 Nb5+ 

2 Na+ 9 Ti4+ 16 Zn2+ 23 Mo6+ 

3 Mg2+ 10 V5+ 17 Br- 24 Pd2+ 

4 Al3+ 11 Mn2+ 18 Rb+ 25 Ag2+ 

5 Cl- 12 Fe2+ 19 Sr2+ 26 Cd2+ 

6 K+ 13 Co2+ 20 Y3+ 27 I- 

7 Ca2+ 14 Ni2+ 21 Zr4+   

 

 

 

Table 10 The X-ray scattering factors of neutral osmium (Olukayode, Froese Fischer & Volkov, 2022) 

and its cations (this work) for sin 𝜃 /𝜆 ≥ 2 Å−1. The identical digits (after rounding) are shown in bold. 

The differences are underlined. 

sin 𝜃 /
𝜆 (Å-

1) 

Os Os+ Os2+ Os3+ Os4+ Os5+ Os6+ Os7+ Os8+ 

2.00 
14.237

01 

14.237

30 

14.237

67 

14.236

99 

14.236

10 

14.235

02 

14.233

79 

14.232

43 

14.230

97 

2.50 
11.540

64 

11.541

13 

11.541

76 

11.540

79 

11.539

31 

11.537

29 

11.534

72 

11.531

60 

11.527

92 

3.00 

 

9.1392

4 

 

9.1393

4 

 

9.1393

9 

 

9.1387

6 

 

9.1377

2 

 

9.1362

3 

 

9.1342

5 

 

9.1317

7 

 

9.1287

7 

3.50 

 

7.2868

2 

 

7.2868

1 

 

7.2867

3 

 

7.2863

6 

 

7.2857

4 

 

7.2848

5 

 

7.2836

7 

 

7.2821

8 

 

7.2803

8 

4.00 

 

6.0566

6 

 

6.0566

8 

 

6.0566

9 

 

6.0565

0 

 

6.0562

0 

 

6.0557

8 

 

6.0552

5 

 

6.0545

8 

 

6.0537

9 

5.00 

 

4.7836

9 

 

4.7836

7 

 

4.7836

6 

 

4.7837

9 

 

4.7839

9 

 

4.7842

5 

 

4.7845

8 

 

4.7849

7 

 

4.7854

2 

6.00 

 

4.0371

9 

 

4.0370

4 

 

4.0368

4 

 

4.0371

8 

 

4.0376

3 

 

4.0382

0 

 

4.0388

8 

 

4.0396

7 

 

4.0405

7 
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a)  

 

 
b) 

Figure 15 The (a) maximum and (b) mean differences in the X-ray scattering factors (∆𝑓) 

between this work and the previous studies for 113 common species (Table 4) plotted as a function 

of the atomic number, Z.  The previous studies are identified as follows: ● DT+TS - Doyle & Turner 

(1968) and Thakkar & Smith (1992) data, ○ CM+DT - Cromer & Mann (1968) values for 0 ≤

sin 𝜃 /𝜆 ≤ 2 Å−1 augmented by the Doyle & Turner (1968) values for 2 ≤ sin 𝜃 /𝜆 ≤ 6 Å−1, ■ 

CW+DT - Cromer & Waber (1968) data for 0 ≤ sin 𝜃 /𝜆 ≤ 2 Å−1augmented by the Doyle & 

Turner (1968) values for 2 ≤ sin 𝜃 /𝜆 ≤ 6 Å−1, □ CW+FOT - Cromer & Waber (1968) values for 

0 ≤ sin 𝜃 /𝜆 ≤ 2 Å−1augmented for 2 ≤ sin 𝜃 /𝜆 ≤ 6 Å−1  with extrapolations by Fox, O’Keefe 

& Tabbernor (1989);  ▲ RRG - Rez, Rez & Grant (1994), and ♦ MC - Macchi & Coppens (2001).  

The sin 𝜃 /𝜆 grid from the Rez, Rez & Grant (1994) study was used.  The averaging in (b) was 

done over all the sin 𝜃 /𝜆 grid points between 0 and 6 Å-1.   
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a)  

 

b) 

Figure 16 . The (a) maximum and (b) mean percent differences in the X-ray scattering factors 

(∆𝑓%) between this work and the previous studies for 113 common ions (Table 4) plotted as a 

function of the atomic number, Z.  The previous studies are identified as follows: ● DT+TS - Doyle 

& Turner (1968) and Thakkar & Smith (1992) data,  ○ CM+DT - Cromer & Mann (1968) values 

for 0 ≤ sin 𝜃 /𝜆 ≤ 2 Å−1 augmented by the Doyle & Turner (1968) values for 2 ≤ sin 𝜃 /𝜆 ≤

6 Å−1,  ■ CW+DT - Cromer & Waber (1968) values for 0 ≤ sin 𝜃 /𝜆 ≤ 2 Å−1augmented by the 

Doyle & Turner (1968) values for 2 ≤ sin 𝜃 /𝜆 ≤ 6 Å−1,  □ CW+FOT - Cromer & Waber (1968) 

values for 0 ≤ sin 𝜃 /𝜆 ≤ 2 Å−1augmented for 2 ≤ sin 𝜃 /𝜆 ≤ 6 Å−1  by extrapolations by Fox, 

O’Keefe & Tabbernor (1989);  ▲ RRG - Rez, Rez & Grant (1994), and ♦ MC - Macchi & Coppens 

(2001).  The sin 𝜃 /𝜆 grid from the Rez, Rez & Grant (1994) study was used.  The averaging in (b) 

was done over all the sin 𝜃 /𝜆 grid points between 0 and 6 Å-1.  Not shown in (a) ∆𝑓%,max of -4.2% 

and -2.5% for Cval in the CM+DT and SCM data, respectively, and in (b) |∆𝑓%|mean of 1.0% for 

Cval in the CM+DT data.   
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a) 

 

 

b) 

 

Figure 17 The (a) maximum and (b) mean differences in the X-ray scattering factors (∆𝑓) 

between this work and the previous studies for each sin 𝜃 /𝜆 grid point in the 0 – 6 Å-1 range 

(Rez, Rez and Grant, 1994) for ions common to the studies (Table 5).  The previous studies are 

identified as follows: ● MFO - Maslen, Fox & O’Keefe (2006), ▲ RRG - Rez, Rez & Grant 

(1994), and ♦ MC - Macchi & Coppens (2001).  For convenience, a logarithmic base-2 scale is 

used for the x-axis in both graphs.   
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a)  

 

 

b) 

Figure 18 The (a) maximum and (b) mean percent differences in the X-ray scattering 

factors (∆𝑓%) between this work and the previous studies for each sin 𝜃 /𝜆 grid point in the 0 – 6 

Å-1 range (Rez, Rez and Grant, 1994) for ions common to the studies (Table 5).  The previous 

studies are identified as follows: ● MFO - Maslen, Fox & O’Keefe (2006), ▲ RRG - Rez, Rez & 

Grant (1994), and ♦ MC - Macchi & Coppens (2001).  For convenience, a logarithmic base-2 

scale is used for the x-axis in both graphs. 
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a) 

 

 

b) 

 

Figure 19 The differences in the (a) maximum and (b) mean errors of the interpolating 

function (50) with 𝑚 = 4 (○) and 𝑚 = 5 (●) (both from this study) for all species included in this 

work (Table 1).  The interpolated sin 𝜃 /𝜆 range is 0 − 2 Å−1.  For convenience, a logarithmic 

base-2 scale is used for the 𝑦-axis in both graphs.  The zero values (with a precision of four decimal 

places, 0.0000) are not shown. 
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Figure 20 The differences in the maximum (●) and mean () errors of the interpolating 

function (50) with 𝑚 = 4 for 112 species (cations, Cval and Sival, and anions excluding H–) relative 

to the Maslen, Fox & O'Keefe (2006) data.  The list of species is given in Table S14.  The 

interpolated sin 𝜃 /𝜆 range is 0 − 2 Å−1.  Negative values indicate a lower error (better fit) in this 

work.  Not shown are the maximum error change of -0.0172 for In3+ (number 56) and -0.0277 for 

Sb5+ (number 60). 

  



139 
 

 
 

 

 

a) 

 

b) 

Figure 21 (a) The differences in the correlation coefficient C (C) of the interpolating 

function (51) with 𝑛 = 3 for 112 species (cations, Cval and Sival, and anions excluding H-) relative 

to the Maslen, Fox & O'Keefe (2006) data.  The list of species is given in Table S14.  Positive 

values indicate higher C (better fit) in this work.  (b) The differences in the correlation coefficient 

C (C) of the interpolating function (51) with 𝑛 = 3 and 𝑛 = 4 (both from this study) for all 318 

species calculated in this work (Table 1).  Positive values indicate a higher C (better fit) in the 𝑛 =

4 expansion.  The interpolated interval is 2 ≤ sin 𝜃 /𝜆 ≤ 6 Å−1 in both fits. 
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a) 

 

 

b) 

 

Figure 22 The (a) maximum and (b) mean errors of the interpolating function (51) with 𝑛 =

3 (●) and 𝑛 = 4 (○) in the 2 ≤ sin 𝜃 /𝜆 ≤ 6 Å−1 interval for all 318 species calculated in this work 

(Table 1). 

 



141 
 

 
 

References 

Azarov, V. I., Tchang-Brillet, W.-Ü L. & Gayasov, R. R. (2018) At. Data. Nucl. Tabl. 

121-122, 345 – 377. 

Burden, R. L. & Faires, J. D. (1989). Numerical Analysis, 4th ed. Boston: PSW-Kent 

Publishing Company. 

Carlson, T. A., Nestor, C. W. Jr., Wasserman, N. & McDowell, J. D. (1970). At. Data. 

Nucl. Tabl. 2, 63 –99. 

Chiera, N. M., Eichler, R., Steinegger, P., Türler, A., Dressler, R., Piguet, D., Vögele, A., 

Aksenov, N. V., Albin, Y. V., Bozhikov, G. A., Chepigin, V. I., Dmitriev, S. N., 

Lebedev, V. Ya., Madumarov, S., Malyshev, O. N., Petrushkin, O. V., Popov, Y. A., 

Sabel’nikov, A. V., Svirikhin, A. I., Vostokin, G. K. & Yeremin, A. V. (2015). 

Towards the selenides of copernicium and flerovium: copernicium - selenium bond 

formation observed. In: Türler, A., Schwikowski, M. & Blattmann, A. (eds) Annual 

Report 2015, Laboratory of Radiochemistry and Environmental Chemistry, Paul 

Scherrer Institut, Switzerland. 

https://www.psi.ch/sites/default/files/import/luc/AnnualReportsEN/PSI_LCH_Annual

Report2015.pdf  

Coulthard, M. A. (1967). Proc. Phys. Soc. 91, 44 – 49. 

Cromer, D. T. & Mann, J. B. (1968a). X-ray scattering factors computed from numerical 

Hartree-Fock wave functions. Los Alamos Scientific Laboratory Report LA-3816.  

Cromer, D. T. & Mann, J. B. (1968b). Acta Cryst. A24, 321 – 324. 

Cromer, D. T. & Waber, J. T. (1965). Acta Cryst. 18, 104 – 109. 

Cromer, D. T. & Waber, J. T. (1968). Unpublished work reported in International Tables 

for X-ray Crystallography (1974), Vol. IV, p. 71. Birmingham: Kynoch Press. 

(Present distributor: Kluwer Academic Publishers, Dordrecht.) 

Desclaux, J. P. (1973). At. Data. Nucl. Tabl. 12, 311 – 406.  

Desclaux, J. P., Moser, C. M. & Verhaegen, G. (1971). J. Phys. B 4, 296 – 310.  

Doyle, P. A. & Turner, P. S. (1968). Acta Cryst. A24, 390 – 397. 

Dyall K. G., Grant, I. P., Johnson, C., Parpia, F.A. & Plummer, E. (1989). Comput. Phys. 

Comm. 55, 425 – 456.  

Eichler, R., Brüchle, W., Dressler, R., Düllmann, Ch. E., Eichler, B., Gäggeler, H. W., 

Gregorich, K. E., Hoffman, D. C., Hübener, S., Jost, D. T., Kirbach, U. W., Laue, C. 

A., Lavanchy, V. M., Nitsche, H., Patin, J. B., Piguet, D., Schädel, M., Shaughnessy, D. 

A., Strellis, D. A., Taut, S., Tobler, L., Tsyganov, Y. S., Türler, A., Vahle, A., Wilk, P. 

A. & Yakushev, A. B. (2000). Nature 407, 63 – 65. 

Fong, K. W., Jefferson, T. H., Suyehiro, T. & Walton, L. (1993). Guide to the SLATEC 

Common Mathematical Library. https://www.netlib.org/slatec/guide  

https://www.psi.ch/sites/default/files/import/luc/AnnualReportsEN/PSI_LCH_AnnualReport2015.pdf
https://www.psi.ch/sites/default/files/import/luc/AnnualReportsEN/PSI_LCH_AnnualReport2015.pdf
https://www.netlib.org/slatec/guide


142 
 

 
 

Fox, A. G., O’Keefe, M. A. & Tabbernor, M. A. (1989). Acta Cryst. A45, 786 – 793. 

Gäggeler, H. W., Türler, A. (2014). Gas-Phase Chemistry of Superheavy Elements. In: 

Schädel, M. & Shaughnessy, D. (eds) The Chemistry of Superheavy Elements. Springer, 

Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37466-1_8  

Grant, I. P. (1961). Proc. Roy. Soc. A 262, 555 – 576. 

Grant, I. P. (1970). Adv. Phys. 19, 747 – 811. 

Grant, I. P., Mayers, D. F. & Pyper, N. C. (1976). J. Phys B: At. Mol. Phys. 9, 2777 – 

2796. 

Grant, I. P., McKenzle, B. J., Norrington, P. H., Mayers, D. F. & Pyper, N. C. (1980). 

Comp. Phys. Comm. 21, 207 – 231. 

Greenwood, N. N. & Earnshaw, A. (1997). Chemistry of the Elements, second edition. 

Butterworth-Heinemann, Woburn, MA.  

Hübener, S., Taut, S., Vahle, A., Dressler, R., Eichler, B., Gäggeler, H. W., Jost, D. T., 

Piguet, D., Türler, A., Brüchle, W., Jäger, E., Schädel, M., Schimpf, E., Kirbach, U., 

Trautmann, N. & Yakushev, A. B. (2001). Radiochim. Acta 89, 737 – 741. 

Kramida, A., Ralchenko, Yu., Reader, J. & NIST ASD Team (2021). NIST Atomic 

Spectra Database (version 5.9), [Online]. Available: https://physics.nist.gov/asd  [Sat 

Jul 30 2022]. National Institute of Standards and Technology, Gaithersburg, MD. 

DOI: https://doi.org/10.18434/T4W30F Accessed 30 July 2022. 

Johnson, W. R. & Soff, G. (1985). At. Nucl. Data. Tabl. 33, 405 – 446. 

Liberman, D., Waber, J. T. & Cromer, D. T. (1965). Phys. Rev. 137, A 27 – A 34. 

Macchi, P. & Coppens, P. (2001).  Acta Cryst. A57, 656 – 662. 

Mann, J. B. (1968). Los Alamos Scientific Laboratory Report LA-3961. 

Maslen, E. N., Fox, A. G. & O’Keefe, M. A. (2006). In International Tables for 

Crystallography, vol. C, section 6.1.1, 554 – 589. 

Olukayode, S., Froese Fischer, C. & Volkov, A. (2022) Acta Cryst. A, submitted.  

Parpia, F. A., Froese, F. C. & Grant, I. P. (1996). Comput. Phys. Commun. 94, 249 – 271. 

Pershina, V., Kratz, J. V., Fricke, B. & Bastug, T. (2000) GSI Scientific Report 1999, 

2000-1, 10. 

Pershina, V., Kratz, J. V. & Fricke, B. (2000) GSI Scientific Report 1999, 2000-1, 11. 

Piessens, R. & de Doncker, E. (1980). Subroutine QAG in SLATEC Common 

Mathematical Library, Version 4.1, July 1993. https://www.netlib.org/slatec/ 

Redman, S. L., Nave, G. & Sansonetti, C. J. (2014). Astrophys. J., Suppl. Ser. 211, 4-1 – 

4-12. 

Rez, D., Rez, P. & Grant, I. (1994). Acta Cryst. A50, 481 ‒ 497.  

https://doi.org/10.1007/978-3-642-37466-1_8
https://physics.nist.gov/asd
https://doi.org/10.18434/T4W30F
https://www.netlib.org/slatec/


143 
 

 
 

Rodrigues, G. C., Indelicato, P., Santos, J. P., Patté, P. & Parente, F. (2004). At. Data. 

Nucl. Tabl. 86, 117 – 233. 

Su, Z. & Coppens, P. (1997). Acta Cryst. A53, 749 – 762. 

Su, Z. & Coppens, P. (1998a). Acta Cryst. A54, 357. 

Su, Z. & Coppens, P. (1998b). Acta Cryst. A54, 646 ‒ 652. 

Swirles, B. (1935). Proc. Roy. Soc. A 152, 625 – 649.  

Thakkar, A. J. & Smith, V. H. Jr. (1992). Acta Cryst. A48, 70 ‒ 71. 

Vandevender, W. H.  & Haskell, K. H. (1982). SIGNUM Newsletter, 17, 16 – 21.  

Vand, V., Eiland, P. F. & Pepinsky, R. (1957). Acta Cryst. 10, 303 – 306 

Wang, J., Smith Jr,V. H., Bunge, C. F. & Jáiregui, R. (1996). Acta Cryst. A52, 649 – 658. 

Watson, R. E. (1958). Phys. Rev. 111, 1108 – 1110. 

  



144 
 

 
 

Chapter 4. CONCLUSIONS AND FUTURE PLANS2 

4.1 Conclusions 

In the two connected studies presented above, the fully relativistic X-ray scattering 

factors have been calculated for all neutral atoms with Z = 2 (He) - 118 (Og) and 318 

species that included all chemically relevant cations (Greenwood & Earnshaw, 1997), 

excited (valence) states of the carbon (Cval) & silicon (Sival) atoms, and selected monovalent 

anions (O–, F–, Cl–, Br–, I–, At–), thus significantly extending the coverage relative to all 

the earlier studies (98 neutral atoms, ≈111 ions, and Cval and Sival).   

The relativistic one-electron wavefunctions (spinors) were obtained using the B-

spline Dirac-Hartree-Fock DBSR_HF code of Zatsarinny & Froese Fischer (2016) while 

the newly developed Fortran program SF was utilized for high-precision integration of the 

X-ray scattering factors and determination of the interpolating functions in the 0 ≤

sin 𝜃 /𝜆 ≤ 2 Å−1 and 2 ≤ sin 𝜃 /𝜆 ≤ 6 Å−1 ranges.   

Unlike the X-ray scattering factors currently recommended by the International 

Union of Crystallography (IUCr) and listed in volume C of International Tables for 

Crystallography (Maslen, Fox & O’Keefe, 2006) that originate from different sources 

(Doyle & Turner, 1968; Cromer & Waber, 1968; Cromer & Mann, 1968; Thakkar & Smith, 

1992) and were determined at different levels of theory including non-relativistic correlated 

(Thakkar & Smith, 1992) and Hartree-Fock methods (Cromer & Mann, 1968), and 

relativistic Dirac-Hartree-Fock (Doyle & Turner, 1968) and Dirac-Slater (Cromer & 

Waber, 1968) approaches, the newly derived values for all 435 species have been obtained 

 
2 Several parts of this section also appear in Acta Crystallographica Section A: Foundations and Advances 

(Olukayode, Froese Fischer & Volkov, 2022; 2023) 
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using the same Dirac-Hartree-Fock level of theory and the same set of approximations that 

included i) the extended average level (EAL) approach (Grant et al., 1980; Dyall et al., 

1989), ii) the Breit interaction correction to the electronic motion due to magnetic and 

retardation effects, and iii) the Fermi distribution function for the description of a nuclear 

charge density.  While Rez, Rez & Grant (1994) had to resolve to the Watson sphere 

approximation when calculating anions, the present study did not require that and included 

a uniform treatment of all cations and monovalent anions. 

A detailed comparison of the generated relativistic wavefunctions for neutral atoms 

in terms of the total and spinor energies, and local and integrated charge density properties 

with those from a number of previous studies (Rez, Rez & Grant, 1994; Visscher & Dyall, 

1997; Guerra et al., 2017; Tatewaki, Yamamoto & Hatano, 2017) confirmed the quality of 

the calculations.  Even though we were unable to compare (due to lack of the available data 

in literature) the generated wavefunctions for ions the same way it was done for neutral 

atoms, the total electronic energies were subject to a thorough comparison with the 

previous theoretical studies (Rodrigues et al., 2004 and to a lesser extent, Macchi & 

Coppens, 2001) in terms of the absolute values and the atomic ionization energies.  While 

our total energies are much closer to the Macchi & Coppens (2001) values, the determined 

ionization energies match well those of Rodrigues et al. (2004) and show very similar 

deviations from the experimentally determined quantities (Kramida et al., 2021). 

A B-spline representation of the radial functions combined with a dense radial grid 

allowed for a precise determination of the X-ray scattering factors values thus avoiding 

ambiguity associated with the numerical integration procedures used in essentially all the 

previous investigations.  The precision of the integrated X-ray scattering factors was 
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estimated to include at least eight decimal digits though in the final set of tables we have 

rounded off the numerical values to five decimals.  A comparison of the redetermined X-

ray scattering factors with those listed in the 2006 edition of volume C of International 

Tables for Crystallography (Maslen, Fox & O’Keefe, 2006) revealed a number of possible 

typos and inconsistencies in the published data that have been fixed in our studies. 

A thorough comparison of the X-ray scattering factors of ions obtained in this work 

with those from all the previous studies allowed for a better understanding of the effects of 

the average / extended average level (AL/EAL) and optimal level (OL) approximations 

used in the relativistic Dirac-Hartree-Fock calculations.  As a reference for future studies, 

we include in the Supplementary Information a complete list of the employed ground state 

electronic configurations of the ions with the associated configuration state functions 

(CSFs) and their weights. 

Following the established procedure (Maslen, Fox & O'Keefe, 2006), the X-ray 

scattering factors in both the 0 ≤ sin 𝜃 /𝜆 ≤ 2 Å−1 and the 2 ≤ sin 𝜃 /𝜆 ≤ 6 Å−1 ranges 

have been interpolated using the recommended functions (55) 

𝑓(sin 𝜃 /𝜆) = ∑ 𝑎𝑖 exp(−𝑏𝑖 sin 𝜃2 /𝜆2)

𝑚

𝑖=1

+ 𝑐 (55) 

(Vand, Eiland & Pepinsky, 1957; Doyle & Turner, 1968; Cromer & Waber, 1968; Maslen, 

Fox & O'Keefe, 2006) and (56) 

𝑓(sin 𝜃 /𝜆) = exp (∑ 𝑎𝑖(sin 𝜃 /𝜆)𝑖

𝑛

𝑖=0

) (56) 

(Fox, O’Keefe & Tabbernor, 1989; Maslen, Fox & O’Keefe, 2006) at the conventional 

(𝑚 = 4 and 𝑛 = 3, respectively) and extended (𝑚 = 5 and 𝑛 = 4, respectively) levels.  In 
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comparison, the interpolating functions were not included in the Rez, Rez & Grant (1994) 

study, while Macchi & Coppens (2001) used the unconventional six-Gaussian expansions 

in the 0 – 2, 2 – 4, and 4 – 6 Å-1 intervals.   The extended expansions offer a significant 

improvement in the accuracy of the interpolated values for the X-ray scattering factors 

while preserving the general mathematical form of the established equations.  For the X-

ray crystallographers who require even higher accuracy of the interpolating functions, the 

SF code can be easily used to extend the function (55) to 𝑚 ≥ 6 in the 0 ≤ sin 𝜃 /𝜆 ≤

2  Å−1  interval, while for the 2 ≤ sin 𝜃 /𝜆 ≤ 6  Å−1  range, one can either extend the 

expansion (56) to 𝑛 ≥ 5 or use the function (55) with 𝑚 ≥ 6.  We also note that the 

generated relativistic Dirac-Hartree-Fock wavefunctions for neutral atoms and ions stored 

in the B-spline representations can be easily used to create custom fits of desired accuracy.  

For example, six-Gaussian fits used in the Su & Coppens (1997, 1998a) and Macchi & 

Coppens (2001) studies can be readily obtained. 

 In summary, we believe that the newly derived relativistic Dirac-Hartree-Fock X-

ray scattering factors and the accompanied accurate analytical interpolations using the 

well-established expansions will be useful in the X-ray diffraction studies.  For users who 

require a higher accuracy the extended expansions are presented that require a very minor 

modification of the existing crystallographic X-ray diffraction software.  A detailed 

analysis of the results suggests that the newly derived values represent an excellent 

compromise among all the previous studies.  The outcomes of the undertaken research 

should be of interest to the members of crystallographic community who push the 

boundaries of the accuracy and precision of the X-ray diffraction studies.   
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4.2 Future Plans 

The future plans include  

a) calculation of the relativistic Dirac-Hartree-Fock scattering factors for all 

chemically relevant multivalent anions (Greenwood & Earnshaw, 1997), and  

b) determination of the analytical representations of the relativistic Dirac-Hartree-

Fock wavefunctions for all neutral atoms and ions using a linear combination of Slater-

type functions as was done in the studies by Su & Coppens (1998b) and Macchi & Coppens 

(2001). 
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