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ABSTRACT

This thesis describes a variety of projects computing the optical response of periodic

and aperiodic structures. The projects include the design of dielectric multilayer, grating,

frequency selective surface and antennas, Mostly, this explores the wavelength-dependent

reflectivity of alternating high and low refractive index multilayers with a thickness profile

defined by a pseudo-random, maximum length sequence (MLS). An MLS contains all possible

combinations of a binary sequence save one; thus, a multilayer with an MLS profile contains

a superposition of a broad range of periods. The range of periodicities in an MLS multi-

layer should make these systems more effective broad wavelength reflectors as compared to

purely periodic counterparts. We compute the reflection characteristics of MLS and periodic

dielectric sequences at visible wavelengths over a range of incident angles using the transfer

matrix method (TMM), a recursive multilayer calculation method. The materials SiO2 and

TiO2 are chosen as the low and high refractive index materials, respectively, because these

materials are commonly used in optical multilayers and because their wavelength-dependent

refractive index is well known. Our results show that it is possible to create an MLS struc-

ture with high average reflectivity across the entire visible spectrum (400 nm - 700 nm) at

all incident angles and polarizations. Finally, we compare the reflection characteristics of

dielectric multilayers with metallic reflectors whose refractive index is based on a Brendel-

Bormann (BB) model.The comparison shows that a seventh order MLS aperiodic multilayer

exhibits slightly higher average reflectivity over the visible spectum than silver or aluminum

metallic reflectors.

The study of Bloch surface waves (BSWs) in dielectric multilayers has been useful in

many applications in the fields of optics, photonics, and bio-sensing. BSW excitation can

be achieved by the addition of a grating on the top of dielectric multilayer which provides

phase matching between incident light and BSWs. However, grating coupling only provides

coupling over a narrow angular range for incident monochromatic radiation. This paper

reports work on realizing broadband coupling using maximum length sequence (MLS) grating
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structures. An MLS grating contains all possible combinations of a binary sequence save one;

thus a grating with an MLS profile contains a superposition of a broad range of periods. We

hypothesize that such a surface structure will permit coupling of a broad angular range of

monochromatic light or a wide spectral range of collimated light into Bloch surface wave on a

multilayer. We investigate the comparative spectral characteristics of MLS grating coupling

with other single period counterparts. We believe our investigation provides a method to

achieve efficient coupling of a higher fraction of incident light into BSWs than a single period

grating or by using prism coupling.

We analyze periodic arrays of frequency selective surfaces (FSSs) built from the split ring

resonators (SRRs) and CSRRs. FSSs are two-dimensional periodic structures that behave

like either passband or stop band filters in the microwave frequency band. SRRs are ar-

tificially created structures with non-magnetic loops and small gaps between them. Using

COMSOL Multi-physics, we investigate the transmission characteristics of such structures

with variation of the physical parameters gap width, dielectric constant, gap separation, and

incident angle. This analysis offers a new approach in the design of meta-material based

radio frequency(RF) devices.

We present a metamaterial-based design of large scale antennas for massive multiple input

and multiple output (MIMO) communication systems. The reliable data link and better per-

formance over modern fifth generation (5G) wireless communication systems is possible with

large numbers of such adaptive antennas. The miniature metamaterial antennas are best for

practical implementation of such large antenna arrays. We investigate the design of meta-

material antennas and analyze the S-parameter, radiation pattern, and define mathematical

relationship to find the correlation coefficient and diversity gain.
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CHAPTER 1

INTRODUCTION

In this thesis the interaction of light with materials with an aperiodic index profile is

examined. We are mainly interested on two major goals, the design of omnidirectional re-

flector and a surface grating capable of broadband coupling of light to surface and guided

waves. The specific aperiodic profile is the maximal length sequence(MLS. An MLS con-

tains all possible combinations of a binary sequences save one; and it has a uniformly flat

frequency response except for a DC offset. The aperiodic index profile is studied here in two

forms. First, an optical multilayer consisting of alternating layers two different refractive

index materials in which the layer thicknesses have an MLS pattern. We explore the feasi-

bility of creating a functional omnidirectional reflector across all wavelengths in the visible

without the necessity of materials with extremely high index contrast. Periodic dielectric

multilayers act as near perfect reflectors over a limited wavelength and angular range and

provide excellent reflectivity, low absorption loss, and a high degree of robustness compared

to metallic reflectors [72]. However, periodic dielectric multilayer reflectors are not highly

reflective of light coming from any direction and polarization. In general, the range of re-

flected wavelengths shifts to another wavelength the blue end of the spectrum at angles away

from normal incidence. An ideal omnidirectional dielectric multilayer reflector would have

near perfect reflection for all wavelengths in a given range and at all incident angles and

any polarization. In the visible range, metallic mirrors from materials such as silver and

aluminum have such properties [73, 74]. The goal here is to make a metallic-like reflector

from a multilayer structure using the deterministically pseudo-random maximum length se-

quence thickness profile. Our results show that it is possible to create an MLS structure with

high average reflectivity across the entire visible spectrum (400 nm - 700 nm) at all inci-

dent angles and polarizations. Further, we compare the reflection characteristics of dielectric

multilayers with metallic reflectors whose refractive index is based on a Brendel-Bormann
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(BB) model.The comparison shows that a seventh order MLS aperiodic multilayer exhibits

slightly higher average reflectivity over the visible spectum than silver or aluminum metallic

reflectors.

The second major objective is to explorer a surface grating profile which possesses an MLS

pattern.We posit that such a MLS grating surface structure will permit coupling of a broad

angular range of monochromatic light or a wide spectral range of collimated light into Bloch

surface waves on a (PBG) multilayer. We investigate the characteristics of MLS grating

coupling by varying material refractive index, incident angle, and operating wavelengths

1.1 Dissertation Objective

Our proposed computational investigation examines the response of optical multilayers con-

sisting of alternating high and low refractive index materials with a thickness profile deter-

mined by a pseudo-random maximum length sequence (MLS). The major objectives can be

classified as MLS dielectric multilayer reflector design and MLS Bloch surface wave coupling.

These objectives are briefly described as

• The first aim of our research is to demonstrate that such multilayers have higher

reflectivity over a broader bandwidth than periodic multilayers with the same index

contrast and number of layers. For periodic multilayers, the forbidden transmission

bandwidth, the photonic band gap of the one dimensional photonic crystal, is set by

the index contrast between the two materials. Higher index contrast leads to band gaps

with broader frequency coverage. A maximum length sequence (MLS) is a two-level

pseudo-random binary sequence which has a uniformly flat frequency response except

for a DC offset [1]. The flat frequency response indicates that these sequences contain

equal amplitudes of all possible periodicities [2–4]. We posit that a multilayer using

a thickness profile determined by an MLS will have a broader range of periods and,

hence, will exhibit a wider bandgap than a periodic system of the same materials and

number of layers.
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• The second objective is to explorer a method of broadband coupling to BSWs using

maximum length sequence (MLS) grating structures on the top of multilayer structure.

The MLS grating has a superposition of a broad range of periodicities which should

permit coupling of a broad angular range of monochromatic light or a wide spectral

range of collimated light into Bloch surface wave on a photonic band gap multilayer.

1.2 Multilayers and 1-D Photonic Band Gaps

When electromagnetic waves propagate through a multilayer structure, reflection, refraction,

absorption, and interference determine the transmission and reflection. For some particular

wavelength of light the multiple reflections from each layer add constructively. In this case the

overall reflection of system reaches almost unity and forms a so-called perfect dielectric mirror

for that particular wavelength. Such periodic multilayer structures are commonly known

as one-dimensional photonic crystals and the range of wavelengths over which the system

is highly reflective is called the photonic band gap (PBG). However, such ideal infinitely

extended photonic crystals can not exist in reality and we have to truncate. Truncation

of the photonic crystal introduces a new electromagnetic mode known as a Bloch surface

wave (BSWs) BSWs are modes that propagate along the interface of a truncated dielectric

multilayer structure and a homogeneous medium. The electromagnetic field in the layered

media can be expressed as

E(z, x, t) = EK(z)exp(jKz)exp(j(βx− ωt)) (1)

where EK(z) the electric wave amplitude is a periodic function of z. The z axis is normal

to the interface and β is the propagation constant in the plane of the multilayer, and K is a

complex wave vector that can be expressed as K = mπ
Λ
±jKi [5]. Here, Λ is the period of the

multilayer and m is an integer. For the finite periodic medium, with a particular wavelength

and incident angle, an exponentially decaying wave exists in both external media bounding

the interface and the maxuimum electric field exists at the surface. Such modes confined
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at the interface of multilayer are called Bloch surface waves. BSWs were predicted and

experimentally observed using a prism coupling configuration in SiO2 and TiO2 multilayer

structures [7,8]. Bloch surface waves on low-loss dielectric stacks act as a promising alterna-

tive to surface plamson polaritons SPPs which are a similar surface bound electromagnetic

mode on the surface of metals. The advantages of BSWs are due to the flexibility in op-

erating wavelength range, easier experimental realization, larger figure of merit (FOM) for

sensing applications, and suitability in many sensing applications. The benefits of BSWs

provide a wider ranges of applications such as in photonic integrated circuits [9], label free

bio-sensing [10], surface enhanced Raman spectroscopy [11], optical fiber tip sensors [12], ra-

diation continuum modes [13], optical slow light devices [14], florescence based detection [15],

and slot waveguides [16].

Prism

Incident Light Reflected Light

θinc

(a) (b)

Exponentially decaying 
BSW wave

Medium 1

Defect layer

TiO2
SiO2

Figure 1: BSW excitation (a) using a prism configuration and (b) The reflection character-

istics. The reflectivity dip occurs when light is coupled into a BSW.

Figure 1 shows the BSW excitation using a prism coupling configuration in a multilayer

structure design using alternate low and high refractive index materials. The exponentially

decaying wave can be observed at the top defect layer of these structure for particular inci-
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dent angle and wavelength. Figure 1 (b) shows the reflection characteristics which exhibits

a narrow dip at an incident angle of around 66 degrees. The reflectivity dip occurs when the

incident light through the prism generates BSWs. These BSWs are non-radiative excita-

tions with larger momentum than light at the same frequency. This momentum mismatch

requires some phase-matching mechanism to couple to light. Most methods in are based on

surface wave excitation using prism-coupling or a periodic grating structure on the top of

the active medium [17]. In both cases, the incident wave is coupled into a surface mode of

the structure only when the parallel-wave-vector phase matching condition is satisfied [18].

For the prism multilayer configuration, with no grating, we can express KBSW = ηprism×
2π
λ
sinθres. However, this method requires a bulky prism which is not practical for the design

of nanoscale optical devices. So, the grating surface at the top of multilayer structure that

supports the Bloch surface wave is a desirable alternative to the prism configuration. The

wave vector phase matching criterion for grating coupling can be expressed as

kBSW = k0ηsupsin(θinc) +
2πm

Λg

(2)

where kBSW is BSW wave vector, k0 = 2πm
λ0

is free space wave vector, ηsup is the refractive

index of superstrate, θinc is the incident angle, m is an integer, and Λ is the grating period.

For a given wavelength λ, m=1 and θinc > 0, the BSW can only be excited when the grating

period Λg satisfies the condition of λ
Λ
< kBSW

k0
+ 1.Thus the range of grating periods is in the

range of kBSW

k0
< λ

Λ
< kBSW

k0
+ 1. Now, we briefly discuss about the fundamental principle

behind the maximum length sequence generation, multilayer impedance formulation, MLS

grating design for BSWs excitation and terahertz time domain system.

1.3 Maximum Length Sequence

The properties of maximum length sequences have been applied in a variety of settings from

signal processing, architectural acoustics, and cellular communications [19–22]. In acoustics,

the MLS is used to measure impulse response and reverberation-decay inside a room or a
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theatre [19]. Higher signal−to−noise ratio (SNR) is possible in a noisy measurement system,

as the MLS frequencies are distributed randomly over the entire spectrum. Low noise im-

pulse response at the output is calculated using a cross correlation procedure [21]. Similarly,

in wireless communication, using code division multiple access (CDMA), user data is spread

independently with MLS (commonly called spread spectrum) over the entire bandwidth at

the transmitter side. On the receiver side, the signal is despread using a synchronization

replica of the MLS sequence [22].

Maximum length sequences are binary sequences also known as pseudo-random binary

sequences (PRBS) that are commonly generated by a cyclic shift of m-sized linear feedback

shift registers (LFSR) along with a primitive polynomial. A primitive polynomial is an

irreducible polynomial that can produce all the sequences of an extension field from a base

field. Figure 2 shows the shift register arrangement for the generation of a 63-element

(N = 26 − 1) long sequence (which, as we show below, corresponds to 32 distinct layers)

using 6 LFSR and an XOR gate. Computationally, these sequences can be generated using

the recursive formulation Sk+3 = Sk+1⊕Sk. Here, the ⊕ symbol represents XOR (modulo-2

sum) operation [1–3].

All MLS sequences produce a flat frequency response. The frequency response for N=6

is illustrated in Figure 2 (b). The MLS exhibits very low values of correlation except at zero

offset, a feature that is used in the acoustic impulse and spread spectrum communication

applications. Figure 2 shows the flat Fourier spectrum, which is the relevant feature in our

applications. This feature shows that all periodicities are equally contained in the sequence.



7

Figure 2: (a) MLS generation using shift registers and an XOR gate. (b) Flat Fourier spectra

for 6th order MLS multilayer structure.

To make the generation process clear we present a simple example for the N=3 MLS

sequence in Figure 3. The process begins with the seed for N=3 which consists of three

elements equal to one. The next element in the sequence is generated by taking the XOR of

the first two elements; the taps in this example are at positions 1 and 2. The result 1 ⊕ 1 =

0 is highlighted in blue. The sequence shifts to the left and the fifth element of the sequence

is the ⊕ of elements 2 and 3. The process continues until the sequence replicates the seed at

which point the sequence will repeat. The existence of all periods but one in the generated

sequence can be shown by going through the sequence grouping the elements in sets of three.

This process shows that every possible permutation of three elements occurs once in the

sequence except for [0 0 0]. Each 1 and 0 in the generated sequence represents high and low

refractive index materials respectively. Grouping the like elements leads to the values [3 2 1

1] for N=3.To convert this set of values into a multilayer involves selecting a minimum thick-

ness for the high and low index layers dH and dL. Typically for the visible reflector we chose

dH = λ/4nH and dL = λ/4nL where nH and nL are the refractive index values of the two

materials respectively. The multilayer thicknesses would then be given by [3dH 2dL 1dH 1dL].

For these simulations we chose λ to be 550 nm resulting in high reflectivity across the visible.
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Table 1 defines the MLS sequence in terms of order, tap, and number of distinct layers. The

6th order MLS multilayer structure along with taps at 1 and 2 has 32 distinct alternate high

and low refractive index materials derived from the 63 sequence elements. As for the simple

N=3 case illustrated in Figure 2, to convert the MLS sequence to multilayer thicknesses the

1 and 0 are taken to correspond to the two different refractive index materials. Thus, the

final 7 element sequence for N=3 is expressed as [3 2 1 1] with 4 distinct layers. The 6th order

MLS multilayer structure thickness is determined by following alternate high and low refrac-

tive index sequence: [6, 5, 1, 4, 2, 3, 1, 1, 1, 2, 4, 1, 1, 3, 3, 2, 1, 2, 1, 1, 2, 1, 3, 1, 2, 2, 2, 1, 1, 1, 1, 1].

This sequence length is 63 (26-1) which converts to 32 distinct high and low index layers.

Figure 3: Illustration of the generation process for the N=3 maximal length sequence.

Table 1: Orders of MLS sequence generation

Order(N) Tap Sequence Total single layers Distinct layers
3 1,2 [3 2 1 1] 7 4
4 1,2 [4 3 1 2 2 1 1 1] 15 8
5 1,3 [5 3 2 1 3 1 1 1 1 4 1 2 1 1 2 2] 31 16
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For the calculations in this work we chose SiO2 and TiO2 as the low and high refractive

index materials respectively because these materials are compatible and commonly used to

create multilayer structures. The wavelength dependent refractive index of SiO2 and TiO2

are given below. The expression for the refractive index for SiO2 and TiO2 with λ ranges

from 0.2 µm to 4.0 µm is expressed as [23,94]

nSiO2 =

(
1 +

0.6962λ2

λ2 − 0.06842
+

0.4080λ2

λ2 − 0.11622
+

0.8975λ2

λ2 − 9.89622

) 1
2

(3)

and

nTiO2 =

(
5.913 +

0.2441

λ2 − 0.0803

) 1
2

(4)

respectively. In these relations the wavelength is expressed in micrometers.

The loss factor is very low and constant in both SiO2 and TiO2 over the entire visible

frequency range from 400 nm to 700 nm. In TiO2 the loss increases rapidly for wavelengths

shorter than 350 nm [24]. We accounted for the loss in SiO2 and TiO2 by adding an imaginary

term to the dielectric constant of 0.0007i for TiO2 and 0.0001i for SiO2. These values have

been shown to give good agreement between simulation and experimental studies of Bloch

surface wave generation in SiO2 and TiO2 multilayers [8]. Typical loss values in visible

frequency range is in the range of 3e−07 for SiO2 and for 5.28333328e−08 for TiO2 [24,25].

1.4 MLS Multilayer Structures

The dielectric multilayer reflector is a structure built of alternating layers of high and low

refractive index materials with a periodicity assumed here to be along the z-direction. Fig-

ure 4(a) shows the general layout of a one-dimensional photonic crystal or Bragg stack,

which consists of a dielectric multilayer having high refractive index ηH with length LH , low

refractive index ηL with length LL, left medium ηa and right medium ηb. The substrate

is assumed to be semi-infinite. In contrast to the quarter-wavelength structure, the MLS

multilayer is designed using high and low refractive index materials with thicknesses set by

an MLS sequence. Figure 4(b) illustrates the 6th order dielectric MLS multilayer structure
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designed using the recursive formulation Sk+3 = Sk+1 ⊕ Sk, Where the symbol ⊕ represents

the binary exclusive or(X-OR) operation. MLS dielectric reflector design has advantages

over alternating quarter-wave multilayer (Bragg stack) designs. These structures have flat

frequency spectra for desired frequency ranges, and produce broad reflection characteristics

for a wide range of angles of incidence.

The optical thickness for the Bragg stack is taken as a quarter wavelength that satisfies

LHηH=ηLLL=(λ
4
) where λ is the wavelength in vacuum. The incident wave Ei+, and reflected

wave Ei− observed at the left end while transmitted wave Ei+ at right boundary. The

amplitude reflection (Γ = Ei−
Ei+

) can be calculated using recursive propagation of impedances

or reflection responses at interfaces.

ρ =
ηH − ηL
ηH + ηL

, ρ1 =
ηa − ηH
ηa + ηH

, ρM+1 =
ηH − ηb
ηH + ηb

(5)

Here, the reflection coefficient is calculated using following parameters: N = 15, layers

(2N +1 = 31) , ηH(TiO2) = 2.6479, ηL(SiO2) = 1.4599, ηa = 1.0, ηb = 1.52 and λ = 550nm.

η
a ηH
LH

ηL
LL

ηL
LL

ηH

LH

ηb

E1+-E2+- EM+1,+-

EM+1,+

1
- -

M+1

Z1 Z2 ZM+1

(a)

(b)

x
z

GlassAir

TiO2SiO2

Figure 4: (a) The dielectric alternate high and low refractive index multilayer structure. (b)

The 6th order MLS multilayer structure model.

Z2 =
η2
L

Z3

=
η2
L

η2
H

Z4 = (
ηH
ηL

)4Z6.... = (
ηH
ηL

)30ηb (6)
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Therefore, the generalized impedance is expressed as

Z2 = (
ηH
ηL

)2Nηb (7)

The most common multilayer in optical reflection applications is the periodic Bragg

reflector built with repeated identical quarter-wave bilayers of low and high refractive index

on a substrate (ηa) [26,27]. Now using Z1 =
η2
H

Z2
, the generalized reflection coefficient can be

expressed as

Γ1 =
ZL − ηa
ZL + ηa

=
1− (ηH

ηL
)2N η2

H

ηaηb

1 + (ηH
ηL

)2N η2
H

ηaηb

(8)

We obtain amplitude reflectivity Γ1 = −0.9999 and Γ2
1 = 99.98 as the intensity reflection

at the target wavelength. The simplified expression for ∆λ is expressed as:

∆λ

λ
=
π

2
[

1

acos(ρ)
− 1

acos(−ρ)
] (9)

With this expression we find ρ = 0.2894 and ∆λ=213.11 nm for given ηH and ηL. There-

fore, this dielectric acts as broadband reflector and is, in principle, capable of reflecting

wavelengths ranging from 443.5 nm to 656.6 nm (nearly equal to visible frequency range).

The shortcoming of this analytical approach is that the wavelength dependence of the re-

fractive indices of the constituent materials is not taken into account and the calculation

is valid only for normal incidence. The calculations in the next section show the reflection

of the Bragg stack for wavelength-dependent indices, s- and p-polarization, and for angles

away from normal incidence.There is no easy analytical method to derive the reflection for

MLS as in the case of the periodic quarter-wave stack and thus, we used a computational

approach as described in the following section.
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1.5 Bloch Surface Wave Excitation using a Maximum Length Se-

quence Grating

Diffraction is a general wave phenomena that occurs if a wave front encounters an obstacle,

and the portion of wave pass beyond the object interfere to create a diffraction patterns.

A diffraction grating is a repetitive array of diffracting elements that produce a periodic

alteration of amplitude and phase of the transmitted wave [28]. Diffraction gratings direct

light in specific directions as determined by the angle and wavelength of incident light. The

diffraction characteristics depends on the period of diffraction grating and the materials

used in substrate and superstrate. In the studies here the periodic grating is designed as a

corrugation at the surface of alternating quarter-wave high and low index multilayer struc-

tures. The corrugation profile of the grating structure is designed using an MLS sequence

formulation. Because of the broad range of grating periods, we assume that the MLS diffrac-

tion grating is capable of coupling a broad angular range of monochromatic light or a wide

spectral range of collimated light into Bloch surface waves on PBG multilayer structures.

When a plane electromagnetic wave is incident on a periodic diffraction grating structure

at an angle of θ, the incident wave intensity is diffracted, reflected, or transmitted. The

diffraction wavefronts can be found for wavelengths short compared to grating period (Λ).

The optical path difference of transmitted diffracted wavefront for positive interference can

be expressed in terms of integer multiple of wavelengths [29]. Mathematically,

mλ = Λ(ηIIsinβm − ηIsinθ) (10)

where η is refractive index of each medium,m = ...,−2,−1, 0,+1,+2.... are the diffraction

orders, βm is transmitted diffracted beam angle, and I and ii represent the first and second

layer. For m = 0, The angle of refraction, β0 described by Snell’s law as,

β0 = arcsin(
ηI
nII

)sinθ (11)
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Figure 5: Geometry for periodic rectangular grating showing diffraction for incident plane

wave.

The maximum values of sine function varies between−1 and 1, the higher order diffraction

order satisfies the condition

−(ηI + ηII) <
mλ

Λ
< ((ηI + ηII) (12)

The extended criteria for non-transmitted diffracted beam of order of 2 or more is

2λ

Λ
> (ηI | sinθ |) + ηII) (13)

The additional defect layer at the top of multilayer structure acts as a suitable active

medium for Bloch surface waves [7]. A grating on top of this terminating layer allows light to

diffract into BSWs eliminating the need of a bulky prism configuration. The grating profile

couples the incident plane wave into the surface mode of photonic crystal when the parallel

momentum phase matching criteria is satisfied [18].

This grating can be designed using both periodic or aperiodic structures. Here, we design

the grating structure using a maximum length sequence profile. The thickness of grating

profile is defined by the MLS sequence. To convert to multilayer thicknesses the A and B

correspond to the two different refractive index materials. Thus, the final sequence for N=3

can be expressed as [3 2 1 1] [30, 31]. Figure 6 shows the design of a periodic and a order

3 MLS multilayer design. The periodic structure in figure (a) includes the substrate of 16
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alternate multilayer of SiO2 and TiO2 along with grating on top of multilayer. Similarly, the

MLS grating profile is on top of an identical multilayer. The superstrate material refractive

index is varied from 1.32 to 1.34 and the substrate material SiO2 is wavelength dependent

refractive index material.

SiO2
TiO2

ηsup

ηsub

SiO2 grating

(a) (b)

16 Multilayer

Figure 6: Multilayer design with grating defined by (a) Periodic structure (b) MLS structure

at the top of multilayer

1.6 Computational Methods and Tools

There are various computational techniques are used to solve the wave and fields used in

electromagnetics (EM). These methods can be classified as numerical, experimental, and

analytical. Purely analytical solutions are only available for a small subset of problems. Ex-

perimental methods are time consuming and less flexible in terms of parameter variations.

However, combined numerical and analytical methods solve EM problems using computa-

tionally efficient approximations to Maxwell’s equations. The transfer matrix method, finite

difference time domain, transmission line modeling method, method of lines, rigorous coupled

wave analysis, plane wave expansion method, finite element analysis, and method of moments
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are commonly used numerical method to solve electromagnetic problem. The computational

study in EM began with development of modern computer technology. Current powerful

supercomputers greatly reduce the total computational time for more complex electromag-

netic problems. In our research, we are mainly interested in Transfer matrix method (TMM),

Rigorous coupled-wave analysis (RCWA) and Finite element method (FEM). FEM is mostly

used for solving complex geometries and inhomogeneous media in an efficient way [40]. We

used three dimensional COMSOL Multiphysics, which is a cross platform finite element anal-

ysis tool, with a user interface which permits easy specification of the system under study

and that allows the solution of a coupled system of partial differential equations [41]. The

TMM and RCWA methods solve Maxwell’s equations for any number of dielectric layers in a

semi analytical way. We used our own MATLAB based TMM and RCWA implementations

to solve multilayer and grating problems.
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CHAPTER 2

COMPUTATIONAL METHODS AND TOOLS

2.1 Computational methods for the response of multilayers

2.1.1 Transfer matrix method

The transfer matrix method (TMM) is a recursive multilayer calculation method using simple

matrix operations. The EM fields in each layer in a multilayer structure can be represented as

a matrix. The overall response of the multilayer is equivalent to multiplication of each layer

matrix. The reflection or transmission through the layer structure is the sum of reflection or

transmission through each layers. The reflection through each layer is described by Fresnel

equations. [42]

For the formulation of TMM, we start with the set of normalized Maxwell equations

describing the field inside a single, isotropic and uniform layer as [37,39]

∇× E = k0µrH̃ (14)

∇× H̃ = k0εrE (15)

The term k0 is the free space wave number and is equal to 2π/λ0, where λ0 is the free

space wavelength, H̃ is equal to −jη0H is the normalized magnetic field, and η0 is the free

space impedance.

The plane wave solution of these two equation can be written as,

E(r) = E0e
−jk.r = E0e

−jkxxe−jkyye−jkzz (16)

H(r) = H0e
−jk.r = H0e

−jkxxe−jkyye−jkzz (17)

The repeating boundary condition with tangential component of fields dividing on two media

along with phase changes is used to calculate the overall transfer matrix. Fresnel coefficients
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are used to find the the reflected and transmitted waves at an interface between two media.

These can be expressed as

rsij =
ηicosθi − ηjcosθj
ηicosθi + ηjcosθj

(18)

rpij =
ηjcosθi − ηicosθj
ηjcosθi + ηjcosθj

(19)

tsij =
2ηicosθi

ηicosθi + ηjcosθj
(20)

tpij =
2ηicosθi

ηjcosθi + ηjcosθj
(21)

where ηi and ηj are the refractive index of ith and jth layer, the superscripts s and p

represent s-polarized and p-polarized waves, θi and θj are the incident and transmitted angle

respectively. The sine functions are calculated using Snell’s law as ηisinθi = ηjsinθj. Each

time when an electromagnetic wave propagates through the medium, Fresnel’s equations are

used along with phase change associated with propagation distances [43, 44].

The total reflection r is calculated by summing of waves due to multiple reflection in

between first and the last medium. If we are considering three layer with multiple reflection

in second layer, the reflection can be expressed as

r = r12 + t12xt21 (22)

where x can be expressed as

x = eiδ2r23e
iδ2 [1 + r21x];x =

ei2δ2r23

1− ei2δ2r23r21

(23)

Similarly, the transmission can be expressed as

t = t12yt23 (24)

where y can be expressed as
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y = eiδ2 + yr23e
iδ2r21e

iδ2 ; y =
ei2δ2

1− ei2δ2r23r21

(25)

The phase difference at second layer can be expressed as

δ2 =
2πd2

λ
η2cos(θ2) (26)

The total transmission and reflection for TE waver is is calculated by simplifying the

above equations

t =
ti−1,i ∗ ti,i+1e

jδi

1 + ri−1,i ∗ ri,i+1ej2δi
(27)

r =
ri−1,i + ri,i+1e

j2δi

1 + ri−1,i ∗ ri,i+1ej2δi
(28)

where i represent reflected region (layer) and (i + 1) represents the transmitted layers. In

general form these above equation can be represented as

[
xi
yi

]
= M̃i

[
xi+1

yi+1

]
(29)

M̃i =
1

ti−1,i

[
1 ri−1,i

ri−1,i 1

] [
e−jδi 0

0 e−jδi

]
(30)

In this case two neighbouring layer shares the one interfaces. In order to find the field

inside the n+1 right layer, we have to multiply from the right with the matrix

1

tn,n+1

[
1 rn,n+1

rn,n+1 1

]
(31)

The overall system transfer matrix M̃ is the product of each layer matrix and matrix rep-

resented by Equation 28. Mathematically, the system matrix with N layer can be expressed

as

M̃ = M̃1 ∗ M̃2...M̃N ∗
1

tn,n+1

[
1 rn,n+1

rn,n+1 1

]
(32)
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2.1.2 Brendel–Bormann Model

Brendel and Bormann (BB) developed a model for a dielectric function by using a Gausian

complex error method that reduces an error and provides better results than Lorentz–Drude

model functions. Mostly, these dielectric function models are used to find the refractive

index and absorption coefficients in certain frequency ranges. We have implemented the

BB model to calculate the refractive index of metals (silver and aluminium) in the visible

frequency spectrum and compare their reflection characteristics with 7th order maximum

length sequence dielectric multilayer structures. By following the mathematical formulation

from [57], the complex refractive index for any dielectric or metal can be expressed as

ˆεr(ω) = ε̂fr (ω) + ε̂br(ω) (33)

where ε̂fr (ω) and ε̂br(ω) represent the free electron and bound electron effects with oscillator

strength f0 and damping constant Γ0. The approximate dispersion properties described by

Drude model [61] is given by

ε̂fr (ω) = 1−
Ω2
p

ω(ω − iΓ0)
(34)

where Ωp is associated with intra band transition and can be expressed as Ω2
p =
√
F0ωp; ωp

is the plasma frequency. With an additional Lorenzian term described by a semiquantum

model, the Lorentz model is given by,

ε̂br(ω) =
k∑
j=1

fjω
2
p

(ω2
j − ω2) + iωΓj

(35)

where k is the number of oscillators. The Brendel-Borman model uses a Gaussian line shape

function which provides a better result than a Lorentzian shape function. The Lorentzian ex-

hibits higher absorption. For the same weight and full-width half-maximum, the Lorentzian

wings are usually higher and more extended as compared to a Gaussian. Therefore, the

Lorentzian term is replaced by the BB polynomial function,χj and that can be expressed
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as [57],

ε̂r(ω) = 1−
Ω2
p

ω(ω − iΓ0)
+

k∑
j=1

χj(ω) (36)

where χj(ω) is

χj(ω) =
1√
2πσj

∫ +∞

−∞
exp[−(x− ωj)2

2σ2
j

]×
fjω

2
p

(x2 − ω2) + iωΓj
dx (37)

here k is the number of BB oscillators used to interpret the inter-band part of the spectrum.

This flexible analytic function provided by BB model has a capability to model a variety of

absorption profiles by deriving different wing shape functions. Equation 37 can be solved

analytically and the solution of this equation is available in most versions of scientific software

like Mathematica, python or C++ etc [58, 59].The real and imaginary parts of the complex

refractive index N̂ = η − ik, can be calculated as

η =
1√
2

[(ε2r1 + ε2r2)1/2 + εr1]1/2 (38)

k =
1√
2

[(ε2r1 + ε2r2)1/2 − εr1]1/2 (39)

where εr1 and εr2 relative refractive index of medium 1 and medium 2 respectively.

2.2 Computational methods for the response of gratings

2.2.1 Rigorous coupled wave analysis

The rigorous coupled wave analysis (RCWA) is commonly used method to solve Maxwell

equations for periodic diffraction grating structures. It has been used to analyze the trans-

mission and reflection characteristics of different metallic and dielectric wave guide struc-

tures [35]. RCWA solves Maxwell’s equations for any number of dielectric layers in a semi

analytical way in the direction of wave propagation. It uses transformation of the wave

equation into eigen vectors of a set of ordinary and partial differential equations. These
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eigen vectors can be related to Fourier expansion of permeability(µr), permittivity(εr) and

wave propagation characteristics of grating materials [36].

For the formulation of the RCWA semi-analytical method, we start with a set of normal-

ized Maxwell equations describing the field inside the single, isotropic and uniform layer of

grating device as [37,39]

∇× E = k0µrH̃ (40)

∇× H̃ = k0εrE (41)

The term k0 is the free space wave number and is equal to 2π/λ0, where λ0 is the free

space wavelength, H̃ is equal to −jη0H is the normalized magnetic field , and η0 is the

free space impedance. The coupled matrix form can be obtained by expanding these two

vector equations 40 and 41 into six different partial differential equation and the eliminating

z component from these equations as,

d

dz′

[
sx
i(z
′)

sy
i(z
′)

]
= Pi

[
ux

i(z
′)

uy
i(z
′)

]
, (42)

d

dz′

[
ux

i(z
′)

uy
i(z
′)

]
= Qi

[
sx
i(z
′)

sy
i(z
′)

]
, (43)

where z′ = k0z is a normalizing component.The sxi , s
y
i ,uxi and uxi are the column vectors

containing the complex amplitudes of spatial harmonics for electric and magnetic fields

respectively. Typically the electric field Ex can be represented as,

Ex
i (x, y, z) =

∞∑
m=−∞

∞∑
n=−∞

sxi,m,n(z)e−j(k
x
m,n+kym,n) (44)

Hx
i (x, y, z) =

∞∑
m=−∞

∞∑
n=−∞

uxi,m,n(z)e−j(k
x
m,n+kym,n) (45)

where Kx and Ky are diagonal matrices can be represented as,

kxm,n = kxinc −
2πm

Λx

, m = −∞, ...,−2,−1, 0, 1, 2, ...,∞ (46)
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kym,n = kyinc −
2πn

Λy

, n = −∞, ...,−2,−1, 0, 1, 2, ...,∞ (47)
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Figure 7: (a) Scattering matrix modeling for two layer grating (b) Redheffer star product.

The quantities P and Q are represented as,

Pi =

[
Kxε

−1
i,zKy µi,z −Kxε

−1
i,zKx

Kyε
−1
i,zKy − µi,z −Kyε

−1
i,zKx

]
(48)

Qi =

[
Kxµ

−1
i,zKy εi,z −Kxµ

−1
i,zKx

Kyµ
−1
i,zKy − εi,z −Kyµ

−1
i,zKx

]
(49)

Where εi,z and µi,z are Toeplitz convolution matrices in Fourier space.

Again differentiating the equations 42 and 43 with respect to z′, we can write the semi

analytical equation as,

d2

dz′2

[
sx
i(z
′)

sy
i(z
′)

]
= Ω2

[
sx
i

sy
i

]
, (50)

where

Ω2 = PQ (51)

After calculating the eigen vector W and eigen values λ2 of Ω2, the general solution of

second order differential equation can be simplified further for analytical solution as,

V = QWλ−1
i (52)
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Ψi(z
′) =


sx
i(z
′)

sy
i(z
′)

ux
i(z
′)

uy
i(z
′)

 =

[
Wi Wi

−Vi Vi

] [
e−λiz

′
0

0 eλiz
′

] [
c+

c−

]
(53)

where W and V are the eigen modes of electric and magnetic fields, eλiz
′
, e−λiz

′
, c+ and

c− are forward and backward propagation and amplitude coefficient of eigen modes . We

can solve equation 53 using the boundary value scattering problem for each layer. The

scattering parameters Si11 (reflection coefficient), Si12 (transmission coefficient), Si21 and Si22

are the matrices that define the scattering characteristics between each layer and among

eigen modes [37–39]. These matrices can be related as ,

[
c−1
c+

2

]
=

[
S

(i)
11 S

(i)
12

S
(i)
21 S

(i)
22

] [
c+

1

c−2

]
, (54)

The multilayer scattering parameter can be derived by combining multiple scattering

matrix using Redheffer star product method [38]. This method allowed to eliminate common

mode coefficient and relate all the scattering matrix as star product, SAB = SA ⊗ SB as[
S

(AB)
11 S

(AB)
12

S
(AB)
21 S

(AB)
22

]
=

[
S

(A)
11 S

(A)
12

S
(A)
21 S

(A)
22

]
⊗

[
S

(B)
11 S

(B)
12

S
(B)
21 S

(B)
22

]
(55)

After calculating the Redheffer star product for all layers, the global scattering matrix

including reflection and transmission scattering matrix is represented as

S(global) = S(Refl) ⊗ S(gratingdevice) ⊗ S(Trans) (56)

Where S(Refl)can be obtained with Li = 0, V1 = Vi = Vref , V2 = V0, andW2 = W0,W1 =

Wi = Wref and S(Trans) can be obtained with Li = 0, V2 = Vi = VTrans, V1 = V0, andW1 =

W0,W2 = Wi = WTrans.
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(a) (b)

Figure 8: Diffraction efficiency versus normalized groove depth ( d
λ
) for (a) Λ = 2λ and

d = 10λ (b) Λ = 10λ and d = 10λ, with TE and TM polarization (θ = 30 degree, η1 = 1

and η2 = 1.45

(a) (b)

Figure 9: Diffraction efficiency versus normalized groove depth ( d
λ
) for (a) Λ = 5λ and

d = 30λ (b) Λ = 2λ and d = 50λ,with TE and TM polarization (θ = 30 degree, η1 = 1 and

η2 = 1.45
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This global scattering matrix relates the input incident wave and transmitted wave as[
cRef
cTrn

]
=

[
S

(global)
11 S

(global)
12

S
(global)
21 S

(global)
22

] [
cinc
0

]
, (57)

where

cinc = W−1
Refs

inc
T (58)

The the sincT related to input incident electric wave that can be related to polarization vector

and delta function.

sincT =

[
pxδm,n,0
pyδm,n,0

]
, (59)

The reflection and transmission coefficient is calculated as[
Rx

Ry

]
= WReflcRefl = WReflS

(global)
11 cinc

Rz = −K−1
z,Refl(KxRx + KyRy)

(60)

[
Tx

Ty

]
= WTrncTrans = WTransS

(global)
21 cinc

Tz = −K−1
z,T rans(KxTx + KyTy)

(61)

where

Kz,Refl = −
√
µr,Reflεr,ReflI−K2

x −K2
y

Kz,T rans =
√
µr,T ransεr,T ransI−K2

x −K2
y

(62)

The diffraction efficiencies are related as

DERefl = Ri ∗Ri ∗Re(Kz,Refl)/Kz,inc

DETrans = Ti ∗ Ti ∗Re(Kz,TransµRefl)/(Kz,incµTrans)

(63)

The the equation 63 should satisfy for lossless grating design∑
i

DEi,Refl +DEi,T rans = 1 (64)
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(a) (b)

Figure 10: Diffraction efficiency versus Number of harmonics, N for (a) Λ = λ and d = λ

(b) Λ = 2λ and d = 15λ,with TE and TM polarization (θ = 30 degree, η1 = 1 and η2 = 1.45

(a) (b)

Figure 11: Diffraction efficiency versus Number of harmonics, N for (a) Λ = λ and d = λ

(b) Λ = λ and d = 50λ, with TE and TM polarization (θ = 30 degree, η1 = 1 and η2 = 1.45

Figure 8 and Figure 9 show the plot of diffraction efficiency versus normalized depth

for a periodic grating structure. This includes the diffraction efficiency for both TE and

TM waves incident at an angle of 30 degree. The diffraction efficiency is more frequently

changed and decreased for higher values of D
λ

for both TE and TM wave. Similarly, the
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Figures 10 and 11 illustrate the plot for efficiency versus number of harmonics with different

d
Λ

and Λ values. The more converged and stable values of diffraction efficiency are found for

d = λ and Λ = λ. In contrast, the continuously decreasing unstable diffraction efficiency is

obtained with higher harmonics for d = 50 ∗ λ and Λ = λ.

All these diffraction efficiencies results are obtained by using the Electromagnetics Python

(EMpy) tool. The EMpy tool is a python package commonly used to solve isotropic RCWA

algorithm and used to produce the frequency response of different structures [35, 45,46].

2.2.2 Finite-Difference Time-Domain Method

The Finite-Difference Time-Domain method (FDTD) is one of most commonly used full wave

techniques to solve electromagnetic problems. This is the simplest time domain technique

that can include wide frequency range coverage even for three dimensional problems. This

method is widely useful to solve problems such as electromagnetic absorption, radiation,

scattering, antennas, radar cross sections, non linear materials etc. The FDTD is a grid

based method invented by K.Yee, where time dependent Maxwell equations are discritized

both in space and time using central approximations [62–66]. The main idea of the Yee

algorithms is to solve the finite difference equations using a leapfrog techniques. First,

calculate the H field in a given space and at given time then find the E field in a given

space and at next instant of time and then repeats the process again and again until to

reach steady state final condition. Figure 12 and 13 illustrates the 3-D and 2-D Yee lattice

structure to solve electromagnetic problems [67]. The 3-D Yee latice is a cubic grid voxel

(∆x × ∆x × ∆x) where three component of E are along the edges and components of H

are along the faces of cube. Similarly, for 2-D the z component is set zero keeping other

x and y component for both E and H fields. By following the mathematical formulation

from [63],the normalized time-dependent Maxwell’s curl equations are

∇× E = − [µr]

c0

∂H̃

∂t
(65)
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∇× H̃ =
[εr]

c0

∂E

∂t
. (66)

Figure 12: FDTD 3-D Yee Lattice

Figure 13: FDTD 2-D Yee Lattice

The final expanded form of Maxwell Equations 65 and 66 can be expressed as

∂Ez
∂y
− ∂Ey

∂z
= −µxx

c0

∂H̃x

∂t
(67)

∂Ex
∂z
− ∂Ez

∂x
= −µyy

c0

∂H̃y

∂t
(68)

∂Ey
∂x
− ∂Ex

∂y
= −µzz

c0

∂H̃z

∂t
(69)

∂H̃z

∂y
− ∂H̃y

∂z
=
εxx
c0

∂Ex
∂t

(70)
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∂H̃x

∂z
− ∂H̃z

∂x
=
εyy
c0

∂Ey
∂t

(71)

∂H̃y

∂x
− ∂H̃x

∂y
=
εzz
c0

∂Ez
∂t

(72)

To better understand the theory of the method, we will start by considering simple

one-dimensional Maxwell’s equations for a wave traveling in the z direction as

∂Ex
∂t

= − 1

ε0

∂Hy

∂z
(73)

∂Hy

∂t
= − 1

µ0

∂Ex
∂z

(74)

By considering Ex and Hy shifted in space by half a cell and in time by half a time step

and using Taflove normalization of the E field Ẽ =
√

ε0
µ0
E and some simplication, the above

Equations 73 and 74 can be written as

En+1/2
x (k) = En−1/2

x (k)− 1
√
ε0µ0

∆t

∆z
(Hn

y (k − 1/2)−Hn
y (k + 1/2)) (75)

Hn+1
y (k + 1/2) = Hn

y (k + 1/2)− 1
√
ε0µ0

∆t

∆z
(En+1/2

x (k)− En+1/2
x (k + 1)) (76)

The parameter step size ∆z can be chosen that at least 10 cells per wavelength and the

time step is also chosen according to stability considerations for the wave propagation. The

stability criteria analyzed in by Courant, Friedrichs and Levy and Von Neumann, also called

CFL (for Current, Friedrich and Levy), can be expressed [69,70] as

∆t ≤
[
vmax.

√
1

∆x2
+

1

∆y2
+

1

∆z2

]−1

(77)

where vmax is the maximum velocity of light propagation. In case of a uniform mesh ∆x =

∆y = ∆z , the CFL criterion becomes for 3D

∆t ≤ 1

vmax

√
∆

3
(78)
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. The final step to implementing any FDTD algorithm is figuring out how to handle the

boundaries. The simplest boundary condition (BC) are called the Dirichlet boundary and

Neumann boundary conditions, and works by fixing the end points of a simulation to some

specified value [68]. Similarly, for 3-D FDTD, the finite difference approximations for 3-D

FDTD are as follows

Ei,j+1,k
z |t − Ei,j,k

z |t
∆y

−
Ei,j,k+1
y |t − Ei,j,k

y |t
∆z

= −µ
i,j,k
xx

c0

H̃ i,j,k
x |t+ ∆t

2
− H̃ i,j,k

x |t−∆t
2

∆t
(79)

Ei,j,k+1
x |t − Ei,j,k

x |t
∆z

− Ei+1,j,k
z |t − Ei,j,k

z |t
∆x

= −
µi,j,kyy

c0

H̃ i,j,k
y |t+ ∆t

2
− H̃ i,j,k

y |t−∆t
2

∆t
(80)

Ei+1,j,k
y |t − Ei,j,k

y |t
∆x

− Ei,j+1,k
x |t − Ei,j,k

x |t
∆y

= −µ
i,j,k
zz

c0

H̃ i,j,k
z |t+ ∆t

2
− H̃ i,j,k

z |t−∆t
2

∆t
(81)

H̃ i,j,k
z |t+ ∆t

2
− H̃ i,j−1,k

z |t+ ∆t
2

∆y
−
H̃ i,j,k
y |t+ ∆t

2
− H̃ i,j,k−1

y |t+ ∆t
2

∆z
=
εi,j,kxx

c0

Ei,j,k
x |t+∆t − Ei,j,k

x |t
∆t

(82)

H̃ i,j,k
x |t+ ∆t

2
− H̃ i,j,k−1

x |t+ ∆t
2

∆y
−
H̃ i,j,k
z |t+ ∆t

2
− H̃ i−1,j,k

z |t+ ∆t
2

∆z
=
εi,j,kyy

c0

Ei,j,k
y |t+∆t − Ei,j,k

y |t
∆t

(83)

H̃ i,j,k
y |t+ ∆t

2
− H̃ i−1,j,k

y |t+ ∆t
2

∆x
−
H̃ i,j,k
x |t+ ∆t

2
− H̃ i,j−1,k

x |t+ ∆t
2

∆y
=
εi,j,kzz

c0

Ei,j,k
z |t+∆t − Ei,j,k

z |t
∆t

. (84)

Meep (an acronym for MIT Electromagnetic Equation Propagation) is a open source

package, that implements the finite-difference time-domain (FDTD) method for compu-

tational electromagnetics. Meep automatically solves the Yee grid implementations with

visualization routines for the simulation domain involving geometries, fields, and boundary

layers [71]. It is free and open-source software which has the capability of calculating fields

for Poynting flux, near-to-far transformation, local density of states, scattering cross section,

and Maxwell stress tensor. Moreover, it uses complete scriptability via any scientific pro-

gramming and supports distributed-distributed parallel computing along with mirror plane

symmetry. In addition, it supports the perfectly-matched layer along with absorbing bound-

aries that includes an adjoint solver for sensitivity analysis. It has a subpixel smoothing

feature for improving accuracy with field import/export in the HDF5 data format [67, 71].

Meep simulations are Python or linux scripts which involve specifying the device geometry,
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materials, current sources, monitor fields, and other parameter sweeps and optimizations.

Especially, python scripts provides more flexibility on simulation that includes most of the

python libraries like Matplotlib, Scipy and Numpy. In order to execute Meep simulation we

just need to use the linux command pythontestsimulation.py > output.out. This command

reads the Python script testsimulation.py and execute it and produces output and saves the

output to the file. output.out [67, 71].

2.2.3 Finite Element Method

The Finite Element Method (FEM) is the most commonly used tool to model complex struc-

tures where the problems are expressed in terms of partial differential equations (PDEs). It

provides a very stable and good discretized approach to approximate the PDEs even for

curved surfaces using different numerical techniques. This method is based on the weak

formulation of the Galerkin method associated for a partial differential equation (PDE)

boundary value problem (BVP). The Galerkin method uses the multiplication of a calcu-

lated residual from the PDE with a weight function and integrates over single elements. In

addition, the weight functions are selected from the same set of functions as the interpola-

tion function in order to solve a second order partial differential equation. Therefore this

technique is also called weighted-residual weak formulation. The main steps to solve FEM

using Galerkin method include: discretize or subdivision of the domain, selection of proper

interpolation functions, weak formulation of the system of equations using boundary con-

ditions, form the global matrix system of equations, impose Dirichlet boundary conditions,

solve the linear system of equations, and post process the results [50, 51]. Comsol Multi-

physics is one of the mostly widely used FEM tools to solve engineering and mathematical

problems within a modeling domain. In the RF module of Comsol Multiphysics the four ma-

jor steps to solve any finite element problem include: Model set-up, meshing, solving, and

post processing. The model set-up usually involves model creation, boundary setup, and

defining the governing equations. Similarly, the meshing and solving includes the domain
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discritization and solving a set of linear equation described by fields respectively. Finally,

post processing includes the extraction and interpretation of meaningful information from

the simulated fields. [52].

By following [53] the mathematical details of the time-harmonic Maxwell equation fac-

torization for the finite element method, the equation for the E field with conductivity σ,

permittivity ε̂ = ε− jσ/ω can be expressed as:

∇×
(

1

jωµ
∇× E

)
+ jωε̂E = 0 (85)

Because the finite element method is based on the weak formulation, the Equation 85 can

be expressed in term of scalar basis functions φi and an unknown vector field Ei as

E =
∑
i

Eiφi (86)

Galkerin’s approximation using the weak formulation over the integration of interest around

the boundary of 〈 〉 and edge element expansion with basis function Ni can be expressed as

〈(
1

jωµ
∇× E

)
• (∇×Ni)

〉
+ 〈jωε̂E •Ni〉 = −

∮
1

jωµ
n̂× (∇× E) •Nids (87)

The important concepts of the Galkerin’s weak approximation are to satisfy the Helmhotz

equation and the conservation of energy in the electromagnetic field over the integration

domain. If we replace Ni with E∗ and using Faraday’s law of relations B = µH, the Equation

87 satisfies the time harmonics Farady’s law and Poynting’s theorem of 〈−jωB •H∗〉 +

〈jωD∗ • E∗〉 =
∮

(E×H∗) • n̂ds.

For each basis function of Nj in Equation 87, the numerical approximation for M degrees

of freedom can be expressed in terms of linear system of equation with stiffness matrix, Aij

and forcing vector fij as,

E =
M∑
i=1

AijEi = fj (88)



33

Aij =

〈(
1

jωµ
∇×Ni

)
• (∇×Nj)

〉
+ 〈jωε̂Ni •Nj〉 (89)

fj = −
∮

1

jωµ
n̂× (∇× E) •Njds (90)

Here, the edge element satisfies the continuity and uniqueness theorems for tangential

components of both electric and magnetic fields across all the boundaries. One of the most

popular versions of the edge element is Whitney 1-form with tetrahedral mesh which in-

cludes the wedges and corner with Drichlets boundary conditions [54]. In tetrahedron mesh

of Whitney-1 form, the circulation of Ne = We is 1 and 0 along edge e and other edges

respectively.The unknown Ei can be related as E =
∑6

i EeWe. Very accurate and higher

resolution approximations are not possible with this first order Whitney approximation.

Therefore, several other researchers have been working on higher order and hybrid approxi-

mation to improve the interpolation error with more computational complexity and accurate

convergence [55,56].

2.3 Summary

This chapter includes the mathematical details of different computational electromagnetic

methods to solve the fields and waves. We include the Transfer matrix method (TMM),

Brendel- Bormann (BB) model, Rigorous coupled-wave analysis (RCWA), Finite-Difference

Time-Domain method (FDTD) and Finite element method (FEM). We mostly employed

the TMM and BB model for MLS multilayer project and RCWA,FDTD, FEM for grating

projects. COMSOL Multiphysics, which is a cross platform finite element analysis tool, with

a user interface which permits easy specification of the system.
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CHAPTER 3

MAXIMUM LENGTH SEQUENCE DIELECTRIC MULTILAYER

REFLECTOR

3.1 Introduction

This computational investigation examines the response of optical multilayers consisting

of alternating high and low refractive index materials with a thickness profile determined

by a pseudo-random maximum length sequence (MLS). The aim is to demonstrate that

such multilayers have higher reflectivity over a broader bandwidth than periodic multilayers

with the same index contrast and number of layers. For periodic multilayers, the forbidden

transmission bandwidth, the photonic band gap of the one dimensional photonic crystal, is

set by the index contrast between the two materials. Higher index contrast leads to band

gaps with broader frequency coverage [7, 8]. A maximum length sequence (MLS) is a two-

level pseudo-random binary sequence which has a uniformly flat frequency response except

for a DC offset [1]. The flat frequency response indicates that these sequences contain equal

amplitudes of all possible periodicities [2–4]. We posit that a multilayer using a thickness

profile determined by an MLS will have a broader range of periods and, hence, will exhibit

a wider bandgap than a periodic system of the same materials and number of layers.

The aim of this study is twofold. First, we explore the feasibility of creating a functional

omnidirectional reflector across all wavelengths in the visible without the necessity of mate-

rials with extremely high index contrast. Periodic dielectric multilayers act as near perfect

reflectors over a limited wavelength and angular range and provide excellent reflectivity, low

absorption loss, and a high degree of robustness compared to metallic reflectors [72]. How-

ever, periodic dielectric multilayer reflectors are not highly reflective of light coming from

any direction and polarization. In general, the range of reflected wavelengths shifts to the

blue at angles away from normal incidence. An ideal omnidirectional dielectric multilayer
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reflector would have near perfect reflection for all wavelengths in a given range and at all

incident angles and any polarization. In the visible range, metallic mirrors from materi-

als such as silver and aluminum have such properties [73, 74]. The goal here is to make a

metallic-like reflector from a multilayer structure using the deterministically pseudo-random

maximum length sequence thickness profile. The second longer-term objective is to begin the

exploration of photonic band gaps in aperiodic structures in two and three dimensions. In

this work, the wavelength and angular reflection from pseudo-random MLS multilayers are

compared with that for metallic mirrors and for purely periodic systems based on quarter-

wavelength multilayers. Future work will explore the prospect of two- and three- dimensional

structures with MLS index profiles.

Aperiodic multilayer structures with thickness profiles defined by Thue-Morse, Fibonacci,

and Rudin-Shapiro algorithms have been studied before, of particular interest in these quasi-

periodic systems is the phenomenon of localization [79–87,97–101].

However, to our knowledge the maximum length sequence profile multilayer has only

been studied for its electromagnetic wave properties in its ability to support Bloch surface

waves [79]. In acoustics there is a long history of using the perfectly random profile of an

MLS defined grating to create diffusers that diffract sound equally in all directions [75].

Other methods to enhance the reflectivity of multilayers on one dimensional reflectors

using random disorder and inhomogeneity have been explored [76, 77, 102]. These designs

use alternate high and low refractive index layer structures with random variations of layer

thicknesses. The results are thus dependent on the choice of randomization algorithm or on

some optimization routine. In contrast, the MLS offers a deterministic layer thickness profile

with flat Fourier response; the MLS sequence is often described as being ideally random.

3.2 Simulation Results and Discussions

We conducted our numerical simulations both using the transfer matrix method (TMM) and

verified the results independently using a recursive calculational model, both commonly used
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techniques to analyze the electromagnetic propagation through multilayer films. TMM is

based on the boundary condition of Maxwell’s equations where the electric field at the end

of the layer can be derived using matrix operations for a given field at the beginning of a

layer. The reflection from a multilayer structure is the transformation of the overall system

matrix, which is the product of each layered matrix. Here, we implemented the simulations

using Matlab R 2017 and Python 3.6.

Simulations were performed for both N=6 and N=7 MLS multilayer structures. For N=6

the number of layers is 34 with a total multilayer thickness of 5.06 µm. For N=7 the number

of layers is 66 with a total multilayer thickness of 9.63 µm. Current fabrication methods

allow multilayers of up to 600 layers and a total thickness of 23 µm [78]. Figure 14 illustrates

the reflection characteristics for the 6th order MLS multilayer for both s- and p-polarized

light incident with 0◦, 30◦, and 60◦ respectively.

As indicated from Table 1, This multilayer contains 32 layers consisting of alternating

SiO2 and TiO2 layers with thicknesses scaled by the MLS sequence. In this case, the smallest

layer thickness is 519 nm for TiO2 and 941 nm for SiO2. Clearly, the reflection curves con-

tain significant structure with many reflectivity dips as a function of wavelength. However,

exclusive of the narrow dips, there is high reflectivity at all incident angles across all the

wavelengths in the visible (400 nm to 700 nm).
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(a) S polarized wave (b) P polarized wave

Figure 14: Reflection characteristics for 6th order MLS multilayer structure for both s- and

p-polarized light incident with 0◦, 30◦, and 60◦ respectively.

Many of the dips in reflectivity are very narrow, on the order of 2 nm or less, and

thus have little effect on the overall reflectivity across all visible wavelengths. To assess

the effectiveness of the multilayer as an omni-directional reflector, the metric we chose to

compare the reflectivity of the MLS systems with periodic multilayers and with metallic
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reflectors is the average reflectivity taken over the wavelength range from 400 nm to 700 nm.

For s-polarized light, the average reflection in visible frequency range of 400 nm to 700 nm

is more than 95 percent at all incident angles. For p-polarized light, the average reflectivity

is lower, particularly in the vicinity of Brewster’s angle, as expected, at around 60◦. The

specific average reflection values are summarized in Table 2 order MLS . The first point of

comparison for the MLS reflectivity for N=6 is to contrast the results with the reflectivity

of a periodic multilayer with the same number of layers and index transitions. Figure 15

illustrates the characteristics for 32 layer alternate high and low index multilayer structure

for both s- and p-polarized light incident at 0◦, 30◦, and 60◦ respectively.
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(a) S polarized light (b) P polarized light

Figure 15: Reflection characteristics for 32 layer alternate high and low index multilayer

structure for both s- and p-polarized light incident with 0◦, 30◦, and 60◦ respectively.

These graphs indicate that the periodic multilayers are essentially perfect reflectors for

a narrow range centered about the design wavelength of 550 nm. However, the high re-

flectivity does not encompass the entire visible range and falls off in such a way that the

average reflectivity across the entire visible range is notably lower compared to 6th order
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MLS multilayer structure. Table 3 summarizes the average reflection for the periodic mul-

tilayer structure. As the table indicates, the average reflectivity for the MLS multilayer is

between 10% and 15% higher than the periodic multilayer for s-polarized light and between

15% and 30% higher than the periodic multilayer for p-polarized light. Figure 16 plots the

average reflection in the visible frequency range as a function of incident angle for the 6th

order (N = 6) MLS and the 32 layer alternate high and low index multilayer structure for

both s- and p-polarized light. This plot verifies the omni-directional reflection characteristic

of the MLS multilayer. For s-polarized light in the visible range, the reflection at all angles

is greater than 95%. The p-polarized light has lower reflectivity at larger angles compared

to s-polarized light for both MLS and alternate high and low index multilayer, but it is still

above 80%.To answer the question of whether the MLS system should be improved, we next

calculated the MLS reflectivity for the N=7 MLS sequence.

Table 2: Average reflection coefficient for different 6th order MLS for both s- and p-polarized

light.

Incident angle(deg) s-polarized light p-polarized light
0 0.9561 0.9561
30 0.9721 0.9465
60 0.9867 0.8638

Table 3: Average reflection coefficient for 32 layer alternate high and low index multilayer

for both s- and p-polarized light

Incident angle(deg) s-polarized light p-polarized light
0 0.7909 0.7909
30 0.8231 0.7292
60 0.8795 0.5432

Figure 17 shows the reflection characteristics for 7th order MLS multilayer structure for

both s- and p-polarized light incident with 0◦, 30◦, and 60◦ respectively. The 7th order MLS
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multilayer structure thickness is determined by following an alternate high and low refractive

index sequence: [7, 4, 3, 1, 4, 2, 1, 1, 2, 2, 1, 2, 1, 6, 1, 3, 1, 2, 2, 3, 1, 1, 3, 1, 1, 1, 2, 1, 2, 5, 2, 2, 2, 1, 1,

1, 1, 2, 3, 2, 4, 1, 2, 1, 1, 4, 6, 5, 1, 1, 2, 1, 1, 1, 3, 2, 1, 3, 3]. This sequence length is 127 (=27-1)

which converts to 64 distinct high and low index layers.

Figure 16: Average reflection as function of incident angle in the visible frequency range for

6th order (N = 6) MLS and 32 layer alternate high and low index multilayer structure for

both s- and p-polarized light.

Simulations for the 7th order MLS again show significant structure with many very narrow

dips in the reflection curve. However, the average reflection in visible frequency range of 400

nm to 700 nm is more than 96% for s-polarized light at all angles.The reflectivity at 60◦

and 30◦ respectively is 98.39% and 96.29% for s-polarized light and 91.83% and 95.58% for

p-polarized light. Table 4 summarizes the average reflection for 7th order MLS multilayer

structure for both s- and p-polarized light. The N=6 and N=7 MLS multilayers would

function better in practice than the plots imply if the incident light being reflected had even

a small angular spread in which case the effect of the narrow dips at specific angles would be

blurred because of the angular shift of the narrow minima.For a better point of reference of

the MLS system as an omni-directional reflector, we compare the average reflection results

with those for two metals, silver and aluminum, with high reflectivity throughout the visible.
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(a) S polarized light (b) P polarized light

Figure 17: Reflection characteristics for 7th order MLS multilayer structure for both s- and

p- polarized light incident with 0◦, 30◦, and 60◦ respectively.

The wavelength-dependent refractive index of the two metals in the visible frequency

range is determined using a Brendel- Bormann (BB) model. The BB model provides the

most accurate real and imaginary permittivity values for the materials by using a Gaussian

complex error function [74]. For the aluminum metallic reflector, we calculated s-polarized
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reflectivities of 95.76% and 92.73% and p-polarized reflectivities of 84.66% and 96.74% for

light incident at 60◦ and 30◦ respectively. Similarly, for silver, we found 98.12% and 95.64%

reflectivity for s-polarized light and 93.22% and 95.64% for p-polarized light incident at 60◦

and 30◦ respectively. Further, 91.63% and 96.22% reflection is achieved for light at normal

incidence respectively for aluminum and silver metallic reflectors. Table 5 summarizes the

average reflection for metallic reflectors for both s- and p-polarized light. Figure 18 plots

the reflection characteristics as a function of wavelength for metallic reflectors in the visible

frequency range for incident angles of 0◦, 30◦, and 60◦.

Figure 19 plots the average reflectivity for the N=7 MLS multilayer for the two metals

for both s- and p-polarized waves. The plots demonstrate that the average reflection for the

7th order MLS is higher than that of both metallic reflectors. Clearly, the MLS has slightly

higher reflectivity than the silver and much better reflectivity than aluminum for s-polarized

wave. The graphical illustration in Figure 19 indicates that the MLS reflector is effectively

achieving omni-directional reflection for all angles in the visible wavelength range of 400 to

700 nm.

Table 4: Average reflection coefficient for different 7th order MLS for both s- and p-polarized

light.

Incident angle(deg) s-polarized light p-polarized light
0 0.9637 0.9637
30 0.9629 0.9558
60 0.9839 0.9183

Table 5: Average reflection coefficient for metallic reflectors for both s- and p-polarized light.

Incident angle(deg) Al(s-pol.) Al(p-pol.) Ag(s-pol.) Ag(p-pol.)
0 0.9163 0.9163 0.9622 0.9622
30 0.9273 0.9039 0.9674 0.9564
60 0.9576 0.8466 0.9812 0.9322
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Figure 18: Reflection characteristics for metallic reflectors in visible frequency range for both

s- and p-polarized light incident at an angle of 0◦, 30◦, and 60◦.

Moreover, we studied the the reflection characteristics for different random layer arrange-

ments by keeping the total number of layers constant at 64 in all simulations. We use the

randomness formulation of H(i) =(1 + r)H̄[1 + r1(i)] and L(i) =(1− r)L̄ [76], where r is the

inhomogeneous parameter, the term 1 + r1(i) is a random factor added to high refractive

index material thickness, H(i) and L(i) represent the thickness of high and low refractive

index in the ith layers respectively. Similarly, H̄ = λ0/4ηh and L̄ = λ0/4ηL, where λ0 is the

center wavelength of 550 nm; ηH and ηL represent the index of the high and low refractive

index materials respectively. The first randomness is generated by using r = 0 and r1 = 0.

This choice is equivalent to a 64 layer quarter wave alternate high and low index structure.

Similarly, a second randomness experiment is simulated by r = 0.1 and r1 = 0, we found

slightly better reflection performance.
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Figure 19: Average reflection as function of incident angle in visible frequency region for 7th

order (N = 7) MLS and metallic reflectors for both s- and p-polarized light.

Table 6: Average reflection coefficient for different random order multilayer structures.

Incident angle(deg) Random 1 Random 2 Random 3
0 0.7936 0.8694 0.8616
30 0.8217 0.9017 0.8823
60 0.8789 0.9630 0.9574

Finally, extensive randomness is generated by varying the r1i as: 0.005,0.01, 0.015,

0.020,0.025, 0.030, 0.033, 0.036, 0.039, 0.042, 0.045, 0.048, -0.048, -0.045, -0.039, 0.036,-

0.033, -0.030, 0.025,-0.020, -0.017, -0.014, -0.011, -0.008, -0.005,-0.002, 0.048, 0.045, 0.042,

0.039, 0.036, 0.033. Table 6 summarizes the average s-polarized reflectivity for these three

different random order inhomogeneous multilayer structures. The average reflectivity for 7th

order MLS illustrated in the first column of Table 4, has higher average reflection than those

of these different random layer multilayer structures.

The average reflectivity for 7th order MLS has higher average reflection than those of

these different random layer multilayer structures.

Clearly, the parameter space of random multilayers is very large and it is not easy to

exhaustively search this space. However, to make a broadband reflector that works at all



46

angles, the key factor is the existence of a wide range of periodic high-low index transitions

of uniform amplitude. The Fourier spectrum of the transitions of such a system would be

broad and flat. The MLS sequence is deterministic and possesses these characteristics in

a mathematically perfect way. It was this characteristic of MLS sequences that led to the

design and demonstration of acoustic grating diffusers [75], one of the earliest applications

of the MLS.

Table 7: Average reflection coefficient in visible frequency range for 6th order MLS designed

using different materials.

Incident angle(deg) GaP/MgF2(2.493) ZnS/Cryolite(1.76) ZnS/MgF2(1.72)
0 0.9983 0.9619 0.9522
30 0.9987 0.9689 0.9514
60 0.9998 0.9926 0.9896

Finally, the reflection characteristics of a multilayer depends on the refractive index con-

trast ratio of the high index material to the low index material. Higher contrast ratio leads to

better reflector performance. We analyze the reflection characteristics for commonly used re-

fractive index materials such as ZnS(2.3862) -MgF2(1.384) and ZnS(2.3862)- Cryolite(1.33).

Table 7 illustrates the average reflection coefficient over a broad range of incident angles in

the visible frequency regime for 6th order (N = 6) MLS multilayer structure design using

these different dielectric materials. The MLS multilayer design with GaP(3.31) -MgF2(1.38),

having refractive index contrast ratio of 2.493, has higher reflection (more than 99%) than

any other material for all ranges of incident angles. For the wave incident at 0◦, the GaP

-MgF2, ZnS-Cryolite, and ZnS -MgF2 with refractive index ratio 2.493, 1.76, and 1.724 has

reflection of 99.83%, 96.19%, and 95.22% respectively.
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Table 8: Different multilayer structure.

Structure Sequence Spectrum Substitution rule

MLS Periodic continuous Sk+3 = Sk+1 ⊕ Sk
Fibonacci Deterministic, aperiodic pure point A− > AB,B− > A

Thue-Morse Deterministic, aperiodic Singular continuous A− > AB,B− > BA
Rudin-Shapiro Deterministic, aperiodic continuous AA− > AAAB,AB− > AABA,

BA− > BBAB,BB− > BBBA,

Table 9: First four sequence generation for different aperiodic structures.

Sequence(Sk) Fibonacci Thue-Morse Rudin-Shapiro
S0 A A AA
S1 AB AB AAAB
S2 ABA ABBA AAABAABA
S3 ABAAB ABBABAAB AAABAABAAAABBBAB

However, the different symbolic substitution and repetition rules has been employed to

produce deterministic aperiodic multilayer structures too. The pure point or continuous

Fourier spectra of these aperiodic structures (especially the Rudin-Shapiro) are important

for comparative analysis with the MLS multilayer periodic continuous spectrum.

Table 10: Average Reflection coefficient over the visible frequency range for different aperi-

odic multilayer structure.

Incident Angle(deg) Fibonacci(34) Thue-Morse(32) Rudin-Shapiro(32)
0 0.8174 0.6914 0.8445
15 0.8299 0.6836 0.8531
30 0.8715 0.7118 0.8734
45 0.9137 0.8001 0.9013
60 0.9432 0.8839 0.9317
75 0.9674 0.9373 0.9488

The Fibonacci, Thue-Morse, and Rudin Shapiro substitution rules are commonly used
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substitution used in multilayer aperiodic photonics quasi crystals design [80,81]. In Fibonacci

substitution rule A− > AB,B− > A and further with first sequence with A, can be extended

as A− > AB− > ABA− > ABAAB− > ABAABABABA− > ABAABABAABAAB− >

.... Similarly, the Thue-Morse grating structure is determined using the ruleA− > AB,B− >

BA and the Rudin Shapiro by AA− > AAAB,AB− > AABA,BA− > BBAB,BB− >

BBBA [82, 83]. All these substitution rules for the first four sequence generations is sum-

marized in Table 8 and 9. The practical implementation of such structures is to replace each

letter by either a high or a low refractive index material layer [84].

Table 10 illustrates the average reflection coefficient over the visible frequency range

for different aperiodic multilayer structures. For the wave incident at 0◦,the Fibonacci,

Thue-Morse and Rudin-Shapiro structures have reflectivities of 0.8174, 0.6914, and 0.8445

respectively. Similarly, we found the higher reflectivity for the wave incident at 60◦, with

values of 0.9674, 0.9373, and 0.9488 for the Fibonacci, Thue-Morse and Rudin-Shapiro struc-

tures respectively. Further, these values are less than the 99.03% and 96.22% reflection for

light at normal incidence respectively for aluminum and silver metallic reflectors. Clearly,

the metallic and MLS reflectors have higher reflectivity compared to aperiodic multi-layer

structures.

Figure 20 illustrates the graphical representation of the reflection characteristics for Fi-

bonacci and Rudin-Shapiro multilayer structures for s-polarized light incident with 0◦, 30◦,

and 60◦ respectively. The Rudin-Shapiro multilayer structure has better reflection in range

of 500 nm to 650 nm at most incident angles compared to the Fibonacci structure. How-

ever, due to Fourier spectral difference, the Fibonacci structure has slightly higher average

reflection (nearly 2% more) than Rudin-Shapiro for all visible frequencies.
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(a) Fibonacci (b) Rudin-Shapiro

Figure 20: Reflection characteristics for Fibonacci and Rudin-Shapiro multilayer structure

for s- polarized light incident with 0◦, 30◦, and 60◦ respectively.
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Figure 21: Spectral characteristics of Fibonacci aperiodic structure.

Figure 22: Spectral characteristics of Thue-Morse aperiodic structure.

The approach to generate deterministic aperiodic structures with controlled Fourier spec-

tral properties relies on symbolic substitu tions [80,109]. The Fibonacci has a deterministic

and aperiodic sequence with pure point spectrum. The pattern for a Fibonacci structure

with 34 layer and order 7 is ABAABABAABAABABAABABAABAABABAABAAB. The

Figure 21 illustrates the spectral characteristics of Fibonacci aperiodic structure. Similarly,

both of the Thue-Morse and Rudin-Shapiro are deterministic and aperiodic sequence struc-

tures. However, the Thue-Morse has a singular continuous spectrum and the Rudin-Shapiro

has continuous spectrum. Figure 22 shows the spectral characteristics of 32 layer and 5 or-

der Thue-Morse aperiodic structures with a pattern of ABBABAABBAABABBABAABAB-

BAABBABAAB. Similarly, Figure 23 shows the spectral characteristics of Rudin-Shapiro
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aperiodic structure.

Figure 23: Spectral characteristics of Rudin-Shapiro aperiodic structure.

Another way to look the reflection characteristics is to analyze the color spectra of maxi-

mum length sequence and compare that with alternate multilayer structures. The reflection

equivalent spectrum plot for MLS by using Python ColorPy and tmm packages is illustrated

in Figure 24. The ColorPy is a Python package to convert physical descriptions of light

spectra of light intensity vs. wavelength into RGB colors that can be drawn on a computer

screen. It provides a nice set of attractive plots that you can make of such spectra, and

some other color related functions as well.The amount of light intensity for each wavelength

is the same. But since the human eye has different sensitivity to different wavelengths, the

apparent brightness looks different for different colors. For example, the color for 750 nm is

quite dark, while the color for 550 nm is quite bright [6].
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Figure 24: Color Spectral characteristics of Maximum Length Sequence structure.

Similarly, Figure 25 shows the spectral reflection characteristics for 32 layer alternate

high and low multilayer structure. We found very good reflection over the visible frequency

spectrum for for 6th order (N = 6) MLS multilayer structure design using these different

dielectric materials compared to 32 layer alternate high and low refractive index multilayer

structure.Thus, this is one of the nice way to differentiate the reflection characteristics for

different incident angle with the help of overall color spectra as in color spectroscopy tech-

niques.

Figure 25: Color Spectral characteristics of Rudin-Shapiro Alternate high and low 32 layer

structure.
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3.3 Summary

This work has explored the reflection performance of MLS multilayer structures at visible

wavelengths. The MLS system is an aperiodic system that has been little studied for ap-

plications in optics. It is a system that is ripe for investigation as a medium to support

optical localization and surface waves, and as an ultra-wide photonic band gap material in

two and three dimensions. The wide range of periodicities contained in an MLS structure

leads to broadband reflection characteristics for all incident angles. The analysis here shows

that multilayers with an MLS profile can function as effective omni-directional reflectors.

The narrow reflectivity dips mean that such reflectors would not be good for monochromatic

laser reflection but rather for incoherent broad bandwidth light. The comparative analysis

presented was made both to periodic multilayers and to the metallic reflectors silver and

aluminum, whose refractive index was modeled based on the Brendel-Bormann (BB) model

in the visible frequency region. We demonstrated broadband reflection for the MLS multi-

layer design by varying the number of layers or the refractive index of the constituent layers.

Further, the average reflection characteristics for other aperiodic structures using Fibonacci,

Thue-Morse, and Rudin Shapiro substitution rules also demonstrated and compared the

simulated results. Finally, the attractive color spectra of maximum length sequence and

alternate multilayer structures has obtained for visible frequency ranges.
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CHAPTER 4

BLOCH SURFACE WAVE EXCITATION USING A MAXIMUM LENGTH

SEQUENCE GRATING

4.1 Introduction

This paper presents simulations of a method of coupling to Bloch Surface Waves (BSWs)

using maximum length sequence (MLS) gratings on the top of multilayer photonic band gap

structures. An MLS grating has a superposition of a wide range of periodicities which should

permit coupling of a broad angular range of monochromatic light or a wide spectral range

of collimated light into Bloch surface wave on a photonic band gap multilayer. This paper

presents the details and results of this novel grating coupling technique including finite-

element-method calculations of the E-field profile and a mathematical analysis of phase

matching criteria.

Bloch Surface Waves (BSWs) supported by one-dimensional photonic crystals are elec-

tromagnetic modes that propagate along the interface of a truncated dielectric multilayer

structure and a homogeneous medium. In terms of dispersion relation, evanescent field pro-

file, and optical coupling requirements, BSWs can be considered as an analog of surface

plasmon-polariton (SPP) generation in metals. Theoretical and experimental studies have

been carried out on BSWs [7, 8] and this optical excitation is naturally suited for a broad

range of applications in photonics including label-free bio-sensing [10], surface enhanced Ra-

man spectroscopy [11], optical slow-light devices [14], florescence based detection [15], and

slot waveguides [?, 16, 30, 88–90]. Further, recent research has investigated the BSWs prop-

erties for integrated circuits [9], optical fiber tip [12], and radiation continuum modes [13].

The breadth of applications is due to the flexibility in operating wavelength range, easy

experimental realization, larger figure of merit (FOM), and robustness in many sensing ap-

plications. SPP’s, despite their widespread application, are significantly restricted by the
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high ohmic loss inherent in metals that results in resonance broadening and a reduction both

in surface field enhancement and in sensing FOM.

BSWs are non-radiative excitations that require a phase matching mechanism to couple

to light. Most methods are based on evanescent prism-coupling, either in the Kretschmann

or Otto configurations. Coupling to BSWs through the use of a grating profile on the top

of the active medium is an attractive alternative because it eliminates bulky prism require-

ments [17]. In both prism and grating coupling, the incident light is coupled into a surface

mode of the structure only when the parallel-wave-vector phase matching condition is satis-

fied [18]. It is the sensitivity of the phase-matching characteristics to surface conditions that

makes possible BSW-based sensors for label-free detection including DNA-probe binding,

protein aggregation, antigen-antibody reaction, and many more. Both prism and periodic

gratings only provide coupling over a single narrow angular range for incident monochro-

matic radiation. The motivation for this study [91] was that an MLS grating profile should

permit coupling at multiple angles of incidence because the MLS sequence contains a broad

spectrum of grating profiles of equal amplitude. The effective surface roughness of an MLS

grating grows as the order of the MLS sequence increases. In a similar vein to the work

described here, the effect of surface roughness on solar cell design to improve the overall

optical characteristics has been an important research concern for solar researchers and sci-

entists [92]. The better light trapping and absorption in solar cells can be achieved by

designing front and back textured surfaces.

4.2 MLS Grating Model

When a plane electromagnetic wave is incident on a periodic diffraction grating structure

at an angle of θ, the incident wave intensity is split into diffracted, reflected, or transmit-

ted components. The diffraction wavefronts can be found for wavelengths short compared

to grating period (Λ). The optical path difference of transmitted diffracted wavefront for
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positive interference can be expressed in terms of integer multiple of wavelengths [29].

Figure 26: Multilayer design with grating defined by (a) Periodic structure (b) MLS structure

at the top of multilayer

Mathematically,

mλ = Λ(ηIIsinβm − ηIsinθ) (91)

where η is refractive index of each medium,m = ...,−2,−1, 0,+1,+2.... are the diffraction

orders and βm is the transmitted diffracted beam angle. For m = 0, the angle of refraction,

β0 described by Snell’s law as,

β0 = arcsin(
ηI
nII

)sinθ (92)

The maximum values of the sine function varies between −1 and 1. Thus,the higher order

diffraction order satisfies the condition

−(ηI + ηII) <
mλ

Λ
< ((ηI + ηII) (93)

The extended criteria for non-transmitted diffracted beam of order of 2 or more is

2λ

Λ
> (ηI | sinθ |) + ηII) (94)

Similarly, the optical path difference of reflected diffracted wavefront for positive inter-

ference can be expressed as,

mλ = Λ(ηIsinθm − ηIsinθ) (95)
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where the θm is the reflected beam of diffraction order m. For specular reflection with

m=0,

sinθ0 = sinθ (96)

The additional defect layer at the top of multilayer structure acts as a suitable active

medium for Bloch surface waves [7]. A grating on top of this terminating layer eliminates the

need of a bulky prism configuration. The grating profile couples the incident plane wave into

the surface mode of photonic crystal when the parallel momentum phase matching criteria

is satisfied [18]. The phase matching criterion can be expressed as

kBSW = k0ηsupsin(θinc) +
2πm

Λg

(97)

where kBSW is BSW wave vector, k0 = 2πm
λ0

is free space wave vector,ηsup is the refractive

index of superstrate, θinc is the incident angle, m is an integer, and Λ is the grating period.

For a given wavelength λ, m=1 and θinc > 0, the BSW can only be excited when the grating

period Λg satisfies the condition of λ
Λ
< kBSW

k0
+ 1.Thus, the grating periods are in the range

of kBSW

k0
< λ

Λ
< kBSW

k0
+ 1.

The kBSW for the multilayer only with prism configuration can be expressed as

kBSW = k0ηsupsin(θres). (98)

We assume that using same kBSW in equation 2 exactly matches the kBSW of the multi-

layer with prism configurations. The total kBSW in grating design is the sum of Kinc and kg.

The appropriate selection of Λg can produce the broadband coupling of BSW wave through

the multilayer structures.

This grating can be designed using periodic or aperiodic surface profiles. Here, we de-

sign the grating structure using a maximum length sequence profile. A MLS is a pseudo

random binary sequence (PRBS) generated by a cyclic shift of m-sized linear feedback shift

registers (LFSR) [95]. Computationally, these sequences can be generated using the recur-

sive formulation Sk+3 = Sk+1 ⊕ Sk. Here, the ⊕ symbol represents XOR (modulo-2 sum)
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operation.The MLS sequences produce a flat frequency response, a feature that is used in

the acoustic impulse and spread spectrum communication applications.

Table 11: MLS generation for N=3.

Step(k) S2 S1 S0 Sk
0 A A A A
1 B A A AA
2 B B A AAA
3 A B B AAAB
4 B A B AAABB
5 A B A AAABBA
6 A A B AAABBAB
7 A A A AAABBAB

Table 11 shows the N = 3 sequence generated using this formulation. Each letter A and

B in Table 11 represents 1 (higher) and 0 (lower) refractive index material. The thickness of

grating profile is defined by the MLS sequence. To convert to multilayer thicknesses the A

and B correspond to the two different refractive index materials. Thus, the final sequence for

N=3 can be expressed as [3 2 1 1] [30]. Figure 26 shows the design of a periodic and a order

3 MLS multilayer design. The periodic structure in figure (a) includes the substrate of 8

alternate multilayer of SiO2 and TiO2 along with grating on top of multilayer. Similarly, the

MLS grating profile is on top of an identical multilayer. The superstrate material refractive

index is varied from 1.3280 to 1.33 and the substrate material SiO2 is wavelength dependent

refractive index material.

The main goal of the this research is to show the multiple wavelength coupling by grating

design. However, sometime it is worth to show the sensitivity analysis for sensing application.

Therefore, the angular sensitivity of the Bloch surface wave defined as the ratio of change in

resonance angle to change in refractive index. Mathematically, the angular sensitivity can

be defined as

Sθ =
∆Φ

∆η
, (99)

where ∆Φ is the change in BSW resonance angle and ∆η is the refractive index change.
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Similarly, the spectral sensitivity is defined as the ratio of change in wavelength to change

in refractive index as

Sλ =
∆λ

∆η
, (100)

where ∆λ is the change in BSW resonance wavelength and ∆η is the change in refractive

index. As we noticed that the the change in refractive index and shift in resonance has

important effect on biosensor, we introduce a figure of merit (FOM) at BSW resonance,

which is defined as

FOM =
Sθ(1−MRR)

FWHM
, (101)

where MRR is the minimum reflection at resonance, (1-MRR) represents the depth of

resonance and FWHM is the full width of resonance dip at half-minimum. So, this can be

written as

FOM =
SθD

W
. (102)

. The change in refractive index also generates the change in intensity at resonance angle.

The Figure 33 shows the change ∆R due to refractive index variation ∆η as

∆R =
dR

dθ

dθBSW
dη

, (103)

where Stheta = dθBSW

dη
is the sensitivity defined by equation 1 and dR

dθ
is the slope of the

resonance at any point [96]. The narrower and deeper the BSW resonance has higher FOM,

so the more accurate detection of biosensing analyte is possible. The detection accuracy

(DA) is defined as.

DA =
1

FWHM
. (104)

Further, we can express the relationship between parallel wave vector of the BSW, and the

the refractive index of the prism as

kBSW =
2π

λBSW
ηsupsin(θBSW ) (105)

where kBSW is the parallel wave vector of the BSW, ηsup the the refractive index of the

prism,θBSW and λBSW are the incident angle and wavelength at minimum reflectively at
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resonance point. The change in angular frequency and parallel wave vector might change

the overall dispersion characteristics and can be useful to calculate the overall group velocity

vg, which is slightly less than speed of the light in the medium.

vg =
δω

δk
(106)

where k is the parallel wave vector of the BSW, and ω is the angular frequency.

4.3 Results and Discussion

When an electromagnetic wave is incident on the the multilayer structure with a grating

defined by MLS structure, Bloch surface wave generation can occur.In the computational

simulation described here, thickness of TiO2 and SiO2 layers were chosen to be 126.1 nm and

205.41 nm respectively. One additional SiO2 defect layer of thickness 280.3 nm is added at

the top of this multilayer in between the superstrate and the topmost TiO2 layer. The high

refractive index, TiO2 and low refractive index, SiO2, materials are picked in our design due

to their deposition compatibility and frequent use in dielectric multilayer films.The refractive

index of TiO2 and SiO2 layers at a wavelength of 700 nm, are 2.5512 and 1.4553 respectively.

Figure 27 and 28 shows the wavelength dependent refractive index characteristics of TiO2

and SiO2 materialS [93,94]. The BSW reflection on the surface of one dimensional multilayer

structure is highly dependent on the thicknesses of the periodic multilayer and that of the

defect layer. For the periodic grating, the grating period (Λg) is set to 1920 nm and the

grating depth is 70 nm with fill factor of 0.5. The groove width also determined the fill

factor(ff). Usually, we select a fill factor around 0.5 in periodic grating design for symmetry

of multiple periods. The index of the superstrate layer (ηsup) is varied from 1.3275 to 1.3300

in our simulations. For the MLS structure, the grating surface profile is defined by using the

MLS sequence of [3 2 1 1] with alternate SiO2 and superstrate material. More specifically,

the pattern is 3 ∗ ηSiO2 , 2 ∗ ηsup,1 ∗ ηSiO2 ,1 ∗ ηsup. Now, this grating on the top of multilayer
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mediates the coupling of light into Bloch surface mode without use of a bulky prism and

that satisfies the condition given by Equation 97. We presume, ηsup = 1.33, m = 1, K0 = 2π
λ

and Λg = 400nm. Equation 97 provides the resonance angles of 16.634, 22.355 and 36.22

degrees for grating period of Λg, 2 ∗ Λg, 3 ∗ Λg.

Figure 27: Wavelength dependent refractive index characteristics of TiO2 material [93].

Figure 28: Wavelength dependent refractive index characteristics of SiO2 material [94].
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Figure 29: BSW E-field of y component in (a) xy (b)xz plane.
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Figure 30: BSW E-field of y component in (a) xz (b) BSW normalized E-field of y component

in zy plane.

Figure 29 (a) and (b) illustrates the BSW electric field profile for Ey at wavelength of

632.8 nm along xy and yz planes respectively. Further, Figure 30 (a) and (b) shows the

BSW electric field profile for Ey along xz and normalized electric fields along yz planes at

wavelength of 632.8 nm and refractive index of 1.33. The BSW modes electric fields are

highly confined on the surface of the grating structure in all of these different cases.
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Figure 31: The variations of BSW angles for different value of grating period.

Figure 31 demonstrates the variations of BSW angles for different value of grating period.

We found the resonance angle of 10.33◦, 27.10◦,and 47.03◦ for the grating period of 1920 nm.

Similarly, we observe 10.33◦, and 27.10◦ for the grating period of 1000 nm and 10.33◦ for the

grating period of 518 nm.

Figure 32: Reflectivity characteristics as function of incident angle for MLS with N=3.

Figure 32 illustrates the reflectivity characteristics curve as function of incident angle

(θ). We can observe the BSW coupling at the resonance angle of 7◦, 26◦, 30◦, and 47◦.
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This proves the broad angle coupling of MLS BSW into multilayer structure. These values

are almost similar to the value obtained from the mathematical equation of phase matching

for grating coupling. The resonance angle of phase matching can be expressed as θBSW =

sin−1(KBSW − Kg)/(k0 ∗ ηsup, where Kg is the grating wave vector that can be expressed

as 2 ∗ π ∗ m/Λ. By using this mathmatical expression for MLS with N = 3, we can get

positive resonance angles of 10.33◦, 27.10◦, and 47.03◦. We are able to get almost a close

match between the mathematical and simulated values. These values are obtained from the

COMSOL Multiphysics simultion along with 16 layer alternate TiO2 and SiO2 layers having

grating period of 1920 nm and a operating wavelength of 700 nm. The slight variation in

simulation might be due to meshing size, step size selection, wavelength dependent dielectric

refractive indices, mathematical precision point and others parametric selection in COMSOL

MultiPhysics simulations.

∆Φ

Figure 33: function of incident azimuthal angle for different values of nsup.

Table 12: BSW coupling angles for various orders of MLS grating

MLS (order) Coupling Angles(θ)
3 7◦, 26◦, 30◦ and 47◦

4 6◦, 22◦, 30◦, 31◦, and 45◦

5 10◦, 15◦,21◦, 30◦, 39◦,46◦, and 48◦

Figure 33 shows variation in the BSW reflectivity resonance angle as the refractive index

of super-strate is changed from 1.3285 to 1.3300. We found the broader range of azimuthal
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angles for higher refractive index value. The reflectivity curve becomes narrower for decreas-

ing refractive indices even though resonance occurs at a higher value of azimuthal angle. The

maximum sensitivity of 3000 degree per refractive index unit (deg /RIU) can be achieved by

using this multilayer setup for refractive index changes from 1.3295 to 1.3300(∆η = 0.0005).

The corresponding peaks in the reflectivity show high- confined, narrow surface waves for

the values are only sensitive to the design parameters. Table 12 illustrates the BSW cou-

pling angles for various orders of MLS grating. We can observe higher angle coupling for

higher order MLS. Further, if we design the grating structure with higher number of MLS

orders, we can couple broad angular range of monochromatic light or a wide spectral range

of collimated light into Bloch surface wave on a PBG multilayer. The ability to simulate

higher gratings is limited by the size of simulation that can be done in COMSOL.

4.4 Summary

This research presents a exploration of the excitation of Bloch surface waves in dielectric

multi-layers with MLS grating structures on top most layer. This MLS, an aperiodic system

contains wide range of periodicities leading to broadband coupling of monochromatic light or

wide spectral range of collimated light into Bloch surface wave on multilayer. The compar-

ative analysis presented was made both to periodic and MLS grating profile. Our study of

this idea believes that the possibility of more sensitive as well as broader Bloch surface wave

coupling can be realized compared to a periodic grating counterpart. The detailed analysis

of the surface electric field and angular sensitivity provides the better understanding of BSW

grating coupling.
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CHAPTER 5

OTHER RELATED APPLICATIONS

5.1 Frequency Selective Surfaces for Microwave Frequency Band

Applications

In recent years, the advent of frequency selective surfaces (FSSs) for microwave/millimeter

wave applications have attracted a lot of attention for applications such as polarizers, ab-

sorbers, radomes, and reflectors. FSSs are two dimensional periodic structures like 2-D

photonic band-gap materials, designed to transmit, reflect, or absorb particular frequencies

of electromagnetic waves. FSSs have been designed and implemented using different tech-

niques and unit cell structures. Based on the application and resonance frequency, the split

ring resonator (SRR), complementary split ring resonator (CSRR), cross structure, and rect-

angular SRR are used to design FSSs. FSSs are commonly used in microwave and millimeter

wave applications due to small unit cell compared to wavelength and strong electric or mag-

netic current near resonance. Thus, based on diffraction theory, the secondary grating lobes

are suppressed with no coupling between adjacent elements. It was proved using Babinet’s

principle in [103], that the SRR acts as band-stop filter while CSSR acts as band-pass filter

with very narrow-band characteristics. Further, the multilayer structure of such elements or

single layer dielectric thickness variation helps to create high Q-factors and narrow filter pass

bands. Pendry demonstrated the use of left handed materials (LHMs) that exhibit negative

permeability near magnetic resonance [105]. Smith realized such meta-materials using one

or two-dimensional periodic SRR structures [106]. Meta-materials are sub-wavelength peri-

odic structure that are engineered to produces exotic electromagnetic behavior not found in

nature. For SRR, the broadband negative permeability is implemented by using equivalent

gap capacitance and negative permittivity by shunt inductance. In contrast, for CSRR, the

equivalent dual counterpart of SRRs, is fabricated using a negative image of SRRs [103].
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(c)
(d)

(a)
(b)

(d)

Figure 34: The FSS unit cell structure of (a) SRR (b) CSRR with grey part copper metal

as PEC and white portion Alumina (ε = 9.8) as substrate. The geometrical parameters are

a=15mm, R1=5mm, R2=3.5mm, Gap=1.5mm, w=0.8mm. (c) The equivalent LC circuit

for SRR (d) for CSRR.

Due to low loss, two-dimensional dielectric FSSs or low loss metallic photonic crystals at

optical wavelengths are used extensively in applications. This paper explores the design of

FSSs using high permittivity alumina as the substrate. Alumina has a high dielectric con-

stant, low dielectric loss, and high electric/ heat resistance [104]. The comparative analysis

of different parameters for SRR structure provides the best transmission throughput at the

desired frequency band. Invisibility cloaks, super-lensing, negative refraction, diffraction lim-

ited image resolution, and massive MIMO antenna design are recent research breakthrough

examples using such meta-materials or meta-surface structures [88].

The unit cell of SRRs and CSRRs with double concentric rings and opposite gaps are

depicted along with equivalent circuits in Fig. 34. When SRRs is excited by an external mag-

netic field parallel to the SRR axial direction, the magnetic dipole is created due to magnetic

loop [103]. Therefore, the presence of equivalent loop inductance and gap capacitance shows

strong Lorentzian resonance in the effective permeability. The capacitive contribution of the

inner ring reduces the overall resonance frequency and tries to make more homogeneous to
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electromagnetic excitation by adjusting the wavelength and lattice constant ratio [105]. In

(a) (b)

Figure 35: (a) 13× 13 FSS model (b) Trasmission and reflection characteristics for unit cell

of FSS.

Fig. 34 CT = 2πrmeanCpul represents total capacitance between the rings, where Cpul is the

per unit length capacitance between the rings. The resonance frequency of SRR is given as

fres= (LSRRCSRR)−1/2/2π.

All the designs are simulated in three-dimensional COMSOL Multiphysics with the cop-

per layer thickness less than skin depth in given frequency range. Thus, a Perfect electric

conductor (PEC) is used to model this metallic copper layer and Perfect matched layers

(PMLs) on the top and bottom are used to absorb all the port and higher order mode signal.

The magnetic field, Hx is applied through interior source port 1 via a slit.The scattering

boundary after the port 2 helps to scatter all the signal coming out of the SRR. The wave-

length of 2π/ | k0cosθ | in the PML is dependent on the angle of incidence so that we can

observe the variation characteristics of peak passbands and stop bands in transmission (S21)

and reflection (S11). Finally, the periodic boundry condition is set to get identical 13×13

arrays of dielectric FSSs.

The transmission characteristics for different angles of incidence and various physical pa-

rameters like ring width and gap separation are analyzed with the applied external magnetic
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field. The normalized electric field distribution and reflection/ transmission characteristics

around 20 GHz are illustrated in Fig. 35 showing very good transmission response over the

simulated frequency range. The maximum field is observed across the surface of the SRR

compared to vicinity of the gap portion.

(a)

(b)

(c)

Figure 36: (a) Transmission and reflection characteristics as function of incident angle (b)

Transmission characteristics as function of split gap seperation (c) Split ring width.

It is found that, the transmission of CSRR gradually decreases for increasing angle of

incidence. Changes in the split gap and width dimension varies the capacitance. Changes in

gap between inner and outer rings varies the inductance of the CSRR. Better transmission is

obtained when both gap and width are increased, with slight change in resonance frequency,

because of confinement of more field locally compared to free space due to refraction and

diffraction phenomena. These characteristics are clearly shown in Fig. 36 which shows that

increased number of cuts reduces the resonance frequency and gives better transmission

due to increment in overall capacitance. Likewise, the resonance frequency is decreased for

continuously rising dielectric constant of the substrate material as illustrated in Fig. 37.
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(a) (c)

(e)

(b)

(d)

Figure 37: (a) CSRR with two cuts (b) CSRR with four cuts (c) Single ring with rectan-

gular cut (d) The transmission characteristics for different (a,b and c) CSRR structure (e)

Dependent of dielectric constant on transmission.

5.2 Metamaterial Inspired Antenna Design for Massive MIMO,

5G Communications System

Massive MIMO is an emerging technology for future wireless communication to provide

higher spectral efficiency and data rate. This technology is the best candidate for 5G cellu-

lar systems due to reliable data link and better performance using hundreds of large antenna

arrays in base stations. MIMO includes highly directed radiation beams through adaptive

beam forming and signal processing algorithms for different pairs of antennas set. The

thousands of user terminals are controlled using a full-dimensional MIMO scheme to reduce

complexity/latency/interference using highly accurate channel state information (CSI) and

simplified multiple access [88].

Several research investigations are made to address the size constraint within the large

antenna array MIMO base station.The different test beds were designed using 64×64 an-

tenna array operating at 2.4 GHz , and a 128×128 cylinderical array operating at 2.6 GHz

for fewer number of users terminals. Recently, wireless mobile companies like Samsung
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and AT&T also trying to implement such types of testbed for their users. Therefore, the

meta-material based, miniature antenna design is popular in hyper MIMO communities.

Hundreds of such sub-wavelength dimension antennas can be fabricated in periodic fash-

ion to produce exotic electromagnetic behavior in the microwave and millimeter frequency

bands. The highly directed beam forming signal can be achieved by actively controlling the

individual voltage to each meta-material unit cell. Nathan et. all (2015) investigated the

use of such reconfigurable holographic meta-material antennas for satellite communications.

These holographic antenna provide sidelobe cancellation using active electronic scanning and

produces an optimized far field radiation pattern.

Full-dimension MIMO
enhanced base station 
with LTE infrastructure

Large Scale Antenna System

Full-dimension MIMO
enhanced base station
with LTE infrastructure

Hundreds of such base stations

Thousands of such users

Large Scale Antenna System

Figure 38: The general layout of massive MIMO architecture. It consist of Full-dimension

MIMO enhanced base station with LTE infrastructure, very large antenna array, and thou-

sands of user equipment.

The general layout for full dimension MIMO system is illustrated in Fig. 38. This includes

enhanced node-B for Long term evolution (LTE) base stations, 3-D channel propagation

model, multi user shared acess, software defined air interface, large number of base station

antennas, user equipment (UE) for mobile terminal, and reference signal for pilot signal. We

focus here on the study of very large antenna array system. This paper explores the design

of such meta-material based antennas for masive MIMO communication operating at 1 GHz.
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The unit cell has a simple inset feed patch structure to get a highly directed beam along a

particular direction. The analysis of such structures will enable future studies on very large

MIMO with channel correlation, diversity gain, mutual coupling, inter channel interference

and other criteria [107] .

The meta-material inspired unit cell structure used for large array system operating at 11

GHz is shown in Fig. 39. It consists of an inset patch structure on a dielectric substrate layer.

The Rogers RT5880 (ε = 2.2) and RT5870 (ε = 2.33) alternate layers can be used as dielectric

substrates. These dielectric materials have very low loss and good electric properties over

the desired frequency ranges. This simplest design produces a high-gain radiation pattern

and can be fabricated within a communication printed circuit boards (PCB).

Incident 
wave portPML

Copper 
patch 

Dielectric 
layers

Lumped 
port

Scattering 
boundary

(a)  (b)  

W

WP

LPL
Lf

Figure 39: (a) Unit cell structure. W=L=40 , WP = 20, LP = 18,Wf = 3.5, and Lf = 20

mm (b) COMSOL design layout showing the electric field pattern.

The mutual coupling between many antennas is important to reduce the diversity factor

in very large MIMO array. Antenna diversity performance can be evaluated to increase

radiation efficiency of such array systems. The envelope correlation coefficient is defined as

the average correlation between the total radiated power within 3-D space. The envelope

correlation can be calculated from the S-parameters of the antenna as [108],
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ρe =
| S∗11S12 + S∗21S22 |

(1− (| S11 |2 + | S21 |2))(1− (| S22 |2 + | S12 |2))
(107)

The approximate diversity gain of MIMO antenna can be related to correlation coefficient

as,

Gapp = 10×
√

1− | ρe | (108)

All the designs are simulated in three dimensional COMSOL Multiphysics finite element

analysis tool. The Perfect electric conductor (PEC) is used to model thin metallic antenna

part. This is due to the small copper thickness compared to the skin depth. The lumped

port is used in the antenna feed and the input signal is applied using port 1 via a slit.The

Perfect matched layers (PMLs) on the top and bottom are used to absorb all the port and

higher order mode signals. The scattering boundary helps to scatter all the signal coming

out from the antenna unit. Finally, a Periodic boundary condition is set to get identical

10×10 arrays of such antennas.

The radiation characteristics for inset patch antenna as a meta-material unit cell for

frequency ranges 9 GHz to 12 GHz are analyzed. The Fig. 39 shows electric field pattern

near resonance of such a structure. Further, we create the model of 4×4 array of such unit

cell as basic MIMO cell. The Fig. 40 shows the good resonance of such meta-material

antennas array having S11 around -16 dB and low mutual coupling less than -10 dB. From

this design, we found the highly directed beam patten with 6.88 dB gain along the direction

of maximum radiation.

The Fig. 41 shows 3-D radiation pattern, azimuthal and elevation pattern for such

antennas. Moreover, we can find the correlation coefficient and diversity gain using equation

107 and 108 for such antenna in order to analyse mutual coupling and interference between

numbers of antenna arrays.
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Figure 40: S parameters of 4×4 MIMO unit

(a)

(b)

(c)

Figure 41: (a) The 3-D radiation pattern (b) Azimuth radiation pattern (c) Elevation radi-

ation pattern for 4× 4 Massive MIMO array unit.

5.3 Summary

This chapter includes other related application of our research projects including frequency

selective surfaces and metamaterial inspired antenna design for massive MIMO, 5G commu-

nications system. For frequency selective surfaces, we present the transmission characteristics

of various SRR structures. By analyzing the SRR and CSSR with equivalent LC resonance

circuits, we can change the magnetic resonance by altering physical parameters like dielec-

tric constant, split width, and gap etc. We found that the increment on number of cuts and
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dielectric constant in SRR reduces the frequency due to increase in overall capacitance. In

second part, we presented the design of array antennas for use in massive MIMO wireless

communication system. We discussed the overall architecture of full dimension MIMO used

for next generation cellular technology. The meta-material inspired inset patch antenna

solves the problem of size constraint, mutual coupling, channel correlation and produces a

highly directed beam pattern.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

In conclusion, I explored the electromagnetic characteristics of dielectric multilayer struc-

tures and surface gratings each with a MLS profile. The MLS system is an aperiodic system

that has been little studied for applications in optics. It is a system that is ripe for inves-

tigation as a means to support optical localization and surface waves, and as an ultra-wide

photonic band gap material in two and three dimensions. The wide range of periodicities

contained in an MLS structure leads to broadband reflection characteristics for all incident

angles. Mainly, my dissertation is focused on the study of MLS multilayer structures that are

equivalent to the perfect dielectric mirror and MLS Bloch surface wave excitation through

MLS mediated grating coupling.

In the first part of my dissertation work, I examined the reflection performance of MLS mul-

tilayer structures at visible wavelengths. The analysis here shows that multilayers with an

MLS profile can function as an effective omni-directional reflector. The narrow reflectivity

dips mean that such reflectors would not be good for monochromatic laser reflection but

rather for incoherent broad bandwidth light. The comparative analysis presented was made

both to periodic multilayers and to the metallic reflectors silver and aluminum, whose refrac-

tive index was modeled based on the Brendel-Bormann (BB) model in the visible frequency

region. I demonstrated broadband reflection for the MLS multilayer design by varying the

number of layers or the refractive index of the constituent layers.

In the second part of the dissertation, I presented an exploration of the excitation of

Bloch surface waves in dielectric multi-layers with MLS grating structures on the topmost

layer. This MLS grating structure, an aperiodic system which contains a wide range of

periodicities leading to broadband coupling of monochromatic light or wide spectral range of

collimated light into Bloch surface waves on a periodic multilayer. The comparative analysis

presented was made both to periodic and MLS grating profiles. Study results lead to the
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possibility of more sensitive as well as broader Bloch surface wave coupling compared to a

periodic grating counterpart. We conducted a detailed analysis of the surface electric field

and angular sensitivity to better understand the characteristics of MLS grating coupling.

The qualitative design and analysis of such aperiodic structures shows significant promise

for future applications in optics and biosensors.

Further, in this thesis, we presented an analysis of frequency-selective-surface structure

designs useful in metamaterial devices and 5G antenna applications. Specifically, we present

transmission characteristics of various SRR structures. By analyzing the SRR and CSSR

with equivalent LC resonance circuits, we can change the magnetic resonance by altering

physical parameters like dielectric constant, split ring width, and gap etc. We found that

the increment on number of cuts and dielectric constant in SRR reduces the frequency due

to increase in overall capacitance. The good transmission ability of FSS is possible by

increasing the gap and split width. The qualitative design and analysis of such structures

will have application in negative index meta-materials, high resolution imaging, 5G antenna

design, and RF device design. We also presented the design of antenna arrays for use

in massive MIMO wireless communication system. We discussed the overall architecture

of full dimension MIMO used for next generation cellular technology. The meta-material

inspired inset patch antenna solves the problem of size constraint, mutual coupling, channel

correlation and produces a highly directed beam pattern. The qualitative design and analysis

of such antenna arrays will enable energy and spectrum efficient future wireless connectivity

between thousands of users.

Finally, we discuss future directions of research interest in maximum length sequence

multilayers and gratings. Key future goals involve improving the design of the multilayer

platform, optimizing the performance of optical components, and projecting the contribu-

tion of this work to the evolution of further MLS multilayer reflector and grating BSWs for

sensing and integrated optics applications. An important extension based on our MLS mul-

tilayer findings is the possibility of a complete band gap structure using a three-dimensional
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maximum length sequence photonic crystal. Three-dimensional (3D) photonic crystal struc-

tures have potential applications in the fields of nanophotonics, sensing, cloaking, quantum

electrodynamics control, and photometric conversion in solar cells. Various 3D photonic

structures have been studied including Yablonovite, the woodpile structure, and the inverse

opal. These photonic crystals consist of composite structures that are periodic.The effect

of scattering and interference in such regular arrays leads to complete photonic band gaps

permitting the control of light down to the single photon level by localizing the light in all

three dimensions. We hypothesize that such deterministic aperiodic structures can produce

much larger 3D photonic band gaps without the need of high index contrast.
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