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ABSTRACT

In this thesis we construct a categorical equivalence between the category of quiv-

ers and a the category whose objects consist of a subset of tripartite posets. This result

takes ideas from Tucker Dowell’s thesis: The Category of Finite Incidence Posets[2]

and applies them in a new arena.

iv



CONTENTS

LIST OF FIGURES vi

CHAPTER 1: INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

CHAPTER 2: BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Graph Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.2 Order Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Category Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

CHAPTER 3: RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

v



List of Figures

1 A Simple Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 A Simple Graph Homomorphism . . . . . . . . . . . . . . . . . . . . 3

3 Two Examples of Quivers . . . . . . . . . . . . . . . . . . . . . . . . 4

4 Hasse Diagrams of P1 and P2 . . . . . . . . . . . . . . . . . . . . . . 10

5 A Categorical Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 13

6 A Quiver Poset (P, v) . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

7 A Quiver (Q, u) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

8 Another Quiver Poset (P, v) . . . . . . . . . . . . . . . . . . . . . . . 20

9 The Quiver G[(P, v)] induced by (P, v) . . . . . . . . . . . . . . . . . 21

10 Another Quiver G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

11 The Quiver Poset (P (G), vG) induced by G . . . . . . . . . . . . . . . 24

12 Diagram for Theorem 3.46 . . . . . . . . . . . . . . . . . . . . . . . . 36

13 Diagram for Theorem 3.47 . . . . . . . . . . . . . . . . . . . . . . . . 38

vi



1

CHAPTER 1

INTRODUCTION

We are motivated to construct our categorical equivalence by a desire to apply

topologies defined on quivers(as well as digraphs and simple graphs) onto posets and

vice versa. In particular, we seek to investigate the results of applying the compatible

edge and incompatible edge topologies onto a quiver’s equivalent poset, introduced

by Khalid Abdulkalek Abdu and Adem Kilicman[1].

In this thesis most of the mathematics will be orignial and all original work was

completed under the supervision of Dr.James Hart. All proofs provided are my own.

Many of our definitions are standard and are taken from source material. In par-

ticular, Introduction to Graph Theory[7], Graph Symmetry: Algebraic Methods and

Applications[4], and Quiver Representations and Quiver Varieties[5] will be used as

sources for our graph theory definitions. Introduction to Order Theory[3] will be

our source for order theory, and Categories for the working Mathematician[6] will be

used as our source for category theory. The three previously mentioned resources will

provide background for these three fields. We attempt to use the most mainstream

vocabulary and definitions in a changing environment. It should be noted that we will

not be using any advanced results or topics here. Only an elementary understanding

of each topic is necessary for the work provided.

In Chapter 2 we present all background information necessary to understand the

thesis. We assume the reader has familiarity with the properties of functions and

sets.

In Chapter 3 we build a pair of functors and then show those functors yield a

categorical equivalence on our yet-to-be defined categories.
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CHAPTER 2

BACKGROUND

2.1 Graph Theory

It is common in elementary Graph Theory to introduce simple graphs before digraphs,

so we will follow suit here.

Definition 2.1 [7] Simple Graph: A simple graph G consists of a non-empty finite set

V (G) of elements called vertices and a finite set E(G) of elements called edges. An edge

vw is said to join the vertices v and w. Note that vw can also be represented by wv here.

For example, Fig X represents the simple graph G whose vertex set V (G) is {u, v, w, z},

and whose edge set E(G) consists of the edges uv, uw, vw, and wz.

u v

w z

Figure 1: A Simple Graph

We say that two distinct vertices v and w are adjacent when an edge joins v and

w, or when vw ∈ E(G), and write v ∼ w. We say that that an edge is incident with

a vertex whenever that vertex is a member of the pair that defines the given edge.

The degree of a vertex is the number of edges incident with that vertex.
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We will complete our discussion of simple graphs with a definition of simple graph

homomorphisms and, more importantly, simple graph isomorphisms.

Definition 2.2 [4] Simple Graph Homomorphism: Let G and H be simple graphs. A

simple graph homomorphism ϕ from G to H is a function from V (G) to V (H) such that

for all v, w ∈ V (G), v ∼ w =⇒ ϕ(v) ∼ ϕ(w).

If ϕ is a bijection, then we call ϕ a simple graph isomorphism.

As we see in other fields, the homomorphism preserves some of the structure of

the input graph, while the isomorphism perfectly preserves the structure of the input

graph. Below is an example of a simple graph homomorphism.

x2 x3 y2

y1 y3

x1 x4 x5 y4

Figure 2: A Simple Graph Homomorphism

Here ϕ(x1) = y1, ϕ(x2) = y2, ϕ(x3) = y3 and ϕ(x4) = ϕ(x5) = y4. Effectively, ϕ

combines the vertices x4 and x5 while retaining each vertex’s corresponding edges.

It is easy to guess that an isomorphism would produce an exact copy of the input

graph, with possibly a relabeling of vertices.

Now that we’ve completed our discussion on simple graphs, we can generalize to

the pertinent case of quivers. We define a quiver as follows.
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Definition 2.3 [5] Quiver: A quiver G = (V (G), A(G), s, t) is an ordered quadruple

consisting of a non-empty finite set V (G) of elements called vertices, a finite set A(G) of

ordered pairs called arrows, as well as a pair of maps s and t called the source map and

target map of G respectively. We call V (G) the vertex set and A(G) the arrow set of G.

For an arrow a, we call s(a) the source of a and t(a) the target of a.

We say that the vertex v “points” to a vertex w if there exists an a ∈ A(G) such

that s(a) = v and t(a) = w. Here our arrows take the place of edges in simple graphs.

Unlike edges, each arrow has a direction. It may be the case that v points to w and

still be true that w does not point to v. Some examples of quivers will be shown below.

a b

c

x1 x2

x5

x3 x4

Figure 3: Two Examples of Quivers

It is common to see slightly different definitions for graphs like these from different

authors. Our definition allows for cases in which a vertex points to itself. For example
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it could be the case that there exists a ∈ A(G) such that s(a) = t(a) = v. We will

refer to these types of arrows as loops from this point forward. We will also allow

distinct arrows to share a source and a target. Arrows of this type are sometimes

called parallel arrows.

We previously introduced homomorphisms on simple graphs. Below we define

homomorphisms on quivers.

Definition 2.4 [5] Quiver Homomorphism: Let G = (V (G), A(G), s1, t1) and H =

(V (H), A(H), s2, t2) be quivers. A quiver homomorphism ϕ = (ϕV , ϕA) is a pair of maps

such that the following hold.

1.) ϕV : V (G) → V (H)

2.) ϕA : A(G) → A(H)

3.) ∀a ∈ A(G), ϕV (s1(a)) = s2(ϕA(a))

4.) ∀a ∈ A(G), ϕV (t1(a)) = t2(ϕA(a))

Conditions 3.) and 4.) simply require that that our vertex and arrow mappings

preserve the source and targets of a given arrow. We are primarily concerned with

quiver isomorphisms. Just like simple graph isomorphisms, quiver isomorphisms are

effectively relabelings of a given quiver’s vertices and arrows. However, we will define

quiver isomorphisms more precisely.

Definition 2.5 [5] Quiver Isomorphism: Two quivers G = (V (G), A(G), s1, s2) and

H = (V (H), V (A), s2, t2) are isomorphic as quivers provided there is a quiver isomorphism

betweem them. A quiver isomorphism is a pair (ϕ, ψ) where

1.) ϕ = (ϕV , ϕA) is a quiver homomorphism from G to H
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2.) ψ = (ψV , ψA) is a quiver homomorphism from H to G

3.) ψV ◦ ϕV = 1V (G) and ϕV ◦ ψV = 1V (H)

4.) ψA ◦ ϕA = 1A(G) and ϕA ◦ ψA = 1A(H)
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2.2 Order Theory

Repeatedly in mathematics we come across cases in which groups of objects are“ordered”

in some fashion. The most popular case of this is when comparing two numbers,

specifically how “big” they are in relation to one another. When x is smaller than y

we say that x is less than y and write x < y. When comparing two sets U and V ,

we might say that U is a subset of V and write U ⊂ V. Since statements like these

are both extremely common and important across many different fields, we seek to

generalize this idea.

Definition 2.6 [3] Partially Ordered Set: A partially ordered set, or“poset” is a pair

(P,≤) satisfying the following:

1.) For all x ∈ P, x ≤ x (reflexivity)

2.) If x ≤ y and y ≤ x, then x = y (antisymmetry)

3.) If x ≤ y and y ≤ z, then x ≤ z (transitivity)

We call the binary relation ≤ a partial ordering on P . It is important to remember

that ≤ is itself a set containing ordered pairs of members of P . Letting p, q ∈ P , we

say that p ≤ q ⇐⇒ (p, q) ∈≤. This is easy to forget, as in practice we typically think

of the relation symbol as sort of function that compares two things and outputs a

truth value.

The “partial” in partial ordering refers to the fact that every pair of members of P

need not be comparable under ≤ . For any two real numbers x and y, it is either the

case that x ≤ y or that y ≤ x. However this is rarely the case in common orderings.

Let A = {1, 2, 3} and P (A) be the set of all subsets of A. Then (P (A),⊆) forms a

partial ordering on P (A). Certainly, {1, 2} and {2, 3} are members of P (A). However,
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we cannot say that {1, 2} ⊆ {2, 3} or that {2, 3} ⊆ {1, 2}. In cases like this, we say

that {1, 2} and {2, 3} are incomparable under ⊆ and write {1, 2}||{2, 3}. A poset that

contains no pairs of incomparable elements is called a chain. The real numbers form

a chain under “less than or equal to”, as mentioned previously. Next we assemble all

necessary definitions and terms for future results.

Definition 2.7 [3] Let (P,≤) be a poset and let X ⊆ P . The set

↓ X = {p ∈ P : p ≤ x for some x ∈ X}

is called the lowerset generated by X. Similarly, the set

↑ X = {p ∈ P : x ≤ p for some x ∈ X}

is called the upperset generated by X.

A lowerset or upperset generated by a singleton {x} is called a principal lowerset

or upperset respectively. We denote the principal lowerset generated by {x} as ↓ x

instead of ↓ {x}. We can think of ↓ x as the set of all members of P that are less

than x, and ↑ x as the set of all members of P that are greater than x. Note that x

is a member of ↓ x and ↑ x. These uppersets and lowersets will be crucial in our later

definitions of quiver posets.

Definition 2.8 [3] Let (P,≤) be a poset. We say that x is minimal in P provided

↓ x = {x} and we say that x is maximal in P provided ↑ x = {x}

In other words, x is maximal in P if nothing is greater than x in P , and x is

minimal in P if nothing is less than x in P.

We have casually discussed chains previously. For completeness we provide a def-

inition for chains, and their opposites, antichains.
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Definition 2.9 [3] A poset (P,≤) is said to be a chain (or totally ordered) if every

element of P is comparable to every other element of P . That is to say, for any x, y ∈ P ,

x ≤ y or y ≤ x.

Definition 2.10 [3] A poset (P,≤) is said to be an antichain if P contains no pairs of

distinct, comparable elements. That is to say, for any x, y ∈ P , x ≤ y ⇐⇒ x = y.

Previously we defined graph homomorphisms, which are mappings that preserve

some of the structure of a given graph. We are likewise interested in structure-

preserving mappings between posets. We call these mappings order homormorphisms.

Definition 2.11 [3] Let (P,≤) and (Q,⪯) be two posets. A mapping f : P → Q is

called an order homomorphism or an isotone function given that for all x, y ∈ P

x ≤ y =⇒ f(x) ⪯ f(y)

We say that P and Q are isomorphic as posets when there exists a bijective order homo-

morphism f : P → Q whose inverse is also an order homomorphism.

It is difficult to work with posets without some tidy diagram that captures the

members of the posets and their relationships to each other. We will provide this

visual tool soon, but we need one more term before we do so.

Definition 2.12 [6] Let (P,≤) be a poset. We say that an element y covers an element

x given that x < y and there is no z ∈ P such that x < z < y.

So, y covers x only when y is “one step above” or “one step greater” than x. We

are now ready to define what we call Hasse Diagrams.
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Definition 2.13 [3]Hasse Diagrams are used to represent finite posets. Let (P,≤) be

a finite poset. The members of P will be represented as vertices, while line segments

connecting different vertices will represent when one member is less than or greater than

another under the given ordering.

Let P1 = P ({x, y} and P2 = P ({x, y, z}) be the two posets containing the power

sets of {x, y} and {x, y, z} under subset inclusion.

{x, y}

{y} {x}

{}

{x, y, z}

{x, y} {y, z}

{x, z}

{y}

{x} {z}

{}

Figure 4: Hasse Diagrams of P1 and P2

The above diagrams are the Hasse diagrams for P1(on the left) and P2(on the

right). We are meant to read the diagram “bottom up”. That is to say, when one

vertex is connected to another, the lower vertex is less than the upper. In this con-

text, that means that {x} ⊂ {x, y} from the diagram for P1.

Notice there is no line from {} to {x, y} in P1. In Hasse diagrams, we only draw a
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minimal number of line segments. We do not need one directly connecting the empty

set and {x, y} since there is already a path of line segments connecting them. We

sometimes call this a transitive reduction in the context of graph theory. We do not

think of these objects as graphs in any formal sense, although the connection between

them is clear. It will be important later on to distinguish between a diagram being a

graph or a Hasse Diagram of a poset.
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2.3 Category Theory

This section will be the longest and most pertinent to the thesis. As mentioned

previously, we seek to show a categorical equivalence between the category of quivers

and the category of directed quiver posets. Of course, this goal is meaningless until

we provide the relevant definitions. We will first provide some much needed intuition.

It is common to see that distinct mathematical structures act very similarly, or

even identitically, whilst having radically different origins and representations. For

example, D3, the dihedral group of order 6, is group isomorphic to S3, the permutation

group of order 6. This is surprising given that the members and compositions of each

group are very different, yet they are “essentially” the same thing from a group the-

ory perspective. Category theory generalizes this concept further, allowing us to say

that entire classes of objects are “essentially” the same as opposed to just two objects.

Definition 2.14 [6] Category: A category C consists of a class of objects, Obj(C), and

a class of morphisms, Hom(C), between objects such that:

1.) For every pair of morphisms f : A → B and g : B → C, there exists a unique

morphism g ◦ f : A→ C called the composition of f and g.

2.) For every triplet of morphisms f : A → B, g : B → C, and h : C → D, we have

that (h ◦ g) ◦ f = h ◦ (g ◦ f).

3.) For every object A, there exists an identity morphism 1A such that f ◦ 1A = f

and 1A ◦ g = g for any morphisms f : A→ X and g : Y → A.

We sometimes call these morphisms between objects mappings instead. We’ve

seen examples of homomorphisms and isomorphisms already; both being examples of
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structure preserving mappings. A morphism is a generalization of this idea that will

change depending on the category we are working in. For example, a category whose

objects are topologies would most likely have continuous functions as it’s morphisms.

If the category contains vector spaces as its objects, the morphisms might be linear

transformations.

Definition 2.15 Notation: Given a category C andX, Y ∈ Obj(C), we denoteHom(X, Y )

as the class containing all C-morphisms from X to Y .

Once again, we able to represent another concept with a diagram consisting of

nodes and line segments between them. Let C be a category with X, Y, and Z as

objects in C. Let f ∈ Hom(X, Y ) and g ∈ Hom(Y, Z). We can represent these

objects and morphisms like so.

X Y

Z

f

g
g◦f

Figure 5: A Categorical Diagram

Here our objects take the form of nodes and morphisms the form of arrows. Es-

sentially, we can represent any finite collection of objects and morphisms as a quiver.

It is important to note we may not represent every morphism in a given diagram. By

our definition there is an identity morphism from each of X, Y, and Z back to itself.

These would be represented as loops around each node, as mentioned previously.

Our goal is to show that two specific categories are effectively identical. We will

do this in a similar manner as before. Previously we used isomorphisms to state that
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two objects are identitical, with isomorphisms being invertible structure preserving

functions. We will instead construct the categorical equivalent of an isomorphism,

but first we will define the categorical equivalent of a function.

Definition 2.16 [6] Functor: Let C and D be categories. A functor F from C to D is

a mapping that:

1.) Associates each object X in C to an object F (X) in D

2.) Associates each morhpism in C to a morphism in D such that

a.) If f ∈ Hom(X, Y ), then F (f) ∈ Hom(F (X), F (Y ))

b.) F (IX) = IF (X) for each X ∈ Obj(C)

c.) F (g ◦ f) = F (g) ◦ F (f) for all f ∈ Hom(X, Y ) and g ∈ Hom(Y, Z)

Functors are distinct from functions in that they map members of classes to mem-

bers of classes, whereas functions map members of sets to members of sets. We use

functors here to avoid any spooky paradoxes, but they are the same idea in spirit. It

is helpful to think of morphisms in a given category C to be mappings entirely inside

of C, while functors are mappings that pull objects in C outside of C. Morphisms

are “internal” mappings and functors are “external” mappings.

It should be noted that the definition above describes what is called a covariant functor.

A covariant functor preserves the direction of morphisms in C. This can be seen in

part 2a, where f is a morphism from X to Y in C and F (f) is a morphism from

F (X) to F (Y ) in D. Likewise, contravariant functor reverses the order of these mor-

phisms. Suppose F was instead a contravariant functor, then if f was a morphism
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from X to Y , then F (f) would be a morphism from F (Y ) to F (X). The functors

we will define later will all be covariant functors.

The way we define a categorical equivalence will mirror our previous definitions

of order and quiver isomorphisms. Recall that these isomorphisms are bijective map-

pings that preserve structure. To show a categorical equivalence, we will provide a

functor between categories that preserves structure in a similar fashion.

Definition 2.17 [6] Equivalent Categories: A functor F : C → D yields an equivalence

of categories if the following hold

1.) Let X, Y ∈ Obj(C). Then for any g ∈ Hom(F (X), F (Y )), there exists an

f ∈ Hom(X, Y ) such that F (f) = g.

2.) If f1, f2 ∈ Hom(X, Y ) and F (f1) = F (f2), then f1 = f2.

3.) For every Y ∈ Obj(D), there exists an X ∈ Obj(C) such that F (X) is isomorphic

to Y.

We say that a functor F is full if F satisfies requirement 1. and that F is faithful

if F satisfies requirement 2. Fullness is the functor equivalent of being surjective

along morphisms, while faithfulness is the functor equivalent of being injective along

morphisms. Requirement 3 is sometimes referred to as Essential Surjectivity and is

the functor equivalent of being surjective along objects.

This idea is the centerpiece of the thesis, as we will be using it to show that the

category of quivers is equivalent to the category of Quiver Posets.
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CHAPTER 3

RESULTS

Before we begin building our equivalence, we must first define the objects lying

inside of our new category.

Definition 3.18 Quiver Poset: Suppose P = (P,≤) is a nonempty, finite poset that

can be written as the union of maximal chains of length one or three. Let S(P ) denote

the set of suprema of length-three chains and let T (P ) denote the infima of length-three

chains. Let A(P ) denote the set of elements covered by a member of S(P ) (or, equiv-

alently, covering an element of T (P )). The maximal singleton chains represent elements

that are both maximal and minimal in P . Partition this collection into sets I1(P ) and

I2(P ). Let Max(P ) = S(P ) ∪ I1(P ) and Min(P ) = T (P ) ∪ I2(P ). We say P is a

quiver poset provided the following conditions are met.

1.) There exists a bijection v :Max(P ) →Min(P ).

2.) For all a ∈ A(P ), the sets ↑ a ∩ S(P ) and ↓ a ∩ T (P ) are singletons.

Definition 3.19 Natural Indexing: Suppose (P, v) is a quiver poset and that |Max(P )| =

n = |Min(P )|. We can relabel the sets Max(P ) and Min(P ) such that Max(P ) =

{1, ..., n},Min(P ) = {x1, ..., xn} and v(i) = xi for each i.
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1 2 3 4 5

a1 a2 a3 a4

x1 x2 x3 x4 x5

Figure 6: A Quiver Poset (P, v)

Above is an example of a quiver poset, P , under our natural indexing. Here

Max(P ) = {1, 2, 3, 4, 5}, A(P ) = {a1, a2, a3, a4} andMin(P ) = {x1, x2, x3, x4, x5}. In

particular, S(P ) = {1, 2, 3}, T (P ) = {x3, x4}, I1(P ) = {4, 5} and I2(P ) = {x1, x2, x5}.

Our maximal singleton chains are simply the members of P that are incomparable

with all other members of P . Every other element will be a member of chain of length

three. For example {1, a2, x4} is such a chain.

It should be noted that we can relabel this quiver poset in such a way that the

bijection is less obvious. However, any poset can be relabelled in this more convenient

manner. In general, we will display these diagrams in such a way that the bijection

mapping is “vertical”. For example the following quiver (Q, v) is implied to have the

bijection v :Max(Q) →Min(Q) defined by:

v(e) = w, v(f) = x, v(g) = y, v(h) = z

e f g h

a1 a2

w x y z

Figure 7: A Quiver (Q, u)
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Notation: We are often concerned with the singleton sets ↑ a∩S(P ) and ↓ a∩T (P )

for a given quiver poset P and an a ∈ A(P ), as they represent the elements directly

above and below our arrow a in P. We will denote the member of ↑ a ∩Max(P ) as

CP (a) and the member of ↓ a ∩Min(P ) as cP (a).

Definition 3.20 QP-morphism: Suppose (P, v) and (Q, u) are Quiver Posets. A QP -

morphism is an order homomorphism F : P → Q with the following properties

1.) F (Max(P )) ⊆Max(Q)

2.) F (Min(P )) ⊆Min(Q)

3.) F (A(P )) ⊆ A(Q)

4.) For all x ∈Max(P ), we have that F (v(x)) = u(F (x))

5.) For all a ∈ A(P ) we have that

a.) F (CP (a)) = CQ(F (a)) or F (↑ a ∩Max(P )) = (↑ F (a) ∩Max(Q))

b.) F (cP (a)) = cQ(F (a)) or F (↓ a ∩Min(P )) = (↓ F (a) ∩Min(Q))

These QP−morphisms are essentially order homomorphisms that respect the bi-

jections equipped to P and Q.

As previously mentioned, we seek to show a categorical equivalence between quiv-

ers and our new objects that we have referred to as quiver objects. It is reasonable to

first show that these two classes of objects and their morphisms are indeed categories.

Theorem 3.21 The class QP consisting of all quiver posets coupled with QP-morphisms

constitutes a category in which morphism composition is function composition.

Proof: The associativity and uniqueness of morphism composition is guaranteed

by the properties of function composition. We define 1P to be the usual identity
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mapping on P. This works as the identity morphism on any object P ∈ QP.

Theorem 3.22 The class Q consisting of all quivers coupled with quiver morphisms

constitutes a category in which morphism composition is component-wise function com-

position.

Proof:

Associativity: Let α, β, γ ∈ Hom(Q) with

α : G1 → G2, β : G2 → G3, and γ : G3 → G4

Then γ ◦ (β ◦ α) = (γ ◦ β) ◦ α

⇕

γV ◦ (βV ◦ αV ) = (γV ◦ βV ) ◦ αV and γA ◦ (βA ◦ αA) = (γA ◦ βA) ◦ αA

Which is guaranteed by the associativity of function composition.

Identity Morphism: Let G ∈ Q and ϕ1, ϕ2 ∈ Hom(Q) with

ϕ1 : H1 → G and ϕ2 : G→ H2.

Then

1G ◦ ϕ1 = (1V ◦ ϕ1V , 1A ◦ ϕ1A) = (ϕ1V , ϕ1A) = ϕ1

and

ϕ2 ◦ 1G = (ϕ2V ◦ 1V , ϕ2A ◦ 1A) = (ϕ2V , ϕ2A) = ϕ2

Thus, for any G ∈ Q, 1G acts as an identity morphism on G.
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Theorem 3.23 Every quiver poset (P, v) induces a quiver G[(P, v)], where

V (G) = {(i, xi) : i ∈Max(P )} and A(G) = A(P )

and the source and target maps are defined by s(a) = (i, xi) and t(a) = (j, xj) where

i = C(a) and j = c(a).

Proof: Let (P, v) be a QP. Let G be the quiver with V (G) = {(i, xi) : i ∈

Max(P )}, A(G) = A(P ). Since Max(P ) and A(P ) are both finite, V (G) and A(G)

must also both be finite. These are also clearly disjoint, as V (G) contains only

ordered pairs while A(G) contains none. V (G) is nonempty exactly when Max(P ) is

nonempty.

To show that s and t are functions, we only need to show their outputs are unique,

however this follows from the fact that ↑ a ∩ S(P ) and ↓ a ∩ T (P ) are singletons, or

from part 2 of our definition for quiver poset.

For example, let (P, v) be the poset shown below.

1 2 3

a1 a2 a3

x1 x2 x3

Figure 8: Another Quiver Poset (P, v)

Then G[(P, v)] would be the quiver
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(1, x1) (2, x2)

(3, xx)

a1

a2

a3

Figure 9: The Quiver G[(P, v)] induced by (P, v)

Theorem 3.24 Every quiverG = (V (G), A(G), s, t) induces a quiver poset (P (G), vG))

where

Max(P (G)) = {1, ..., |V (G)|}

A(P (G)) = A(G)

Min(P (G)) = V (G)

vG(i) = vi for all i ∈Max(P (G))

and ≤, the partial ordering on (P (G), vG), is defined by the following rule:

We have that x = y if x and y are the same element. We also have that x < y if and

only if one of the following is met.

a.) y ∈Max(P (G)) and x ∈ A(P (G)) and s(x) = vy.

b.) y ∈ A(P (G)) and x ∈Min(P (G)) and t(y) = x.

c.) y ∈ Max(P (G)) and x ∈ Min(P (G)) and there exists an a ∈ A(G) such that

s(a) = vy and t(a) = x.
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Proof: First we show that P (G) is in fact a poset. Since reflexivity is clear, sup-

pose x, y ∈ P with x ≤ y and y ≤ x. Suppose further that x ≤ y and y ≤ x. By

our relation definition, it must be the case that both x and y lie in two of the three

disjoint sets. This contradicts x < y and y < x. Thus, it must be the case that x = y.

Hence, our relation is anti-symmetric.

Now suppose that x, y, z ∈ P with x < y and y < z. By our relation definition,

it must be the case that x ∈ Min(P ), y ∈ A(P ), and z ∈ Max(P ). By (a), t(y) = x

and by (b), s(y) = vz. Then by (c) x < z. Thus, our relation is transitive and hence,

a partial ordering.

It remains to be shown that P (G) is a quiver poset. Since A(G) and V (G) are

both finite sets, P (G) is also finite. To show that P (G) can be written as the union

of maximal chains of length 1 or 3, recall that our ordering does not allow chains of

length 4 or higher. To show that chains of length 2 cannot exist in P (G), suppose

that {x, y} is a maximal chain in P (G). Then x < y under one of our three conditions

(a), (b), and (c). Notice that (c) implies a contradiction immediately as we could

write {x, a, y} as a chain in P (G). Now suppose x < y under either (a) or (b). Then

either x or y is in A(P ). However, all members of A(P ) both cover and are covered

by elements in Min(P ) and Max(P ) respectively. These would imply the existence

of chains of length three in either case. Thus, P (G) contains no chains of length 2.

It follows that P (G) can be written as the given union.

Alternatively, define EM = {x ∈ Max(P ) : c(x) = ∅} and Em = {x ∈ Min(P ) :

C(x) = ∅.} Then we can write

P (G) =
⋃n
i=1[

⋃
ak∈s−1(vi)

{i, ak, t(ak)}]
⋃
EM

⋃
Em = A.

For any i ∈ {1, ..., n} = Max(P ), and for any ak ∈ s−1(vi), {1, ak, t(ak) ⊂ P (G).

We’ve also defined EM and Em such that they are subsets of P (G) as well. So,
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∪ni=1[∪ak∈s−1(vi){i, ak, t(ak)}] ∪ EM ∪ Em ⊆ P (G). Now suppose that x ∈ P (G). If

x ∈ A(P ), then s(x) = vi for some i. Thus, x ∈ A. Now suppose x ∈Max(P ). Then

x ∈ EM or c(x) = ai for some i. So, s(ai) = x =⇒ ai ∈ s−1(x) =⇒ {ai, x, t(ai)} ⊂

A =⇒ x ∈ A. Similarly, suppose that x ∈ Min(P ). Then x ∈ Em or C(x) = ai for

some i. So, t(ai) = x. Then ai ∈ s−1(vj) for some j. So, {ai, i, x} ⊂ A =⇒ x ∈ A.

Thus, P (G) =
⋃n
i=1[

⋃
ak∈s−1(vi)

{i, ak, t(ak)}]
⋃
EM ∪ Em, as desired.

Assuming that V (G) = {v1, ..., vn}, gives us that Max(P (G)) = {1, ..., n}. As

previously defined, the natural bijection vG(i) = vi for all i ∈Max(P (G)).

Finally, we show that for all y ∈ A(P ), the sets ↑ y ∩ S(P ) and ↓ y ∩ T (P )

are singletons. From our order definition, we can deduce that ↑ y = {y, s(y)} and

↓ y = {y, t(y)}. Clearly y /∈ S(P ) and y /∈ T (P ). Since s and t are functions mapping

into S(P ) and T (P ), we have that ↑ a ∩ S(P ) = {s(y)} and ↓ a ∩ T (P ) = {t(y)},

proving the result.

Again we provide an example. Let G be the quiver shown below.

x1 x2

x3 x4

a1

a3

a4

a2

Figure 10: Another Quiver G

Then we would represent (P (G), vG) by
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1 2 3 4

a1 a2 a3 a4

x1 x2 x3 x4

Figure 11: The Quiver Poset (P (G), vG) induced by G

Next, we are able to define the functors that will yield the equivalence of categories.

Definition 3.25 The mapping PO:

Define a mapping PO : Obj(Quiv) → Obj(QP ) as follows. For each quiver G =

(V (G), A(G), s1, t1), let PO[G] = (P (G), vG), as defined in Theorem 3.23.

Definition 3.26 The Mapping QO:

Define a mapping QO : Obj(QP ) → Obj(Quiv) as follows: For each quiver poset

(P, v), let QO[(P, v)] = G[(P, v)]

These will be the object maps on our functors defined later on. Now we show that

each of these maps are well-defined up to isomorphism classes. We will need a few

lemmas to do this.

Lemma 3.27 Suppose (P, v) is a quiver poset with induced quiver G[(P, v)]. The in-

duced quiver poset (P (G[(P, v)]), vG) is isomorphic to (P, v).

Proof: Suppose that P =Max(P ) ∪ A(P ) ∪Min(P ) withMax(P ) = {1, ..., n}, A(P ) =

{a1, ..., am}, andMin(P ) = {v1, ..., vn}. ThenG[(P, v)] = G has V (G) = {(1, v1), ..., (n, vn)}

andA(G) = {a1, ..., am}. For clarity, relabel (i, vi) as wi for all i. Then let (P (G[(P, v)]), vG) =

(Q, u) = Max(Q) ∪ A(Q) ∪Min(Q), with Max(Q) = {1′, ..., n′}, A(Q) = A(G) =

A(P ), and Min(Q) = {w1, ..., wn}. Let λ, ξ ∈ Hom(QP ) be defined by
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λ : P → Q and ξ : Q→ P

with

λ(i) = i′, λ(ai) = ai, λ(vi) = wi and

ξ(i′) = i, ξ(ai) = ai, ξ(wi) = vi.

First we must verify that λ and ξ are indeed in Hom(QP ). Our first three require-

ments are clear. To show (4), Suppose i ∈ Max(P ). Then λ(v(i)) = λ(vi) = wi =

u(i′) = u(λ(i)). Now suppose that i′ ∈Max(Q). Then ξ(u(i′)) = ξ(wi) = vi = v(i) =

v(ξ(i′)). To show (5), note that

CP (a) = i⇐⇒ s(a) = (i, vi) = wi ⇐⇒ CQ(a) = i′

and that

cP (a) = i⇐⇒ s(a) = (i, vi) = wi ⇐⇒ cQ(a) = i′

So, let a ∈ A(P ) and suppose CP (a) = i. Then λ(CP (a)) = λ(i) = i′ = CQ(a) =

CQ(λ(a)). Similarly, suppose cP (a) = j. Then λ(cP (a)) = λ(j) = j′ = cQ(a) =

cQ(λ(a)). Since ξ(a) = λ(a) for all a, we can replace λ with ξ here. Thus, λ and ξ

are QP-morphisms.

Lemma 3.28 Suppose G = (V (G), A(G), s1, t1) is a quiver with induced quiver poset

(P (G), v). The induced quiver G[(P (G), v)] is isomorphic to G.

LetG[(P (G), v)] = H = (V (H), A(H), s2, t2) and suppose that V (G) = {v1, ..., vn}

and A(G) = {a1, ..., am}. Then (P (G), v) = Max(P (G)) ∪ A(P (G)) ∪Min(P (G)),

where Max(P (G)) = {1, ..., n}, A(P (G)) = A(G), and Min(P (G)) = {v1, ..., vn}.

Likewise, V (H) = {(1, v1), ..., (n, vn)} and A(H) = {a1, ..., an}.. Let ρ, ϑ be mappings

defined by

ρ : G→ H and ϑ : H → G

with

ρV (vi) = (i, vi), ρA(ai) = ai, ϑv(i, vi) = vi, and ϑA(ai) = ai
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First we must verify that ρ and ϑ are indeed in Hom(Quiv). Let ai ∈ A(G). From

our construction, we know that

s1(ai) = vj ⇐⇒ j = CP (G)(ai) ⇐⇒ s2(ai) = (j, vj)

and

t1(ai) = vk ⇐⇒ k = cP (G)(ai) ⇐⇒ t2(ai) = (k, vk)

Let ai ∈ A(G) and suppose that s1(ai) = vj Then ρV (s1(ai)) = ρV (vj) = (j, vj) =

s2(ai) = s2(ρ(ai)). Similarly, suppose that t1(ai) = vk. Then ρV (t1(ai)) = ρV (vk) =

(k, vk) = t2(ai) = t2(ρA(ai)). Thus, ρ is a quiver morphism.

Let ai ∈ A(H) and suppose that s2(ai) = (j, vj). Then ϑV (s1(ai)) = ϑV ((j, vj)) =

vj = s1(ai) = s1(ϑA(ai)). Similarly, suppose that t2(ai) = (k, vk). Then ϑV (t2(ai)) =

ϑV (k, vk) = vk = t1(ai) = t1(ϑA(ai)). Thus, ϑ is also a quiver morphism.

It is clear that (ϑv, ρv) and (ϑA, ρA) form inverse pairs. Hence, G is isomorphic to

H = G[P (G), v)], as desired.

Lemma 3.29 Suppose (P, v) and (Q, u) are quiver posets. If the induced graphs

G[(P, v)] and G[(Q, u)] are isomorphic, then (P, v) and (Q, u) are also isomorphic.

Proof: Suppose that G(P ) and G(Q) are isomorphic, where V (G(P )) = {(i, vi) :

i ∈Max(P )}, A(G(P )) = A(P ), V (G(Q)) = {(j, uj) : j ∈Max(Q)}, andA(G(Q)) =

A(Q). Then there exists an invertible quiver-morphism ϕ : G(P ) → G(Q). Define

F : P → Q by

F (i) = j, when ϕv(i, vi) = (j, uj)

F (vi) = uj, when ϕv(i, vi) = (j, uj) and

F (ak) = bl, when ϕa(ak) = bl.
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Suppose i ∈ Max(P ) and that ϕV (i, vi) = (j, uj). Then F (v(i)) = F (vi) =

uj = u(j) = u(F (i)). Now suppose that ak ∈ A(P ). Notice that F (CP (ak)) =

j ⇐⇒ ϕv(s1(ak)) = (j, uj) and that CQ(F (ak)) = j ⇐⇒ s2(ϕA(ak)) = (j, uj). Then

F (CP (ak)) = j ⇐⇒ ϕv(s1(ak)) = (j, uj) = s2(ϕA(ak)) ⇐⇒ CQ(F (ak)) = j. So, for all

ak ∈ A(P ), CQ(F (ak)) = FP (C(ak)). Thus, F is a QP-morphism.

Because ϕA and ϕV are bijections, so is F. Define H : Q→ P to be the inverse of

F . Specifically,

H(j) = i, when ϕV (i, vi) = (juj)

H(uj) = vi, when ϕV (i, vi) = (j, uj) and

H(bl) = ak, when ϕA(ak) = bl

Suppose j ∈ Max(Q) and that ϕV (i, vi) = (j, uj). Then H(u(j)) = H(uj) =

vi = v(i) = v(H(j)). Now suppose that ak ∈ A(Q). Notice that H(CQ(ak)) =

i ⇐⇒ ϕ−1
V (s2(ak)) = (i, vi) and that CP (H(ak)) = i ⇐⇒ s1(ϕ

−1
A (ak)) = (i, vi). Then

H(CQ(ak)) = i ⇐⇒ ϕ−1
V (s2(ak)) = (i, vi) = s1(ϕ

−1
A (ak)) ⇐⇒ CP (H(ak)) = i. So, for

all ak ∈ A(Q), CP (H(ak)) = H(CQ(ak)). Thus, H is also a QP-morphism. Since F

and H are inverse morphisms, they form an isomorphism on P and Q, as desired.

Lemma 3.30 Suppose that G = (V G), A(G), s1, t1) and H = (V (H), A(H), s2, t2)

are quivers and that (P (G), v) and (P (H), u) are their quiver posets. If (P (G), v) and

(P (H), u) are isomorphic, then G and H are also isomorphic.

Proof: Suppose that V (G) = {v1, ..., vn}, V (H) = {u1, ..., un}, A(G) = {a1, ..., am},

and that A(H) = {b1, ..., bm}. Then there exists an invertible QP-morphism F :

P (G) → P (Q) such that CQ(F (a)) = F (CP (a)) and cQ(F (a)) = F (cP (a)) for all

a ∈ A(P (G)). Define ϕ = (ϕV , ϕA) as follows

ϕV (vi) = uj, when F (i) = j ⇐⇒ F (vi) = uj and

ϕA(ak) = bl, when F (ak) = bl.
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It remains to be shown that ϕ is a quiver morphism. Suppose that ak ∈ A(G).

Then s2(ϕA(ak)) = uj ⇐⇒ CQ(F (ak) = j = F (CP (ak)) ⇐⇒ ϕV (s1(ak)) = uj. Thus,

s2(ϕA(a)) = ϕV (s1(a)) for all a ∈ A(G).

We also have that t2(ϕA(ak)) = uj ⇐⇒ cQ(F (ak)) = j = F (cP (ak)) ⇐⇒

ϕV (s1(ak)) = uj. Thus, t2(ϕA(aK)) = ϕV (t1(ak)) for all ak ∈ A(G).

Hence, ϕ is a quiver morphism. We define γ to be the inverse of ϕ. Specifically,

γ = (γV , γA) defined by,

γV (uj) = vi, when F (i) = j ⇐⇒ F (vi) = uj and

γA(bl) = ak, when F (ak) = bl.

To show γ is a quiver morphism, suppose that ak ∈ A(H). Then s1(γA(a)) =

vi ⇐⇒ CP (F
−1(ak)) = i = F−1(CQ(ak) ⇐⇒ γV (s2(ak)). Thus, s1(γA(ak)) = γV (s2(ak))

for all ak ∈ A(H).

We also have that t1(γA(ak)) = vi ⇐⇒ cP (F
−1(ak)) = i = F−1(cQ(ak)) ⇐⇒

γV (t2(ak)) = vi.Thus, t1(γA(ak)) = γV (t2(ak)) for all ak ∈ A(H). So, γ is also a quiver

morphism. Since ϕ and γ are inverse morphisms, they form an isomorphism on G

and H, as desired.

We can now begin the process of showing that PO and QO, defined in Defini-

tion 3.25 and Definition 3.26 respectively, are well-defined. This is shown in the

following corollary.
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Corollary 3.31 The following statements are true.

1.) If (P, v) and (Q, u) are isomorphic QPs, then their induced quiver’s G(P ) and

G(Q) are also isomorphic.

2.) If G = (V (G), A(G), s1, t1) and H = (V (H), A(H), s2, t2) are isomorphic quiv-

ers, then their induced QP’s P (G) and P (H) are isomorphic.

Proof of 1: Suppose that P and Q are isomorphic QP’s. Let G(P ) and G(Q) be

the quivers induced by P and Q. Then let P ′ and Q′ be the QP’s induced by G(P )

and G(Q). By Theorem 3.26, P is isomorphic to P ′ and Q is isomorphic to Q′. So,

P ′ is also isomorphic to Q′. By Theorem 3.29, G(P ) must be isomorphic to G(Q).

Proof of 2: Suppose that G and H are isomorphic quivers. Let P (G) and P (H) be

the QP’s induced by G and H. Then let G′ and H ′ be the quivers induced by P (G)

and P (H). By Theorem 3.27 G′ is isomorphic to G, and H ′ is isomorphic to H. So,

G′ is also isomorphic to H ′. By Theorem 3.28, it must be that P (G) is isomorphic to

P (H).

This shows that each of our functors’ object mappings are well-defined up to

isomorphism classes on each of their appropriate categories. Next we will begin

defining our morphism maps.

Definition 3.32 Induced QP-morphism: Suppose (P, v) and (Q, u) are QP’s and sup-

pose ϕ is a Q-morphism from G[(P, v)] to G[(Q, u)]. Note that x ∈ V (G[(P, v)]) if and

only if x = (i, v(i)) for exactly one i ∈ Max(P ). With this in mind, define a mapping

F (ϕ) : P → Q as follows. Assume the ”natural indexing on the minimal elements of P

and Q.



30

1.) For all a ∈ A(P ), let F (ϕ)(a) = ϕA(a)

2.) For all i ∈Max(P ), let F (ϕ)(i) = j ⇐⇒ ϕV ((i, xi)) = (j, yj)

3.) For all xi ∈Min(P ), let F (ϕ)(xi) = yj ⇐⇒ ϕV ((i, xi)) = (j, yj)

Theorem 3.33 The mapping F (ϕ) is a QP-morphism.

Proof: As before, the first three requirements are clear. To show (4), suppose

i ∈ Max(P ) and that ϕV (i, xi) = (j, yj). Then F
(ϕ)(v(i)) = F (ϕ)(xi) = yj = u(j) =

u(F (ϕ)(i)).

To show (5), suppose that a ∈ A(P ). Let G[(P, v)] have source and target maps

(s1, t1) and let G[(Q, u)] have source and target maps (s2, t2). Then F (ϕ)(CP (a)) =

j ⇐⇒ ϕV (s1(a)) = (j, yj) = s2(ϕA(a)) ⇐⇒ CQ(F
(ϕ)(a)) = j. Thus, F (ϕ)(CP (a)) =

CQ(F
(ϕ)(a) for all a ∈ A(P ). Similarly, F (ϕ)(cP (a)) = yj ⇐⇒ ϕV (t1(a)) = (j, yj) =

t2(ϕA(a)) ⇐⇒ cQ(F
(ϕ)(a)) = yj. Thus, F

(ϕ) is a QP-morphism.

Definition 3.34 Suppose G = (V (G), A(G), s, t) is a quiver and thatG′ = G[(P (G), v)]

Then we may define a pair of mutually inverse Q-morphisms ρG and ϑG as follows:

1.) ρG = (ρV , ρA) : G→ G′ with

a.) For all a ∈ A(G) let ρA(a) = a

b.) For all xi ∈ V (G) let ρV (xi) = (i, xi)

2.) ϑG = (ϑV , ϑA) : G
′ → G with

a.) For all a ∈ A(G′) let ϑA(a) = a

b.) For all (i, xi) ∈ V (G′) let ϑV (i, xi) = xi
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These are actually the same mappings from Lemma 3.28 and form a quiver iso-

morphism on G and G′. We can now define our morphism mapping for the functor

Q.

Definition 3.35 The Morphism Mapping PM : Define a mapping PM : Hom(Quiv) →

Hom(QP ) as follows. Suppose that ϕ ∈ Hom(Quiv) is a morphism from a quiver G to

a quiver H. Then we define PM [ϕ] = F (ρH◦ϕ◦ϑG)

We may now build up our corresponding morphism mapping QM in a similar

fashion.

Definition 3.36 Induced Quiver Morphism: SupposeG = (V (G), A(G), s1, t1) andH =

(V (H), A(H), s2, t2) are quivers and suppose F is a QP-morphism from (P (G), vG) to

(P (H), vH). Construct a pair ϕ(F ) = (ϕ
(F )
V , ϕ

(F )
A ) as follows.

1.) For all a ∈ A(G) let ϕ
(F )
A (a) = F (a)

2.) For all xi ∈ V (G), let ϕ
(F )
V (xi) = F (xi) = F (vG(i)) = vH(F (i))

Theorem 3.37 The pair ϕ(F ) is a quiver morphism.

Proof: Let a ∈ A(G). Then

ϕ
(F )
V (s1(a)) = yj ⇐⇒ F (CP (a)) = j = CQ(F (a)) ⇐⇒ s2(ϕ

(F )
A (a)) = yj

and

ϕ
(F )
V (t1(a)) = yj ⇐⇒ F (cP (a)) = yj = cQ(F (a)) ⇐⇒ t2(ϕ

(F )
A (a)) = yj

So, ϕ(F )(s1(a)) = s2(ϕ
(F )
A (a)) and ϕ(F )(t1(a)) = t2(ϕ

(F )
A (a)) for all a ∈ A(G),

making ϕ(F ) a quiver morphism.
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Definition 3.38 Suppose (P, v) is a quiver poset and that P ′ = (P [G((P, v))], v) Then

we may define a pair of mutually inverse QP-morphisms λP and ξP as follows:

1.) λP : P → P ′ with these conditions

a.) For all a ∈ A(P ) let λP (a) = a

b.) For all i ∈Max(P ) let λP (i) = i′

c.) For all xi ∈Min(P ) let λP (xi) = x′i

2.) ξP : P ′ → P with these conditions

a.) For all a ∈ A(P ′) let ξP (a) = a

b.) For all i′ ∈Max(P ′) let ξP (i
′) = i

c.) For all x′i ∈Min(P ′) let ξP (x
′
i) = xi

Just as in Definition 3.33 these are the same mappings from Lemma 3.27 and form

a quiver poset isomorphism on P and P ′. We now define our morphism mapping for

the functor Q.

Definition 3.39 The Morphism Mapping QM : Suppose that F ∈ Hom(QP ) is a QP -

morphism from a quiver poset P to a quiver poset Q. Then we define QO[F ] = ϕλQ◦F◦ξP

Since we now have our object and morphism mappings, we are able to formally

define our functors.

Definition 3.40 The Functor P :

1.) Define a mapping PO : Obj(Quiv) → Obj(QP ) as follows. For each quiver

G = (V (G), A(G), s1, t1), let PO[G] = (P (G), vG), as defined in Theorem 3.24.
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2.) Define a mapping PM : Hom(Quiv) → Hom(QP ) as follows. Suppose that

ϕ ∈ Hom(Quiv) is a morphism from a quiver G to a quiverH. Then PM [ϕ] = F (ρH◦ϕ◦ϑG)

Definition 3.41 The Functor Q:

1.) Define a mapping QO : Obj(QP ) → Obj(Quiv) as follows: For each quiver poset

(P, v), let QO[(P, v)] = G[(P, v)] as defined in Theorem 3.23

2.) Define a mapping QM : Hom(QP ) → Obj(Quiv) as follows. Suppose that

F ∈ Hom(QP ) is a QP -morphism from a quiver poset P to a quiver poset Q. Then

QM [F ] = ϕ(λQ◦F◦ξP )

In order to prove these pairs of mappings are indeed functors, we first provide two

lemmas.

Lemma 3.42 Suppose (P, v), (Q, u), and (R,w) are QP’s. If ϕ is a quiver morphism

from G(P ) to G(Q) and ψ is a quiver morphism from G(Q) to G(R), then F (ψ◦ϕ) =

F (ψ) ◦ F (ϕ).

Proof: Let P,Q, and R be as above. Then F (ψ◦ϕ) is a mapping from P to R. We

seek to show that F (ψ◦ϕ) = F (ψ) ◦ F (ϕ). Let a ∈ A(P ). Then by Definition 3.31,

F (ψ◦ϕ)(a) = (ψ ◦ ϕ)A(a) = (ψA ◦ ϕA)(a) = ψA(ϕA(a)) = F (ψ)(ϕA(a)) = F (ψ) ◦ F (ϕ)(a)

Now suppose that i ∈Max(P ). Also suppose that ϕV (i, xi) = (j, yj) and ψV (j, yj) =

(k, zk). Then we have that F (ψ) ◦ F (ϕ)(i) = F (ψ)(j) = k. Since (ψ ◦ ϕ)V ((i, v(xi)) =

(k, w(zk)), we also have that F (ψ◦ϕ)(xi) = zk.
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Finally suppose that xi ∈ Min(P ). Also suppose that ϕV (i, xi) = (j, yj) and

ψV (j, yj) = (k, zk) as before. Then F (ψ) ◦ F (ϕ)(xi) = F (ψ)(yj) = zk. Since (ψ ◦

ϕ)V ((i, xi) = (k, zk), we also have that F (ψ◦ϕ)(xi) = zk.

Thus, F (ψ◦ϕ) = F (ψ) ◦ F (ϕ), as desired.

Lemma 3.43 Suppose G,H, and R are quivers. If F is a QP-morphism from P (G) to

P (H) and S is a QP-morphism from P (H) to P (R), then ϕ(S◦F ) = ϕ(S) ◦ ϕ(F ).

Proof: Let G,H and R be as above. We seek to show that ϕ(S◦F ) = ϕ(S) ◦ ϕ(F ).

Suppose that a ∈ A(G). Then

ϕ
(S◦F )
A (a) = (S ◦ F )(a) = S(F (a)) = ϕ

(S)
A (F (a)) = (ϕ

(S)
A ◦ ϕ(F )

A )(a)

Now suppose that xi ∈ V (G). Then

ϕ
(S◦F )
V (xi) = (S ◦ F )(xi) = S(F (xi)) = ϕ

(S)
V (F (xi)) = ϕ

(S)
V ◦ ϕ(F )

V (xi).

Thus, ϕ(G◦F ) = ϕ(G) ◦ ϕ(F ).

We are now ready to prove the functorial properties of Q and P .

Theorem 3.44 The pair Q = (QO, QM) is a covariant functor.

Proof: Clearly QO and QM are mappings with appropriate domain and codomain.

Let P ∈ Obj(QP ) with IP ∈ Hom(QP ) denoting the identity morphism on P .

Then QM [IP ] = ϕ(λP ◦IP ◦ξP ) = ϕ(λP ◦ξP ) = ϕ(IP ′ ) = ϕ(IP ) = (ϕ
(IP )
A , ϕ

(IP )
V ).
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Let a ∈ A(QO[P ]) = A(G(P )). Then ϕ
(IP )
A (a) = IP (a) = a. Now let (i, xi) ∈

V (G(P )). Then ϕ
(IP )
V ((i, xi)) = (IP (i), IP (xi)) = (i, xi). So, QM [IP ] = IQO[P ]. This

shows QM preserves the identity morphism on any given object of QP .

Now suppose that F1, F2 ∈ Hom(QP ) with F1 : P1 → P2 and F2 : P2 → P3. Then

QM [F2 ◦ F1] = ϕ(λP 3◦F2◦F1◦ξP 1) = ϕ(λP 3◦F2◦IP 2◦F1◦ξP 1)

= ϕ(λP 3◦F2◦ξP 2◦λP 2◦F1◦ξP 1)

= ϕ(λP 3◦F2◦ξP 2) ◦ ϕλP 2◦F1◦ξP 1) (lemma 3.42)

= QM [F2] ◦QM [F1]

(1)

So, QM preserves composition of morphisms. Thus, our pair of mappings is indeed

a functor.

Theorem 3.45 The pair P = (PO, PM) is a covariant functor.

Proof: Clearly PO and PM are mappings with appropriate domain and codomain.

Let G ∈ Obj(Quiv) with IG denoting the identity morphism on G. Then PM [IG] =

F (ρG◦IG◦ϑG) = F (ρG◦ϑG) = F (IG′ ) = F (IG).

Let a ∈ A(PO[G]) = A(P (G), v). Then F (IG)(a) = IG(a) = a. Now let i ∈

Max(P (G)). Then F (IG)(i) = IG(i) = i. Finally, let xi ∈Min(P (G)). Then F (IG)(xi) =

IG(xi) = xi. This shows PM preserves the identity morphism on any given object of

Quiv.

Now suppose ϕ, γ ∈ Hom(Quiv) with γ : G1 → G2 and ϕ : G2 → G3. Then
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PM [ϕ ◦ γ] = F (ρG3
◦ϕ◦γ◦ϑG1

) = F (ρG3
◦ϕ◦IG2

◦γ◦ϑG1
)

= F (ρG3◦ϕ◦ϑG2
◦ρG2

◦γ◦ϑG1)

= F (ρG3◦ϕ◦ϑG2
) ◦ F (ρG2

◦γ◦ϑG1) (lemma3.41)

= PM [ϕ] ◦ PM [γ]

(2)

So, PM preserves composition of morphisms. Thus, our pair of mappings in indeed

a functor.

Next we will show that our functors are both full and faithful.

Suppose (P, v) is a quiver poset and suppose G = (V (G), A(G), s, t) is a quiver.

Suppose further that there exists a QP-morphism f from (P (G), vG) to (P, v). We

will show there exists a unique quiver morphism ϕ = (ϕA, ϕV ) from G to G[(P, v)]

such that ξP ◦ PM [ϕ] = f .

(P, v)

(P (G[(P, v)]), vG[(P,v)] (P (G), vG)

G[(P, v)] G

ξP
f

PM [ϕ]

ϕ

Figure 12: Diagram for Theorem 3.46
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For all a ∈ A(G), let ϕA(a) = F (a). Now suppose that xi ∈ V (G). Then

i ∈ Max(P (G)), xi ∈ Min(P (G)), and v(f(i)) = f(vG(i)) = f(xi). With this in

mind let ϕV (xi) = (f(i), f(xi)).

Theorem 3.46 The mapping ϕ defined above is a quiver morphism and has the property

that ξP ◦ P [ϕ] = f . Furthermore, if ψ = (ψA, ψV ) is any quiver morphism with this

property, then ϕ = ψ.

Proof: First we show that ϕ is indeed a quiver morphism. Let a ∈ A(G). Sup-

pose that s2(ϕA(a)) = (j, yj). Then s2(ϕA(a)) = s2(f(a)) ⇐⇒ C(f(a)) = j =

f(C(a)) ⇐⇒ f(s1(a)) = (j, yj). Similarly, suppose that t2(ϕA(a)) = (j, yj). Then

t2(ϕA(a)) = t2(f(a)) ⇐⇒ c(f(a)) = j = f(c(a)) ⇐⇒ f(t1(a)) = (j, yj).

To show that ξP ◦PM [ϕ] = f , suppose a ∈ P (G). Then ξP ◦PM [ϕ](a) = ξP ◦ϕA(a) =

ξP ◦ f(a) = f(a). Now suppose that i ∈ Max(P (G))), f(i) = j, and f(xi) = yj.

Then PM [ϕ](i) = j ⇐⇒ ϕv(xi) = (f(i), F (xi)) = (j, yj),which is true by assump-

tion. So, ξP ◦ PM [ϕ](i) = ξP (j) = j = f(i). Now suppose that xi ∈ Min(P (G))).

Then ξP ◦ PM [ϕ](xi) = ξP ◦ ϕV (xi) = ξP (f(i), f(xi)) = ξP (j, yj) = yj = f(xi). Thus,

ξP ◦ PM [ϕ] = f.

This shows that the functor P is full.

Next, we show that if there exists a quiver morphism ψ = (ψV , ψA) such that

ξP ◦ PM [ψ] = f, then ψ = ϕ. Suppose that a ∈ A(G). Then ϕA(a) = f(a) = ξP ◦

PM [ψ](a) = ξP ◦ ψA(a) = ψA(a). Now suppose that f(i) = j and f(xi) = yj. Then

ϕV (xi) = (f(i), f(xi)) = (j, yj) = (ξP ◦ PM [ψ](i), ξP ◦ PM [ψ](xi))

⇕

ξP ◦ PM [ψ](i) = j and ξP ◦ PM [ψ](xi) = yj
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⇕

PM [ψ](i) = λP (j) = j and PM [ψ](xi) = λP (yj) = (j, yj)

⇕

ψV (xi) = (j, yj) = ϕV (xi)

Therefore, ϕ = ψ, as desired. This shows that the functor P is faithful and proves

the result.

We will show that Q is both full and faithful in a similar manner.

Suppose G = (V (G), A(G), s, t) is a quiver and suppose (P, v) is a quiver poset.

Suppose further that there exists a quiver morphism ϕ = (ϕA, ϕV ) from G to G[(P, v)].

We will show there exists a unique QP-morphism f from (P (G), vG) to (P, v) such

that QM [f ] ◦ ρG = ϕ.

G

G[(P (G), vG)] G[(P, v)]

(P (G), vG) (P, v)

ϕ
ρG

QM [f ]

f

Figure 13: Diagram for Theorem 3.47

For all a ∈ A(P (G)), let f(a) = ϕA(a). Suppose i ∈ Max(P (G) and con-

sider xi ∈ V (G). We know ϕV (xi) = (j, xj) for some j ∈ Max(P (G)) and some

xj ∈Min(P (G)). With this in mind, let f(i) = j and f(xi) = xj.
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Theorem 3.47 The mapping f defined above is a QP-morphism and has the property

thatQM [f ]◦ρG = ϕ. Furthermore, if f is any QP-morphism with this property, then f = g.

Proof: First, we show that f is a QP-morphism. Let a ∈ A(P (G) and suppose

that s2(ϕA(a)) = (j, yj). Then

C(f(a)) = j

⇕

s2(ϕA(a)) = (j, yj) = ϕA(s1(a)), which is true by hypothesis

⇕

f(C(a)) = j

So, f is a QP-morphism.

Now we show that QM [f ] ◦ ρG = ϕ. Let a ∈ A(G). Then (QM [f ] ◦ ρG)(a) = (fA ◦

ρA)(a) = fA(a) = f(a) = ϕA(a). Now let xi ∈ V (G) and suppose that ϕV (xi) = (j, yj).

Then (QM [f ] ◦ ρG)(xi) = (fV ◦ ρV )(xi) = fV (i, xi) = ((f(i), f(xi)) = (j, yj) = ϕV (xi).

So, ϕA = (fA ◦ ρA) and ϕV = (fV ◦ ρV ). Hence, QM [f ] ◦ ρG = ϕ.

This shows that the functor Q is full.

To show the uniqueness of f , suppose that g is another QP-morphism such that

QM [g]◦ρG = ϕ, in other words, (gA ◦ρA) = ϕA and (gV ◦ρV ) = ϕV . Let a ∈ A(P (G)).

Then f(a) = ϕA(a) = (gA◦ρA)(a) = gA(a) = g(a). Now suppose that ϕV (xi) = (j, yj).

Then,
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f(i) = j and f(xi) = yj

⇕

ϕV (xi) = (j, yj) = (gV ◦ ρV )(xi) = gV (i, xi) = (g(i), g(xi)), which is true by

assumption

⇕

(j, yj) = (g(i), g(xi))

⇕

g(i) = j and g(xi) = yj

So, f(i) = g(i) and f(xi) = g(xi). Thus, f = g, as desired. This shows that the

functor Q is faithful and proves the result.

Next, we will show that our pair of functors are each essentially surjective.

Theorem 3.48 The functor P is essentially surjective.

Let (P, v) ∈ Obj(QP ). We seek to show there exists a G ∈ Obj(Quiv) such that

PO[G] is isomorphic to (P, v). Let G = QO[(P, v)]. Then PO[QO[(P, v)]] = P ′, which

is isomoprhic to P , as shown previously. Thus, P is essentially surjective.

Theorem 3.49 The functor Q is essentially surjective.

Let G = (V (G), A(G), s, t) ∈ Obj(Quiv). We seek to show there exists a (P, v) ∈

Obj(QP ) such that QO[(P, v)] is isomorphic to G. Let (P, v) = PO[G]. Then

QO[PO[G]] = G′, which is isomorphic to G, as previously shown. Thus, Q is es-

sentially surjective.

It follows that both Q and P form a categorical equivalence on the categories

Quiv and QP.
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