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ABSTRACT

Papyrologists transcribe and identify papyrus fragments in order to enrich modern

lives by better understanding the linguistics, culture, and literature of the ancient world.

In practice, these tasks are extremely challenging and slow due the limited amount of

information preserved in each papyrus fragment (i.e., due to deterioration). For example,

since their discovery in the late 19th century, only 10% of the more than 500,000 fragments

in the Oxyrhynchus papyri collection has been given preliminary identifications.

This thesis presents two computational approaches for accelerating papyrus transcription

and identification. The first approach is a computational pipeline that aggregates millions

of crowdsourced letter classifications into transcriptions of papyrus fragments. The second

approach leverages genetic sequence alignment algorithms to rapidly identify damaged

papyrus fragments to known papyrus manuscripts. These approaches greatly improve upon

the current state-of-the-art techniques and set a new standard for leveraging computation to

the transcription and identification of ancient texts.

iii



PREFACE

Chapter 3 is a version of the conference paper, A Computational Pipeline for Crowd-

sourced Transcriptions of Ancient Greek Papyrus Fragments1. The University of Oxford’s

Zooniverse team and Ancient Lives project, which includes Chris Lintott, John Wallin, and

James Brusuelas, created the Ancient Lives interface and provided the crowdsourced data

used in this study. Collaborators from the University of Minnesota, including Lucy Fortson,

Anne-Francoise Lamblin, and Haoyu Yu, contributed greatly to the initial stages of project

development. I designed and developed the pre-processing stage for separating individual

click-data for each fragment into distinct files and determining an image’s most probable ori-

entation. John Wallin and Haoyu Yu designed and developed the kernel-based approach for

aggregating individual user letter identifications. John Wallin also designed and developed

the stepwise approach, which I have made very few modifications. I developed the approach

used in Stage 2 of the pipeline which calculates line sequences. John Wallin designed

and developed an additional version of Stage 2 that was referential in the design of my

approach. I developed a high-level wrapper for both executing and evaluating the pipeline. I

also developed visualization software used to overlay consensus letters and letter-groups

on an image (see Figure 8). Marco Perale manually performed a preliminary evaluation

of the kernel-based approach. Marco Perale, James Brusuelas, and Dirk Obbink provided

letter identifications from the published Oxyrhynchus volumes that were used in evaluating

both stages of the pipeline. I conceived the study’s two-part evaluation. Additionally, I

performed the analysis of the results for each stage and wrote the software for creating

Figure 9. Additionally, I wrote the manuscript for the published paper. John Wallin was the

supervisory author of this project and has been involved heavily throughout the project in

concept formation and continuous development.

1Williams, A. C., Wallin, J. F., Yu, H., Perale, M., Carroll, H. D., Lamblin, A. F., Fortson, L., Obbink. D,
Lintott, C.J., & Brusuelas, J. H. (2014, October). A Computational Pipeline for Crowdsourced Transcriptions
of Ancient Greek Papyrus Fragments. In Big Data (Big Data), 2014 IEEE International Conference on (pp.
100-105). IEEE.
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Chapter 4 is a version of the conference paper, Identification of Ancient Greek Papyrus

Fragments Using Genetic Sequence Alignment Algorithms2. Hyrum Carroll and John Wallin

initiated the study by implementing an identity substitution matrix in BLAST, converting

a proprietary database of Greek manuscripts into a FASTA format, and creating the en-

coding scheme between amino acids and Greek letters. Collaborators from the University

of Minnesota, including Anne-Francoise Lamblin and Haoyu Yu, contributed additional

preliminary work with investigating the applicability of genetic sequence alignment. I

investigated applicable methodologies for calculating a new substitution and selected the

BLOSUM methodology. Both Hyrum Carroll and I conceived how to leverage the BLO-

SUM methodology. I developed software for (a) calculating background frequencies of each

letter in the Greek alphabet, (b) calculating misidentification ratios for each letter pair in

the Ancient Lives crowdsourced data, and (c) calculating a new substitution matrix with the

calculated letter background frequencies and misidentification ratios. I implemented the

calculated matrix into BLAST. Hyrum Carroll provided software that I heavily modified

to create the 14,100 simulated fragments used to evaluate the new matrix. I conceived and

performed the study’s evaluation. I independently analyzed the results of the evaluation

and both authored and presented the published paper. Hyrum Carroll and John Wallin are

the supervisory authors for this study and were involved to a great degree during project

conception.

The work in both Chapters 3 and 4 would not have been possible without the millions of

contributions made by the thousands of generous volunteers from the Zooniverse project.

To each volunteer, I would like to extend a special thanks for allotting their valuable time to

making each of these projects possible.

2Williams, A. C., Carroll, H. D., Wallin, J. F., Brusuelas, J., Fortson, L., Lamblin, A. F., & Yu, H. (2014,
October). Identification of Ancient Greek Papyrus Fragments Using Genetic Sequence Alignment Algorithms.
In e-Science (e-Science), 2014 IEEE 10th International Conference on (Vol. 2, pp. 5-10). IEEE.
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CHAPTER I.

INTRODUCTION

Classical historians agree that the vast majority of written knowledge from the ancient

Mediterranean (i.e., Egypt, Greece, and Rome) vanished with the burning of the Ancient

Library of Alexandria in 48 BC [25]. With the destruction of the library, much of the modern

world’s knowledge of ancient life has been established by studying ancient texts. Some

written works of antiquity have survived today day through a process known as medieval

transmission. In this process, works of antiquity were manually selected and copied by

scribes until the Middle Ages, where copies of these works finally made their way to print,

thus being extant today. However, the works that did not undergo medieval transmission

have since been lost.

Today, professionals continue to research the ancient world, specifically Graeco-Roman

Egypt, by studying collections of papyrus fragments that were discovered and excavated

from archaeological dig sites in the Mediterranean region. Over the last century, only a

handful of ancient papyri collections have been found throughout the world. One of the most

influential and richest collections of discovered papyrus to date is the Oxyrhynchus papyri1,

a vast trove of over 500,000 Greek papyrus fragments discovered in the ancient Egyptian

city of Oxyrhynchus by British classicists Bernard Grenfell and Arthur Hunt [8]. After

transporting the collection to the University of Oxford, these scholars and their successors

began the development of formal methods and techniques for studying and extracting

information from the papyrus fragments. Their efforts and work with the Oxyrhynchus

papyri, alongside those of other specialists of the 19th and 20th centuries, would ultimately

form the basis for the modern discipline of papyrology, the practice of studying ancient texts

written on papyrus in order to better understand the culture, literature, and lifestyle of the

ancient world, especially Graeco-Roman Egypt.

1http://www.papyrology.ox.ac.uk/POxy/
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Papyrology

In working with a papyrus collection, a papyrologist, a practitioner of papyrology,

first aims to transcribe each papyrus fragment. A papyrus fragment has been successfully

transcribed once each available letter on the fragment has been confidently identified and

matched to a known alphabetic letter. In the case of papyrus fragments, letters are usually

restricted to those of the Greek, Latin, Coptic, Arabic, Aramaic, and Egyptian alphabets.

Despite being uniquely different from one another by content, modern papyrus col-

lections are composed of fragments with partially-preserved information due to natural

degradation of the papyrus material or exposure to extreme natural environments. In most

cases, these fragments have a number of holes or gaps throughout the papyrus (see Figure

1). Additionally, the writing on a fragment may have been written illegibly, or the ink might

have become less noticeable over time. This might cause confusion in distinguishing letters

with similar shapes (i.e., δ and λ ) or recognizing the presence of letters at all. Collectively,

these factors make the task of transcription much more difficult, even for professionals.

After a fragment has been transcribed, a papyrologist attempts to identify the anonymous

papyrus fragment. The identification of an anonymous papyrus fragment has been completed

when a papyrologist can confidently state that the content of the fragment belongs to a known

manuscript. The first step in identifying a papyrus fragment is classifying the fragment as

either literary or documentary. Literary papyrus fragments are written copies, often identical,

of established literary works from the ancient world (e.g., Odyssey by Homer). Conversely,

documentary papyrus fragments are non-literary fragments whose contents contain non-

literary information (e.g., a bill of sale) and cannot be identified to a known author for this

reason. A papyrologist can classify a fragment as documentary or literary based on the

fragment’s content, marginal features, and handwriting style. Generally, cursive handwriting

signifies a documentary papyrus fragment, and non-cursive handwriting is representative

of a literary papyrus fragment. In some cases, a fragment might be written in semi-cursive
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Figure 1: A deteriorated papyrus fragment from the Oxyrhynchus collection.



4

which would require additional attention to classify as literary or documentary.

Once a fragment has been classified as literary, the identification process is carried out

by searching known literary manuscripts that contain the papyrus fragment’s transcription.

The success of the identification process is dependent on the correctness of the fragment’s

transcription, the extremity of the fragment’s deterioration, and the papryologist’s ability

to quickly recognize known literary works. Like transcription, the task of identification is

made more difficult by the deteriorated state of each fragment.

Thesis Statement

Due to the deteriorated nature of most papyrus fragments, the tasks of papyrological

transcription and identification are extremely slow and tedious. For example, since its

excavation in 1896, only about 10% of the more than 500,000 Oxyrhynchus papyri have

been given preliminary identifications, and an even smaller percentage have been published.

Two new computational approaches have been developed to accelerate the papyrological

process.

To allow transcriptional crowdsourcing applications to accommodate the data collection

needs of ancient texts, we developed a new computational pipeline to calculate accurate

papyrus transcriptions from a large number (e.g., millions) of crowdsourced letter identifi-

cations where each identification has an associated two-dimensional plane coordinate [39].

The pipeline consists of two components. The first component contains two approaches, the

stepwise approach and the kernel-based approach, for aggregating and clustering identifica-

tions into consensus identifications for each fragment. An evaluation of each implementation

using professionally verified classifications suggested that the stepwise approach is slightly

more effective for calculating consensus letter identifications for non-cursive, semi-cursive,

and cursive fragments. In addition, the stepwise approach seems more practical than the

kernel-based approach as the stepwise approach executes approximately 576 times faster

than the kernel-based approach. Using the consensus identifications from the first com-
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ponent, the second component creates strings that represent digital transcriptions of the

respective fragment. An evaluation of this component suggests that the component’s un-

derlying approach for calculating lines was effective for papyrus fragments with parallel

lines. For 30 randomly selected fragments with parallel lines, the edit distance between the

calculated transcription and the known transcription was on average 15.6% of the relative

fragment’s length. No known prior approach currently exists for automatically aggregating

individual letter transcriptions made in two-dimensional space.

To accommodate the task of identification, a novel methodology is presented for lever-

aging genetic sequence alignment algorithms to the task of identifying an anonymous

papyrus fragment to a known literary manuscript [38]. A demonstration of this methodology

has culminated in Greek-BLAST, a variant of the BLAST algorithm, that can be used to

identify deteriorated papyrus fragments to known literary manuscripts. In an evaluation

using simulated fragments, Greek-BLAST identified 88.4% of the fragment queries as the

highest-scoring identification. Nearly all cases of misidentification can be attributed to

fragment length as simulated fragments with a length less than 10 characters were consis-

tently unidentifiable. Once the length of the fragment had been extended to 20 characters,

the fragment sequence was identifiable despite being modified severely by multiple key

variables. Greek-BLAST accelerates the process of papyrus identification from multiple

days, weeks, or months to a few seconds for a single fragment. This is the only known

work that aims to explicitly accelerate the task of identification for deteriorated papyrus

fragments.

In combination with one another, these two approaches accelerate the papyrological

process well beyond the tedious manual process that currently exists and sets a new standard

for the role of computing not only in papyrology, but across the arts and humanities in

general.
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Thesis Outline

This thesis is organized as the following: Chapter 2 covers previous work, detailing

the current state-of-the-art techniques for accelerating the tasks of papyrus transcription

and identification. Chapters 3 and 4 are conference papers that are detailed below. Finally,

Chapter 5 discusses the conclusions of this thesis and suggests the direction for future work.

Chapter 3 is the conference paper, A Computational Pipeline for Crowdsourced Tran-

scriptions of Ancient Greek Papyrus Fragments. This paper was presented at the 2014

IEEE International Conference on Big Data and was published by IEEE in the conference’s

proceedings. This paper compares two implementations of a computational pipeline for cal-

culating crowdsourced transcriptions of ancient texts from a large number of crowdsourced

letter identifications given by volunteers with varying levels of expertise. Each implementa-

tion is evaluated on the accuracy of calculated consensus letter identifications and calculated

consensus transcriptions as compared to their professionally-verified counterparts. The

results of the evaluation suggest that one implementation, the stepwise approach, is both a

fast and accurate solution for calculating crowdsourced transcriptions from two-dimensional

plane coordinates. Additionally, the approach is not bound by any specific alphabetic lan-

guage and can be used to calculate transcriptions from any dataset of crowdsourced letter

identifications with associated two-dimensional plane coordinates.

Chapter 4 is the conference paper, Identification of Ancient Greek Papyrus Fragments

Using Genetic Sequence Alignment Algorithms. This paper was presented at the 10th

IEEE International Conference on e-Science and published by IEEE in the conference’s

proceedings. This paper introduces a methodology for leveraging genetic sequence align-

ment algorithms to the task of identification for deteriorated papyrus fragments. The new

methodology is used to calculate a new substitution matrix, the GLOSUM matrix, using

misidentification statistics from Ancient Lives and letter-frequency statistics calculated by

studying the Perseus database of ancient Greek manuscripts [34]. To test the effectiveness of
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this approach, we have developed Greek-BLAST, a modified version of the popular genetic

sequence alignment tool BLAST that includes the GLOSUM matrix. Greek-BLAST’s

ability to identify papyrus fragments was measured using simulated papyrus fragments that

were modified based on multiple key variables that emulate deterioration. The successful

identification of each simulated papyrus fragment was used to study which key variable

was most detrimental to the identification process and to understand the practicality of the

methodology. The results of the evaluation suggest that fragments containing vertical gaps

are more difficult to identify than fragments subjected to any other key variable. Addition-

ally, the results indicate the approach was successful for an average of 88.4% of the 14,100

simulated fragments. The success of the methodology is causal for future investigation as

no other computational method currently exists for accelerating the task of literary papyrus

identification.
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CHAPTER II.

RELATED WORK

This section details the current state-of-the-art methods and techniques for hastening the

processing of papyrus transcription and identification.

Methods for Accelerating Transcription

Optical Character Recognition for Ancient Manuscripts

With the increasing number of document digitization efforts, optical character recog-

nition (OCR) algorithms have become a widely used technology for extracting textual

information from documents. Today, OCR methods and techniques are used for a large

variety of applications throughout society, such as commercial store check-out systems,

office scanners, and the United States Postal Service [27]. They have also been extensively

applied to historical texts and manuscripts [7, 36]. However, only one study to date suggests

that an OCR-based approach for extracting text from deteriorated manuscripts is feasible

[15]. Like most automated machine-driven techniques, the approach requires consistency

in the image dataset’s quality and color. For large collections of digitized texts, this might

not be the case as the timeframe in which the digitization took place could have spanned

multiple years or decades resulting in a image set of varying quality and possibly color as

well.

In the case of the Oxyrhynchus papyri, fragments were photographed in groups of up to

twenty fragments at a time depending on the size of each fragment. The image containing

multiple fragments is called a sheet image. Several years ago, an algorithm was applied

to each sheet image to extract and save each fragment in a separate image file. While

the algorithm was effective at segmenting and extracting unique fragments, some of the

fragment images lost important information due to the algorithm’s inability to distinguish

between lighter areas of the papyrus and the white background of the images that separates

fragments (see Figure 2). Additionally, the algorithm unintentionally destroyed the original
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(A) Before (B) After

Figure 2: An example of how the image extraction algorithm misidentified a portion of
P.Oxy fragment 3076 as multiple fragments.

sheet images, making the process of extraction unrepeatable. A number of pre-processing

approaches have been developed to account for document inconsistencies in images (i.e.,

orientation) [12, 14], but due to the unintentional and irrecoverable deterioration from the

extraction algorithm, even state-of-the-art OCR approaches are incapable of distinguishing

letters in a large majority of the Oxyrhynchus papyri.

Crowdsourcing Transcriptions for Ancient Manuscripts

Since the debut of widespread personal internet access, crowdsourcing has emerged as

an effective solution for leveraging human intelligence to solve computational problems

that are beyond the scope of existing artificial intelligence algorithms. For ancient texts and

manuscripts, crowdsourcing overcomes the complications that come with an OCR-based

approach by enlisting humans with the task of recognizing characters. Additionally, some

studies have shown that crowdsourcing can be more cost-effective than the development of

automated approaches [20, 21].

Transcription has become an extremely common task in crowdsourcing applications.

Some of the most successful transcription projects of today include Old Weather1, Operation

War Diary2, and the Smithsonian’s Transcription Center3, an online platform for crowdsourc-

1http://www.oldweather.org/
2http://www.operationwardiary.org/
3https://transcription.si.edu/
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Figure 3: An example of a vertical line in the margin of P.Oxy fragment 4611.

ing the digitization of manuscript collections held by the Smithsonian. Each of these projects

allow users to transcribe the document’s contents in plain-text input fields where a field

exists for each line of text in the document. Once enough transcriptional information has

been collected, all user transcriptions are aggregated into a consensus transcription for each

subject based on some rule for determining consensus (e.g., majority vote). The resulting

consensus transcriptions are representative of the final transcriptions for each document.

There are a number of difficulties associated with crowdsourcing historical texts, espe-

cially those from antiquity. First, plain-text input fields are often incapable of capturing

transcriptions of secondary document content, such as marginal content or short notes writ-

ten on the side of a page (see Figure 3). In cases where plain-text fields are used to capture

this type of information, users might contribute dramatically different variations of tran-
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Figure 4: The Ancient Lives transcription interface.

scription, which can complicate the task of determining consensus. Furthermore, marginal

content can be extremely relevant to understanding the context of the text. For example, in

papyrology marginal content can potentially change the interpretation of an entire line of

text. Second, over the past 25 years, the Unicode standard has been progressively adding

support for ancient languages. Even with the added support for these languages, many

modern keyboards are incapable of typing the necessary characters or letters to transcribe

ancient texts and manuscripts.

More recent crowdsourcing applications have developed alternative methods of collect-

ing transcriptions of ancient texts. For example, in the Ancient Lives transcription interface,

users identify the presence of letters by clicking on the papyrus image and assigning a letter

to that location using an on-screen keyboard (see Figure 4). By allowing users to supply

transcriptions in a spatial dimension, all content of a document, including the marginal
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content and non-traditional lines of text (i.e., vertical lines of text), can be collected without

problem. Additionally, by recording time-stamps with each classification, this method of

collection allows researchers to analyze the order of each user classification and better

understand how users perform the task. Despite overcoming complications with traditional

data collection methods for historical texts, no known method or technique presently exists

that can calculate transcriptions using letter identifications collected through this interface.

Methods for Accelerating Identification

Pairwise Sequence Alignment

Despite the lack of prior work aiming to specifically accelerate the process, the task

of identifying deteriorated papyrus fragments bears great resemblance to the fundamental

problem of finding regions of similarity between sequences of text. In computer science,

pairwise sequence alignment is the formal approach of aligning two sequences in order

to find regions of similarity (see Figure 5). In sequence alignment, the similarity of two

sequences is defined as the score of their alignment. An alignment’s score is determined

by a scoring schema that assigns a score for each matching or mismatching letter-pair in

an alignment. Scoring schemas for sequence alignment are a topic that has been studied

rigorously, particularly in computational biology [2, 13, 18, 19]. In addition to matches and

mismatches, an alignment of two sequences can have gaps, which represents an arbitrary

number of consecutive insertions or deletions in either sequence. The presence of a gap in

an alignment is usually penalized heavily in comparison to a mis-match as it represents one

or more letters that do not contribute to the alignment.

e l e g - a n t
| | | : | | |
e l e p h a n t

Figure 5: An example alignment between “elegant” and “elephant”.
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The two fundamental algorithms for pairwise sequence alignment are the Needleman-

Wunsch algorithm [30] and the Smith-Waterman algorithm [35]. The Needleman-Wunsch

algorithm is a well-known dynamic programming algorithm for calculating the optimal

alignment. For every possible combination of gaps, the algorithm computes the maximum

possible score for inserting a gap in the first sequence, inserting a gap in the second sequence,

and finding a match in the alignment. The Smith-Waterman algorithm is a variant of the

Needleman-Wusnch algorithm that allows segments of arbitrary length from each sequence

to be aligned without being penalized for the unaligned regions of each sequence. In contrast

with the stringency of the Needleman-Wunsch algorithm, the Smith-Waterman algorithm

provides more leniency in the requirements of sequences having similar length and structure.

Both the Needleman-Wunsch and Smith-Waterman algorithms are much faster than the

traditional brute-force approach as the dynamic programming implementation dramatically

reduces the number of required steps for computing alignments.

While both the Needleman-Wunsch algorithm and Smith-Waterman algorithm ensure

the discovery of the optimal alignment at a rate faster than a standard brute-force approach,

neither algorithm is practical for finding alignments between a query sequence and a

database containing a large number of sequences. In order to accelerate the alignment

process, heuristics (e.g., k-tuple methods), were incorporated into new sequence alignment

algorithms, such as FASTA [24] and BLAST[3]. The addition of the heuristic allows these

algorithms to approximate the Smith-Waterman algorithm and operate at a dramatically

shortened execution time, which is critical in working with large databases. However, as

with the presence of any heuristic, this approach promotes the potential identification of

nonoptimal alignments as the approximation reduces performance in accuracy [31].

Genetic Sequence Alignment

Despite their extensive use in a variety of fields [4, 6, 22], the large majority of sequence

alignment research has come from studies in computational biology and bioinformatics [28].
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In computationally biology, genes are represented as strings of letters, or genetic sequences,

where each letter represents a specific amino acid or nucleotide residue. Due to the nature

of genetic mutation, amino acids and nucleotides can transform, or mutate, to other amino

acids or nucleotides. In the context of genetic sequences, mutations are characterized by the

insertion, deletion, or substitution of amino acid or nucleotide letters in a genetic sequence.

Many genetic sequence alignment algorithms allow users to specify custom gap penalties in

order to overcome problems in alignment accuracy due to the unpredictability of gaps. In

practice, a computational biologist can use a sequence alignment algorithm to attempt to

identify an anonymous genetic sequence to known genetic sequences. As sequence similarity

is indicative of shared evolutionary traits in biology, the identification of the anonymous

sequence allows the computational biologist to better understand the origin of the gene and

determine whether the gene has been identified before.

From the perspective of text, there are a number of similarities between genetic sequences

and transcriptions of papyrus fragments. First, a biological mutation is equivalent to an error

in the papyrus transcription in terms of primitive string operations of insertion, deletion,

and substitution. With large numbers of torn edges, even professionals have difficulty

distinguishing the presence of a letter. Furthermore, the accuracy in transcription is heavily

dictated by legibility in handwriting and visibility of the papyrus’ ink. Collectively, these

issues amount to misidentified and missing letters. Second, the concept of a biological gap

is analogous to physical tears and letters that cannot be transcribed in the papyrus fragment.

Like in any physical text, tears and other harmful forms of deterioration can unpredictably

happen horizontally, vertically, diagonally, or multidirectionally. Additionally, tears can

span the entire length of a document, which can be extremely inimical to the fragment’s

already limited information. Despite the similarities between application areas, there has

been no known previous effort to understand how genetic sequence alignment algorithms

can be leveraged to the task of deteriorated papyrus identification.
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CHAPTER III.

A COMPUTATIONAL PIPELINE FOR CROWDSOURCED TRANSCRIPTIONS

OF ANCIENT GREEK PAPYRUS FRAGMENTS

Introduction

Over a century ago, two excavators, B.P. Grenfell and A.S. Hunt, of the University

of Oxford, uncovered a vast trove of papryi, numbering over 500,000 fragments, from

the city of Oxyrhynchus [8]. After transporting the collection back to the university,

the field of papyrology emerged. Grenfell and Hunt began transcribing and editing the

papyrus fragments, and to this day only a fraction of this vast trove have been published.

Transcribing the collection has not been a simple task as each fragment suffers a unique

level of deterioration with varying subsections of missing papyrus or illegible handwritten

text. Due to the meticulous process of transcribing fragments with limited information,

the rate of manual transcription for fragments is extremely slow. In order to quicken the

process of transcription, the University of Oxford enlisted volunteers by establishing Ancient

Lives1, a web-based interface for identifying letters on digital images of papyrus. Users can

log onto the Ancient Lives site and help transcribe ancient papyrus fragments by clicking

on a location in the image and designating the presence of a specific letter. Each letter

identification and its associated characteristics (i.e., x,y coordinates) are stored in a database

of user identifications. To date, over 7 million letter identifications have been been recorded

internationally via the Ancient Lives interface.

In other projects that confront the task of transcribing historical documents, such as

Transcribe Bentham [29], user transcriptions are given in plain-text with supplemental XML

tags. However, for Ancient Lives, user transcriptions cannot be given in plain-text due to

the absence of certain Ancient Greek characters and accents on the modern keyboard. In

substitution of the physical keyboard, users use an on-screen keyboard that has the characters

1https://ancientlives.org
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and accents necessary to transcribe any ancient Greek papyrus fragment. By capturing

letter identifications through click data and the on-screen keyboard instead of plain-text,

the interpretation of the letter identification data has become a nontrivial task. In order

to more easily interpret the large amount of letter identification data, we present a new

computational pipeline for automating the process of converting the crowdsourced letter

identifications into digital consensus transcriptions of papyrus fragments. The Methods

subsection details the design of each pipeline component in depth. The Evaluation subsection

presents an assessment of each pipeline component performed by comparing the consensus

letter identifications and consensus line sequences for a set of fragments in Ancient Lives to

the fragment transcriptions and sequences for the same fragments as they appear in published

Oxyrhynchus (P. Oxy.) volumes. The Results subsection provides an interpretation of the

results found in each evaluation. The Conclusion subsection reiterates on the value of the

pipeline and ends with discussion on future work.

Using the digital consensus transcriptions from the pipeline, both professional papyrolo-

gists and papyrology students will be able to more quickly and easily begin the papyrological

process. Despite being designed specifically for the domain of papyrus, additional classifica-

tion projects that are tasked with forming consensus letter identifications or consensus line

sequences from data-click coordinates can make use of the pipeline architecture.

Methods

The computational pipeline can be separated into two stages (see Figure 6):

Stage 1: Aggregating User Clicks into Consensus Clicks.

Stage 2: Creating Line Sequences from Consensus Clicks.

The pipeline begins with a collection of plain-text files where each file contains click-data

information for a specific fragment. The pipeline processing requires no human intervention

after the input has been given. Once processing has finished, the pipeline will yield two files

for each papyrus fragment. The first file contains the relative fragment’s consensus letter
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identifications with consensus x,y coordinates. The second file, which is the final output of

the pipeline, contains the relative fragment’s consensus line sequence that closely resembles

the original papyrus fragment (see Figure 7). The consensus letter identification components

are written in both Matlab and Python and the line sequence creation component is written

only in Python. All supplemental visualization in Python is performed with version 2.4.9 of

the OpenCV image processing and computer vision package2.

Preprocessing Stage

The Ancient Lives interface is directly linked to a MySQL relational database that houses

all transcription information. For every click a user makes on a digital papyrus image, the

database will store the unique user-id of the ”citizen”, the user’s relative click location

for the letter (i.e., x,y coordinates), and the citizen’s letter choice in unicode. From the

database, we retrieve all click information and categorize user clicks into separate files for

each fragment. Separating and organizing the click data by fragment allows us to more

easily analyze click information on the basis of individual fragments. More specifically, the

procedure encourages the detection of strong dissimilarities between individual user clicks

and the consensus clicks for a given fragment (i.e., an accidental click on the image).

In some cases, a digital papyrus image is incorrectly oriented in the Ancient Lives

2https://opencv.org

Figure 6: The architecture of the computational pipeline used to create consensus transcrip-
tions from user-clicks made through the Ancient Lives interface.
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Figure 7: An Ancient Lives fragment image (left). A digital consensus transcription for the
same Ancient Lives fragment (right).

database or a user might transcribe a fragment sideways while maintaining an accurate

transcription. Subsequently, the click-data coordinates that are relative to the image are also

incorrectly oriented. Where applicable, processing rotations in click-data is a necessary step

in order to ensure line sequences are correctly formed. From the Ancient Lives MySQL

database, we also query relevant rotation information (i.e., the rotation degree used by users

to transcribe) for each fragment. Using the rotation information retrieved from the database,

we determine the correct rotation degree of each fragment by identifying the most frequently

used orientation among all users during the transcription process. Afterwards, all click-data

undergoes a rotation filter that adjusts x,y coordinates based on the identified orientation

degree.
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Aggregation of User Clicks into Consensus Clicks

Two unique approaches were developed for the task of aggregating all user clicks for a

given fragment to form consensus identifications for letters. We refer to the first approach

as the kernel-based approach. This approach was written in Matlab and leverages kernel

density estimation, a mathematical approach for inferring the likelihood that a variable will

take on a given value, to identify consensus clicks and letters [17]. The algorithm begins by

distributing all user click data into a number of bins based on the click’s x,y coordinates.

The number of bins is determined by multiplying a user-specified kernel width by 2. If

no kernel width is specified by the user, the kernel width is assigned a default value of 8.

Within each unique bin, the algorithm will identify the highest kernel density peaks, which

represent the presence of a consensus letter. Once peaks have been identified within each bin,

a filtering function is imposed to prevent duplicates and eliminate suspected false consensus

letters. The x,y coordinates of the remaining kernel density peaks are clustered and used to

determine the location of consensus letters.

Due to the nature of calculating the kernel density estimation for millions of user

clicks, the kernel-based approach requires a large amount of computational overhead and

takes multiple days to process user click data to yield consensus letter identifications. In

order to hasten the processing time, a second approach, referred to in this paper as the

stepwise aggregation approach, was developed in Python. This approach relies on a recently

established concept that citizen scientists who complete more classification tasks have an

elevated level of knowledge and reason in classifying data correctly than those who complete

fewer classification tasks [32]. Based on the concept that expertise can be represented by

experience or frequency of activity, the algorithm will first identify the user that has made

the highest number of clicks on the fragment and use their clicks as seed locations for

potential consensus letter identifications. Depending on an unprocessed click’s proximity to

pre-existing seed locations, the remaining user clicks are either merged with a preexisting
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(A) (B) (C)

Figure 8: A visualization of the processing performed by the pipeline using the same Ancient
Lives fragment from Figure 7. A) White dots represent the 1,591 clicks of all users. B)
White squares represent calculated consensus clicks from the aggregated click data of all
users for the fragment using the stepwise aggregation approach . C) Green lines represent
the regression line for the nearby consensus clicks.

seed location or used to establish a new consensus letter location and added as a seed

location. Once all user clicks have been processed, a centroid, or center point, of each

agglomeration of clicks is identified and recorded as a consensus letter (see Figure 8B).

Creation of Line Sequences from Consensus Clicks

Using the consensus letter identifications from the previous stage, the line sequence

creation component will attempt to form line sequences that closely resemble the text

presented in the digital image of the papyrus fragment. The input of line sequence creation

component is a text file containing a list of x,y coordinates with associated Greek characters.

The output of the line sequence creation component is a text file containing a line sequence,

or string, composed of all of the characters that appear in the input file.

The algorithm begins by sorting all clicks into a list based on the y coordinate. Beginning

at a y-coordinate of 0 and ending at a y-coordinate equal to the height of the relative

fragment’s digital image, the algorithm searches the sorted y-coordinates and identifies the
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presence of lines based on gaps of vertical space between neighboring y-coordinates (see

Figure 8C). When a line is identified, the y-coordinate is added to a list of line regions. After

each click has been grouped into a line region based on its relative x,y coordinate, the best

fit line, or regression line, for each line region is calculated. In addition to the equation, the

average space between neighboring line regions is calculated. Using the equation of the best

fit line as a reference, a second pass of all y-coordinates is made in order to ensure that each

letter was categorized in the correct line region. If an x,y coordinate is not within half of the

calculated average space between neighboring line regions from the relative line’s median

y-coordinate, the coordinate is categorized into another line region. After the second pass of

y-coordinates has finished, each line region is sorted by the x-coordinate in order to ensure

characters appear in the same order they appear on the papyrus. After the regions have been

sorted by x-coordinate, the regions are concatenated into a single string, which represents

the line sequence for the fragment.

There are two types of styles of line that are presented in papyrus. The first style is

parallel where lines are written in straight, distinct, and predictable lines and are equidistant

from neighboring lines. The second style is curvilinear where lines are written in the shape

of an arc and are unpredictable in direction. For most papyrus fragments with curvilinear

lines, identifying a consistent amount of vertical space between line regions is nontrivial.

As a result, the described approach could produce duplicate lines by identifying multiple

line regions from a single curvilinear line due to incorrect measurements of vertical space

between line regions. In order to filter duplicate line regions, a final post-processing stage

will remove a line region if it shares 70% or more identity with its neighboring line region.

Pipeline Evaluation

In this evaluation, we examine the efficacy of Stage 1 and Stage 2 separately. In addition

to fragments that have yet to be transcribed, a group of published fragments with known

transcriptions were deposited into Ancient Lives in order to make assessing the effectiveness
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of each pipeline component possible. Given that each is supplied with the same set of click

data, both the kernel-based approach and the stepwise aggregation approach are scrutinized

on the ability to correctly classify a letter by comparing consensus click data to the click data

of published fragments given by a professional papyrologist. Similarly, the performance

of the line sequence creation component is evaluated based on the similarity between line

sequences produced by the component and digital fragment transcriptions as they appear in

a published P. Oxy. volume.

Evaluation of Consensus Letter Identifications from Users

We randomly selected 54 published fragments from the Oxyrhynchus collection to be

used as evaluation criteria for measuring the accuracy of consensus letter identifications from

both the kernel-based approach and stepwise aggregation approach in comparison to known

letter identifications that appear in P. Oxy. volumes. In this assessment, the default kernel

width value of 8 is used in the kernel-based approach. In order to evaluate on the basis of

user clicks made by citizen scientists, clicks made by professional papyrologists have been

removed from the click data set used to make consensus letter identifications. Each fragment

was categorized based on handwriting style and legibility into one of the following groups:

non-cursive, semi-cursive, and cursive. We utilize three established metrics, precision,

recall, and F1 score [37], for determining the classification performance of each approach.

Precision is calculated by dividing the number of correct letter identifications by the number

of total letter identifications in the consensus transcription. Recall is calculated by dividing

the number of correct letter identifications by the total number of letter identifications in

the relative fragment’s P. Oxy. transcription. Both precision and recall are combined into

a composite metric, the F1 score. The equation to calculate the F1 score for an individual

fragment is:
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F1 = 2× P×R
P+R

where P and R are respectively the precision and recall of the fragment’s click data. A F1

score of 0.0 can be interpreted as an approach correctly classifying next to none of the letters

while a F1 score of 1.0 can be interpreted as an approach correctly classifying most or all of

the letters.

Evaluation of Line Sequence Creation Component

In this evaluation, the accuracy of the line sequence creation component is examined by

supplying the component with professionally curated click-data, where each click represents

a correct letter at the correct relative x,y coordinate. From the same set of fragments used

in the previous evaluation, a subset of 41 fragments were selected to be used as evaluation

criteria to examine the sequence similarity of consensus line sequences produced through

the line sequence creation component and the published digital transcription of the same

fragment. All 41 fragments were chosen on the basis that a digital transcription exists for

the fragment. For the remaining 13 fragments in the set of fragments used in the previous

evaluation, a digital transcription does not exist. Each fragment with a digital transcription

was categorized as having either parallel lines or curvilinear lines. Of the 41 fragments,

30 were categorized as having parallel lines and 11 were categorized as having curvilinear

lines. The edit distance, or Levenshtein distance [23], is employed as a metric to measure

the similarity between the transcription produced through the line sequence component and

the transcription that appears in a P. Oxy. volume. An edit distance of 0 represents complete

identity between two strings (i.e., an exact match). For an edit distance that is greater than 0,

at least one insertion, deletion, or substitution was required for one sequence to resolve to

the other.
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Results

Consensus Letter Identification Evaluation Results

The results of the evaluation for Stage 1 suggest the stepwise aggregation approach

produces a higher level of accuracy for correctly determining consensus letter identifications

than the kernel-based approach, especially for fragments with cursive handwriting (see Table

1).

The small difference in performance between the kernel-based approach and the stepwise

aggregation approach can be explained by how each method extrapolates on user clicks. In

the stepwise aggregation approach, every user click is used to create the consensus click

data set for a fragment. In the kernel-based approach, every user click is also used to create

the consensus click data set, but in order to prevent duplicate letter identifications, the list of

suspected consensus clicks undergoes a filtering process, which has the potential to remove

true-positive letter identifications and decrease identification performance. The difference in

accuracy of correctly classifying true-positives and true-negatives can be visualized with

the precision and recall (see Figure 9). In addition to producing a higher level of accuracy,

the stepwise aggregation approach has an accelerated execution time in comparison to the

kernel-based approach. The total execution time for the stepwise aggregation approach is

Table 1: Average F1 scores of consensus letter identifications in each handwriting style from
both the kernel-based approach and stepwise aggregation approach.

Handwriting Average Kernel- Average Stepwise
Style Based F1 Score Aggr. F1 Score

Non-cursive (34) 0.65 0.67
Semi-cursive (12) 0.64 0.68

Cursive (8) 0.61 0.69
Aggregated (54) 0.64 0.67



25

Figure 9: A Precision-Recall graph that visualizes how the precision and recall of each
consensus letter identification from both approaches align with respect to calculated F1
scores in Table 1.

currently about fifteen minutes while the execution time or the kernel-based approach spans

a few days.

Line Sequence Creation Component Evaluation Results

The results of the evaluation for Stage 2 suggest that the line sequence creation compo-

nent is effective at creating sequences correctly for most fragments with parallel lines (see

Table 2). Of the 30 fragments categorized as having parallel lines, eleven sequences cre-

ated through the line sequence component were exact matches to their digital transcription

counterpart. Of the 11 fragments categorized as having curvilinear lines, only one sequence

created through the line sequence was exactly matched to its digital transcription counterpart.

There is a clear distinction between the component’s effectiveness for fragments contain-

ing parallel lines and the component’s effectiveness for fragments containing curvilinear

lines. The difference in performance can be explained by the current approach’s inability

to consistently determine which letters belong to which line in fragments with curvilinear
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Table 2: Average fragment lengths, average edit distances, and error ratios for the 41 frag-
ments used in the line sequence creation component evaluation. Error ratios are calculated
by dividing the average edit distance by the average fragment length.

Line Style Average Fragment Length Average Edit Distance Error Ratio
Parallel (30) 43.7 6.8 15.6%

Curvilinear (11) 234.0 83.3 35.6%
Aggregated (41) 94.7 26.1 27.6%

lines.

Conclusion

In order to more easily interpret the large amount of letter classification data from

over a million users, we presented a new computational pipeline for translating millions of

user-clicks on digital images of Ancient Greek papyri to digital, consensus transcriptions

that closely resemble the format of the original papyrus. Both professional papyrologists

and student papyrologists can utilize the digital consensus transcriptions produced through

the pipeline to more quickly examine, edit, and publish fragments with confidence. Despite

being designed specifically for Ancient Greek papyrus fragments, classification projects that

share the task of forming either consensus letter identifications or consensus lines of text

from coordinate click-data can take advantage of the computational pipeline.

By engineering a pipeline for interpreting the millions of user-clicks from Ancient Lives,

we are dramatically redefining how professional papyrologists and scholars interact with

ancient papyri. Typically, a papyrologist could spend days, weeks, or months manually

transcribing multiple papyrus fragments. Both the pipeline and the Ancient Lives project

leverage the work of citizens in order to help the papyrologist more quickly transcribe and

evaluate fragments. There are a number of computational systems that have already made

use of the pipeline’s output and share the goal of bringing ease to the transcription process.
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Greek-BLAST [38], for example, is a variant of BLAST, a popular genetic sequence

alignment tool, designed specifically for suggesting identifications for literary papyrus

fragments. Consensus transcriptions of literary fragments made through Ancient Lives can

be supplied to Greek-BLAST directly as input and quickly aligned with matches in Ancient

Greek literary manuscript databases (i.e., The Perseus Digital Library [34]). Additionally,

collaborators at the University of Minnesota have developed a web-based tool for quickly

curating the digital consensus transcriptions produced from the computational pipeline.

Curated consensus transcriptions are stored in a database that will later be used for data

mining purposes. Lastly, the consensus transcriptions made through Ancient Lives will

be the basis for many fragments that will be further studied, edited, and published in The

Oxyrhynchus Papyri volume series and Proteus, a new interactive, web-based platform that

leverages advanced computational methods and techniques to both the study and analysis of

ancient texts and the creation of next-generation digital editions.

Future Work

A key component of future work is improving the line sequencing stage of the pipeline.

For fragments written in a curvilinear manner, forming lines is a nontrivial task. We will

investigate measures to help identify the presence of curvilinear lines and how the accuracy

of the existing approach for developing line sequences can be improved. A final re-design

of the pipeline will take place after additional classification information (i.e., methods for

identifying line information or missing papyrus) is added to the Ancient Lives framework.
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CHAPTER IV.

IDENTIFICATION OF ANCIENT GREEK PAPYRUS FRAGMENTS USING

GENETIC SEQUENCE ALIGNMENT ALGORITHMS

Introduction

The history of the ancient world holds much information that, even today, has yet to be

discovered and, perhaps more importantly, understood. Much of the modern work done to

further understand the culture, history, and literature of the ancient world is performed by

papyrologists who transcribe and identify fragments of both unknown and known ancient

literature and other written works as preserved on ancient papyrus manuscripts. Papyrologists

transcribe, identify, and edit papyrus fragments by manually recognizing characters and

strings of text and matching them to known full-text manuscripts. Papyrologists can spend

days, weeks, or even months on the transcription and interpretation of damaged ancient texts

(see Figure 10). For example, in the last 100 years, only about 10% of the well-over 500,000

fragments recovered from the Egyptian village of Oxyrhynchus have been edited [8]. In

severe cases, damaged texts may be missing a large number of words and as a result, the

amount of information that a papyrologist can transcribe and interpret is extremely limited.

Past research has demonstrated that computational biology solutions can be usefully

applied to data mining and machine learning problems [1]. Genes are often digitally

represented by a sequence of continuous letters from a finite letter set, where each letter

represents a specific nucleotide or amino acid. Relationships are inferred by finding multi-

letter patterns, which can be separated by insertions, deletions, or gaps, shared between

the anonymous sequence and a known sequence. These matches are scored based on

how well they align with one another using a substitution matrix. A substitution matrix

has a score for the likelihood of each pair of amino acids being aligned. If the alignment

between any two sequences produces a score that meets a user-defined threshold, the relevant

sequence pair is identified to the user. This process, or algorithm, is commonly referred to
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Figure 10: A papyrus fragment from Oxyrhynchus. There are obvious gaps in the image
caused by degradation of the papyri. In some cases, letters have been partially lost due
to gaps. Notably, most of the text on the right side is missing. The hand of the scribe is
extremely clear in this literary fragment, but in many cases, the handwriting is more difficult
to read.

as genetic sequence alignment (see Figure 11). In order to enable papyrologists with the

ability to identify severely damage texts, we investigate the applicability of genetic sequence

alignment algorithms as a method for fragmentary Ancient Greek text identification.
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Figure 11: Example alignment of two genetic sequences by BLAST [3].

Providing professionals in the humanities with such a computational tool will dramat-

ically accelerate the rate of papyri identification. Furthermore, this study outlines a new

methodology for re-tailoring specialized sequence alignment tools, specifically those related

to computational biology, to radically different textual domains. Instead of using a genetic

sequence and database of known genetic sequences as input, our application will use the text

from a Greek papyrus fragment and a database of complete, known Greek manuscripts. The

texts on Greek papyri were written without word division and have little to no punctuation.

Transcription data is essentially a string of Greek characters. As a result, the digital repre-

sentation of recorded Ancient Greek texts is very similar to that of gene sequences. While

genetic sequence alignment shares many similarities with Greek text fragment identification,

a few key differences will be addressed to tailor the method to aid papyrologists.

Related Work

Applied Sequence Alignment

Sequence alignment algorithms are ubiquitous in text similarity search scenarios and

have been used to provide interesting solutions to recent problems in natural language

processing [26] and historical linguistics [33]. Past work has demonstrated that homology
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search problems in computational biology can usefully take advantage of identical sequence

alignment algorithms and techniques [5]. Unlike traditional sequence alignment algorithms,

genetic sequence alignment algorithms have been tailored for the domain of amino acid and

nucleic acid sequences. When using a genetic sequence alignment algorithm to identify

and match sequences, it is common to find gaps in the alignment of a query sequence and a

known genetic sequence. Gaps, symbolized by the ‘-’ character in alignments, represent the

insertion or deletion of a character, or characters, in one of the genetic sequences. The ability

to account for new or missing information between aligned sequences is analogous to the

problem of missing information in damaged or deteriorated papyrus fragments. Furthermore,

modern genetic sequence alignment algorithms are highly parameterizable. For example,

users may specify penalties, such as gap-penalties, to be used during the alignment scoring

phase. These user-specified penalties allow sequence alignment algorithms to produce

dramatically different results. By nature, genetic sequence alignment algorithms are tolerant

to small inconsistencies in string similarity, which could be helpful in overcoming spelling

mistakes and changes in inflection. We are not aware of any other research initiatives using

genetic sequence alignment algorithms to identify papyrus fragments.

Accelerated Transcription and Identification

Two primary research efforts have aimed to hasten the tedious process of manual

transcription. The first project is Oxford University’s Ancient Lives project1. This project,

like others in the Zooniverse2, enlists volunteers to help process and analyze data. For the

Ancient Lives project specifically, the input of thousands of volunteers are aggregated to

aid in the deciphering the Greek letters from images of fragments (see Figure 12). While

viewing images of papyrus fragments, these volunteers identify the Greek letters by clicking

on a letter in the image. Since the volunteers are not trained scholars, they are asked to

transcribe individual letters rather than to translate the manuscripts. By processing these

1http://www.ancientlives.org/
2http://www.zooniverse.org/
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Figure 12: A section of the original papyrus and the crowdsourced transcription. The
crowdsourced transcription is shown immediately next to a portion of the original image of
the papyrus from Figure 10. The consensus transcript is used for document identification.

clicks, we obtain consensus textual versions of the fragments which can be utilized by our

program. To date, this project has collected in excess of 7 million clicks from volunteers.

For each papyrus fragment, the project collects the mouse-click and keyboard input of 5

to 20 users. The Ancient Lives project has greatly helped to accelerate the transcription

process, but the task of identification still remains tedious.

The second project is the eAQUA project, which uses modern text mining techniques

to extract structured knowledge from Ancient Greek texts [9]. The project’s most recent

contribution is a spell-checking system for Ancient Greek fragments. This new component

is powered by natural language processing techniques that depend on semantics, syntax,

and morphology. This system is capable of suggesting corrections for a single word (e.g.,

a damaged or incorrectly transcribed word) in a fragment [10]. While valuable when a

single word is damaged, its application is limited for large-scale, real-world use. For
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Figure 13: Example match between a fragment (top line) and a portion of a known full-text
manuscript (bottom line) in Greek-BLAST. Additionally, the statistics regarding the match
are given below. Notice that the algorithm tolerates missing letters in the fragment.

damaged fragments, such as those found at Oxyrhynchus, content is presented with multiple

incomplete or missing characters and words throughout the fragment.

Methodology

In order to leverage computational biology algorithms to Ancient Greek text fragment

identification, we modified version 2.2.28 of the popular pairwise genetic sequence align-

ment algorithm, Basic Local Alignment Search Tool (BLAST) [3] (see Figure 13). This new

BLAST variant has been appropriately named Greek-BLAST.

Calculating a New Substitution Matrix

In genetic sequence alignment algorithms, sequence alignments receive a final alignment

score based on the scoring schema of letter-pairs defined in the substitution matrix. One

of the most common families of substitution matrices in computational biology used by

BLAST is the BLOSUM (BLOcks Substitution Matrix) matrix family [18]. The BLOSUM

matrix family was empirically calculated by extracting ungapped sections of alignment from

a database of observed genetic sequence alignments. Once the relative frequencies for each

amino acid were calculated, a log-odds ratio was recorded for every possible amino acid

substitution pair. The formula for constructing the BLOSUM matrix is:
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Si j =
1
λ

log
(

pi j

qiq j

)

where pi j is the probability of two amino acids i and j replacing one another in any

sequence and qi is the background frequency for finding amino acid i in any sequence. Si j

is the index in the substitution matrix for the respective letters i and j and λ is a scaling

factor. Multiple BLOSUM matrices were calculated based on different levels of similarity

between the studied sequences. These matrices, the BLOSUM62 matrix in particular, have

been validated as the best performing matrices for finding biologically relevant sequence

alignments [19].

Using a similar log-odds methodology that was used to calculate the BLOSUM matrices,

we introduce a new substitution matrix, the Greek Letter Oriented Substitution Matrix

(GLOSUM). To calculate the target frequency (pi j) for each letter pair, we studied the

consensus letter identifications provided by the University of Oxford’s Ancient Lives project.

For each letter identification, we operated under the assumption that the consensus letter

the correct letter. Any letter identification that did not match the consensus identification

was treated as a misidentification and was used to create a matrix of misidentification

percentages for each letter pair. We use these misidentification ratios as the target frequency

for the log-odds formula. To calculate the background frequency (qi), a proprietary database

of 6,619 full-text Ancient Greek manuscripts, referred to here as the Training database,

was studied to retrieve letter frequencies. The GLOSUM matrix was calculated from the

log-odds ratio of the target frequency and background frequency for each letter pair. In

order to amplify the positive scoring scheme for identical letter pair alignments and negative

scoring scheme for non-identical letter pair alignments, the calculated matrix was summed

with an identity substitution matrix where each index on the diagonal contained a score of 4

and all other indices on the matrix contained a score of -4 (see Table 3).
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Table 3: The Greek Letter Oriented Substitution Matrix (GLOSUM) is a substitution matrix
that contains a score for every possible letter-pair alignment in the Greek alphabet.

(α) A 6

(ρ) R -4 7

(ν) N -4 -4 6

(δ ) D -3 -4 -4 7

(ξ ) C -4 -3 -4 -3 9

(θ ) Q -4 -3 -4 -3 -3 8

(ε) E -5 -3 -4 -4 -2 -2 6

(γ) G -4 -3 -4 -4 -3 -3 -4 7

(η) H -5 -4 -4 -4 -3 -3 -4 -3 7

(ι) I -4 -3 -4 -3 -2 -3 -4 -3 -3 6

(λ ) L -3 -4 -4 -2 -3 -3 -4 -3 -4 -4 7

(κ) K -4 -4 -4 -4 -3 -4 -4 -4 -4 -4 -3 7

(µ) M -4 -4 -4 -4 -3 -4 -4 -4 -3 -4 -3 -3 7

(φ ) F -4 -3 -4 -3 -2 -2 -4 -3 -4 -4 -4 -4 -4 8

(π) P -4 -3 -4 -4 -3 -4 -4 -2 -3 -4 -4 -4 -3 -4 7

(σ ) S -5 -5 -6 -5 -2 -4 -4 -4 -5 -5 -5 -5 -5 -5 -5 6

(τ) T -4 -4 -4 -4 -3 -4 -4 -2 -4 -4 -4 -4 -4 -4 -3 -4 6

(O) W -4 -4 -4 -4 -3 -3 -5 -4 -4 -4 -4 -4 -3 -3 -4 -4 -4 7

(ψ) Y -4 -3 -3 -3 -2 -2 -3 -2 -2 -3 -3 -3 -3 -1 -3 -2 -3 -2 10

(υ) V -4 -4 -4 -4 -3 -3 -4 -2 -4 -4 -4 -4 -3 -3 -4 -4 -4 -4 -2 7

(β ) B -4 -3 -4 -3 -2 -2 -4 -4 -4 -4 -4 -3 -4 -3 -4 -4 -5 -4 -3 -4 8

(ω) J -4 -3 -4 -3 -2 -3 -4 -3 -4 -4 -4 -4 -4 -3 -4 -3 -4 -3 -2 -3 -3 6

(ζ ) Z -4 -3 -3 -2 0 -3 -4 -3 -3 -3 -3 -3 -3 -3 -3 -2 -4 -3 -1 -3 -2 -4 9

(χ) X -4 -3 -4 -3 -2 -3 -4 -3 -4 -4 -2 -3 -4 -3 -4 -4 -4 -4 -1 -3 -3 -4 -2 8

A R N D C Q E G H I L K M F P S T W Y V B J Z X
(α) (ρ) (ν) (δ ) (ξ ) (θ ) (ε) (γ) (η) (ι) (λ ) (κ) (µ) (φ ) (π) (σ ) (τ) (O) (ψ) (υ) (β ) (ω) (ζ ) (χ)

Evaluation

In this evaluation, we utilized 14,100 fragment sequences as input to Greek-BLAST. The

accuracy of each simulated fragment query was determined by whether or not the correct

manuscript was presented as the highest scoring match in the list of relevant matches. If the

manuscript to which the simulated fragment belonged to was not the highest scoring match,

the query fragment was categorized as being unsuccessfully identified.

Simulated Fragments

To remove the potential for type II classification errors, we simulated fragments based on

the Training database. From the database, 10 known manuscripts were randomly selected and

used to create fragments with different levels of deterioration. Deterioration was emulated by

extracting fragments, or substrings, of varying lengths from the manuscripts and modifying
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Table 4: Example of a simulated fragment with key variable modifications highlighted in
red.

Key Variable Value Resulting Fragment

Original ωυδεναπτπω

Deletion Rate 0.2 ωυναπτπω (Removed δ ,ε)
Ex. Char Rate 0.2 ωυδεναπατπωψ

Error Rate 0.2 ωψδεναωτπω

Vert. Gap Rate 2 ωυδεπτπω (Removed ν ,α)

the fragment based on one of four key variables: error rates, vertical gaps, extra character

rates, and character deletion rates. Error rate, which simulates an identification error made

by an Ancient Lives volunteer, symbolizes the replacement of a character, or characters, in

the original simulated fragment. Both extra character rate and character deletion rate refer

to characters being added to or removed from the simulated fragment. Vertical gap rate

exemplifies the lack of entire columns in the fragment, which is a common occurrence in

ancient papyrus collections. (See Table 4).

14,100 fragments were simulated where each fragment was changed based on a single

key variable while the other variables were not used to alter the simulated fragment. Based

on the varying key variables, fragments were categorized into the following five categories:

unedited sequences, deletion rate sequences, extra character rate sequences, vertical gap rate

sequences, and error rate sequences. For each of the 10 randomly selected manuscripts, five

locations were randomly chosen as starting locations for simulated fragments. 15 different

fragment lengths, ranging from 10 characters to 150 characters with a difference of 10

characters between subsequent lengths, were chosen for each fragment sequence. We used

four possible values for error rate, deletion rate, and extra character rate: 0.0, 0.05, 0.1, and

0.2. Additionally, we used six possible values for the vertical gap rate: 0, 2, 4, 6, 8, and 10.

Permutations of all possible combinations were aggregated and resulted in 13,500 (10 x 5 x
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Table 5: Percentages of identification for each subset of fragment sequences used in the
evaluation.

Subset Number of Sequences Identified Ratio

Unedited 750 672 89.6%
Deletion Rate 2,950 2,612 88.5%
Ex. Char Rate 2,950 2,626 89.0%
Error Rate 3,000 2,678 89.2%
Vert. Gap Rate 4,450 3,871 86.9%

15 (4 + 4 + 4 + 6)) simulated fragment sequences. We removed 50 identical sequences from

deletion rate, extra character rate, and vertical gap rate subsets. In addition to the modified

sequences, 750 unmodified simulated sequences were aggregated into a pool of unedited

sequences.

Results

As expected, the subset of unedited simulated fragment sequences that suffered no level

of deterioration had the highest percentage of identification at 89.6% (See Table 5). The

subsets containing fragment sequences modified based on error rate and extra character

rate received the next best percentages of identification at 89.2% and 89.0% respectively,

followed by the subset of sequences modified with deletion at an identification ratio of

88.5%. The worst performing subset was the subset of simulated fragment sequences that

were modified based on the vertical gap rate.

For all subsets, the relative key variable became less significant as the length of fragment

sequences became larger. While naturally apparent in all subsets, the pattern was particularly

noticeable for the subset of fragment sequences that were modified based on vertical gap rate

(see Figure 14). Sequences in this subset with a fragment length of 10 characters and any

length of vertical gap were not identifiable. Once the length of the fragment was extended

to 20 characters, the simulated fragment was identifiable despite being affected by a vertical
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Figure 14: Above is a plot representing the average identification performance of all
simulated fragments in the vertical gap rate subset based on a vertical gap rate ranging
from 0 to 10 and fragment lengths ranging from 10 characters to 150 characters. Dark blue
symbolizes the highest level of identification performance and white symbolizes the lowest
level of identification performance.

gap.

Conclusion

In this paper, we observed a deficiency in the current rate of Ancient Greek papyri

identification. Papyrologists try to manually match an unknown Ancient Greek papyrus

fragment to a known Ancient Greek full-text manuscript. This process can take days,

weeks, or even years to match a single papyrus fragment. In order to hasten the repetitious

process of manual identification, we introduced a new methodology that aims to leverage

genetic sequence alignment algorithms for Ancient Greek papyrus identification. With

this methodology, we developed on Greek-BLAST, a BLAST variant for identifying and

matching Ancient Greek text fragments. In a preliminary evaluation using an identity

substitution matrix with a score of 10 on the diagonal and a score of -10 elsewhere, only 18
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out of 8,956 simulated fragments were identified as the highest scoring match. Based on

the presented evaluation, the calculation and integration of a new substitution matrix was a

crucial step in the proposed methodology as Greek-BLAST outperforms other computational

methods and tools used to quickly identify damaged, unknown fragments. Although we have

chosen the BLAST algorithm to validate our approach, other genetic sequence alignment

algorithms (i.e., HMMER [16]) could take advantage of this methodology as well.

Future Work

Despite operating under the assumption that the consensus identification was the correct

letter identification, Greek-BLAST was able to produce alignments with a high level of

accuracy using simulated fragments. A key component of future work is to evaluate

Greek-BLAST using more severely damaged fragments to identify key limitations of the

GLOSUM matrix. Additional methodologies used to calculate empirical matrices from

computational biology, such as the PAM (Accepted Point Mutation) matrix family [13], will

be considered and investigated for application. Furthermore, in the future we plan on using

an evaluation criterion that takes into account the entire retrieval, such as the Threshold

Average Precision [11]. Once limitations of the matrix have been identified and resolved,

we will perform a final assessment of the performance of Greek-BLAST using fragment

transcriptions gathered from the Ancient Lives project that have already been matched to a

known manuscript. Greek-BLAST’s ability to identify papyri fragments from Oxyrhynchus

would further validate both the usefulness of Greek-BLAST and the applicability of the

proposed methodology.
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CHAPTER V.

CONCLUSION

In papyrology, the tasks of transcribing and identifying papyrus fragments compose the

foundation for understanding the culture of ancient civilizations. Due to the deteriorated

nature of most papyrus fragments, these tasks are extremely slow and tedious.

There are currently two computational approaches for accelerating the task of transcrip-

tion for deteriorated or torn documents, but each approach is unsuitable for transcribing

most ancient texts, especially those that suffer from deterioration. The first approach is

optical character recognition. A variety of optical character recognition methods have been

developed for and applied to ancient texts and manuscripts. However, in many cases, these

techniques fail due to quality and color inconsistencies in image datasets. Additionally, most

OCR approaches have difficulty distinguishing between letters and tears in the document.

The second approach and more favorable approach in recent research is crowdsourcing.

Crowdsourcing overcomes the complications that come with an OCR-based approach by

enlisting humans with the task of recognizing characters. However, most modern crowd-

sourcing transcription projects collect transcriptions using plain-text input fields. In many

cases, users are incapable of transcribing all components of the document, especially content

within the margin which might be the only information present. To overcome this obstacle,

more recent applications, such as Ancient Lives, have replaced how users identify letters

for transcriptions. In place of giving transcriptional information in plain-text input fields,

users click on a letter in the image to create a marker with a x,y click-location and assign

the marker a letter using an on-screen keyboard. While this approach does allow users to

transcribe all components of a text, no method or technique presently exists that can make

sense of transcriptional information gathered using this approach.

Unlike transcription, there has been no explicit effort that has aimed to accelerate

the task of papyrus identification. However, it can be argued that this problem bears
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similarity to fundamental problems in string similarity search and can thus share solutions.

A number of approaches, such as the optimal matching algorithm, exist for identifying

shared subsequences between strings or sequences. The most applicable of these approaches

to the problem of identifying deteriorated papyrus fragments is genetic sequence alignment.

By nature, amino acids that make up genetic sequences have the ability to mutate. In

terms of computer science literature, a mutation is defined as an insertion, a deletion, or

substitution of a character. A genetic sequence alignment between two genetic sequences

finds the most longest common, biologically relevant subsequence shared between an

anonymous sequence and any number of known genetic sequences. This process is identical

to the task of identifying literary papyrus fragments as missing information in the papyrus

(e.g., from deterioration) are analogous to the concept of genetic mutations in terms of

comparing sequence similarity. While the approach is very clearly applicable, no prior work

has investigated how genetic sequence alignment can be usefully leveraged to the task of

identification of deteriorated papyrus fragments.

Accelerated Transcriptions for Ancient Greek Papyrus Fragments

To allow transcriptional crowdsourcing applications to accommodate the data collection

needs of ancient texts, a new computational pipeline has been developed to calculate ac-

curate papyrus transcriptions from a large number (e.g., millions) of crowdsourced letter

identifications where each identification has an associated two-dimensional plane coordinate.

The pipeline consists of two components. The first component contains two approaches, the

stepwise approach and the kernel-based approach, for aggregating and clustering identifica-

tions into consensus identifications for each fragment. An evaluation of each implementation

using professionally verified classifications suggested that the stepwise approach was slightly

more effective for calculating consensus letter identifications for non-cursive, semi-cursive,

and cursive fragments (see Figure 1). In addition, the stepwise approach is more practical

than the kernel-based approach as the stepwise approach executes approximately 576 times
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faster than the kernel-based approach.

Using the consensus identifications from the first component, the second component

creates sequences (or strings) that represent digital transcriptions of the respective fragment.

An evaluation of this component suggests that the component’s underlying approach for

calculating lines was effective for papyrus fragments with parallel lines. For 30 fragments

with parallel lines, the edit distance between the calculated transcription and the known

transcription was on average 15.6% of the relative fragment’s length (see Figure 2). Con-

versely, the approach performed much better on papyrus fragments with curvilinear lines,

in which the edit distance between calculated transcription and known transcription was

on average 35.6% of the fragment’s string length. The difference in performance might

be explained by the choice in dataset. Only recently have papyrus fragment transcriptions

been digitized, and to date, only 41 randomly selected fragments in the Oxyrhynchus papyri

had been professionally prepared with digital transcriptions. A follow-up evaluation with

additional data would offer more insight as to whether or not this evaluation is representative

of the approach’s true accuracy on papyrus fragments with curvilinear lines.

Accelerated Identification for Ancient Greek Papyrus Fragments

To accommodate the task of identification, a novel methodology is presented for leverag-

ing genetic sequence alignment algorithms to the task of identifying an anonymous papyrus

fragment to a known literary manuscript. A demonstration of this methodology has cul-

minated in Greek-BLAST, a variant of the BLAST algorithm that can be used to identify

deteriorated papyrus fragments to known literary manuscripts. In a formal evaluation using

simulated fragments, Greek-BLAST identified 88.4% of the fragment queries as the highest-

scoring identification. Nearly all cases of misidentification can be attributed to fragment

length as simulated fragments with a length less than 10 characters were consistently uniden-

tifiable. Once the length of the fragment had been extended to 20 characters, the fragment

sequence was identifiable in spite of being modified severely by multiple key variables.



43

Greek-BLAST accelerates the process of papyrus identification from multiple days, weeks,

or months to a few seconds for a single fragment. This is the only known work that aims to

explicitly accelerate the task of identification for deteriorated papyrus fragments.

Future Work

The first task of future work is improving how transcription lines are created for papyrus

fragments with curvilinear lines. Although effective for papyrus fragments containing

strictly parallel lines of text, the proposed pipeline for calculating transcriptions yielded

unsatisfactory results for papyrus fragments with curvilinear lines of text. The current

implementation of the line sequencing component assumes that written lines of text are

separated by a consistent height. For papyrus fragments with curvilinear lines of text, the

height between lines of text can be variable, and in some cases, lines can overlap one another.

Additionally, a follow-up evaluation with a larger test dataset will allow weaknesses to be

more obviously exposed.

The second task of future work is examining Greek-BLAST’s performance using tran-

scriptions of real fragments that have already been identified to a known literary manuscript.

Although success was evident with a large collection of simulated sequences, an evaluation

with real data will reinforce the practicality of both the methodology and Greek-BLAST.

Additional methodologies for calculating substitution matrices should be investigated for

applicability and possibility of improving the accuracy of Greek-BLAST.
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