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OPERATIONAL SYMMETRY ON FUNCTIONS

KHÔRA SEULE

Abstract:

All functions possess symmetries over their input with certain operators. So-called Symmetry-Sets over a

given function and operator are the sets of objects that can be operated with the input to the function under

that operator without effecting the output of the function. This work shows that when the domain of a

function forms algebraic structure – e.g. a Monoid, Group, Ring, etc. – with a given operator or pair of

operators, the Symmetry-Sets over the same operator(s) have many nice properties. The work develops and

enumerates many interesting results on so-called Tessellations – functions from the integers to some at-least

cancellative-algebra – using the structure of Symmetry-Sets on them, i.e. Period-Sets when speaking of

Tessellations. The behavior of the principal period of any given Tesselation is detailed, as well as how they

interact with each-other when Tesselations are operated together using generalized function-operators.

Briefly, a venue is developed for studying these Symmetry-Sets more thoroughly, by introducing the notion

of Allgebras, an element set paired with the set of all definable operators on the element set. In this context,

algebraic structures are relations between subsets of elements and operators.
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Prologue

First, we will take the time to note a number of writing conventions that have been adopted in an effort to

ease comprehension. These conventions are characteristic of what the author has found useful or – in the case

of their absence – sought after when engaging with other texts of this genre – i.e. certainly technical and (at

least attempting to be) on the border of explanatory.

These conventions are as follows:

1. Terms and Phrases that are used in a technical and precise way will be:

(a) Fully Capitalized

(b) Bolded Inside the Section and Subsection they are Introduced

(c) Every Word In A Phrase Will Have The First Letter Capitalized

2. Terms and Phrases that are used as a precursor to a technical formalization of the same concept – i.e.

if they are representing the fuzzy idea of the soon to be introduced technical term – will be:

(a) ‘Inside Single Quotations’

3. Terms and Phrases that are meant to be emphasized will be:

(a) Italicized

For example, if we suppose that the word ‘technical’ were being used in accordance with the first convention,

it would appear in its introductory section or subsection as: Technical. Prior or subsequent appearances

would be rendered: Technical.

This work is – to the best of the author’s ability – a relatively self-contained text. A result of this is that there

will often be times when notation – familiar to some, but unfamiliar to others – will need to be introduced

using previously defined or bound notation – i.e. we will create an Abbreviation. Similarly, there will be

v



vi

times when we will want the idea denoted by a given collection of notation – supposedly previously defined

and/or bound in some way – to be assumed as commensurate with a given – supposedly previously understood

– value – i.e. we will create an Assignment. To this end, we will introduce two symbols that we will use with

great frequency to accomplish exactly these two situations.

In the case that we are creating an Abbreviation for a collection of known notation with new notation, we

will write:

Free Notation � Bound Notation

Very similarly, in the case that we are looking to Assign some bound notation to ‘have’ the some value, we

will write:

Bound Notation � Fixed Value



PART 0

FOUNDATIONS

1



CHAPTER I

LOGIC AND SET-THEORY

I.1 Propositional Calculus

Objective We will introduce the reader to the – somewhat formal – definition we will be using for Proposi-

tions as well as an entire battery of Logical Symbols and how they relate to each other, as well as the notion

that ‘compound’ Propositions can be formed from simpler ‘atomic’ ones using these Logical Symbols.

Strategy Here we will develop a concept of a so-called Zeroth-Order Logic. This will differ from the

First-Order Logic we will develop later to aid us in fully utilizing the subsequent Set-Theory we describe.

We will begin by introducing notions common to Zeroth-Order Logic, namely, Alphabets, Logical Con-

nectives – also called Logical Symbols – and Rules Of Inference.

I.1.1 Alphabets and Truth-Tables

What is an ‘Alphabet’? An Alphabet – roughly speaking – is a collection of so-called ‘atomic constants’.

This means that these are Propositions that are indivisible and, so in a sense, can be understood as simple

statements about the nature of things. The other kind of Proposition is a so-called Compound Proposition

which will be introduced in the next sub-section. These statements can exclusively be either True or False.

Often one speaks of ‘supposing’ each Letter in the Alphabet has one of these values in order to draw con-

clusions using the tools of Propositional Calculus; we will speak more on this in the next subsection.

For this first section we will only consider a finite Alphabet for simplicity, but it is worth noting that ordi-

narily an infinite alphabet is considered. We hold off on making the jump to an infinite alphabet till we begin

our discussion of First-Order Logic primarily to motivate the differences between Propositional Logic and
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Quantificational Logic – that is, First-Order Logic.

What do ‘Letters’ in an Alphabet look like? Ordinarily the Letters – atomic constants – in a Proposi-

tional Logic’s alphabet are represented using the characters from the Latin Alphabet starting from P – so as to

allude to the word Proposition – and we will do the same here, although it will be relatively inconsequential

as we will have little reason to return to this form of logic once we move on. It is included here primarily

as motivation for why one would build up its successor, as well as a convenient separating mechanism to

introduce Logical Connectives before Quantifiers. In fact, we will – for the purposes of explanation – only

have need to use a two letter Alphabet for the majority of our explanation, as we will not need any more

distinct symbols than this. Despite this, we will officially designate – for this section, at the very least – four

Letters to reside in our Alphabet in service of a definition in the final subsection.

Definition I.1.1 (Propositional Alphabet). The Propositional Alphabet for a given Propositional Calculus

contains all of the symbols that are used to each Abbreviate Atomic Propositions. The two letters we will be

using as for the remainder of the section are formally Abbreviated below:

P

Q

R

S

,

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

-

� Atomic Propositions (I.1)

Truth-Tables In the next subsection we will consider Logical Connectives but in order to do so we must

first establish precisely what the notation associated with a Truth-Table means to convey. This will also be

the first properly robust usage of our Abbreviation and Assignment notation – and in concert, no less.

Definition I.1.2 (Truth-Table). A Truth-Table is an Abbreviation for a handful of systematic Assignments.

We will Abbreviate two sizes of Truth-Tables as those are the sizes we will be using for constructing the

3



majority of our Logic:

˚

A C

B D

�

$

’

’

&

’

’

%

˚A � C

˚B � D
(I.2)

˚ C D

A E F

B G H

�

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

A ˚C � E

A ˚ D � F

B ˚C � G

B ˚ D � H

(I.3)

I.1.2 Basic Logical Symbols

Tautologies are Not Falsehoods In the case that some Proposition is True we have a particular symbol

that we use to indicate it:

Definition I.1.3 (Logical Truth and Tautologies). Going forward we will use the symbol J to refer to the

logical notion of True, i.e. something that is the case. Formally:

J � True (I.4)

When something is always J, we say it is a Tautology.

Similarly, we have a particular symbol for False:

Definition I.1.4 (Logical False and Falsehoods). Going forward we will use the symbol K to refer to the

logical notion of False, i.e. something that isn’t the case. Again, formally:

K � False (I.5)

When something is always K, we say it is a Falsehood.

We will often use Truth-Tables – as defined in the previous subsection – in the following definitions

to further elucidate what each logical symbol means about the logical quality of compound Propositions

involving them, and we will use these two symbols extensively. Before we introduce the first of several

Logical Symbols and Logical Connectives, a relevant definition:
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Definition I.1.5 (Compound Proposition). We say that a Proposition is a Compound Proposition if it contains

any Logical Symbols or Logical Connectives.

Not the Excluded Middle To make our discussion explicit we define what we mean when we say Logical

Quantity below.

Definition I.1.6 (Logical Quantity). Every Proposition is understood as having a Logical Quantity – either

J or K in this case – that describes the ‘accuracy’ of the circumstances it is considered as asserting. That is:

P � J or P � K (I.6)

and (I.7)

Q � J or Q � K (I.8)

and (I.9)

R � J or R � K (I.10)

and (I.11)

S � J or S � K (I.12)

We have a symbol that refers to the notion of changing the Logical Quantity of a Proposition, P, to its

‘opposite’. If it has a Logical Quantity of J this process will instead give us K, and vice versa.

Definition I.1.7 (Logical Negation). For any given Proposition P, if its Logical Quantity is J in a given

circumstance, then we adjoin  to its left side – like so:  P – to indicate the Proposition which has a

LogicalQuantity of K in that same circumstance. It also functions in the opposite direction; if a Proposition

Q happens to have a Logical Quantity of K then  Q has a Logical Quantity of J.

The following is the first Truth-Table we will use of many:

 

J K

K J

(I.13)

There is an important notion that is associated with the – seemingly rather simple – concept we have just
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stated. As a reminder, the Truth-Table above abbreviates the two assignments:

 J � K

 K � J

That is we are assuming the The Law Of Excluded Middle; this refers to an implicit assumption we took

in the previous subsection. That is that every Proposition has a Logical Quantity that is either J or K. It

can not be both, and it can be no other value, such as ‘half-true’ or any other variation on a ‘mixed’ Logical

Quantity. One of the consequences of such an assumption is known as Double Negation Elimination. This

is one of our Rules Of Inference, so we wait to discuss it more directly in the course of this section’s final

subsection.

This and/or That Now for the first couple of interesting logical processes and symbols that accompany a

discussion of them; namely, Disjunctions and Conjunctions.

Definition I.1.8 (Logical Disjunctions). If we wish to express the Proposition that is true when P or Q (or

indeed both) have a Logical Quantity of J, we refer to the Disjunction of P and Q. Such a Proposition can

be written like so:

P_ Q

Q_ P

The above two lines are read “P or Q” and “Q or P” respectively. Often, the process of Disjunction is also

called ‘Logical-Or’ because of its intended interpretation as well as the Assignmentsmade in the Truth-Table

below:

_ J K

J J J

K J K

(I.14)

Definition I.1.9 (Logical Conjunctions). If we wish to express the Proposition that has a Logical Quantity

of J only when P and Q each also have a Logical Quantity of J, we refer to the Conjunction of P and Q

6



which can be written like so:

P^ Q

Q^ P

Similarly to before, these two lines can each be read as “P and Q” and “Q and P”, respectively. Again

similarly, the process of Conjunction may also be called ‘Logical-And’ owing to its intended interpretation

and the Truth-Table responsible for its Assignments:

^ J K

J J K

K K K

(I.15)

If Equivalence Then Material Implication We have a symbol to account for the cases when two seem-

ingly disparate Propositions are J and K at exactly the same times, despite their seemingly distinct formu-

lations. This is the symbol of Logical Equivalence, often understood as suggesting the phrase ‘if and only

if’:

Definition I.1.10 (Logical Equivalence). When two distinct Propositions are Logically Equivalent, and so

have the exact same Logical Quantity, then we write:

P ô Q

Q ô P

These are read as “P if and only if Q” or “P is logically equivalent to Q” and “Q if and only if P” or “Q

is logically equivalent to P”. That is P’s Logical Quantity must be J if Q’s Logcial Quantity is J and

must be K otherwise – i.e. Q’s Logical Quantity is K – hence “and only if”. If this is not the case, then the

Proposition describing the Logical Equivalence of P and Q must have a Logical Quantity of K. This is all

formalized in the following Truth-Table:

ô J K

J J K

K K J

(I.16)

7



We also have a symbol when the previous relationship is more ‘one-sided’. What do we mean by this?

Well, suppose that P is sufficient for Q but not necessary. That is, if P has a Logical Quantity of J, then we

can say confidently that Q must also, but if instead P has a Logical Quantity of K, we can’t say anything

about Q one way or the other – i.e. it could have a Logical Quantity of J or K. This describes the notion of

Material Implication.

Definition I.1.11 (Logical Material Implication). If we want to talk about a Proposition such that P is suf-

ficient but unnecessary for Q, we arrive at the concept of Material Implication. We may write such a

Proposition as:

P ñ Q

Q ð P

Such a Proposition is read as “If P, then Q” or “P Implies Q” and “Q if P” or “Q is implied by P”, respectively

(although they are Logically Equivalent since P is still ‘pointing’ to Q). We may also call P the Antecedent

of Q and Q the Consequent of P. We have the relevant Assignments made by these two Truth-Tables:

ñ J K

J J K

K J J

(I.17)

ð J K

J J J

K K J

(I.18)

The second is simply a mirror along the diagonal of the previous Truth-Table, but it is included here to

demonstrate the utility of Logical Connectives that treat each side differently – i.e. are not Commutative.

That is, we are able to capture two unique Truth-Tables – which as a collection themselves serve to enu-

merate all possible Logical Connectives in a sense – through simply flipping the direction a given symbol is

pointing by virtue of its asymmetry. This also rather straightforwardly demonstrates the fact that:

pP ô Qq ô pP ñ Q ^ P ð Qq (I.19)

The above is one of the most complicated Compound Propositions we have constructed – and so this might
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serve to illustrate the relative utility of having multiple ways to read Compound Propositions – as it can be

read as “P is logically equivalent to Q if and only if P implies Q and Q implies P.” One can become convinced

of this by comparing the results of taking the Conjunction of each cell in the first Truth-Table with the cells

in the same position in the second Truth-Table and comparing the result to the Truth-Table for Logical

Equivalence. It is for this reason that Logical Equivalence is sometimes referred to as Bi-Implication or

Mutual Implication.

Logic is Like a Good Friend One might be mildly perturbed – as I once was – by the Assignment in the

bottom-right corner of each of our most recent Truth-Tables, that is: when both P and Q have a Logical

Quantity of K, why is P ñ Q still given a Logical Quantity of J? This is a result of how we have

described Q’s relationship to P. In order to be confident that P implies Q, we need only make sure that Q

behaves appropriately when P actually has a Logical Quantity of J.

One can also think of Material Implication as something like a ‘conditional promise’. Consider, I tell you

that “I will go on a picnic with you if it doesn’t rain.” Logically, this is equivalent to Q ð P where P is

understood as “It doesn’t rain.”, and Q is “I will go on a picnic with you.” It is clear that if P has a Logical

Quantity of J and Q does also, I have kept my promise to you since it supposedly did not rain and we went

on a picnic together. If P does not, and we consequently don’t go on a picnic – i.e. the Consequent Q has a

Logical Quantity of K – it would be inaccurate to say I had broken my promise, merely that the weather did

not permit my keeping it, as it was a promise conditional on some material circumstance – the weather in this

case. If P does not have a Logical Quantity of J – so it rains – but somehow Q does – i.e. we manage to

go on a picnic still (say we opt for an indoor picnic instead) – then I have not exactly kept my promise, but I

have rather gone above and beyond it and so I have certainly not broken it. However, if it does not rain, but I

fail to go on our planned picnic, I will have broken my promise – this is commensurate with the only instance

that the Logical Quantity of Material Implication is K: when the Antecedent P has a Logical Quantity

of J while the Consequent Q has a Logical Quantity of K. It is in this sense, that the Logical Quantity of

a Material Implication describes a promise being kept.

I.1.3 Negated Logical Symbols

To accompany each of our previous Logical Symbols, we have a whole collection of Negated Logical

Symbols. These form those Compound Propositions that have a Logical Quantity of J precisely when their

‘un-negated’ counterparts have one of K, and vice versa. We have already seen the Negations of J and K,

namely each other.
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In the course of this subsection we will often give somewhat non-standard names to these processes in the

pursuit of making them out to be processes in their own right, rather than ‘merely’ the Negation of previous

processes (despite their being precisely that). This is to encourage the reader to develop an understanding of

their own independence as logical processes worthy of consideration into and of themselves. The names are

chosen also in service of this goal in an attempt to convey where they might indeed be applied.

Neither nor Exclusion? In One Case, Yes! The negation of a Disjunction is – aptly – known as a Nondis-

junction, but we will instead consider it – hopefully more intuitively – as Logical Nor:

Definition I.1.12 (Logical Nor). When we want to know when both P and Q have a Logical Quantity of K,

we consider the process of Nondisjunction or Logical Nor:

P Ó Q (I.20)

Q Ó P (I.21)

These can each be read as “Neither P nor Q” and “Neither Q nor P.” As the beginning of this subsection

indicated, the Truth-Table for this process is totally equivalent to the Negation of our Truth-Table for a

Disjunction:

Ó J K

J K K

K K J

(I.22)

The negation of a Conjunction is again – aptly – known as a Nonconjunction, but we will instead consider

the naming scheme of Exclusion, so-named to suggest at least one Proposition being disallowed, i.e. each

Proposition must ‘exclude’ the other when ‘present’:

Definition I.1.13 (Logical Exclusion). Similarly, when we want to know when P and Q have a combina-

tion of Logical Quantities that are anything except both J, we consider the process of Nonconjunction or

Exclusion:

P Ò Q (I.23)

Q Ò P (I.24)

These may be read as “P and Q exclude each other” and “Q and P exclude each other” or – more verbosely
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– “exclusively P or exclusively Q”. This second linguistic construction hints at another Rule Of Inference:

De’Morgan’s Law. We save that discussion for the appropriate subsection, however. The Truth-Table for

this process is – as was the case previously – is totally equivalent to the negation of our Truth-Table for a

Conjunction:

Ò J K

J K J

K J J

(I.25)

The Contradiction of Unrequited Extant Preclusion We now consider the Negations of Logical Equiv-

alence and Material Implication, to arrive at the notions of Exclusive Disjunctions – which we will rename

Logical Dissension – and the unexcitingly named Negated Implication, which we will take the liberty of

naming Extant Preclusion.

Definition I.1.14 (Logical Contradiction). When we want the Proposition that has a Logical Quantity of J

exactly when two distinct propositions, P and Q, have the opposite Logical Quantity, then we speak of the

Logical Contradiction of P and Q. This is commonly known as an Exclusive Disjunction, and we preserve

the symbolic consequence of such a naming, in hopes of preserving the insight it provides:

P Y Q (I.26)

Q Y P (I.27)

These are read as “P contradicts Q” and “Q contradicts P”. The associated Truth-Table:

Y J K

J K J

K J K

(I.28)

This naming scheme is adopted to convey the notion of mutually exclusive Logical Quantities.

Definition I.1.15 (Logical Extant Preclusion). If we want to talk about a Proposition that has a Logical

Quantity of J precisely when P also does but Q does not, we arrive at the concept of Extant Preclusion.
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We may write:

P( Q (I.29)

Q (P (I.30)

Such a Proposition is read as “P Precludes Q”, and “Q is precluded by P”. We now refer to P as the Precedent

and say Q is the Inconsequent. Although, the ; symbol is often used for such a process, in keeping with

disambiguating these processes more thoroughly, we use the above symbol pulling from Logical Circuit

Diagrams the notion of a concluding circle on a gate being used to indicate Negation. The two associated

Truth-Tables for Extant Preclusion are as follows:

( J K

J K J

K K K

(I.31)

(J K

J K K

K J K

(I.32)

Unprecedented Consequences Similarly, as with Material Implication, Extant Preclusion might seem

to have slightly odd assignments in our table, but for the opposite reason this time. If P has the Logical

Quantity of K, why do we not – as in the case of Material Implication – render the Logical Quantity of

P ( Q as J? Well, one answer might be that Extant Preclusion is the Negation of Material Implication

– so we treat it oppositely – but that answer is somewhat unsatisfying, to say the least. Rather, consider

that Material Implication describes an ‘implication’ that is contingent on “material circumstances”, it is the

opposite for Extant Preclusion. That is, Extant Preclusion describes – aptly – some ‘preclusion’ that is

extant regardless. It speaks in a positive manner, and so can only have a Logical Quantity of J when P does

also meaning the necessary Precedent is in place to be even capable of ‘precluding’ the Inconsequent Q in

the first place. That is to say, Material Implication admits the possibility of P’s Logical Quantity being K

as a vacuous case since P is ‘not around’ to speak to Q’s Logical Quantity, whereas for Extant Preclusion

there is the assertion that P has Logical Quantity of J and – ideally specifically because of this– Q can not.

If either P has a Logical Quantity of K, or Q does not, this assertion can’t hold up, hence P( Q must have

a Logical Quantity of K. One can think of Extant Preclusion also as a kind of ‘Conditional Exclusion’, an
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Exclusion that only wants to exclude Q and ‘fails’ otherwise.

I.1.4 Rules of Inference

This section follows – in a sense – from our definitions of the previous Logical Connectives. This is because

the Truth-Tables that we provided cause Compound Propositions to have predictable and definite behaviors

given known – or often assumed – Premises. A Logical Rule is something that is assumed and serves as the

Premises upon which a Conclusions is Proven. We have done this somewhat implicitly, by first defining our

Logical Symbols and Assigning how they interact with varieties of Logical Quantities of Propositions. We

will now introduce a notation that we can use to write down a series of Logical Rules that these behaviors

will follow from.

There is an established notation for Logical Rules known as Conditional Proofs that we will adopt a similar

– albeit briefer – form of here. In essence, one states, line by line, a series of Premises or Conditions, and

then below a dividing line, a series of Substitutions enabled by previous Logical Rules, and punctuated by a

Conclusion or Consequence of the penultimate Substitution. The relevant abbreviation for a full Conditional

Proof are reserved for the appendix, and instead the more brief format – which we will call a Definitional

Proof – we will use to simply state Rules Of Inference is presented below:

Definition I.1.16 (Definitional Proof). Given some Propositions, P,Q, . . .R, as Premises or Conditions, and

a Proposition S as a Conclusion that definitionally follows from them, one denotes a Definitional Proof of

such a Rule Of Inference as follows:

P

Q
...

R

S

� pP^ Q^ . . .^ Rq ñ S (I.33)

Over the remainder of this section, we will be building a logical system of Natural Deduction, meaning

that we will state most of the foundational Rules Of Inference that follow from the Assignments of our

Logical Symbols. The expanded Conditional Proof format is included in the appendix primarily for the

curious reader that might wonder how other Logical Rules – that we may end up using later – are derived

from the ones we will now state below.
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Introducing and Eliminating Negation As Well As Not Negation We will begin with some of the sim-

plest Rules Of Inference, all having to do with Negation. These are Negation Introduction, Negation

Elimination, and Double Negation Elimination.

Definition I.1.17 (Negation Introduction).

P ñ Q

P ñ  Q

 P

(I.34)

This rule follows from the recognition that the only case where P ñ Q and P ñ  Q both have a Logical

Quantity of J is when P has one of K, thus we can infer that  P must have a Logical Quantity of J.

Definition I.1.18 (Negation Elimination).

 P

P ñ Q
(I.35)

This rule follows from realizing that when P has a Logical Quantity of K – i.e.  P has a Logical Quantity

of J – then P ñ Q must have a Logical Quantity of J, as discussed in subsection 0.I.1.2.

Definition I.1.19 (Double Negation Elimination).

  P

P
(I.36)

This is the rule we spoke of previously in reference to The Law Of Excluded Middle. This relies on the

implicit assumption that P can either have a Logical Quantity of exactly J or K and nothing else. So if the

negation of  P has a Logical Quantity of J, then  P must have one of K, meaning that P must have a

Logical Quantity of J just as   P.

Introducing and/or Eliminating Disjunctions and/or Conjunctions The next four Rules Of Inference

we will discuss have to do with ‘adding’ or ‘removing’ a Disjunction or Conjunction while still being con-

fident the overall Logical Quantity of the Proposition being considered is J. We start with the Disjunction

Introduction followed by the Conjunction Introduction.
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Definition I.1.20 (Disjunction Introduction).

P

P_ Q
(I.37)

Q

P_ Q
(I.38)

This rule follows from the recognition that if we have that P has a Logical Quantity of J – or indeed Q

does – then P _ Q must also. One can gain confidence in this by observing the previous Truth-Table for

Disjunctions.

Conjunction Introduction is exceptionally similar:

Definition I.1.21 (Conjunction Introduction).

P

Q

P^ Q

(I.39)

This rule follows nearly straight from the definition of a Conjunction. If we have that Q has a Logical

Quantity of J as well as P, then P ^ Q must also. One can gain confidence in this by again observing the

Truth-Table for Conjunctions.

We will now swap our order slightly, as Conjunction Elimination is rather more straightforward than

Disjunction Elimination.

Definition I.1.22 (Conjunction Elimination).

P^ Q

P
(I.40)

P^ Q

Q
(I.41)

This rule follows – again – straight from the definition of a Conjunction. If we have that P^Q has a Logical

Quantity of J then P will and Q also will.

Now for the more complicated Disjunction Elimination:
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Definition I.1.23 (Disjunction Elimination).

P ñ Q

R ñ Q

P_ R

Q

(I.42)

This rule follows from considering that when P ñ Q, R ñ Q, and P _ R all have a Logical Quantity of

J then either P must also, and so P ñ Q demands that Q does, or R does and so R ñ Q demands that Q

does. One can gain confidence in this Rule Of Inference by observing the previous Truth-Table for both

Material Implications and Disjunctions, though Material Implication is the more likely of the two to yield

insight, as it is primarily what mechanically enables this Rule Of Inference.

Introducing and Eliminating Logical Equivalence Now we will consider the ways we might Introduce

Logical Equivalence:

Definition I.1.24 (Logical Equivalence Introduction).

P ñ Q

Q ñ P

P ô Q

(I.43)

This rule follows from considering that P ñ Q can have a Logical Quantity of J if P does not or both P and

Q do. Similarly, Q ñ P can have a Logical Quantity of J if Q does not or both Q and P do. In order for

both of these to have a Logical Quantity of J, however, we must have that either both P and Q do not or they

both do. This is precisely how we have defined Logical Equivalence according to our previous Truth-Table.

Logical Equivalence Elimination is the converse of this rule:

Definition I.1.25 (Logical Equivalence Elimination).

P ô Q

P ñ Q
(I.44)

P ô Q

Q ñ P
(I.45)
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As previously stated, this is functionally the converse of the previous Rule Of Inference, so we will forgo

justifying it here and trust that the reader can find a comfortable level of confidence using their own reasoning.

Modus Ponens and Implication Conjunction This is one of the most classic RulesOf Inference. Modus

Ponens translates to ‘mode that by affirming affirms’. The reason for this naming will be apparent once we

have written the rule itself. One can also think of it as Implication Elimination.

Definition I.1.26 (Modus Ponens).

P ñ Q

P

Q

(I.46)

This rule follows from considering that P ñ Q can have a Logical Quality of J if P does not or both P and

Q do. So, when P ñ Q and P have a Logical Quality of J, then so must be Q.

The last Rule Of Inference we will describe – before moving on to Rules Of Replacement – is called

Implication Conjunction:

Definition I.1.27 (Implication Conjunction).

P ñ Q

R ñ S

pP^ Rq ñ pQ^ S q

(I.47)

Rules of Replacement Briefly we will speak of so-called Rules Of Replacement. These follow from our

Truth-Tables as well, though are still worth noting momentarily. They include the notions about Conjunc-

tions and Disjunctions of Associativity – the property that enables us to evaluate them in any temporal order

we please – Commutativity – the property that enables us to evaluate them without regard for which side of

the symbol the propositions occur on – and Distributivity, which we will discuss more thoroughly in the fol-

lowing section. Also included are the important notions of Transposition and De Morgan’s Law. We will go

ahead and state – formally – Transposition and De’Morgan’s Law before proceeding to develop First-Order

Logic in the next section.
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Definition I.1.28 (Transposition).

P ñ Q

 Q ñ  P
(I.48)

 Q ñ  P

P ñ Q
(I.49)

This is the property of Material Implication that P ñ Q is Logically Equivalent to  Q ñ  P. It follows

from considering that P ñ Q is true in the exact same cases as  Q ñ  P since, if P is True then Q must

also be, but if Q is False then P must also be. As a result, if Q has a Logical Quantity of K – necessitating

that P does not – then both  Q and  P will have Logical Quantities of J. Similarly, if P has a Logical

Quantity of J then Q must also, so  Q and  P must both not. As we can see, they share their Logical

Quantities in all cases and so are Logically Equivalent.

Definition I.1.29 (De Morgan’s Law).

 pP^ Qq

 P_  Q
(I.50)

 pP_ Qq

 P^  Q
(I.51)

There are many ways to arrive at this Law, but one might consider that Nor and Exclusion each are the

Negated version of Disjunctions and Conjunctions, respectively. Then, consider that Negating both input

Propositions, is akin to flipping the output of a Truth-Table along its top-left to bottom-right diagonal, and

it becomes clear that these Compound Propositions are Logically Equivalent. There are more robust ways of

reasoning one’s way to DeMorgan’s Law, but we entrust such a task to the reader in favor of brevity.

I.2 First-Order Logic

Objective We wish to familiarize the reader with the more broad notion of a First-Order Logic – i.e.

Quantificational Logic. We want to introduce the notion of Variables as objects whose assignment varies

for nearly the entire duration of their consideration. We also want to introduce the notion of Formulae as

Propositions that take an ‘input’ – namely: Variables – that then go on to determine their Logical Quantity

for any given evaluation. We will then conclude by introducing several symbols to achieve Quantification.
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Strategy We will attempt to motivate Variables and Formulae by first considering Formulae as ‘questions’

we are asking about ‘things’ – i.e. Variables. We will then define several LogicalQuantifiers. We will then

introduce notation for Bound Quantifiers that will be used to aid in constructing Set-Theory in the next

section.

I.2.1 Variables and Formulae

This subsection will be rather brief. We will define Variables and Formulae as counterparts to one another

that provide something of an ‘interface’ to Propositional Calculus. In this conception, Variables are sym-

bols that represent an entire range of potential things – which things is left to be decided, but ostensibly,

the range of all things, potentially. Their counterparts are Formulae which take an Input thing and return a

Logical Quantity. Presumably, each Formula is asking some kind of ‘logical question’ about its Input and

then assigning a Logical Quantity to indicate in what way the Input answers the question – in the positive,

yielding J, or in the negative, yielding K.

Definition I.2.1 (Logical Formula). A Logical Formula takes any valid Input to either Logical Quantity,

i.e. J or K,. We will choose to represent Logical Formulae using the lowercase letter of the Greek alphabet:

α

β

γ

...

,

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

-

� Atomic Formulae (I.52)

Definition I.2.2 (Formulaic Variable). A Formulaic Variable is a symbol that represents an Input to a

Formula. A Free Variable is a Variable that is not Bound. Variables are Bound – if not through some

given Abbreviation or Assignment – through the process of iterated Quantification, so we wait till the next

subsection to discuss Bound Variables more thoroughly. We will choose to represent Formulaic Variables

using lowercase letters of the Latin alphabet, often – but not always – starting nearer the end:

...

x

y

z

,

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

-

� Formulaic Variables (I.53)

We will discuss two of our most basic Formulae.
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The Trivial Formulae The two trivial Formulae – the Universal Tautology and the Universal Falsehood

– reuse rather appropriate notation from Propositional Logic:

Definition I.2.3 (Universal Tautology). This Formulae always has a Logical Quantity of J for any variable

x and so is written and Assigned:

Jpxq � J (I.54)

Definition I.2.4 (Universal Falsehood). This Formulae always has a Logical Quantity of K for any variable

x and so is written and Assigned:

Kpxq � K (I.55)

I.2.2 Quantification and Equality of Variables

Here we will introduce the notion of VariableQuantification and Variable Equality. In First-Order Logic,

this is most usually done by introducing new symbols, namely: D, D!, @, @, and – of course – the well known

“ and ,. This is the route we will be taking, albeit somewhat reluctantly.

All of Them but Also Not All of Them We will first define the Universal Quantifier as it can be used

as a somewhat firm foundation to assign meaning to the remainder of our other Logical Quantifiers via

Abbreviation.

Definition I.2.5 (Universal Quantifier). The Universal Quantifier is understood as Binding a variable to

Span all Variables that meet a certain condition. That is, we would like the Universal Quantifier to Span

a smaller collection – than that of the ‘totality’ – of Variables that satisfy some Binding Formula, ψ. We

write such a ‘bounded binding’ like so:

@x ψpxq � For All Formulaic Variables such that the Logical Quantity of ψpxq is J . . . (I.56)

A ‘genuinely universal’ Universal Quantifier may be written substituting ψpxq for Jpxq since Jpxq has a

Logical Quantity of J regardless of the variable.

@x � @x Jpxq (I.57)
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Definition I.2.6 (Existential Quantifier). The Existential Quantifier is an Abbreviation for the Negation of

the Universal Quantifier and its Binding Formula:

Dx ψpxq �  @x  ψpxq (I.58)

This can be read as “There exists some x such that the Logical Quantity of ψpxq is J . . .” or “There is at least

one x such that the Logical Quantity of ψpxq is J . . .”

This means the so-called ‘Inexistential Quantifier’ would be the Negation of the ‘genuinely universal’ Uni-

versal Quantifier:

@x �  @x  Jpxq (I.59)

This Abbreviation reads as “There does not exist x . . .” We may write these Abbreviations and be confident

they actually represent the notion of Existential Quantifiers by virtue of the semantic equivalence of the

notation they are Abbreviating. Consider that if we said – in the case of the first Abbreviation – “For not

all Formulaic Variables such that the Logical Quantity of  ψpxq is J . . .” we would have conveyed the

same meaning that ‘some’ – but not all – of the Formulaic Variables give ψpxq the Logical Quantity of

K, meaning ‘some’ others must give ψpxq the Logical Quantity of J. Similarly, what the ‘Inexistential

Quantifier’ Abbreviates can be read as “For not all x such that the Logical Quantity of  Jpxq is J . . .” but

of course  Jpxq ô Kpxq, which will always have a Logical Quantity of K.

Indiscernible is Basically Identical, Right? We will define Variable Equality according to three qualities

that it must exhibit, which will allow us to define our final Variable Quantifier.

Definition I.2.7 (Variable Equality). We say that two Variables are Equal if they are joined by a Logical

Connective, denoted“, that makes the following three Formulae into Tautologies – i.e. makes each Univer-

sal Quantifier ‘genuinely universal’.

1. Reflexivity: @x px “ xq

2. Symmetry: @x@y rpx “ yq ô py “ xqs

3. Transitivity: @x@y@z rrpx “ yq ^ py “ zqs ô px “ zqs

In words, each of these mean:

1. Reflexivity: For all x, x is Equal to itself.
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2. Symmetry: For all x and y, x is Equal to y if and only if y is Equal to x.

3. Transitivity: For all x, y, and z, x is Equal to y and y is Equal to z if and only if x is also Equal to z.

We also have the following Abbreviation:

x , y �  px “ yq (I.60)

The One and Only We use the Unique Existential Quantifier to Abbreviate a specific combination of an

Existential Quantifier and Universal Quantifier with a Binding Formula that utilizes Variable Equality.

In this way, the Unique Existential Quantifier seems an appropriate culmination to conclude this section.

Definition I.2.8 (Unique Existential Quantifier). We refer to the following abbreviation as a Universal Ex-

istential Quantifier

D!x ψpxq � Dx@y rψpyq ô px “ yqs (I.61)

This can be read as “There exists a unique x such that ψpxq has a Logical Quantity of J . . .” The notation

being Abbreviated can be interpreted as saying “There exists some x such that for all y the Logical Quantity

of ψpyq is Logically Equivalent to x “ y.” So, in the case that ψpyq has a Logical Quantity of J, it must

be that x “ y does also, otherwise both ψpyq and x “ y will have a Logical Quantity of K, i.e.  ψpyq and

x , y will have Logical Quantities of J.

I.3 Subsets and Set-Building

Objective We wish to familiarize the reader with the common notion of Set-Builder Notation as well as

common Set Operations. We seek to demonstrate how the Logical Symbols from the first section can be

used to create Sets rather intuitively, and then how these may be combined to form new Sets also. Notably,

the AxiomsOf Set-Theory are absent save for allusions to which of them allow us to perform the relevant Set

Operations, in order to ensure confidence in the reader. The common ZFC list of axioms are made available

in the appendix, for the curious reader.

Strategy This section will Abbreviate collections of notation in order to reference many important Sets as

well as motivate the usage of the previous Logical Symbols in how one might form more complex Sets.
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I.3.1 Set-Builder Notation

Everything in Set-Theory Was a Set . . . Before we begin, the understanding that almost everything in

Set-Theory is a Set, is somewhat technical, but important. We will speak as if we consider everything a Set,

in order to simplify our language, and this is a result of this acknowledgement and the intention to steer clear

of so-called Proper Classes. We will go about showing throughout this section how one can create bigger

Sets from smaller Sets and vice versa.

Sets in Sets Sets are defined by their Membership, and only their Membership. What this means is that

two sets are completely identical – i.e. properly Equal – if they each have the same Elements in them. As

a result, Sets defined in seemingly different ways might still be the same Set if we can show that all of the

Elements in one is in the other and vice versa. For the curious, this is commonly known as The Axiom Of

Extensionality.

We will first define somewhat rigorously what we mean by Membership and the notion that some element is

Contained in some Set.

Definition I.3.1 (Membership). We utilize a so-called ImpredicativeDefinition so that one might be provided

at all. For something more robust, one might consider a definition more along the lines of how we defined

Equality in the previous section, i.e. one could consult the Axioms Of ZF and let a Logical Connective P

represent Memebership if and only if it makes all of the Axioms into Tautologies. We will, instead submit an

Impredicative Definition – i.e. a definition that references the object being defined (but not necessarily the

definition itself) – so that the reader might have an intuitive grasp of Membership without consulting the – at

times – somewhat dense Axioms Of ZF.

x P X � @Y rpY , X ^ @y ry P X ñ y P Ysq ñ x P Ys (I.62)

This left-hand side of this Abbreviation can be read as “x in X”, where x and X are understood as being

distinct Sets. The right-hand side of this is admittedly a bit longer when linguistically reconstructed. It reads

“For all Y distinct from X and such that for every y whose Membership in X implies their Membership in Y

it is implied that x has Membership in Y .” Well. . . what does that mean? In essence, it says that every Set

that isn’t X but at least shares all the Membership of X – i.e. it could have a larger Membership – must also

contain x.
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We will now notate the Abbreviation for x < X, which is – in truth – simply  px P Xq, however, it is

worthwhile to be able to easily inspect what such a Formula would look like so we can determine if it meets

our expectations for what < should mean:

x < X � DY rx < Y ( pY “ X _ Dy ry P X ( y P Ysqs (I.63)

Now we can read it as “There must exist a Set that x is not in that Precludes either being equal to X or the

Existence of an Element y whose Membership in X Precludes their membership in that Set.

We will now create some notation, that communicates so called Set-Inclusion, that will later allow us to

show that Membership Equivalence gives us Set Equivalence in the case for certain Sets we are interested

in. Central to this notion is the definition of a Subset.

Definition I.3.2 (Subsets/Supersets & Proper Subsets/Supersets). We say that one Set X is a Subset of

another Set Y if all Members of X are also Members of Y . The relevant Abbreviation is as follows:

X Ď Y � @a ra P X ñ a P Ys (I.64)

We say X is a Proper Subset of Y if there is some Element in Y that is not in X:

X Ă Y � @a ra P X ñ a P Ys ^ Db rb P X (b P Ys (I.65)

We say that one Set X is a Superset of another Set Y if all Members of Y are also Members of X. The relevant

Abbreviation is simple:

X Ě Y � Y Ď X (I.66)

Similarly, for a Proper Superset:

X Ą Y � Y Ă X (I.67)

Building Subsets Out of Supersets A Set can be constructed from one of its Supersets using nearly any

Logical Formula with this notation:

Definition I.3.3 (Set-Builder Notation). For some Formula ψ we say that there is also a Set, X, that can be
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retrieved by ψ ‘acting on’ the Elements of another Set, Y . We use the notation below to describe such a Set:

X �
"

x P Y : ψpxq
*

(I.68)

We interpret the previous assignment as “The Membership of Y such that ψpxq has a Logical Quantity of J

is the Memebership of X.” As previously noted, we assume a priori that x must be a Set.

The Trivial Subsets Built by the Trivial Formulae We will conclude this subsection by noting two kinds

of Subsets that can always vacuously be built from any given Set; namely, those defined by the trivial Logical

Formulae Jpxq and Kpxq.

Definition I.3.4 (The Trivial Subsets). The first Subset is built by the Formula Jpxq ‘acting on’ some set X:

X “
"

x P X : Jpxq
*

(I.69)

One can readily see this Set is simply itself over again, which introduces the important idea that a Set is

always a Subset of itself. It is for this reason that we define Proper Subsets. This is also an excellent

demonstration of Set Equality, which can be interpreted as the case when any two Sets are Subsets of

eachother.

The other Subset is built by the Formula Kpxq ‘acting on’ some set X:

∅ “

"

x P X : Kpxq
*

(I.70)

This is a Set named – appropriately – The Empty-Set. One can readily see this Set is named aptly, as no Set

will ever be able to be in it, regardless of which Set X we have started with.

I.3.2 Intersections, Unions, Complements, and Differences (Oh My!)

The Similarities Between Sets We will now introduce several interactions between Sets that will be helpful

for building other Sets. The first of these will be the Intersection of two or more Sets:

Definition I.3.5 (Intersection). We say that the Intersection of two Sets X,Y is a Set, that has the Member-

ship of only those Sets in X and Y:

x P
ˆ

X
č

Y
˙

� x P X ^ x P Y (I.71)
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Similarly, this process can be repeated an arbitrary amount of times by Indexing by some set I:

x P
č

iPI

Xi � @i ri P Is ñ x P Xi (I.72)

What Sets Can Learn From Each-Other The related notion is the Union of two or more Sets:

Definition I.3.6 (Union). We say that the Union of two Sets X,Y is the Set whose Membership are those Sets

that are in X or Y:

x P
ˆ

X
ď

Y
˙

� x P X _ x P Y (I.73)

Similarly, this process can be repeated an arbitrary amount of times by Indexing by some set I:

x P
ď

iPI

Xi � Di ri P Is ñ x P Xi (I.74)

Set Theory Out of Logic The attentive reader will notice that in the sense that these are the ‘set versions’

of Conjunctions and Disjunctions, that Set Inclusion is the ‘set version’ of Material Implication. It then

also becomes clear that Set Equality is the ‘set version’ of Logical Equivalence.

The Set Theoretic Negation Continuing in this vein of creating ‘set versions’ of our Logical Symbols,

we might consider what arises when we give the same treatment to Logical Negation. Well, we receive our

definition of the Complement of a Set:

Definition I.3.7 (Complement). We say that the Complement of a Set X is the Set with Membership of those

Sets not in X:

x P XC � x < X (I.75)

There is a mild subtly here, that we opt to not cover, however.

How Sets Can Exclude Each-Other We will now define the so-called ‘negation’ of the Subset relationship

between Sets – i.e. the ‘set-version’ of Extant Preclusion – which we call the Difference. We will then

consider the ‘negation’ of Set Equality – i.e. the ‘set-version’ of Logical Contradiction – known as the

Symmetric Difference.
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Definition I.3.8 (Difference). We say that the Difference of two Sets X,Y is the Set which has the Member-

ship of X except for the component of Membership shared with Y:

x P X z Y � x P X ( x P Y (I.76)

Definition I.3.9 (Symmetric Difference). We say that the Symmetric Difference of two Sets X,Y is the Set

with Membership from X but not Y and Y but not X, i.e. the Membership of X and Y that Contradict eachother

are not included in the new Membership:

x P
ˆ

X
i

Y
˙

� x P X Y x P Y (I.77)

I.3.3 Powersets, and Cartesian Products

All of the Subsets We will have cause to speak of every single Subset of a given Set X. This is done using

the Powerset construction:

Definition I.3.10 (Powerset). The Powerset of a set X is the set who has Membership of exactly all of the

Subsets of X:

x P PpXq � x Ď X (I.78)

Order Matters Sometimes If a Set is purely identified by its Membership then how are we meant to

denote – say – an Ordered Pair? A Set containing both of the Elements will not do, because Sets are totally

unordered, meaning we could not say which was ‘first’ like we would desire.

Definition I.3.11 (Ordered Pair). An Ordered Pair of two Sets a, b such that a P A and b P B, is an

Abbreviation for another Set that manages to Order them:

pa, bq�

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

"

x P P pP pAY Bqq :

D! f r f P x^ f P PpAq ^ @g rg P f ô g “ ass

^

D!s rs P x^ s P P pP pAY Bqq ^ @t rt P s ô pt “ a_ t “ bqss
*

(I.79)

Definition I.3.12 (Cartesian Product). The Cartesian Product of two Sets A and B is the set of all Ordered
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Pairs with the first Element in A and the second Element in B:

x P Aˆ B � DaDb ra P A^ b P B ô x “ pa, bqs (I.80)

We also use so-called Product Notation in order to describe iterated Cartesian Products. In the case of n

applications of the Cartesian Product on a single Set X, called the pn ` 1qth Cartesian-Product, we write

the resulting Set of such an iterated process as:

n
ź

X � X ˆ X ˆ . . .ˆ X
loooooooomoooooooon

n Times

(I.81)

Occasionally, we will use In-Line Product Notation which is mildly different; the equivalent in-line notation

for the Set described above would be:
śn X. In the case of infinite iteration – which is allowable – one

replaces the n with8.

Alternatively, if one wishes to describe a more general iterated Cartesian Products between Sets that are not

equivalent – as will be the case in the following chapter for Heterogeneous Relations and the like – we will

often speak of an Index Set I – as before with Unions and Intersections. This is to be understood as a Set

that assigns each of its elements to some fixed set Xi – or indeed in many cases each element i is responsible

for somehow ‘determining’ the Set Xi itself. We write the iterated Cartesian Product of such a family of

Sets, said to be “indexed by the Set I” as follows:

x P
ź

iPI

Xi � @i ri P I ñ D!xi rxi P Xi ô xi P xss (I.82)

The equivalent in-line notation is
ś

iPI Xi.
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CHAPTER II

RELATIONS AND FUNCTIONS

II.1 Kinds of Relations

Objective We will explore several different ways to define and categorize Relations so that we may study

them later.

Strategy We will establish the foundational notion of Relations as Subsets of Cartesian-Products in order

to make sense of them and so we might define certain properties on them.

II.1.1 Relations as Subsets

We will formalize the notion of a Relation as a Subset of the Cartesian-Product of two or more Sets.

Definition II.1.1 (Relation). A Relation, R, between a family of Sets – Xi, indexed by the Set I, where each

Set Xi is referred to as the Domain of R – is a Subset of the Cartesian-Product of those Sets:

R Ď
ź

iPI

Xi (II.1)

We say that when a Tuple px1, x2, . . . xiq is a Member of R – that is px1, x2, . . . xiq P R – then each element

of the Tuple relates to the other Elements based on its position – i.e. its originating set if Xi , X j for each

Ordered Pair pi, jq – in the Tuple.
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Arity The Arity of a Relation is the number of Sets that the Cartesian-Product it is a Subset of has in

it. So, a Relation over two Sets X,Y is a Binary Relation. Similarly, a Relation over three Sets X,Y,Z is

a Ternary Relation. In general, a Relation of n Sets is said to be an n-Ary Relation. We will restrict our

focus in future sections to largely only Binary-Relations, but will speak in general of n-Ary Relations for

the remainder of this section.

In the case that we are discussing a Binary Relation, however, we will utilize Infix Notation. Consider a

Binary Relation,„, that relates a Domain X to a Co-Domain Y – only in the case of a Binary Relation do we

distinguish the Co-Domain – and specifically Relates the fixed Elements x P X and y P Y the Abbreviation

that describes Infix Notation is:

x „ y � px, yq P R (II.2)

II.1.2 Genus

The Genus of a Relation qualifies which Sets the Cartesian-Product it is a Subset of is over. There are

primarily two broad Genera – both of which will be familiar to the reader from other areas – that is: Het-

erogenous and Homogenous.

Definition II.1.2 (Heterogenous Relations). A Heterogeneous Relation is one between a family of sets Xi

indexed by K such that:

DiD j ri P K ^ j P K ñ Xi , X js (II.3)

In words, this means that a Heterogenous Relation is one between distinct Sets, i.e. not all of the Sets

that are being Related are the same Set. A Homogenous Relation is – predictably – the opposite of this:

Definition II.1.3 (Homogenous Relations). A Homogenous Relation is one between a family of Sets Xi

indexed by K such that:

@i@ j ri P K ^ j P K ô Xi “ X js (II.4)

In the next section we will describe many properties on Homogenous Relations, but will turn to consid-

ering both Genera of Relations in the section after that when discussing Functions.
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II.2 Properties of Homogenous Relations

Objective We will explore several common properties of Relations on a single Set – i.e. Homogenous

Relations – as well as the names we give to Relations that express them.

Strategy We will use the distinction we created in the previous section about the Genus Of A Relation and

focus on Homogenous Relations for this section. Notably, we restrict our focus to Binary-Relations for the

remainder of the work – including this section – as indicated in the previous section. Although we will be

making this restriction, a later discussion elucidates a way by which a conversation about Binary-Relations

serves to facilitate a conversation about all n-Ary Relations, as well as describing how this process can be

done for Unary-Functions and Binary-Operators.

II.2.1 Reflexive and Irreflexive

Definition II.2.1 (Reflexive Relations). A Reflexive Relation,„, is a Homogenous Relation on X such that:

@xrx P X ñ x „ xs (II.5)

In word, this means that Reflexive Relations must relate every Element in the Domain to itself.

Definition II.2.2 (Irreflexive Relations). An Irreflexive Relation, „, is a Homogenous Relation on X such

that:

@xrx P X ñ x / xs (II.6)

Similarly, in words, this means that Irreflexive Relations must not relate any Element in the Domain to

itself.

II.2.2 Symmetric and Anti-Symmetric

Definition II.2.3 (Symmetric Relations). A Symmetric Relation, „, is a Homogenous Relation on X such

that:

@x@yrx P X ^ y P X ñ x „ y ô y „ xs (II.7)
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In words, this means that Symmetric Relations that relate a Pair of Elements must relate the mirror of

that Pair also.

Definition II.2.4 (Anti-Symmetric Relations). An Anti-Symmetric Relation, „, is a homogenous relation

on X such that:

@x@yrx P X ^ y P X ñ ppx „ y^ y „ xq ñ px “ yqqs (II.8)

In words, this means that Anti-Symmetric Relations that Relate both a Pair and its Mirror only does so

for a Pair of Equal Elements.

II.2.3 Transitive and Anti-Transitive

Definition II.2.5 (Transitive Relations). A Transitive Relation, „, is a Homogenous Relation on X such

that:

@x@y@zrpx P X ^ y P X ^ z P Xq ñ ppx „ y ^ y „ zq ñ x „ zqs (II.9)

In words, this means that Transitive Relations that Relate a Pair, and the right of that Pair to another

Element, must also Relate the left of the initial Pair to the new Element.

Definition II.2.6 (Anti-Transitive Relations). An Anti-Transitive Relation, „, is a Homogenous Relation

on X such that:

@x@y@zrpx P X ^ y P X ^ z P Xq ñ ppx „ y ^ y „ zq ñ x / zqs (II.10)

In words, this means that Anti-Transitive Relations that Relate a Pair, and the right of that Pair to

another Element, must never Relate the left of the initial Pair to the new Element.

II.2.4 Connex, Semi-Connex, and Trichotomous

Definition II.2.7 (Connex Relations). A Connex Relation, „, is a Homogenous Relation on X such that:

@x@yrpx P X ^ y P Xq ñ
`

x „ y _ y „ x
˘

s (II.11)

In words, this means that ConnexRelationsmust Relate every Pair of Elements, its mirror Pair, or both.
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Definition II.2.8 (Semi-Connex Relations). A Semi-Connex Relation, „, is a Homogenous Relation on X

such that for x, y P X:

@x@yrpx P X ^ y P Xq ñ px , y ñ
`

x „ y _ y „ x
˘

qs (II.12)

In words, this means that Semi-Connex Relations must Relate every Pair of Unequal Elements or the

respective mirror Pair.

Definition II.2.9 (Trichotomous Relations). A Trichotomous Relation, „, is a Homogenous Relation on X

such that:

@x@yrpx P X ^ y P Yq ñ

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

rpx „ yq( rpy „ xq _ px “ yqss

_

rpy „ xq( rpx „ yq _ px “ yqss

_

rpx “ yq( rpx „ yq _ py „ xqss

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(II.13)

In words, this means that for Trichotomous Relations exactly one of the following is true: a Pair is

Related; a Pair’s mirror is Related; the Pair is Equal.

II.2.5 Order Relations

We will now give standard names to Relations that convey a sense of ‘order’ on the Elements in X.

Definition II.2.10 (Preorder). A Homogenous Relation that is Reflexive and Transitive is a Preorder.

Definition II.2.11 (Total Preorder). A Preorder that is Connex is a Total Pre-Order.

Definition II.2.12 (Partial Order). A Preorder that is Anti-Symmetric is a Partial Order.

Definition II.2.13 (Total Order). A Partial Order that is Connex is a Total Order.

Definition II.2.14 (Strict Preorder). A Homogenous Relation that is Irreflexive and Transitive is a Strict

Preorder.

Definition II.2.15 (Strict Total Preorder). A Strict Preorder that is Semi-Connex is a Strict Total Pre-

Order.
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Definition II.2.16 (Strict Partial Order). A Strict Preorder that is Anti-Symmetric is a Strict Partial

Order.

Definition II.2.17 (Strict Total Order). A Strict Partial Order that is Semi-Connex is a Strict Total

Order.

II.2.6 Equivalence Relations

We will now give standard names to Relations that convey a sense of ‘equivalence’ on the Elements in X.

Definition II.2.18 (Partial Equivalence Relation). A Homogenous Relation that is Symmetric and Transitive

is a Partial Equivalence Relation.

Definition II.2.19 (Equivalence Relation). A Partial Equivalence Relation that is Reflexive is an Equiva-

lence Relation.

II.3 Properties of Heterogenous Relations

Objective We will now explore several different ways to categorize all relations with an emphasis on the

more general case of Heterogenous Relations.

Strategy We will use the foundation we created in one of the previous sections about Relations as subsets

of Cartesian-Products to define certain properties by discussing conditions on member pairs of the relation.

II.3.1 Uniqueness Properties

There are a number properties that deal with the Uniqueness of a Relation between a given Pair of Elements.

Definition II.3.1 (Injective Relations). An Injective Relation, „, is a Homogenous Relation on X or a

Heterogeneous Relation on X and Y such that:

@x@y@zrpx P X ^ y P X ^ z P Xq ñ ppx „ y ^ z „ yq ñ x “ zqs (II.14)

or (II.15)

@x@y@zrpx P X ^ y P Y ^ z P Xq ñ ppx „ y ^ z „ yq ñ x “ zqs (II.16)

This property is also called Left-Unique, and in words means that for every Pair of Elements, the left

Element must be the only Element that Relates to the right Element.
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Definition II.3.2 (Functional Relations). A Functional Relation, „, is a Homogenous Relation on X or a

Heterogeneous Relation on X and Y such that:

@x@y@zrpx P X ^ y P X ^ z P Xq ñ ppx „ y ^ x „ zq ñ y “ zqs (II.17)

or (II.18)

@x@y@zrpx P X ^ y P Y ^ z P Yq ñ ppx „ y ^ x „ zq ñ y “ zqs (II.19)

This property is also called Right-Unique, and in words means that for every Pair of Elements, the right

Element must be the only Element that Relates to the left Element.

II.3.2 Totality Properties

There are a number properties that deal with the Totality of a Relation on its Domain and Co-Domain.

Definition II.3.3 (Serial Relations). A Serial Relation, „, is a Homogenous Relation on X or a Heteroge-

neous Relation on X and Y such that:

@xrpx P X^Dyry P Xsq ñ px „ yqs (II.20)

or (II.21)

@xrpx P X^Dyry P Ysq ñ px „ yqs (II.22)

This property is also called Left-Total, and in words means that for every Element in the Domain, there

is a Pair in the Relation that has it as the left Element.

Definition II.3.4 (Surjective Relations). A Surjective Relation, „, is a Homogenous Relation on X or a

Heterogeneous Relation on X and Y such that: for every y P X or every y P Y there is at least one x P X:

@yrpy P X^Dxrx P Xsq ñ px „ yqs (II.23)

or (II.24)

@yrpy P Y^Dxrx P Xsq ñ px „ yqs (II.25)

This property is also called Right-Total, and in words means that for every element in the Co-Domain,

there is a Pair in the Relation that has it as the right Element.
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II.3.3 Kinds of Functions

We now have enough definitions to construct a notion of a Function:

Definition II.3.5 (Function). A Function is a Homogenous Relation or Heterogeneous Relation, f , that is

both Serial and Functional.

Important to note is that because a Function distinguishes Input from Output, if one has an n-Ary Relation,

where n , 2, that they wish to distinguish as a Function, they must specify where such a split in the Elements

in Member Tuples takes place. That is, one must specify some Equation n “ i`o, that is interpreted to mean

that the first i Elements in a Tuple are the Input and the final o Elements are the Output. This will also us to

simply talk about Input and Output Elements from the respective i-Ary and o-Ary Sets, and we would call

such a Function an i-Ary Function (we ordinarily suppress the number of Outputs as o , 1 tends to rarely

be the case; as a result, most of the time, an appropriate n-Ary Relation is an pn ´ 1q-Ary Function). Most

commonly we are speaking of Binary Relations, which would be Unary Functions, as the only choices for i

and o are each 1; so most Functions we discuss simply Map one Input to one Output.

Ordinarily, instead of the Infix Notation we often use in the case of Binary Relations. We instead adopt

Function Notation, which will be reminiscent of our Formula Notation from Chapter 1. So, for a function f

with Domain X and Co-Domain Y that assigns some fixed Element x P X to some other fixed Element y P Y ,

we will denote such a Mapping as:

f pxq � y (II.26)

This also holds in the case were i , 1, and we separate Inputs by commas. Consider an i-Ary Function f ,

from
śi

1 X to Y such that it Assigns some fixed px1, x2 . . . xiq P
śi

1 X to some fixed y P Y , we denote such a

Mapping like so:

f px1, x2, . . . xiq � y (II.27)

In the case that o , 1, we simply replace y with the appropriately sized Tuple.

This definition is derived from the idea that a Function ought be able to map every Element from its

Domain, and only map each Element in the Domain to one Element in the Co-Domain. The other Uniqueness

and Totality properties yield us the other kinds of Functions with which we are familiar:

Definition II.3.6 (Injection). An Injection is a Function that is Injective.
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This kind of function is also often said to be ‘into’.

Definition II.3.7 (Surjection). A Surjection is a Function that is Surjective.

This kind of Function is also often said to be ‘onto’.

Definition II.3.8 (Bijection). A Bijection is a Function that is both Injective and Surjective.

Aptly, this kind of Function will be frequently be called ‘into and onto’.

The Set of Functions We use the notation YX to denote the Set of all Functions with X as the Domain, and

Y as the Co-Domain. We further denote the Subsets of this Set as follows: the Injections from X to Y as

IrYXs; the Surjections from X to Y as S rYXs; and the Bijections from X to Y as BrYXs. It is worth noting

that:

BrYXs �

ˆ

IrYXs
č

S rYXs

˙

(II.28)

II.4 Function Composition

Objective We will explore the notion of Function Compositon and get an understanding of what it means

to Compose two Functions.

Strategy We will use the terminology introduced from the previous section, to try to better understand what

kind of Functions are the result of specific Function Compositions.

II.4.1 Composing Functions

When composing Homogenous Functions there are not many special cases to consider and so we are able to

compose any Homogenous Function on a given Set X with any other Function on that same Set. That being

said, we still need to introduce the notion of Function Composition in the first place:

Definition II.4.1 (Homogenous Function Composition). For two Homogenous Functions f , g P XX , we can

Compose these Functions in either direction, to receive two potentially distinct Homogenous Functions on
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X, f ¨ g and g ¨ f , respectively. We do this by using the Output of one as the Input to the other. For every

Element in X:

r f ¨ gspxq � f pgpxqq (II.29)

rg ¨ f spxq � gp f pxqq (II.30)

When composing Heterogenous Functions there are several things to consider:

Definition II.4.2 (Heterogenous Function Composition). For two Heterogenous Functions g P YX , and

f P ZY , we can Compose these Functions in just one direction, to receive a distinct Heterogenous Function

in the Set ZX , namely f ¨ g. We do this by using the Output of g as the Input to f . For every Element in X:

r f ¨ gspxq � f pgpxqq (II.31)

Because f ¨ g P ZX it is a Function of a completely different flavor to f or g. It will take an Input from X but

produce an Output in Z, something that neither f or g can do independently.

II.4.2 Composition’s Preservations

When considering our previous kinds of Functions and the associated Sets, one might wonder if these prop-

erties are maintained in Function Composition, and indeed they are. We will go about proving each of these

preservations, and consider only Heterogenous Functions as Homogenous Functions are a special case of

that broader class.

Theorem II.4.1 (The Composition of Injections is an Injection). For two Injections, g P IrYXs and f P IrZY s,

we have that f ¨ g P IrZXs.

Proof. Since f , g are Injective:

@a@brpgpaq P Y ^ gpbq P Yq ñ r f pgpaqq “ f pgpbqq ô gpaq “ gpbqss (II.32)

@a@brpa P X ^ b P Xq ñ rgpaq “ gpbq ô a “ bss (II.33)

Thus, f ¨ g P IrZXs. �

Theorem II.4.2 (The Composition of Surjections is a Surjection). For two Surjections, g P S rYXs and

f P S rZY s, we have that f ¨ g P S rZXs.
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Proof. Since f , g are Surjective, for every y P Y , there exists an x P X such that:

@yDxrpy P Y ^ x P Xq ñ pgpxq “ yqs (II.34)

Similarly, for every z P Z there exists y P Y such that:

@zDyrpz P Z ^ y P Yq ñ p f pyq “ zqs (II.35)

So as a result:

@zDyrpz P Z ^ y P Yq ñ pDxrpy P Y ^ x P Xq ñ pgpxq “ yqs ñ f pgpxqq “ zqs (II.36)

Thus, for every z P Z, there exists an x P X such that r f ¨ gspxq “ z, so f ¨ g P S rZXs. �

Theorem II.4.3 (The Composition of Bijections is a Bijection). For two Bijections, g P BrYXs and f P

BrZY s, we have that f ¨ g P BrZXs.

Proof. This follows directly as a consequence of the two previous proofs.

@ f@grp f P IrZY s ^ g P IrYXsq ñ p f ¨ g P IrZXsqs (II.37)

Which follows from the first proof,

@ f@grp f P S rZY s ^ g P S rYXsq ñ p f ¨ g P S rZXsqs (II.38)

Which follows from the second proof. Thus – because of the Implication Conjunction Rule Of Inference –

we are able to conclude that:

@ f@grpp f P IrZY s ^ f P S rZY sq ^ pg P IrYXs ^ g P S rYXsqq ñ p f ¨ g P IrZXs ^ f ¨ g P S rZXsqs (II.39)

Of course, because of how Intersections of Sets are defined, we have that the line above simplifies to:

@ f@grp f P BrZY s ^ g P BrYXsq ñ p f ¨ g P BrZXsqs (II.40)

�
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CHAPTER III

OPERATORS AND ALGEBRAS

III.1 Functions as Operators

Objective We will now explore how Operators are defined as Multi-Variate Functions.

Strategy We will use the foundation we created in the previous section about Functions to describe Oper-

ators and a brief discussion on limiting our consideration to Binary-Operators

III.1.1 Functions with n Arguments and 1 Output

If we consider a Function with n Arguments, and only one Output, we will have arrived at the notion of

an Operator – an n-Ary Operator, to be specific. The primary difference between an n-Ary Function and

an n-Ary Operator is really one of convention and intended application. As a result, we will abstain from

providing a definition distinct from that of a function, as no notation is introduced additionally for the general

n-Ary case.

It is worth noting that – while not terribly standard – an Operator need not be Homogenous necessarily,

despite this ordinarily being the case. It does need to be Homogenous to exhibit many of the properties

we will discuss in the next section, but a Heterogenous Operator is possible and is termed an External

Operator. Such Operators will be vital to the discussion to the brief discussion we will have in the next

subsection that deals with justifying our limiting consideration to only Binary-Operators.
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III.1.2 A Justification for Restriction to Binary-Operators

It might seem overly limiting to restrict focus to only Binary-Operators, as we will choose to do for the

remainder of this work. The reason for this is primarily a result of where research in the field of Abstract-

Algebra decided to look, and this will always suffer from selection-bias – e.g. are Binary-Operator’s gen-

uinely as much more interesting than Ternary or any other n-Ary Operator as the difference in research

would suggest? – but it will also tend to favor that which is easiest to work with while still managing to

seemingly escape triviality. We wish to offer an alternative – if not all-encompassing – justification for why

one might be willing to restrict consideration to only Binary-Operators.

The crux of this justification is that while one may not have the same level of descriptive power on the char-

acteristics of the Operator, any n-Ary Operator can be represented as a Binary-Operator. How is this the

case?

Consider our previous distinction in the definition of a Function, where one is required to stipulate an equa-

tion n “ i` o that defines the number of Inputs i and the number of Outputs o. This split, already turns all

Functions into Binary Relations, as we then consider Subsets of the Cartesian-Product of two Sets, namely

the iterated Cartesian-Product of a family of Domains Indexed by a Set I having exactly i Members, and the

Iterated Cartesian-Product of a family of Co-Domains Indexed by a Set O having exactly o Members. From

this lense, Unary Functions, which are Binary-Relations, are also Unary-Operators. As a result, Binary-

Operators are Binary-Functions, and so Ternary Relations.

For an n-Ary Operator – which is already an n-Ary Function with o “ 1 (which is a Serial and Func-

tional pn ` 1q-Ary Relation) – consider that it is a Subset of the Cartesian-Product that has been iterated

n ` 1 times. By virtue of our naming, we have that n ` 1 “ i ` o such that i “ n and o “ 1. We can

now perform an additional split, this time on i. Considering an Equation that prescribes a split of i – say

something like i “ l ` r – we already have a way of converting any pn ` 1q-Ary Relation – that is, an

n-Ary Operator – into a Ternary-Relation, i.e. a Binary-Operator by considering the appropriate Subset of

the Cartesian-Product of the Iterated Cartesian-Product Indexed by a Set L with l Members and another

Iterated Cartesian-Product Indexed by a Set R with r Members.

Symbolically, such an equivalence could be represented like so:

ź

jPIYtωu

X j “
ź

jPI

X j ˆ Xω (III.1)

ź

jPI

X j ˆ Xω “

ˆ

ź

aPL

Xa ˆ
ź

bPR

Xb

˙

ˆ Xω (III.2)
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The first line represents the initial split of the pn` 1q-Ary Relation into an n-Ary Function with one Output

set, represented by Xω. The second line represents the split of the Domain Sets on that Function into two

distinct categories that will represent the Left and Right Arguments respectively to the resulting Binary-

Operator.

One may notice that this process is not strictly limited to the Binary and Ternary case – those are simply the

most helpful ones for facilitating conversations about Unary-Functions and Binary-Operators, respectively

– and indeed it is the case that any n-Ary Relation could be re-expressed by any m such that 2 ď m ă n. As

mentioned at the beginning of this ‘justification’, however, it is worth noting that this is a somewhat ‘lossy’

way to represent the Relation, as one loses the ability to describe properties about the Operator that are

strictly reserved for any Arity greater than m.

III.2 Properties of Binary-Operators

Objective We will explore a number of the most common properties that Binary-Operators can posses,

and will henceforth restrict our attention to almost exclusively Homogenous Binary-Operators, or Internal

Operators.

Strategy We will first describe the most commonly assumed property Closure, before moving to the sec-

ond most commonly assumed: Associativity. In the same subsection in which we discuss Associativity we

will discuss the similar concept of Commutativity. We will then turn our attention to properties that – while

still truly global on the Domain/Co-Domain in nature – will have to do more directly with the existence and

behavior of specific types of Elements.

III.2.1 Closure

In almost all conversations of Algebras, we will want for our Operator to be Closed, which means the

following:

Definition III.2.1 (Closure). In order for an Internal Operator, ¨, on a Set X, to exhibit the property of

Closure it must be the case that:

@a@brpa P X ^ b P Xq ñ DcDdrpc P X ^ c “ pa ¨ bqq ^ pd P X ^ d “ pb ¨ aqqss (III.3)

This property follows from considering only strictly Homogenous Operators, but in the case that the Co-
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Domain is a Set distinct to the Domain set(s) – perhaps a Superset, as is the case for Division on the Integers

– it is important to verify this property.

III.2.2 Associativity and Commutativity

The two likely most commonly discussed properties in a Group-Theory class are Associativity and Commu-

tativity. This makes sense as Associativity is required in order for a Group to be formed in the first place,

wheras Commutativity ‘upgrades’ a Group into an Abelian Group, which have many nice properties and are

extensively studied.

Definition III.2.2 (Associativity). In order for an Internal Operator, ¨, on a Set X, to exhibit the property

of Associativity it must be the case that:

@a@b@crpa P X ^ b P X ^ c P Xq ñ rppa ¨ bq ¨ cq “ pa ¨ pb ¨ cqqss (III.4)

So, restated in other words: a ¨ b Operated with c must be the same as a Operated with b ¨ c.

This property is exceptionally important for many properties of studied Algebras as without it many

Equations quickly become totally intractable. Commutativity, on the other hand, is much more ‘optional’;

while it enables a great deal more manipulations to be entertained in the course of doing Algebra, its absence

does not preclude having a very detailed and thorough discussion of many Algebras.

Definition III.2.3 (Commutativity). In order for an Internal Operator, ¨, on a Set X, to exhibit the property

of Commutativity it must be the case that:

@a@brpa P X ^ b P Xq ñ pa ¨ b “ b ¨ aqs (III.5)

I.e. a Operated with b must be the same as b Operated with a.

III.2.3 Identity and Inverse Elements

These are two of the most commonly discussed types of Elements discussed in a Group-Theory class as well:

Identity Elements and Inverse Elements. This, too, makes sense as each are required in order for a Group

to be formed. Though, unlike Associativity removing these Elements, may still yield somewhat interesting

Algebraic Structures.

43



Definition III.2.4 (Identity Element). In order for an Internal Operator, ¨, on a Set on X, to Identify an

Identity Element it must be the case that:

@xrx P X ñ Dεrε P X ^ pε ¨ x “ xqss (III.6)

@xrx P X ñ Dεrε P X ^ px ¨ ε “ xqss (III.7)

If an Element ε only succeeds at satisfying one of the two above lines, then it is called a Right Identity

Element or a Left Identity Element, respectively.

Many things are notable about the concept of an Identity Element, but we note two here as particularly

important. First, the Identity Element is Unique for any Operator that has one. The proof for this is simple

and left for the reader (hint: it is often rendered as a Proof By Contradiction). Secondly, the presence of

an Identity Element is required for Inverse Elements to even be defined. Why will become obvious in the

following definition.

Definition III.2.5 (Inverse Elements). In order for an InternalOperator, ¨, on a Set on X, to Identify Inverse

Elements it must first posses an Identity Element, and also have it be the case that:

@xrx P X ñ Dx´1rx´1 P X ^ px´1 ¨ x “ εqss (III.8)

@xrx P X ñ Dx´1rx´1 P X ^ px ¨ x´1 “ εqss (III.9)

If such an Element only satisfies one of the previous two lines, then it is termed a Right Inverse Element

or Left Inverse Element, respectively. If an Operator does not identify two-sided Inverse Elements, it can

possess distinct Right Inverse Elements and Left Inverse Elements.

III.2.4 Absorbing Elements

The following type of Element often is rarely described specifically, as it is most commonly a consequence

of introducing on the properties that we will describe later that we term Collaborative. It will be discussed

more particularly then.

Definition III.2.6 (Absorbing Element). In order for an Internal Operator, ¨, on a Set X, to Identify an
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Absorbing Element it must be the case that:

@xrx P X ñ Dµrµ P X ^ pµ ¨ x “ µqss (III.10)

@xrx P X ñ Dµrµ P X ^ px ¨ µ “ µqss (III.11)

If an Element µ only succeeds at satisfying one of the two above lines, then it is called a Right Absorbing

Element or a Left Absorbing Element, respectively.

III.3 Algebras with One Operator

Objective We will list the names of Algebras that exhibit different combinations of the previous five prop-

erties.

Strategy We will rely on the definitions provided in the previous section to almost exclusively state defi-

nitions over the course of this section so that we may use the terminology appropriate for discussing certain

kinds of Algebras.

III.3.1 Algebras with One Property

Definition III.3.1 (Magma). An Algebra X� pX, ¨q such that ¨ is Closed, is called a Magma or Closed-

Algebra.

Definition III.3.2 (Semi-Groupoid). An Algebra X� pX, ¨q such that ¨ is Associative, is called a Semi-

Groupoid or an Associative Algebra.

Definition III.3.3 (Commutative Algebra). An Algebra X � pX, ¨q such that ¨ Commutative, is called a

Commutative Algebra.

Definition III.3.4 (Unital Algebra). An Algebra X� pX, ¨q such that there is an Identity Element on ¨, is

called a Unital Algebra.

Definition III.3.5 (Invertible Algebra). An Algebra X� pX, ¨q such that every Non-Identity Element is

an Inverse Element on ¨, is called an Invertible Algebra.

The latter three of these will seem... well, rather obvious, and that’s because there aren’t special names

for them as they don’t have structure enough for them to be deemed interesting to study in and of themselves.
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The Algebras that would belong in the following subsection – however, are unnamed – have been omitted

for brevity and clarity.

III.3.2 Algebras with Two Properties

Definition III.3.6 (Semi-Group). An Algebra that is Closed and Associative is called a Semi-Group.

Definition III.3.7 (Small Category). An Algebra that is Associative and Unital is called a Small Category.

Definition III.3.8 (Unital Magma). An Algebra that is Closed and Unital is called a UnitalMagma.

Definition III.3.9 (Quasi-Group). An Algebra that is Unital and Invertible is called a Quasi-Group.

III.3.3 Algebras with Three Properties

Definition III.3.10 (Monoid). An Algebra that is Closed, Associative, and Unital is called a Monoid.

Definition III.3.11 (Inverse Semi-Group). An Algebra that is Closed, Associative, and Invertible is called

an Inverse Semi-Group.

Definition III.3.12 (Commutative Semi-Group). An Algebra that is Closed, Associative, and Commutative

is called a Commutative Semi-Group.

Definition III.3.13 (Loop). An Algebra that is Closed, Unital, and Invertible is called a Loop.

Definition III.3.14 (Groupoid). An Algebra that is Associative, Unital, and Invertible is called a Groupoid.

III.3.4 Algebras with Four Properties

Definition III.3.15 (Commutative Monoid). An Algebra that is Closed, Associative, Unital, and Commuta-

tive is called a CommutativeMonoid.

Definition III.3.16 (Group). An Algebra that is Closed, Associative, Unital, and Invertible is called a

Group.

III.3.5 Abelian Groups

The algebraic structure that possesses all five properties described in the previous section is called an Abelian

Group which is a very important type of Algebra and will be important in the section after the next. These

structures are very extensively studied and serve as the foundation upon which many of the Two-Operator

Algebraic Structures that have been studied rest upon.
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III.4 Collaborative Binary-Operators

Objective We will explore what it means for two Binary-Operators to be Collaborative.

Strategy We will discuss the two most common kinds of Collaboration.

III.4.1 Distributive Collaboration

One is probably already exceptionally familiar with this kind of Collaboration between two Operators,

but first: what is meant by Collaboration between Operators? We will abstain from providing a technical

definition, instead favoring a more intuitive understanding of the notion. We say that two – or indeed more,

but we will only consider the case of two – Operators Collaborate if there is some Identity that can link

the two together over the same Domain Set(s). It is hoped that this notion will be made more concrete with

the following two important examples of the property discussed here and in the next subsection.

Definition III.4.1 (Distributive Collaboration). We say that two Operators – say ` and ˚ defined on X, for

familiarity – have Distributive Collaboration if:

@a@b@crpa P X ^ b P X ^ c P Xq ñ ra ˚ pb` cq “ pa ˚ bq ` pa ˚ cqss (III.12)

@a@b@crpa P X ^ b P X ^ c P Xq ñ rpb` cq ˚ a “ pb ˚ aq ` pc ˚ aqss (III.13)

(III.14)

Without loss of generality, we have supposed that ˚ Distributes Over `, and we have supposed that ˚ is

the first operator and ` the second, in our following description. In words – though it is a dense property

symbolically and linguistically – for any three elements a, b, c P X, the result of an Operation between one

Element and the result of the other operation on the other two Elements is Equivalent to the latter Operation

joining the results of two applications of the first Operator between the first Element and each of other two

Elements individually. That is hard to parse, to say the least, so we encourage understanding to come from the

equivalent symbolic description. If two Operators only express this kind of Collaboration in ways described

by one of the previous lines, it is said to have Left-Distributivity or Right-Distributivity, respectively. We

almost always consider the two-sided version of this Collaboration, though, in practice.

III.4.2 Absorptive Collaboration

One might be understandably less familiar with this kind of Collaboration between two Operators.
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Definition III.4.2 (Absorptive Collaboration). We say that two operators – say & and || defined on X, in an

attempt to preserve some familiarity for those who have it – have Absorptive Collaboration if:

@a@brpa P X ^ b P Xq ñ pa & pa || bq “ aqs (III.15)

@a@brpa P X ^ b P Xq ñ pa || pa & bq “ aqs (III.16)

@a@brpa P X ^ b P Xq ñ ppa || bq & a “ aqs (III.17)

@a@brpa P X ^ b P Xq ñ ppa & bq || a “ aqs (III.18)

(III.19)

In words, for any two Elements a, b P X, the result of an Operation between one Element and the result of

the other Operation on both Elements is Equivalent to first Element. We need not specify which Operator is

‘first’, as this property is usually required for both Operators to express on each other. If two Operators only

express this kind of Collaboration in ways described by either the top two or bottom two of the previous

lines, it is said to have Left-Absorption or Right-Absorption, respectively. Further, if it only expresses one

of the top two lines and the matching line from the bottom pair, it is said to have Partial-Absorption. In

the case that both of these are the case, we encourage the reader to disregard the structure altogether but

nevertheless reluctantly suggest the terminology of Partial-Left-Absorption or Partial-Right-Absorption,

respectively. A structure that exhibits only the top and bottom lines or the interior two lines we have chosen

to suggest describing as possessing Antagonistic-Absorption – as both a descriptor for the property as well

as one wishing to study it.

III.5 Collaborative Algebras

Objective We will give names to the structures that possess two Operators that Collaborate together to

exhibit one of the properties described in the previous section. This will be the final section of Part 0, as it

will provide us the final definitions necessary to have a complete and informed conversation about the results

presented in Part 1.

Strategy We will rely on the definitions provided in the previous section to state definitions over the course

of this section so that we may use the terminology appropriate for discussing certain kinds of Algebras. We

will use terminology relating both to single operator Algebras, as well as the properties that define them in

addition to the Collaborative properties we described in the previous section. Unlike one of the previous
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sections that was on Algebras with only one Operator, the later structures we will define – largely in the

first subsection – are not characterized exclusively by their possession of previously described properties.

Instead, for these structures, we will describe additional structure on them that give them an even richer

theory. These Algebras and their additional structure will prove essential to describing several results in Part

1, and particularly Chapter II.

III.5.1 Rngs, Rings, Commutative Rings, and More

We will now describe a whole host of structures that possess Distributive Collaboration.

All Kinds of R[i]ngs!

Definition III.5.1 (Rng). An Algebra R � pR,`, ˚q such that pR,`q is an Abelian Group, pR, ˚q is a

Semi-Group, and `, ˚ share Distributive Collaboration where ˚ distributes over `, is a Rng.

Definition III.5.2 (Ring). An Algebra X� pR,`, ˚q that is otherwise a Rng except that pR, ˚q now forms

a Monoid is a Ring.

Definition III.5.3 (Commutative Ring). An Algebra X � pR,`, ˚q that is otherwise a Ring except that

pR, ˚q now forms a CommutativeMonoid is a Commutative Ring.

Consequences of Collaboration An important consequence of the above definitions is that each of the

structures will have an Absorbing Element identified by ˚. This is because there is always an Identity Ele-

ment identified by`, and DistributiveCollaboration thus forces that same element to become the Absorbing

Element identified by ˚. We provide a brief informal Proof to this claim below; for any two Elements a, b P R

and the Identity Element Identified by `, which will be named 0 going forward:

a “ a` 0 (III.20)

b ˚ a “ b ˚ pa` 0q (III.21)

b ˚ a “ pb ˚ aq ` pb ˚ 0q (III.22)

0 “ b ˚ 0 (III.23)

Briefly: the first line relies on the definition of an Identity Element; the second line simply Operates the

second Element b with both Equivalent sides of the Equation; the third line substitutes the characterizing
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Identity in Distributive Collaboration; the fourth line is implicitly applying the existence of Inverse El-

ements existing in pR,`q. As a result, we arrive at the defining Equation for an Absorbing Element, thus

proving the necessity of the Identity Element identified by ` – i.e. 0 – becoming an Absorbing Element in

pR, ˚q.

Additionally, there is terminology that relates to the ‘Divisibility’ of Elements in these structures. We will

go through the trouble writing definitions for these abbreviations as they are rather important ideas:

Definition III.5.4 (Irreducible Elements and Indivisibility). The notion of Irreducible Elements, is that of

those Elements that can not be represented as the result of any a, b P R being Operated using ˚. Formally,

we write the Set of Irreducible Elements of R as IrrRs:

@prpp P R^ @x@yrx P R^ y P R^ ppx ˚ y “ pq _ py ˚ x “ pqqsq ñ p P IrrRss (III.24)

We may also say that Irreducible Elements have no Divisors.

Definition III.5.5 (Reducible Elements and Divisibility). In the case that an Element is indeed a Reducible

Element, we term any Element d that occurs in any of the possible ways the Element can be represented

using ˚ a Divisor of it. Formally, we write the Set of Reducible Elements of R as RerRs and the Divisors of

a given Element c in R as DRrcs:

@crpc P R^ DxDyrpx P R^ y P Rq ñ px ˚ y “ cqsq ñ pc P RerRs ^ x P DRrcs ^ y P DRrcsqs (III.25)

Using this terminology, the notion of Irreducible Elements is Equivalent to the notion of Indivisible

Elements. Further, a Unit is simply the name given to an Element in pR, ˚q that possesses an Inverse

Element. We will also define Annihilators:

Definition III.5.6 (Annihilators of an Element). The SetOfAnnihilators of a given Element are abbreviated

like so:

AnnRpxq �
"

y P R : x ˚ y “ 0_ y ˚ x “ 0s
*

(III.26)

A natural consequence of this definition is that Elements that have Annihilators other than 0 are themselves

an Annihilator to the Elements that are Non-Zero Annihilators for it.
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What is an Ideal? We will briefly describe the notion of an Ideal as it is necessary to describe the third

structure below, and, as a result, to our conversation in Chapter II in Part 1. An Ideal is a Subset of these most

recently described Algebraic Structures such that it is Closed under ˚. This is – in truth – the extent of the

definition; however, it does not fully articulate the importance of these structures in revealing the structure of

R[i]ngs. Rather than go on at length about this importance, we choose to wait and demonstrate it in Part 1.

Commutative Rings with More Structure

Definition III.5.7 (Integral Domain). A Commutative Ring, R� pR,`, ˚q – with an Absorbing Element

notated a 0 – is an Integral Domain, if:

@a@brpa P R^ b P Rq ñ pa ˚ b , 0qs (III.27)

Any element in a Commutative Ring that fails this condition – thus precluding the algebra from being an

Integral Domain – is termed a Zero-Divisor, since it would be in the Set DRr0s. So an Equivalent formu-

lation of the previous definition is something like “A Commutative Ring that has no Zero-Divisors” or “A

Commutative Ring such that DRr0s “ t0u.”

Definition III.5.8 (Unique Factorization Domain). An Integral Domain, R � pR,`, ˚q such that every

Element is representable as the result of a finite and unique – up to order and inclusion of Units – Operation

by ˚ of Irreducible Elements, is a Unique Factorization Domain or UFD for short. Formally:
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(III.28)

We call such a Set PRrxs the Prime Decomposition of X.

This is the Algebraic Structure that generalizes the Fundamental Theorem Of Arithmetic. In this way,

any Integral Domain that permits an analogue to the Fundamental Theorem Of Arithmetic is a UFD. This
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notion will become central to our discussion in Chapter II of Part 1.

Definition III.5.9 (Principal Ideal Domain). An Integral Domain, R� pR,`, ˚q such that every Ideal on

R is generated by exactly one Element, i.e. every Ideal is Prinicipal, is called a Principal Ideal Domain or

PID for short.

A common – and important to the results soon to be discussed – example of a PID isZ, i.e. the Integers!

This structure onZ will be heavily leveraged in Chapter II of Part 1.

III.5.2 Fields and Skew-Fields

We will now briefly describe Skew-Fields and Fields.

Definition III.5.10 (Skew-Field). A Ring, R “ pR,`, ˚q, such that every Element has an Inverse Element

Identified by ˚ is a Skew-Field. Equivalently, pR, ˚q must form a Group.

One may notice that the only difference in a Skew-Field between pR,`q and pR, ˚q is Commutativity,

besides the asymmetry in their Distributive Collaboration. Even this difference is removed in the case of

Fields:

Definition III.5.11 (Field). A Commutative Ring, R “ pR,`, ˚q, such that every Element has an Inverse

Element Identified by ˚ is a Field. Equivalently, pR, ˚q must form an Abelian Group.

While Fields do genuinely have an exceptionally broad and rich theory, we forgo discussing it in more

detail here, as our focus primarily has to do with Ring-Theory, and as such, Rngs, Rings, and Commutative

Rings. More particularly, the Algebraic Structures that arise when added requirements are imposed as

indicated in the previous subsection.

III.5.3 Lattices

We will merely state the definition for Lattices before moving on, despite exceptional interest in them being

well-earned. It is notable that Lattices very naturally appear in Order-Theory.

Definition III.5.12 (Lattice). An algebra L “ pL, ||,&q such that pL, ||q and pL,&q both form Commutative

Semi-Groups and the two Operators share Absorptive Collaboration.
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III.5.4 Collaborative External Operators

We will briefly note the kinds of structures that arise when one considers adjoining an External Operator to

a variety of other Algebraic Structures, namely Rings and Fields, that enjoy sharing a ‘multiplication’ with a

version of Distributive Collaboration with the structure they are joined to.

Definition III.5.13 (Module). A Ring, R “ pR,`, ˚q that has a Scalar Multiplication, ¨, defined between

its Elements and the Elements of an Abelian Group, S “ pS ,‘q such that it possesses Distributive Col-

laboration on both ‘ and `, as well as is ‘compatible’ with ˚, is named a Module or more particularly an

R-Module. Formally:

@a@b@x@yrppa P S ^ b P S q ^ px P R^ y P Rqq ñ pr ¨ px` yq “ pr ¨ xq ` pr ¨ yqqs (III.29)

@a@b@x@yrppa P S ^ b P S q ^ px P R^ y P Rqq ñ ppr ‘ sq ¨ x “ pr ¨ xq ` ps ¨ xqqs (III.30)

@a@b@x@yrppa P S ^ b P S q ^ px P R^ y P Rqq ñ ppr ˚ sq ¨ x “ r ¨ ps ¨ xqqs (III.31)

Definition III.5.14 (Vector-Space). A Module such that the defining Ring is actually also a Field is termed

a Vector-Space.
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PART 1

RESULTS
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CHAPTER I

FUNCTION-ALGEBRAS

I.1 Preserved Algebras

Objective In this section we will first discuss the notion of a Function-Algebra before then describing

its relationship to Algebras as characterized in the previous part. Specifically, we will be showing what

properties are preserved from Algebras into the appropriate Function-Algebra analogue.

Strategy We will accomplish this by first defining the creation of a Function-Algebra from any Algebra.

We will then demonstrate that when one supposedly has a particular Algebra to start, that the associated

Function-Algebra preserves many of its properties using Algebraic manipulations of the definitions.

I.1.1 Preserved Properties of Operators

It can be shown that YX paired with Term-WiseExtensions of Operators already defined on Y form similarly-

classed Algebraic Structures to those formed on Y . We call this pairing of a Function-Set with Extended

Operators a Function-Algebra. We will show that this is the case first for characteristics of Operators, and

then for Identity Element, Inverse Element, and Absorbing Elements. First, we will define what we mean

by Term-Wise Extensions.

Definition I.1.1 (Function Operator Extension). For some Algebra Y � pY, ¨q, Functions α P YX and

β P YX:

αd β � @xrpx P Xq ñ prαd βspxq “ αpxq ¨ βpxqqs (I.1)
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Further, @α@β@γrα P YX ^ β P YX ^ γ P YXs:

αd β “ γ � @xrpx P Xq ñ prαd βspxq “ γpxqqs (I.2)

Definition I.1.2 (Function-Algebra). For some Co-Domain Y that forms an Algebra Y� pY, ¨q – or in the

case of a Collaborative Algebra with two Operators, i.e. if Y� pY,`, ˚q – and non-empty Domain X, we

denote the Function-Algebra created by the Extended Operator, d – or ‘, ~ respectively:

YX � pYX ,dq (I.3)

YX � pYX ,‘,~q (I.4)

We will now demonstrate that Associativity and Commutativity are preserved into our Function-Algebras.

Lemma I.1.1 (Function-Algebras Preserve Associativity). If Y� pY, ¨q is an Associative-Algebra, then

YX is also an Associative-Algebra.

Proof. Consider @α@β@γrα P YX ^ β P YX ^ γ P YXs:

@xrpx P Xq ^ prpαd βq d γspxq “ rαd βspxq ¨ γpxqqs (I.5)

õ (I.6)

@xrpx P Xq ^ prαd βspxq ¨ γpxq “ pαpxq ¨ βpxqq ¨ γpxqqs (I.7)

õ (I.8)

@xrpx P Xq ^ ppαpxq ¨ βpxqq ¨ γpxq “ αpxq ¨ pβpxq ¨ γpxqqqs (I.9)

õ (I.10)

@xrpx P Xq ^ pαpxq ¨ pβpxq ¨ γpxqq “ αpxq ¨ rβd γspxqqs (I.11)

õ (I.12)

@xrpx P Xq ^ pαpxq ¨ rβd γspxq “ rαd pβd γqspxqqs (I.13)

Thus, we may conclude:

@xrpx P Xq ^ prpαd βq d γspxq “ rαd pβd γqspxqqs ô pαd βq d γ “ αd pβd γq (I.14)

�
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Lemma I.1.2 (Function-Algebras Preserve Commutativity). If Y� pY, ¨q is a Commutative-Algebra, then

YX is also a Commutative-Algebra.

Proof. Consider @α@β@γrα P YX ^ β P YX ^ γ P YXs:

@xrpx P Xq ^ prαd βspxq “ αpxq ¨ βpxqqs (I.15)

õ (I.16)

@xrpx P Xq ^ pαpxq ¨ βpxq “ βpxq ¨ αpxqqs (I.17)

õ (I.18)

@xrpx P Xq ^ pβpxq ¨ αpxq “ rβd αspxqqs (I.19)

Thus, we may conclude:

@xrpx P Xq ^ prαd βspxq “ rβd αspxqqs ô αd β “ βd α (I.20)

�

We will now demonstrate that Identity Elements, Inverse Elements, and Absorbing Elements are pre-

served into our Function-Algebras.

We first define a specific Set of Functions that makes the following proofs somewhat trivial:

Definition I.1.3 (Trivial Functions). The SubsetOf Trivial Functions – notated TrrYXs – of a Function-Set

YX are those Functions that Map every Element in X to exactly the same Element in Y:

yYX P TrrYXs � D!yYD!yYX rpyY P Y ^ yYX P YXq ñ p@xryYX pxq “ yY sq (I.21)

Lemma I.1.3 (Function-Algebras Preserve Identity Elements). IfY� pY, ¨q is an Algebra with an Identity

Element εY , then YX is also an Algebra with an Identity Element εYX .
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Proof. Consider @αrα P YXs and the Function εYX P TrrYXs

@xrpx P Xq ñ prεYX d αspxq “ εYX pxq ¨ αpxqqs (I.22)

õ (I.23)

@xrpx P Xq ñ pεYX pxq ¨ αpxq “ εY ¨ αpxqqs (I.24)

õ (I.25)

@xrpx P Xq ñ pεY ¨ αpxq “ αpxqqs (I.26)

Thus, we may conclude:

@xrpx P Xq ñ prεYX d αspxq “ αpxqqs ô εYX d α “ α (I.27)

�

Lemma I.1.4 (Function-Algebras Preserve Inverse Elements). IfY� pY, ¨q is an Invertible-Algebra, then

YX is also an Invertible-Algebra.

Proof. Consider Functions α, β P YX , and let χ, ψ P YX be such that αpxq¨χpxq “ βpxq and ψpxq¨αpxq “ βpxq.

It immediately follows that χpxq, ψpxq exist for all x, becauseY is an Invertible-Algebra – so χ, ψ themselves

must also exist – making YX an Invertible Algebra. �

Lemma I.1.5 (Function-Algebras Preserve Absorbing Elements). If Y � pY, ¨q is an Algebra with an

Absorbing Element µY , then the Algebra YX has an Absorbing Element µYX .

Proof. Consider @αrα P YXs and the Function µYX P TrrYXs

@xrpx P Xq ñ prµYX d αspxq “ µYX pxq ¨ αpxqqs (I.28)

õ (I.29)

@xrpx P Xq ñ pµYX pxq ¨ αpxq “ µY ¨ αpxqqs (I.30)

õ (I.31)

@xrpx P Xq ñ pµY ¨ αpxq “ µYqs (I.32)
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Thus, we may conclude:

@xrpx P Xq ñ prµYX d αspiq “ µYqs ô µYX d α “ µYX (I.33)

�

I.1.2 Preserved Collaborative Properties

We now will show that several Collaborative properties are also maintained, such as Distributivity and

Absorption.

Lemma I.1.6 (Function-Algebras Preserve Distributivity). If Y � pY,`, ˚q is a Distributive-Algebra,

(without loss of generality, suppose ˚ Distributes over `), then YX is also a Distributive-Algebra.

Proof. Consider @α@β@γrα P YX ^ β P YX ^ γ P YXs:

@xrpx P Xq ñ prα ~ pβ‘ γqspxq “ αpxq ˚ rβ‘ γspxqqs (I.34)

õ (I.35)

@xrpx P Xq ñ pαpxq ˚ rβ‘ γspxq “ αpxq ˚ pβpxq ` γpxqqqs (I.36)

õ (I.37)

@xrpx P Xq ñ pαpxq ˚ pβpxq ` γpxqq “ αpxq ˚ βpxq ` αpxq ˚ γpxqqs (I.38)

õ (I.39)

@xrpx P Xq ñ pαpxq ˚ βpxq ` αpxq ˚ γpxq “ rα ~ βspxq ` rα ~ γspxqqs (I.40)

õ (I.41)

@xrpx P Xq ñ prα ~ βspxq ` rα ~ γspxq “ rpα ~ βq ‘ pα ~ γqspxqqs (I.42)

Thus, we may conclude:

@xrpx P Xq ñ prα ~ pβ‘ γqspxq “ rpα ~ βq ‘ pα ~ γqspxqqs ô α ~ pβ‘ γq “ pα ~ βq ‘ pα ~ γq (I.43)

�

Lemma I.1.7 (Function-Algebras Preserve Absorption). If Y� pY, ||,&q is an Absorbent-Algebra, then

YX � pYX ,>,?q – excuse the slightly different Operator appearance – is also an Absorbent-Algebra.
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Proof. Consider @α@β@γrα P YX ^ β P YX ^ γ P YXs:

@xrpx P Xq ñ prα> pα? βqspxq “ αpxq || rα? βspxqqs (I.44)

õ (I.45)

@xrpx P Xq ñ pαpxq || rα? βspxq “ αpxq || pαpxq & βpxqqqs (I.46)

õ (I.47)

@xrpx P Xq ñ pαpxq || pαpxq & βpxqq “ αpxqqs (I.48)

Thus, we may conclude:

@xrpx P Xq ñ prα> pα? βqspxq “ αpxqqs ô α> pα? βq “ α (I.49)

Similarly:

@xrpx P Xq ñ prα? pα> βqspxq “ αpxq & rα> βspxqqs (I.50)

õ (I.51)

@xrpx P Xq ñ pαpxq & rα> βspxq “ αpxq & pαpxq || βpxqqqs (I.52)

õ (I.53)

@xrpx P Xq ñ pαpxq & pαpxq || βpxqq “ αpxqqs (I.54)

(I.55)

And, likewise, we may conclude:

@xrpx P Xq ñ prα? pα> βqspxq “ αpxqqs ô α? pα> βq “ α (I.56)

�

I.1.3 Resulting Preservations

With all of this, we have shown that many of the most basic Algebraic-Properties we have described are

preserved over into our Function-Algebras. In fact, we can now conclude the following Theorems with no

additional Proof necessary.
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One-Property Algebra Preservations

Theorem I.1.8 (Function-Algebras Preserve Magma). IfM� pM, ¨q is a Magma, thenMX is a Magma.

Theorem I.1.9 (Function-Algebras Preserve Semi-Groupoids). If S� pS , ¨q is a Semi-Groupoid, then SX

is a Semi-Groupoid.

Theorem I.1.10 (Function-Algebras Preserve Commutative Algebras). If C � pC, ¨q is a Commutative

Algebra, then CX is a Commutative Algebra.

Theorem I.1.11 (Function-Algebras Preserve Unital Algebras). If U � pU, ¨q is a Unital Algebra, then

UX is a Unital Algebra.

Theorem I.1.12 (Function-Algebras Preserve Invertible Algebras). If I� pI, ¨q is an Invertible Algebra,

then IX is an Invertible Algebra.

Two-Property Algebra Preservations

Theorem I.1.13 (Function-Algebras Preserve Semi-Groups). If S� pS , ¨q is a Semi-Group, then SX is a

Semi-Group.

Theorem I.1.14 (Function-Algebras Preserve Small Categories). If S� pS , ¨q is a Small Category, then

SX is a Small Category.

Theorem I.1.15 (Function-Algebras Preserve Unital Magmas). IfU� pU, ¨q is a UnitalMagma, thenUX

is a UnitalMagma.

Theorem I.1.16 (Function-Algebras Preserve Quasi Groups). If Q� pQ, ¨q is a Quasi Group, then QX is a

Quasi Group.

Three-Property Algebra Preservations

Theorem I.1.17 (Function-Algebras Preserve Monoids). IfM� pM, ¨q is a Monoid, thenMX is a Monoid.

Theorem I.1.18 (Function-Algebras Preserve Inverse Semi-Groups). If I � pI, ¨q is an Inverse Semi-

Group, then IX is an Inverse Semi-Group.

Theorem I.1.19 (Function-Algebras Preserve Commutative Semi-Groups). If C� pC, ¨q is a Commutative

Semi-Group, then CX is a Commutative Semi-Group.

Theorem I.1.20 (Function-Algebras Preserve Loops). If Y� pY, ¨q is a Loop, then YX is a Loop.
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Theorem I.1.21 (Function-Algebras Preserve Groupoids). If Y � pY, ¨q is a Groupoid, then YX is a

Groupoid.

Four-Property Algebra Preservations

Theorem I.1.22 (Function-Algebras Preserve Commutative Monoids). If C � pC, ¨q is a Commutative

Monoid, then CX is a CommutativeMonoid.

Theorem I.1.23 (Function-Algebras Preserve Groups). If G� pG, ¨q is a Group, then GX is a Group.

The Five-Property Algebra and Collaborative-Algebra Preservations

Theorem I.1.24 (Function-Algebras Preserve Abelian Groups). If A� pA,`q is an Abelian Group, then

AX is an Abelian Group.

Theorem I.1.25 (Function-Algebras Preserve Rngs). If R� pR,`, ˚q is a Rng, then RX is a Rng.

Theorem I.1.26 (Function-Algebras Preserve Rings). If R� pR,`, ˚q is a Ring, then RX is a Ring.

Theorem I.1.27 (Function-Algebras Preserve Commutative Rings). If C � pC,`, ˚q is a Commutative

Ring, then CX is a Commutative Ring.

Theorem I.1.28 (Function-Algebras Preserve Lattices). If L� pL, ||,&q is a Lattice, then LX is a Lattice.

I.2 Unpreserved Algebras

Objective In contrast to the last section we will demonstrate those properties of Algebras that are not

trivially preserved by Function-Algebras.

Strategy We will primarily be looking at the concept of Zero-Divisors and their inevitable appearance in

Function-Algebras.

I.2.1 Functions Have Zero-Divisors

Notably absent from this list is the preservation of Fields – as well as our more structured Ring-Like structures

– why? We have yet to show that for some Algebra R� pR,`, ˚q – such that pR,`q and pR z t0u, ˚q form

Abelian-Groups – that pRX{t0RXu,~q also forms an Abelian Group, and in fact, it explicitly never does. In

fact, we can make an even stronger statement:
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Theorem I.2.1 (Function-Algebras Have Zero-Divisors). For any commutative ring R � pR,`, ˚q, RX

cannot be an Integral Domain.

Proof. Showing the existence of Non-Integral Elements – that is, Non-Zero Elements that are in DRr0Rs –

regardless of any additional structure on R will suffice. We have that for 0RX P TrrRXs, let:

ψpσ, S q � pσ P RX ( σ “ 0RX q ñ

¨

˚

˚

˚

˚

˝

»

—

—

—

—

–

S , ∅

^

S Ď X

fi

ffi

ffi

ffi

ffi

fl

ñ @s

»

—

—

—

—

–

pps P S q ñ pσpsq , 0Rqq

^

pps P X z S q ñ pσpsq “ 0Rqq

fi

ffi

ffi

ffi

ffi

fl

˛

‹

‹

‹

‹

‚

(I.57)

φpσ, S q � pσ P RX ( σ “ 0RX q ñ

¨

˚

˚

˚

˚

˝

»

—

—

—

—

–

S , ∅

^

S Ď X

fi

ffi

ffi

ffi

ffi

fl

ñ @s

»

—

—

—

—

–

pps P S q ñ pσpsq “ 0Rqq

^

pps P X z S q ñ pσpsq , 0Rqq

fi

ffi

ffi

ffi

ffi

fl

˛

‹

‹

‹

‹

‚

(I.58)

(I.59)

Worth noting is that because of how these are defined, we obviously have that pψpσ, S q ô  φpσ, S qq.

For α P RX and β P RX that are each Non-Zero, it follows that there exists A Ď X and B Ď X such that ψpα, Aq

and ψpβ, Bq have Logical Quantities ofJ. However, we do not have that pψpα, Aq^ψpβ, Bqq ñ pAXB , ∅q

will always have a Logical Quantity of J, and this means:

DαDβDADBrppα P RX ^ β P RXq ^ pA Ď X ^ B Ď Xq ^ pψpα, Aq ^ ψpβ, Bqq ^ pAX B “ ∅qs (I.60)

ó (I.61)

pφpα, Bq ^ φpβ, Aqq (I.62)

Thus, for two such Sets A and B we have that AY B “ X, so it must be the case that:

@xrpx P Xq ô px P A Y x P Bqs (I.63)

It follows from this as well as pψpα, Aq ô  φpα, Aqq and pψpβ, Bq ô  φpβ, Bqq that:

@xrpx P Xq ñ prα ~ βspxq “ 0RX pxqqs (I.64)

õ (I.65)

α ~ β “ 0RX (I.66)
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This tells us that α P DRr0Rs and β P DRr0Rs, but because α , 0RX and β , 0RX , we have that DRr0Rs , t0u

and so RX can not possibly be an IntegralDomain. In fact, we have showed that in the Commutative Ring RX ,

there exists many Non-Zero Elements α, β for each Pair of Disjoint Subsets A, B of X, so that α~β “ 0RX . �

Is There Something to be Done? Can we define a concept analogous to IntegralDomains that is preserved

by Function-Algebras, that may allow us to inherit analogous properties? Rather than the Set of all Non-

Zero Elements in RX , for some Integral Domain R, we want to consider the set of Never-Zero Elements:

,0RX �

"

λ P RX : @xrpx P Xq ñ pλpxq , 0Rqs

*

(I.67)

This Set will behave in much the way that we would like for Non-Zero Elements to behave.

Lemma I.2.2 (All Function-Algebra Annihilators Have 0’s). For some Integral Domain, R� pR,`, ˚q,

the Set of Never-Zero Elements in RX is exactly the Complement of the Union of all Sets Of Annihilators

for each Non-Zero Function:

,0RX “ RX z

¨

˝

č

λPRX z t0RX u

AnnRX

˛

‚pλq (I.68)

Proof. It will suffice to show that:

σ P

¨

˝

č

λPRX z t0RX u

AnnRX pλq

˛

‚ ô Dxrx P X ^ σpxq “ 0Rs (I.69)

That is to say that σ must have ‘at least one zero’. We know that Dλrpλ P RX z t0RXuq ñ pλ ~ σ “ 0RX qs.

Because R is an Integral Domain, we know that rλ ~ σspxq “ 0R means that either λpxq “ 0R or σpxq “ 0R.

Because λ is non-zero, it must be that Dwrpw P Xq^ pλpwq , 0Rqs. This means that σpwq “ 0R, meaning that

σ cannot be a Never-Zero Function. �

A corollary of this that we will also prove for the insight it provides:

Lemma I.2.3 (Never-Zero Functions are Never Annihilators). For some Integral Domain, R� pR,`, ˚q,

the set of Never-Zero Functions, ,0RX , is exactly the Set S , such that:

ď

λPS

AnnRX pλq “ t0RXu (I.70)
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Proof. We will show – by contradiction – that all Functions in S must be Never-Zero. Suppose that σ P S ,

is not Never-Zero, which is to say Dwrw P X ^ σpxq “ 0Rs. Now consider:

Dλrpλ P RX ^ λpwq , 0q ^ @xrx P X z twu ^ λpxq “ 0Rss (I.71)

All such λ thus should be in AnnRX pS q – because they would Annihilateσ – but they are clearly not, indicating

that there can be no such w for σ, meaning it must be Never-Zero – a contradiction. �

Now we are ready to show that these Never-Zero Functions, are indeed the analogue to Integral Do-

mains that we sought.

Lemma I.2.4 (Never-Zero Elements Behave Nicely). IfR� pR,`, ˚q is an IntegralDomain, then p,0RX ,~q

is a CommutativeMonoid that obeys the Cancellation Property.

Proof. Closure is trivial; every Output in each Never-Zero Function is – aptly – not zero, and because R

is an Integral Domain, then each Output in the Extended Product of two Functions cannot be zero. Hence,

the Extended Product of two Never-Zero Functions is also Never-Zero. Associativity and Commutativity

are preserved, as previously shown. Now we want to show that:

@α@β@γrpα P ,0RX ^ β P ,0RX ^ γ P ,0RXq ñ ppα ~ β “ α ~ γq ô β “ γqs (I.72)

We will do so below; @α@β@γrα P ,0RX ^ β P ,0RX ^ γ P ,0RXs:

@xrpx P Xq ^ prα ~ βspxq “ rα ~ γspxqqs (I.73)

õ (I.74)

@xrpx P Xq ^ pαpxq ˚ βpxq “ αpxq ˚ γpxqqs (I.75)

õ (I.76)

@xrpx P Xq ^ pβpxq “ γpxqqs (I.77)

Thus, we may conclude:

@xrpx P Xq ^ pβpxq “ γpxqqs ô β “ γ (I.78)

�
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CHAPTER II

TESSELLATIONS

II.1 Period-Sets

Objective We will take a more particular look at a specific Function-Algebra: YZ � pYZ, ¨q such that

Z� pZ,`, ˚q – i.e. the Integers. We will start by discussing the Sets that will reveal the structure of this

Function-Algebra, referred to as Period-Sets.

Strategy We will introduce the basic definitions of what a Period-Set is and then demonstrate some of

its basic properties to get a sense of why it reveals the structure of our Function-Algebra YZ that we will

hence-forth refer to as a Tessellation-Algebra or just Tessellations for short.

II.1.1 Basic Properties

As motivation, we will frame our Tessellation-Algebra as considering a slight modification to the Infinite

Cartesian Product of some Non-Empty Set Y , i.e.
ś8 Y . This is the Set of so-called Infinite Sequences

σ : N Ñ Y . We will instead consider the Set of ‘double-ended’ Infinite Sequences, τ : Z Ñ Y , henceforth

referred to as Tessellations. We will adopt the standard convention of referring to the Set of all of these

Functions as YZ.

Definition II.1.1 (Y-Tessellations). The set of Tessellations that Map to Elements in some Non-Empty Set

Y are notated as YZ.

We will also refer to an Input to Tessellation functions as an Index and multiple as Indices. Similarly, we

will refer to the Outputs of Tessellations as Terms.
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We will see that – if one is previously familiar with them, of course – ordinary Sequences behave almost

identically to Tessellations; however, Tessellations have a couple of additional properties that allow us

to have a more complete conversation. Namely, they differ from an ordinary Sequence in their ability to

accept Negative Indices. This additional property will go on to be clearly desirable, because otherwise our

next definition would require many special-considerations. The difference can be formally characterized by

the structure that a particular collection of Sets over Tessellations have in comparison to the analogous

collection of Sets over ordinary Sequences. These Sets are each Tessellation’s Period-Set. A Period is

meant as some Idempotent Shift of every Index, i.e. a Finite Shift to all Indices such that each respective

Term remains the same.

Definition II.1.2 (Period-Set). The set of Idempotent Shifts on a Tessellation τ are denoted as follows:

Prτs �
"

p P Z : @irpi P Zq ñ τpiq “ τpi` pqs
*

(II.1)

Importantly, this definition includes 0 as a Period, which is vital. All Tessellations have 0 as a Period,

even those that have no Periodic Recurrence; that is to say, all Functions in YZ that are not Periodic have

exactly a single Period of 0. This is fundamentally what allows us to assert that all Tessellations – all

Functions from Z to Y – have at least one Period. We will prove this claim, then we will go about describing

two other characteristics of Prτs, for arbitrary τ.

Lemma II.1.1 (Universal Periodicity). Prτs is Non-Empty for all τ P YZ if Y is Non-Empty:

Y , ∅ ñ @τrτ P YZ ^ Prτs , ∅s (II.2)

Proof. By the definition of 0 as the Additive Identity of Z, we have that:

@irpi P Zq ô pi “ i` 0qs (II.3)

Thus, we may say that:

@τ@irpτ P YZ ^ i P Zq ñ τpiq “ τpi` 0qs (II.4)

Thus, from this we can conclude that 0 P Prτs which gives us Prτs , ∅. �

We will now move on to proving a lemma that will allow us to conclude something rather remarkable
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about Period-Sets.

Lemma II.1.2 (Absorption of Period-Sets). For x P Prτs, it is the case that nx P Prτs,@n P Z:

@τ@x@nrpτ P YZ ^ x P Prτs ^ n P Zq ñ pnx P Prτsqs (II.5)

Proof. We will use Induction with the definition of Period Sets as our Base Case, assuming the General

Case, i.e. τpiq “ τpi`nxq, to hold for all Positive Integers n. It remains to be shown that τpiq “ τpi`pn`1qxq

follows. Consider @τ@x@nrpτ P YZ ^ x P Prτs ^ n P Z`qs

@iri P Zñ pτpiq “ τpi` nxqqs (II.6)

ó (II.7)

@iri P Zñ pτpiq “ τppi` nxq ` xqqs (II.8)

õ (II.9)

@iri P Zñ pτpiq “ τpi` pn` 1qxqqs (II.10)

The second of the above lines is made possible because of the definition of Periods. That is, we know that

the Term of a Tessellation does not change under a shift of Index by a Period, thus τpiq “ τpi ` nxq ñ

τpiq “ τppi` nxq ` xq. The lines above then allow us to conclude:

@τ@x@nrpτ P YZ ^ x P Prτs ^ n P Z`qs ñ @iri P Zñ pτpiq “ τpi` nxqqs (II.11)

Now, all that we must do to finish the proof for all Integers, is to show that the n “ ´1 case is also true:

@iri P Zñ pτpi´ xq “ τpi´ xqqs (II.12)

ó (II.13)

@iri P Zñ pτpi´ xq “ τppi´ xq ` xqqs (II.14)

õ (II.15)

@iri P Zñ pτpi´ xq “ τpiqqs (II.16)
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From these lines we are able to conclude:

@τ@x@nrpτ P YZ ^ x P Prτs ^ n P Zqs ñ @iri P Zñ pτpiq “ τpi` nxqqs (II.17)

�

This is all we need to conclude the following corollary:

Theorem II.1.3 (Period-Sets are Ideals). Every Period-Set Prτs is an Ideal ofZ “ pZ,`, ˚q.

Because this is the case, and every Ideal of Z is Principal, we can assign a Canonical Representation

to our Period-Sets. Specifically we set our representation to be the Generator of the Ideal in Z, which is

the Smallest Positive Non-Zero Element of the Ideal in this case, or 0 in the case of the 0 Ideal. Going

forward, we will speak of The Period of some Tessellation τ both in reference to this Representation

Element, as well as the Ideal it is representing, depending on the context. It is only when we consider

‘double-ended sequences’ – Tessellations –as opposed to ordinary Infinite Sequences, that our Period-Sets

form this structure, hence our modification made initially. To study the structure of Tessellations further, we

will look at the properties on certain Subsets of YZ in a the next sections; we will define definitions for this

discussion now so that we may state a corollary of this theorem.

Definition II.1.3 (Period-Set of a Set). For some S Ď YZ:

PrS s �
č

τPS

Prτs (II.18)

Definition II.1.4 (Tessellations with Specific Period). We will refer to all τ P YZ with Period n as follows:

YZznZ �
"

τ P YZ : @irpi P Zq ñ @xrx P nZô τpiq “ τpi` xqss
*

(II.19)

With these definitions, we have the tools to state a corollary of our previous theorem – that will be

somewhat obvious now due to our choice of notation, at least to those familiar with Modular Arithmetic –

that will highlight structure in YZ.

Corollary II.1.3.1 (Periods Partition Tessellations). All distinct Sets of Tessellations with Specific Period,

YZ{nZ, are Pairwise Disjoint, and their Union is exactly YZ.

@Y

«

Y , ∅ñ

˜

ď

n,m P Z`^ n,m

´

YZznZ X YZzmZ
¯

“ ∅ ^
ď

nPZ`

YZ{nZ “ YZ
¸ff

(II.20)
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II.2 Resultant-Period Sets

Objective We will consider the Sets that contain all of the possible Periods of the Tessellation that results

when two Tessellations are Operated only knowing what the Period-Set for each Operand Tessellation is.

Strategy We will motivate the Resultant-Period Sets piece by piece. We will – after the first subsection

– suppress the more formal notation we have been using throughout the rest of the document. It is the belief

of the author that otherwise many of the discussions would become even more cumbersome than the content

already necessitates it to be.

II.2.1 Some Brief Number-Theory

We will often find it necessary to make reference to the Primes onZ, and to be precise:

Definition II.2.1 (Primes and Prime Ideals). We say that a RP is a Prime Ideal of a Commutative Ring,

R� pR,`, ˚q if:

@a@brpa P R^ b P R^ a ˚ b P RPq ñ pa P RP _ b P RPqs (II.21)

We then define the Set Of Primes, PR, of the same Commutative Ring R like so:

@prppp P Rq ñ @a@brpa P R^ b P R^ a ˚ b P RPq ñ pa P RP _ b P RPqsq ñ p P PRs (II.22)

Also important is the notion of Prime-Powers which are always Natural Numbers: N. They are the right

Element in each Pair of elements in PRrxs for each Element in R. In the case of Z these are of course notated

as PZrns for some n P Z. It will be worth noting a particular interpretation of Multiplication and Division:

Definition II.2.2 (Multiplication and Division as Addition and Subtraction). We have that Multiplication

and Division are actually essentially Abbreviations for Addition and Subtraction of Integers Prime-Powers.
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Consider @a@bra P Z^ b P Zs:

n ˚ m �
ź

pp, npq P PZrns

pp,mpq P PZrms

pnp`mp (II.23)

n
m
�

ź

pp, npq P PZrns

pp,mpq P PZrms

pnp´mp (II.24)

It is worth noting – of course – that:

@p@np@mp

”

pp P PZ ^ pp, npq P PZrns ^ pp,mpq P PZrmsq ñ
´ n

m
P Zô pnp ě mpq

¯ı

(II.25)

That is, in order for n
m to be an Integer, it must be the case that that all Prime-Powers of n are greater than or

equal to m’s.

We now define several Helper Functions:

Definition II.2.3 (MIN, MAX, and EQ). The three Functions listed below will allow us to express several

more Functions in our next definition.

MINpx, yq�

$

’

’

&

’

’

%

x x ď y

y y ď x
(II.26)

MAXpx, yq�

$

’

’

&

’

’

%

y x ď y

x y ď x
(II.27)

EQpx, yq�

$

’

’

&

’

’

%

x x “ y

0 x , y
(II.28)

Definition II.2.4 (GCD, LCM, and GCUD). The following Functions can be thought of as applying the
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previous three just defined to the Prime Decomposition of two Positive Integers.

GCDpn,mq �
ź

pp, npq P PZrns

pp,mpq P PZrms

pMINpnp,mpq (II.29)

LCMpn,mq �
ź

pp, npq P PZrns

pp,mpq P PZrms

pMAXpnp,mpq (II.30)

GCUDpn,mq �
ź

pp, npq P PZrns

pp,mpq P PZrms

pEQpnp,mpq (II.31)

The first two Functions will be the familiar Greatest Common Divisor and Least Common Multiple that

are rather frequently used. The third is somewhat more exotic; it can be shown that it is in fact the Greatest

Common Unitary Divisor Function.

Definition II.2.5 (Divisors and Unitary Divisors). Given the construction of the Greatest Common Divisor

and Greatest Common Unitary Divisor Functions, we may write a more concise definition for the Set of

Divisors for a given n P Z, and soon a definition for the Set of Unitary Divisors of n.

Drns �
"

d P Z` : GCDpn, dq “ d
*

(II.32)

A Unitary Divisor of some Positive Integer n is a Divisor m of n such that GCDpm, n
m q “ 1. This equation

tells us that once m has been divided out of n – represented by the fraction n
m – the result has no common

Factors with m anymore. This can intuitively be thought of as a Divisor that removes ‘every copy’ of

any Primes it possesses in common with the Dividend. We can use the Greatest Common Unitary Divisor

Function to a write a more succint definition of Unitary Divisors however:

Urns �
"

u P Drns : GCUDpn, uq “ u
*

(II.33)

It is worth noting that Urns Ď Drns for all n, naturally.

We will briefly state a lemma related to Unitary Divisors that will be very useful later.

Lemma II.2.1 (The Quotient of an Integer by a Unitary Divisor is Itself a Unitary Divisor). For an Integer
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n and u P Urns, it is the case that n
u P Urns.

@n@u
”

pn P Z^ u P Urnsq ñ
´n

u
P Urns

¯ı

(II.34)

Proof. Since u P Urns we know that GCDpn, uq “ u and GCUDpn, uq “ u. In essence this means that every

Prime-Power of m is equal to the Prime-Power on the same Prime in n or 0:

@n@u

»

—

—

—

—

–

pn P Z^ u P Urnsq ñ @p@np@up

»

—

—

—

—

–

pp P PZ ^ pp, npq P PZrns ^ pp, upq P PZrusq

ó

pnp “ up _ up “ 0q

fi

ffi

ffi

ffi

ffi

fl

fi

ffi

ffi

ffi

ffi

fl

(II.35)

Because of this we have that:

@n@u

»

—

—

—

—

—

—

–

pn P Z^ u P Urnsq ñ
n
u
“

ź

pp, npq P PZrns

pp, upq P PZrus

pnp´up

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(II.36)

ó (II.37)

@n@u

»

–pn P Z^ u P Urnsq ñ
n
u
“

ź

pp,npqPPZrnszPZrus

pnp

fi

fl (II.38)

And since we have that the only Prime-Powers that are left in n
u are exactly equal to ones that are in PZrns or

0, we have that GCUDpn, n
u q “

n
u . �

II.2.2 Properties of Tessellation Operation

Consider a Cancellative Algebra Y� pY, ¨q, and suppose that α P YZ{aZ, β P YZ{bZ, and γ P YZ{cZ, such

that αd β “ γ. We would like to know what Set Pa,b Ď Z contains all valid choices of c for fixed a, b. Note

that LCMpa, bq P aZ and LCMpa, bq P bZ, by necessity.

Lemma II.2.2 (The Least Common Multiple of the Periods of Two Operand Tessellations is in the Period-Set

of the Resulting Operated Tessellation). Consider a Cancellative Algebra Y “ pY, ¨q, and suppose that

α P YZ{aZ, β P YZ{bZ, and γ P YZ{cZ, such that αd β “ γ. It must be the case that LCMpa, bq P cZ.
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Proof.

rαd βspiq “ γpiq (II.39)

rαd βspi` LCMpa, bqq “ γpi` LCMpa, bqq (II.40)

αpi` LCMpa, bqq ¨ βpi` LCMpa, bqq “ γpi` LCMpa, bqq (II.41)

αpiq ¨ βpiq “ γpi` LCMpa, bqq (II.42)

rαd βspiqpiq “ γpi` LCMpa, bqq (II.43)

γpiq “ γpi` LCMpa, bqq (II.44)

�

This lemma means we know that Dx P Z Q LCMpa, bq “ xc. We know so far then that c P DrLCMpa, bqs.

Stated another way, we have found the Set that contains all possible choices for c, meaning we now must

restrict this Set to only the genuinely valid choices. The next lemma will provide the criteria that allows us

to do just that.

Lemma II.2.3 (Each Least Common Multiple of the Periods of Two Operand Tessellations with the Period of

the Operated Tessellation Must be Equivalent To Each-Other). Consider α P YZ{aZ, β P YZ{bZ, and γ P YZ{cZ

such that αd β “ γ. It is the case that:

LCMpa, cq “ LCMpb, cq (II.45)

Proof. First, we will show that LCMpa, cq P bZ:

rαd βspiq “ γpiq (II.46)

rαd βspi` LCMpa, cqq “ γpi` LCMpa, cqq (II.47)

αpi` LCMpa, cqq ¨ βpi` LCMpa, cqq “ γpi` LCMpa, cqq (II.48)

αpiq ¨ βpi` LCMpa, cqq “ γpiq (II.49)

αpiq ¨ βpi` LCMpa, cqq “ αpiq ¨ βpiq (II.50)

βpi` LCMpa, cqq “ βpiq (II.51)
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And further, we will show that LCMpb, cq P aZ:

rαd βspiq “ γpiq (II.52)

rαd βspi` LCMpb, cqq “ γpi` LCMpb, cqq (II.53)

αpi` LCMpb, cqq ¨ βpi` LCMpb, cqq “ γpi` LCMpb, cqq (II.54)

αpi` LCMpb, cqq ¨ βpiq “ γpiq (II.55)

αpi` LCMpb, cqq ¨ βpiq “ αpiq ¨ βpiq (II.56)

αpi` LCMpb, cqq “ αpiq (II.57)

Each of these chains of Equalities allow us to conclude that Dn P Z Q LCMpa, cq “ nb and Dm P Z Q

LCMpb, cq “ ma. It must be the case that n and m are linked, somehow, through c.

nb “ LCMpa, cq (II.58)

LCMpb, nbq “ LCMpb, LCMpa, cqq (II.59)

nb “ LCMpa, b, cq (II.60)

ma “ LCMpb, cq (II.61)

LCMpa,maq “ LCMpa, LCMpb, cqq (II.62)

ma “ LCMpa, b, cq (II.63)

nb “ ma (II.64)

(II.65)

Because LCMpa, cq “ nb, LCMpb, cq “ ma and nb “ ma, we can conclude that LCMpa, cq “ LCMpb, cq.

�

Thus, only those d P DrLCMpa, bqs such that LCMpa, dq “ LCMpb, dq are valid choices for c. Using

our definition of LCM from earlier, we pry further; suppose that LCMpa, dq “ LCMpb, dq for some d P
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DrLCMpa, bqs:

LCMpa, dq “ LCMpb, dq (II.66)
ź

pPPZ

pMAXpap,dpq “
ź

pPPZ

pMAXpbp,dpq (II.67)

MAXpap, dpq “ MAXpbp, dpq (II.68)

This Equation tells us that:

`

ap, bp ď dp _ dp ď ap “ bp
˘

(II.69)

But, because d P DrLCMpa, bqs, we know that LCMpLCMpa, bq, dq “ LCMpa, bq. Using our definition of

LCM previously again:

LCMpLCMpa, bq, dq “ LCMpa, bq (II.70)
ź

pPPZ

pMAXpMAXpap,bpq,dpq “
ź

pPPZ

pMAXpap,bpq (II.71)

MAXpMAXpap, bpq, dpq “ MAXpap, bpq (II.72)

Thus, we know that dp ď MAXpap, bpq. These are enough for us to state a theorem that governs how Periods

interact when Tessellations are Operated.

Theorem II.2.4 (Resultant Period-Set After Tessellation Operation). Consider α P YZ{aZ, β P YZ{bZ, and

γ P YZ{cZ such that αd β “ γ. It is the case that c must belong to the Set:

Pa,b “

"

LCMpa, bq
d

P Z : d P DrGCUDpa, bqs
*

(II.73)

Proof. This is because d P DrGCUDpa, bqs means that MAXpdp, EQpap, bpqq “ EQpap, bpq. Hence:

`

pdp ď ap, bp ^ ap “ bpq _ pdp “ 0 ^ ap , bpq
˘

(II.74)

Thus, any c P Pa,b – being Equal to LCMpa,bq
d – is such that when ap , bp, cp “ MAXpap, bpq because dp “ 0,

but when ap “ bp, cp ď ap, bp since cp “ MAXpap, bpq ´ dp and up ď ap, bp. Meaning that it is always the

case that MAXpap, cpq “ MAXpbp, cpq. Hence, LCMpa, cq “ LCMpb, cq and c P DrLCMpa, bqs. �
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Lemma II.2.5 (The Resultant Period of Two Tessellations with the Same Period is a Divisor of that Period).

For τa, τb P YZznZ and τc P YZ{mZ such that τa d τb “ τc, it must be that c P Drns.

Proof. For this we need only simplify the Set we constructed earlier, and because both τa, τb have period n,

we write Pn,n:

Pn,n “

"

LCMpn, nq
d

P Z : d P DrGCUDpn, nqs
*

(II.75)

Pn,n “

"

n
d
P Z : d P Drns

*

(II.76)

Pn,n “

"

d P Z : d P Drns
*

(II.77)

Pn,n “ Drns (II.78)

�

II.3 Identical Resultant-Periods

Objective In this section we will consider the pairs of Periods that produce the exact same Resultant-Period

Set.

Strategy We will motivate this set by building up the requirements in individual sets before combining

them into a single set that will have the property for which this section is named.

II.3.1 Pairs That Share a Greatest Common Unitary Divisor

We now turn to considering which distinct Pairs of Periodswill yield us the same Resultant Period-Set once

Tessellations of the respective Periods are Operated. We seek a Set S Ď Z ˆ Z such that
ˆ

pa, bq, pc, dq P

S
˙

ñ

ˆ

Pa,b “ Pc,d

˙

. When one considers the construction of Pn,m, it becomes clear that for two distinct

Pairs pa, bq, pc, dq to generate the same Set, it must be that LCMpa, bq “ LCMpc, dq ^ GCUDpa, bq “

GCUDpc, dq. First we will describe the Set of Pairs that share their GCUD, and to motivate this construction,

suppose GCUDpa, bq “ x. Then it must be that a “ nx and b “ mx for some n,m P Z. What restrictions

may we place on n,m?

Lemma II.3.1 (Pairs that Share Their GCUD). The Set of Pairs that share the GCUD of x is constructed
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like so:

"

pxn, xmq P Zˆ Z : GCDpn, xq “ GCDpm, xq “ GCUDpn,mq “ 1
*

(II.79)

Proof. We begin by using our Prime-Power definition of the GCUD Function from earlier:

a “ nGCUDpa, bq (II.80)

b “ mGCUDpa, bq (II.81)
ź

pPPZ

pap “
ź

pPPZ

pnp`EQpap,bpq (II.82)

ź

pPPZ

pbp “
ź

pPPZ

pmp`EQpap,bpq (II.83)

ap “ np ` EQpap, bpq (II.84)

bp “ mp ` EQpap, bpq (II.85)

ap ´ np “ EQpap, bpq (II.86)

bp ´ mp “ EQpap, bpq (II.87)

The Function EQps, tq can only Equal either s or t if s “ t and 0 otherwise. So, these last two lines allow us

to form the following Implications, applied to each Prime Power individually:

ap “ bp ñ np “ mp “ 0 (II.88)

And similarly:

ap , bp ñ pap “ np ^ bp “ mpq (II.89)

From these we may conclude that GCDpn, xq “ GCDpm, xq “ 1 and GCUDpn,mq “ 1. This is because our

first Implication tells us that if xp “ EQpap, bpq , 0 then np “ mp “ 0; our second Implication tells us that

if xp “ EQpap, bpq “ 0 then EQpnp,mpq “ 0, so with our first Implication, we know that every EQpnp,mpq

calculation in GCUDpn,mq must be 0, because either xp “ 0 or xp , 0 i.e. GCUDpn,mq “ 1. Similarly,

these also tell us that MINpnp, xpq “ MINpmp, xpq “ 0, since np “ mp “ 0 in the case that xp , 0, i.e.

GCDpn, xq “ GCDpm, xq “ 1. �

This lemma tells us that for a Pair to share a GCUD, x each Element in the Pair must be a Product
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of n and m respectively with x such that they are each Co-Prime to x and do not share a GCUD between

each other. We will express these as Inequalities relating to the Prime-Powers of the respective Numbers for

clarity:

MINpnp, xpq “ 0 (II.90)
`

0 “ np ă xp _ 0 “ xp ă np
˘

(II.91)

MINpmp, xpq “ 0 (II.92)
`

0 “ mp ă xp _ 0 “ xp ă mp
˘

(II.93)

EQpnp,mpq “ 0 (II.94)
`

np “ mp “ 0 _ np , mp
˘

(II.95)

II.3.2 Pairs That Share a Least Common Multiple

Now we will use these conditions to determine which of these Pairs share their LCM, i.e. suppose LCMpxn, xmq “

z for some z. We will first complete a short lemma regarding Co-Prime Numbers and their LCM, however, to

noticeably simplify our search.

Lemma II.3.2 (Numbers Co-Prime to Arguments in LCM Distribute Over Them). It is the case that if

GCDpa, bq “ GCDpa, cq “ 1 then aLCMpb, cq “ LCMpab, acq.

Proof. We have that MINpap, bpq “ MINpap, cpq “ 0, so either ap “ 0 or bp “ cp “ 0. Now consider,

aLCMpb, cq and LCMpab, acq:

aLCMpb, cq “
ź

pPPZ

pap`MAXpbp,cpq (II.96)

LCMpab, acq “
ź

pPPZ

pMAXpap`bp,ap`bpq (II.97)

So we would like to show that ap ` MAXpbp, cpq “ MAXpap ` bp, ap ` bpq. This must be the case, though,

when one considers that either ap “ 0 or bp “ cp “ 0. If ap “ 0, then ap ` MAXpbp, cpq “ MAXpbp, cpq

and MAXpap ` bp, ap ` cpq “ MAXpbp, cpq; alternatively, if bp “ cp “ 0 then ap ` MAXpbp, cpq “ ap and

MAXpap ` bp, ap ` cpq “ MAXpap, apq “ ap. �
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Because of this previous lemma then we know that LCMpxn, xmq “ xLCMpn,mq, so we know that if

LCMpxn, xmq “ z “ xLCMpn,mq. Which is to say, z “ xy for LCMpn,mq “ y. As a result, the restrictions

we found on n,m will be the primary influence in our search for which of them will share a LCM. Namely,

n,m must be Co-Prime to x and they can not share a GCUD themselves. We will go on to state a theorem that

describes the construction of the set we seek and then prove that indeed all Pairs share both GCUD and LCM

in the following subsection. First, to allow easier readability of said theorem, we will define the Subordinate

Function:

Definition II.3.1 (Subordinate Function). The Subordinate of an Integer n is defined like so:

S pnq�
ź

pPPZ

pMINpnp,|np´1|q (II.98)

We will now, briefly, prove three properties with varying relevance about the Subordinate of an Integer,

each with respect to one of our Prime-Power Functions, LCM, GCD, and GCUD.

Lemma II.3.3 (The LCM of an Integer and its Subordinate is the Integer). It is the case that for all Integers

n, that:

LCMpn, S pnqq “ n (II.99)

Proof. (Technically, this follows from the fact that pN0, LCM,GCDq forms a Lattice, and so the Absorp-

tive Collaboration holds on Compositions of each Function, (which actually follows from the fact that

pN0,MAX,MINq forms a Lattice; the inheritance of this property is a result of our ability to describe LCM

and GCD using MAX and MIN) but we will show it without appealing to this fact.)

We will first express this as the relevant Prime-Decomposition, as usual:

LCMpn, S pnqq “
ź

pPPZ

pMAXpnp,MINpnp,|np´1|qq (II.100)

So, we need to show that MAXpnp,MINpnp, |np ´ 1|qq “ np. This is easy to see when one considers

that if np ě 1 then MINpnp, |np ´ 1|q “ np ´ 1, (we may drop the Absolute Value because we know

it is Non-Negative), and clearly MAXpnp, np ´ 1q “ np. Similarly if one considers that np “ 0, then

MINpnp, |np ´ 1|q “ 0 because |0´ 1| “ 1, and we are left with MAXpnp, npq “ MAXp0, 0q. �

Lemma II.3.4 (The GCD of an Integer and its Subordinate is the Subordinate). It is the case that for all
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Integers n, that:

GCDpn, S pnqq “ S pnq (II.101)

Proof. (This too follows from the fact that pN0, LCM,GCDq forms a Lattice, for the same reason as above,

but – again – we will show it without appealing to this fact.)

We will express this as the relevant Prime-Decomposition, as before:

GCDpn, S pnqq “
ź

pPPZ

pMINpnp,MINpnp,|np´1|qq (II.102)

So, we need to show that MINpnp,MINpnp, |np ´ 1|qq “ MINpnp, |np ´ 1|q. This is rather obvious to see

when one notes that when np ě 1 then MINpnp, |np´ 1|q “ np´ 1, , and clearly MINpnp, np´ 1q “ np´ 1.

Similarly if one considers that np “ 0, then MINpnp, |np ´ 1|q “ 0 because |0´ 1| “ 1, and we are left with

MINpnp, npq “ MINp0, 0q. �

Lemma II.3.5 (The GCUD of an Integer and its Subordinate is 1). It is the case that for all Integers n, that:

GCUDpn, S pnqq “ 1 (II.103)

Proof. This is easy to see if one remembers that GCUD is defined using EQ:

GCUDpn, S pnqq “
ź

pPPZ

pEQpnp,MINpnp,|np´1|qq (II.104)

When one considers that MINpnp, |np´1|q is either equal to 0 or np´1, it becomes clear that the surrounding

EQ can only ever yield 0 since either np “ 0 or np , np ´ 1. A 0 on every Prime in a Prime-Decomposition

will always yield 1. �

With our definition of the Subordinate of an Integer and a Number of nice properties proven, we are now

ready to state our theorem.

II.3.3 Pairs That Share a GCUD and an LCM

Theorem II.3.6 (Pairs of Periods that Share the Same Resultant Period Set). The set such that any two Pairs

pa, bq, pc, dq with Membership satisfy the condition, Pa,b “ Pc,d is determined by the choice of two Co-Prime

Numbers x, y such that GCUDpa, bq “ GCUDpc, dq “ x and LCMpa, bq “ LCMpc, dq “ xy. Any set that
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has this property for fixed x, y is a Subset of the following Set:

πx,y �

"

pxvi, xw jq P Zˆ Z :
´´

v P Urys ^ w “
y
v

¯

^ pi P DrS pwqs ^ j P DrS pvqsq
¯

*

(II.105)

Proof. We will demonstrate that it is in fact always the case that LCMpxvi, xw jq “ xy and then we will show

that GCUDpxvi, xw jq “ x as well. After that, we will finish the proof by showing that any other Set with

this property must be this Set or a Subset of it.

Beginning with the LCM:

LCMpxvi, xw jq “ xLCMpvi,w jq (II.106)

xLCMpvi,w jq “
ź

pPPZ

pxp`MAXpvp`ip,wp` jpq (II.107)

We would like to show that xp` yp “ xp`MAXpvp` ip,wp` jpq, which is obviously reducible to showing

that yp “ MAXpvp ` ip,wp ` jpq.

To start, note that v P Urys, means we know that either vp “ yp or vp “ 0.

First, consider vp “ yp. It would be that wp “ 0 when vp “ yp, and because i P DrS pwqs we know

that ip ď MINpwp, |wp ´ 1|q. So, when vp “ yp, it must be that ip “ 0 and our calculation simplifies to

MAXpyp` 0, 0` jpq. Further since j P DrS pvqs it must be that jp ď MINpvp, |vp´ 1|q “ MINpyp, |yp´ 1|q

which allows us to conclude that MAXpyp, jpq “ yp.

Alternatively, if vp “ 0, because wp “ yp ´ vp then wp “ yp, so our calculation will simplify to MAXp0 `

ip, yp ` jpq. Since j P DrS pvqs, it is the case that jp ď MINpvp, |vp ´ 1|q, but because vp “ 0 then jp “ 0.

Again, our calculation simplifies to MAXpip, ypq, but i P DrS pwqs gives us that i ď MINpwp, |wp ´ 1|q “

MINpyp, |yp ´ 1|q, and so it must be that MAXpip, ypq “ yp.

With that we have shown that yp “ MAXpvp`ip,wp` jpq and so we may conclude that LCMpxvi, xw jq “ xy.

Now, we wish to demonstrate that GCUDpxvi, xw jq “ x, which is notably easier since y is Co-Prime to x.

GCUDpxvi, xw jq “
ź

pPPZ

pEQpxp`vp`ip,xp`wp` jpq (II.108)

So, we would like to show that EQpxp ` vp ` ip, xp ` wp ` jpq “ xp.

Since v P Urys, w “
y
v , i P DrS pwqs, and j P DrS pvqs, it is easy to see that v,w, i, j P Drys. Since

ˆ

Drxs
Ş

Drys
˙

“ t1u – which is to say they are Co-Prime – we may then conclude that if xp , 0 it must
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be that vp “ ip “ wp “ jp “ 0. From this we know that when xp , 0 then EQpxp` vp` ip, xp`wp` jpq “

EQpxp ` 0` 0, xp ` 0` 0q “ EQpxp, xpq “ xp.

So, when xp “ 0, we have EQpxp ` vp ` ip, xp ` wp ` jpq “ EQp0 ` vp ` ip, 0 ` wp ` jpq. Because we

know that every EQ calculation in GCUDpxvi, xw jq, such that xp , 0, is Equal to xp, we wish to show that

it is always the case that EQpvp ` ip,wp ` jpq “ 0 when xp “ 0. Consider that
ˆ

Drvs
Ş

Drws
˙

“ t1u

since v P Urys and w “
y
v . As a result, if vp , 0 then ip “ wp “ 0 and our calculation simplifies to

EQpvp`0, 0` jpq. Though since j P DrS pvqs, it must be that j ď MINpvp, |vp´1|q. As a result jp ď vp´1

so EQpvp, jpq “ 0. Alternatively, if vp “ 0 then jp “ 0 as well, meaning EQpvp` ip,wp` jpq “ EQpip,wpq.

But, for the same reason, since i P DrS pwqs, then i ď MINpwp, |wp ´ 1|q. If wp , 0 then ip ď wp ´ 1 neces-

sitating EQpip,wpq “ 0; if instead wp “ 0, then ip “ 0 too, so EQpip,wpq “ 0.

With that we have shown that EQpxp ` vp ` ip, xp ` wp ` jpq “ xp, and thus shown GCUDpxvi, xw jq “ x.

Finally, we will show that any set E of Pairs such that, for fixed x, y, all Pairs have LCM equal to xy and

GCUD equal to x, is a Subset of πx,y. We will show this by Contradiction.

Suppose instead that there exists some Set E such that every Pair pa, bq P E has the property where

LCMpa, bq “ xy,GCUDpa, bq “ x, but E * πx,y. Then it would be the case that E{πx,y , ∅. So, con-

sider pa, bq P E{πx,y.

Since GCUDpa, bq “ x, we know that x P Uras and x P Urbs. As a result, we may rewrite a and b as xn

and xm for some specific n P Uras and m P Urbs, namely a
x and b

x respectively. We know that n P Uras

and m P Urbs from a previous lemma showing that the Quotient of an Integer by a Unitary Divisor is

also a Unitary Divisor. Also from a previous lemma we know that it must be that GCUDpn,mq “ 1,

i.e.
ˆ

Urns
Ş

Urms
˙

“ t1u, and GCDpx, nq “ GCDpx,mq “ 1 i.e.
ˆ

Drxs
Ş

Drns
˙

“ t1u and
ˆ

Drxs
Ş

Drms
˙

“ t1u. From this it is also the case that LCMpxn, xmq “ xLCMpn,mq “ xy and so

LCMpn,mq “ y.

Since LCMpn,mq “ y, we know that MAXpnp,mpq “ yp, i.e.
`

np ď mp “ yp _ mp ď np “ yp
˘

. We

know that there is no Common Unitary Divisor between n and m though, thus np , mp unless np “ mp “ 0.

This allows us to say then that
`

np ă mp “ yp _ mp ă np “ yp
˘

. This allows us to further say that
`

ˆ

Urys
Ş

Urns
˙

, ∅ _

ˆ

Urys
Ş

Urms
˙

, ∅
˘

. Without loss of symmetry, suppose
ˆ

Urys
Ş

Urns
˙

,

∅ and consider some s P
ˆ

Urys
Ş

Urns
˙

. We know that s must be such that each sp “ yp or sp “ 0.

This allows us to rewrite n “ s f such that if sp “ yp then fp “ 0 and if sp “ 0 then fp ă yp since
`

np ă mp “ yp _ mp ă np “ yp
˘

. Similarly, as a result we may conclude that y
s P

ˆ

Urys
Ş

Urms
˙

since
`

np ă mp “ yp _ mp ă np “ yp
˘

tells us that if np “ yp as in the case when sp “ yp, then it must be that
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mp ă np, meaning that there must be some t P
ˆ

Urys
Ş

Urms
˙

such that tp “ yp when sp , yp, namely

t “ y
s . This allows us to rewrite m “ tg such that when tp “ yp then gp “ 0 and when tp “ 0 then gp ă yp.

We will now notice that necessarily f P DrS ptqs and g P DrS psqs. This is because exactly when fp “ 0 then

tp “ 0 and when gp “ 0 then so does sp “ 0; similarly, when tp “ yp then sp “ 0 so since fp ă yp it follows

in this case that fp ă tp, and the same is true for gp and sp respectively. This shows that it indeed must be the

case that f P DrS ptqs and g P DrS psqs.

With all of that we have shown that a “ xn “ xs f and b “ xm “ xtg where s, t, f , g are exactly as described

in our constructed Set, hence pa, bq P πx,y, a Contradiction. �

This allows us to rewrite our definition of a Resultant Period Set – if we should so wish – such that it

will now represent the unique such Set, and further we can derive every Pair of Periods that will yield it

from this new definition.

Px,y �

"

dy P Z : d P Drxs
*

(II.109)

(II.110)

The associated Pairs are as our previous theorem constructed them.
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CHAPTER III

ALLGEBRAS

III.1 Allgebras and Symmetry-Sets

Objective In this section we will introduce the notion of an Allgebra and formalize Algebraic Structures

on it by defining the generalization of a Period-Set: a Symmetry-Set.

Strategy We will take the foundation we created relating to how we understand Algebraic-Structures

coming out of the introduction of Operators – and those from Functions – and extend our intuition to all

possible Operators. We will look for patterns among them, and how they collectively bundle together to

create similarly classed Algebraic Structures over Subsets of our Domain.

III.1.1 What kinds of Symmetries are Interesting?

Consider two Non-Empty Sets each Paired with the Set of all possibly definable Binary Operators on each

respectively – henceforth referred to as Allgebras – denoted: X� pX,ΘXq, Y� pY,ΘYq. We denote the

set of all functions from X to Y as YX .

Definition III.1.1 (Symmetry Points Functions). For λ P YX , x, s P X, and ϑX P ΘX , we define the Symmetry
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Points of ϑX on λ as follows.

σLpλ, ϑXq�

"

s : λpxq “ λpϑXps, xqq
*

(III.1)

σRpλ, ϑXq�

"

s : λpxq “ λpϑXpx, sqq
*

(III.2)

σCpλ, ϑXq�

ˆ

σLpλ, ϑXq
č

σRpλ, ϑXq

˙

(III.3)

When subscripts are omitted in future definitions the original three indicated above, L,R,C – meant to denote

‘Left’, ‘Right’, and ‘Commutative’ – are Implied, resulting in three new definitions each time.

Consequence III.1.2 (Commutative Operator-Symmetry Implies Left and Right Operator-Symmetry). Any

Function from X to Y that has a Commutative Operator-Symmetry, must then have a Left Operator-

Symmetry and Right Operator-Symmetry – namely, the previously mentioned Commutative Operator-

Symmetry.

Definition III.1.3 (Operator-Symmetries of Functions). Consider a Mapping ΣΘ that will be from PpYXq Ñ

PpΘXq. For Λ Ď YX , and ϑX P ΘX , we define the Operator-Symmetries of the Set of Functions Λ as the Set

of Operators that have Symmetry Points on at least one Function in said Set.

ΣΘpΛq�

"

ϑX : Dλ P Λ Q σpλ, ϑXq , ∅

*

(III.4)

Definition III.1.4 (Function-Coverage of Operators). Consider a Mapping ΣΛ that will be fromPpThetaXq Ñ

PpYXq. For λ P YX , and θX Ď ΘX , we define the Function-Coverage of the Set of Operators θX as the Set

of all Functions that have at least one Symmetry Point with at least one Operator in said Set.

ΣΛpθXq�

"

λ : DϑX P θX Q σpλ, θXq , ∅

*

(III.5)

Lemma III.1.1 (ΣΘ & ΣΛ are Functions). Each of these Mappings are defined for all Inputs.

Lemma III.1.2 (Non-Empty Input to ΣΘ Will Yield Non-Empty Output). The Function ΣΘ will not Map to

the Empty-Set for any argument except the Empty-Set itself.

Proof. Take any fixed Element x0 P X – note that we already assumed that X is non-empty – and consider
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ϑx0 P ΘX defined:

ϑx0px, yq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

x y “ x0

y x “ x0

x0 else

(III.6)

For all λ P YX , it is the case that λpϑx0px, x0qq “ λpϑx0px0, xqq “ λpxq @ x P X, which means that x0 P

σLpλ, ϑx0q, and x0 P σRpλ, ϑx0q, and so x0 P σCpλ, ϑx0q as a result. This allows us to conclude that ΣΘptλuq is

always Non-Empty, and because all Singleton Inputs yield Non-Empty Output, any Composite Set will also

be Non-Empty. �

Corollary III.1.2.1 (ΣΘpΘXq “ YX).

Lemma III.1.3 (Non-Empty Input to ΣΛ Will Yield Non-Empty Output). The function ΣΛ will not Map to

the Empty-Set for any Input except the Empty-Set itself.

Proof. Take any fixed Element y P Y – note that we already assumed that Y is Non-Empty – and consider

yλ P TrrYXs. For some ϑ P ΘX , consider xL, xR, xϑ P X. Then, it must be that yλpxϑq “ yλpϑpxL, xϑqq “

yλpxLq “ yλpϑpxϑ, xRqq “ yλpxRq. This means that xL, xϑ P σLpyλ, ϑq, xR, xϑ P σRpyλ, ϑq, and as a result

xϑ P σCpyλ, ). This means that we can conclude ΣΛptϑuq is always Non-Empty, and because all Singleton

Inputs yield Non-Empty Output, any Composite Set will also be Non-Empty. �

Corollary III.1.3.1 (ΣΛpYXq “ ΘX).

III.2 Symmetry-Set Relations on Functions

Objective We will define several Relations that allow us to say more about our Allgebras.

Strategy We will use common relationships between Sets, specifically applied to Symmetry-Sets, in or-

der to gain additional structure – and so insight – in the form of several Order Relations and Equivalence

Relations on Allgebras.
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III.2.1 Several Interesting Relations on Functions

Definition III.2.1 (Regularity & Similarity of Function Sets: .,„). Suppose α, β Ď YX; we say that α is

Less Regular than β if and only if ΣΘpαq Ď ΣΘpβq.

α . β� ΣΘpαq Ď ΣΘpβq (III.7)

Further we say that α and β are Similar if and only if α . β and β . α, or Equivalently:

α „ β� ΣΘpαq “ ΣΘpβq (III.8)

Lemma III.2.1 (Regularity is a Pre-Order on PpYXq). It is the case that .L,.R, and .C are all Reflexive,

and Transitive.

Proof. The proof is self-evident, as the definition of Regularity is entirely in terms of Set Inclusion which

itself is Reflexive and Transitive. �

Lemma III.2.2 (Similarity is an Equivalence Relation on PpYXq). It is the case that „L,„R, and „C are all

Reflexive, Symmetric, and Transitive.

Proof. The proof is self-evident, as the definition of Similarity is entirely in terms of Set Equality which

itself is Reflexive, Symmetric, and Transitive. �

Lemma III.2.3 (ΣΘ is an Order-Homomorphism from pPpYXq,.q to pPpΘXq,Ďq). This, too, is a direct result

of Regularity being defined using Set-Inclusion.

Corollary III.2.3.1 (Similarity Identifies a Kernel of ΣΘ).

Definition III.2.2 (Coherence & Concurrence of Operators: Ÿ ,’). Suppose θa, θb Ď ΘX; we say that θa is

Less Coherent than θb if and only if ΣΛpθaq Ď ΣΛpθbq.

θa Ÿ θb � ΣΛpθaq Ď ΣΛpθbq (III.9)

Further we say that θa and θb are Concurrent if and only if θa Ÿ θb and θb Ÿ θa, or equivalently:

θa ’ θb � ΣΛpθaq “ ΣΛpθbq (III.10)
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Lemma III.2.4 (Coherence is a Pre-Order on PpΘXq). It is the case thatŸ L,Ÿ R, andŸ C are all Reflexive,

and Transitive.

Proof. The proof is self-evident, as the definition of Coherence is entirely in terms of Set Inclusion. �

Lemma III.2.5 (Concurrence is an Equivalence Relation on PpΘXq). It is the case that ’L,’R, and ’C are

all Reflexive, Symmetric, and Transitive.

Proof. The proof is self-evident, as the definition of Concurrence is entirely in terms of Set Equality. �

Lemma III.2.6 (ΣΛ is an Order-Homomorphism from pPpΘX ,Ÿ q to pPpYXq,Ďq). This, too, is a direct result

of Coherence being defined using Set Inclusion.

Corollary III.2.6.1 (Concurrence Identifies a Kernel of ΣΛ).

Definition III.2.3 (Resemblance & Correspondence of Function-Operator Pairs: $, |ù). Let α, β Ď YX , and

suppose θa,Ď ΣΘpαq and θb Ď ΣΘpβq we say that pα, θaq Resembles pβ, θbq if and only if σpα, θaq Ď σpβ, θbq.

(Note: We could equivalently take two Subsets of ΘX and take α and β to be Subsets of the respective ΣΛ

Outputs.)

pα, θaq J pβ, θbq� σpα, θaq Ď σpβ, θbq (III.11)

Further, we say that pα, θaq and pβ, θbq Correspond if and only if pα, θaq $ pβ, θbq and pβ, θbq $ pα, θaq, or

equivalently:

pα, θaqL pβ, θbq� σpα, θaq “ σpβ, θbq (III.12)

Lemma III.2.7 (Resemblance is a Pre-Order on PpYX ˆ ΘXq). The relation of Resemblance is Reflexive,

and Transitive.

Lemma III.2.8 (Correspondence is an Equivalence Relation onPpYXˆΘXq). The Correspondence Relation

is Reflexive, Symmetric, and Transitive.

Lemma III.2.9 (σ is an Order-Homomorphism from pPpYX ˆ ΘXq,Jq to pPpXq,Ďq). This, too, is a direct

result of Resemblance being defined using Set-Inclusion.

Corollary III.2.9.1 (Correspondence Identifies a Kernel of σ).
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Appendices
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.1 Conditional Proof

Given some Premises or Conditions, P1, P2, . . . Pn, a series of Substitutions, Pa, Pb . . . Px $ Ps; Pc, Pd . . . Py $

Pt; . . . Pe, P f . . . Pz $ Q that follow from previously assumed or proven Logical Rules Li, L j, . . . Lk, and a

Conclusion Q that logically follows from the final substitution, one denotes a Conditional Proof of such a

Logical Rule as follows:

P.1q P1

P.2q P2

...
...

P.nq Pn

S .1q Pa, Pb . . . Px $ Ps ∵ Li

S .2q Pc, Pd . . . Py $ Pt ∵ L j

...
...

...

S .mq Pe, P f . . . Pz $ Q ∵ Lk

C ∴ Q

(13)

The far left column is a labeling scheme: P for Premises, S for Substitutions, and C for Consequence or

Conclusion. The middle column is where Premises, Substitutions and the Conclusion are placed. The right

column is only used in the middle row for Substitutions in order to explain what previous Logical Rule

enabled that substitution. The symbol ∴ is interpreted as meaning ‘therefore’, and ∵ as meaning ‘because

[of]’.

.2 Axioms of Zermelo-Fraenkel Set-Theory

Let the Language Of ZFC reference the First-Order Logic we establish in 0.I.1, supplemented with the

Logical Connective P and its Negation < defined in 0.I.2.1.

1. Axiom Of Extensionality:

@x@y r@z pz P x ô z P yq ñ px “ yqs (14)
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2. Axiom Of Regularity:

@x rDa pa P xq ñ Dy py P x^ @z pz P y^ z P xqqs (15)

3. Axiom Schema Of Restricted Comprehension:

Let ψ be a Formula in the Language Of ZFC such that all Free Variables are among z, a, b, c . . .w

[insert footnote about not being limited by the length of the latin alphabet] with y explicitly not Free in

ψ.

@z,@a,@b,@c . . .@wDy@x rx P y ô rpx P zq ^ ψpxqss (16)

4. Axiom Of Pairing:

@x@yD!z r@a pa P z ô pa “ x_ a “ yqqs (17)

5. Axiom Of Union:

@S D!A@Y@x rpx P Y ^ Y P S q ô x P As (18)

6. Axiom Schema Of Replacement: Let ψ be a Formula in the Language Of ZFC such that all Free

Variables are among x, y, A, a, b, c . . .w with B explicitly not Free in ψ.

@A,@a,@b,@c . . .@w rDx px P A ñ D!yψpyqq ñ D!B@x px P A ô Dy py P Bq ^ ψpyqqs (19)
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7. Axiom Of Infinity::
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D!ŷ@z

»

—

—

—

—

–
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(20)

8. Axiom Of Power Set

@xD!y@z r@a pa P z ñ z P xq ô z P ys (21)

:: Rendered here as an abstract piece of art.

.3 Axiom of Choice

@X r@a@b pa P X ^ b P X ñ @y py P A^ y P Bqq ô DC p@x px P X ô D!c pc P x^ c P Cqqqs (22)

ZFC � Zermelo-Fraenkel Set-Theory with the Axiom Of Choice (23)
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