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ABSTRACT

Potential fields of various physical nature might significantly affect viability of struc-

tures in automobiles, aircraft, and other areas of contemporary engineering. That is

why accurate analysis of potential fields, occurring in elements of structures, is re-

quired for the exploration of conditions of their predetermined functioning. Thermo-

elasticity, for example, is a specific branch of natural sciences where information

about thermal fields is especially critical. Fields induced by point sources represent

an important particular case quite often occurring in reality.

The present project aims at the investigation of potential fields in thin shell struc-

tures made of conductive materials. Our manual is conditionally viewed as consisting

of three segments, the first of which deals with point sources in single shell fragments

of standard geometry (cylindrical, spherical, toroidal, etc.). The second segment is

devoted to joint shell structures composed of fragments of different geometries, whilst

single fragments and joint structures weakened with apertures are considered in the

last segment.

The Green’s function formalism constitutes theoretical background of our work.

Exploring potential fields generated by point sources in single shell fragments, we use

the Green’s function method, possibility of which implementation had been advoc-

ated, for this class of problems, a few decades ago. We have further developed this

approach by obtaining computer-friendly representations of Green’s functions for a

broad variety of boundary-value problems stated for the Laplace equation written in

geographical coordinates.

In approaching solid joint shell structures, the classical Green’s function formal-

ism fails. We turn therefore to the matrix of Green’s type notion also introduced

awhile ago, and our focus is on obtaining readily computable matrices for a score of

structures.

A Green’s function-based algorithm, that allows an accurate computation of po-

tential fields induced in shell structures weakened with apertures, is developed.
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1 Introduction

Study of potential fields had traditionally attracted researchers who worked in nearly

every branch of natural science and engineering, and it continues to remain in the

sphere of their interest in nowadays. This is so because a vast number of phenomena

and processes that are going on in real life are potential in nature. The most important

among those are: steady-state heat conduction in solids [25, 45, 86, 91], magneto- and

electrostatics [2, 23, 34, 35, 82], gravitation [29, 51, 62], steady-state concentration

of substance in the media [41, 85], and so on. Mathematically, potential phenomena

and processes reduce to boundary-value problems stated for Laplace and Poisson

equation. Simplest of those problems allow analytical solutions, for most others −

numerical methods appear effi cient.

The heat transfer, in particular, represents one of the significant phenomena that

requires professional treatment in engineering. This phenomenon is crucial in the

decision making for experts who work on either construction of new or modification

of modern machines and devices. To name just some of the engineering sciences,

where the heat conduction should be taken into account, one might recall the heat

insulation [42], laser welding [7], drilling [87], geodesy [27], plasma study [17], etc.

The most recent area of interest for the heat transfer is in the nano-engineering [61,

71, 78].

Three different types of the heat transfer problems are distinguished in applica-

tions based on their spatial dimensionality. One-dimensional problems occur when

one of the spatial dimensions of the considered object is significantly larger compared

to the other two, which allows to neglect the heat flow in their directions. Examples

of such objects could be long and thin beams, tubes, spiral-shaped heating elements,

and so on [63, 80]. Two-dimensional heat transfer occurs, when only one of the

dimensions of the object is negligibly small, but two others must be taken into con-

sideration. Such problems arise, when we consider heat transfer in different plates,

shells, jackets, etc. [54, 70, 72] If none of the dimensional sizes of the considered
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object is negligible, we have to stay within the scope of three-dimensional heat con-

duction scenario. It occurs, for example, when one evaluates the heat conduction

inside fluid or gas containing reservoirs [59], or if the heat distribution must be found

in thick walls weakened with some cavities or holes [84]. Three-dimensional problem

statements are also unavoidable if the air conditioning system is developed to cool

down industrial or residential rooms [60].

Another approach to the classification of heat transfer problems touches upon the

time variable. If the heat distribution in a system depends not only on spatial variables

but on time as well, then the heat transfer is transient, if the heat distribution is

only the spatial variables dependent function and does not depend on time, then the

process reaches the so-called steady-state phase. Transient heat transfer is studied,

when we are interested in actual heat distribution through the space within the time

period prior to the steady state is reached, if ever [8, 36, 76].

If the heat in solids is distributed due to the heat conduction mechanism, then

this is where the classical heat equation [19, 31] comes to the picture. In the case of

a steady-state situation, the heat equation degenerates to either Laplace (if there are

no internal sources of energy available) or Poisson equation.

Two different types of problems are distinguished for the heat equation. If the

shape of the object under consideration, the initial and boundary conditions, the

thermal coeffi cients of the material of which the object is made (we will refer to all

of these as the initial data) all are given, then we face the so-called direct problem

formulation. Direct problems have traditionally been considered and solved in science

and engineering for centuries. If, in contrast to the direct formulation, the solution of a

heat conduction problem is available, but some of the initial data are missed, then the

so-called inverse or semi-inverse problems take place. This type of problems attracts

more and more attention nowadays. Many scientists devoted their efforts to this

subject using methods based on various techniques, such as finite-difference method

[65], fundamental solution method [33], Green’s function-based methods [28], genetic

algorithms [64], and so on. Other scientists focus on estimating the heat transfer
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coeffi cients using iterative regularization method [69], input estimation approach [77],

or other techniques. Inverse problems for potential fields also arise in other fields of

science, for example, medicine and geophysics [3], where the electrostatic potential

around cardio-stimulators, or gravitational forces within different Earth layers are

studied.

Theory of inverse problems [5, 57, 72, 83] is much more complex compared to

the theory of direct problems, because inverse problems are generally speaking ill-

posed, which implies that their solution must not necessarily vary a small amount if

the initial data are slightly changed. As to the selection of numerical methods, that

have to be used to obtain the solution of inverse problems, engineers have to be very

delicate, because rounding up initial data, which is practically unavoidable, might

result in large errors in the solution. That is why various regularization procedures

are usually recommended [57, 72, 74] to provide reliable results for inverse problems.

There is no (and could not be) a general consensus on which particular method is

the best for all heat conduction problems. Many scientists put their effort to find the

analytical solution for some simple or specific cases [4, 43, 46]. The fundamental work,

which has been done in this field, is effi ciently summarized in [79], which provides a

score of effi cient analytic techniques for solving heat conduction problems. The key

emphasis of the study of Wang et al. [79] is made on the wave equation, steady-state

heat conduction equation, mixed problems and Cauchy problems for the hyperbolic

heat conduction equation, dual-phase-lagging heat conduction equation, and other

potential phenomena related equations. However that remarkable work does not con-

sider important class of problems posed in multi-layer structures, where some analyt-

ical approaches have later been proven to be effi cient. See [52] for more information

on heat conduction in one-dimensional composite slabs, or [39] for multi-layer heat

conduction problems posed on a sphere.

Another popular in applied mathematical approach is to design a general numer-

ical algorithm which would be capable to solve a certain class of problems. There exist

a vast number of numerical methods to solve partial differential equations in general
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and heat conduction equation in particular. In some of them the uniform mesh over

the domain is used to calculate values at grid-points [1, 55], while in others the mesh

is nonuniform [60]. In order to achieve higher accuracy and low computational cost,

the entire class of the so-called meshless method was developed (see, for example, [6,

67, 88]). Though, numerical methods enable us to solve a wide range of problems

compare to analytic approaches, their vulnerability is oscillations, which occur at

points of discontinuity. To overcome this phenomenon, a number of methods have

been proposed and is referred to as Gibb’s phenomenon. To name a few, Laplace

transform-based control-volume special schemes [20], characteristics-based total vari-

ation diminishing scheme [81], hybrid Green’s function-based method [21], and some

others.

Many authors combine the knowledge and experience from other fields of science

to come up with the solution for yet unsolved problems. For example, in [3] the

moment theory was successfully applied for a score of problems dealing with potential

fields; machine-learning schemes based on generic algorithms were summoned to solve

inverse problems in heat conduction in [64]; Cheng and Wu [22] combined body-fitted

grid generation and conjugate gradient methods to achieve high accuracy in solving

heat conduction problems.

Mostly recommended for engineers numerical approaches to the solution of direct

heat conduction problems are based on either the finite difference method (FDM)

[7, 38, 65] or the finite element method (FEM) [40, 44, 56]. These methods reduce

the original initial-boundary-value problem (transient formulation) or boundary-value

problem (steady-state case) to some linear algebra problems for which well-established

computer friendly routines are available in most contemporary software. The main

advantage of the finite difference schemes is their formal ease, but practical imple-

mentation of themmeets many constraints coming up, in particular, from convergence

requirements, shape irregularity of the region, and enormous computer time consump-

tion. For the FEM, the region’s shape does not represent an important issue, because

a proper mesh pattern can quite accurately approximate the region. But practical
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creation of such a mesh is very individual for each region and could significantly drop

the method’s effi ciency.

An alternative to the FDM and FEM, that was quite recently introduced [18]

into industrial applications, is the so-called boundary element method (BEM). It

reduces boundary-value problem for a partial differential equation to some integral

or integral-type functional equations. The numerical algorithm, based on a semi-

analytical approach developed in the present study, is relevant to the BEM.

The present work is devoted to potential fields induced in thin-walled structures,

implying that some two-dimensional boundary-value problems should be considered

for second order partial differential equations in regions representing fragments of

middle surfaces of those structures. We are going to develop computationally ef-

ficient semi-analytical techniques for obtaining potential fields generated by point-

concentrated sources in assemblies of thin-walled shells. The assemblies of shells to

be considered are composed of fragments representing standard shells of revolution

(cylindrical, spherical, toroidal, and so on), each of which is made of an individual ho-

mogeneous isotropic conductive material, contains some foreign inclusions, and might

be weakened with apertures. This results in an intricate situation where we arrive at

some boundary-value problems for sets of two-dimensional Laplace equations written

in geographical coordinates specific for each shell fragment.

Among other factors, building up complexity of the problems considered in the

present study, is, in particular, the fact that the problems are set up in inhomogeneous

multiply-connected regions of irregular configuration. This factor makes merely im-

possible application of pure analytical methods for their solution. The semi-analytical

approach, which is developed instead in this study and whose effi ciency is demon-

strated herein, belongs to the classical [53, 75] boundary integral equation (BIE)

group of methods, which are predecessors of the BEM. The key point of those meth-

ods is that they are meshless [24, 68, 89] in nature, implying that the solution of

the original boundary-value problem for a governing partial differential equation is

expressed in a form of an integral representation whose kernel is the fundamental
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solution of the considered PDE. This reduces the original problem to a boundary in-

tegral equation which is to solve numerically. This approach provides the users with

two significant advantages. First, the dimensionality of the original boundary-value

problem reduces, and, second, not differential but integral operators require some

numerical approximation.

To further modify the classical BIE approach to boundary-value problems, its

Green’s function version (see, for example, [48]) had been proposed. The key idea

of this version is the use of some Green’s functions as kernels of boundary integrals

representing the problem’s solution. This further elevates the computational effect-

iveness of the BIE method, because some of the boundary conditions in the original

problem formulation are supposed to be exactly satisfied prior to a computational

phase of the solution process. But, on another hand, a notable drawback of this

version of the BIE method is the necessity for the user to have a required Green’s

function available. Note that a vast number of Green’s functions for a variety of

boundary-value problems can, for instance, be found in [26, 48, 50].

Since many of the problems considered in the present study do not deal with a

single PDE but rather with sets of equations, neither the classical BIE methods nor

their Green’s function version can be directly implemented. With this in mind, to

properly treat such complex problems, we make use of the extension of the Green’s

function formalism proposed earlier in [48]. This gives birth to the notion of mat-

rix of Green’s type. Specific matrices of Green’s type, required for present work,

are constructed for solid shell assemblies. Either compact analytical expressions for

those matrices or some of their compact computer-friendly series representations are

obtained.

So, in the present study we are going to focus on the boundary element method,

with an emphasis on one of its Green’s function modifications. We feel necessity

to show the step-by-step algorithm for the construction of Green’s functions for a

number of boundary-value problems to be considered. Our construction procedure

for required Green’s functions is based on the classical [31] separation of variables
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method whose essential component is a Green’s function for a corresponding ordinary

differential equation. That is why we begin our presentation with the latter subject,

limiting ourself to the case of second order equations. Two standard [49] approaches

are reviewed in necessary detail. We will frequently refer to the results presented here

and implement them later in this manual.

Consider a linear second order homogeneous ordinary differential equation with

variable coeffi cients on the interval [a, b], which is not supposed to be necessarily

finite,

L [y (x)] ≡ p0 (x) y′′ (x) + p1 (x) y′ (x) + p2 (x) y (x) = 0 (1.1)

and subject it to the homogeneous boundary conditions

Mk (y; a, b) ≡
1∑
j=0

[
αkjy

(j) (a) + βkjy
(j) (b)

]
= 0, k = 1, 2 (1.2)

where pi (x) (i = 0, 1, 2) are continuous functions on [a, b], with p0 (x) 6= 0. LetMk be

linearly independent operators, with αkj , β
k
j representing constants. The superscript

(j) stands for the derivative order. It worth noting that each standard boundary

condition (Dirichlet, Neumann, and Robin) follows from (1.2) as a particular case.

The form in (1.2) includes also the case of periodic boundary conditions.

If the boundary-value problem in (1.1)-(1.2) is well-posed, providing only the

trivial solution, then its unique Green’s function g(x, s) exists possessing the following

four properties, for any arbitrarily fixed point s ∈ (a, b):

1. g(x, s) satisfies the governing equation in (1.1) everywhere except for x = s,

i.e.:

L [g (x, s)] = 0, x ∈ (a, s) ∪ (s, b) , (1.3)

2. g(x, s) is continuous at x = s

lim
x→s+

g (x, s) = lim
x→s−

g (x, s) , (1.4)

3. the first derivative of g(x, s) has removable discontinuity at x = s, to satisfy

the relation

lim
x→s+

∂g (x, s)

∂x
− lim

x→s−
∂g (x, s)

∂x
= − 1

p0 (s)
, (1.5)
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where p0(x) is the leading coeffi cient of the equation in (1.1), and

4. g(x, s) satisfies the boundary conditions in (1.2), that is

Mk (g; a, b) = 0, k = 1, 2. (1.6)

To prove the existence of the Green’s function for the boundary-value problem in

(1.1)-(1.2), we follow the classical [31] straightforward procedure. In doing so assume

that y1(x) and y2(x) are two linearly independent particular solutions of the equation

in (1.1), and look for the Green’s function in the form

g(x, s) =

 y1 (x)A1 (s) + y2 (x)A2 (s) , x ≤ s

y1 (x)B1 (s) + y2 (x)B2 (s) , x ≥ s
(1.7)

automatically satisfying the first defining property in (1.3).

Indeed, both branches of (1.7) are linear combinations of y1(x) and y2(x), and

each of them is therefore a solution of (1.1). In order to find the unknown functions

Ai(s), and Bi(s) we refer to the remaining properties. By satisfying the property in

(1.4) one comes up with the following equation:

y1 (s)C1 (s) + y2 (s)C2 (s) = 0 (1.8)

where

Ci (s) = Bi (s)− Ai (s) , i = 1, 2 (1.9)

From the property in (1.5) it follows that

y′1 (s)C1 (s) + y′2 (s)C2 (s) = − 1

p0 (s)
(1.10)

Relations in (1.8) and (1.10) form a system of linear algebraic equations in two

unknown functions C1(s) and C2(s). This system has a unique solution since its

determinant represents Wronskian for the fundamental set of solutions yi(x), and is

therefore nonzero. Before we turn to property 4 we split up the operator Mk(y) in

two parts as

Mk (y) = Pk (y) +Qk (y) ,
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where

Pk (y) =

1∑
j=0

αkjy
(j) (a) , Qk (y) =

1∑
j=0

βkjy
(j) (b) .

To continue let us introduce a shorthand notation for the two pieces of the piece-

wise defined Green’s function in (1.7). From now on, the piece that corresponds to

the interval [a, s] will be called the upper branch of the Green’s function and denoted

as g+(x, s), whilst the piece defined on the interval [s, b] will be referred to as the

lower branch g−(x, s).

Since g(a, s) corresponds to the upper branch of the Green’s function in (1.7) and

g(b, s) corresponds to the lower branch, the relations in (1.6) could be rewritten as

Mk (g (x, s)) ≡ Pk
(
g+ (x, s)

)
+Qk

(
g− (x, s)

)
= 0, k = 1, 2

Or in other words, because of the linearity of the operators Pk(y) and Qk(y), the

above expressions read

2∑
i=1

Pk (yi (a))Ai (s) +
2∑
i=1

Qk (yi (b))Bi (s) = 0, k = 1, 2 (1.11)

Expressing then the functions Ai(s) in terms of Ci(s) and Bi(s) from (1.9), we

obtain the 2× 2 system of linear algebraic equations in Bi(s)

2∑
i=1

Pk (yi (a)) (Bi (s)− Ci (s)) +

2∑
i=1

Qk (yi (b))Bi (s) = 0, k = 1, 2

which can be written in a more compact form as

2∑
i=1

Mk (yi (b))Bi (s) =
2∑
i=1

Pk (yi (a))Ci (s) , k = 1, 2 (1.12)

The system in (1.12) has a unique solution, because the operators Mk(y) are

linearly independent. And once Bi(s) are found, the corresponding Ai(s) follow from

(1.9).

So, observing the derivation just completed, we outline that it does not only prove

the existence and uniqueness of the Green’s function of the problem in (1.1) and (1.2),

but also gives us a straightforward procedure for its obtaining.
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Note that for some of boundary-value problems of the type in (1.1) and (1.2),

the construction procedure for their Green’s functions, that we just described, can

be notably modified [49]. Namely, if the boundary conditions in (1.2) are point-split,

meaning that one of them is imposed at x = a

α0y (a) + α1y
′ (a) = 0, (1.13)

whilst another is imposed at x = b

β0y (b) + β1y
′ (b) = 0, (1.14)

then, instead of taking any pair of linearly independent particular solutions of the

governing differential equation in (1.1) and proceeding with them as earlier suggested,

we choose the first component y1(x) of the fundamental set of solutions as the solution

to the initial-value problem

α0y1 (a) + α1y
′
1 (a) = 0 (1.15)

and

α∗0y1 (a) + α∗1y
′
1 (a) = 0 (1.16)

for equation (1.1). The second component y2(x) of the fundamental set of solutions

is chosen as the solution to another initial-value problem

β0y1 (b) + β1y
′
1 (b) = 0 (1.17)

and

β∗0y1 (b) + β∗1y
′
1 (b) = 0 (1.18)

Clearly, to make the initial-value problem in (1.1), (1.15) and (1.16) well-posed,

the coeffi cients α∗0 and α
∗
1 in (1.16) must be chosen in the way making the determinant

of the matrix  α0 α1

α∗0 α∗1
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non-zero. By similar reasoning, the choice of β∗0 and β
∗
1 in (1.18) must be predeter-

mined by the condition ∣∣∣∣∣∣ β0 β1

β∗0 β∗1

∣∣∣∣∣∣ 6= 0.

Now, in light of the proposed specific choice of the components y1(x) and y2(x) of

the fundamental set of solution, the Green’s function of the boundary-value problem

in (1.1), (1.13), and (1.14) can be expressed in the form

g (x, s) =

 y1 (x)A (s) , α ≤ x ≤ s

y2 (x)B (s) , s ≤ x ≤ b
(1.19)

It is evident that the above form satisfies the defining properties 1 and 4 in the

definition of the Green’s function. To find the functions A(s) and B(s), we take

advantage of the continuity properties 2 and 3 which results in the system of linear

algebraic equations

y1 (s)A (s)− y2 (s)B (s) = 0

y′1 (s)A (s)− y′2 (s)B (s) = −p−1
0 (s)

(1.20)

the well-posedness of which follows from the fact that the coeffi cient matrix of (1.20)

is not singular (indeed, it is the Wronskian of the fundamental set of solutions whose

components are y1(x) and y2(x)). So, once the functions A(s) and B(s) are available,

they go to where they belong to, that is to equation (1.19). This completes the

construction of the Green’s function that we are looking for.

Before turning to the second of the classical ways [49] usually used to practically

construct the Green’s function for the boundary-value problem of the type (1.1) and

(1.2), we will consider the non-homogeneous equation

p0 (x) y′′ (x) + p1 (x) y′ (x) + p2 (x) y (x) = −f (x) (1.21)

subject to the boundary conditions in (1.2). It can be shown that the solution of the

boundary-value problem in (1.21) and (1.2) can be expressed in terms of the Green’s

function g(x, s) of the setting in (1.1) and (1.2) in the form

y (x) =

∫ b

a

g (x, s) f (s) ds (1.22)
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This implies that our objective is to show that the function in (1.22) does make

the equation in (1.21) true and satisfies the boundary conditions in (1.2). To proceed

with this endeavour, note that since the Green’s function g(x, s) is defined in two

pieces, the form in (1.22) can be split as

y (x) =

∫ x

a

g− (x, s) f (s) ds+

∫ b

x

g+ (x, s) f (s) ds (1.23)

To substitute the above expression for y(x) into (1.21) we recall the differentiation

rule for the integral with variable limits. It reads

d

dx

(∫ b(x)

a(x)

h (x, s) ds

)
=

∫ b(x)

a(x)

hx (x, s) ds+ h (x, b (x)) b′ (x)− h (x, a (x)) a′ (x) .

Differentiation of the expression for y(x) in (1.23) yields

y′ (x) =

∫ x

a

g+
x (x, s) f (s) ds+

∫ b

x

g−x (x, s) f (s) ds

+g (x, x− 0) f (x)− g (x, x+ 0) f (x)

which reduces, due to the second property of the Green’s function, to

y′ (x) =

∫ b

a

gx (x, s) f (s) ds (1.24)

This implies that the boundary conditions in (1.2) are satisfied with y(x) expressed

by (1.22), since all the differentiations in Mk(y; a, b) can be brought under the integ-

ration sign. Following the same logic as for the first derivative and keeping in mind

the third property of the Green’s function, the expression for the second derivative

of y(x) could be found as

y′′ (x) =

∫ b

a

gxx (x, s) f (s) ds− 1

p0 (x)
f (x) (1.25)

By substituting (1.22), (1.24), and (1.25) into (1.21) it can be shown that the

latter reduces to∫ x

a

L
[
g+ (x, s)

]
f (s) ds+

∫ b

x

L
[
g− (x, s)

]
f (s) ds− f (x) = −f (x)
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which is an identity, because of the first property of the Green’s function,

L [g (x, s)] = 0, x ∈ (a, s) ∪ (s, b) .

So, an important practical observation follows from what we have done. That is,

if the solution to a boundary-value problem posed for a non-homogeneous differential

equation subject to homogeneous boundary conditions could be expressed in the

integral form of (1.22), then the kernel of that integral is the Green’s function for the

corresponding homogeneous problem. This fact gives rise to another approach for the

construction of Green’s functions which is described below in detail by means of the

Lagrange’s method of variation of parameters [31]. In doing so, assume that y1(x)

and y2(x) are two linearly independent particular solutions of the equation in (1.1).

Then the general solution of the non-homogeneous equation could be written as

y (x) = C1 (x) y1 (x) + C2 (x) y2 (x) (1.26)

Differentiating the above yields

y′ (x) = C ′1 (x) y1 (x) + C ′2 (x) y2 (x) + C1 (x) y′1 (x) + C2 (x) y′2 (x) .

Making the assumption

C ′1 (x) y1 (x) + C ′2 (x) y2 (x) = 0, (1.27)

the second derivative of (1.26) reads

y′′ (x) = C ′1 (x) y′1 (x) + C ′2 (x) y′2 (x) + C1 (x) y′′1 (x) + C2 (x) y′′2 (x)

Substituting the above expressions for y′ (x) and y′′ (x) into (1.21), one obtains

p0(x)C ′1 (x) y′1 (x) + p0(x)C ′2 (x) y′2 (x) = −f (x) (1.28)

The relations in (1.27) and (1.28) form a system of linear algebraic equations in

C ′1 (x) and C ′2 (x) which reads as

C ′1 (x) y1 (x) + C ′2 (x) y2 (x) = 0

C ′1 (x) y′1 (x) + C ′2 (x) y′2 (x) = −f (x) /p0 (x)
(1.29)
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The system in (1.29) has a unique solution since its determinant is Wronskian

W (x) = y1 (x) y′2 (x)− y′1 (x) y2 (x) 6= 0

of the two linearly independent functions y1 (x) and y2 (x) .

The solution of the above system is obtained in the form

C ′1 (x) = − y2 (x) f (x)

p0 (x)W (x)
, C ′2 (x) =

y1 (x) f (x)

p0 (x)W (x)

which after straightforward integration yields

C1 (x) = −
∫ x

a

y2 (s) f (s)

p0 (s)W (s)
ds+D1, C2 (x) =

∫ x

a

y1 (s) f (s)

p0 (s)W (s)
ds+D2 (1.30)

Substituting the above expressions into (1.26), we obtain the general solution of

the non-homogeneous equation in (1.21) as

y (x) =

∫ x

a

y1 (s) y2 (x)− y1 (x) y2 (s)

p0 (s)W (s)
f (s) ds+D1y1 (x) +D2y2 (x) (1.31)

The constants of integration D1 and D2 in (1.31) are to be determined from the

boundary conditions in (1.2). To complete the derivation procedure let us consider

the simplest case of the boundary conditions as

y (a) = 0, y (b) = 0 (1.32)

Satisfying these conditions yields the system of linear algebraic equations

D1y1 (a) +D2y2 (a) = 0

D1y1 (b) +D2y2 (b) = P
(1.33)

in D1 and D2, where

P = −
∫ b

a

H (b, s) f (s)

p0 (s)W (s)
ds

and

H(b, s) = y1 (s) y2 (b)− y1 (b) y2 (s)

Solving the above system results in

D1 = −
∫ b

a

y2 (a)H (b, s) f (s)

p0 (s)H (a, b)W (s)
ds, D2 =

∫ b

a

y1 (a)H (b, s) f (s)

p0 (s)H (a, b)W (s)
ds
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which upon substitution into (1.31) provides us with the solution of the problem in

(1.21) and (1.32) as

y (x) =

∫ x

a

H (x, s) f (s)

p0 (s)W (s)
ds−

∫ b

a

H (a, x)H (b, s) f (s)

p0 (s)H (a, b)W (s)
ds

Combining the above integrals in a single integral form, we finally obtain

y (x) =

∫ b

a

K (x, s) f (s) ds (1.34)

with the kernel being defined in two pieces as

K (x, s) =
1

p0 (s)H (a, b)W (s)

 −H (a, x)H (b, s) , if a ≤ x ≤ s

H (a, b)H (x, s)−H (a, x)H (b, s) , if s ≤ x ≤ b

(1.35)

Thus, the function in (1.35) does indeed represent the Green’s function for the

boundary-value problem in (1.1) and (1.32) that we are looking for.

The present manual is organized in five chapters. Chapter 1 is actually the Intro-

duction. In Chapter 2, we provide a detailed description of the method that we use

for the construction of Green’s functions for boundary-value problems stated for the

Laplace equation written in geographical coordinates for single shell fragment. We

consider different fragments of spherical, cylindrical, and toroidal shape as regions

over which actual boundary-value problems are formulated. For each of these regions

a score of Green’s functions are provided in Chapter 2. Chapter 3 is devoted to the

construction of matrices of Green’s type for a number of thin shell assemblies. A

special attention is paid to the obtaining of computer-friendly forms of the elements

of such matrices.

Most complicated problem statements, considered in this study, are discussed

in Chapter 4 where perforated single shell fragments and assemblies of fragments

undergoing point sources are considered. The last Chapter provides some verification

of the effi ciency of the proposed semi-analytic algorithms. The computational cost

and the parallelizability of those algorithms are discussed in there. Based on the

method of successive approximations approach we also explored in Chapter 5 the
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possibility of solving some inverse problems, where our algorithms appear effi cient if

used at each iteration for solution of corresponding direct settings.

The results of the present study have been published [11,13,15] in peer-reviewed

journals and presented to a series of regional, national, and international professional

conferences (see [10, 12, 14, 16]).
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2 Laplace equation on surfaces of revolution

Thin plates and shells represent widely used fragments of structural elements of ma-

chines and devices in contemporary engineering and science. If these fragments are

made of conductive materials, then potential fields of various origin may occur in

them affecting their functional properties and capacity for effi cient work. This is why

an engineer, who is involved in the design process, is required to accurately compute

potential fields generated in thin-walled fragments of machines and devices.

Our objective in this chapter is to develop a reliable background for computing

potential fields induced by point-concentrated sources in single shells of standard geo-

metry. Spherical, cylindrical, and toroidal shells will be considered in detail. Math-

ematically, this requires Green’s functions for the two dimensional Laplace equation

written in various geographical coordinates. A number of boundary-value problems

will be considered.

2.1 Boundary-value problems on sphere

We begin with a boundary-value problem stated in the quadrilateral region (see Figure

1)

Ω = {φ, θ|φ1 ≤ φ ≤ φ2, θ1 ≤ θ ≤ θ2}

on a spherical surface of radius a for the two-dimensional Poisson equation

1

a2 sinφ

∂

∂φ

(
sinφ

∂u (φ, θ)

∂φ

)
+

1

a2 sin2 φ

∂2u (φ, θ)

∂θ2 = −f (φ, θ) φ, θ ∈ Ω (2.1)

written in spherical coordinates and subject to the boundary conditions

B1 [u (φ, θ1)] = 0 B2 [u (φ, θ2)] = 0 (2.2)

and

B3 [u (φ1, θ)] = 0 B4 [u (φ2, θ)] = 0, (2.3)

where Bi, i = 1, 4, are the boundary condition operators of one of the three (Dirichlet,

Neumann, and Robin) standard types.
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Figure 1: Quadrilateral fragment of a thin spherical shell

If G (φ, θ;ψ, τ) represents the Green’s function of the homogeneous boundary-

value problem corresponding to (2.1)-(2.3), then the solution to the problem in (2.1)-

(2.3) itself can be expressed as the domain integral

u (φ, θ) =

∫ ∫
Ω

G (φ, θ;ψ, τ) f (ψ, τ) dψ,τΩ. (2.4)

If the boundary-value problem in (2.1)-(2.3) allows analytic separation of variables,

implying that B1 and B2 represent either Dirichlet or Neumann operators, then we

expand the solution u (φ, θ) of the original problem and the right-hand side function

f (φ, θ) of the governing equation in the Fourier series

u (φ, θ) =
∞∑
n=1

un (φ) sin νθ (2.5)

and

f (φ, θ) =
∞∑
n=1

fn (φ) sin νθ, (2.6)

where the factor ν is directly proportional to the index of summation n.

Substituting the above trigonometric representations into the boundary-value prob-

lem in (2.1)-(2.3), we obtain the set

1

a2 sinφ

d

dφ

(
sinφ

dun (φ)

dφ

)
− ν2

a2 sin2 φ
un (φ) = −fn (φ) , n = 1, 2, 3, ... (2.7)
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B3 [un (φ1)] = 0 B4 [un (φ2)] = 0 (2.8)

of boundary-value problems in the coeffi cients un(φ) of the series in (2.5).

Keeping in mind application of the method of variation of parameters to the

boundary-value problem in (2.7)-(2.8), we need two linearly independent particular

solutions for the homogeneous equation corresponding to (2.7). While changing the

independent variable as

ω = ln

(
tan

(
φ

2

))
,

we reduce the problem in (2.7)-(2.8) to

d2un (ω)

dω2
− ν2un (ω) = 0 (2.9)

B3 [un (ω1)] = 0 B4 [un (ω2)] = 0. (2.10)

This allows us to express the general solution for (2.9), within the scope of the

method of variation of parameters [31], in the form

un (ω) = C1 (ω) eνω + C2 (ω) e−νω,

or going back to the original independent variable φ, we have the solution un (φ) to

(2.7) in the form

un (φ) = C1 (φ) tanν
(
φ

2

)
+ C2 (φ) tan−ν

(
φ

2

)
. (2.11)

Following the classical procedure, which was described explicitly in the Introduc-

tion, we arrive at the general solution for the non-homogeneous equation in (2.7)

as

un (φ) = −
∫ φ

φ1

tanν (φ/2)

2ν tanν (ψ/2)
fn (ψ) dψ +D1 tanν (φ/2)

+

∫ φ

φ1

tanν (ψ/2)

2ν tanν (φ/2)
fn (ψ) dψ +D2 tan−ν (φ/2) ,

which transforms into

un (φ) =
1

2ν

∫ φ

φ1

(
tanν (ψ/2)

tanν (φ/2)
− tanν (φ/2)

tanν (ψ/2)

)
fn (ψ) dψ
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+D1 tanν (φ/2) +D2 tan−ν (φ/2) . (2.12)

Satisfying the boundary conditions in (2.8), we express (2.12) in the form

un (φ) =

∫ φ2

φ1

gn (φ, ψ) fn (ψ) dψ, (2.13)

where the kernel function gn (φ, ψ) is expressed in two pieces. In considering particular

problems later in this chapter, we discuss this issue in detail.

To proceed further with our approach, we express the coeffi cients fn (ψ) of (2.6)

using the Euler-Fourier formula

fn (φ) =
2

θ2 − θ1

∫ θ2

θ1

f (φ, τ) sin ντdτ

and substitute un (φ) into (2.5). This yields

u (φ, θ) =

∫∫
Ω

G (φ, θ;ψ, τ) f (ψ, τ) dψ,τΩ,

where G (φ, θ;ψ, τ) represents the Green’s function of the homogeneous boundary-

value problem corresponding to (2.1)-(2.3), and appears in the form

G (φ, θ;ψ, τ) =
2

θ2 − θ1

∞∑
n=1

gn (φ, ψ) sin νθ sin ντ . (2.14)

In what follows, we will consider a score of specific boundary-value problems and

obtain explicit expression for their Green’s functions.

To be more specific, consider the spherical quadrilateral

Ω = {φ, θ | α ≤ φ ≤ β; 0 ≤ θ ≤ γ} ,

where 0 < α < β < π and 0 < γ < 2π, and impose the following boundary conditions

on its contour

u (φ, 0) = 0,
∂u (φ, γ)

∂θ
= 0, (2.15)

and

u (α, θ) = 0,
∂u (β, θ)

∂φ
= 0. (2.16)
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To meet the conditions in (2.15), the summation index ν in the Fourier series

expansions of (2.5)-(2.6) must be ν = (2n− 1)π/2γ. By satisfying the boundary

conditions in (2.16) to determine the constants D1 and D2 in (2.12), we come up with

the following system of linear algebraic equations in D1 and D2

D1A
ν +D2A

−ν = 0

D1B
ν −D2B

−ν = P,

where

P = − 1

2ν

∫ β

α

(
Bν

Φν (ψ)
+

Φν (ψ)

Bν

)
f̃n (ψ) dψ

and

Φ (ξ) = tanπ/γ (ξ/2) , A = tanπ/γ (α/2) , and B = tanπ/γ(β/2).

Upon solving the above system, we obtain

D1 =
1

2ν (A2n +B2n)

∫ β

α

B2n + Φ2n (ψ)

Φn (ψ)
f̃n (ψ) dψ (2.17)

and

D2 = − A2n

2ν (A2n +B2n)

∫ β

α

B2n + Φ2n (ψ)

Φn (ψ)
f̃n (ψ) dψ (2.18)

Substituting expressions from (2.17) and (2.18) into (2.12), one obtains

un(φ) =
1

2ν (A2n +B2n)

[∫ φ

α

Φ2n (ψ)− A2n

Φn (ψ)

B2n + Φ2n (φ)

Φn (φ)
f̃n (ψ) dψ

+

∫ β

φ

Φ2n (φ)− A2n

Φn (φ)

B2n + Φ2n (ψ)

Φn (ψ)
f̃n (ψ) dψ

]
,

which could be interpreted as

un (φ) =

∫ φ2

φ1

gn (φ, ψ) f̃n (ψ) dψ,

where

gn (φ, ψ) =
AnBn

2ν (A2n +B2n)


(

Φn(ψ)
An
− An

Φn(ψ)

)(
Bn

Φn(φ)
+ Φn(φ)

Bn

)
, α ≤ ψ ≤ φ(

Φn(φ)
An
− An

Φn(φ)

)(
Bn

Φn(ψ)
+ Φn(ψ)

Bn

)
, φ ≤ ψ ≤ β

.

(2.19)
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Now we make use of (2.14) to find the Green’s function for the homogeneous

boundary-value problem corresponding to that in (2.1), (2.15) and (2.16). Breaking

the product of sines into the difference of cosines, using then the standard summation

formula [30]

∞∑
n=1

p2n−1

2n− 1
cos(2n− 1)α =

1

4
ln

(
1 + 2p cosα + p2

1− 2p cosα + p2

)
,

and introducing shorthand notations

HN (x, α, β) =
1

π
ln

(
1 + 2x cosα + x2

1− 2x cosα + x2

)
− 1

π
ln

(
1 + 2x cos β + x2

1− 2x cos β + x2

)
, (2.20)

κ (θ, τ) =
π

γ
(θ + τ) , and η (θ, τ) =

π

γ
(θ − τ) , (2.21)

we appear at the Green’s function G (φ, θ;ψ, τ) in the form

G (φ, θ;ψ, τ) = HN

(√
Φ (φ) Φ (ψ)

B2
,
η

2
,
κ

2

)
−HN

(√
A2

Φ (φ) Φ (ψ)
,
η

2
,
κ

2

)

+

 HN

(√
Φ(φ)
Φ(ψ)

, η
2
, κ

2

)
−HN

(√
Φ(φ)A2

Φ(ψ)B2
, η

2
, κ

2

)
HN

(√
Φ(ψ)
Φ(φ)

, η
2
, κ

2

)
−HN

(√
Φ(ψ)A2

Φ(φ)B2
, η

2
, κ

2

) +R, (2.22)

where R = R (φ, θ;ψ, τ) is the regular part of the original series in (2.14) which

converges uniformly and is expressed as

R (φ, θ;ψ, τ) =

∞∑
n=1

1

2πν

An (Φn (φ) +Bn) (Φn (ψ)− An)

Bn
√

Φn (φ) Φn (ψ) (Bn + An)
sin νθ sin ντ ,

and the upper branch of the third additive component in (2.22) is valid for α ≤ φ ≤ ψ,

whereas in its lower branch ψ ≤ φ ≤ β.

Note that the Green’s function in (2.22) possesses the logarithmic singularity when

φ→ ψ and θ → τ and represents the solution of the boundary-value problem in (2.1),

(2.15) and (2.16) if the right-hand side function f (φ, θ) in (2.1) is understood as the

Dirack delta-function δ (φ− ψ, θ − τ). Profile of the Green’s function just found is

shown in Figure 2 for the domain Ω = {φ, θ|0.15π ≤ φ ≤ 0.5π, 0 ≤ θ ≤ 0.5π} with a

point-source location at (0.35π, 035π) .
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Figure 2: A point source-generated field in the spherical quadrilateral

The described in this section technique can be used to obtain compact representa-

tions of Green’s functions for a score of boundary-value problems set up for a variety

of regions on a spherical surface.

Before proceeding further with our development we introduce some simplifying

notations. First a 4-letter abbreviation will be used to specify the boundary con-

ditions, where each letter corresponds to a specific boundary condition operator in

(2.2)-(2.3). "D" stays for the Dirichlet condition, "N" means the Neumann condi-

tion, while "S" means the boundary condition at a singular point. For example, the

boundary conditions in (2.15) and (2.16) could be referred to as DNDN. In addition,

along with HN introduced in (2.20), we use the shorthand notation HD(x, α, β) for

the logarithmic function

HD(x, α, β) = − 1

4π
ln

(
1− 2x cosα + x2

1− 2x cos β + x2

)
. (2.23)

Table 1 contains a number of computer-friendly expressions of Green’s functions

constructed for well-posed boundary-value problems [10, 11]. In cases where the series

in (2.14) cannot be completely summed up, we split the logarithmic singularity, and

leave the regular components Ri expressed as uniformly convergent series.

In Figure 3, the superposition of three profiles of the Green’s function is shown for

the Dirichlet boundary-value problem posed in a spherical biangle of radius 1. The
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domain Ω is chosen as {(φ, θ) |0 ≤ φ ≤ π, 0 ≤ θ ≤ 0.3π} , the locations of the point

sources are (0.35π, 0.06π) , (0.55π, 0.12π) , and (0.45π, 0.27π)

Figure 3: The potential field generated by three

point sources in a spherical biangle

Table 1: Green’s functions for boundary-value problems posed on a sphere

# Boundary conditions G (φ, θ;ψ, τ)

1 DDSD HD

(
Φ(φ)Φ(ψ)

B2
, κ, η

)
−HD

(
Φ(φ)
Φ(ψ)

, κ, η
)

2 DDSN −HD

(
Φ(φ)Φ(ψ)

B2
, κ, η

)
−HD

(
Φ(φ)
Φ(ψ)

, κ, η
)

3 DNSD HN

(√
Φ(φ)Φ(ψ)

B2
, κ

2
, η

2

)
−HN

(√
Φ(φ)
Φ(ψ)

, κ
2
, η

2

)
4 DNSN −HN

(√
Φ(φ)Φ(ψ)

B2
, κ

2
, η

2

)
−HN

(√
Φ(φ)
Φ(ψ)

, κ
2
, η

2

)
5 DDSS −HD

(
Φ(φ)
Φ(ψ)

, κ, η
)

6 DNSS −HN

(√
Φ(φ)
Φ(ψ)

, κ
2
, η

2

)
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Table 1 (cont.): Green’s functions for boundary-value problems posed on a sphere

# Boundary G (φ, θ;ψ, τ)

conditions

7 DDDD HD

(
Φ(φ)Φ(ψ)

B2
, κ, η

)
−HD

(
Φ(φ)A2

Φ(ψ)B2
, κ, η

)
−HD

(
Φ(φ)
Φ(ψ)

, κ, η
)

+HD

(
A2

Φ(φ)Φ(ψ)
, κ, η

)
+R7

8 DDDN −HD

(
Φ(φ)Φ(ψ)

B2
, κ, η

)
+HD

(
Φ(φ)A2

Φ(ψ)B2
, κ, η

)
−HD

(
Φ(φ)
Φ(ψ)

, κ, η
)

+HD

(
A2

Φ(φ)Φ(ψ)
, κ, η

)
+R8

9 DDND HD

(
Φ(φ)Φ(ψ)

B2
, κ, η

)
+HD

(
Φ(φ)A2

Φ(ψ)B2
, κ, η

)
−HD

(
Φ(φ)
Φ(ψ)

, κ, η
)
−HD

(
A2

Φ(φ)Φ(ψ)
, κ, η

)
+R9

10 DDNN −HD

(
Φ(φ)Φ(ψ)

B2
, κ, η

)
−HD

(
Φ(φ)A2

Φ(ψ)B2
, κ, η

)
−HD

(
Φ(φ)
Φ(ψ)

, κ, η
)
−HD

(
A2

Φ(φ)Φ(ψ)
, κ, η

)
+R10

11 DNDD HN

(√
Φ(φ)Φ(ψ)

B2
, κ

2
, η

2

)
−HN

(√
Φ(φ)A2

Φ(ψ)B2
, κ

2
, η

2

)
−HN

(√
Φ(φ)
Φ(ψ)

, κ
2
, η

2

)
+HN

(√
A2

Φ(φ)Φ(ψ)
, κ

2
, η

2

)
+R11

12 DNDN −HN

(√
Φ(φ)Φ(ψ)

B2
, κ

2
, η

2

)
+HN

(√
Φ(φ)A2

Φ(ψ)B2
, κ

2
, η

2

)
−HN

(√
Φ(φ)
Φ(ψ)

, κ
2
, η

2

)
+HN

(√
A2

Φ(φ)Φ(ψ)
, κ

2
, η

2

)
+R12

13 DNND HN

(√
Φ(φ)Φ(ψ)

B2
, κ

2
, η

2

)
+HN

(√
Φ(φ)A2

Φ(ψ)B2
, κ

2
, η

2

)
−HN

(√
Φ(φ)
Φ(ψ)

, κ
2
, η

2

)
−HN

(√
A2

Φ(φ)Φ(ψ)
, κ

2
, η

2

)
+R13

14 DNNN −HN

(√
Φ(φ)Φ(ψ)

B2
, κ

2
, η

2

)
−HN

(√
Φ(φ)A2

Φ(ψ)B2
, κ

2
, η

2

)
−HN

(√
Φ(φ)
Φ(ψ)

, κ
2
, η

2

)
−HN

(√
A2

Φ(φ)Φ(ψ)
, κ

2
, η

2

)
+R14

Three different domain shapes are considered in Table 1, that is:

1. spherical triangle: {φ, θ | 0 ≤ φ ≤ β; 0 ≤ θ ≤ γ} in rows 1-4;

2. spherical biangle: {φ, θ | 0 ≤ φ ≤ π; 0 ≤ θ ≤ γ} in rows 5-6;
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3. spherical rectangle: {φ, θ | α ≤ φ ≤ β; 0 ≤ θ ≤ γ} in rows 7-14.

The regular components Ri, i = 7, 14 for the Green’s functions which cannot be

summed up are obtained as

R7 =

∞∑
n=1

1

2πν

A2n (Φ2n (φ)−B2n) (Φ2n (ψ)− A2n)

B2nΦn (φ) Φn (ψ) (B2n − A2n)
(cosnη − cosnκ) ,

R8 =
∞∑
n=1

1

2πν

A2n (Φ2n (φ) +B2n) (Φ2n (ψ)− A2n)

B2nΦn (φ) Φn (ψ) (B2n + A2n)
(cosnη − cosnκ) ,

R9 =
∞∑
n=1

1

2πν

A2n (B2n − Φ2n (φ)) (Φ2n (ψ) + A2n)

B2nΦn (φ) Φn (ψ) (B2n + A2n)
(cosnη − cosnκ) ,

R10 =
∞∑
n=1

1

2πν

A2n (Φ2n (φ) +B2n) (Φ2n (ψ) + A2n)

B2nΦn (φ) Φn (ψ) (B2n − A2n)
(cosnη − cosnκ) ,

R11 =
∞∑
n=1

1

2πν

An (Φn (φ)−Bn) (Φn (ψ)− An)

Bn
√

Φn (φ) Φn (ψ) (Bn − An)

(
cos

nη

2
− cos

nκ

2

)
,

R12 =
∞∑
n=1

1

2πν

An (Φn (φ) +Bn) (Φn (ψ)− An)

Bn
√

Φn (φ) Φn (ψ) (Bn + An)

(
cos

nη

2
− cos

nκ

2

)
,

R13 =
∞∑
n=1

1

2πν

An (Bn − Φn (φ)) (Φn (ψ) + An)

Bn
√

Φn (φ) Φn (ψ) (Bn + An)

(
cos

nη

2
− cos

nκ

2

)
,

and

R14 =
∞∑
n=1

1

2πν

An (Φn (φ) +Bn) (Φn (ψ) + An)

Bn
√

Φn (φ) Φn (ψ) (Bn − An)

(
cos

nη

2
− cos

nκ

2

)
.

Recall another type of boundary conditions for the problem in (2.1)-(2.3), which

is of a practical importance. It simulates the 2π-periodicity for the coordinate θ,

when in (2.2) θ2 = θ1 + 2π. This takes place, for example, in the case of boundary

conditions written as

u (φ, θ1)− u (φ, θ2) = 0 (2.24)

and
∂u (φ, θ1)

∂θ
− ∂u (φ, θ2)

∂θ
= 0. (2.25)
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In this case, the complete Fourier series expansions for u (φ, θ) and f (φ, θ) are

used as

u (φ, θ) =
1

2
u0 (φ) +

∞∑
n=1

u(c)
n (φ) cosnθ +

∞∑
n=1

u(s)
n (φ) sinnθ (2.26)

and

f (φ, θ) =
1

2
f0 (φ) +

∞∑
n=1

f (c)
n (φ) cosnθ +

∞∑
n=1

f (s)
n (φ) sinnθ. (2.27)

And the Green’s function for the boundary-value problem in (2.1), (2.3), (2.24), and

(2.25) appears in the form

G (φ, θ;ψ, τ) =
1

2
g0 (φ, ψ) +

∞∑
n=1

g(c)
n (φ, ψ) cosnθ cosnτ

+
∞∑
n=1

g(s)
n (φ, ψ) sinnθ sinnτ. (2.28)

The derivation of the above function will be given in detail only for the boundary-

value problem posed on a spherical belt Ω = {φ, θ | α ≤ φ ≤ β; 0 ≤ θ ≤ 2π} with

boundary conditions imposed on boundary lines φ = α and φ = β as

u (α, θ) = 0
∂u (β, θ)

∂φ
= 0. (2.29)

Green’s functions for other problems with 2π-periodic boundary conditions for θ

coordinate could be found in a similar way.

Note that the derivation of the Fourier coeffi cients g(c)
n (φ, ψ) and g

(s)
n (φ, ψ) is

indifferent to the type of the series, that is why we will omit the superscripts (s) and

(c) in what follows. Following the standard separation of variables procedure one

reduces the boundary-value problem in (2.1), (2.24), (2.25), and (2.29) to

1

a2 sinφ

d

dφ

(
sinφ

dun (φ)

dφ

)
− n2

a2 sin2 φ
un (φ) = −fn (φ) , n = 1, 2, 3, ... (2.30)

un (α) = 0 and
∂un (β)

∂φ
= 0. (2.31)

which results in the following expression of the Green’s function in (2.28)

G (φ, θ;ψ, τ) =
1

2
g0 (φ, ψ) +

∞∑
n=1

gn (φ, ψ) cosn (θ − τ) . (2.32)
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The cases n = 0 and n ≥ 1 should be considered individually. Note, that for the

case n ≥ 1, the boundary-value problem in (2.30)-(2.31) is identical to one in (2.7),

(2.16), if the parameter ν is replaced with n. This allows us to state that

gn (φ, ψ) =
AnBn

2n (A2n +B2n)


(

Φn0 (ψ)

An0
− An0

Φn0 (ψ)

)(
Bn0

Φn0 (φ)
+

Φn0 (φ)

Bn0

)
, α ≤ ψ ≤ φ(

Φn0 (φ)

An0
− An0

Φn0 (φ)

)(
Bn0

Φn0 (ψ)
+

Φn0 (ψ)

Bn0

)
, φ ≤ ψ ≤ β

,

(2.33)

where

Φ0 (ξ) = tan (ξ/2) , A0 = tan (α/2) , and B0 = tan(β/2). (2.34)

To derive the component g0 (φ, ψ) in (2.32) we find the general solution u0 (φ) of

the homogeneous equation corresponding to (2.8) for n = 0

1

a2 sinφ

d

dφ

(
sinφ

du0 (φ)

dφ

)
= 0,

as

u0 (φ) = C1 ln

(
tan

(
φ

2

))
+ C2.

Using the method of variation of parameters, one finds the general solution to the

corresponding non-homogeneous equation with the right-hand side function f0 (φ) as

u0 (φ) =

∫ φ

α

ln
Φ0 (ψ)

Φ0 (φ)
f̃0 (ψ) dψ +D1 ln Φ0 (φ) +D2, (2.35)

where f̃0 (ψ) = a2 sinψf0 (ψ).

The constants of integration D1 andD2 could be found by satisfying the boundary

conditions in (2.29) as

D1 =

∫ β

α

f̃0 (ψ) dψ and D2 = −
∫ β

α

ln (A0) f̃0 (ψ) dψ.

Substituting the above into (2.35), u0 (φ) reads as

u0 (φ) =

∫ φ

α

ln
Φ0 (ψ)

A0

f̃0 (ψ) dψ +

∫ β

φ

ln
Φ0 (φ)

A0

f̃0 (ψ) dψ,

providing us with

g0 (φ, ψ) =

 ln Φ0(φ)
A0

if α ≤ φ ≤ ψ

ln Φ0(ψ)
A0

if ψ ≤ φ ≤ β
. (2.36)
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To sum up the series in (2.32) with the coeffi cients defined in (2.33), we recall

another standard summation formula [30]

∞∑
n=1

pn

n
cosnα = −1

2
ln
(
1− 2p cosα + p2

)
(2.37)

and introduce the shorthand notation of the logarithmic function HP (x, α)

HP (x, α) =
1

4π
ln
(
1− 2x cosα + x2

)
(2.38)

The ultimate representation for the Green’s function of the problem in (2.1),

(2.24), 2.25), and (2.29) appears as

G (φ, θ;ψ, τ) = HP

(
A2

0

Φ0 (φ) Φ0 (ψ)
, θ − τ

)
−HP

(
Φ0 (φ) Φ0 (ψ)

B2
0

, θ − τ
)

+


ln Φ0(φ)

A0
−HP

(
Φ0(φ)
Φ0(ψ)

, θ − τ
)

+HP

(
Φ0(ψ)A20
Φ0(φ)B20

, θ − τ
)

ln Φ0(ψ)
A0
−HP

(
Φ0(ψ)
Φ0(φ)

, θ − τ
)

+HP

(
Φ0(φ)A20
Φ0(ψ)B20

, θ − τ
) +R

(2.39)

where the upper branch of the third additive component is valid for the case α ≤

φ ≤ ψ, while the lower branch represents the case ψ ≤ φ ≤ β, and the last additive

component R = R (φ, θ;ψ, τ) is expressed as the series

R (φ, θ;ψ, τ) =
∞∑
n=1

1

2πn

A2n
0 (Φ2n

0 (φ) +B2n
0 ) (Φ2n

0 (ψ)− A2n
0 )

B2n
0 Φn

0 (φ) Φn
0 (ψ) (B2n

0 + A2n
0 )

cosn (θ − τ) (2.40)

that converges uniformly.

Applying the technique just described, one finds Green’s functions for some other

boundary-value problems posed on a 2π-periodic spherical region. That is, for the

spherical cap Ω = {φ, θ | 0 ≤ φ ≤ β; 0 ≤ θ ≤ 2π}, with the Dirichlet conditions im-

posed on φ = β, we obtain

G (φ, θ;ψ, τ) =
1

4π
ln

(
B2

0 (Φ2
0 (φ)− 2Φ0 (φ) Φ0 (ψ) cos (θ − τ) + Φ2

0 (ψ))

B4
0 − 2B2

0Φ0 (φ) Φ0 (ψ) cos (θ − τ) + Φ2
0 (φ) Φ2

0 (ψ)

)
. (2.41)



30

The case of spherical belt, Ω = {φ, θ | α ≤ φ ≤ β; 0 ≤ θ ≤ 2π}, with the Dirichlet

conditions imposed on both edges, results in

G (φ, θ;ψ, τ) = HP

(
A2

0

Φ0 (φ) Φ0 (ψ)
, θ − τ

)
+HP

(
Φ0 (φ) Φ0 (ψ)

B2
0

, θ − τ
)

+


ln Φ0(φ)

B0
ln Φ0(ψ)

A0
−HP

(
Φ0(φ)
Φ0(ψ)

, θ − τ
)
−HP

(
Φ0(ψ)A20
Φ0(φ)B20

, θ − τ
)

ln Φ0(ψ)
B0

ln Φ0(φ)
A0
−HP

(
Φ0(ψ)
Φ0(φ)

, θ − τ
)
−HP

(
Φ0(φ)A20
Φ0(ψ)B20

, θ − τ
)

+RDD (2.42)

where

RDD = RDD (φ, θ;ψ, τ) =
∞∑
n=1

1

2πn

A2n
0 (Φ2n

0 (φ)−B2n
0 ) (Φ2n

0 (ψ)− A2n
0 )

B2n
0 Φn

0 (φ) Φn
0 (ψ) (B2n

0 − A2n
0 )

cosn (θ − τ) ,

The spherical beltΩ = {φ, θ | α ≤ φ ≤ β; 0 ≤ θ ≤ 2π}, with the Neumann-Dirichlet

conditions, yields

G (φ, θ;ψ, τ) = −HP

(
A2

0

Φ0 (φ) Φ0 (ψ)
, θ − τ

)
+HP

(
Φ0 (φ) Φ0 (ψ)

B2
0

, θ − τ
)

+


ln Φ0(φ)

B0
−HP

(
Φ0(φ)
Φ0(ψ)

, θ − τ
)

+HP

(
Φ0(ψ)A20
Φ0(φ)B20

, θ − τ
)

ln Φ0(ψ)
B0
−HP

(
Φ0(ψ)
Φ0(φ)

, θ − τ
)

+HP

(
Φ0(φ)A20
Φ0(ψ)B20

, θ − τ
) +RND

(2.43)

where

RND = RND (φ, θ;ψ, τ) =

∞∑
n=1

1

2πn

A2n
0 (B2n

0 − Φ2n
0 (φ)) (Φ2n

0 (ψ) + A2n
0 )

B2n
0 Φn

0 (φ) Φn
0 (ψ) (B2n

0 + A2n
0 )

cosn (θ − τ)

An illustrative example for the 2π-periodic problem setting is shown below.
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Figure 4: Potential field generated by multiple point sources in a spherical cap

In Figure 4 we depict the potential field generated by four point sources in the

spherical cap

Ω = {(φ, θ) |0 ≤ φ ≤ 0.5π, 0 ≤ θ < 2π}

This potential field is simulated by superposition of four profiles of the Green’s

function from (2.41) with point sources located at (0.22π, 0.24π) , (0.42π, 0.5π) ,

(0.27π, 1.7π) , and (0.37π, 1.9π) .

2.2 Problems on 2π-periodic cylindrical surface

The list of surfaces that allow application of our approach is not limited to those we

touched upon so far. To illustrate this point, we consider a boundary-value problem

posed on a fragment Ω = {z, θ | 0 ≤ z ≤ h; 0 ≤ θ ≤ 2π} of a cylindrical surface of

radius a, shown in Figure 5.
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Figure 5: Closed cylindrical shell of a finite height

Let the two-dimensional Poisson equation

∂2u (z, θ)

∂z2
+

1

a2

∂2u (z, θ)

∂θ2 = −f (z, θ) , in Ω (2.44)

written in cylindrical coordinates be subject to the boundary conditions

u (z, 0) = u (z, 2π) ,
∂u (z, 0)

∂θ
=
∂u (z, 2π)

∂θ
(2.45)

and

u (0, θ) = 0,
∂u (h, θ)

∂z
= 0 (2.46)

To obtain the solution to the above boundary-value problem in terms of the

Green’s function of the homogeneous problem corresponding to (2.44)-(2.46), we refer

to the Fourier series expansions in (2.26) and (2.27), reducing the governing partial

differential equation in (2.44) to the set of ordinary differential equations

d2un (z)

dz2
− n2

a2
un (z) = −fn (z) (2.47)

subject to the boundary conditions

un (0) = 0, and
dun (h)

dz
= 0 (2.48)
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Note that the case of n = 0 should be considered separately, and we will do it

later. A fundamental set of solutions of the homogeneous equation, corresponding to

(2.47), for the case of n ≥ 1, could be chosen as

enz/a and e−nz/a

Applying the standard method of variation of parameters, one obtains the general

solution of the non-homogeneous equation in (2.47) as

un (z) =
a

2n

∫ z

0

[
en(z−s)/a − e−n(z−s)/a] fn (s) ds

+D1e
nz/a +D2e

−nz/a (2.49)

The first boundary condition in (2.48) yields

D1 +D2 = 0 (2.50)

while the second condition in (2.48) results in

D1e
nh/a −D2e

−nh/a = − a

2n

∫ h

0

[
en(h−s)/a − e−n(h−s)/a] fn (s) ds (2.51)

The equations in (2.50) and (2.51) form a system of linear algebraic equations in

D1 and D2. Solving for the latter we find then the solution for the boundary-value

problem in (2.47)-(2.48) as

un (z) = −a
n

∫ z

0

sinh (ns/a) sinh (n(h− z)/a)

cosh (nh/a)
fn (s) ds

−a
n

∫ h

z

sinh (nz/a) sinh (n(h− s)/a)

cosh (nh/a)
fn (s) ds (2.52)

which, according to (1.22) (see Chapter 1), provides us with the Green’s function of

the homogeneous boundary-value problem corresponding to (2.47)-(2.48) in the form

gn (z, s) = − a

n cosh (nh/a)

 sinh (nz/a) sinh (n(h− s)/a) , if 0 ≤ z ≤ s

sinh (ns/a) sinh (n(h− z)/a) , if s ≤ z ≤ h
(2.53)

At this point we turn back to the problem setting in (2.47)-(2.48), and consider

the case of n = 0 for which the governing equation reduces to

d2u0 (z)

dz2
= −f0 (z) (2.54)
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Using our customary variation of parameters procedure, one finds the Green’s

function for the boundary value problem in (2.54), (2.48) as

g0 (z, s) =

 z, if 0 ≤ z ≤ s

s, if s ≤ z ≤ h
(2.55)

So, with the explicit expressions just obtained for g0(z, s) and gn(z, s), the Green’s

function of the boundary-value problem in (2.44)-(2.46) reads as

G (z, θ; s, τ) =
1

2
g0 (z, s) +

∞∑
n=1

gn (z, s) cosn (θ − τ) (2.56)

The above series converges non-uniformly due to the logarithmic singularity of the

Green’s function. To enhance the series computability, we split off its singular and

regular components. But before going any further with this, introduce the function

g̃n (z, s) = −a
n

 sinh (nz/a) sinh (n(h− s)/a) , if 0 ≤ z ≤ s

sinh (ns/a) sinh (n(h− z)/a) , if s ≤ z ≤ h

which reads, in terms of the coeffi cients gn(z, s) of the series in (2.56), as

g̃n (z, s) = gn (z, s) cosh (nh/a)

Thus, the series in (2.56) can be transformed as

∞∑
n=1

gn (z, s) cosn (θ − τ) = 2
∞∑
n=1

g̃n (z, s)

enh/a + e−nh/a
cosn (θ − τ)

= 2
∞∑
n=1

g̃n (z, s)

enh/a + e−nh/a
cosn (θ − τ) + 2

∞∑
n=1

g̃n (z, s)

enh/a
cosn (θ − τ)

−2
∞∑
n=1

g̃n (z, s)

enh/a
cosn (θ − τ)

= 2

∞∑
n=1

g̃n (z, s)

enh/a
cosn (θ − τ)− 2

∞∑
n=1

g̃n (z, s)

e3nh/a + enh/a
cosn (θ − τ)

Notice that while the second of the two series above converges uniformly (allowing

by the way a direct truncation), the first one appears summable. Indeed, application
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of the standard formula shown in (2.37) yields

∞∑
n=1

g̃n (z, s)

enh/a
cosn (θ − τ)

= a
[
HP

(
e(z+s−2h)/a, θ − τ

)
+HP

(
e(−z−s)/a, θ − τ

)
−HP

(
e(z−s)/a, θ − τ

)
−HP

(
e(−z+s−2h)/a, θ − τ

)]
(2.57)

where HP (x, α) was introduced earlier in (2.38).

Hence, we finally arrived at an ultimate computer-friendly representation of the

Green’s function that we are looking for. That is

G (z, θ; s, τ) = a
[
HP

(
e(z+s−2h)/a, θ − τ

)
+HP

(
e(−z−s)/a, θ − τ

)]
+R (z, θ; s, τ)

+

 z/2− a
[
HP

(
e(z−s)/a, θ − τ

)
+HP

(
e(−z+s−2h)/a, θ − τ

)]
s/2− a

[
HP

(
e(−z+s)/a, θ − τ

)
+HP

(
e(z−s−2h)/a, θ − τ

)](2.58)
where

R (z, θ; s, τ) = −2
∞∑
n=1

g̃n (z, s)

e3nh/a + enh/a
cosn (θ − τ) .

and the z/2 containing branch of the last additive component in (2.58) is valid for

0 ≤ z ≤ s, while the s/2 containing branch stays for s ≤ z ≤ h.

In Figure 6 we show superposition of five Green’s function profiles for the boundary-

value problem posed in (2.44)-(2.46). The region Ω is chosen to be

{z, θ|0 ≤ z ≤ 3.0, 0 ≤ θ < 2π}

and the point sources are located at (0.8, 0.12π) , (0.8, 0.48π) , (1.6, 0.07π) , (1.6, 0.53π) ,

and (2.4, 0.35π) .
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Figure 6: Field generated by multiple point sources

in thin closed cylindrical shell

The described technique was used to find Green’s functions for a number of

boundary-value problems posed in various regions on a cylindrical shell. Table 2

summarizes all the results we obtained. We use the 4-letter abbreviation similar to

that introduced earlier in the previous section to specify the boundary conditions:

"D" stays for the Dirichlet condition, while "N" stays for the Nuemann condition,

"I" is used, when the boundedness condition is imposed at infinity. In the case of

2π-periodicity, the "P" character is used. We present only the branches valid for

0 ≤ z ≤ s, and the other branches could be obtained by interchanging the variables

z and s. The functions HD, HN , and HP , as well as the parameters κ and η were

introduced earlier (see (2.23), (2.20), (2.38), and (2.21)).
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Table 2: Green’s functions for problems posed on a cylinder

# Boundary Green’s function

conditions

1 DDII −aHD

(
eπ(z−s)/aγ, κ, η

)
2 DNII −aHN

(
eπ(z−s)/2aγ, κ

2
, η

2

)
3 DDDI aHD

(
e−π(z+s)/aγ, κ, η

)
− aHD

(
eπ(z−s)/aγ, κ, η

)
4 DNDI aHN

(
e−π(z+s)/2aγ, κ

2
, η

2

)
− aHN

(
eπ(z−s)/2aγ, κ

2
, η

2

)
5 DDDD aHD

(
eπ(z+s−2h)/aγ, κ, η

)
− aHD

(
eπ(z−s)/aγ, κ, η

)
−aHD

(
eπ(−z+s−2h)/aγ, κ, η

)
+ aHD

(
e−π(z+s)/aγ, κ, η

)
+R5

6 DNDD aHN

(
eπ(z+s−2h)/2aγ, κ

2
, η

2

)
− aHN

(
eπ(z−s)/2aγ, κ

2
, η

2

)
−aHN

(
eπ(−z+s−2h)/2aγ, κ

2
, η

2

)
+ aHN

(
e−π(z+s)/2aγ, κ

2
, η

2

)
+R6

7 DDDN −aHD

(
eπ(z+s−2h)/aγ, κ, η

)
− aHD

(
eπ(z−s)/aγ, κ, η

)
+aHD

(
eπ(−z+s−2h)/aγ, κ, η

)
+ aHD

(
e−π(z+s)/aγ, κ, η

)
+R7

8 DNDN −aHD

(
eπ(z+s−2h)/2aγ, κ

2
, η

2

)
− aHD

(
eπ(z−s)/2aγ, κ

2
, η

2

)
+aHD

(
eπ(−z+s−2h)/2aγ, κ

2
, η

2

)
+ aHD

(
e−π(z+s)/2aγ, κ

2
, η

2

)
+R8

9 PDD aHP

(
e(z+s−2h)/a, θ − τ

)
− aHP

(
e(z−s)/a, θ − τ

)
−aHP

(
e(−z+s−2h)/a, θ − τ

)
+ aHP

(
e−(z+s)/a, θ − τ

)
+R9

10 PDN z − aHP

(
e(z+s−2h)/a, θ − τ

)
− aHP

(
e(z−s)/a, θ − τ

)
+aHP

(
e(−z+s−2h)/a, θ − τ

)
+ aHP

(
e−(z+s)/a, θ − τ

)
+R10

11 PDI aHP

(
e−(z+s)/a, θ − τ

)
− aHP

(
e(z−s)/a, θ − τ

)

Table 2 provides the Green’s functions for problems posed on five different cyl-

indrical fragments:

1. Infinite cylindrical shell {z, θ | −∞ ≤ z ≤ ∞; 0 ≤ θ ≤ γ} for problems in rows

1-2;

2. Semi-infinite cylindrical shell {z, θ | 0 ≤ z ≤ ∞; 0 ≤ θ ≤ γ} in rows 3-4;

3. Cylindrical rectangle {z, θ | 0 ≤ z ≤ h; 0 ≤ θ ≤ γ} in rows 5-8;
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4. Finite cylindrical shell {z, θ | 0 ≤ z ≤ h; 0 ≤ θ ≤ 2π} in rows 9-10;

5. Semi-infinite cylindrical shell {z, θ | 0 ≤ z ≤ ∞; 0 ≤ θ ≤ 2π} in row 11.

The regular components Ri = Ri (z, θ; s, τ), i = 5, 10 are found as

R5 =
∞∑
n=1

a

2πn

sinh (nπz/γa) sinh (nπ(s− h)/γa)

e2πnh/γa sinh (nπh/γa)
(cosnη − cosnκ) ,

R6 =
∞∑
n=1

a

2πn

sinh (nπz/2γa) sinh (nπ(s− h)/2γa)

enπh/γa sinh (nπh/2γa)

(
cos

nη

2
− cos

nκ

2

)
,

R7 =
∞∑
n=1

a

2πn

sinh (nπz/γa) cosh (nπ(s− h)/γa)

e2nπh/γa cosh (nπh/γa)
(cosnη − cosnκ) ,

R8 =
∞∑
n=1

a

2πn

sinh (nπz/2γa) cosh (nπ(s− h)/2γa)

enπh/γa cosh (nπh/2γa)

(
cos

nη

2
− cos

nκ

2

)
,

R9 =
∞∑
n=1

a

2πn

sinh (nz/a) sinh (n(s− h)/a)

e2nh/a sinh (nh/a)
cosn (θ − τ) ,

and

R10 =
∞∑
n=1

a

2πn

sinh (nz/a) cosh (n(s− h)/a)

e2nh/a cosh (nh/a)
cosn (θ − τ) .

As another illustrative example, the potential field generated by three point sources

in a cylindrical rectangle, with Dirichlet boundary conditions, is shown in Figure 7.

The Green’s function presented in row 5 of Table 2 is employed. A half of cylindrical

shell of radius a = 1.0, and height h = 2.0 is considered. The locations of the point

sources are (0.9, 0.07π) , (0.7, 0.65π) , and (1.5, 0.75π) .
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Figure 7: Three point sources in a cylindrical quadrilateral

The results obtained so far are for problems with Dirichlet and Neumann boundary

conditions imposed on different fragments of regions’boundaries. In what follows, the

derivation of Green’s functions for boundary-value problems with Robin conditions

are presented.

Consider the two-dimensional Poisson equation in (2.44) posed on a closed cyl-

indrical region of height h, subject to the boundary condition

u (0, θ)− λ∂u (0, θ)

∂z
= 0, u (h, θ) = 0 (2.59)

where λ is a positive constant representing the thermal conductivity of the material

of which the shell is made. We aim at finding the Green’s function for the boundary-

value problem in (2.44), (2.45), and (2.59). Since the region is closed (0 ≤ θ ≤ 2π),

the Green’s function is looked for in the form of (2.56). Following the standard

separation of variables procedure, we use the series expansions in (2.26) and (2.27).

This reduces the governing boundary-value problem to

d2un (z)

dz2
− n2

a2
un (z) = −fn (z) (2.60)

un (0)− λdun (0)

dz
= 0, un (h) = 0 (2.61)

in the coeffi cients un(z) of the trigonometric Fourier series.
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Consider the case of n > 0, while the case n = 0 is to be treated separately. The

general solution of the above equation is already found in (2.49) as

un (z) =
a

2n

∫ z

0

[
en(z−s)/a − e−n(z−s)/a] fn (s) ds+D1e

nz/a +D2e
−nz/a (2.62)

Satisfying the boundary conditions in (2.61) one comes up with the system of

linear algebraic equations 1− λn/a 1 + λn/a

enh/a e−nh/a

 D1

D2

 =

 0

−aI/n


in D1 and D2, which results in

D1 =
a

n∆

(
1 +

λ

a
n

)
I, D1 = − a

n∆

(
1− λ

a
n

)
I

where

I =

∫ h

0

sinh (n (h− s) /a) fn (s) ds

and

∆ =

(
1− λ

a
n

)
e−nh/a −

(
1 +

λ

a
n

)
enh/a

Substituting the above into (2.62) one obtains

un (z) =
a

n∆

∫ z

0

sinh (n (h− z) /a)

[(
1 +

λ

a
n

)
ens/a −

(
1− λ

a
n

)
e−ns/a

]
fn (s) ds

+
a

n∆

∫ h

z

sinh (n (h− s) /a)

[(
1 +

λ

a
n

)
enz/a −

(
1− λ

a
n

)
e−nz/a

]
fn (s) ds

The Green’s function for the homogeneous boundary-value problem corresponding

to that in (2.60) and (2.61) is found as

gn (z, s) =
a

n∆

 sinh (n(h− s)/a)
[
(1− nλ/a) e−nz/a − (1 + nλ/a) enz/a

]
, if 0 ≤ z ≤ s

sinh (n(h− z)/a)
[
(1− nλ/a) e−ns/a − (1 + nλ/a) ens/a

]
, if s ≤ z ≤ h

(2.63)

For the case of n = 0, the equation in (2.60) reduces to

d2u0 (z)

dz2
= −f0 (z) (2.64)
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Applying the standard method of variation of parameters, one finds the solution

for the problem in (2.61) and (2.64) as

u0 (z) =

∫ z

0

(λ+ s) (h− z)

λ+ h
f0 (s) ds+

∫ h

z

(λ+ z) (h− s)
λ+ h

f0 (s) ds

which results in

g0 (z, s) =
1

λ+ h

 (λ+ z) (h− s) , if 0 ≤ z ≤ s

(λ+ s) (h− z) , if s ≤ z ≤ h
(2.65)

Note, that the two branches of the Green’s functions in (2.63) and (2.65) are

symmetric, hence, the further analysis may be provided only for the case z ≤ s, since

the other case could be treated by formal interchange of the variables z and s.After the

substitution of (2.63) and (2.65) into (2.56) we obtain the series which converges non-

uniformly and cannot be completely summed up. Following the procedure described

earlier, we set apart its logarithmic and regular components as

G (z, θ; s, τ) =
1

2
g0 (z, s) + L (z, θ; s, τ) + P (z, θ; s, τ)

where

L (z, θ; s, τ) =
∞∑
n=1

a

2πn
[
1− nλ/a
1 + nλ/a

en(−z−s)/a − 1− nλ/a
1 + nλ/a

en(−z+s−2h)/a

+en(z+s−2h)/a − en(z−s)/a] cosn (θ − τ) (2.66)

and

P (z, θ; s, τ) =

∞∑
n=1

a

2πn

a− nλ
a+ nλ

Pn (z, s) cosn (θ − τ) (2.67)

with

Pn (z, s) =
sinh (n(h− s)/a)

[
(a− nλ) e−nz/a − (a+ nλ) enz/a

]
(a+ nλ) e3nh/a − (a− nλ) enh/a

It appears that, the last two of the four additive components in (2.66) allow a

complete summation. In order to achieve high computational effi ciency for the first

two components, some algebra should be applied. We show in detail the transform-

ations for just one of them implying that the second component can be transformed
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in a similar way. That is

a

2πn

1− nλ/a
1 + nλ/a

en(−z−s)/a =
a

2πn
en(−z−s)/a − λ

π (1 + nλ/a)
en(−z−s)/a

=
a

2πn
en(−z−s)/a − λ

π (1 + nλ/a)
en(−z−s)/a +

a

πn
en(−z−s)/a − a

πn
en(−z−s)/a

= − a

2πn
en(−z−s)/a +

a

πn (1 + nλ/a)
en(−z−s)/a

If we substitute the above into (2.66), the second component of the above has the

convergence rate of 1/n2 while the first one falls into the standard summation formula

in (2.37) territory. With all this in mind, we ultimately obtain a computer-friendly

form of the Green’s function for the boundary-value problem in (2.44), (2.45), and

(2.59) as

G (z, θ; s, τ) =
(λ+ z) (h− s)

λ+ h
+ aHP

(
e(z+s−2h)/a, θ − τ

)
− aHP

(
e(−z−s)/a, θ − τ

)
+aHP

(
e(−z+s−2h)/a, θ − τ

)
− aHP

(
e(z−s)/a, θ − τ

)
+R (z, θ; s, τ)

where

R (z, θ; s, τ) =
∞∑
n=1

a

πn

en(−z−s)/a − en(−z+s−2h)/a

(1 + nλ/a)
cosn (θ − τ) + P (z, θ; s, τ)

and the term P (z, θ; s, τ) is presented in (2.67).

To illustrate the computability of the representation of the Green’s function to

the problem setting in (2.44), (2.45), and (2.59) (that we just obtained), we depict

in Figure 8 the potential fields generated by a point source located at (0.66, 0.42π)

in the closed cylindrical shell of radius a = 1.0 and height h = 1.0. Three different

values 0.0, 1.0, and 10.0 have been chosen for the parameter λ in (2.59).
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Figure 8: A point source in a cylindrical shell with Dirichlet and Robin

boundary conditions imposed

Note that in the case of λ = 0.0 (fragment (a)), the first of the boundary conditions

in (2.59) reduces to the Dirichlet type, whilst the fragment (c) reduces practically to

the Neumann type condition.

2.3 Problem posed on a toroidal surface

For another problem setting, illustrating our approach, consider the quadrilateral

Ω = {ϕ, θ | ϕ0 ≤ ϕ ≤ ϕ1; 0 ≤ θ ≤ γ} ,

on a toroidal surface with radii R and r (see Figure 9).

Figure 9: The toroidal surface (axial cross-section and a quadrilateral Ω)
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The nonhomogeneous equation that simulates potential-type phenomenon in a

fragment Ω of a toroidal shell reads as

1

D (ϕ)

∂

∂ϕ

(
D (ϕ)

∂u (ϕ, θ)

∂ϕ

)
+

r2

D2 (ϕ)

∂2u (ϕ, θ)

∂θ2 = −f (ϕ, θ) (2.68)

which we subject to the Dirichlet boundary conditions

u (ϕ, 0) = 0, u (ϕ, γ) = 0 (2.69)

and

u (ϕ0, θ) = 0, u (ϕ1, θ) = 0 (2.70)

The function D (ϕ) in (2.68) is defined in terms of the radii R and r of the

considered toroidal surface as

D (ϕ) = R + r sinϕ.

To construct the Green’s function for the homogeneous boundary-value problem

corresponding to (2.68)-(2.70) we follow the strategy implemented earlier in Sections

2.1 and 2.2, and express the solution u (ϕ, θ) of the problem in (2.68)-(2.70) and the

right-hand side f (ϕ, θ) of the governing equation in the Fourier series

u (φ, θ) =
∞∑
n=1

un (φ) sin νθ (2.71)

and

f (φ, θ) =
∞∑
n=1

fn (φ) sin νθ (2.72)

where ν = nπ/γ. This reduces the partial differential equation in (2.68) to the set of

ordinary differential equations

1

r

d

dϕ

(
D (ϕ)

dun (ϕ)

dϕ

)
− rν2

D (ϕ)
un (ϕ) = −f̃n (ϕ) (2.73)

subject to the boundary conditions

un (ϕ0) = 0, un (ϕ1) = 0 (2.74)
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in the coeffi cients un (ϕ) of the series in (2.71), where

f̃n (ϕ) =
D (ϕ)

r
fn (ϕ) .

The fundamental set of solutions of the homogeneous equation corresponding to

(2.73) could be chosen [31] as

eνω(ϕ) and e−νω(ϕ)

where

ω (ϕ) =
2r√

R2 − r2
arctan

(
r +R tan (ϕ/2)√

R2 − r2

)
(2.75)

Proceeding with the standard variation of parameter routine, we arrive at the

general solution to (2.73) as

un (ϕ) =
1

2ν

∫ ϕ

ϕ0

(
eν(ω(ϕ)−ω(ξ)) − e−ν(ω(ϕ)−ω(ξ))

)
f̃n (ξ) dξ +D1e

νω(ϕ) +D2e
−νω(ϕ)

The following system of linear algebraic equations in D1 and D2 eνω(ϕ0) e−νω(ϕ0)

eνω(ϕ1) e−νω(ϕ1)

 D1

D2

 =

 0

F (ϕ0, ϕ1)


where

F (ϕ0, ϕ1) = −1

ν

∫ ϕ1

ϕ0

sinh ν (ω (ϕ1)− ω (ξ)) f̃n (ξ) dξ

appears when the boundary conditions in (2.74) are recalled. It reveals the constants

D1 and D2 in the form

D1 =
e−νω(ϕ0)

2ν∆

∫ ϕ1

ϕ0

sinh ν (ω (ϕ1)− ω (ξ)) f̃n (ξ) dξ

and

D2 = −e
νω(ϕ0)

2ν∆

∫ ϕ1

ϕ0

sinh ν (ω (ϕ1)− ω (ξ)) f̃n (ξ) dξ

where

∆ = sinh ν (ω (ϕ0)− ω (ϕ1))
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After substituting the above expressions for D1 and D2 into (2.73), we present the

solution of the boundary-value problem in (2.73)-(2.74) as

un (ϕ) =
2

ν∆

[∫ ϕ

ϕ0

sinh (ν (ω (ξ)− ω (ϕ0))) sinh (ν (ω (ϕ1)− ω (ϕ))) f̃n (ξ) dξ

+

∫ ϕ1

ϕ

sinh (ν (ω (ϕ)− ω (ϕ0))) sinh (ν (ω (ϕ1)− ω (ξ))) f̃n (ξ) dξ

]
from which the kernel function gn (ϕ, ξ) of the above representation

un (ϕ) =

∫ ϕ1

ϕ0

gn (ϕ, ξ) f̃n (ξ) dξ

follows as

gn (ϕ, ξ) =
2

ν∆

 sinh (ν (ω (ξ)− ω (ϕ0))) sinh (ν (ω (ϕ1)− ω (ϕ))) ϕ0 ≤ ξ ≤ ϕ

sinh (ν (ω (ϕ)− ω (ϕ0))) sinh (ν (ω (ϕ1)− ω (ξ))) ϕ ≤ ξ ≤ ϕ1

(2.76)

With this, the Green’s function for the homogeneous boundary-value problem

corresponding to (2.68)-(2.70) appears as

G (φ, θ;ψ, τ) =
2

γ

∞∑
n=1

gn (ϕ, ξ) sin νθ sin ντ

We partially sum up the above series with the coeffi cients shown in (2.76). In

doing so we use the standard summation formula [30]

∞∑
n=1

pn

n
cosnα = −1

2
ln
(
1− 2p cosα + p2

)
(2.77)

that is valid for p < 1 and 0 ≤ α < 2π.

After setting apart the logarithmic and the regular components of the series rep-

resenting the Green’s function, the latter appears as

G (ϕ, θ; ξ, τ) = −

 HD

(
e
π
γ

(ω(ϕ)−ω(ξ)+2ω(ϕ0)−2ω(ϕ1)), η, κ
)

+HD

(
e
π
γ

(ω(ξ)−ω(ϕ)), η, κ
)

HD

(
e
π
γ

(ω(ξ)−ω(ϕ)+2ω(ϕ0)−2ω(ϕ1)), η, κ
)

+HD

(
e
π
γ

(ω(ϕ)−ω(ξ)), η, κ
)

+HD

(
e
π
γ

(ω(ϕ)+ω(ξ)−2ω(ϕ1)), η, κ
)

+HD

(
e
π
γ

(2ω(ϕ0)−ω(ϕ)−ω(ξ)), η, κ
)

+R

(2.78)
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where η and κ have earlier been defined in (2.21), while the function HD (x, α, β)

can be found in (2.23). The upper branch corresponds to the case ϕ0 ≤ ϕ ≤ ξ,

whilst the lower branch represents the case ξ ≤ ϕ ≤ ϕ1. The regular component

R = R (ϕ, θ; ξ, τ) is presented in the series form as

R (ϕ, θ; ξ, τ) =

∞∑
n=1

gn (ϕ, ξ) ∆

2ν (e3ν(ω(ϕ1)−ω(ϕ0)) − eν(ω(ϕ1)−ω(ϕ0)))
sin νθ sin ντ

Illustrating the computational effi ciency of the form in (2.78), we present in Figure

10 a field generated by two point sources in the region representing a quarter of the

closed toroidal shell. The field is obtained as superposition of two Green’s function

profiles, with the sources located at (0.33π, 0.22π) and (0.67π, 0.77π).

Figure 10. The field generated in a fragment of the toroidal shell

In Table 3 we present the list of Green’s functions obtained for different boundary-

value problems stated in regions on toroidal surface. The Table is organized a manner

similar to that of Tables 1 and 2, with the functionsHD, HN , HP , as well as parameters

η and κ introduced earlier in (2.23), (2.20), (2.38), and (2.21).
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Table 3: Green’s functions for problems posed on a toroidal surfaces

# Boundary Green’s function

conditions

1 DDDD HD

(
eπ(2ω(ϕ0)−ω(ϕ)−ω(ξ))/γ, κ, η

)
+HD

(
eπ(ω(ϕ)+ω(ξ)−2ω(ϕ1))/γ, κ, η

)
−HD

(
eπ(ω(ϕ)−ω(ξ))/γ, κ, η

)
−HD

(
eπ(ω(ξ)−ω(ϕ)+2ω(ϕ0)−2ω(ϕ1))/γ, κ, η

)
+R1

2 DNDD HN

(
eπ(2ω(ϕ0)−ω(ϕ)−ω(ξ))/2γ, κ

2
, η

2

)
+HN

(
eπ(ω(ϕ)+ω(ξ)−2ω(ϕ1))/2γ, κ

2
, η

2

)
−HN

(
eπ(ω(ϕ)−ω(ξ))/2γ, κ

2
, η

2

)
−HN

(
eπ(ω(ξ)−ω(ϕ)+2ω(ϕ0)−2ω(ϕ1))/2γ, κ

2
, η

2

)
+R2

3 DDDN HD

(
eπ(2ω(ϕ0)−ω(ϕ)−ω(ξ))/γ, κ, η

)
−HD

(
eπ(ω(ϕ)+ω(ξ)−2ω(ϕ1))/γ, κ, η

)
−HD

(
eπ(ω(ϕ)−ω(ξ))/γ, κ, η

)
+HD

(
eπ(ω(ξ)−ω(ϕ)+2ω(ϕ0)−2ω(ϕ1))/γ, κ, η

)
+R3

4 DNDN HN

(
eπ(2ω(ϕ0)−ω(ϕ)−ω(ξ))/2γ, κ

2
, η

2

)
−HN

(
eπ(ω(ϕ)+ω(ξ)−2ω(ϕ1))/2γ, κ

2
, η

2

)
−HN

(
eπ(ω(ϕ)−ω(ξ))/2γ, κ

2
, η

2

)
+HN

(
eπ(ω(ξ)−ω(ϕ)+2ω(ϕ0)−2ω(ϕ1))/2γ, κ

2
, η

2

)
+R4

5 PDD HP

(
e2ω(ϕ0)−ω(ϕ)−ω(ξ), θ − τ

)
+HP

(
eω(ϕ)+ω(ξ)−2ω(ϕ1), θ − τ

)
−HP

(
eω(ϕ)−ω(ξ), θ − τ

)
−HP

(
eω(ξ)−ω(ϕ)+2ω(ϕ0)−2ω(ϕ1), θ − τ

)
+R5

6 PDN HP

(
e2ω(ϕ0)−ω(ϕ)−ω(ξ), θ − τ

)
−HP

(
eω(ϕ)+ω(ξ)−2ω(ϕ1), θ − τ

)
−HP

(
eω(ϕ)−ω(ξ), θ − τ

)
+HP

(
eω(ξ)−ω(ϕ)+2ω(ϕ0)−2ω(ϕ1), θ − τ

)
+R6

Two toroidal regions are present in Table 3. For the first four rows, the toroidal

rectangle Ω = {ϕ, θ | ϕ0 ≤ ϕ ≤ ϕ1; 0 ≤ θ ≤ γ} is considered, while for the last 2 rows

the closed in the longitudinal direction fragmentΩ = {ϕ, θ | ϕ0 ≤ ϕ ≤ ϕ1; 0 ≤ θ ≤ 2π}

of torus is presented. The regular components Ri = Ri (ϕ, θ; ξ, τ) , i = 1, 6 are found

as

R1 =

∞∑
n=1

1

2πn

sinh (nπ (ω(ξ)− ω(ϕ1)) /γ) sinh (nπ (ω(ϕ0)− ω(ϕ)) /γ)

e2nπ(ω(ϕ1)−ω(ϕ0))/γ sinh (nπ (ω(ϕ1)− ω(ϕ0)) /γ)
(cosnη − cosnκ) ,

R2 =
∞∑
n=1

1

2πn

sinh (nπ (ω(ξ)− ω(ϕ1)) /2γ) sinh (nπ (ω(ϕ0)− ω(ϕ)) /2γ)

enπ(ω(ϕ1)−ω(ϕ0))/γ sinh (nπ (ω(ϕ1)− ω(ϕ0)) /2γ)

(
cos

nη

2
− cos

nκ

2

)
,

R3 =
∞∑
n=1

1

2πn

cosh (nπ (ω(ξ)− ω(ϕ1)) /γ) sinh (nπ (ω(ϕ0)− ω(ϕ)) /γ)

e2nπ(ω(ϕ1)−ω(ϕ0))/γ cosh (nπ (ω(ϕ1)− ω(ϕ0)) /γ)
(cosnη − cosnκ) ,

R4 =

∞∑
n=1

1

2πn

cosh (nπ (ω(ξ)− ω(ϕ1)) /2γ) sinh (nπ (ω(ϕ0)− ω(ϕ)) /2γ)

enπ(ω(ϕ1)−ω(ϕ0))/γ cosh (nπ (ω(ϕ1)− ω(ϕ0)) /2γ)

(
cos

nη

2
− cos

nκ

2

)
,
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R5 =
∞∑
n=1

1

2πn

sinh (n (ω(ξ)− ω(ϕ1))) sinh (n (ω(ϕ0)− ω(ϕ)))

e2n(ω(ϕ1)−ω(ϕ0)) sinh (n (ω(ϕ1)− ω(ϕ0)))
cosn (θ − τ) ,

and

R6 =
∞∑
n=1

1

2πn

cosh (n (ω(ξ)− ω(ϕ1))) sinh (n (ω(ϕ0)− ω(ϕ)))

e2n(ω(ϕ1)−ω(ϕ0)) cosh (n (ω(ϕ1)− ω(ϕ0)))
cosn (θ − τ) .

Considering the same geometry and the location of point sources, as in Figure 10,

we show, in Figure 11, the potential field in the toroidal shell with one-side Dirichlet

and three-side Nuemann boundary conditions imposed.

Figure 11: Potential field generated in toroidal region with

Dirichlet and Neumann boundary conditions imposed

Potential fields generated by point sources in joint shell structures of various geo-

metry will be considered in the next Chapter.
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3 Potential fields in joint shell structures

3.1 Matrices of Green’s type

Since a direct implementation of the Green’s function formalism to the case of joint

surfaces is problematic, the matrix of Green’s type concept [49] comes to the picture

instead. We begin our presentation in this chapter with introduction of the matrix of

Green’s type formalism for the case of two joint surfaces. In doing so, we target the

potential field generated by a point source in a thin joint shell structure comprised

of two fragments Ω1 and Ω2, with Γin representing their interface line. Assume that

the lateral surfaces of the structure are insulated and the shell fragments are made of

different homogeneous isotropic materials with their individual conductive properties

spelled out by the constants λ1 and λ2.

In each of the surface fragments Ω1 and Ω2, that form the composed region Ω =

Ω1 ∪ Ω2, we consider the Poisson equation

∇2ui (P ) = −fi (P ) , P ∈ Ωi, i = 1, 2 (3.1)

subject to the homogeneous boundary conditions

B [ui (P )] = 0, P ∈ Γex, i = 1, 2 (3.2)

on the exterior component Γex of Ω region’s boundary. In addition, the conditions of

ideal thermal contact

u1 (P ) = u2 (P ) , P ∈ Γin (3.3)

and

λ1
∂u1 (P )

∂n1

= λ2
∂u2 (P )

∂n2

, P ∈ Γin (3.4)

are imposed on the interface line Γin. Here∇2 is the two-dimensional Laplace operator

written in geographical coordinates that are specific for each surface fragment, while

n1 and n2 represent the normal directions to Γin in Ω1 and Ω2, respectively.

Assume that the boundary-value problem in (3.1)—(3.4) is well-posed provid-

ing a unique solution. This implies that the corresponding homogeneous problem
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(fi (P ) ≡ 0) has only the trivial solution. To make the matrix of Green’s type form-

alism applicable to the problem setting of (3.1)—(3.4), we introduce the two vector-

functions

U (P ) = (Ui (P ))i=1,2 and F (P ) = (Fi (P ))i=1,2 ,

defined in Ω in the way that their components Ui(P ) and Fi(P ) are defined in pieces

as

Ui (P ) =

 ui (P ) , P ∈ Ωi

0, P ∈ Ω\Ωi

and

Fi (P ) =

 fi (P ) , P ∈ Ωi

0, P ∈ Ω\Ωi

A specific strategy is required for obtaining the matrix of Green’s type of the homo-

geneous boundary-value problem corresponding to that in (3.1)—(3.4). The strategy

is based on the fact that if, for any integrable in Ω vector-function F(P ), the solution-

vector U(P ) is expressed in the domain integral form

U(P ) =

∫∫
Ω

G (P,Q)F(Q)dΩ (Q) , (3.5)

then the 2×2 kernel-matrixG(P,Q) in (3.5) represents the required matrix of Green’s

type.

Hence, in light of the above statement, it is crucial to aim at not just solving the

problem in (3.1)—(3.4) by any means, but the objective must rather be in selecting

such an approach that allows us to obtain the problem solution in the form of (3.5)

that delivers an explicit expression for G(P,Q).

Note that the arguments of the element Gij(P,Q) of G(P,Q) belong to different

fragments of Ω. That is, P andQ are the points in Ωi and Ωj, respectively, in the sense

that in the element G12(P,Q), for example, P is the point in Ω1, while Q belongs to

Ω2. Later in this chapter, we will describe our approach in full detail while obtaining

the matrix of Green’s type for one particular problem setting of the type in (3.1)—

(3.4). The derivation of matrices of Green’s type for other boundary-value problems
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is not presented but ultimate representations of their components are provided for a

number of problem settings.

3.2 Matrix of Green’s type for a sphere-torus structure

As an illustrative example, we consider a particular case of the boundary-value prob-

lem in (3.1)—(3.4). Let the region Ω = Ω1 ∪ Ω2 represent a compound surface of

revolution, which is comprised of two coaxial fragments, one of which is spherical of

radius a, occupying the region

Ω1 = {(φ, θ) | 0 ≤ φ ≤ φ0; 0 ≤ θ ≤ 2π} ,

while another fragment is circular toroidal of radii R and r, occupying the region

Ω2 = {(ϕ, θ) | ϕ0 ≤ ϕ ≤ ϕ1; 0 ≤ θ ≤ 2π} .

The axial cross-section of the considered compound thin-walled structure is presen-

ted in Figure 12. Clearly, the relation a sinφ0 + r cosϕ0 = R holds for the radii of the

structure.

Figure 12: Axial cross-section of the sphere-torus assembly

The compound structure is set up in such a way that the parallel φ = φ0 of the

spherical fragment and the parallel ϕ = ϕ0 of the toroidal fragment represent the

same circle, which is, in fact, the interface line Γin of the two surfaces.
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For the compound region Ω = Ω1 ∪ Ω2 just introduced, the problem setting in

(3.1)—(3.4) reads explicitly as

1

a2 sinφ

∂

∂φ

(
sinφ

∂u1 (φ, θ)

∂φ

)
+

1

a2 sin2 φ

∂2u1 (φ, θ)

∂θ2 = −f1 (φ, θ) (3.6)

1

D (ϕ)

∂

∂ϕ

(
D (ϕ)

∂u2 (ϕ, θ)

∂ϕ

)
+

r2

D2 (ϕ)

∂2u2 (ϕ, θ)

∂θ2 = −f2 (ϕ, θ) (3.7)

lim
φ→0
|u1 (φ, θ)| <∞, u2 (ϕ1, θ) = 0 (3.8)

u1 (φ, 0) = u1 (φ, 2π) ,
∂u1 (φ, 0)

∂θ
=
∂u1 (φ, 2π)

∂θ
(3.9)

u2 (ϕ, 0) = u2 (ϕ, 2π) ,
∂u2 (ϕ, 0)

∂θ
=
∂u2 (ϕ, 2π)

∂θ
(3.10)

u1 (φ0, θ) = u2 (ϕ0, θ) ,
∂u1 (φ0, θ)

∂φ
= λ

∂u2 (ϕ0, θ)

∂ϕ
(3.11)

where D (ϕ) = R + r sinϕ, and λ = λ2/λ1.

For notational convenience, we will use the single notation

ς =

 φ in Ω1

ϕ in Ω2

for the latitudinal coordinate of a point in the compound surface structure.

Since the assembly is closed in the longitudinal direction, the conditions of

(3.9) and (3.10) are included in the above setting to simulate the 2π-periodicity of the

solution of the problem with respect to the variable θ. Given the above, the functions

ui (ς, θ) and fi (ς, θ) can be expanded in the Fourier series

ui (ς, θ) =
1

2
ui,0 (ς) +

∞∑
n=1

u
(s)
i,n (ς) sinnθ +

∞∑
n=1

u
(c)
i,n (ς) cosnθ (3.12)

and

fi (ς, θ) =
1

2
fi,0 (ς) +

∞∑
n=1

f
(s)
i,n (ς) sinnθ +

∞∑
n=1

f
(c)
i,n (ς) cosnθ (3.13)

Upon substituting these into (3.6)—(3.11), we arrive at a three-point-posed boundary-

value problem in the coeffi cients u1,n (ς) and u2,n (ς) of the series in (3.12). The

governing differential equations of that problem appear in the self-adjoint form as

d

dφ

(
sinφ

du1,n (φ)

∂φ

)
− n2

sinφ
u1,n (φ) = −f̃1,n (φ) (3.14)
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and
1

r

d

dϕ

(
D (ϕ)

du2,n (ϕ)

∂ϕ

)
− rn2

D (ϕ)
u2,n (ϕ) = −f̃2,n (ϕ) , (3.15)

where

f̃1,n (φ) = a2f1,n (φ) sinφ, and f̃2,n (ϕ) =
D (ϕ)

r
f2,n (ϕ) ,

while the boundary and contact conditions of (3.8) and (3.11) yield

lim
φ→0
|u1,n (φ)| <∞, u2,n (ϕ1) = 0 (3.16)

and

u1,n (φ0) = u2,n (ϕ0) ,
du1,n (φ0)

dφ
= λ

du2,n (ϕ0)

dϕ
(3.17)

It is worth noting that at the current stage in the development the sine and the

cosine components of the series in (3.12) can be treated similarly. That is why we

omit the superscripts (s) and (c) on u1,n (ς) and u2,n (ς) in the setting of (3.14)—(3.17).

To approach the boundary-value problem in (3.14)—(3.17) for n ≥ 1 (the case of

n = 0 will be considered specifically later), we proceed with the standard variation

of parameters method which yields the general solutions to (3.14) and (3.15) in the

form

u1,n (φ) =
1

2n

∫ φ

0

(
Φn

0 (φ)

Φn
0 (ψ)

− Φn
0 (ψ)

Φn
0 (φ)

)
f̃1,n (ψ) dψ + L1Φn

0 (φ) +M1Φ−n0 (φ) (3.18)

and

u2,n =
1

n

∫ ϕ

ϕ0

sinhnσ (ϕ, ξ) f̃2,n (ξ) dξ + L2e
nω(ϕ) +M2e

−nω(ϕ) (3.19)

where L1, M1, L2, and M2 represent arbitrary constants which will be determined by

virtue of the uniqueness conditions of (3.16) and (3.17). The single-variable functions

Φ0 (α) and ω (α) are defined as

Φ0 (φ) = tan (φ/2) and ω (ϕ) =
2r√

R2 − r2
arctan

(
r +R tan (ϕ/2)√

R2 − r2

)
,

while the double-variable function σ (α, β) reads as

σ (α, β) = ω (α)− ω (β) .



55

The conditions of (3.16) and (3.17) transform the expressions for u1,n (φ) and

u2,n (ϕ) in (3.18) and (3.19) into

u1,n (φ) =
1

n∆

∫ φ

0

Φn
0 (ψ)

Φn
0 (φ0)

[(
Φn

0 (φ)

Φn
0 (φ0)

− Φn
0 (φ0)

Φn
0 (φ)

)
QCn (ϕ1, ϕ0)

−
(

Φn
0 (φ)

Φn
0 (φ0)

+
Φn

0 (φ0)

Φn
0 (φ)

)
Sn (ϕ1, ϕ0)

]
f̃1,n (ψ) dψ

+
1

n∆

∫ φ

0

Φn
0 (φ)

Φn
0 (φ0)

[(
Φn

0 (ψ)

Φn
0 (φ0)

− Φn
0 (φ0)

Φn
0 (ψ)

)
QCn (ϕ1, ϕ0)

−
(

Φn
0 (ψ)

Φn
0 (φ0)

+
Φn

0 (φ0)

Φn
0 (ψ)

)
Sn (ϕ1, ϕ0)

]
f̃1,n (ψ) dψ

+
2Q

n∆

∫ ϕ1

ϕ0

Φn
0 (φ)

Φn
0 (φ0)

Sn (ϕ1, ξ) f̃2,n (ξ) dξ (3.20)

and

u2,n (ϕ) =
2

n∆

∫ ϕ

ϕ0

Sn
(
ϕ1,ϕ

)
[Sn (ϕ0, ξ)−QCn (ϕ0, ξ)] f̃2,n (ξ) dξ

+
2

n∆

∫ ϕ

ϕ0

Sn
(
ϕ1,ξ

)
[Sn (ϕ0, ϕ)−QCn (ϕ0, ϕ)] f̃2,n (ξ) dξ

− 2

n∆

∫ φ0

0

Φn (ψ)

Φn (φ0)
Sn
(
ϕ1,ϕ

)
f̃1,n (ψ) dψ (3.21)

where

Q =
λr

D (ϕ0)
sin (φ0) , ∆ = (1 +Q) enσ(ϕ1,ϕ0) − (1−Q) e−nσ(ϕ1,ϕ0),

Sn (α, β) = sinhnσ (α, β) , and Cn (α, β) = coshnσ (α, β) ,

In view of the development that follows, it appears convenient to reiterate the

expressions from (3.20) and (3.21) in a more compact form

u1,n (φ) =

∫ φ0

0

g11,n (φ, ψ) f̃1,n (ψ) dψ +

∫ ϕ1

ϕ0

g12,n (φ, ξ) f̃2,n (ξ) dξ (3.22)

and

u2,n (ϕ) =

∫ φ0

0

g21,n (ϕ, ψ) f̃1,n (ψ) dψ +

∫ ϕ1

ϕ0

g22,n (ϕ, ξ) f̃2,n (ξ) dξ (3.23)
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with the kernel functions of the above integrals defined as

g11,n (φ, ψ) =
1

n∆



Φn0 (ψ)

Φn0 (φ0)

[(
Φn0 (φ)

Φn0 (φ0)
− Φn0 (φ0)

Φn0 (φ)

)
QCn (ϕ1, ϕ0)

−
(

Φn0 (φ)

Φn0 (φ0)
+

Φn0 (φ0)

Φn0 (φ)

)
Sn (ϕ1, ϕ0)

] 0 ≤ ψ ≤ φ

Φn0 (φ)

Φn0 (φ0)

[(
Φn0 (ψ)

Φn0 (φ0)
− Φn0 (φ0)

Φn0 (ψ)

)
QCn (ϕ1, ϕ0)

−
(

Φn0 (ψ)

Φn0 (φ0)
+

Φn0 (φ0)

Φn0 (ψ)

)
Sn (ϕ1, ϕ0)

] φ ≤ ψ ≤ φ0

, (3.24)

g12,n (φ, ξ) =
2Q

n∆

Φn
0 (φ)

Φn
0 (φ0)

Sn (ϕ1, ξ) , g21,n (ϕ, ψ) = − 2

n∆

Φn
0 (ψ)

Φn
0 (φ0)

Sn
(
ϕ1,ϕ

)
, (3.25)

and

g22,n (ϕ, ξ) =
2

n∆

 Sn
(
ϕ1,ϕ

)
[Sn (ϕ0, ξ)−QCn (ϕ0, ξ)] ϕ0 ≤ ξ ≤ ϕ

Sn
(
ϕ1,ξ

)
[Sn (ϕ0, ϕ)−QCn (ϕ0, ϕ)] ϕ ≤ ξ ≤ ϕ1

(3.26)

Note that the summation index n of the series in (3.12) and (3.13) appears as

a parameter in the operators of the governing differential equations in (3.14) and

(3.15) of the boundary-value problem of (3.14)—(3.17), affecting, subsequently, their

fundamental sets of solutions.

As long as the solution to the problem in (3.14)—(3.17) is already obtained for

the case of n ≥ 1, we have to turn now to the particular problem setting of n = 0,

which ought to be considered separately, and in which case the governing differential

equations as of (3.14) and (3.15) reduce to

d

dφ

(
sinφ

du1,0 (φ)

dφ

)
= −f̃1,0 (φ)

and
d

dϕ

(
D (ϕ)

du2,0 (ϕ)

dϕ

)
= −f̃2,0 (ϕ)

Following the standard procedure of the method of variation of parameters, we

express the general solutions for the above equations as

u1,0 (φ) =

∫ φ

0

ln
Φ0 (φ)

Φ0 (ψ)
f̃1,0 (ψ) dψ + L1 ln Φ0 (φ) +M1 (3.27)
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and

u2,0 (ϕ) =

∫ ϕ

ϕ0

σ (ϕ, ξ) f̃2,0 (ξ) dξ + L2ω (ϕ) +M2 (3.28)

Clearly enough, the boundary and contact conditions of (3.16) and (3.17) are

not affected by the summation index n of the series in (3.12). Thus, applying these

conditions to the forms in (3.27) and (3.28), we arrive at

u1,0 (φ) =

∫ φ0

0

g11,0 (φ, ψ) f̃1,0 (ψ) dψ +

∫ ϕ1

ϕ0

g12,0 (φ, ξ) f̃2,0 (ξ) dξ (3.29)

and

u2,0 (ϕ) =

∫ φ0

0

g21,0 (ϕ, ψ) f̃1,0 (ψ) dψ +

∫ ϕ1

ϕ0

g22,0 (ϕ, ξ) f̃2,0 (ξ) dξ (3.30)

where the kernel-functions in the above integrals are expressed as

g11,0 (φ, ψ) =
1

Q
σ (ϕ0, ϕ1) +


ln Φ0(φ)

Φ0(φ0)
0 ≤ ψ ≤ φ

ln Φ0(ψ)
Φ0(φ0)

φ ≤ ψ ≤ φ0

,

g12,0 (φ, ξ) = −σ (ϕ1, ξ) , g21,0 (ϕ, ψ) =
1

Q
σ (ϕ1, ϕ) ,

and

g22,0 (ϕ, ξ) =

 σ (ϕ, ϕ1) ϕ0 ≤ ξ ≤ ϕ

σ (ξ, ϕ1) ϕ ≤ ξ ≤ ϕ1

.

At this point in the development, we substitute the expressions for the functions

ui,n (ς), presented in (3.22), (3.23), (3.29), and (3.30), into (3.12), and express then

the coeffi cients f1,n (φ) and f2,n (ϕ) of the Fourier series from (3.13) in terms of the

right-hand side functions f1 (φ, θ) and f2 (ϕ, θ) of the governing differential equations

of the boundary-value problem in (3.6)—(3.11). This allows us to ultimately obtain

the solution of the problem in the vector form as

U(P ) =

∫∫
Ω

G (P,Q)F(Q)dΩ (Q) ,

revealing, in light of (3.5), the matrix of Green’s type

G (ς, θ; ζ, τ) = [Gij (ς, θ; ζ, τ)]2×2 (3.31)
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where

ζ =

 ψ in Ω1

ξ in Ω2

to the homogeneous boundary-value problem corresponding to that in (3.6)—(3.11).

For the elements Gij (ς, θ; ζ, τ) of the above matrix we arrived at the series expansions

Gij (ς, θ; ζ, τ) =
1

2
gij,0 (ς, ζ) +

∞∑
n=1

gij,n (ς, ζ) sinnθ sinnτ

+

∞∑
n=1

gij,n (ς, ζ) cosnθ cosnτ

=
1

2
gij,0 (ς, ζ) +

∞∑
n=1

gij,n (ς, ζ) cos (θ − τ) (3.32)

The form in (3.32) appears effi cient for immediate computer implementations for

the peripheral elements of G, since the observation point (ς, θ) and the source point

(ψ, τ) are, for the peripheral elements, located in different fragments of Ω. This

implies that just some partial sums of the series can be used to attain an accuracy

level required in this or that case. In the diagonal elements of G, on the other hand,

the observation and the source points belong to the same fragment of Ω, making the

convergence of the series in (3.32) non-uniform due to the logarithmic singularity that

these elements possess. Hence, the convergence of the representation in (3.32) ought

to be improved, if the diagonal elements of G are to compute. We accomplish such

an improvement by splitting apart the terms of the series that are responsible for

logarithmic and regular components. Omitting details, we present just the ultimate

expressions

G11 (φ, θ;ψ, τ) =
1

2
g11,0 (φ, ψ)− 1−Q

1 +Q
HP

(
Φ0 (φ) Φ0 (ψ)

Φ2
0 (φ0)

, θ − τ
)

+HP

(
Φ0 (φ) Φ0 (ψ)

Φ2
0 (φ0)

e2σ(ϕ0,ϕ1), θ − τ
)

+R11 (φ, θ;ψ, τ)

+


1−Q
1+Q

HP

(
Φ0(ψ)
Φ0(φ)

e2σ(ϕ0,ϕ1), θ − τ
)
−HP

(
Φ0(ψ)
Φ0(φ)

, θ − τ
)

1−Q
1+Q

HP

(
Φ0(φ)
Φ0(ψ)

e2σ(ϕ0,ϕ1), θ − τ
)
−HP

(
Φ0(φ)
Φ0(ψ)

, θ − τ
)
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and

G22 (ϕ, θ; ξ, τ) =
1

2
g22,0 (ϕ, ξ) +HP

(
eσ(ϕ,ϕ1)+σ(ξ,ϕ1), θ − τ

)
+

1−Q
1 +Q

HP

(
eσ(ϕ0,ϕ)+σ(ϕ0,ξ), θ − τ

)
+R22 (ϕ, θ; ξ, τ) ,

−

 HP

(
eσ(ξ,ϕ), θ − τ

)
+ 1−Q

1+Q
HP

(
eσ(ϕ,ξ)+2σ(ϕ0,ϕ1), θ − τ

)
HP

(
eσ(ϕ,ξ), θ − τ

)
+ 1−Q

1+Q
HP

(
eσ(ξ,ϕ)+2σ(ϕ0,ϕ1), θ − τ

)

for the diagonal elements of G. The two-variable function HP (x, a) was introduced

earlier in Chapter 2 (see equation (2.38)).

The regular additive components Rii (ς, θ; ζ, τ), i = 1, 2 in the above representa-

tions for the diagonal elements are expressed in a form of the uniformly convergent

series

Rii (ς, θ; ζ, τ) =
∞∑
n=1

g̃ii,n (ς, ζ) (1−Q) enσ(ϕ0,ϕ1)

(1 +Q)2 e2nσ(ϕ1,ϕ0) − (1−Q2)
cos (θ − τ)

where g̃ii,n (ς, ζ) are defined in terms of gij,n (ς, ζ) available in (3.24) and (3.26) as

g̃ii,n (ς, ζ) = gii,n (ς, ζ) ∆

This makes the representations just presented for the diagonal elements of the

matrix of Green’s type effi ciently computable. To illustrate this point, in Figure 13

we show the field induced in the considered thin-walled structure by point sources

acting at three distinct locations. The parameters specifying the problem setting are

chosen as: a = 1.0, r = 0.5, R = 1.5, φ0 = π/2, ϕ0 = 0.0, ϕ1 = π, the locations of

the point sources are (0.26π, 0.42π) in the spherical fragment, and (1.05π, 0.5π) and

(0.6π, 1.82π) in the toroidal fragment.
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Figure 13: Multiple point sources in the sphere-torus structure

Figure 14: Field generated by a point source in the toroidal fragment of the structure

In Figure 14 we depict the potential field generated by two point sources where one

is located in the spherical fragment of the sphere-torus shell structure, while another

one is in its toroidal fragment. The parameters specifying the problem setting are

chosen as: a = 1.5, r = 1.4, φ0 = 0.8π, ϕ0 = −0.2π, ϕ1 = −0.8π, R = a sinφ0 +

r cosϕ0 ≈ 2.02, the location of the point source is (0.35π, 0.75π) in the toroidal

fragment.
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3.3 Cylindrical-toroidal shell structure

In this section, a thin-walled structure is considered as composed of two coaxial shells

of revolution, one of which is semi-infinite cylindrical of radius a whilst another is

toroidal of radii R and r. The axial cross-section of the structure is shown in Figure

15.

Figure 15: Axial cross-section of the cylinder-torus assembly

Middle surfaces of the shells are referenced to different geographical coordinates,

and occupy the regions

Ω1 = {(z, θ)| 0 ≤ z ≤ ∞; 0 ≤ θ ≤ 2π}

and

Ω2 = {(ϕ, θ)| ϕ0 ≤ ϕ ≤ ϕ1; 0 ≤ θ ≤ 2π} ,

respectively. This problem setting gives rise to a set of two Laplace equations written

in the corresponding coordinates as

∂2u1 (z, θ)

∂z2
+

1

a2

∂2u1 (z, θ)

∂θ2 = 0 (3.33)

and
1

r

∂

∂ϕ

(
D (ϕ)

∂u2 (ϕ, θ)

∂ϕ

)
+

r

D (ϕ)

∂2u2 (ϕ, θ)

∂θ2 = 0, (3.34)



62

where D(ϕ) = R + r sinϕ. The above equations are subject to the following set of

boundary and contact conditions

lim
z→∞

|u1 (z, θ)| <∞, u2 (ϕ1, θ) = 0, (3.35)

ui (ς, 0) = ui (ς, 2π) ,
∂ui (ς, 0)

∂θ
=
∂ui (ς, 2π)

∂θ
, i = 1, 2, (3.36)

and

u1 (0, θ) = u2 (ϕ0, θ) and
∂u1 (0, θ)

∂z
= λ

∂u2 (ϕ0, θ)

∂ϕ
. (3.37)

Similarly to the development in the previous section, we introduce the latitudinal

coordinate

ς =

 z, in Ω1

ϕ, in Ω2,

of the observation point for either fragment of the structure.

Upon implementing the procedure described in the previous section to the problem

in (3.33)-(3.37), we obtain the matrix of Green’s type

G (ς, θ; ζ, τ) = [Gij (ς, θ; ζ, τ)]2×2

that we are looking for. The single variable ζ is introduced in the above as

ζ =

s, in Ω1

ξ, in Ω2,

to stay for the latitudinal coordinate of the source point for either fragment of the

structure.

Skipping quite tedious but rather straightforward algebra, we present below just

ultimate computer-friendly form of the elements Gij (ς, θ; ζ, τ) of G (ς, θ; ζ, τ). Its
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first main diagonal element was found as

G11 (z, θ; s, τ) =
1

2
g11,0 (z, s) +

Q− 1

Q+ 1
aHP

(
e−(s+z)/a, θ − τ

)
+

2a

Q+ 1
HP

(
e2σ(ϕ0,ϕ1)−(s+z)/a, θ − τ

)
+

∞∑
n=1

a

n
Sn (ϕ1, ϕ0) e−n(s+z)/aPn (ϕ0, ϕ1) cosn (θ − τ)

− a

HP

(
e(s−z)/a, θ − τ

)
, 0 < s ≤ z

HP

(
e(z−s)/a, θ − τ

)
, z ≤ s <∞

where, along with already accepted earlier Sn (α, β), we introduce some other short-

hand notations. The parameter Q reads as Q = λr/a, and the two-variable function

Pn (α, β), which depends upon the summation index n of the series in the above

expression, is introduced as

Pn (ϕ0, ϕ1) =
(1−Q) enσ(ϕ0,ϕ1)

(1 +Q)2 e2nσ(ϕ1,ϕ0) (1−Q2)
,

The function g11,0 (z, s) reads as

g11,0 (z, s) =
a

Q
σ (ϕ1, ϕ0)−

s 0 < s ≤ z

z z ≤ s <∞.

For the second element of the first row of G (ς, θ; ζ, τ), we obtained

G12 (z, θ; ξ, τ) =
1

2
g12,0 (z, ξ)− 2Q

Q+ 1
HP

(
eσ(ϕ0,ξ)−z/a, θ − τ

)
+

2Q

Q+ 1
HP

(
eσ(ϕ0,ϕ1)+σ(ξ,ϕ1)−z/a, θ − τ

)
+

∞∑
n=1

Q

n
Sn (ϕ1, ξ) e

−nz/aPn (ϕ0, ϕ1) cosn (θ − τ) ,

where

g12,0 (z, ξ) = σ (ξ, ϕ1) .
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The first element of the second row of G (ς, θ; ζ, τ) was found as

G21 (ϕ, θ; s, τ) =
1

2
g21,0 (ϕ, s) +

2a

Q+ 1
HP

(
eσ(ϕ0,ϕ)−s/a, θ − τ

)
+

2a

Q+ 1
HP

(
eσ(ϕ0,ϕ1)+σ(ϕ,ϕ1)−s/a, θ − τ

)
+
∞∑
n=1

a

n
Sn (ϕ, ϕ1) e−ns/aPn (ϕ0, ϕ1) cosn (θ − τ) ,

where

g21,0 (ϕ, s) =
σ (ϕ1, ϕ)

Q
.

And, finally, for the second main diagonal element of G (ς, θ; ζ, τ) we have

G22 (ϕ, θ; s, τ) =
1

2
g22,0 (ϕ, ξ) +HP

(
eσ(ϕ,ϕ1)+σ(ξ,ϕ1), θ − τ

)
+

1−Q
1 +Q

HP

(
eσ(ϕ0,ϕ)+σ(ϕ0,ξ), θ − τ

)
+
∞∑
n=1

PnC22,n

2n
cosn (θ − τ)

−

 HP

(
eσ(ξ,ϕ), θ − τ

)
+ 1−Q

1+Q
HP

(
eσ(ϕ,ξ)+2σ(ϕ0,ϕ1), θ − τ

)
HP

(
eσ(ϕ,ξ), θ − τ

)
+ 1−Q

1+Q
HP

(
eσ(ξ,ϕ)+2σ(ϕ0,ϕ1), θ − τ

)
,

where

g22,0 (ϕ, ξ) =

σ (ϕ, ϕ1) , ϕ0 < ξ ≤ ϕ

σ (ξ, ϕ1) , ϕ ≤ ξ < ϕ1,

C22,n =


[
(Q+ 1) eσ(ξ,ϕ0) + (Q− 1) eσ(ϕ0,ξ)

]
Sn (ϕ1, ϕ) ,[

(Q+ 1) eσ(ϕ,ϕ0) + (Q− 1) eσ(ϕ0,ϕ)
]
Sn (ϕ1, ξ) ,

As to the last additive term in the above expression forG22 (ϕ, θ; s, τ), which is defined

in two pieces, its upper component is valid for ϕ0 < ξ ≤ ϕ, whilst the domain of the

lower one is ϕ ≤ ξ < ϕ1.

To illustrate the computational potential of the expressions just presented for the

elements of the matrix of Green’s type, we depict in Figure 16 the field induced by

a set of two point sources in the considered assembly of thin shells. The parameters

specifying the problem setting are chosen as: a = 2.0, r = 1.5, R = a+ r = 3.5, ϕ0 =

0.0, ϕ1 = 2π/3, the locations of the point sources are (0.01, 0.2π) in the cylindrical

fragment, and (0.13π, 0.5π) in the toroidal fragment.
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Figure 16: Field generated in the composition of cylindrical and toroidal shells

3.4 A three-fragment shell structure

The approach that we effi ciently implemented so far to construct matrices of Green’s

type can readily be used for composition of more then two shell fragments. To il-

lustrate this point, we consider the shell structure composed of three fragments each

made of an individual material (λ1, λ2 and λ3), whose axial cross-section is depicted

in Figure 17. Set up Poisson equations each of which is posed in an individual region.

These are, the cylinder

Ω1 = {(z, θ)| 0 ≤ z ≤ ∞; 0 ≤ θ ≤ γ} ,

the toroidal shell

Ω2 = {(ϕ, θ)| ϕ0 ≤ ϕ ≤ ϕ1; 0 ≤ θ ≤ γ} ,

and the circular plate

Ω3 = {(ρ, θ) |0 ≤ ρ ≤ ap; 0 ≤ θ ≤ γ} .

Clearly, the radii ac, R, and ap are equal each other.
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Figure 17: Cross-section of the cylinder-torus-plate composition

The three Poisson equations are considered in Ω = Ω1 ∪ Ω2 ∪ Ω3 as

ac
∂2u1 (z, θ)

∂z2
+

1

ac

∂2u1 (z, θ)

∂θ2 = −f̃1 (z, θ) , in Ω1 (3.38)

1

r

∂

∂ϕ

(
D (ϕ)

∂u2 (ϕ, θ)

∂ϕ

)
+

r

D (ϕ)

∂2u2 (ϕ, θ)

∂θ2 = −f̃2 (ϕ, θ) , in Ω2 (3.39)

∂

∂ρ

(
ρ
∂u3 (ρ, θ)

∂ρ

)
+

1

ρ

∂2u3 (ρ, θ)

∂θ2 = −f̃3 (ρ, θ) , in Ω3 (3.40)

subject to the boundary conditions on the external boundary

lim
z→∞
|u1 (z, θ)| <∞ and lim

ρ→0
|u3 (ρ, θ)| <∞, (3.41)

ui (ς, 0) = 0 and ui (ς, γ) = 0, i = 1, 2, 3, (3.42)

and ideal thermal contact conditions on the interfacial lines

u1 (0, θ) = u2 (ϕ1, θ) ,
∂u1 (0, θ)

∂z
= λ12

∂u2 (ϕ1, θ)

∂ϕ
(3.43)

and

u3 (ap, θ) = u2 (ϕ0, θ) ,
∂u3 (ap, θ)

∂ρ
= λ23

∂u2 (ϕ0, θ)

∂ϕ
(3.44)

where

f̃1 (z, θ) = acf1 (z, θ) , f̃2 (ϕ, θ) =
D (ϕ)

r
f2 (ϕ, θ) , f̃3 (ρ, θ) = ρf3 (ρ, θ)
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ς =


z, in Ω1

ϕ, in Ω2

ρ, in Ω3

λ21 =
λ2

λ1

and λ23 =
λ2

λ3

Following the separation of variables procedure, one obtains a boundary-value

problem for the following ordinary differential equations

ac
d2u1n (z)

dz2
− ν2

ac
u1n (z) = −f̃1n (z) (3.45)

1

r

d

dϕ

(
D (ϕ)

du2n (ϕ)

dϕ

)
− rν2

D (ϕ)
u2n (ϕ) = −f̃2n (ϕ) (3.46)

d

dρ

(
ρ
du3n (ρ)

dρ

)
− ν2

ρ
u3n (ρ) = −f̃3n (ρ) , ν =

nπ

γ
(3.47)

in the Fourier series coeffi cients of the functions u1 (z, θ) , u2 (ϕ, θ) , and u3 (ρ, θ) .

The general solutions for the equations in (3.45)-(3.47) are found in the form

u1n (z) =
1

ν

∫ h

0

sinh (ν (z − s) /ac) f̃1n (s) ds+D11e
νz/ac +D21e

−νz/ac (3.48)

u2n (ϕ) =
1

ν

∫ ϕ

ϕ0

sinh ν (ω (ϕ)− ω (ξ)) f̃2n (ξ) dξ +D12e
νω(ϕ) +D22e

−νω(ϕ) (3.49)

u3n (ρ) =
1

2ν

∫ ρ

0

[(
q

ρ

)ν
−
(
ρ

q

)ν]
f̃3n (q) dq +D13ρ

ν +D23ρ
−ν (3.50)

For the sake of simplicity, we limit ourself to the case where the coeffi cients of

thermal conductivity of the materials of which the fragments are made are related as

λ1 = 2rλ2 = λ3

By satisfying the conditions resulting from (3.41) it can be shown that

D11 = − 1

2ν

∫ ∞
0

e−νs/ac f̃1n (s) ds and D23 = 0
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The conditions that follow from (3.43) and (3.44) yield the system of linear algeb-

raic equations
1 −eνω(ϕ1) −e−νω(ϕ1) 0

−1 −eνω(ϕ1) e−νω(ϕ1) 0

0 eνω(ϕ0) e−νω(ϕ0) −aνp
0 eνω(ϕ0) −e−νω(ϕ0) −aνp




D21

D12

D22

D13

 =


M1

M2

M3

M4

 (3.51)

in D21, D12, D22, and D13, where

M1 =
1

2ν

∫ ∞
0

e−νs/ac f̃1n (s) ds+
1

ν

∫ ϕ1

ϕ0

sinh (ν (ω(ϕ1)− ω(ξ))) f̃2n (ξ) dξ

M2 =
1

2ν

∫ ∞
0

e−νs/ac f̃1n (s) ds+
1

ν

∫ ϕ1

ϕ0

cosh (ν (ω(ϕ1)− ω(ξ))) f̃2n (ξ) dξ

M3 =
1

2ν

∫ ap

0

[(
q

ap

)ν
−
(
ap
q

)ν]
f̃3n (q) dq

and

M4 = − 1

2ν

∫ ap

0

[(
q

ap

)ν
+

(
ap
q

)ν]
f̃3n (q) dq

Solving the system in (3.51), one obtains

D21 = − 1

2ν

∫ ϕ1

ϕ0

eν(ω(ξ)−ω(ϕ1))f̃2n (ξ) dξ

+
1

2ν
eν(ω(ϕ0)−ω(ϕ1))

∫ ap

0

(
q

ap

)ν
f̃3n (q) dq

D12 = − 1

2ν
e−νω(ϕ1)

∫ ∞
0

e−νs/ac f̃1n (s) ds

− 1

2ν

∫ ϕ1

ϕ0

eν(ω(ϕ0)−ω(ξ))f̃2n (ξ) dξ

D22 =
1

2ν
eνω(ϕ0)

∫ ap

0

(
q

ap

)ν
f̃3n (q) dq

and

D13 = − 1

2νaνp
eνω(ϕ0)−νω(ϕ1)

∫ ∞
0

e−νs/ac f̃1n (s) ds

+
1

2νaνp

∫ ϕ1

ϕ0

e−νω(ξ)f̃2n (ξ) dξ

+
1

2ν

∫ ap

0

(
1

q

)ν
f̃3n (q) dq
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Substituting the above values into (3.48)-(3.50) we obtain

u1n (z) =

∫ h

0

g11n (z, s) f̃1n (s) ds+

∫ ϕ

ϕ0

g12n (z, ξ) f̃2n (ξ) dξ +

∫ ρ

0

g13n (z, q) f̃3n (q) dq

u2n (ϕ) =

∫ h

0

g21n (ϕ, s) f̃1n (s) ds+

∫ ϕ

ϕ0

g22n (ϕ, ξ) f̃2n (ξ) dξ +

∫ ρ

0

g23n (ϕ, q) f̃3n (q) dq

u3n (ρ) =

∫ h

0

g31n (ρ, s) f̃1n (s) ds+

∫ ϕ

ϕ0

g32n (ρ, ξ) f̃2n (ξ) dξ +

∫ ρ

0

g33n (ρ, q) f̃3n (q) dq

where gij (ς, ζ) are the elements of the matrix

g (ς, ζ) =
1

2ν


g11n (z, s) g12n (z, ξ) g13n (z, q)

g21n (ϕ, s) g22n (ϕ, ξ) g23n (ϕ, q)

g31n (ρ, s) g32n (ρ, ξ) g33n (ρ, q)

 (3.52)

and the parameter ζ is defined in different fragments of domain Ω as

ζ =


s, in Ω1

ξ, in Ω2

q, in Ω3

The elements gijn of the matrix in (3.52) are found as

g11n (z, s) =

 eν(z−s)/ac , 0 ≤ z ≤ s

eν(s−z)/ac , s ≤ z <∞
,

g12n (z, ξ) = eν(ω(ξ)−ω(ϕ1)−z/ac),

g13n (z, q) = eν(ω(ϕ0)−ω(ϕ1)−z/ac) (q/ap)
ν ,

g21n (ϕ, s) = −eν(ω(ϕ)−ω(ϕ1)−s/ac),

g22n (ϕ, ξ) =

 eν(ω(ξ)−ω(ϕ)), ψ ≤ ϕ ≤ ϕ1

eν(ω(ϕ)−ω(ξ)), ϕ0 ≤ ϕ ≤ ψ
,

g23n (ϕ, q) = eν(ω(ϕ0)−ω(ϕ)) (q/ap)
ν ,

g31n (ρ, s) = −eν(ω(ϕ0)−ω(ϕ1)−s/ac) (ρ/ap)
ν ,

g32n (ρ, ξ) = eν(ω(ϕ0)−ω(ξ)) (ρ/ap)
ν ,
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and

g33n (ρ, q) =

 (ρ/q)ν , 0 ≤ ρ ≤ q

(q/ρ)ν , q ≤ ρ ≤ ap
.

The entries of the matrix of Green’s type for the problem in (3.38)-(3.44)

G (ς, θ; ζ, τ) = [Gij (ς, θ; ζ, τ)]3×3

are found in the series form

Gij (ς, θ; ζ, τ) =
∞∑
n=1

gij,n (ς, ζ) sin νθ sin ντ , i = 1, 3; j = 1, 3

After substituting the expressions of gij,n (ς, ζ) into the above series, transforming

the product of sines into difference of cosines, and using the standard summation

formula in (2.77) (see Chapter 2.) one obtains the following representations of the

entries of G (ς, θ; ζ, τ)

Gij (ς, θ; ζ, τ) = HD

(
(gij,n (ς, ζ))1/n , κ, η

)
(3.53)

where the function HD(x, α, β) and the parameters κ, and η were defined in preceding

chapters as

HD(x, α, β) = − 1

4π
ln

(
1− 2x cosα + x2

1− 2x cos β + x2

)
and

κ =
π

γ
(θ + τ) , η =

π

γ
(θ − τ)

In what follows, we are going to present some illustrations of the computer-friendly

nature of the form in (3.53). To do so, in Figure 18 we depict the potential field in-

duced by multiple sources in the considered shell structure. Superposition of profiles

of the matrix of Green’s type in (3.53) is depicted as seen from two different view

angles. The parameters specifying the problem setting are chosen as: ac = 2.0,

r = 1.5, ϕ0 = −π/4, ϕ1 = π/2, R = ac − r cosϕ1 = 2.0, ap = R + r cosϕ0 ≈ 3.06,

the locations of the point sources are (1.25, 0.83π) and (0.5, 0.12π) in the cylindrical

fragment, (0.01π, 0.72π) in the toroidal fragment, and (1.9, 0.38π) in the plane frag-

ment.
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Figure 18: Multiple point sources in the three-fragment shell structure

The matrices of Green’s type, which either have already been obtained in the cur-

rent work or those which are potentially accessible within the scope of our approach,

can be used in the development of effi cient computational routines aiming at potential

fields generated by point sources in joint shell structures weakened with apertures.

Problems of that class will be investigated in the following chapter.
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4 Green’s functions for multiply-connected regions

4.1 Single fragments weakened with apertures

The Green’s functions and matrices of Green’s type constructed in Chapters 2 and

3, as well as many others, that could be similarly obtained, can be employed to

accurately compute potential fields generated by point sources in perforated thin shell

structures. This chapter is designed to describe an effi cient semi-analytical procedure

that allows us to do so. The procedure is based on the modification [12, 13, 47] of

the classical [18] boundary integral equation method.

Let Ω represent a double-connected region on a spherical surface bounded with

piecewise smooth closed contours S1 (exterior) and S2 (interior). On Ω, we consider

the well-posed boundary-value problem

∂

∂φ

(
sinφ

∂u (φ, θ)

∂φ

)
+

1

sinφ

∂2u (φ, θ)

∂θ2 = 0, in Ω (4.1)

B1 [u (φ, θ)] = 0, on S1 (4.2)

u (φ, θ) = 0, on S2 (4.3)

Let, also, G0 (φ, θ;ψ, τ) represent the Green’s function to the problem in (4.1)-

(4.2) set up on the simply-connected region bounded with S1. The latter problem

is also assumed well-posed. In what follows we will refer to G0 (φ, θ;ψ, τ) as the

resolving Green’s function.

If for an arbitrarily fixed location (ψ∗, τ ∗) ∈ Ω of the source point, the profile of

the Green’s function G(φ, θ;ψ∗, τ ∗) of the problem setting in (4.1)-(4.3) is expressed

as

G(φ, θ;ψ∗, τ ∗) = G0(φ, θ;ψ∗, τ ∗) + g∗ (φ, θ) (4.4)

then the additive component g∗ (φ, θ) must be a solution of the governing equation

in (4.1) that satisfies the boundary condition of (4.2). As far as the condition on S2

is concerned, g∗ (φ, θ) has to nullify the trace of the resolving Green’s function on S2.
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This implies that g∗ (φ, θ) has to represent the solution of the problem

∂

∂φ

(
sinφ

∂g∗ (φ, θ)

∂φ

)
+

1

sinφ

∂2g∗ (φ, θ)

∂θ2 = 0, in Ω

B1 [g∗ (φ, θ)] = 0, on S1

g∗ (φ, θ) = −G0 (φ, θ;ψ∗, τ ∗) , on S2 (4.5)

We express the solution of the above problem in the form

g∗ (φ, θ) =

∫
S̃2

G0 (φ, θ;ψ, τ)µ (ψ, τ) dS̃2 (ψ, τ) , (φ, θ) in Ω (4.6)

where the kernel represents the resolving Green’s function, and S̃2 is a smooth closed

curve entirely embraced by S2. This makes S̃2 laying out of Ω. We will refer to S̃2 as

the fictitious contour. Note that the density function µ (ψ, τ) in (4.6) is supposed to

be integrable on S̃2.

It is evident that the two-variable function of φ and θ in (4.6) is harmonic in Ω

and satisfies the boundary condition of (4.2) for any density function µ (ψ, τ). To

make the form in (4.6) complying with the boundary condition of (4.5), we take the

limit as (φ, θ) approaches the actual interior contour S2. This leads to the regular

functional (of integral type) equation∫
S̃2

G0 (φ, θ;ψ, τ)µ (ψ, τ) dS̃2 (ψ, τ) = −G0(φ, θ;ψ∗, τ ∗) (4.7)

in the density function µ (ψ, τ).

The regularity of (4.7) follows from the fact that the curves S2 and S̃2 have no

common points. This makes a numerical solution of (4.7), for a fixed location of

the fictitious contour S̃2, a routine procedure, for any location (ψ∗, τ ∗) of the source

point. From our experience, it also follows that the regularizing shape and location of

the fictitious contour S̃2 can appropriately be determined through a straightforward

numerical experiment conducted on a case-by-case basis. It appears, in particular,

that the shape of S̃2 ought to somewhat resemble the shape of S2. The fictitious

contour has to be located close enough to S2 to provide a required accuracy level.

But, on the other hand, the fictitious contour should stay quite apart of the actual



74

contour S2, providing a stability of the process. We have determined that the distance

between S2 and S̃2 has to be within the range of 3-4% of the local radius of curvature

of S2.

To investigate the practicality of the proposed approach to the semi-analytical

construction of Green’s functions for regions of irregular configuration on spherical

surfaces, and to justify its computational effi ciency, we present some illustrative ex-

amples. For the first of those, we consider a double-connected region Ω1 representing

a quarter of the spherical surface of radius a (a spherical biangle)

Ω1 = {(φ, θ) |0 ≤ φ ≤ π, 0 ≤ θ ≤ π/2} (4.8)

which is weakened with an aperture having a contour S. The latter is a circle which

represents the intersection of the spherical surface and a circular cylinder of radius

0.25a, whose axis passes through the center of the sphere.

Let the two-dimensional Laplace equation in (4.1) be considered in Ω1 and subject

to the Dirichlet boundary conditions

u (φ, 0) = 0, u
(
φ,
π

2

)
= 0 (4.9)

u (φ, θ) = 0, (φ, θ) ∈ S (4.10)

in addition to which, the boundedness conditions

lim
φ→0
|u (φ, θ)| <∞, lim

φ→π
|u (φ, θ)| <∞ (4.11)

must be imposed at the poles of the spherical surface to make the above problem

setting well-posed. The boundedness conditions are required due to the fact that

the poles represent the points of singularity for the governing differential equation in

(4.1).

The potential field depicted in the left fragment of Figure 19 is generated in Ω1

by three unit sources located at (0.3π, 0.2π), (0.6π, 0.1π), and (0.75π, 0.3π). The axis

of the cylinder, that creates the aperture passes through the center of the sphere and

the point (0.5π, 0.25π) on it. Clearly, the shown potential field can be interpreted as



75

the superposition of three profiles of the Green’s function computed for the problem

in (4.1), (4.9)-(4.11). To illustrate the effect that the aperture provides, we showed in

the right fragment the field that would be generated by the same set of unit sources

acting in the simply-connected region (see (4.8)).

Figure 19: The fields induced by multiple sources in the perforated

and the simply-connected spherical biangle

The developed approach can be applied to any boundary-value problem posed on

a multiply-connected region, if the Green’s function for the corresponding simply-

connected region is known. For example, in Figure 20 and Figure 21 the potential

fields generated by point sources are shown for other two spherical shells weakened

with apertures. The corresponding resolving Green’s functions are available in Table

1 (see Section 2.1). The parameters specifying the problem setting in Figure 20

are chosen as: a = 1.0, β = π/2, the circular aperture of radius 0.2 is located at

(0.4π, 0.3π) . The locations of the point sources are (0.33π, 0.25π) , (0.38π, 0.35π) ,

(0.28π, 0.47π) , (0.12π, 0.15π) , and (0.12π, 0.45π).
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Figure 20: Multiple source points-generated field in a cap weakened with an aperture

Figure 21: Potential field in a spherical quadrilateral with two-side Dirichlet

and two-side Neumann boundary conditions imposed

The field generated in a spherical rectangle {φ, θ|0.15π ≤ φ ≤ 0.5π, 0 ≤ θ ≤ 0.5π}

weakened with a circular aperture centered at (0.3π, 0.3π) .The radius of the spherical

surface 1.0, whilst the radius of the aperture is 0.4. Point sources are located at

(0.2π, 0.1π) , (0.45π, 0.12π) , and (0.33π, 0.42π) .
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So far in this section, we have dealt with Green’s functions of boundary-value

problems stated in multiply-connected regions. Note that by definition, Green’s func-

tions satisfy homogeneous boundary conditions on every piece of the boundary of the

considered region. In many practical problems in engineering and science, potential

fields are not, however, kept at zero level on each and every piece of the boundary.

The approach that has been used earlier to construct Green’s functions can be

effi ciently implemented for computing potential fields occurring in multiply-connected

thin-walled structures where some of the boundary pieces are not necessarily kept at

zero potential. To illustrate this point we consider the following problem setting.

Let a potential field be generated by N point sources located at points (s∗i , τ
∗
i ) in a

multiply-connected cylindrical region Ω = Ω0\
M⋃
i=1

Ωi where

Ω0 = {z, θ | 0 ≤ z ≤ h; 0 ≤ θ ≤ 2π}

whilst the apertures’Ωi contours Si, i = 1,M, are smooth closed curves. Homogen-

eous boundary conditions are imposed on the outer boundary of Ω, whereas some

non-homogeneous conditions are imposed on the contours Si of the apertures.

The potential function u (z, θ) determined by the described problems setting can

be obtained by the governing differential equation

∂2u (z, θ)

∂z2
+

1

a2

∂2u (z, θ)

∂θ2 = −
N∑
i=1

δ (z − s∗i , θ − τ ∗i ) , in Ω (4.12)

subject to the boundary conditions

u (z, 0) = u (z, 2π) ,
∂u (z, 0)

∂θ
=
∂u (z, 2π)

∂θ
(4.13)

B1 [u (0, θ)] = 0, B2 [u (h, θ)] = 0 (4.14)

and

u (z, θ) = wj (z, θ) , (z, θ) ∈ Sj, j = 1,M (4.15)

where wj (z, θ) represent continuous functions.

We look for the solution of the problem in (4.12)-(4.15) in the form

u (z, θ) =

N∑
i=1

G0 (z, θ; s∗i , τ
∗
i ) + g∗ (z, θ)
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where G0 (z, θ; s∗i , τ
∗
i ) is the resolving Green’s function (the one of the boundary-value

problem in (4.12)-(4.14)), with the source points fixed at (s∗i , τ
∗
i ) . It can be found in

Table 2 (Chapter 2). The corrector-function g∗ (z, θ) will be expressed as

g∗ (z, θ) =
M∑
i=1

∫
S̃i

G0 (z, θ; s, τ)µi (s, τ) dS̃i (s, τ) , (z, θ) ∈ Ω

where S̃i are fictitious contours, one for the corresponding Si located entirely within

Ωi, hence outside of Ω. The following system of functional equations

M∑
i=1

∫
S̃i

G0 (z, θ; s, τ)µi (s, τ) dS̃i (s, τ) =

wj (z, θ)−
N∑
i=1

G0 (z, θ; s∗i , τ
∗
i ) , (z, θ) ∈ Sj; j = 1,M (4.16)

appears when we determine the density-functions µi (s, τ), by means of the boundary

conditions in (4.15).

The system of functional equations in (4.16) reduces to a system of linear algebraic

equations by approximating the integrals in it by quadrature formulas. This system

is supposed to have a unique solution for the fixed shape and location of the fictitious

contours S̃i. Some numerical experiments are required to properly locate S̃i. These

experiments have to be conducted on a case-by-case basis.

As an illustrative example for the problem setting in (4.12)-(4.15) we depict in

Figure 22 (a) the potential field determined in Ω by the following set of initial data:

a = 0.5, h = 2, N = 3, M = 2, (s∗1, τ
∗
1) = (0.8, 0.25π), (s∗2, τ

∗
2) = (1.4, 0.55π),

(s∗3, τ
∗
3) = (0.2, 0.4π), w1 (z, θ) ≡ 50.0, and w2 (z, θ) ≡ 1.0. The identity operators

B1 ≡ I and B2 ≡ I define the boundary conditions on the outer contours z = 0 and

z = h. The apertures are circular of radii 0.1 and 0.2 centered at (1.6, 0.25π) and

(0.6, 0.6π) , respectively.
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Figure 22: Potential fields induced by multiple point sources

in perforated cylindrical shells

The potential field depicted in Figure 22 (b) is specified by another set of initial

data in the problem setting of (4.12)-(4.15). That is a = 2, h = 4, N = 3, M = 2,

(s∗1, τ
∗
1) = (3.65, 0.12π), (s∗2, τ

∗
2) = (0.25, 0.6π), (s∗3, τ

∗
3) = (2.6, 2π/3), w1 (z, θ) ≡ 1.0,

and w2 (z, θ) ≡ 10.0. The boundary operators are: B1 ≡ I and B2 ≡ ∂/∂z. The

apertures are circular of radii 0.5 and 0.3 centered at (3.4, 0.45π) and (0.6, 0.45π) .

4.2 Assemblies of thin shells with apertures

The technique described in the preceding section could be extended for the case of

assemblies of shells [14, 15]. Consider again the thin spherical-toroidal shell assembly

similar to that we had earlier dealt with in Chapter 3 (see Figure 23).
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Figure 23: Axial cross-section of the sphere-torus assembly

Let the assembly be weakened with an aperture whose contour S represents inter-

section of the middle surface of the spherical fragment with a cylinder whose diameter

is smaller than the radius of the sphere (see Figure 24).

Figure 24: The assembly of spherical and toroidal fragments weakened with an aperture

This makes double-connected the fragment Ω1 (φ, θ) of the middle surface Ω =

Ω1 (φ, θ) ∪ Ω2 (ϕ, θ) of the shell assembly, whereas the fragment Ω2 remains simply-

connected.

To determine a potential field generated by a point source acting in either Ω1 or

Ω2, we consider the Laplace equations

∇2u1 (φ, θ) = 0, (φ, θ) ∈ Ω1 (4.17)

and

∇2u2 (ϕ, θ) = 0, (ϕ, θ) ∈ Ω2, (4.18)
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referenced to the corresponding geographical coordinates and subject to the boundary

and contact conditions

lim
φ→0
|u1 (φ, θ)| <∞, u2 (ϕ1, θ) = 0 (4.19)

u1 (φ, 0) = u1 (φ, 2π) ,
∂u1 (φ, 0)

∂θ
=
∂u1 (φ, 2π)

∂θ
(4.20)

u2 (ϕ, 0) = u2 (ϕ, 2π) ,
∂u2 (ϕ, 0)

∂θ
=
∂u2 (ϕ, 2π)

∂θ
(4.21)

u1 (φ0, θ) = u2 (ϕ0, θ) ,
∂u1 (φ0, θ)

∂φ
= λ

∂u2 (ϕ0, θ)

∂ϕ
(4.22)

In addition, let the function u1 (φ, θ) , whose domain is Ω1, be subject to the condition

u1 (φ, θ) = 0, (φ, θ) ∈ S (4.23)

Clearly, the potential field generated by a point source, acting at a point (ζ∗, τ ∗) ∈

Ω can be simulated with corresponding profiles of the elements of the matrix of Green’s

type G̃ (ς, θ; ζ, τ)

G̃ (ς, θ; ζ∗, τ ∗) =
[
G̃ij (ς, θ; ζ∗, τ ∗)

]
2×2

(4.24)

of the problem in (4.17)—(4.23). Similarly to what was done in Chapter 3, we introduce

the common notations

ς =

 φ, in Ω1

ϕ, in Ω2

and ζ =

 ψ, in Ω1

ξ, in Ω2

already accepted in (4.24) for the latitudinal coordinate of an observation and source

points in either fragment of the structure.

To effi ciently compute the elements of G̃ (ς, θ; ζ, τ) within the scope of the Green’s

function modification [47] of one of the versions of the boundary integral equation

method, we take advantage of the matrix of Green’s type

G (ς, θ; ζ, τ) = [Gij (ς, θ; ζ, τ)]2×2 ,

which was earlier obtained in (3.31) for the homogeneous boundary-value problem

corresponding to (4.17)-(4.22) stated in the compound (simply-connected) region Ω.

As we have already agreed on, G (ς, θ; ζ, τ) will be referred to as the resolving matrix.
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For a fixed in Ω location (ζ∗, τ ∗) of the source point, we express the matrix of

Green’s type G̃ (ς, θ; ζ∗, τ ∗) in terms of the resolving matrix as

G̃ (ς, θ; ζ∗, τ ∗) = G (ς, θ; ζ∗, τ ∗) +W∗(ς, θ). (4.25)

Clearly, the resolving matrix, as an additive component to G̃ (ς, θ; ζ∗, τ ∗), provides

the latter with the logarithmic singularity. As to the second component in (4.25), it

represents a two-by-two matrix

W∗(ς, θ) =

 w∗11(φ, θ) w∗12(φ, θ)

w∗21(ϕ, θ) w∗22(ϕ, θ)

 ,

implying that its elements w∗11(φ, θ) and w∗12(φ, θ) are defined in Ω1, whereas the

domain for the elements w∗21(ϕ, θ) and w∗22(ϕ, θ) is Ω2. Hence, the elements ofW∗(ς, θ)

have to be harmonic in their domains. In addition, to make the first row elements of

G̃ (ς, θ; ζ∗, τ ∗) vanishing on S, the elements w∗11(φ, θ) and w∗12(φ, θ) ofW∗(ς, θ) have

to compensate the traces of the first row elements of the resolving matrix on S. All

the elements ofW∗(ς, θ) are to comply with the boundary and contact conditions of

(4.19)—(4.22) that they are relevant to.

The Green’s function version of the functional equation method, introduced earlier

in Section 4.1, will be used to accurately compute the elements of W∗(ς, θ). To be

specific, we focus on the potential field generated by a unit source placed at a point

(ζ∗, τ ∗) located in the double-connected spherical fragment of the considered shell

structure. Since (ζ∗, τ ∗) is located in Ω1, the elements of the first column of the

matrix in (4.25) simulate the required potential field. To effi ciently determine them,

we introduce the vector-function

V(ς, θ) =

V1(φ, θ)

V2(ϕ, θ)

 ,

with components defined in terms of the elements ofW∗(ς, θ) as

V1(φ, θ) =

w∗11(φ, θ), in Ω1

0, in Ω2

and V2(ϕ, θ) =

 0, in Ω1

w∗21(ϕ, θ), in Ω2

.
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Introducing also the vector-function

M(ζ, τ) =

M1(ψ, τ)

M2(ξ, τ)

 ,

whose components are defined as

M1(ψ, τ) =

µ∗1(ψ, τ), in Ω1

0, in Ω2

and M2(ψ, τ) =

 0, in Ω1

µ∗2(ξ, τ), in Ω2

,

we express the vector V(ς, θ) in a form of the line integralV1(φ, θ)

V2(ϕ, θ)

=

∫
S0

G11(φ, θ;ψ, τ) G12(φ, θ;ψ, τ)

G21(ϕ, θ; ξ, τ) G22(ϕ, θ; ξ, τ)

M1(ψ, τ)

M2(ξ, τ)

 dS0(ζ, τ), (4.26)

where the fictitious contour S0 represents a smooth closed line embraced with the

actual aperture contour S.

From (4.26), it follows that the first component of the vector-function V(ς, θ)

reads

V1(φ, θ) =

∫
S0

G11(φ, θ;ψ, τ)M1(ψ, τ)dS0(ψ, τ)

+

∫
S0

G12(φ, θ;ψ, τ)M2(ψ, τ)dS0(ψ, τ), (φ, θ) in Ω1. (4.27)

Due to the way the vector-functions V(ς, θ) and M(ζ, τ) were introduced, the

above representation reduces to

w∗11 (φ, θ) =

∫
S0

G11 (φ, θ;ψ, τ)µ∗1(ψ, τ)dS0(ψ, τ), (φ, θ) ∈ Ω1 (4.28)

It is evident that the integral form in (4.28) is a harmonic function of φ and θ

in Ω1 regardless of the density function µ∗1(ψ, τ), which is of course supposed to be

integrable on S0. Clearly, the harmonic nature of w∗11 (φ, θ) in (4.28) is guaranteed by

the kernel-function G11 (φ, θ;ψ, τ).

Taking the limit in (4.28) as the field point (φ, θ) approaches the actual contour S

of the aperture, we arrive, in view of the boundary condition of (4.23) and the form
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of G̃ (ς, θ;ψ∗, τ ∗) in (4.25), at the regular functional equation∫
S0

G11 (φ, θ;ψ, τ)µ∗1(ψ, τ)dS0(ψ, τ) = − G11 (φ, θ;ψ∗, τ ∗) , (φ, θ) ∈ S, (4.29)

in the density function µ∗1(ψ, τ). Due to the regular nature of the above equation, its

numerical solution is not expected to be problematic (for a fixed fictitious contour

S0). But finding optimal shape and location of S0 is another issue representing a

regularizing stage of our algorithm. It has to be addressed on the case-by-case basis.

Our experience provides us with data ensuring a confidence in the effi ciency of the

suggested approach.

Once an accurate approximation of the density function µ∗1(ψ, τ) is found, the

form in (4.28) gives us an explicit expression for the component w∗11 (φ, θ) of the

potential field generated in the double-connected region Ω1 by a unit source at a

point (ψ∗, τ ∗) also located in Ω1. To obtain the second fragment w∗21 (ϕ, θ) of the

potential field generated in the simply-connected region Ω2 by the unit source located

at (ψ∗, τ ∗) ∈ Ω1, we turn to the integral representation of (4.26), from which the

second component of the vector-function V(ς, θ) appears in the form

V2(ϕ, θ) =

∫
S0

G21(ϕ, θ;ψ, τ)M1(ψ, τ)dS0(ψ, τ)

+

∫
S0

G22(ϕ, θ;ψ, τ)M2(ψ, τ)dS0(ψ, τ), (ϕ, θ)∈ Ω2,

which yields the integral representation

w∗21 (ϕ, θ) =

∫
S0

G21 (ϕ, θ;ψ, τ)µ∗1(ψ, τ)dS0(ψ, τ), (ϕ, θ) ∈ Ω2

for the required fragment of the potential field.

In Figure 25, one finds a potential field induced by point sources in the considered

spherical-toroidal joint shell structure perforated with a circular aperture whose con-

tour is held at zero potential. The field was accurately computed within the scope of

the described numerical procedure. The parameters specifying the problem setting
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are chosen as: a = 0.6, r = 0.7, φ0 = π/2, ϕ0 = 0.0, ϕ1 = π/2, R = a + r = 1.3,

the locations of the point sources are (0.4π, 0.18π) in the spherical fragment, and

(0.45π, 0.52π) and (0.42π, 0.28π) in the toroidal fragment. The circular aperture of

radius 0.2 is centered at (0.35π, 0.5π) of the spherical fragment.

Figure 25: Potential field induced by multiple point sources

in a double-connected compound shell structure

The following comments are appropriate as to the computational specifics making

our procedure effi cient:

• the regularizing effect is achieved by choosing the fictitious contour S0 as a

concentric with S circle of radius 0.98 of the latter;

• the functional equation in (4.29) was numerically solved by the quadratures

method (the regular trapezoid rule with 40-50 grid points);

• the series-containing components of the matrix of Green’s type were trun-

cated to the tenth partial sum.

During the past several decades, the classical boundary integral equation method

[18] is considered as one of the most effi cient approaches to partial differential equa-

tions. Its key feature is the reduction of a considered boundary-value problem to

boundary integral equations.

Our experience [16] reveals high computational potential of numerical schemes
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based on the incorporation of matrices of Green’s type into the boundary integral

equation method scheme. To illustrate this point, we are going to consider a problem

simulating potential field that is induced in a thin-walled structure, comprised of two

cylindrical shells shown in Figure 26. Both fragments (Ω1 and Ω2) represent closed

finite cylindrical shells.

Figure 26: Geometry of the assembly of two cylindrical shells

Let λ1 and λ2 represent thermal conductivities of the materials of which the frag-

ments Ω1 and Ω2 are made. Potential field induced by a point source acting in Ω1, is

simulated by a set of two Poisson equations each of which is written in the individual

coordinate system (z1, θ1) and (z2, θ2) . We write them in a vector form as

∂2U (z, θ)

∂z2
+

1

a2
i

∂2U (z, θ)

∂θ2 = −F (z, θ) , in Ω, i = 1, 2 (4.30)

where

U (z, θ) =

 u1 (z1, θ1)

u2 (z2, θ2)

 , F (z, θ) =

 δ (z1 − s, θ1 − τ)

0


z =

 z1, in Ω1

z2, in Ω2

and θ =

 θ1, in Ω1

θ2, in Ω2

and ai is the radius of the corresponding cylinder.
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The boundary conditions are imposed on the outer boundary as

U (z, 0) = U (z, 2π) ,
∂U (z, 0)

∂θ
=
∂U (z, 2π)

∂θ
(4.31)

u1 (0, θ1) = 0,
∂u1 (l, θ1)

∂θ1

= 0 (4.32)

u2 (0, θ2) = 0 (4.33)

and the ideal contact conditions are imposed on the interfacial line L as

u1 (z1, θ1) = u2 (z2, θ2) ,
∂u1 (z1, θ1)

∂n1

= −λ∂u2 (z2, θ2)

∂n2

,

(zi, θi) ∈ L ⊂ Ωi, i = 1, 2 (4.34)

where ni, i = 1, 2 is the normal vector to L in Ωi, and λ = λ2/λ1. Note that the

contour L has to be defined in two coordinate systems individually, i.e. L (z1, θ1)

and L (z2, θ2) . Before we proceed any further, let us pay special attention to the

analytic geometry behind the shell configuration. First, we describe the contour L

in both coordinate systems. As shown on Figure 26, the contour L appears as the

intersection of two cylindrical surfaces with mutually perpendicular axes. In Ω1 L is

parametrically defined as

z1 (t) = c+ a2 sin t

θ1 (t) =

 arctan (y (t) /x (t)) y (t) /x (t) > 0

π + arctan (y (t) /x (t)) y (t) /x (t) < 0

where

x (t) =
√
a2

1 − a2
2 cos2 t cosα− a2 cos t sinα

y (t) =
√
a2

1 − a2
2 cos2 t sinα + a2 cos t cosα

and t ∈ [0, 2π) .

On the other hand, in Ω2, L reads as

z2 (t) = h+ a1 −
√
a2

1 − a2
2 cos2 t

θ2 (t) = t
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Note that parameter t must be the same for both regions.

Next, the normal derivatives in (4.34) are defined in terms of the local coordinate

systems as
∂

∂ni
=

(
nzi

∂

∂zi
+ nθi

∂

∂θi

)
, i = 1, 2

The normal derivative in region Ω2 is fairly trivial

n2 = (1, 0)

while in the case of n1, after some algebra, one obtains

n1 =

(
1

|n1|
,

1

|n1|
dz

dθ

)
where

|n1| =

√
1 +

(
dz

dθ

)2

and
dz

dθ
=
√
a2

1 − a2
2 cos2 t cot t

Note that, when cot t is undefined, we have

n1 =

 (0, 1) , t = 0

(0,−1) , t = π

Clearly, the potential field generated by a point-source, located at a point (s∗, τ ∗)

in Ω1, is simulated by the matrix of Green’s type for the boundary-value problem in

(4.30)-(4.34). Since the point-source is located in Ω1, the 2× 1 matrix

G (z, θ; s∗, τ ∗) =

 G11 (z1, θ1; s∗, τ ∗)

G21 (z2, θ2; s∗, τ ∗)


is targeted, where Gi1 (zi, θi; s

∗, τ ∗) represents the field induced in the corresponding

region Ωi, i = 1, 2. We look for the elements of the above matrix in the form

G11 (z1, θ1; s∗, τ ∗) = G0 (z1, θ1; s∗, τ ∗) + w∗1 (z1, θ1)

G21 (z2, θ2) = w∗2 (z2, θ2)
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where G0 (z1, θ1; s∗, τ ∗) is the Green’s function for the boundary-value problem in

(4.30)-(4.32) whose representation

G0 (z1, θ1; s∗, τ ∗) = z1 − aHP

(
e(z1+s∗−2h)/a, θ1 − τ ∗

)
+ aHP

(
e−(z1+s∗)/a, θ1 − τ ∗

)
+R

+

 z1 − aHP

(
e(z1−s∗)/a, θ1 − τ

)
+ aHP

(
e(−z1+s∗−2h)/a, θ1 − τ ∗

)
s∗ − aHP

(
e(−z1+s∗)/a, θ1 − τ

)
+ aHP

(
e(z1−s∗−2h)/a, θ1 − τ ∗

)
can be found in Table 2 of Chapter 2. The upper branch of the last additive component

in the above formula corresponds to 0 ≤ z1 ≤ s∗, while the lower branch takes place

if s∗ ≤ z1 ≤ l. The regular component R = R (z1, θ1; s∗, τ ∗) reads as

R =
∞∑
n=1

a

2πn

sinh (nz1/a) cosh (n(s∗ − l)/a)

e2nl/a cosh (nl/a)
cosn (θ1 − τ ∗)

The functions w∗i (z, θ) , i = 1, 2 are expressed as

w∗1 (z1, θ1) =

∫
L̃1

G0 (z1, θ1; s, τ)µ1 (s, τ) dL̃1 (s, τ)

and

w∗2 (z2, θ2) =

∫
L̃2

G0 (z2, θ2; s, τ)µ2 (s, τ) dL̃2 (s, τ)

So, our strategy in finding the regular components w∗1 (z1, θ1) and w∗2 (z2, θ2) is

similar to that we used earlier. That is, the fictitious contours L̃1 and L̃2 are intro-

duced, where each of them is defined in the corresponding coordinate system and lies

outside of the corresponding region Ωi. In order to find the density-functions µi (s, τ)

the conditions in (4.34) are to be employed. In doing so, we arrived at the system of

functional equations

−G0 (z1, θ1; s∗, τ ∗) =

∫
L̃1

G0 (z1, θ1; s, τ)µ1 (s, τ) ds,τ L̃1

−
∫
L̃2

G0 (z2, θ2; s, τ)µ2 (s, τ) ds,τ L̃2 (4.35)

−D [G0 (z1, θ1; s∗, τ ∗)] =

∫
L̃1

D [G0 (z1, θ1; s, τ)]µ1 (s, τ) ds,τ L̃1

+λ

∫
L̃2

∂

∂z2

G0 (z2, θ2; s, τ)µ2 (s, τ) ds,τ L̃2 (4.36)
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where

(zi, θi) ∈ L, i = 1, 2

and

D ≡ nz1
∂

∂z1

+ nθ1
∂

∂θ1

After reducing the system in (4.35) and (4.36) to a system of linear algebraic

equations (in the way described earlier in Section 4.1) and solving it numerically,

one obtains elements of the matrix of Green’s type for the problem in (4.30)-(4.34).

To illustrate high computational potential of the proposed algorithm, we present in

Figure 27 the potential field obtained for a particular problem setting.

Figure 27: Potential field generated by a point-source in the shell structure

The parameters specifying the problem setting are chosen as: a1 = 1.0, a2 = 0.3,

l = 2.0, h = 1.2, c = 0.6, α = 0.8π, the location of the point source is (0.7, 0.5π) in

the first cylinder.
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5 Computational Aspects

This Chapter is designed to highlight just a few aspects relevant to the computer

algorithms created and repeatedly utilized in the present study. We plan to briefly

discuss, in particular, the validation issue for the numerical methods used herein and

present some arguments verifying actual results obtained. Parallelism in the com-

puter routines developed in this manual represents another aspect which is supposed

to be superficially discussed. In addition, as to the possibility of tackling inverse

problem settings, we are going to bring to the readers attention the issue of poten-

tial implementation for this purpose of the algorithms that have been developed in

the preceding Chapters for solution of direct boundary-value problems for partial

differential equations.

5.1 Validation and verification

To make sure that the computational algorithms developed in the present study could

form a solid and reliable background for implementation in engineering and science,

they have to go through a process of validation and verification. Note, however,

that as far as the materials of Chapters 2 and 3 are concerned, the validation and

verification do not constitute pressing or urgent issues of any kind. Indeed, either

closed forms or computer-friendly representations are obtained in those chapters for

a vast number of Green’s functions and matrices of Green’s type for boundary-value

problems simulating potential fields induced in thin shells and their assemblies. And

since Green’s functions deliver either exact analytical or easy-controlled approximate

but still analytical solutions for considered problems, there is no need for special effort

towards their verification.

A quite different situation takes place in Chapter 4, where we have developed

and widely used some numerical algorithms based on our Green’s function version of

the classical boundary integral equation method for an important class of problems.
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Those problems are stated in multiply-connected regions of irregular configuration,

and this is why they do not allow exact analytical solution. Computational effi ciency

of our algorithms does really represent an issue for such problems and ought to be

closely monitored.

To present some arguments and data verifying the results of Chapter 4, a par-

ticular problem setting is recalled of the type repeatedly analyzed over there. That

is, consider a boundary-value problem where the two-dimensional Laplace equation,

written in spherical coordinates,

1

a2 sinφ

∂

∂φ

(
sinφ

∂u(φ, θ)

∂φ

)
+

1

a2 sin2 φ

∂2u(φ, θ)

∂θ2 = 0, (φ, θ)∈Ω (5.1)

is posed in the region

Ω = {φ, θ|α ≤ φ ≤ β, 0 ≤ θ < 2π}

that represents a spherical belt. Let the governing equation be subject to the bound-

ary conditions

u(φ, 0) = u(φ, 2π),
∂u(φ, 0)

∂θ
=
∂u(φ, 2π)

∂θ
(5.2)

and

u(α, θ) = 0, u(β, θ) = 0 (5.3)

The Green’s function for the above problem setting was obtained in Section 2.1

of Chapter 2 (see equation (2.42)). It appears in the form

G (φ, θ;ψ, τ) = HP

(
A2

0

Φ0 (φ) Φ0 (ψ)
, θ − τ

)
+HP

(
Φ0 (φ) Φ0 (ψ)

B2
0

, θ − τ
)

+


ln Φ0(φ)

B0
ln Φ0(ψ)

A0
−HP

(
Φ0(φ)
Φ0(ψ)

, θ − τ
)
−HP

(
Φ0(ψ)A20
Φ0(φ)B20

, θ − τ
)

ln Φ0(ψ)
B0

ln Φ0(φ)
A0
−HP

(
Φ0(ψ)
Φ0(φ)

, θ − τ
)
−HP

(
Φ0(φ)A20
Φ0(ψ)B20

, θ − τ
)

+RDD (5.4)

where the uniformly convergent series term of the regular component reads as

RDD = RDD(φ, θ;ψ, τ) =

∞∑
n=1

1

2πn

A2n
0 (Φ2n

0 (φ)−B2n
0 ) (Φ2n

0 (ψ)− A2n
0 )

B2n
0 Φn

0 (φ) Φn
0 (ψ) (B2n

0 − A2n
0 )

cosn (θ − τ)
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and the upper branch of the last additive term in (5.4) stays for α ≤ φ ≤ ψ, whereas

for the lower branch we have ψ ≤ φ ≤ β.

Clearly, the form in (5.4) is ready for immediate computer implementation. Thus,

one can employ this form to accurately compute a potential field generated in Ω by

either a single point concentrated source or a finite set of distinct point concentrated

sources.

On the other hand, the formulation in (5.1)-(5.3) might be considered as a boundary-

value problem posed in a double-connected region that arises if a circular aperture,

whose contour L represents the coordinate line φ = α, is cut out from the spherical

cap

Ω0 = {φ, θ| 0 ≤ φ ≤ β, 0 ≤ θ < 2π}. (5.5)

In this case a profile G(φ, θ;ψ∗, τ ∗) of the Green’s function shown in (5.4) could

be expressed, for an arbitrary location (ψ∗, τ ∗) of the source point, in the form

G(φ, θ;ψ∗, τ ∗) = G0(φ, θ;ψ∗, τ ∗) +

∫
L̃

G0(φ, θ;ψ, τ)µ(ψ, τ)dL̃(ψ, τ) (5.6)

where G0(φ, θ;ψ, τ) is the Green’s function to the boundary-value problem

u(φ, 0) = u(φ, 2π),
∂u(φ, 0)

∂θ
=
∂u(φ, 2π)

∂θ
(5.7)

and

lim
φ→0

u(φ, θ) <∞, u(β, θ) = 0 (5.8)

posed in Ω0, and L̃ is a fictitious contour embraced with the actual aperture boundary

L. We refer to G0(φ, θ;ψ, τ) as the resolving Green’s function. Its closed analytical

representation

G0(φ, θ;ψ, τ) =
1

4π
ln

(
B2

0 (Φ2
0 (φ)− 2Φ0 (φ) Φ0 (ψ) cos (θ − τ) + Φ2

0 (ψ))

B4
0 − 2B2

0Φ0 (φ) Φ0 (ψ) cos (θ − τ) + Φ2
0 (φ) Φ2

0 (ψ)

)
(5.9)

can be found in Section 2.1 (see equation (2.41)).

The density function µ(ψ, τ) in (5.6) can be obtained upon satisfying the first

boundary condition of (5.3) at φ = α. This yields the regular functional equation∫
L̃

G0(φ, θ;ψ, τ)µ(ψ, τ)dL̃(ψ, τ) = −G0(φ, θ;ψ∗, τ ∗), (φ, θ)∈L (5.10)
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in µ(ψ, τ).

Clearly, after a regularizing location of the fictitious contour L̃ is found, and

the functional equation in (5.10) is numerically solved, we substitute the density

function µ(ψ, τ) in (5.6). This completes our numerical procedure and provides us

with approximate values of the profile G(φ, θ;ψ∗, τ ∗) of the Green’s function that we

are looking for. Comparing then the found approximate values of G(φ, θ;ψ∗, τ ∗) with

their corresponding exact values directly computed by (5.4), we can obtain data that

actually verify the effi ciency of the used numerical procedure.

In Figure 28 and 29, we depicted the relative error for a particular problem setting

with the parameter’s values chosen as: a = 1, α = π/4, β = π/2, ψ∗ = 3π/8,

τ ∗ = 2π/3. Figure 28 shows the relative error in the entire domain Ω, whilst Figure

29 focuses on the relative error on the aperture’s contour.

Figure 28: Relative error for the problem in (5.1)-(5.3)

computed by (5.6) in Ω
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Figure 29: Relative error for the problem in (5.1)-(5.3)

computed by (5.6) on L

To proceed further with our effort on collecting data that might be used to justify

the results presented in our manual, another sample problem will be considered of

the type that we have repeatedly dealt with. In doing so, we recall first, from Table

2 (see Chapter 2), the Green’s function

G0(z, θ; s, τ) = aHD

(
eπ(z+s−2h)/aγ, κ, η

)
− aHD

(
eπ(z−s)/aγ, κ, η

)
−aHD

(
eπ(−z+s−2h)/aγ, κ, η

)
+ aHD

(
e−π(z+s)/aγ, κ, η

)
+R(5.11)

of the boundary-value problem

∂2u(z, θ)

∂z2
+

1

a2

∂2u(z, θ)

∂θ2 = 0, (z, θ)∈Ω0 (5.12)

u(0, θ) = 0, u(h, θ) = 0 (5.13)

and

u(z, 0) = 0, u(z, π) = 0 (5.14)

posed in the rectangular region

Ω0 = {z, θ| 0 ≤ z ≤ h, 0 ≤ θ ≤ π}
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which represents a finite fragment of a cylindrical surface of radius a and height h.

The Green’s function in (5.11) is presented for the case where 0 ≤ z ≤ s, whilst the

the case for s ≤ z ≤ h could be obtained by interchanging variables z and s, the

regular component R = R (z, θ; s, τ) is defined as

R = R (z, θ; s, τ) =

∞∑
n=1

a

2πn

sinh (nπz/γa) sinh (nπ(s− h)/γa)

e2πnh/γa sinh (nπh/γa)
(cosnη − cosnκ)

where function HD (x, α, β) and parameters η and κ where defined in Chapter 2 (see

(2.23) and (2.21)).

Consider now the double-connected region Ω representing the just recalled Ω0

weakened with a circular aperture whose contour is L. Let the Laplace equation in

(5.12) be stated in Ω and subject to the boundary conditions in (5.13), (5.14), and

the condition

u(z, θ) = Ψ(z, θ), (z, θ) ∈ L . (5.15)

Let the right-hand side function Ψ(z, θ) in (5.15) represent trace that the profile

G0(z, θ; s∗, τ ∗) of the Green’s function in (5.11) leaves on L (with the source point

(s∗, τ ∗) arbitrarily fixed inside of L). If so, then G0(z, θ; s∗, τ ∗), as a function of z

and θ, represents the exact solution to the boundary-value problem in (5.13)-(5.15)

stated in Ω for the Laplace equation of (5.12).

So, with the exact solution G0(z, θ; s∗, τ ∗) of the problem in (5.13)-(5.15) at hand,

we can apply our version of the classical boundary integral equation method to com-

pute its approximate solution uaprx(z, θ) . All the above creates a convenient situ-

ation where the accuracy level attained in computing uaprx(z, θ) can be directly con-

trolled. To illustrate the point, we depicted in Figures 30 and 31 the relative error

for the boundary-value problem with the following parameter’s values: a = 1, h = 1,

s∗ = 0.35, τ ∗ = 0.45π, the aperture of radius 0.5 is located at (0.35, 0.5π) . Figure 30

shows the relative error in the entire domain Ω, whilst Figure 31 provides the relative

error along the contour of the aperture.
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Figure 30: Relative error of the solution of the problem

in (5.12)-(5.15) in Ω

Figure 31: Relative error of the solution of the problem

in (5.12)-(5.15) on L

The accuracy level shown in Figures 28-31 reveals computational effi ciency of the

technique proposed in this manual, and assures that our approach can be recommen-

ded for use in applied mathematics.
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5.2 Parallelism in computer algorithms

Role of the parallelism in accelerating computational processes cannot be overestim-

ated in nowadays, it has been recognized for decades. The scalable performance and

lower cost of parallel algorithms is reflected in a vast variety of applications. The

original desire for fast and effi cient computation has been declared in a wide number

of contexts involving initial and boundary-value problems for partial differential equa-

tions. This is so because there are heavy and extremely time consuming numerical

computations that ought to be performed in this area of applied mathematics.

That is why, when an algorithm for solving a partial differential equation is de-

signed in nowadays, it is highly desirable and recommended that it is parallelizable.

We will show that our numerical routines based on the Green’s function version of

the boundary integral equation method represent a rather productive area for this

contemporary and very effi cient trend that in many cases allows to radically cut of

the computational cost.

To illustrate the above mentioned point, we focus on just a single problem setting

of a vast number of those we were dealing with in this volume. That is, we recall

the boundary-value problem that has been tackled in Section 4.1. The problem is

posed on a spherical biangle weakened with a circular aperture, and a potential field

was computed in that region as induced by a set of point concentrated sources. It

worth noting that the most expensive part of our computer algorithm was the image

generation in high resolution depicted in Figure 19. To generate that figure, we were

required to create, roughly saying, about one million images —one for each targeted

grid-point (φ, θ) in the considered region. Taking into account that for each of those

points, the Green’s functionG(φ, θ;ψ∗, τ ∗) value (that simulates the field) is expressed

in the integral-containing form

G(φ, θ;ψ∗, τ ∗) = G0(φ, θ;ψ∗, τ ∗) +

∫
L̃

G0(φ, θ;ψ, τ)µ(ψ, τ)dL̃(ψ, τ), (5.16)

where the line integral has to be computed numerically after the density function

is precomputed, the computational cost just for this part of our algorithm appears
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extremely high. Note, however, that, contrary to other numerical routines (based

on the finite difference or the finite element methods, for instance, that could be

considered as possible alternatives to our strategy), and where the field value at a

single targeted grid-point (φ, θ) depends upon some information taken from a number

of next-door grid-points, field values in our routine are completely independent and

can be computed simultaneously. And this is what creates a perfect atmosphere for

a possibility for the parallelism in, at least, this part of our algorithm.

The parallelism could be extended even further in our algorithm. Indeed, the

integral operator in (5.16) might also be computed in parallel. To go this way, we

parametrize first the fictitious contour L̃ (introducing the polar angle parameter t),

and transform then the line integral in (5.16) in the definite integral form as∫ 2π

0

G0(φ, θ;ψ(t), τ(t))µ(ψ(t), τ(t))dt

At the next stage, an approximate value of the above definite integral, at each

and every required field point (φ, θ) is computed by means of the standard trapezoid

rule with N uniform grids. This yields∫ 2π

0

G0(φ, θ;ψ(t), τ(t))µ(ψ(t), τ(t))dt

≈ π

N

N−1∑
i=0

[G0(φ, θ;ψ(ti), τ(ti))µ(ψ(ti), τ(ti))

+ G0(φ, θ;ψ(ti+1), τ(ti+1))µ(ψ(ti+1), τ(ti+1))] .

It is evident that each additive term in the above sum could potentially be com-

puted independently in parallel. This implies that after all the additive terms in

(5.12) are computed, a background for the ultimate summation is prepared and it

can be conducted revealing the approximate value of the integral.

The chart in Figure 32 exhibits the speedup that we managed to achieve upon

implementation of the parallelism strategy just described.
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Figure 32: Computational speedup

Note that this brief section has not, of course, aimed at the detailed exploration

of the possibility to parallelize all the numerical algorithms developed in the present

study. Our goal was far less ambitious —we wanted to present just a single illustration

of the fact that our algorithms represent a quite appropriate territory for that effi cient

computational modernism.

5.3 Inverse problems

Very important observation naturally arises from the analysis of our extensive research

aiming at the incorporation of Green’s functions and matrices of Green’s type into

traditional numerical algorithms of the classical boundary integral equation method

and its numerous versions proposed more or less recently. From the available extens-

ive data it follows that we can pretty much guarantee high accuracy level in solving

direct boundary-value problems that simulate potential fields induced in complex

thin-walled structures. And what sounds to users especially attractive and quite

convincing that the Green’s function-based numerical schemes, developed and intens-

ively used in the preceding sections of this manual, allow us to obtain accurate enough
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solutions at a low computational expense.

All this creates a supportive atmosphere and opens a door to the realm of a cer-

tain class of inverse problems that are, on one hand, in huge demand in engineering

and science, but represent, on another hand, extremely computationally expensive

problem settings. Indeed, since one of the most widely implemented and effi cient

approaches to inverse problems is based on the method of successive approximations

(where at each iteration we solve a direct problem, and the number of such itera-

tions is often really massive counting in most cases hundreds and even thousands), a

prospective of our approach to inverse problems looks really promising.

To provide some arguments verifying the above point, we are going to consider

just one illustrative example of an inverse problem. That is, consider an inverse

formulation of a boundary-value problem that arises as simulation of a potential field

occurring in a thin shell. In doing so, consider a region Ω representing the fragment

{φ, θ|φ0 ≤ φ ≤ φt; 0 ≤ θ < 2π}

of the middle surface of a spherical shell of radius a weakened with a circular aperture

whose contour is defined by intersection of the shell with a cylinder of radius r which

is smaller than the shell diameter. The axis of the cylinder passes through the point

(φc, 0) on the shell and the shell’s center.

Let, in the triple-connected region Ω, u (φ, θ) be the solution to the boundary-value

problem

1

a2 sinφ

∂

∂φ

(
sinφ

∂u (φ, θ)

∂φ

)
+

1

a2 sin2 φ

∂2u (φ, θ)

∂θ2 = 0 φ, θ ∈ Ω (5.17)

u (φ, 0) = u (φ, 2π) ,
∂u (φ, 0)

∂θ
=
∂u (φ, 2π)

∂θ
(5.18)

∂u (φ0, θ)

∂φ
= 0, u (φt, θ) = 0 (5.19)

and

u (φ, θ) = U, (φ, θ) ∈ L (5.20)

Here U is a given constant and L represents the aperture’s contour.
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The above formulation can, for instance, be interpreted as a simulation of the

steady-state heat conduction field induced in the described fragment of a spherical

belt-shaped shell perforated with a circular hole whose contour L is kept at a pre-

scribed temperature level U. The edges φ = φ0 and φ = φt of the shell are kept at

zero heat flux and zero temperature, respectively.

To present a possible inverse formulation of the problem in (5.17)-(5.20), we as-

sume that some of its initial data are not available but ought to be determined to

meet some constraints that are put on the solution we are looking for. To be more

specific, let the size of the shell be given (implying that the parameters a, φ0, and

φt are fixed). Let also the value of U in (5.20) be fixed. Given that, we aim at the

determination of the location and the size of the aperture (the values of r and φc are

to be found) for which the following conditions hold

maxu (φ0, θ) ≤ A, max
∂u (φt, θ)

∂φ
≤ B (5.21)

where A and B are fixed constants.

It is not surprising that the above stated inverse problem is not, generally speak-

ing, well-posed. Indeed, it quite might happen that for some combination of initial

data it has no solution, and moreover in a case when existence is not an issue, the

problem might allow multiple solutions. We leave, however, aside the existence and

uniqueness issue and focus on the finding just a single possible solution of the prob-

lem. This kind of approach to inverse problems is quite customarily accepted and

usually implemented in engineering practice.

Our strategy of handling the described inverse problem is based on an effi cient

Green’s function-oriented algorithm to solve the direct problem in (5.17)-(5.20). First,

with all the parameters (a, φ0, φt, r, φc, and U), specifying the statement of the direct

problem in (5.17)-(5.20) fixed, we follow the approach developed in Chapter 4. That
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is, recall the Green’s function

G0 (φ, θ;ψ, τ) = HP

(
Φ0 (φ) Φ0 (ψ)

B2
0

, θ − τ
)
−HP

(
A2

0

Φ0 (φ) Φ0 (ψ)
, θ − τ

)

+


ln B0

Φ0(φ)
−HP

(
Φ0(φ)
Φ0(ψ)

, θ − τ
)

+HP

(
Φ0(ψ)A20
Φ0(φ)B20

, θ − τ
)

ln B0
Φ0(ψ)

−HP

(
Φ0(ψ)
Φ0(φ)

, θ − τ
)

+HP

(
Φ0(φ)A20
Φ0(ψ)B20

, θ − τ
) +R

where

R = R (φ, θ;ψ, τ) =
∞∑
n=1

1

2πn

A2n
0 (Φ2n

0 (φ)−B2n
0 ) (Φ2n

0 (ψ) + A2n
0 )

B2n
0 Φn

0 (φ) Φn
0 (ψ) (B2n

0 + A2n
0 )

cosn (θ − τ)

of the boundary-value problem in (5.17)-(5.19) that we dealt earlier in Section 4.1,

and express the solution to the problem in (5.17)-(5.20) in terms of the modified

potential

u (φ, θ) =

∫
L̃

G0 (φ, θ;ψ, τ)µ (ψ, τ) dL̃ (ψ, τ) , (φ, θ) ∈ Ω (5.22)

where L̃ is a fictitious contour embraced by L. The density function µ (ψ, τ) for the

representation in (5.22) can be found by satisfying the boundary condition in (5.20).

Namely, if the field point (φ, θ) in (5.22) is taken to the actual contour L of the

aperture, one arrives at the regular functional (of integral type) equation

U =

∫
L̃

G0 (φ, θ;ψ, τ)µ (ψ, τ) dL̃ (ψ, τ) , (φ, θ) ∈ L (5.23)

in µ (ψ, τ) .

Thus, the solution of the inverse problem just stated reduces to the system of

non-linear equations

f1 (r, φc) = A

f2 (r, φc) = B (5.24)

in r and φc, where

f1 (r, φc) ≡ maxu (φ0, θ) , f2 (r, φc) ≡ max
∂u (φt, θ)

∂φ

The intricate point in solving the above system is that both functions f1 (r, φc)

and f2 (r, φc) depend on their arguments implicitly. Hence, the standard techniques
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for solving systems of non-linear equations are problematic to directly apply. How-

ever, studying behavior of the functions f1 (r, φc) and f2 (r, φc), we discovered their

remarkable properties that are helpful in the development of our strategy. That is,

both of these functions increase if the variable r increases, whereas f1 (r, φc) decreases

whilst f2 (r, φc) increases if the variable φc increases.

These properties allow us to use the following instruments in the iterative proced-

ure to achieve an appropriate approximate solution of the system in (5.24):

1. if both f1 (r, φc) and f2 (r, φc) need to be increased, we increment the value of

r;

2. if f1 (r, φc) has to be increased, whilst f2 (r, φc) must decrease, we decrement

the value of φc;

3. if f1 (r, φc) is required to drop, and f2 (r, φc) has to go up, then the value of φc

grows; and

4. if both f1 (r, φc) and f2 (r, φc) must decrease, then the value of r goes down.

The procedure should roll until a required accuracy level is achieved.

Following the described procedure, we solved the inverse problem stated earlier

in this section. The parameters are set as a = 1.0, φ0 = 0.1π, φt = 0.5π, U = 1.0,

A = 0.8, B = 2.0. The recovered solution of the inverse problem is shown in Figure

33. The approximate values for the targeted parameters were found as r ≈ 0.1297,

φc ≈ 1.0226. It took 36 iterations with initial parameters’values of r = 0.05 and

φc = 0.2π to achieve the accuracy level of order 10−4 for both parameters A and B.
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Figure 33: The recovered solution of the inverse problem

Our near future plan is to develop iterative procedures to tackle a wider class of

inverse problems, where the computational algorithms created in the present study

can be in help.
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CONCLUDING REMARKS

An effi cient half analytical-half numerical approach to the solution of boundary-value

problems is proposed for the two-dimensional Laplace and Poisson equations stated

in multiply-connected regions of irregular configuration on various surfaces of revolu-

tion. Solution of such problems is vitally critical for engineering and natural sciences

because those mathematical problems simulate potential fields generated in thin shell

structures made of conductive materials. The point is that shell structures represent

widely used elements and fragments of contemporary machines and devices.

Governing differential equations in the boundary-value problems considered in

the present work are written in geographical coordinates specific for every particular

surface. This makes non-trivial the targeted problems which in turn requires the

development of some non-trivial numerical schemes for their solution. Our approach

to those problems implements a modification of the classical boundary integral equa-

tion method allowing us to achieve high potential of the developed computational

algorithms.

The key stage of the approach to the solution of problems formulated on multiply-

connected regions is the construction of readily computable representations of Green’s

functions and matrices of Green’s type for some relevant simply-connected regions.

Those functions and matrices are referred to as resolving Green’s functions. They are

utilized then to build up some integral representations of solutions of the targeted

problems. A vast number of computer-friendly forms of resolving Green’s functions

and matrices is actually obtained, and their applicability is thoroughly tested.

Two important features stay behind the effi ciency of our approach to problems

stated in multiply-connected regions. First, since the resolving Green’s functions are

used as kernels in the integral representations of the solutions, the governing equa-

tions as well as most of boundary conditions in a considered problem are exactly

satisfied prior to the computational stage of our algorithms. Second, all the factually

required numerical work touches upon some regular one-dimensional functional equa-
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tions where integral operators are to be approximated. This feature of our numerical

algorithms provides a basis for attaining high accuracy level, which is repeatedly

illustrated in this manual.

High computational potential of our Green’s function-based approach to direct

problems opened for us a door of inverse problems which we have proposed to tackle

with the aid of iterative numerical procedures. At each successive approximation of

the latter we run a corresponding algorithm developed in the present study for a

relevant direct problem. Some explicit illustrations of the effi ciency of the proposed

strategy are presented.

To outline possible directions for extension of the present work, we focus on a

few scenarios representing our objective in the near future. First, note that lateral

surfaces of the shell structures considered herein are supposed to be thermally in-

sulated which is not the case in many practical situations. Hence, development of

workable algorithms for solution of problems simulating potential type fields induced

in thin-walled structures whose lateral surfaces are not insulated looks quite prom-

ising if the reliable algorithms already tested in the present study are appropriately

adjusted for that purpose. Another possible application of the results obtained herein

could be associated with potential type phenomena occurring in thin shells made of

either nonhomogeneous or anisotropic materials. One might also take a close look

at an extension of the present study results to problems dealing with shells made of

physically nonlinear materials.



108

LIST OF REFERENCES

1. Alzeer, I. and Qatanani, N., Numerical simulation of the steady state heat

conduction equation, International Journal of Mathematical Modeling, Simulation

and Applications, 2, 1 (2008) 315-321

2. Andrews, M., Alternative separation of Laplace’s equation in toroidal coordin-

ates and its application to electrostatics, Journal of Electrostatics, 64, 10 (2006)

664-672

3. Ang, D.D., Gorenflo, R., Le, V.K., and Trong, D.D., Moment theory and some

inverse problems in potential theory and heat conduction, Springer-Verlag, Berlin,

2002

4. Antaki, P.J., Solution for non-Fourier dual phase lag heat conduction in a semi-

infinite slab with surface heat flux, International Journal of Heat and Mass Transfer,

41, 14 (1998) 2253-2258

5. Aster, R., Borchers, B., and Thurber, C., Parameter estimation and inverse

problems (2nd edition), Elsevier Science & Technology, Oxford, 2012

6. Atluri, S.N., Kim, H.G., and Cho, J.Y., A critical assessment of the truly

meshless local Petrov-Galerkin (MLPG), and local boundary integral equation (LBIE)

methods, Computational Mechanics, 24, 5 (1999) 348-372

7. Bag, S., Trivedi, A., and De, A., Development of a finite element based heat

transfer model for conduction mode laser spot welding process using an adaptive

volumetric heat source, International Journal of Thermal Sciences, 48, 10 (2009)

1923-1931

8. Batycky, R.P. and Brenner, H., On the need for fictitious initial conditions in

effective medium theories of transient nonconservative transport phenomena. Some

elementary unsteady-state heat conduction examples, Chemical Engineering Commu-

nications, 153, 3 (1996) 173-187



109

9. Bhattacharya, M.C., An explicit conditionally stable finite-difference equa-

tion for heat-conduction problems, International Journal for Numerical Methods in

Engineering, 21, 2 (1985) 239-265

10. Borodin, V.N., Construction of Green’s functions for two-dimensional Laplace

equation on spherical surface, In: AMS sectional meeting, Lincoln, NE, October 2011

11. Borodin, V.N., Recent advances in the construction of Green’s functions for

regions on surfaces of revolution, Journal of Mathematical Sciences: Advances and

Applications, 15, 1 (2012) 37-53

12. Borodin, V.N., A semi-analytic approach to the construction of Green’s func-

tions for the Laplace Equation posed in multiply-connected regions, In: Ninth Mis-

sissippi state UAB conference, Starkville, MS, October 2012

13. Borodin, V.N., A semi-analytical approach to Green’s functions for problems

in multiply-connected regions on a spherical surface, Journal of Mathematics and

System Science, 3, 12 (2013) 597-601

14. Borodin, V.N. and Melnikov, Yu.A., Matrices of Green’s type for sets of

Laplace equations posed on joint surfaces of revolution weakened with apertures, In:

Applied mathematical modeling and computational science ’13 conference, Waterloo,

Canada, August 2013

15. Borodin, V.N. and Melnikov, Yu.A., Potential fields induced by point sources

in assemblies of shells weakened with apertures, Mathematical Methods in the Applied

Sciences, DOI: 10.1002/mma.3159, 2014

16. Borodin, V.N, Fields of potential induced by point sources in shell struc-

tures containing foreign inclusions, In: The 37th annual meeting of the Texas partial

differential equations conference, Denton, TX, March 2014

17. Bourdin, E., Fauchais, P., and Boulos, M., Transient heat-conduction under

plasma conditions, International Journal of Heat and Mass Transfer, 26, 4 (1983)

567-582

18. Brebbia, C.A., The boundary element method for engineers, London, Pentech

Press, New York, Halstead Press, 1978



110

19. Carslaw, H.S., Jaeger J.C., Conduction of heat in solids, Clarendon Press,

Oxford, 1959

20. Chen, H.T. and Lin, J.Y., Numerical analysis for hyperbolic heat-conduction,

International Journal of Heat and Mass Transfer, 36, 11 (1993) 2891-2898

21. Chen, T.M., Numerical solution of hyperbolic heat conduction problems in the

cylindrical coordinate system by the hybrid Green’s function method, International

Journal of Heat and Mass Transfer, 53, 7-8 (2010) 1319-1325

22. Cheng, C.H. and Wu, C.Y., An approach combining body-fitted grid genera-

tion and conjugate gradient methods for shape design in heat conduction problems,

Numerical Heat Transfer Part B-Fundamentals, 37, 1 (2000) 69-83

23. Cruse, T.A., Ewing, A.P., and Wikswo, J.P., Green’s function formulation

of Laplace’s equation for electromagnetic crack detection, Computational Mechanics,

23, 5-6 (1999) 420-429

24. Dai, B., Zheng, B., Liang, Q., and Wang, L., Numerical solution of transient

heat conduction problems using improved meshless local Petrov—Galerkin method,

Appl. Math. Comput. 219, 19 (2013) 10044—10052

25. Dramicanin, M.D., Ristovski, Z.D., Djokovic, V., and Galovic, S., Conduction

of heat in inhomogeneous solids, Applied Physics Letters, 73, 3 (1998) 321-323

26. Duffy, D.G., Green’s Functions with Applications, Chapman&Hall/CRC, Lon-

don, 2001

27. Fan, R., Jiang, Y.Q., Yao, Y., Shiming, D., and Ma, Z.L., A study on the per-

formance of a geothermal heat exchanger under coupled heat conduction and ground-

water advection, Energy, 32, 11 (2007) 2199-2209

28. Fernandes, A.P., Sousa, P.F.B., Borges, V.L., and Guimaraes, G., Use of 3D-

transient analytical solution based on Green’s function to reduce computational time

in inverse heat conduction problems, Applied Mathematical Modeling, 34, 12 (2010)

4040-4049



111

29. Fosalba, P. and Gaztanaga, E., Measurement of the gravitational potential

evolution from the cross-correlation between WMAP and the APM Galaxy Survey,

Monthly Notices of the Royal Astronomical Society, 350, 3 (2004) L37-L41

30. Gradshteyn, I.S. and Ryzhik, I.M., Tables of integrals, series and products

(7th edition), Academic Press, London, 2007

31. Haberman, R., Applied partial differential equations (4th edition), Pearson

Education Inc., New Jersey, 2004

32. Hào, D.N., Methods for inverse heat conduction problems. (English summary)

Habilitationsschrift, University of Siegen, Siegen, 1996

33. Hon, Y.C. and Wei, T., A Fundamental solution method for inverse heat

conduction problem, Engineering Analysis with Boundary Elements, 28, 4 (2004)

489-495

34. Hu, J., Zhou, X.M., and Hu, G.K., Design method for electromagnetic cloak

with arbitrary shapes based on Laplace’s equation, Optics Express, 17, 3 (2009) 1308-

1320

35. Hu, L., Zou, J., Fu, X., Yang, H.Y., Ruan, X.D., and Wang, C.Y., Division-

ally analytical solutions of Laplace’s equations for dry calibration of electromagnetic

velocity probes, Applied Mathematical Modelling, 33, 7 (2009) 3130-3150

36. Huang, S.C. and Chang, Y.P., Heat-conduction in unsteady, periodic, and

steady states in laminated composites, Journal of Heat Transfer-Transactions of the

ASME, 102, 4 (1980) 742-748

37. Huang, S.C., Unsteady-state heat-conduction in semi-infinite regions with

mixed-type boundary-conditions, Journal of Heat Transfer-Transactions of the ASME,

107, 2 (1985) 489-491

38. Iijima, K., Numerical solution of backward heat conduction problems by a

high order lattice-free finite difference method, Journal of the Chinese Institute of

Engineers, 27, 4 (2004) 611-620



112

39. Jain, P.K. and Singh, S., An exact analytical solution for two-dimensional,

unsteady, multilayer heat conduction in spherical coordinates, International Journal

of Heat and Mass Transfer, 53, 9-10 (2010) 2133-2142

40. Johnson, C. and Nedelec, J.C., On the coupling of boundary integral and

finite-element methods, Mathematics of Computation, 35, 152 (1980) 1063-1079

41. Kienle, A. and Patterson, M.S., Improved solutions of the steady-state and the

time-resolved diffusion equations for reflectance from a semi-infinite turbid medium,

Journal of the Optical Society of America A-Optics Image Science and Vision, 14, 1

(1997) 246-254

42. Lee S.C., Cunnington G.R., Conduction and radiation heat transfer in high-

porosity fiber thermal insulation, Journal of Thermophysics and Heat Transfer, 14,

2 (2000) 121-136

43. Lewandowska, M. and Malinowski, L., An analytical solution of the hyperbolic

heat conduction equation for the case of a finite medium symmetrically heated on both

sides, International Communications in Heat and Mass Transfer, 33, 1 (2006) 61-69

44. Liu, L., Finite element analysis of nonlinear heat conduction problems. Disser-

tation, University of Jyväskylä, Jyväskylä, 1997. Report, 75. University of Jyväskylä,

Department of Mathematics, Jyväskylä, 1997

45. Llebot, J.E., Jou, D., and Casasvazquez, J., A thermodynamic approach to

heat and electric conduction in solids, Physica A, 121, 3 (1983) 552-562

46. McNabb, A., Wake, G.C., and Hossain Md.M., Transition times between

steady-states for heat conduction. Part I. General theory and some exact results.

Occasional Publications in Mathematics and Statistics, 20. Massey University, De-

partments of Mathematics and Statistics, Palmerston North, 1990

47. Melnikov, Yu.A., Some applications of the Green’s function method in mech-

anics, International Journal of Solids and Structures, 13, 5 (1977) 1045-1058

48. Melnikov, Yu.A., Green’s function formalism extended to systems of differ-

ential equations posed on graphs, Journal of Engineering Mathematics, 34, 3 (1998)

369-386



113

49. Melnikov, Yu.A., Influence functions and matrices, Marcel Dekker, New York,

1998

50. Melnikov, Yu.A. and Melnikov, M.Y., Green’s functions. Constructions and

applications, De Gruyter, Berlin/Boston, 2012

51. Meng, X.H. and Wang, P., Gravitational potential in the Palatini formulation

of modified gravity, General Relativity And Gravitation, 36, 8 (2004) 1947-1954

52. de Monte, F., Transient heat conduction in one-dimensional composite slab.

A ’natural’analytic approach, International Journal of Heat and Mass Transfer, 43,

19 (2000) 3607-3619

53. Morse, Ph. and Fechbach, H., Methods of theoretical physics, McGraw-Hill,

New York, 1953

54. Peng, X.F., Wang, B.X., Peterson, G.P., and Ma, H.B., Experimental invest-

igation of heat-transfer in flat plates with rectangular microchannels, International

Journal of Heat and Mass Transfer, 38, 1 (1995) 127-137

55. Pham, Q.T., A fast, unconditionally stable finite-difference scheme for heat-

conduction with phase-change, International Journal Of Heat And Mass Transfer,

28, 11 (1985) 2079-2084

56. Pham, Q.T., The use of lumped capacitance in the finite-element solution

of heat-conduction problems with phase-change, International Journal of Heat and

Mass Transfer, 29, 2 (1986) 285-291

57. Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.,P., Nu-

merical recipes: The art of scientific computing (3rd edition), Cambridge University

Press, New York, 2007

58. Prössdorf, S. and Schmidt, G., A finite element collocation method for singular

integral equations, Mathematische Nachrichten, 100, 1 (1981) 33—60

59. Pruess, K., Heat-transfer in fractured geothermal-reservoirs with boiling,Wa-

ter Resources Research, 19, 1 (1983) 201-208



114

60. Qin, M.H., Belarbi, R., Ait-Mokhtar, A., and Allard, F., Simulation of coupled

heat and moisture transfer in air-conditioned buildings, Automation In Construction,

18, 5 (2009) 624-631

61. Quaresma, J.N.N., Macedo, E.N., Da Fonseca, H.M., Orlande, H.R.B., and

Cotta, R.M., An analysis of heat conduction models for nanofluids, Heat Transfer

Engineering, 31, 14 (2010) 1125-1136

62. Quillen, A.C., Frogel, J.A., and Gonzalez, R.A., The gravitational potential

of the bar in NGC-4314, Astrophysical Journal, 437, 1 (1994) 162-172

63. Ranganayakulu, C., Seetharamu, K.N., and Sreevatsan, K.V., The effects of

longitudinal heat conduction in compact plate-fin and tube-fin heat exchangers using

a finite element method, International Journal of Heat and Mass Transfer, 40, 6

(1997) 1261-1277

64. Raudensky, M., Woodbury, K.A., Kral, J., and Brezina, T., Genetic algorithm

in solution of inverse heat-conduction problems, Numerical Heat Transfer Part B-

Fundamentals, 28, 3 (1995) 293-306

65. Raynaud, M. and Bransier, J., A new finite-difference method for the nonlinear

inverse heat-conduction problem, Numerical Heat Transfer, 9, 1 (1986) 27-42

66. Seyidmamedov, Z.M. and Ozbilge, E., A mathematical model and numer-

ical solution of interface problems for steady state heat conduction, Mathematical

Problems in Engineering, Article Number: 20898, 2006

67. Skouras, E.D., Bourantas, G.C., Loukopoulos, V.C., and Nikiforidis, G.C.,

Truly meshless localized type techniques for the steady-state heat conduction prob-

lems for isotropic and functionally graded materials, Engineering Analysis With Bound-

ary Elements, 35, 3 (2011) 452-464

68. Sladek, J., Sladek, V., and Zhang, C., Transient heat conduction analysis

in functionally graded materials by the meshless local boundary integral equation

method, Computational Materials Science, 28, 3-4 (2003) 494-504



115

69. Su, J. and Hewitt, G., Inverse heat conduction problem of estimating time-

varying heat transfer coeffi cients, Numerical Heat Transfer Part A: Applications, 45,

8 (2004) 777-789

70. Sun, K.H., Pyle, D.L., Fitt, A.D., Please, C.P., Baines, M.J., and Hall-

Taylor, N., Numerical study of 2D heat transfer in a scraped surface heat exchanger,

Computers & Fluids, 33, 5-6 (2004) 869-880

71. Sun, K.H., Pyle, D.L., Fitt, A.D., Please, C.P., Baines, M.J., and Hall-Taylor,

N., Heat transfer of nanofluids in a shell and tube heat exchanger, International

Journal Of Heat And Mass Transfer, 53, 1-3 (2010) 12-17

72. Tikhonov, A.N., Solution of incorrectly formulated problems and the regular-

ization method. Doklady Akademii Nauk SSSR 151, (1963) 501—504, (Translated in

Soviet Mathematics 4, (1973) 1035—1038)

73. Tikhonov, A.N. and Arsenin, V.Y., Solutions of ill-posed problems, Winston,

New York, 1977

74. Tikhonov, A.N. and Goncharsky, A.V., Ill-posed problems in the natural sci-

ences, Oxford University Press, Oxford, 1987

75. Tikhonov, A.N. and Samarskii, A.A., Equations of mathematical physics,

Dover Publications, 1990

76. Tsirelman, N.M. and Zhiber, A.V., Solution of the unsteady-state heat-

conduction problem for a two-dimensional region with a moving boundary, Inter-

national Journal Of Heat And Mass Transfer, 30, 7 (1987) 1259-1267

77. Tuan, P.C., Ji, C.C., Fong, L.W., and Huang, W.T., Am input estimation

approach to on-line two-dimensional inverse heat conduction problems, Numerical

Heat Transfer Part B-Fundamentals, 29, 3 (1996) 345-363

78. Vadasz, P., Heat conduction in nanofluid suspensions, Journal of Heat Transfer-

Transactions of the ASME, 128, 5 (2006) 465-477

79. Wang, L., Zhou, X., and Wei, X., Heat conduction. Mathematical models and

analytical solutions. Springer-Verlag, Berlin, 2008



116

80. Xiang, H.J. and Yang, J., Free and forced vibration of a laminated FGM

Timoshenko beam of variable thickness under heat conduction, Composites Part B-

Engineering, 39, 2 (2008) 292-303

81. Yang, H.Q., Characteristics-based, high-order accurate and nonoscillatory

numerical-method for hyperbolic heat-conduction, Numerical Heat Transfer Part B-

Fundamentals, 18, 2 (1990) 221-241

82. Yang, J.J., Huang, M., Yang, C.F., and Shi, J.H., Arbitrary shape electro-

magnetic transparent device based on Laplace’s equation, Radioengineering, 20, 1

(2011) 307-311

83. Yang, L., Yu, J.-N., Luo, G.-W., and Deng, Z.-C., Numerical identification

of source terms for a two dimensional heat conduction problem in polar coordinate

system. (English summary), Appl. Math. Model., 37, 3 (2013) 939—957

84. Yguel, F. and Peube, J.L., Combined effects of conduction, radiation and

free-convection on the heat-transfer in a thick insulated wall, Comptes Rendus De L

Academie Des Sciences Serie II, 292, 13 (1981) 949-952

85. Young, G.W. and Chait, A., Steady-state thermal-solutal diffusion in a float

zone, Journal of Crystal Growth, 96, 1 (1989) 65-95

86. Yu, J.R. and Hsu, T.R., Analysis of heat-conduction in solids by space-time

finite-element method, International Journal for Numerical Methods in Engineering,

21, 11 (1985) 2001-2012

87. Zhang, Y.W. and Faghri, A., Vaporization, melting and heat conduction in

the laser drilling process, International Journal of Heat and Mass Transfer, 42, 10

(1999) 1775-1790

88. Zhu, T., Zhang, J.D., and Atluri, S.N., A local boundary integral equation

(LBIE) method in computational mechanics, and a meshless discretization approach,

Computational Mechanics, 21, 3 (1998) 223-235

89. Zhu, T., Zhang, J., and Atluri, S.N., A meshless local boundary integral

equation (LBIE) method for solving nonlinear problems, Computational Mechanics,

22, 2 (1998) 174-186



117

90. Zhu, T.L., Zhang, J.D., and Atluri, S.N., A meshless numerical method

based on the local boundary integral equation (LBIE) to solve linear and non-linear

boundary value problems, Engineering Analysis With Boundary Elements, 23, 5-6

(1999) 375-389

91. Zubair, S.M. and Chaudhry, M.A., Heat conduction in a semi-infinite solid

due to ime-dependent laser source, International Journal of Heat and Mass Transfer,

39, 14 (1996) 3067-3074


