
Explorations on Conjugations of

Local Rotations

by

Katie Kruzan

A Thesis Submitted in Partial Fulfillment
of the Requirements for the Degree of

Masters of Science in Industrial Mathematics

Middle Tennessee State University

November 2021

Thesis Committee:

Dr. Chris Stephens, Chair

Dr. James Hart

Dr. Xiaoya Zha

Dr. Dong Ye

ABSTRACT

The process of manipulating single local rotations of vertices can represent standard

topological graph theory techniques to add vertices or edges to an existing embedding.

This paper looks to find patterns of these local rotations we can generalize. We start

by reviewing the local rotations of vertices of small degree (3, 4, and 5). At those

local rotations, we propose some hypotheses to be tested on local rotations of higher

degree. We then move to outline an algorithm that can be used to analyze vertices

of larger degrees programmatically.

i

DEDICATION

I dedicate this thesis to my mother and friends who helped me push through these

last few semesters. They have given me support and continued to challenge and push

me when I did not care to myself.

ii

ACKNOWLEDGEMENTS

I would like to thank Dr. James Hart, Dr. Xiaoya Zha, and Dr. Dong Ye for taking

the time to read this thesis. I also want to thank them for setting aside the time

for my defense. Each of them helped me along the way for my MTSU experience,

whether it be through a class or through helping getting paperwork in order. Their

aid greatly helped improve my experience.

I would also like to thank Dr. Chris Stephens for spending time with me over

the course of the past few semesters working through these problems. This process

and his encouragement made the process of contributing to the sum of mathematical

knowledge a greatly positive and exciting thing. In our busy lives, it was nice to have

a reason to sit and stare at a whiteboard for a few hours at a time.

I would also like to thank my academic advisor Dr. Zachariah Sinkala. He worked

with me many summers to explore topics I would not have had the chance to other-

wise, expanding my joy and appreciation towards mathematics. He also was integral

to helping me navigate and plan out my semesters in a way that allowed me to be

presenting this thesis this semester.

iii

Contents

1 Introduction 1

2 Methods 5

2.1 Ground Rules . 5

2.2 The Early Days . 6

2.2.1 3 vertices . 6

2.2.2 4 vertices . 6

2.3 Making the Computers Work For Us 8

2.3.1 New Notation . 8

2.3.2 The Proposed Algorithm . 9

2.3.3 Walking the Edges - An Example 10

2.3.4 Proving the Proposal . 11

2.3.5 The Implementation of the Algorithm 11

3 Results 14

3.1 5 Vertices . 14

3.2 9 Vertices . 17

4 Possible Improvements 18

5 Conclusions 19

iv

A Python Code 20

v

List of Figures

1.1 Examples of local rotations . 3

2.1 Conjugations on 3 vertices . 6

2.2 Conjugations on 4 vertices . 7

2.3 An example of before and after a (23) local rotation with the new

notation . 9

3.1 Conjugations on 5 vertices . 15

vi

Chapter 1

Introduction

In this problem, we are looking to determine how rotations or vertex orderings at a

single vertex affect the topology of an embedding. Let G be a graph with n vertices.

We define a local rotation at vertex v of G as a clockwise ordering of the oriented edges

originating at v. A rotation system of the graph G consists of a set of n rotations, one

for each vertex of G [1]. Work has been done analyzing the planarity of graphs with

rotation systems [2], but not much work has been done on analyzing general patterns

when looking at a single vertex. Motivation comes from two small, standard surgeries

used in topological graph theory to add vertices or edges to an existing embedding.

These surgeries are topological, whereas graph embeddings are often viewed from a

purely combinatorial standpoint. Thus, one may attempt to describe the surgeries

combinatorially: in effect, they are particular alterations of a single local rotation of

an embedding graph, easily described in terms of conjugating by permutations.

Let 0 be a vertex in an embedding µ that is adjacent to vertices 1, 2, 3, and 4.

Let’s also say we have the edges 12, 23, 34, and 41. Let the triangular faces 012, 023,

034, and 041 appear in µ consecutively, in this order about 0. If one wishes to, say,

add the edge 04 to the graph without changing the Euler genus by more than one, she

might accomplish this by “merging” the triangles 012 and 034 with a crosscap which

1

intersects the graph only in the edges 02 and 03. When one does so, one needs to

“switch” the edges 02 and 03 in the local rotation at 0 for the rest of the embedding

to remain the same as before. This face merging procedure has proven fruitful in

other studies [3] with great success to obtain minimal nonorientable embeddings of

Km+1,m,n from minimal nonorientable embeddings of Km,m,n. This procedure has also

been used [4] to convert non-orientable surfaces to orientable surfaces.

However, this is a topological procedure, and the question then becomes, can we

look at this process through a combinatorial lens? The answer is yes. The local

rotation at 0 is a permutation of the edges incident with 0; for simplicity, since all

such edges have 0 as an endpoint, let us drop the 0’s and refer to the edge 01, for

example, as just 1. In this case the procedure above changes the local rotation at 0

from (...1234...) to (...1324...), and changes the signatures on the edges 02 and 03. In

other words, the change is accomplished by conjugating the local rotation at 0 by the

involution (23), and by changing the edge signatures on 02 and 03.

If one prefers to avoid changes in edge signature, there is a similar procedure

involving only orientable embeddings. Suppose our embedding contains consecutive

triangles 012, 023, 034, 045, and 056 in this order about 0. We may merge 012, 034,

and 056 by doing the following: we glue the two ends of a handle to the interiors of 012

and 056, then “re-route” the edges 02 and 03 across the handle. Topologically, one

checks that the triangles 023 and 045 are still intact, but the other three triangles have

been destroyed and replaced by one large face. Combinatorially, the new embedding is

exactly the old embedding with the local rotation at 0 replaced by the local rotation at

0 conjugated by the permutation (24)(35). (Again, This face merging procedure has

been used with great success to obtain minimal orientable embeddings of Km+1,m,n,

Km+2,m,n, and Km+3,m,n from minimal orientable embeddings of Km,m,n in some of

our unpublished results on the orientable genus of Kl,m,n).

2

We now look to determine patterns that can be generalized for conjugations of

all types. Specifically, we will be looking for patterns of the effects these local conju-

gations or local rotations might have on the face topology. Consider the graph and

embedding µ mentioned before. If we “switched” the edges 02 and 03 to get a new

embedding γ, we would then say the local rotation to get from µ to γ is (23). That

is, the edge originally ending at vertex 2 now ends at vertex 3 and vice versa.

Considering the faces, the µ embedding has four faces. 012, 023, 034, and 041.

The new γ embedding now has two faces: The original 041 face and then a new face

0120230120 when walking on the right side of the edges. For simplicity, denote the

outer edges of the µ faces 012, 023, 034, and 041 as I, II, III, and IV respectively. So

edge 12 will be denoted I, and similarly for the rest. Then, omitting the writing of

the edges back to the origin, we can denote the faces of the γ embedding as the IV

face, and a new face I III II.

Consider a new local rotation (24) from µ to an embedding φ. That is, the edge

originally ending at vertex 2 now ends at vertex 4 and vice versa. When looking

at the faces, the embedding φ has two faces: the face I III and the face II IV. A

different local rotation gives a notably different structure in the final face topology of

the graph.

Figure 1.1: Examples of local rotations

The question then becomes, how do these local rotations affect face topology, and

furthermore, can we determine any patterns to begin to make generalizations? This

3

paper will expound on some initial findings in local rotations of small order, and

then introduce an algorithm that can be utilized to find patterns on local rotations

of larger orders.

4

Chapter 2

Methods

2.1 Ground Rules

To keep things interesting, we only wanted to analyze local rotations that are struc-

turally unique. For this reason, we decided to go by the following ground rules.

First off, we kept the edge 01 stationary for all rotations we explored. Consider

local rotations on 3 vertices. The rotation (23) and (12) are structurally similar as

you could rotate one about the origin to get the other. Similarly, all possible rotations

are structurally similar to a rotation of the same order with the edge 01 stationary.

Secondly, we assume the outside edges are singular edges. These findings can

easily be extrapolated to graphs with the outside edges being walks, especially since

we’re primarily concerned with face topology. For example, consider graph G with the

vertices 0, 1, 2, and 3 with the edges 01, 02, 03, 12, 23, and 31. Graph G is structurally

similar with regards to faces to graph F with vertices 0, 1, 2, 3 and a with the edges

01, 02, 03, 12, 23, 3a, and a1.

We also know that by Euler’s formula, the number of faces can only decrease by

a multiple of two since we’re drawing in the plane. By this, we can determine the

possible number of resulting faces when looking at these graphs. If we’re looking

5

at a graph with an even number of faces, the smallest number of faces after a local

rotation is 2. Similarly, the smallest possible number of faces for a graph with an odd

number of faces after a local rotation is 1.

2.2 The Early Days

Like all good mathematicians, we started small to begin to look for patterns.

2.2.1 3 vertices

To begin, we drew all possible unique local rotations at 3 vertices. Keeping edge 01

stationary, the only local rotation we can perform is (23). The starting graph and

the conjugated graph are pictured in Figure 2.1.

Figure 2.1: Conjugations on 3 vertices

This shows there is only 1 structurally unique local rotation (23). That rotation

results in a single face: I III II.

2.2.2 4 vertices

Considering local rotations with 4 vertices, combinatorics will show the list of all

possible local rotations to be (23), (24), (34), (234), and (243). The resulting 3 unique

structures are shown in Figure 2.2.

6

Figure 2.2: Conjugations on 4 vertices

The first structure can be generated with rotations (23) and (34). This results

in 2 faces. The rotation (23) gives faces IV and I III II. The rotation (34) gives a

similar structure that can be found by rotating the graph resulting from the local

rotation (23) about the origin and relabeling. The second structure of local rotations

with 4 vertices can be generated with the rotation (24). This results in 2 faces: I III

and II IV. The third structure can be generated with rotations (234) and (243). The

rotation (234) gives the 2 faces I IV II and III. This structure is similar to the (23)

structure but is shifted so that face III has neither of its original edges. The rotation

(243) looks like the (234) rotation flipped along the vertical axis.

From these rotations we begin to see possible patterns. Firstly, say we have a

rotation (ABCDE). Based on what we see from the 4 vertices, we might propose the

(AEDCB) local rotation will result in a similar structure to (ABCDE) but flipped

along the vertical axis. We kept this in mind as we looked at local rotations of higher

order.

Another pattern that emerged is unmoved faces can be condensed into single edges

when analyzing structure. Consider the rotation of (23) on 4 vertices. This structure

seems very similar to if we treated the unaffected face (IV in the (23) rotation) as a

single edge in a (23) rotation with 3 vertices. This begins to show the fact that it

does not matter how many faces we have together. If they stay unmoved, they are

structurally similar to a single edge in rotations of a smaller order. For example, if we

7

looked at local rotations with 53 vertices, yet only rotated two adjacent vertices, it

would be structurally similar to a (23) rotation on 3 vertices. So from here onwards,

we will only review structures that do not have adjacent non-changing edges that can

be ‘condensed’ to a single non changing edge to emulate a rotation of smaller order.

2.3 Making the Computers Work For Us

As we looked to draw local rotations of higher-order, we began to realize some patterns

when it came to what faces resulted from a local rotation. The drawing and tracing

faces became very systematic, and we began to determine an algorithm we could

derive that would allow us to get a computer to ‘draw’ the local rotations and the

resulting faces.

2.3.1 New Notation

To better achieve this goal, we need to differentiate between the sides of the edges

that connect to the origin as opposed to the outer edges. To better do this, we will

create a new structure to analyze. To do this, we will have ‘inner nodes’ that connect

directly to the origin, and ‘outer nodes’ that connect to both these inner nodes and the

external edges. For example, consider graph G with vertices 0, 1, 2, 3, a, b, and c and

edges 0a, 0b, 0c, a1, b2, c3, 12, 23, and 31. This graph would be a new representation

of a graph with 3 external vertices as we have talked about before. With this new

notation, a (23) local rotation on 3 vertices would be removing the edges b2 and c3

and replacing them with new edges b3 and c2 respectively. An example of this process

is found in Figure 2.3

In general, we will be denoting the inner nodes with lowercase letters, the outer

nodes with natural numbers, and the outer segments with roman numerals. Walking

8

Figure 2.3: An example of before and after a (23) local rotation with the new notation

along the right side of the edges going clockwise, you can represent the starting faces

for 3 vertices as a1I2ba, b2II3cb, and c3III1ac. You can represent the faces after the

local rotation (23) as a single face a1I2cb3III1ac2II3ba. This can be algorithmically

built.

2.3.2 The Proposed Algorithm

To walk the face a particular inner node is in, we can propose the following algorithm.

1. We’re going to keep a list as the face.

2. Add the starting inner node to the face

3. Move to the adjacent outer node

4. Move to the segment to the right of the outer node

5. Move to the outer node to the right of the segment

6. Move to the adjacent inner node of the last outer node

7. Move to the inner node to the left of the current inner node.

8. If the current node does not equal the starting node, then repeat steps 3-8.

9

2.3.3 Walking the Edges - An Example

We first consider what the rotation of (23) is doing in this new notation. This is

saying whenever we get to vertex b, we then next go to vertex 3 and vice versa.

Also whenever we get to vertex c, we go to vertex 2 and vice versa. So combining

our starting faces with this new information, we can begin to construct the resulting

faces. We start with vertex a out of convention. Looking at our initial faces, we have

a1I2 as the start to our final face. However, we no longer have the edge from 2 to

b. Instead, we have an edge from 2 to c. That makes our final face have the start of

a1I2c.

That brings us back to the origin. Now we’re faced with the question of what

inner vertex is next? Our two options are the two adjacent vertices of b and a. Since

we’re coming in on the right side of the vertex c, we will need to go to the vertex to

the right of vertex c, which is vertex b. So that makes the start of our final face to be

a1I2cb so far. We now know that the b vertex goes to the 3 vertex, giving a1I2cb3.

Every time we get to an outer vertex, the outer segment is unchanged from the

original. Since we’re only messing with the edges between the outer and inner nodes,

we are guaranteed to know the next outer segment and outer node whenever we get

to an outer node from an inner node. Because of this, we know the start of the final

face is a1I2cb3III1. Using similar logic as described above, you continue to build the

face until you start repeating. This results in the face a1I2cb3III1ac2II3ba.

So we know this notation and algorithm works for this example. The question

then becomes “Can we algorithmically generate the list of faces for all graphs of this

form?”

10

2.3.4 Proving the Proposal

Before we start to generate this programmatically for all graphs of this form, we

need to prove the logic holds and can be extrapolated to graphs of all orders. By

convention, we will always walk on the right side of an edge. This means that every

time we’re going in and out of the origin, we will be coming in on the right side of an

inner vertex, which will be followed by leaving on the right side of the inner vertex

directly before it in the labeling we described above.

We also know that since we are not messing with the relation between the outer

vertices and the outer segments, if we are staying on the right side of the edges, we

are guaranteed the segments will have the same outer vertices as before. This means

every time we approach vertex 1 on the right side, we will then go to the segment

I followed by outer vertex 2. This is similar for all the other outer vertices and

segments.

These two facts together, mean our algorithm holds with our new notation for the

general case. We have spent time creating a python program that implements the

algorithm describes. The code is in the appendix.

2.3.5 The Implementation of the Algorithm

The initial implementation of this algorithm involves Python code, as that is the

primary code of choice for the author. To implement the code, we utilized a concept

core to Python’s oriented nature: Python classes. This gave us the ability to more

seamlessly create objects that are able to individually keep track of what they are

adjacent to. We created three types of objects: inner nodes, outer nodes, and outer

segments.

Inner nodes are the nodes that connect the outer nodes to the origin. Outer

nodes are the nodes that connect the inner nodes to the outside edges or segments.

11

Segments are the outer edges connecting outer nodes to one another.

Inner node objects keep track of three elements: the outer node they are adjacent

to and the inner nodes to the left and right with respect to the origin. Outer node

objects keep track of the inner node they are adjacent to and the outer segments

to the left and right with respect to the origin. Lastly, segment objects keep track

of the two outer nodes they are adjacent to on the left and right. Each object

has methods to get the current related objects and to set them as well. For ease

of programming implementation and readability, we give outer nodes labels of the

natural numbers (1, 2, 3, . . .), inner nodes labels of the lowercase alphabet (a, b, c, . . .),

and outer segments with labels of negative natural numbers (−1,−2,−3, . . .).

The program itself is designed to take an input of the number of vertices we

want to analyze and the rotation we want to perform. The program then creates the

starting vertex set up based on the number of nodes. The starting circle is defined by

a list of the segment, outer node, and inner node objects. It then loops through all

the inner nodes and generates the faces they are each a part of. We then write these

faces in a canonical ordering (starting from the lowest segment label value) to make

it easy to compare duplicate faces. After these faces are in a canonical ordering, we

get rid of duplicate faces to aid in readability and ease of analysis.

Once the first circle is created and the starting faces are determined, the program

then starts to perform the local rotations. It does this by switching the edges between

the outer and inner nodes based on the rotation given.

Then we go through the process of listing the distinct faces again. And this results

in the faces after the local rotation.

This computer program allows us to generate the graphs resulting local rotations

in a matter of seconds rather than tediously drawing and tracing ourselves on paper.

This program can be expanded to systematically generate these rotations and begin

12

to perform simple analyses on them. Questions we could answer with the addition of

a few lines of code include “How many structurally distinct local rotations are there

of order 10?” We decided to utilize this program to help us analyze our proposed

hypotheses at scale.

13

Chapter 3

Results

This notation and algorithm give us the power to analyze local rotations of higher

order with ease. It also provides us with a new tool to both describe and analyze

these resulting faces. In particular, we can begin to test the theories we began to

hypothesize in smaller ordered rotations. For example, we can test our theory that a

rotation of any size (ABCD. . .Z) is structurally similar to the rotation (Z. . .DCBA)

but flipped along the vertical axis. To begin to understand the power of these, let’s

look at the cases of 5 vertices and some local rotations of 9 vertices.

3.1 5 Vertices

When thinking about the structures that have adjacent non-changing edges, the local

rotations of (23) ∼= (34) ∼= (45), (24) ∼= (35) ∼= (25), and (234) ∼= (345) ∼= (243) ∼=

(354) are all structurally similar to local rotations of smaller order. So we will analyze

other rotations. Simple combinatorics shows the list of all possible local rotations on

5 vertices excluding those above is as follows.

• (235) • (245) • (253) • (254) • (2345)

14

• (2354)

• (2435)

• (2453)

• (2534)

• (2543)

• (23)(45)

• (24)(35)

• (25)(34)

Drawings of each of these can be found in Figure 3.1

Figure 3.1: Conjugations on 5 vertices

With thirteen local rotations, and many of them creating single faces, we have a

need to formally describe the structure of the resulting graphs after undergoing local

rotations. We can continue to label the rotations in a way that will give the order for

which the outside edges appear. We can also describe the resulting graphs in terms of

the number of edge crossings required to draw the graph on the plane. For example,

the rotation (235) results in a single face I IV III V II and it must be drawn with two

edge crossings.

Let’s consider the local rotations of (2345) and (2543). Based on our previous

hypothesis we generated when looking at rotations of order 4, these two seem like

prime candidates for being structural mirrors of each other. When looking at the two

drawings, they look like exact mirror flips of each other. To confirm this, let’s define

15

a function σ that takes an input and outputs the corresponding element reflected

along the vertical axis. For example, in a starting local rotation of order 5, σ of face

IV would be face II. With this notation, for graph G to be a mirror of graph H, the

clockwise ordering of faces of G should be equal to the counterclockwise σ(faces of

H). For example, in the resulting graph after local rotation (2345) we see the faces

I V II, III, and IV. If the resulting graph after the local rotation (2543) is a mirror

of the graph after the (2345) rotation, the resulting faces of (2543) should be I V IV,

III, and II. Upon observation of the two drawings, you can determine this is true.

For two graphs to be structural mirrors, they must be the same in every way other

than the fact they are flipped along the vertical axis. So another thing we may check

is the number of edge crossings that are forced when we draw it in the plane. Both

(2345) and (2543) result in a single forced edge crossing. We can then confirm (2345)

and (2543) are structural mirrors of each other. This is a promising observation that

confirms our hypothesis. We went to then test other possible pairs of rotations.

Let’s consider the local rotations of (2354) and (2453). When observing the re-

sulting faces of these local rotations, we get that (2354) has a single face I V IV III

II. The mirror flip of this should have the resulting face of I II III IV V. Looking at

the resulting graph of a (2453) rotation, it has a single face I IV II V III. Looking at

this comparison, these two are not to be mirrors of each other. So our hypothesis is

false, with this counterexample as proof.

Instead of thinking about these mirrors in the terms of how we write their local

rotations, let’s think about these in terms of our new notation that includes inner and

outer nodes. The local rotation (2354) is getting replacing the edges b2, c3, d4, and

e5 with the edges b3, c5, e4, and d2. If we put our final edges through the previously

described sigma function, we get σ(b3) = e4, σ(c5) = d2, σ(e4) = b3, σ(d2) = c5. We

see σ(b3, c5, e4, d2) = e4, d2, b3, c5 = b3, c5, e4, d2 which is our original set of edges

16

in the (2354) rotation. through this lens, its easy to see that the mirror of (2354)

is itself. We can also look at putting the rotation itself through the sigma function.

σ(2354) = (5423) = (2354).

We can also begin to generalize what the mirror for any given rotation will be.

If we put the rotations themselves through the σ function, then we are able to get

the rotations of their mirrors. This also works for local rotations that do not include

all available vertices. Consider the local rotation (235) on 5 vertices. This can also

be represented as (235)(4) with 4 as a singleton that does not get changed. We can

then put that through the sigma function to determine the mirrored rotation. We get

σ((235)(4)) = (542)(3) = (254) and when looking at the drawings of the rotations for

(235) and (254) we can see they are mirror images of each other.

3.2 9 Vertices

The ease of running the python script allows us to spot-check this theory for larger

ordered local rotations with ease. We utilized the program to analyze the local rota-

tion (29673845) and see if it produced the expected mirror. By our earlier hypothesis,

the rotation (25483769) should be the structural mirror of (29673845).

The local rotation (29673845) results in 3 faces: I V IV VIII, II VII IX VI, and

III. The expected mirror would result in the face rotations of σ(I V IV VIII) = IX V

VI II = II IX V VI, σ(III VII IX VI) = VIII III I IV = I IV VIII III, and σ(III) =

VIII. The local rotation (25483769) gives 3 faces: II VI V XI = counter-clockwise σ(I

V IV VIII), I IV VIII III = counter-clockwise σ(III VII IX VI) and VII = σ(III). This

is exactly what we expected. Spot checking around in the local rotations of order 9

gives similar results.

17

Chapter 4

Possible Improvements

There is also potential for exploration in implementing it in different languages more

utilized by mathematicians, such as MATLAB or R. This would improve accessibil-

ity to mathematicians, and therefore increase the potential for further exploration.

Even within the used language Python, there is room for performance improvement

especially as rotations of extremely high order are explored.

There is also room to simplify this algorithm, as the segment object might be

entirely unnecessary. This is because the segment connects outer vertices with each

other in the same manner each time.

18

Chapter 5

Conclusions

Our work on this project has laid the groundwork for future exploration on this sub-

ject. We believe there are patterns to be discovered here that were not incredibly

apparent at lower orders. By the nature of the proposed algorithm and implemen-

tation, it is primed for larger implementation and analysis. There is also work that

could be done to analyze the results at a larger scale than the current implementation

does. As we continued to explore this topic, we found ourselves thinking of possible

questions we left unexplored. Can we find a local rotation that will give us one or

two final faces for local rotations of all orders? As n approaches infinity, what does

the distribution of the number of resulting faces tend to? Can we begin to decompose

local rotations or possibly be able to build them from combinations of other local

rotations? These are left as open questions for the reader to explore.

19

Appendix A

Python Code

A current copy of this code is posted below. This code will be kept up to date an

accessible through https://github.com/katiekruzan/masters-thesis

1 """

2 Here we’re going to code for the local rotations. We’re doing an

object oriented approach

3 Left and right are in reference to the origin

4 """

5

6 __version__ = 1.0

7 __author__ = ’Katie Kruzan ’

8

9 import string # just to get the alphabet easily iterable

10 import sys # This just helps us in our printing

11 from typing import Dict # This helps us in our documentation

12

13

14 # Getting the structure for the classes we’re putting together

15 class Segment:

16 """

20

17 These are going to represent the outer segments and the

mysteries they hold.

18 The segments will be adjacent to 2 outer nodes

19 """

20

21 def __init__(self , name: str):

22 """

23 Initialize the segment , keeping a place for the right left

outer vertices to which it is adjacent

24 :param name: How we will reference this segment. In this

implementation , it is expected to be a negative integer

25 """

26 self.leftOuter = None

27 self.rightOuter = None

28 self.name = name

29

30 def getName(self) -> str:

31 """

32 Return the name we gave to this segment.

33 :return: name

34 """

35 return self.name

36

37 def getLeftOuter(self):

38 """

39 Return the outer node to the left of this segment with

respect to the origin

40 :return: leftOuter

41 """

42 return self.leftOuter

43

44 def getRightOuter(self):

21

45 """

46 Return the outer node to the right of this segment with

respect to the origin

47 :return: rightOuter

48 """

49 return self.rightOuter

50

51 def setLeftOuter(self , left):

52 """

53 Set the outer node to the left of this segment with respect

to the origin

54 Also , set left’s right segment to this segment.

55 :param left: A outer node object to be referenced as this

segment ’s left outer node

56 :return: None

57 """

58 self.leftOuter = left

59 if left.getRightSegment () is None:

60 left.setRightSegment(self)

61

62 def setRightOuter(self , right):

63 """

64 Set the outer node to the right of this segment with respect

to the origin

65 Also , set right’s left segment to this segment.

66 :param right: A outer node object to be referenced as this

segment ’s right outer node

67 :return: None

68 """

69 self.rightOuter = right

70 if right.getLeftSegment () is None:

71 right.setLeftSegment(self)

22

72

73 def isValidObject(self) -> bool:

74 """

75 Checks to see if this segment has been full initialized.

76 :return: valid returns true if it has both the left and

right outer nodes set

77 """

78 if (self.leftOuter is None) or (self.rightOuter is None):

79 return False

80 return True

81

82 def toString(self) -> str:

83 """

84 Returns a formatted string of the left and right outer nodes

this is associated with

85 :return: Description string

86 """

87 return ’left Outer: ’ + self.leftOuter.getName () + ’\nright

Outer: ’ + self.rightOuter.getName ()

88

89

90 class Outer:

91 """

92 Class to represent the outer vertices that are adjacent to an

inner vertex and 2 outer segments

93 """

94

95 def __init__(self , name: str):

96 """

97 Initialize the outer node

98

23

99 Keeping a place for the inner vertex and right and left

outer segments to which it is adjacent.

100 :param name: How we will reference this outer node. In this

implementation , it is expected to be a positive integer

101 """

102 self.adjInner = None

103 self.leftSegment = None

104 self.rightSegment = None

105 self.name = name

106

107 def getName(self) -> str:

108 """

109 Return the name we gave to this outer node.

110 :return: name

111 """

112 return self.name

113

114 def getLeftSegment(self) -> Segment:

115 """

116 Return the segment object to the left of this outer node

with respect to the origin

117 :return: leftSegment

118 """

119 return self.leftSegment

120

121 def getRightSegment(self) -> Segment:

122 """

123 Return the segment object to the right of this outer node

with respect to the origin

124 :return: rightSegment

125 """

126 return self.rightSegment

24

127

128 def getAdjInner(self):

129 """

130 Return the inner node object adjacent to this outer note

object

131 :return: adjInner

132 """

133 return self.adjInner

134

135 def setLeftSegment(self , left: Segment):

136 """

137 Set the segment to the left of this outer node with respect

to the origin

138 Also , set left’s right outer node to self.

139 :param left: A segment object to be referenced as this node’

s left outer segment

140 :return: None

141 """

142 self.leftSegment = left

143 if left.getRightOuter () is None:

144 left.setRightOuter(self)

145

146 def setRightSegment(self , right: Segment):

147 """

148 Set the segment to the right of this outer node with respect

to the origin

149 Also , set right’s left outer node to self.

150 :param right: A segment object to be referenced as this node

’s right outer segment

151 :return: None

152 """

153 self.rightSegment = right

25

154 if right.getLeftOuter () is None:

155 right.setLeftOuter(self)

156

157 def setAdjInner(self , inner):

158 """

159 Set the inner node adjacent to this outer node

160 Also , set inner’s adjacent outer node to self.

161 :param inner: A inner node object to be referenced as this

node’s adjacent inner node

162 :return: None

163 """

164 self.adjInner = inner

165 if inner.getAdjOuter () is None:

166 inner.setAdjOuter(self)

167

168 def isValidObject(self) -> bool:

169 """

170 Checks to see if this outer node has been full initialized.

171 :return: valid returns true if it has the left segment ,

right segment , and inner node set

172 """

173 if (self.leftSegment is None) or (self.rightSegment is None)

or (self.adjInner is None):

174 return False

175 return True

176

177 def toString(self) -> str:

178 """

179 Returns a formatted string of the left segment , right

segment , and inner node this outer node is associated with

180 :return: Description string

181 """

26

182 return ’left Segment: ’ + self.leftSegment.getName () + ’\

nright Segment: ’ + self.rightSegment.getName () \

183 + ’\nadj Inner: ’ + self.adjInner.getName ()

184

185

186 class Inner:

187 """

188 Class to represent the inner vertices that are adjacent to an

outer vertex and 2 neighboring inner vertices

189 """

190

191 def __init__(self , name: str):

192 """

193 Initialize the inner node object

194

195 Keeping a place for the outer vertex and right and left

adjacent inner nodes.

196 :param name: How we will reference this inner node. In this

implementation , it is expected to be a lowercase letter

197 """

198 self.adjOuter = None

199 self.leftInner = None

200 self.rightInner = None

201 self.name = name

202

203 def getName(self) -> str:

204 """

205 Return the name we gave to this inner node.

206 :return: name

207 """

208 return self.name

209

27

210 def getLeftInner(self):

211 """

212 Return the inner node object to the left of this inner node

with respect to the origin

213 :return: leftInner

214 """

215 return self.leftInner

216

217 def getRightInner(self):

218 """

219 Return the inner node object to the right of this inner node

with respect to the origin

220 :return: rightInner

221 """

222 return self.rightInner

223

224 def getAdjOuter(self) -> Outer:

225 """

226 Return the outer node object adjacent to this inner node

227 :return: adjOuter

228 """

229 return self.adjOuter

230

231 def setLeftInner(self , left):

232 """

233 Set the inner node to the left of this inner node with

respect to the origin

234 Also , set left’s right inner node to self.

235 :param left: An inner node object to be referenced as this

node’s left inner node

236 :return: None

237 """

28

238 self.leftInner = left

239 if left.getRightInner () is None:

240 left.setRightInner(self)

241

242 def setRightInner(self , right):

243 """

244 Set the inner node to the right of this inner node with

respect to the origin

245 Also , set right’s left inner node to self.

246 :param right: An inner node object to be referenced as this

node’s right inner node

247 :return: None

248 """

249 self.rightInner = right

250 if right.getLeftInner () is None:

251 right.setLeftInner(self)

252

253 def setAdjOuter(self , outer: Outer):

254 """

255 Set the outer node adjacent to this inner node

256 Also , set outer’s adjacent inner node to self.

257 :param outer: An outer node object to be referenced as this

node’s adjacent outer node

258 :return: None

259 """

260 self.adjOuter = outer

261 if outer.getAdjInner () is None:

262 outer.setAdjInner(self)

263

264 def isValidObject(self) -> bool:

265 """

266 Checks to see if this inner node has been full initialized.

29

267 :return: valid returns true if it has the left inner node ,

right inner node , and adjacent outer node set

268 """

269 if (self.leftInner is None) or (self.rightInner is None) or

(self.adjOuter is None):

270 return False

271 return True

272

273 def toString(self) -> str:

274 """

275 Returns a formatted string of the left inner node , right

inner node , and adjacent outer node this inner node

276 is associated with

277 :return: Description string

278 """

279 return ’left Inner: ’ + self.leftInner.getName () + ’\nright

Inner: ’ + self.rightInner.getName () \

280 + ’\nadj Outer: ’ + self.adjOuter.getName ()

281

282

283 def standardCircle(num_verts: int) -> (Dict[str , Segment], Dict[str ,

Outer], Dict[str , Inner]):

284 """

285 This will go through and initialize our standard starting circle

286 :param num_verts: the number of outer nodes we will have

287 :returns: tuple(segs , outs , inns)

288 -segs - dictionary of str: Segment objects in the circle \\

289 -outs - dictionary of str: Outer objects in the circle \\

290 -inns - dictionary of str: Inner objects in the circle

291 """

292 # Initializing our dictionaries

293 segs = dict()

30

294 outs = dict()

295 inns = dict()

296

297 # Running through the number of vertices we will be edning up

with

298 for i in range(num_verts):

299 # start with an inner node - labeling with lowercase letters

300 inn = Inner(string.ascii_letters[i])

301 # If we aren’t on the first one , connect it to the previous

one.

302 if i != 0:

303 inn.setLeftInner(inns[string.ascii_letters[i - 1]])

304 # If we’ve hit the end of the line , go ahead and close

up the circle.

305 if i == num_verts - 1:

306 inn.setRightInner(inns[string.ascii_letters [0]])

307

308 # then make the outer

309 out = Outer(str(i + 1))

310 # Go ahead and connect the inner we just made with this

outer node

311 out.setAdjInner(inn)

312 # If we aren’t on the first one , go ahead and connect it to

the previous segment

313 if i != 0:

314 out.setLeftSegment(segs[str(-i)])

315

316 # Now time to make the segment

317 seg = Segment(str(-i - 1))

318 # Go ahead and connect the outer node we just made with this

segment

319 seg.setLeftOuter(out)

31

320 # If we’re at the end of the circle , then we close it up.

Otherwise , move on

321 if i == num_verts - 1:

322 seg.setRightOuter(outs[str(1)])

323

324 # add them to our dictionaries

325 segs[seg.getName ()] = seg

326 outs[out.getName ()] = out

327 inns[inn.getName ()] = inn

328

329 # If we’ve made it here , then we’ve made the full circle and are

ready to return it

330 return segs , outs , inns

331

332

333 def findTheFace(source_in: Inner) -> list:

334 """

335 This will take an inner node and use the algorithm to walk the

face that it is on.

336 The order of the face will be i, o, s, o, i repeat

337 :param source_in: Inner node object we are starting from.

338 :return: face: a list representing the face. This list is of

inner , outer , and segment objects in the

339 order i, o, s, o, i, repeat.

340 """

341 # initialize the list

342 face = list()

343 # starting the face with the source inner node.

344 face.append(source_in)

345 # initialize the ending inner node we will be using for

comparison

346 end_in = None

32

347 # As long as we haven ’t looped back around , go through the

following process.

348 while source_in != end_in:

349 # inner: find adjacent outer

350 face.append(face [-1]. getAdjOuter ())

351 # outer: go to right seg

352 face.append(face [-1]. getRightSegment ())

353 # segment: go to right outer

354 face.append(face [-1]. getRightOuter ())

355 # outer: then adj inner

356 face.append(face [-1]. getAdjInner ())

357 # then left inner and repeat.

358 # set this inner node as our node to compare to our starting

node.

359 end_in = face [-1]. getLeftInner ()

360 face.append(end_in)

361 return face

362

363

364 def faceCannonOrder(face: list) -> list:

365 """

366 Just list the face with the face elements in order.

367 We will do it with the first numerical face , and then go right

before it for an order that will be consistent.

368 :param face: a list representing the face. This list is of inner

, outer , and segment objects in the

369 order i, o, s, o, i, repeat.

370 :return: ordered face in canonical order

371 """

372 # find the first numerical face then go right before it

373 # initialize face num as a relatively high number we won’t

encounter

33

374 facenum = 333

375 # initialize the int for where we will split the list

376 start_ind = 0

377 # loop through and find the face we want to find

378 for i in range(len(face)):

379 try:

380 if int(face[i]. getName ()) < facenum:

381 # To get here , we must have found a lower face

382 # keep track of where this is located in the list

383 start_ind = i - 1

384 # make our current lowest face the new lowest face

to keep comparing to.

385 facenum = int(face[i]. getName ())

386 # if we try casting a letter to a number , python will get

upset , but that also means we’re looking at

387 # an inner node , which we don’t want for this anyways.

388 except ValueError:

389 continue

390

391 # make our ordered face getting from the starting index to the

end , then wrapping around and getting the rest of

392 # the face

393 ord_face = face[start_ind :] + face[: start_ind]

394 # go through and make sure we don’t have any duplicate elements

right by each other. If we do, then drop them.

395 for i in range(len(ord_face) - 1):

396 if ord_face[i]. toString () == ord_face[i + 1]. toString ():

397 ord_face.pop(i)

398 break

399

400 # return the ordered face

401 return ord_face

34

402

403

404 def grabAllTheFaces(inns: Dict[str , Inner]) -> list:

405 """

406 Function to get the list of unique faces for our circle.

407 :param inns: dictionary of Inner objects. We will loop through

these to get the faces

408 :return: faces: List of distinct faces in canonical order.

409 """

410 # initialize the list of faces

411 faces = list()

412 # a set of all the elements we have covered by the faces. Will

use this for a completeness check

413 covered = set()

414 # run through every inner node we’ve been given

415 for inn in inns:

416 # Generate the face that inner node lies on

417 face = findTheFace(inns[inn])

418 # put the face we’ve gotten in canonical order

419 face = faceCannonOrder(face)

420 # Check if we’ve already captured it.

421 if face not in faces:

422 # If not , then add it to our list of faces

423 faces.append(face)

424 # Go ahead and add the elements in this face to our

covered set

425 covered.update(face)

426

427 # check we’ve gotten all the elements

428 if len(covered) == (3 * len(inns)):

429 print(’We got em!!!’)

430

35

431 # Now return a list of all the faces we have.

432 return faces

433

434

435 def printCircleStatus(segs: Dict[str , Segment], outs: Dict[str ,

Outer], inns: Dict[str , Inner]):

436 """

437 Helper function that prints the status of the circle to the

console

438 :param segs: dictionary of str: Segment objects in the circle

439 :param outs: dictionary of str: Outer objects in the circle

440 :param inns: dictionary of str: Inner objects in the circle

441 :return: None

442 """

443 # Run through the segments

444 print(’\nSegments:’)

445 for k in segs:

446 print ()

447 print(k)

448 print(segs[k]. toString ())

449

450 # Run through the Outer nodes

451 print(’\nOuters:’)

452 for k in outs:

453 print ()

454 print(k)

455 print(outs[k]. toString ())

456

457 # Run through the Inner nodes

458 print(’\nInners:’)

459 for k in inns:

460 print ()

36

461 print(k)

462 print(inns[k]. toString ())

463

464

465 if __name__ == ’__main__ ’:

466 # This is where you change the variables.

467 # must be a positive integer > 2

468 verts = 12

469 # Must be a string with spaces between each element. If you want

to denote multiple cycles , you must add a |

470 switch_txt = ’2 3 4 5 | 12 7’

471

472 # we’re going to make a list of all the switches and all the

cycles

473 switches = list()

474 # first , we get the cycles , split by ’|’

475 cycles = switch_txt.split(’|’)

476 for c in cycles:

477 # We’re going to split the switch into a list split by the

whitespace

478 s = c.strip().split ()

479 # Then we’re going to append the switches in the cycle to

the new list

480 switches.append(s)

481

482 # Go ahead and make the standard circle given the number of

vertices we want to use.

483 segments , outers , inners = standardCircle(verts)

484

485 # Go through and grab the faces for our standard circle

486 facs = grabAllTheFaces(inners)

487 print(’\nPrinting the faces ’)

37

488 for f in facs:

489 print ()

490 for p in f:

491 sys.stdout.write(p.getName () + ’ ’)

492

493 # Go through and do the switches for each cycle

494 for switch in switches:

495 for num in range(len(switch)):

496 # store the current part of the switch we’re working on

497 cs = switch[num]

498 # store the next part of the switch we’re working on,

looping to the beginning if we’re at the end

499 ns = switch [(num + 1) % len(switch)]

500 # Do the actual switch

501 # Getting the new inner and outer validly switched up

502 inners[string.ascii_letters[int(cs) - 1]]. setAdjOuter(

outers[ns])

503 outers[ns]. setAdjInner(inners[string.ascii_letters[int(

cs) - 1]])

504

505 # print how the final rotation sits

506 printCircleStatus(segments , outers , inners)

507

508 # Go through and generate and print the new faces

509 new_facs = grabAllTheFaces(inners)

510 print(’\nPrinting the new faces ’)

511 for f in new_facs:

512 print ()

513 for p in f:

514 sys.stdout.write(p.getName () + ’ ’)

38

Bibliography

[1] Ergun Akleman, Jianer Chen, and Jonathan L. Gross. “Extended graph rotation

systems as a model for cyclic weaving on orientable surfaces.” In: Discrete Applied

Mathematics 193 (2015), pp. 61–79. issn: 0166-218X. url: https://ezproxy.

mtsu.edu/login?url=https://search.ebscohost.com/login.aspx?direct=

true&db=edselp&AN=S0166218X1500195X&site=eds-live&scope=site.

[2] Peter Eades et al. “A linear time algorithm for testing maximal 1-planarity of

graphs with a rotation system.” In: Theoretical Computer Science 513 (2013),

pp. 65–76. issn: 0304-3975. url: https://ezproxy.mtsu.edu/login?url=

https://search.ebscohost.com/login.aspx?direct=true&db=edselp&AN=

S0304397513007214&site=eds-live&scope=site.

[3] M.N. Ellingham, Chris Stephens, and Xiaoya Zha. “The nonorientable genus of

complete tripartite graphs”. In: Journal of Combinatorial Theory, Series B 96.4

(2006), pp. 529–559. issn: 0095-8956. doi: https://doi.org/10.1016/j.jctb.

2005.10.004. url: https://www.sciencedirect.com/science/article/

pii/S009589560500153X.

[4] M. N. Ellingham and Xiaoya Zha. Orientable embeddings and orientable cycle

double covers of projective-planar graphs. 2009. arXiv: 0911.2713 [math.CO].

39

[5] Bojan Mohar and Carsten Thomassen. Graphs on Surfaces. Johns Hopkins series

in the mathematical sciences. Johns Hopkins University Press, 2001, pp. I–XI,

1–291. isbn: 978-0-8018-6689-0.

[6] Neil Robertson, Xiaoya Zha, and Yue Zhao. “On the flexibility of toroidal embed-

dings”. In: Journal of Combinatorial Theory, Series B 98.1 (2008), pp. 43–61.

issn: 0095-8956. doi: https://doi.org/10.1016/j.jctb.2007.03.006. url:

https://www.sciencedirect.com/science/article/pii/S0095895607000536.

[7] John Maharry et al. “Flexibility of projective-planar embeddings.” In: Journal

of Combinatorial Theory, Series B 122 (2017), p. 241. issn: 0095-8956. url:

https://ezproxy.mtsu.edu/login?url=https://search.ebscohost.com/

login.aspx?direct=true&db=edsgao&AN=edsgcl.472801904&site=eds-

live&scope=site.

40

