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Abstract 

Proof and proving are a core component of the discipline of mathematics and proving is a 

required exercise in many upper-level courses in mathematics at the undergraduate level. Writing 

proofs remains difficult for many students (Moore, 1994; Stylianides et al., 2017). To address 

this difficulty many universities have began offering Introduction to Proof courses. These 

courses typically cover three main areas, logic, proof techniques, and sets and functions (David 

& Zazkis, 2020). With this course’s importance in students’ transition to upper-level 

mathematics, it is worthwhile to investigate the connections that students make between the 

subcomponents of such a course. As such, in this dissertation study I sought to understand the 

connections that students make between logic and the techniques of proof in and Introduction to 

proofs course. In the first chapter I state the broad issues related to students learning of logic and 

proof techniques, to set the stage for the remainder of the manuscript. In the second chapter I 

present a research study on the connections that students make between logic, direct, and indirect 

modes of proof. In the third chapter I present a research study on the struggles that students face 

as they learn to write proofs with mathematical induction. In the fourth chapter I present a 

practitioner-minded piece where I highlight the typical issues that students face throughout an 

Introduction to Proofs course. Finally, in the fifth chapter I share some broad conclusions across 

these three manuscripts and reflect on students’ learning throughout an Introduction to Proofs 

course.  
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CHAPTER 1 INTRODUCTION 

Proof and proving are core practices of mathematicians and are their primary means of 

communicating new mathematical results or ideas (De Villiers, 1990; Lakatos, 1963). 

Mathematical proofs are a combination of nuanced language and logical steps and deductions 

(Burton & Morgan, 2000; Lakatos, 1963; Raman, 2003). For undergraduates, transitioning to 

proving is not an easy endeavor (Moore, 1994), and thus many universities have adopted 

Introduction to Proof courses to help students successfully make this transition in their 

mathematical studies (Cook et al., 2019; David & Zazkis, 2020; Moore, 1994; Savic, 2017). 

These Introduction to Proof (ITP) courses cover a variety of topics (David & Zazkis, 2020), but 

their intention is to introduce students to the language and technique of proof, such as the rules of 

logical inference and the various techniques of proof (e.g., direct proof, proof by contradiction). 

Despite this desire, undergraduate students continue to struggle with proving after these courses 

in their proof-based mathematics coursework (e.g., Abstract Algebra, Real Analysis, Number 

Theory). Scholars in cognitive science have demonstrated humans have difficulty in utilizing and 

understanding arguments involving the conditional statement (e.g., Espino & Ramírez, 2013; 

Johnson-Laird, 1983), which is a key component of the various techniques of proof (e.g., direct 

proof: P → Q; proof by contraposition: ~Q → ~P). Though there have been studies on students’ 

understanding of individual techniques of proof (e.g., Hub & Dawkins, 2018; Zandieh et al., 

2014), few scholars have studied the possible threads or connections across students’ 

understanding of these techniques of proof, particularly while they are learning these core 

techniques for the first time. This study, then, investigates students’ understanding of one 

potential thread (i.e., the conditional statement), which has a unique role within each proof 

technique and could be a common source of difficulty across students’ learning of proof 
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techniques (Brown 2013; 2018; Hub & Dawkins, 2018).  This study intends to help explain 

students’ understanding of the conditional statement (as a concept of logic) in its relation to the 

various techniques of proof (i.e., direct proof, proof by contradiction, proof by contraposition, 

and mathematical induction) as students are learning these ideas in an ITP course.  

Stating the Problem 

Mathematical proof is an essential component of the discipline of mathematics (De 

Villiers, 1990; Dawkins & Weber, 2017; Stylianides et al., 2017). Proof has many roles within 

mathematics (De Villiers, 1990), and proofs are a mathematician's primary source of 

communicating new mathematical results or conjectures (Burton, 1998; De Villiers, 1990). This 

highlights the importance of mathematical proof within the community of mathematicians and 

proof’s many uses within mathematics. However, scholars note that proof is largely absent from 

the K-16 curriculum in the United States (Stylianou et al., 2010).   

 With proof’s importance within the community of mathematics, mathematics education 

scholars (e.g., Ball & Bass, 2003; Schoenfeld, 1994; Stylianou et al., 2010; Yackel & Hanna, 

2003) and reform documents (e.g., The National Council of Teachers of Mathematics [NCTM], 

2000) have called for proof to have more of an emphasis in the K-16 curriculum. The transition 

to proof is difficult for many (Moore, 1994). Indeed, high school students have difficulties when 

writing proofs (Herbst & Brach, 2006), or fail to see the need for a proof of a conjecture or 

theorem (Kunimine et al., 2009). These issues persist with undergraduates in proof-based 

mathematics courses (Weber, 2001). Consequently, there is a warrant to investigate the ways 

students develop the language of mathematical proof and adopt the techniques of proof, 

particularly with proof’s mixture of complex language and syntax as well as mathematical 

content. 
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Many universities across the United States offer Introduction to Proof (ITP) courses in 

order to combat students’ difficulty in the transition to proving in mathematics, and such courses 

have grown in prevalence throughout the years (Cook et al., 2019; David & Zazkis, 2020; 

Moore, 1994). Consequently, more research has been done on this population of students as they 

learn the elements of mathematical proof writing (e.g., Bleiler-Baxter & Pair, 2017; Brown, 

2018). However, there is less research on the ways in which students develop the language of 

mathematical proof within these ITP courses or on how they incorporate logical rules and proof’s 

complex language. Researchers have demonstrated that students face unique challenges when 

adopting individual proof techniques (e.g., direct proof, proof by contradiction) (Brown, 2018; 

Hub & Dawkins, 2018) and experience difficulty in learning and applying rules of logic and 

inference (e.g., understanding the conditional statement, using modus ponens/tollens) (Inglis & 

Simpson, 2008; 2009), though few studies have documented how students’ progress through 

such a course. 

 When proving, often mathematical conjectures or theorems are of the form, if P then Q, 

referred to as conditional statements (e.g., if an integer is even, then its square is even). 

Cognitive psychologists  have examined the issue of human beings reasoning about conditionals 

(e.g., Espino & Ramírez, 2013; Johnson-Laird, 1983). . Reasoning theorists such as Espino and 

Ramírez (2013) showed that human beings often make incorrect logical inferences when 

examining arguments in the form of a conditional and have similar difficulty when assessing the 

validity of symbolic logical arguments.  

Conditional statements in mathematics, if P then Q, are really statements of the form, if 

P(x) then Q(x), which is more precisely expressed as, for every x such that P(x) is true, Q(x) is 

true. Expressed in this latter form, it is easier to see that x must satisfy the assumptions of P(x), 
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and it is the responsibility of the prover to demonstrate that these assumptions directly imply 

Q(x). For mathematicians, the process of assuming P(x) is likely a trivial one (Raman, 2003). 

However, students who are learning to write proofs with inquiry-based instruction often have 

difficulties in making the necessary linguistic choices (i.e., selecting modes of argument 

representation) or understanding the set-based logical structure of a conditional statement (Hub 

& Dawkins, 2018). That is, given a mathematical conjecture of the form, if P then Q, students 

(i.e., novices) are not as adept as mathematicians (i.e., experts) when translating the assumptions 

of P(x) into operable language to prove Q(x) or in understanding when conditional statements are 

true or false (Hub & Dawkins, 2018). For instance, in Hub and Dawkins’ study, an 

undergraduate student, Hugo, was asked to think about conditional statements such as “if a 

number is not a multiple of 3, then it is not a multiple of 6,” or “if a triangle is obtuse, then it is 

not acute.” Hugo was less adept at understanding the connections between set-based reasoning 

about conditionals (Hub & Dawkins, 2018).  (Hub & Dawkins, 2018). Moreover, it is not simply 

a matter of restating P(x) in the above conditional statements to prove the claim(s). For instance, 

to prove the result “if a number is not a multiple of three, then it is not a multiple of six,” it is 

unlikely that a mathematician would begin their proof by simply reproducing the antecedent, “if 

a number is not a multiple of three...” (Morgan, 2002; Rotman, 2006). In mathematics, 

particularly when proving, the use of imperatives (e.g., Suppose, Let, Assume) is essential in 

conveying a message to the reader about the mathematical objects in play (Morgan, 2002; 

Rotman, 2006); and what follows the imperative often sets up the writer with mathematical 

objects to operate on. As such, a mathematician when proving the statement “if a number is not a 

multiple of three then it is not a multiple of six,” would more likely begin their proof with an 

imperative such as, “Let x be an integer which is not a multiple of three,” and then assert an 
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operable form for x by writing something such as, “then, x can be written as 3n+1 or 3n+2 where 

n is a an integer.” The field would benefit from understanding whether and how novices to proof 

writing are aware of mathematicians’ conventions for proof writing, such as the use of 

imperatives and the transition to operable statements, as these linguistic conventions are essential 

to successful proof writing (Burton & Morgan, 2000; Morgan, 1998) 

In an ITP course, students learn various techniques for proving conditional statements 

and statements of other logical forms (David & Zazkis, 2020). These proving techniques include 

proof by contradiction, proof by contraposition, mathematical induction, disproof by 

counterexample, and direct proof. Each of these proof techniques require the prover to utilize 

their understanding of the conditional statement in various ways. For instance, proving by 

contraposition requires the prover to take their original conjecture (if P then Q), and negate both 

P and Q to prove the statement if ~Q then ~P. Proof by contradiction requires the prover to 

assume both P and ~Q in order to find a logical contradiction which is a direct deduction from 

assuming both P and ~Q. Mathematical induction contains an embedded conditional after the 

basis case, requiring the prover to show P(N) → P(N+1). Finding a counterexample to a 

mathematical conjecture in the form of a conditional requires the prover to find an example 

which meets the assumptions of P but fails to meet the assumptions of Q. Finally, direct proof 

requires the prover to assume P0, then deduce P0. → P1  →  … →  Pn.  →Q, where each Pi is a 

direct consequence of Pi-1. 

 Mathematical proof, however, is not done exclusively by manipulating symbols and 

making logical deductions (Fischbein, 1982; Lakatos, 1963). Indeed, mathematicians and 

students invoke many methods to complete or make sense of a proof, such as using examples or 

other less formal means (Sandefur et al., 2013; Weber et al., 2014). Scholars have theorized how 
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mathematicians utilize intuition when solving proofs (Lakatos, 1963; Mariotti & Pedemonte, 

2019), and often rely on ‘gut feelings’ (Fischbein, 1982). Burton (1998) found that 

mathematicians move back and forth between syntactic reasoning (e.g., manipulating symbols, 

making logical deductions) and semantic reasoning (e.g., using examples, graphs, pictures) when 

completing proofs or doing their research (Weber & Alcock, 2004). Moreover, mathematicians 

and students use examples in differing ways in order to make sense of the underlying structure of 

the mathematical phenomena at hand (Sandefur et al., 2013; Weber et al., 2014). These results 

suggest that there is more to learning about proof and proving than manipulating syntax and 

learning the necessary techniques or modes of argumentation; there is also a semantic (Weber & 

Alcock, 2004) component which is not as reliant on formal systems and logical deductions. This 

semantic component is related to what Stylianides (2007) refers to as modes of argument 

representation which are the various forms of expression that students use while proving, such as 

diagrams or pictures, and linguistic choices.  

In an ITP course, students are learning the linguistic nuances of mathematical proof (Lew 

& Mejia-Ramos, 2019), as well as learning various proving techniques which are foundational to 

engaging in upper-level mathematics, together with other aspects of proving. Indeed, Lew and 

Mejia-Ramos (2019) found that students, even after they have completed an ITP course, do not 

fully understand the “nuances involved in the careful ways in which mathematicians introduce 

new mathematics objects in proofs” (p. 130). This is consistent with students expressing that they 

do not know how to start or begin a proof (Weber, 2001). Moreover, students may be unaware 

that proofs are written with academic language, and that mathematicians are also following 

general rules of academic language when writing their own proofs (Lew & Mejia-Ramos, 2019). 

However, research suggests that there are some commonalities in the ways that mathematicians 
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and novices write proofs (Lynch & Lockwood, 2019). For instance, mathematicians and students 

use examples to understand conjectures and notice patterns, but novices view examples as more 

substantial and relevant to a proof (Lynch & Lockwood, 2019). ITP courses are designed to help 

students overcome these aforementioned difficulties and align themselves with the proof-writing 

standards of the community of mathematicians. However, students continue to struggle with 

proof writing in post-ITP courses (Lew & Mejia-Ramos, 2019; Zazkis et al., 2016).  

As mentioned previously, undergraduate students also struggle with making use of the 

logical structure of conditionals and the intricacies involved in negating logical arguments (Hub 

& Dawkins, 2018; Inglis & Simpson, 2008; 2009). Logic and logical arguments are a key 

component of the Standard ITP course, namely phase I (David & Zazkis, 2020); and there is 

evidence that this logical understanding develops over time throughout one’s mathematical 

training, particularly at the university level (Inglis & Simpson, 2008; 2009). Finally, phase II of 

the Standard ITP course involves students learning the various techniques of proof (e.g., direct 

proof, proof by contradiction) (David & Zazkis, 2020). Students have been known to have 

unique struggles relating to particular methods of proof. For instance, students are often 

unconvinced of the validity of indirect proofs (Antonini & Mariotti, 2008; Brown, 2018), or may 

fail to recognize the significance of the base case in proof by mathematical induction (Stylianides 

et al., 2007). Thus, in a Standard ITP course, particularly in the first two phases, students are 

learning the essential mechanics of mathematical proof. Students have difficulties within each 

phase, but less is known on potentially how these students overcome these misunderstandings 

and/or how their understanding in the first phase translates to their success in the second phase of 

the course. Thus, in such a foundational course, it is worthwhile to examine not only how 

students develop the nuanced language of proof, but also how they make sense of logic and 
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logical statements, and whether or not this has any relationship with their adoption of, or struggle 

with particular proof techniques. 

The structure of the remainder of this dissertation is as follows: The next chapter 

(Chapter 2), is a research study which sought to understand the connections that undergraduate 

students make between logic and direct and indirect modes of proof. The next chapter (Chapter 

3) is a research study on how students learn to write proofs by mathematical induction. This 

study was separate from the first study for two main reasons. First, historically studies in 

mathematics education on induction have been solely focused on this proof method, as opposed 

to comparing it to other techniques of proof. Second, and most importantly for this study, 

students were introduced to mathematical induction separately from the other techniques of proof 

in the classroom context under study. The next chapter (Chapter 4) is a manuscript intended for 

practitioners of proof-based mathematics courses, and particularly ITP courses, where I describe 

how students develop their understanding of the conditional statement. Finally, in my conclusion 

(Chapter 5) I describe the overarching lessons I have learned throughout these two research 

manuscripts and reflecting on the practitioner-piece.   
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CHAPTER 2 LOGIC, DIRECT, AND INDIRECT PROOF: STUDENTS’ 

LEARNING TO WRITE PROOFS IN AN INTRODUCTION TO PROOFS COURSE 

Introduction 

Students across the K-16 curriculum have shown difficulty in writing proofs in their 

mathematics courses (Moore, 1994; Harel & Sowder, 2007; Stylianides et al., 2017). There are 

many potential reasons for students to have this trouble. Students express that they fail to see the 

need for a proof, as certain results appear obvious (Dimmel & Herbst, 2018). When they feel an 

intellectual need for a proof, students have also expressed that they don’t know how to begin or 

start a proof (Weber, 2001). Students show difficulty understanding the mechanics of proof 

writing in their upper-division or proof-based mathematics courses, such as Analysis and 

Number Theory (Zazkis et al., 2016).  

To address these issues many universities across the country have developed Introduction 

to Proof (ITP) courses to give students a foundation in the mechanics of proof writing. These ITP 

courses typically (David & Zazkis, 2020) cover three main content areas: logic, proof techniques, 

and sets and functions. There are many reasons for students who are transitioning from their 

computation-based mathematics courses (e.g., Calculus) to proof-based courses (e.g., Abstract 

Algebra) to learn the underpinning of logic in tandem with or as a precursor to the techniques of 

proof. Having a robust understanding of logic, in particular understanding the logical connectives 

(i.e., conjunction, disjunction, implication, biconditional, and negation) is essential in learning 

and utilizing the various techniques of proof. In particular, each technique of proof (e.g., direct 

proof, proof by contradiction) relies on the implication statement (P → Q) in a unique way 

relative to the other techniques. See Table 2.1 for the ways in which the techniques of proof 

utilize the conditional.  
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Table 2.1 

Techniques of proof and their use of the implication statement. 

Proof Technique Conditional Use 

Direct Proof P → Q 

Proof by Contraposition ~Q → ~P 

Proof by Contradiction (P and ~Q) → F 

Mathematical Induction [P(1)] and [P(n) → P(n+1)] 

 

 Often in mathematics conjectures are stated in the form of P → Q, which reads P implies 

Q. This is more accurately stated as, if P(x) then Q(x), or even more precisely as, for all x such 

that P(x) is true, then Q(x) is true. This reliance on the conditional has the potential to compound 

students’ difficulties in proof writing. As scholars in cognitive science have noted, human beings 

generally have difficulty in understanding and interpreting arguments involving the conditional 

statement. For instance, Wason (1966; 1967) found when engaging participants in the 4-card 

problem (or Wason Selection Task) that nearly 96% of the participants responded inaccurately as 

to which cards needed to be turned over to guarantee the truth of the given conditional claim. 

Further, studies have shown that mathematics students analyze conditional arguments more 

accurately than non-mathematics majoring university students (Inglis & Simpson, 2008; 2009). 

University students have also demonstrated that studying logic can improve students’ conditional 

reasoning skills (Attridge et al., 2016).  

 Students have also demonstrated some difficulty in using the various modes of proof 

which rely on manipulating the conditional, such as proof by contradiction or proof by 

contrapositive. When proving directly, students have expressed that they do not know how to 

begin or start a proof (Weber, 2001). Findings by Wu Yu et al., (2003) suggest that students can 
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successfully utilize proof by contradiction only after they have learned the syntactic handle of 

negating the components of their claim and understand the method’s connection to proof by 

contraposition. Though there is a lack of research in how students understand and utilize proof 

by contraposition (Stylianides et al., 2017), results from Yopp (2020) suggest that students can 

make the connection between the truth of the contrapositive’s claim (~Q → ~P) and the truth of 

the original claim (P → Q). As students in ITP courses are expected to learn the rules of logic 

and utilize this knowledge while they learn the nuances of proof writing, it is worthwhile to 

investigate the connections that they make between their understandings of logic, their 

understandings of the methods of proof, and what it looks like to ‘learn’ how to write proofs in 

mathematics. 

This study, then, is guided by the following research question: 

1)  What are the connections that students make between logic and the 

techniques of proof in an ITP course? 

Review of Literature 

In the following section I review various literature related to students learning logic and 

modes of mathematical proof. However, I have not included a review of literature on students’ 

understanding of mathematical induction, as the scope of this study did not include students’ 

learning of induction. Historically, studies on students’ learning of induction have been solely 

focused on their adoption of this proof technique, as it is often taught separately from the other 

techniques of proof, and induction is a unique proof method with its reliance on the Natural 

numbers. Thus, I present literature in the following three areas: on students’ learning of logic and 

direct proof, students’ proving with contradiction, and students’ proving with contraposition. 

Direct Proof and Logic 
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Research on students' understanding of logic in undergraduate mathematics is 

limited, particularly as it pertains to the connections between logic and the techniques of 

proof. Epp (2003) had some suggestions on why students need instruction in logic to 

promote students’ learning of proof, such as how one arbitrary element can represent an 

entire set, or how definitions utilize biconditional statements and have an “if” and an 

“only if" component. With these suggestions in mind, it is again relevant to mention the 

conditional statement’s importance in proving, in utilizing definitions, in understanding 

argument forms, and in utilizing the various techniques of proof. Weber (2001) found 

that students often struggle in how to begin a proof. Students’ issues with beginning a 

proof likely are related to their lack of knowledge of the nuanced language that 

mathematicians use when proving (Burton & Morgan, 2000), such as the use of 

imperatives (e.g., Let, Suppose, Assume).  

Research suggests that mathematics majors perform well in recognizing valid and 

invalid conditional arguments (Inglis & Simpson, 2008; 2009). Similarly, training 

students in logic significantly improves their performance on logical reasoning tasks 

(Attridge et al., 2016). However, mathematics education researchers are largely unaware 

of whether improving logical reasoning translates to successful proof writing, or whether 

students can use logic accurately and meaningfully as they prove. 

Proof by Contradiction 

 When proving a mathematical conjecture of the form if P then Q (a conditional 

statement), it is often useful or more advantageous to prove the result by assuming the truth of P 

and ~Q in order to find a logical deduction which contradicts a previously derived logical 

assumption (i.e., proof by contradiction). When undergraduates utilize this proof technique, or 
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read proofs which involve contradiction, they are often unconvinced of the result (Antonini & 

Mariotti, 2008; Brown, 2018). Similarly, though preservice mathematics teachers correctly 

assessed various proofs by contradiction, these preservice teachers misunderstood the 

assumptions necessary for proof by contradiction (Demiray & Bostan, 2017). Antonini (2003) 

noted that students can use indirect methods of proof (such as contradiction) spontaneously, as 

they often do so in everyday circumstances (e.g., If it rained, then the ground is wet. The ground 

is not wet, therefore it did not rain). Antonini (2003) suggests that for students to learn about and 

successfully utilize proof by contradiction, students must first productively use examples to 

convince themselves of the results in which they are trying to prove.  

Reading indirect proofs, such as proof by contradiction, is also not an easy task for 

students (Antonini & Marioti, 2008; Bleiler et al., 2014; Brown, 2018). Bleiler and colleagues 

(2014) found that preservice secondary mathematics teachers (PSMTs) inaccurately judged 

proofs by contradiction. These were PSMTs assessing various arguments, as a part of a course 

designed to improve their ability to read, comprehend, and critique mathematics (Bleiler et al., 

2014). In the study the PSMTs often did not recognize proof by contradiction versus a direct 

proof of the same conjecture, and they had a superficial understanding of proof by contradiction 

(Bleiler et al., 2014). This lack of understanding was related to these PSMTs’ incorrect syntactic 

reasoning, where they correctly assumed the negation, but failed to correctly operate on their 

initial assumptions. These PSMTs were able to successfully categorize valid arguments and 

could also recognize the limitations of inductive reasoning. In another study (Wu Yu et al., 2003) 

it was found that high school and university students' understanding of the parts of proof by 

contradiction (such as negating a premise) and understanding the law of contraposition present 

challenges for students. These authors found that it is not simply negating the premise which 
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presents students with difficulty, but that negating statements with varying quantifiers presents 

problems (Wu Yu et al., 2003). That is, negating a statement with quantifiers “some”, negating 

“all”, and negating “only one” are qualitatively different from one another. Lin and colleagues 

note that negating a statement is a separate skill which can develop without understanding proof 

by contradiction.  

Proof by Contrapositive 

 Proving a mathematical conjecture by contraposition (or contrapositive) involves the 

prover taking a conditional statement (If P then Q) and negating both P and Q to prove the 

statement if ~Q then ~P. Though related to proving by contradiction, there is a marked 

distinction within this proving technique from proof by contradiction. Namely, contradiction 

requires a prover to find a logical deduction which is in contradiction to a previous logical 

assumption from an and statement (i.e., P and ~Q). Instead, proving by contraposition requires 

the prover to maintain the structure of the conditional, while negating and switching the subject 

and object of the conditional. Hence, proving by contrapositive may have differing cognitive 

components than other methods of proof. 

 Proving by contraposition (or by contradiction) can be difficult for students as these 

proofs are often concerned with the not-conclusion of the desired result (Yopp, 2017). One 

benefit of indirect proofs, particularly proof by contrapositive, is that they can give the prover 

some conceptual insight into the presence of examples and counterexamples, or what 

characteristics a counterexample would need to have in order to prove a claim wrong (Yopp, 

2017).  

Brown (2013) found that upper-level mathematics students productively utilized indirect 

proof methods when they were able to explicitly connect the mathematical statements to various 
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logical forms which they knew to be equivalent to their original conjecture in the form of a 

conditional (e.g., P → Q; ~P ∨ Q; ~Q →  ~P). Brown (2013) suggests that explicit instruction in 

ITP courses should highlight the logical structure within proof, such as the negating of 

statements as well as the logical rules to make deductions (such a Modus Ponens). Arzarello and 

Sabena (2011) claim that students should be given insight into the teleological function of 

indirect proof. That is, students should understand the purposes of indirect proof. When students 

write proofs, they might convince themselves of the truth given their original conjecture (if P 

then Q), but prove the conjecture using an indirect method (Arzarello & Sabena, 2011). To this 

end Harel and Sowder (1998) reported that students dislike indirect proof methods (e.g., proof by 

contradiction, proof by contraposition) because they do not help explain the truth of the 

conjecture. 

Theoretical Perspective 

In the recent Compendium chapter and review of the literature on proof and proving, 

Stylianides and colleagues (2017) assert that research has “tended to focus on what older 

students cannot do” which leads to the faulty conclusion that “mathematics majors cannot write 

proofs” (p. 243). In this research study I attempt to counter this narrative and describe how 

students learn to write proofs in ITP courses, particularly highlighting the connections that they 

make between logic and the techniques of proof, while highlighting their skills as advanced 

mathematics learners and growing proof writers. 

Recall that this study seeks to describe the connections that students make between logic 

and the techniques of proof as they learn in an ITP course. To understand and analyze students’ 

learning, I utilized a modified version of the theoretical frame used by Sandefur and colleagues 

(2013), which they used in describing how students’ example use impacts their proof production. 



16 
 

Sandefur et al., utilized a theoretical frame consisting of several components and 

subcomponents. For the first layer, they adopt a heuristic from Mason (1980) about how one 

makes sense of a mathematical problem, describing this process as: Manipulating - Getting a 

Sense Of - Articulating (MGA). Each component of MGA has unique subcomponents. 

According to Sandefur et al. (2013) Manipulating mathematical objects can be done either by 

using syntax (e.g., logical symbols, algebraic procedures) or semantics (e.g., diagrams, 

examples) (Alcock & Weber, 2004). Sandefur and colleagues describe Getting a Sense Of a 

mathematical conjecture or problem with two subcomponents: Technical Handle (TH) and 

Conceptual Insight (CI). Conceptual Insight (CI) refers to when one attempts to understand the 

“structural relationship pertinent to the phenomenon of interest that indicates why the statement 

is likely to be true” (Sandefur et al., 2013, p. 328), and Technical Handle refers to “ways of 

manipulating or making use of the structural relations that support the conversion of CI into 

acceptable proofs” (Sandefur et al., 2013, p. 328). Finally, Articulating refers to physical, verbal, 

or written actions of a student (Sandefur et al., 2013). Sandefur and colleagues (2013) describe 

Articulating as a manifestation of TH and CI. 

Sandefur and colleagues utilized this theoretical perspective to describe how 

undergraduate students’ example use potentially impacts their writing of proofs by mathematical 

induction. Thus I chose to use Sandefur et al.’s (2013) frame, as their study was how 

undergraduate students produce proofs in mathematics. In order to answer my research question, 

I adjust Sandefur et al.’s original framework slightly to attend more closely to the particular 

phenomenon under study within my research; that is, the connections students make between 

mathematical logic and the various techniques of proof. When students are faced with a claim to 

prove, and they decide to prove indirectly, they typically will need to consider how to reformat 
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the claim so that it fits within their indirect proof structure. Therefore, in this study, Manipulation 

is redefined as Discussion Surrounding the Claim.  This added specificity helps to clarify what 

students are manipulating (i.e., the conjecture/claim) and allows me to focus on how students’ 

manipulation of the conjecture/claim is potentially connected to logic.  

For instance, when proving a statement by contrapositive, one needs to take the original 

implication (P → Q) and negate both the claims and restate the claim as ~Q → ~P.  Symbolically 

this appears trivial, but when dealing with mathematical conjectures this is often not the case. It 

is during this phase that students need to rely on their understanding of logic and logical 

connectives (i.e., and (∧), or (∨), implication (→), biconditional (↔), negation (~)). They also 

need to use and understand logical quantifiers (e.g., for all (∀), there exists (∃)) amongst other 

mathematical symbols and language that are potentially foreign or new to them. These sorts of 

discussions would be categorized as syntactic discussion around the conjecture or claim. 

Students could also have semantic discussions about the conjecture. As I have found previously 

(i.e., Reed et al., accepted) when students discuss proofs by mathematical induction, they often 

need to manipulate or restate the conjecture in terms of semantics. For instance, in this study one 

student analyzed a sample proof of the claim 1 + 3 + … + (2𝑁- 1 ) = 𝑁2 + 3 (a false claim), and 

asked his small-group members the following as he attempted to make sense of the given claim:  

Or, I guess. Well, I guess 2N-1. Well...I'm not even following what it's trying to 

do because, like this 2N -1 is just kind of out there. Like, I don't... Are we 

plugging in a number from before? Because if you plug 3 in you get 5. If you plug 

5 you get 9. 

In this excerpt, this student is attempting to make sense of the conjecture, specifically the left 

hand side, which is the sum of the first N odd integers. Largely, his sensemaking is with 
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semantic reasoning, that is ‘plugging’ in numbers and testing various examples. Thus, we see 

that Discussion Surrounding the Claim can be described using the same subcomponents as 

Manipulation, namely, semantic and syntactic reasoning. More often than not, it is the syntactic 

manipulation which helps me to describe the connections that students make between logic and 

proof;when students symbolize an argument their discussion naturally shifts to discussing the 

symbols and how to utilize them productively.  

Getting a Sense Of also is in need of a modification to better answer my research 

question. I redefine Getting a Sense Of as Discussion Surrounding the Argument, or Argument 

Form. Sandefur and colleagues (2013) describe this (Getting a Sense Of) as having two 

components, Conceptual Insight (CI) and Technical Handle (TH). I hasten to note that terms 

remain useful in my redefined component of the framework. As a case-in-point, when students 

are proving in an ITP course their discussion is often centered around finding the key idea 

(Raman, 2003) or conceptual insight, and developing the technical capabilities to describe this 

insight.  For instance, when proving the conjecture, “an integer is even if and only if its square is 

even,” one demonstrates their technical handle in recognizing that this conjecture is in the form 

of a biconditional and stating its conditional components. The key idea or conceptual insight that 

students need in order to prove this result is to understand that when multiplying even integers a 

factor of 2 can always be removed. So, technical handle and conceptual insight allowed me to 

describe the connections that students make between logic and proof by allowing me to hone in 

on the places where they have productively made use of key ideas and demonstrate the technical 

language necessary to write them in a proof.  

 Finally, Articulation is slightly modified from Sandefur and colleagues’ (2013) 

description. Although I previously mentioned that this component of the frame is not a direct 
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answer to my research question, this component still provides some experimental value, as 

Sandefur et al., have described this component as the manifestation of TH and CI. Thus, I adopt 

this term as well for these theoretical components, but modify them slightly to adapt for online 

learning due to Covid-19. I use Articulation as the final written (typed), shared, product of the 

students. There are exceptions to when Articulation is coded outside of this description, such as 

when students ‘share’ their screen and use the communal Zoom whiteboard, or perform a similar 

action. This adopted framework is summarized in Table 2.2 below. 

Table 2.2 

Adapted Theoretical Framework from Sandefur et al. (2013). 

 

Discussion Surrounding the Claim Discussion Surrounding the 

Argument 

Articulation 

Semantic 

Reasoning 

Syntactic 

Reasoning 

Conceptual 

Insight 

Technical 

Handle  

 

example use, 

diagrams, 

pictures, graphs 

(Weber & 

Alcock, 2004) 

logical symbols, 

algebraic 

reasoning and 

manipulation, 

logical reasoning 

(Weber & 

Alcock, 2004) 

refers to when 

one attempts to 

understand the 

“structural 

relationship 

pertinent to the 

phenomenon of 

interest that 

indicates why 

the statement is 

likely to be true” 

(Sandefur et al., 

2013, p. 328 

“ways of 

manipulating or 

making use of 

the structural 

relations that 

support the 

conversion of CI 

into acceptable 

proofs” 

(Sandefur et al., 

2013, p. 328). 

The final (typed) 

product of the 

students’ group 

proof 

Formerly Manipulating from 

Sandefur et al. (2013) 

Formerly Getting-a-Sense-Of from 

Sandefur et al. (2013) 

 

 

Methodology 
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Participants & Setting 

 This study took place at a large public institution in the southeastern United States during 

the Fall of 2020 within an Introduction to Proofs course. The course occurred during the first full 

semester of online-learning due to the Covid-19 pandemic. Students and the instructor met 

together synchronously twice a week on the Zoom platform, with a mixture of students doing 

group work in Zoom Breakout rooms and having a whole class lecture and discussion. Overall, 

13 students elected to participate in the study. The participants of the study were 3 women and 

10 men, predominantly white (11/13). All students were either majoring or minoring in 

mathematics at the institution. This course had a course structure which I outline below. Students 

in this course would typically engage in a number of group-sensemaking exercises on topics 

related to the course content and goals. Often class began with a discussion of the ‘big ideas’ 

from the day prior. The instructor would then launch whatever task the students would be 

working on in groups for the day and assign students to various breakout rooms. These tasks 

ranged from engaging in logical reasoning tasks, discussing definitions, and proving conjectures. 

Students would then collaborate in their group’s Google Doc, and class would often end with a 

discussion and presentation of various students’ group work. For my analysis, I focused only on 

when students were engaging in group-proving (as opposed to discussing definitions or engaging 

in logical reasoning tasks) in order to understand how their knowledge of logic potentially 

translates or manifests as they write proofs.  

Data Collection & Procedures. 

 Upon IRB approval, all course activities and instruction were recorded via Zoom, 

including ‘breakout’ room discussions where the groups were made up of 3-4 students working 

on proof-based tasks. As this class was structured with the intent of inquiry-based instruction, 
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group work was often a component of the course. Due to many students not participating in the 

study, when there were not times of group proving the instructor often mixed participants and 

nonparticipants to promote robust discussion among the students. These days were recorded for 

the purposes of context, but not included in the analysis. In order to answer my research 

question, I focused on group-proving episodes composed entirely of research participants, which 

were dispersed throughout a number of days throughout the semester. Each group consisted of 

no more than 4 individuals. 

Group Proving & Artifacts 

 As mentioned previously, the main data source for this manuscript is Zoom recordings of 

students proving in groups during class. Group work was a core component of the class, but 

group performance was not the focus of the study. Rather, by studying the students’ interactions 

within the group, students were able to discuss their ideas in a naturalistic setting and provide the 

researcher with insights into potential connections between proof techniques and logic. Any 

claims discussed are not in reference to the group, but rather they describe how individuals in an 

ITP course may behave in a group under similar conditions. Along with the video and audio of 

each research group, I also collected students’ final written (typed) artifacts from the group 

proving exercises (i.e., their proofs). To organize the data, and keep track of group proving 

episodes, I took daily observation protocols of each group and noted who the members of the 

group(s) were, what problem or task they were working on that given day, if proving - what 

techniques they used, and any key moments during the episode. 

Data Analysis 

 To answer my research question (i.e., What are the connections that students make 

between logic and the techniques of proof in an ITP course?) I identified nine group proving 
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episodes for an analysis of students’ discussion during those episodes together with the group’s 

final written proof. Originally, I planned to identify three episodes each of groups using the 

various techniques of proof (i.e., direct, contrapositive, and contradiction) however, throughout 

the semester students only utilized proof by contraposition on two occasions. Thus, I 

supplemented one episode where they proved by contradiction. Thus in total, there were three 

episodes of direct proof, two episodes of proof by contrapositive, and four episodes of proof by 

contradiction chosen for analysis. Once the episodes were selected, they were watched and 

transcribed by each talk-turn (i.e., each time the speaker switched). The transcripts were then 

coded with the modified MGA framework and its subcomponents. To do this coding, first I 

decided in each talk-turn whether their discussion was focused on the claim or conjecture 

(component 1 of my Theoretical Frame), or on the argument or argument form (component 2 of 

my Theoretical Frame). If I decided that they were discussing the conjecture, I then identified 

various portions of their speech which aligned with the description in my theoretical framework 

of either semantic or syntactic reasoning. If I decided that they were discussing the argument, I 

then identified portions of their speech as either them demonstrating their technical handle or 

expressing conceptual insight. I took these coded portions of their text and copied them into an 

Excel sheet which was overlain with my theoretical frame (shown in Table 2.3) for further 

analysis and to identify themes amongst the coded portions. For clarity and trustworthiness I 

provide a sample codebook below in Table 2.3 which highlights my coding scheme and analysis 

process.  

Table 2.3 

Sample codebook using the modified MGA framework 

Discussion Surrounding the Claim Discussion Surrounding the Argument 
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Semantic Reasoning Syntactic Reasoning Conceptual Insight Technical Handle  

I'm going to try and 

do a little drawing so 

we can better 

visualize it. 

Is a negation of an 

implication an 

implication itself? 

[while discussing a 

diagram]  

No, it's not. Wherever 

[the set] B is not, is 

the white outside of 

the bigger orange 

circle, right? 

The reason why B 

complimentary is a 

subset of A 

complimentary is 

because A 

complimentary 

includes B... B 

complementary does 

not. [describing their 

symbolic proof] 

Formerly Manipulating from Sandefur et al. 

(2013) 

Formerly Getting-a-Sense-Of from Sandefur 

et al. (2013) 

 

Once each transcript was transcribed and coded, I met with my research team of 

fellow proof researchers (a graduate student peer and my academic advisor) where they 

then checked and verified the coded portions of the text relative to my theoretical frame 

described above. Each particular meeting lasted an hour, and we would discuss three 

coded transcripts at a time. I took notes of the emerging themes we discussed so that I 

could return to the transcripts later and describe in detail the prevalence of the themes. It 

is from these discussions that the three themes emerged, which I describe later in the 

results section.  

As in many qualitative research studies, the line between theoretical framing and 

results are often blurred (Sandefur et al., 2013). As such, one coding term which became 

useful to me in describing students’ learning to write proofs was “Stuck.” Again, as I 

mentioned above, I hope to describe students’ proof learning without deficit language. To 

this end, the following quote is perhaps useful. Andrew Wiles, who famously proved 

Fermat’s Last theorem, described in an interview towards the end of his career what it 

means to do mathematics, “What you have to handle when you start doing mathematics 
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… is accepting this state of being stuck” (plusmathsorg, 2016, 1:00). As such, I have also 

added a category to this frame which I refer to as Stuck, to capture instances when 

students demonstrate a lack of technical or linguistic handle when composing their group 

proofs. For my research, a student exhibited being stuck whenever they expressed 

verbally to the group an indication that they were aware that they lacked direction in the 

proof. I see students’ awareness of being Stuck as an asset that students possess while 

proof writing. Indeed, we do not want students to absentmindedly push symbols, or not 

follow logical rules while writing proofs. It is a good thing when students recognize how 

and when they are stuck in the proving process, much like Andrew Wiles (plusmathsorg, 

2016) asserts.  This term Stuck is also useful in describing that students can, at times, be 

unaware of how to translate a conjecture (P → Q) into its contrapositive (~Q → ~P) or a 

contradictory (P and ~Q) statement to be proved. Examples of when students demonstrate 

they are stuck are shown below in the results. 

Theoretical Perspective and Emergence of Themes 

 As I have described above, the theoretical framework which guided my study and 

data analysis was modified from Sandefur and colleagues (2013) Manipulating-Getting-

a-Sense-Of-Articulating (MGA) frame. The key modifications I made to analyze my data 

were changing the Manipulating stage to [students’] Discussion surrounding the Claim. 

Again, this component has two sub-components, namely semantic and syntactic 

reasoning (Weber & Alcock, 2004). To answer my research questions about the 

connections that students make between logic and the techniques of proof, I was first able 

to hone in on when students were discussing the claim, and focus on the portions of their 

speech when they were using syntactic reasoning. It is from these instances when 
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students were using this syntactic reasoning that they were making use of and 

demonstrating their knowledge of logic. Within these instances I was able to look across 

the episodes and notice and describe themes with my research team. The second 

modification I made to Sandefur and colleague’s (2013) frame was changing the Getting-

a-sense-of phase to [students’] Discussion surrounding the Argument. Again, this 

component had two subcomponents, conceptual insight and technical handle. When 

students were making use of their technical handle when writing a proof, I was able to 

hone in on these instances and describe what connections (if any) students were making 

to the rules of logic which they had previously learned. By coding and utilizing the 

modified framework in this way, I was also able to notice and describe when students 

lacked a technical handle. As I have described above, rather than describe students’ 

learning with deficit language, I saw this as an asset and form of learning. This led to the 

emergence of the stuck code which I described above and for which I present results in 

the following section.  

Results 

As I have previously described, research on undergraduate students’ proof writing 

tends to focus on their limitations rather than the things they can accomplish. Thus, it is 

my hope that I can share the results while highlighting how students learn to connect their 

understanding of logic as they learn to write proofs in an ITP course. To do this, I present 

the results in two sections aligned with my theoretical framework. First, I will share 

findings from the (M) phase or the discussion surrounding the conjecture, then share 

findings from the (G) phase or the discussion surrounding the argument.  

Discussion Surrounding the Claim 
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● Theme 1: Students understand that before they can prove a result indirectly, they 

must first accurately manipulate the conjecture using their knowledge of logic.  

 As students were engaging in group proving during class, when utilizing indirect modes 

of proof, students used their understanding of logic to manipulate the claim (in the form of a 

conditional statement) into its contrapositive or to prove the result by contradiction. The 

connections they were making between logic and the modes of proof were particularly noticeable 

during their early proof-writings. Table 2.4 presents several examples of students discussing how 

to manipulate the conjecture to be proved indirectly in group-proving exercises. 

Table 2.4 

Students discussing the logical manipulation of the given conjecture 

Speaker 

(Pseudonym)  

Student Quote 

Dennis “Personally, I think the first thing that we'll need 

to do is break it [the biconditional claim] up into 

individual implication statements.”  

Greg “Last off we had just figured out the negation [of 

the claim]. That was it.” 

Zoren “Yeah, if you can write the proof, I will write the 

implication [in the form of its contrapositive]. OK. 

So I'm writing the implication and you can go 

ahead and write that proof.” 

 

In these excerpts, I note that the students are all having distinct discussions about 

manipulating the conjecture, which is separate from their writing of the proof or even 

making sense of the claim itself (i.e., whether the claim is true or false). In all of these 

early instances, taking the components of the claim of a conditional statement, if P then 
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Q, and translating that statement to ~Q → ~P (its contrapositive) or P and ~Q (to prove 

by contradiction) is its own separate exercise, which students have demonstrated requires 

a separate conversation than writing the proof itself.   

 A promising result from Dennis (quote 1 in Table 2.4), is that he recognized the 

underlying logic of mathematical conjectures. In this instance, Dennis identified the 

biconditional conjecture as having two parts to be proved (i.e., P → Q and Q → P) and 

that proving this claim required them to “break it up into individual implication 

statements.” 

 In the second student quote, Greg recognized that moving forward with the proof 

indirectly required him (and his group) to accurately recognize the components of the 

implication statement to be proved, and to accurately word and manipulate these using 

their logical knowledge. In the third Zoren demonstrates  that early on in the semester, he 

believed recognizing the logical form of a conjecture and breaking it down into its 

symbolic components (P and Q) and switching and negating them was of equal 

intellectual merit as writing the actual proof. It would have perhaps been more fruitful for 

the entire group to engage in this exercise of restating the conditional claim in its 

contrapositive form with Zoren. So, when proving indirectly, students can and do 

recognize the logical components of mathematical conjectures.  

 While Zoren’s quote above does highlight the theme (Theme 1), this quote came 

from an illuminating exchange as students were discussing how to prove the conjecture, 

“If L and M are odd integers, then L*M is an odd integer.” In this exchange, students 

have a detailed discussion about how they may go about proving this conjecture 

indirectly. This is shown in Table 2.5 below.  
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Table 2.5 

Students’ extended discussion of logically manipulating the conjecture 

Speaker 

(Pseudonym) Student Quote / Exchange  

Zoren 

I mean, it's right. Everything is good about this proof. And I hear[d] her say … 

we're going to prove by contrapositive... She said it like in the beginning. But I 

mean, that's what she wants us to do. Like, not what she wants us [to do]. 

Maybe it's easier or something because the sentence said, “if L and M are odd, 

then L times M is odd.” So if we say...we tried to prove it by contrapositive, 

then we can say if L times N is even, then L and N is even, too. So they're both 

even 

John 

So. All right. Yeah. That works too. Let's do it that way. That sounds like a 

good... 

Zoren 

2K times 2K is like 4K. 4K is 2 times 2K. So 2 times the definition of even 

numbers is gonna give us even numbers 

John 

Yeah. OK. And I like that one better. That seems a lot simpler than what 

happened to it, because [my proof] would require me to prove that an even 

number multiplied by any number was even. And it also required me to prove 

that an even number plus an even number is an even number. So let's do it your 

way. I think mine's a little too complicated. In a sense of, like, you have to 

prove other stuff inside of my own proof. 

... ... 

John So, so, do you want to go ahead and write down the contrapositive Ibraham? 

Zoren 

Yeah, if you can write the proof, I will write the implication. OK. So I'm 

writing the implication and you can go ahead and write that proof. 

John 

Sounds good. I'm going to go ahead and do it and then I might copy and paste it 

into the document. So we're saying that both L and M are now even in this case 

for the contrapositive?. 

Zoren Mmmhmm 

John 

Sounds good….Oh did you see.. if L is odd and M is odd apply DeMorgan's 

Laws. That what she [said] 

Zoren uhh  

John I mean, what we're doing is not bad. 

Zoren Yeah. We just have L or M. 
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John Do you want me to do it again with DeMorgans Laws? 

Zoren 

Yeah, and I did it with the DeMorgan law. So basically just say L or M instead 

of L 

John oh okay 

Zoren and M 

John OK, let me do it that way, then. Cause I just did the contrapositive. So if L. 

Zoren Times... times M is even number then L or M is even number 

John Perfect. So L is equal to 2K... M is equal to 2K. So 

Zoren 

So do we have to move like 3 cases? in this case, since L or M has to be an 

even number, so maybe we have [to] prove if they're both even. Or one. I mean, 

two cases or one [is] even. 

 

 Most noteworthy about this exchange is the length of the conversation that these 

students have on how to prove the result using its contrapositive statement. These 

students understand that in order to prove their original result using contraposition 

requires a precise manipulation of symbols and language. Encouragingly, John mentions 

that they need to use DeMorgan’s Laws in order to negate the original conjecture (with 

an ‘and’ statement) to an ‘or’ statement. This detailed and lengthy exchange fully 

demonstrates the first theme, that before students prove indirectly, they recognize that 

they must first manipulate the conjecture using their knowledge of logic. 

Theme 2. When proving indirectly, students offload the work to the symbols (syntax) 

when manipulating the conjecture. 

 Another theme which presented itself as students were discussing the conjecture 

was that they offloaded the work of manipulating the conjecture to the symbols when 

using indirect modes of proof. Table 2.6 presents an emblematic theme that students, 

more so in the beginning of the term, utilize their logical knowledge in tandem with 

rephrasing the proof or conjecture.  
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Table 2.6 

Anthony & Greg’s Conversation on Negating an Implication (If p is a rational number 

and q is an irrational number, then p-q is an irrational number). 

Speaker 

(Pseudonym) Student Quote 

Greg  Is a negation of an implication an implication itself? 

Anthony  I don't think it is, is it? Because it's A and not B?  

Greg  Yeah. How do you word that? 

 

In this exchange, Greg and Anthony are discussing how to negate the conjecture (If p is a 

rational number and q is an irrational number, then p-q is an irrational number) to prove it 

by contradiction. Indeed, to prove a statement by contradiction, providing yourself with 

the correct assumptions is crucial to having a valid proof. The dialogue show that these 

students need to look back at the definition of implication (A→B) to confirm its negation 

has the equivalent form (A and ~B).  

In another excerpt students were proving the claim “If L and M are odd integers, 

then L * M is an odd integer.” Their exchange is highlighted in Table 2.7. 

Table 2.7 

Zoren & John’s use of logical rules to negate a statement (If L and M are odd integers, 

then L * M is an odd integer). 

Speaker 

(Pseudonym)  Student Quote / Exchange 

John 

So we're saying that both L and M are now even in this case for the 

contrapositive? 

Zoren Mmmhmm 
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John 

Sounds good. Oh did you see… if L is odd and M is odd apply 

DeMorgan's Laws.  

Zoren I mean, what we're doing is not bad. 

John Yeah. We just have L or M. 

Zoren Do you want me to do it again with DeMorgans Laws? 

 

Again in this student vignette, these students offload the work of restating the conjecture 

by first breaking the statement down into symbols and using their understanding of the 

contrapositive and ability to apply DeMorgan’s Law when negating an “and” statement. 

This, again, is encouraging that students indeed make these connections between logic 

and proof. One thing which this group of students struggled with, though, was moving 

back from their symbolized argument form into English. John wondered whether “Not 

Odd” could be expressed as even. The students eventually came to the conclusion that 

they were equivalent, but it is perhaps worthwhile in instruction to have pointed 

conversations about translating conjectures from symbols back into mathematical 

language. 

 An extended example of Theme 2 is further exemplified below in Table 2.8. In 

this excerpt the students are proving the claim, “If 𝐴 ⊆ 𝐵, then 𝐴𝐶⊆ 𝐵𝐶.” 

Table 2.8 

Students’ extended discussion on offloading the work to syntax 

 

Speaker 

(Pseudonym) Student Quote / Exchange 

Greg 

So I'm pretty sure you’re just saying [that] statement and then 

just being, like, because it's the contrapositive... Is that. No, it 

can't be it. Cause that's just way too simple. 
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Anthony It's way too easy 

Anthony 

If we can prove that ~A is B complimentary, then yeah. I don't 

see a problem with it. They're... sorry, not B is B 

complimentary. If we can prove that I'm pretty sure we're 

golden. 

Taylor 

No we had the if...the second part was flipped, like if it said, 

then the complement of A is a subset of complement of B, that 

would be false though right? 

Greg Yeah 

Taylor Okay 

Anthony 

Oh, wait. Can we do a contrapositive with...? Is that a logical 

statement? 

Greg 

Yeah. Both of these are logical statements. And If we assume 

the first logical statement to be true. Cause that's like how you 

prove an if-then. It's like two “if-thens” inside of a bigger “if-

then” thing. So if you assume the first logical statement to be 

true, then its contrapositive would also be true. And that second 

logical statement is the contrapositive. Right? 

Taylor Oh wait 

Anthony Oh, well, that sounds right. 

Taylor 

Do we need to swap A and B on the graph or did you already 

say that? 

Anthony No, I did that correctly. You're good. 

Taylor Wait A is .. 

Anthony A is a subset of B 

Taylor 

Oh ok I got it. I don't know why I keep thinking it's the other 

way around 

Anthony 

I know right, It's confusing. But anyway, I think Will is pretty 

much got it done. We just need to find a way to write it out and 

prove that A. Or not A is a complement of not B. 

Taylor 

Ok. Then how would we show the graph from the complement 

of B and the complement of A. Would it be the same as that? 

But with A and B swapped? 

Greg I don't think you need a graph 

Anthony 

Uh no I just think you'd have to describe that A-not is every A 

is not. And just say that B... 

Taylor Well then wouldn't that be false then. 
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Again, these students spend a considerable amount of time discussing how to 

symbolically relate the conjecture and its logical components. Although they switch 

between semantic and syntactic reasoning (i.e., discussing logical manipulations versus 

discussing their drawn pictures), these students recognize the underlying logical structure 

of the proof and claim. The group also seems to understand that this logical structure of 

the claim lends itself to be proved indirectly. Indeed, when Greg realizes and expresses 

that this claim and its contrapositive are related by their nested “if-thens” is encouraging, 

as recognizing the logical structure is an important aspect of proving. 

Discussion Surrounding the Proof or Argument 

● Theme 3. Students recognize when they are limited or are in this state of Stuck 

The main theme that I identified as students were discussing how to write up their proofs 

was that they recognized when they were stuck. Again, as I have described above, I wish 

to highlight how this is an asset that we want students to possess. Indeed, they do realize 

when they lack a technical handle. In one exchange, a conversation continued from Table 

2.6 about negating the conjecture to be proved by contradiction. Anthony and Greg have 

the exchange shown in Table 2.9. 

Table 2.9 

Anthony & Greg discuss how to word the negation  

Speaker 

(Pseudonym)  Student Quote / Exchange 

Anthony So, the negation of “if A then B” is equivalent to “A and not B.” 

Greg 

Yeah, but how do you say that like, English words with this, in this 

specific scenario? 
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In this later discussion, although the students have successfully negated the implication, 

Greg recognizes that he does not have the language to reword the conjecture in its new 

logical form. So, although students can successfully utilize their logical knowledge, they 

may need some guidance into how to re-word these types of statements. As I mentioned 

above, a different group of students also had a brief conversation as to whether “Not 

Odd” was the same as Even. These are potentially related issues with students 

misunderstanding the connection between the conditional and indirect proof methods 

proving their original conjecture. 

 In another episode, students are proving the conjecture “An integer is even if and 

only if its square is even.” Promisingly, the students recognize this statement as a 

biconditional that must be separated into its “if” and “only if” parts, demonstrating their 

technical handle. As they attempt to prove one direction, the students have the exchange 

shown in Table 2.8 below. 

Table 2.10 

Eliza & Dennis recognize their algebraic limitations  

Speaker 

(Pseudonym) Student Quote 

Eliza 

I have the first part and not the, um, prove that “if the square of integer 

is even then integer is even.” 

Dennis 

I think the first thing that we'll need to do is break it up into, like 

individual implication statements. 

Eliza 

[The issue] is that you get to the point where you have... If the square 

of some integer has to... it's even right? So we let it equal 2K, where K 

is an integer. Right? You end up with this issue where you have the 

square root of two times the square root of K. 
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Again, it is important that these students were successfully able to recognize and dissect 

the biconditional statement into its two components. Eliza recognizes that when proving 

one component directly, they run into an issue with the square root of k. Here it is also 

crucial that she recognize this, and not continue on with her proof. She (and her group) 

must recognize that this algebraic manipulation gets them stuck and they must prove this 

claim indirectly.  

 Finally, when proving a result directly about Sets and Functions, “If 𝐴 ⊆ 𝐵 and 𝐵 

⊆ 𝐶, then 𝐴 ⊆ 𝐶”, students expressed their conceptual insight into the conjecture but 

recognized that this insight did not suffice as proof. This is highlighted below in Table 

2.11. 

Table 2.11 

Eliza recognizes she is stuck with wording her conceptual insight  

Speaker 

(Pseudonym) Student Quote 

Eliza 

So, like, logically like if you... because you can represent this visually, 

it's very easy to understand that if A is a subset of B and B is a subset of 

C, then there is no other. There's no other conclusion to draw than A is a 

subset of C. You can draw it out visually. It's very easy to understand. 

It's just that I think that is not proof. 

 

Here Eliza expresses her insight and the key idea behind this proof through a visual aid. 

She describes the conclusion as the only one you can draw given this semantic argument. 

Importantly, she recognizes that though this result is visually “obvious” her visual aids 

does not suffice as proof, moreover, she recognizes that she does not quite possess the 

language to translate this picture into a proof.  
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 So, again, students are adept in recognizing their lack of technical handle, or when 

they are stuck when proving. It is also important to recognize that students (and 

mathematicians) get stuck on different aspects of proof. As I describe above, students 

recognize they were stuck in several contexts, such as translating statements into a new 

logical structure (i.e., to prove indirectly), and also get stuck while looking for a key idea 

within a proof.  

Discussion & Limitations 

 Recall that this study sought to describe the connections that students make 

between logic and the techniques of proof, and while doing so I attempted to describe the 

assets that students possess or the learning that takes place in ITP courses. I found three 

main themes across the group-proving episodes which are promising results for 

demonstrating student learning. Before I describe those themes and their benefits, another 

addition to the field that this paper makes is the modification of Sandefur and colleagues’ 

(2013) MGA Framework. It was fruitful to have this framework in mind as I first 

analyzed my data, but the frame was too loose in its categories for my purpose. However, 

it was viewing my data through this lens which allowed me to see that students were 

indeed having distinct conversations about the conjecture, and then about writing the 

proof. Thus, the framework was modified from the data from Manipulation to Discussion 

around the Claim, and Getting a Sense Of to the Discussion surrounding the Proof. 

Analyzing students’ discussions in this way allowed me to identify the three themes 

within these categories.  



37 
 

The first two themes were from the (M) or Discussion Surrounding the Claim 

phase. These themes are important enough to be offset as bullet items for greater clarity 

and emphasis. 

● Theme 1: Students understand that before they can prove a result indirectly, they 

must first accurately manipulate the conjecture using their knowledge of logic.  

● Theme 2. When proving indirectly, students offload the work to the symbols 

(syntax) when manipulating the conjecture. 

● Theme 3. Students recognize when they are limited or are in this state of Stuck 

These results are promising for many reasons. First, learning to write proofs is a complex 

process. So, the fact that students utilized their syntactic knowledge to ease the burden of 

proving is not surprising, and should be encouraged. This result is consistent with other 

literature and recommendations for students learning to write (indirect) proofs (Brown, 

2018). Similarly, it is critical that students recognize the underlying logical structure of 

mathematical conjectures, so that they can then apply their knowledge of logic to 

translate the conjecture and write the proof. 

Indeed, these students had spent the previous several class periods learning about 

the truth-tables of the various logical connectives and specifically learning about the 

conditional through various tasks (e.g, Wason, 1968). Negating a compound sentence is 

often not trivial. These findings are important as the intent of this course and other ITP 

courses is to allow students to make organic connections between their knowledge of 

logic (learned early on in the semester) and their knowledge of the techniques of proof 

(learned later in the semester), and indeed they did make these connections. So, the 

notion that they can recognize the underlying logical structure of mathematics is 
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promising; this course seemed to alleviate some predictable difficulties to novices in 

proof writing.  

The third theme I identified was that students were aware when they were stuck in 

writing a proof. There are two ways that students expressed being stuck on their proof or 

lacking a technical handle to progress in their proof. . First, students expressed that at 

times they lacked the mathematical language to describe their conceptual insight into a 

conjecture. That is, they had a picture, or a key idea behind the proof but could not 

articulate this insight in a mathematically rigorous way (i.e., a proof). Second, they 

recognized that they were stuck in translating their original conjecture, often in the form 

of a conditional, to be proved indirectly. Although they could often manipulate the 

logical structure correctly, they recognized they were stuck in translating this into an 

English sentence or statement. Again, I highlight as an asset that students do not blindly 

push symbols or write illogical conclusions. Recognizing when you are limited in 

mathematics is essential because you must be able to know when you have utilized all of 

your available resources, which is particularly relevant to proof writing. Instructors of 

proof-based mathematics courses should encourage students to begin to feel comfortable 

in this state of being stuck, as Andrew Wiles mentioned and is quoted above. 

This study makes two significant contributions to the field. First, in these data I 

have shown that students can and do make connections between logic and the techniques 

of proof in an ITP course. This is significant as this is (at least partially) the intent of the 

course. These data suggest that students understand that proving requires some 

knowledge of and utilization of their understanding of logic. Second, students recognize 

when they are limited (or stuck) when writing a proof. Many studies on students’ learning 
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of proof describe what they cannot do. In this study I was able to show that students 

recognize when they need more sophisticated language or theoretical tools to prove their 

result. Recognizing this limitation is indeed a form of learning, especially as these 

students are beginning to learn the mechanics of writing mathematical proofs. 

This study was not without limitations. First, this study took place during the Fall 

of 2020, the first full-time semester for many universities completely online due to 

Covid-19. This came with a number of challenges which are worth mentioning. First, 

research on sociomathematical norms (Yackel & Cobb, 1996) are all relevant when 

dealing with in-person learning. To date, there have been few studies on how online 

learning affects mathematics group work, particularly in advanced-mathematics courses. 

This challenge brought about a unique feature to this course, namely that students were 

working collaboratively in a Google Doc as opposed to working on a whiteboard or chart 

paper. This allowed students to modify their group-proofs in real time, line by line, and 

perhaps use language which they would not normally write down on paper. A 

delimitation of this study was that recording both the students' discussion and their 

modifications to their proof in real-time presented too great a challenge. As such, I was 

only able to collect their final written product, and unable to see what changes they may 

have made throughout their conversation. Finally, another delimitation of this study was I 

chose not to interview any students and ask what they meant regarding particular 

exchanges. As such, I had to infer meaning from conversations and their final typed 

product which is perhaps not aligned with the speaker’s intended meaning.  

Conclusions & Future Directions 
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This study sought to find the connections that students make between logic and 

proof. Indeed, students in this ITP course did make rich connections between the logic 

content portion and proof writing portion of these courses. As I have described above, 

students were aware of how to use logic to their advantage when writing proofs and 

making sense of arguments. Future research would benefit from exploring how students 

can learn to manipulate these symbols properly and then translate this symbolic statement 

back into an English mathematical statement. Students should also be encouraged to 

explicitly use their syntactic or symbolic knowledge to help them in writing proofs. 

Another finding was that students recognized their limitations in proof writing. 

Further studies should investigate what sorts of things students rely on or fall back to 

when they are stuck in proof writing. As a practitioner of proof-based mathematics 

courses, I would like my students to productively rely on their rich background in 

mathematics and mathematical knowledge. As an experienced prover and doer of 

mathematics, I know that getting unstuck in a proof can be due to finding a key idea 

through examples or pictures (e.g., semantic reasoning) as well as making logical 

deductions and manipulating symbols (e.g., syntactic reasoning). Future studies should 

investigate what types of reasoning students use when they encounter difficulties when 

proving, and whether they utilize semantic or syntactic reasoning. Similarly, students 

seem to get stuck on different types of actions or mathematical objects when proving. 

Future studies should parse out the different ways that students recognize when they 

cannot progress in their proofs.  
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CHAPTER 3 STUDENTS’ STRUGGLES IN WRITING PROOFS BY MATHEMATICAL 

INDUCTION 

Introduction 

 

 Students studying university mathematics have demonstrated certain difficulties when 

transitioning from their computation-based mathematics courses (e.g., Calculus) to their upper-

level, proof-based, mathematics courses (Moore, 1994; Harel & Sowder, 2007; Stylianides et al., 

2017). In particular, students have shown that there are unique difficulties to adopting and 

utilizing various techniques of proof (e.g., proof by contradiction, proof by contrapositive) in 

their upper-level mathematics courses (Zazkis & Mills, 2017). Amongst these techniques of 

proof which are troublesome to students is proof by mathematical induction (Palla et al,. 2012; 

Norton & Arnold, 2019; Stylianides et al., 2007; 2016). 

 Mathematical Induction (MI) plays an important role in proving results in discrete 

mathematics and number theory, and is one proof method which students often learn for the first 

time in Introduction to Proof courses. Hammock (2013) in his textbook Book of Proof, describes 

MI in the following way (p.154): 

 

Proposition The statements S_1, S_2, S_3, … are all true. 

Proof. (Induction) 

(1) Prove that the first statement S_1 is true. 

(2) Given any integer k ≥1, prove that the statement S_k → S_k+1 is true. 

It follows by mathematical induction that every S_n is true. 
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Often along with this definition, students are shown the following diagram (Figure 3.1) with the 

accompanying domino analogy. 

Figure 3.1 

Hammack’s Domino Figure and Analogy 

 

 Some of the confusion students face around induction is that the inductive method is a 

heuristic method which produces a generalizable claim from a finite set of examples, whereas 

mathematical induction is a rigorous form of deductive proof (Ernest, 1984, p. 181). There are 

many other potential reasons for students’ confusion on the method of mathematical induction. 

Indeed, the Mathematical Association of America (Newman, 1958) noted that the form of 

mathematical induction is difficult to understand. To this end, researchers have shown that 
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undergraduate students demonstrate a lack of understanding about the logical form of 

mathematical induction and see assuming the inductive hypothesis as a form of circular 

reasoning (Palla et al., 2012). 

 I first started thinking about the teaching and learning of mathematical induction as a 

doctoral student several years ago while engaging in a teaching internship with an experienced 

instructor of the university’s ITP course. During this time, we co-designed and co-implemented a 

task based on Stylianides et al. (2007) study where students were asked to evaluate two sample 

induction arguments (one valid, one invalid) and describe whether or not these arguments proved 

the claims. This activity (in Appendix A) was intended to provide students with an opportunity to 

make sense of the definition of mathematical induction and connect this definition to the format 

of induction prior to writing induction proofs themselves. In this way, students could unpack the 

definition of induction prior to engaging in proofs using mathematical induction. Other scholars 

(e.g., Norton & Arnold, 2019; Harel, 2001) have recommended other tasks to introduce induction 

to students. The students under study were introduced to induction using a more standard 

approach. So, this study seeks the answer to the following research question:  

What are the struggles that students in an Introduction to Proofs course face as 

they learn how to prove results using mathematical induction? 

Literature Review 

 The main sources of difficulty for students learning mathematical induction are the 

technical notation and the processes of the inductive step P(n) →  P(n+1) (Carotenuto et al., 

2018; Palla et al., 2012). In a large quantitative study, Palla et al. (2012) found that secondary 

students hold many misconceptions regarding the form and function of mathematical induction. 

Only a few students recognized the density of the Real numbers being an obstacle in utilizing 
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mathematical induction, and the majority of students faced difficulty in deriving P(n+1) from 

P(n) (Palla et al., 2012). 

 Ed Dubinsky (1986; 1989) laid the foundation for what is largely known about students’ 

understanding of mathematical induction. Indeed, he mentioned that “if you question 

[undergraduate] students - … although almost all of them will have heard of induction, not many 

of them will be able to say anything intelligent about what it is” (Dubinsky, 1986, p. 305). Harel 

(2001) built upon this work and utilizing a novel instructional approach (i.e., promoting quasi-

induction) found that students made more rich connections to the definition of induction when 

using this instructional technique versus “hastily introduc[ing] the definition” (Brown, 2008, p. 

1). Harel described, “In quasi-induction the conviction that P(n) is true for any given natural 

number n stems from one’s ability to imagine starting from P(1) and going through the inference 

steps, P(1) → P(2), P(2) → P(3), … , P(n-1) → P(n)” (Harel, 2001, p.26). This does not mean 

that one actually runs through many steps, but that he or she realizes that in principle this can be 

done for any given natural number n. Indeed, Harel (2001) utilized the framework which he and 

Sowder (Harel & Sowder, 1997) identified as proof schemes, and that students who learned 

induction via this novel teaching strategy of promoting quasi-induction have a transformational 

proof scheme with mathematical induction. Harel (2001) also found that the sequencing of the 

tasks impacted students' adoption of induction as a transformational proof scheme. Indeed, it 

seems that authors of proof-based textbooks sequence tasks based on perceived difficulty and not 

the intellectual need of the students (Harel, 2001). When comparing university students’ and 6th 

grade students’ learning of induction via pattern tasks, Brown (2008) found that the nature of the 

task had an impact on their success in proving their claims, and that “the development of 

mathematical induction as a means to solve a class of problems necessarily entails shift in 



45 
 

students’ ways of knowing infinite processes – in particular, their ways of thinking about 

iterative processes and ways of understanding implications” (Brown, 2008, p. 17). More recent 

work by Arnold and Norton (2019) have demonstrated similarly promising results that quasi-

induction is a promising instructional technique to alleviate some of the difficulties of university 

students learning mathematical induction, though many cognitive challenges remain.  

 Undergraduate university students in an ITP course recognized mathematical induction as 

an appropriate technique to prove a number theoretic conjecture (Sandefur et al., 2016). In 

Sandefur and colleagues’ study students were asked to find any patterns that arose when dividing 

5𝑛 by 3, with the expectation that this pattern would be accompanied by a proof as this was an 

ITP course (Sandefur et al., 2016). Sandefur and colleagues (2016) found that giving students the 

opportunity to first explore a conjecture which lent itself to be proved by induction allowed the 

students to understand the form and function of induction more robustly. This is consistent with 

suggestions by Harel (2001) and Norton and Arnold (2019) on promoting quasi-induction as a 

productive method for introducing induction. These findings are promising as Smith (2006) 

found that students often dislike the method of mathematical induction due to not understanding 

how or why the process works. These findings suggest that students lack conceptual insight as it 

pertains to mathematical induction, but that exploration of conjectures which lend themselves to 

be proved by induction can aid in their understanding.  

Theoretical Perspective 

To situate this study and theoretically frame students’ writing of proofs by 

mathematical induction, I use an adapted framework from Stylianides and colleagues 

(2013), which they describe as MGA - Manipulating - Getting a Sense Of - Articulating. 

The components of this framework also have subcomponents that translate to the adapted 
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frame which I describe in the paragraphs below. Sandefur and colleagues (2013) sought 

to understand how students productively use examples during the proving process, 

whereas this study seeks to discover how students learn to compose proofs by induction. 

Thus, the framework proposed by Sandefur et al. (2013) requires some modifications to 

better frame this activity of composing proofs by induction.  

First, Manipulation “means using familiar mathematical objects as worked 

examples, including acting with the symbols, examples, and representations, for a 

specific purpose” (Sandefur et al., 2013, p. 327). Sandefur and colleague’s (2013) study, 

again, was focused on how students’ example use led to successful proof production. I 

have observed through initial rounds of coding that students have distinct discussions 

about the conjecture and whether or not it is true and how they might prove it, and 

distinct discussions about the specifics of their proof (i.e., they discuss the conjecture and 

the proof separately). To make better use of Sandefur and colleagues (2013) framework, I 

modify the Manipulation category to refer to when students are engaged in Discussion 

Surrounding the Claim. Within this category, Sandefur and colleagues describe this 

component as having two distinct parts: semantic and syntactic reasoning (Weber & 

Alcock, 2004). Semantic reasoning refers to when individuals use informal reasoning, 

such as examples, charts, or diagrams (cite). Syntactic reasoning refers to when an 

individual reasons using more formal means, such as logical deductions or algebraic 

manipulations (Weber & Alcock, 2004).  

Second, Sandefur et al. (2013) indicates the intent of Manipulation is to “get-a-

sense-of (G) some underlying structure, pattern, or relationship by experiencing the 

effects of various actions and forming conjectures” (Sandefur et al., 2013, p. 327). As I 
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have described above, early rounds of coding indicated that students were having 

separate conversations about the truth of the conjecture and the proof of the conjecture. 

Thus, instead of Getting-a-Sense-Of - I refer to when students are Discussing the 

Argument, either in its form or in specific details within the proof. Within this category 

Sandefur et al. (2013) refer to this portion of argumentation as having two distinct 

components: Conceptual Insight and Technical Handle (Sandefur et al., 2013). 

Conceptual insight refers to when one searches for a key idea (Raman, 2003) within a 

proof, as to why the claim is true. Technical Handle refers to when one uses algebraic 

manipulations, understands proof methods, and other more ‘technical’ forms of 

argumentation.  

Finally, for Articulating, Sandefur and colleagues (2013) describe how one 

articulates or describes their understanding of the two previous components. Articulation, 

as described by Sandefur et al (2013) is the manifestation of students' technical handle 

and conceptual insight. This component remains relatively unchanged, with the exception 

of including student groups' final written product as a means of analysis.  

 Thus, this modified framework allowed me to hone in on important parts of 

student conversations surrounding their group proofs. First, I was able to discern whether 

or not students were discussing the conjecture or the claim itself. If the student were 

discussing the claim, I could then describe this discussion in terms of semantic and 

syntactic reasoning, whether they were using examples or less formal means or using 

logic and making deductions. If it was the case that their discussion was around the proof 

or their argument, I could then apply this framework to discern whether or not this 
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discussion was around the technical handle of writing up the proof, or if they were 

seeking some conceptual insight or key idea (Raman, 2003).  

Methodology 

Participants & Setting 

 This study took place in the Fall of 2020, at a large public state university, during the first 

full time semester entirely online via Zoom due to Covid-19 safety protocols. Overall, 13 

students elected to participate in the study. Of the 13 students, 3 were female and the remaining 

were male, and all but two (male) students were white. All students in the study were either 

majoring or minoring in mathematics at the university.  

 The instructor of this course, an expert ITP course instructor, sought to engage students in 

many group-learning exercises, particularly group-proving. While the structure of the course 

generally followed the Standard ITP sequence (David & Zazkis, 2020), it also had a daily 

structure which lent itself to have students engaging in sensemaking exercises with their peers.  

Data Collection & Procedures 

The data from this study came from my dissertation study as I followed 13 student 

participants throughout a Standard (David & Zazkis, 2020) ITP course as they engaged in typical 

course exercises, such as discussing definitions, analyzing arguments, and writing group-proofs. 

Students in this study were introduced to the definition and method of mathematical induction 

after they had first had time to make sense of sample proofs by induction modified from 

Stylianides et al. (2007) study on preservice teachers’ understanding of mathematical induction. 

After having had an opportunity to unpack the definition of induction alongside these sample 

proofs, students then spent the following two class periods engaging in group-proving exercises 

of conjectures which lent themselves to be proved by induction.The data gathered here from 
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these two class periods is used to provide insight into how students make sense of MI as they 

write these types of proofs for the first time.  

Context 

 As I mentioned above, students in this study learned the method of induction separately 

from the other techniques of proof, with an instructional routine modified from the task 

presented to students in Stylianides and colleagues’ (2007) study on preservice mathematics 

teachers' understanding of induction. The data from the current study stemmed from the two 

class days after this adaptation of Stylianides et al. (2007) instructional routine. During these two 

class days, students engaged in group-proving exercises on conjectures that students had been 

asked to informally explore for homework before the class sessions. During the two days of 

practicing proving with induction in groups, students worked for approximately 30 minutes each 

day and were expected to have some mathematical argument that their group could defend to the 

class.  

Data Analysis 

 The data for this study was gathered as a part of my dissertation.  Students engaged in 

group-proofs in conjectures which lent themselves to be proved by MI. With 3 research-groups, 

over 2 days of the course, I analyzed 6 episodes of students engaging in group-proofs with MI. 

Each group-proving session was transcribed for further analysis, so that I could apply the MGA 

framework as an analytical tool to describe students’ learning how to write proofs with MI. Each 

transcription was separated by talk-turn, that is each time the speaker changed. I then applied the 

proposed MGA framework to each talk turn. First, I decided whether the student/speaker was 

referring to discussing the claim (M) or discussing the proof or argument of the claim (G). I then 

decided which portion of the talk-turn fit into the subcategories described above as components 
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of either (M) with subcomponents of semantic and syntactic reasoning, and (G) with 

subcomponents of Technical Handle and Conceptual Insight. By doing this, I was able to hone in 

on portions of students’ speech where they discussed the logistical aspects of proving results 

with induction, and when they were convincing themselves of the truth of the claim. This 

allowed me to describe how students learn to adopt the mode of induction as a viable method of 

proof. 

 As an example, during the study a group of students were proving the claim, “If n is a 

natural number, then n!≥ 2𝑛−1
.” During the group-proving exercise a student, Brad, stated the 

following: 

So I think we have. I just want to settle a couple cases. Like 1! is greater than or equal to 20= 1. 2! 

is gonna be 2, [which] is greater than or equal to 2. So at least settling those and then. So if we 

assume the case is, well, we'll write out the base case or whatever. I'd like to do a couple of them, 

actually, but then if we assume that n! is greater than or equal to 2𝑛−1, then that implies that        (n 

+ 1)! is greater than or equal to 2𝑛. And we can show that's true because all we're doing is 

multiplying one side by (n + 1) and one side by 2. And in every one of these cases (n + 1) is 

greater than or equal to 2. 

The specific codes assigned to Brad’s talk-turn are laid out below in Table 3.1. In the 

above from Brad, I only coded a semantic component (within the Discourse Surrounding 

the Claim) and technical handle (within the Discourse Surrounding the Proof). For 

clarity, I provide sample codes from other group discussions within the syntactic 

component and conceptual insight component as a sample codebook in Table 3.1 Note 

that throughout the 6 episodes, no portions of students’ discussion were coded as 

syntactic when discussing the claim. For further clarity of what I describe as syntactic 

reasoning when discussing the conjecture, I provide a sample quote from students as they 
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proved the claim “If p is a rational number and q is an irrational number, then p-q is an 

irrational number” using proof by contradiction (an indirect proof method). 

Table 3.1 

Coding of Brad’s talk-turn with modified MGA Framework and supplemental codes 

Discourse Surrounding the Claim (M) Discourse Surrounding the Argument or Proof (G) 

Semantic Syntactic Conceptual Insight Technical Handle 

 I just want to 

settle a couple 

cases. Like 1! Is 

greater than or 

equal to 20= 1.  

2! is gonna be 2, 

[which] is greater 

than or  equal to 

2. 

Is a negation of an 

implication an implication 

itself? 

 

 

 

 

 

 

 

 

** No student discussion 

was coded for syntactic 

reasoning while 

discussing the conjecture 

And then once it's 4 then 

this case is correct for 

what you were talking 

about with the exponential 

take overtakes the linear 

function. 

[T]hen if we 

assume that n! Is 

greater than or 

equal to 2𝑛−1, 

then that implies 

that (n + 1)! Is 

greater than or 

equal to 2𝑛. And 

we can show 

that's true 

because all we're 

doing is 

multiplying one 

side by (n + 1) 

and one side by 2 

 

Thus, rather than coding one individual talk-turn with binary codes (i.e., 0 for a lack of a 

code or 1 for a talk-turn possessing a code), I was able to pinpoint the portions of a 

student's speech that were in various categories. This allowed me to then have my 

research team (a fellow graduate student, and my dissertation advisor and instructor of 

the course under study) discuss the various codes I had given to each of the talk-turns in 

the transcript. Then, we discussed as a team the themes I identified across the 6 episodes, 

which my coding schema brought about.  

 The lines between analytic framing and results can be somewhat blurry in 

qualitative research (Sandefur et al., 2013). To this end, as I was analyzing my data, I 



52 
 

noticed that students voiced when they lacked a technical handle when proving. Thus, 

one coding term that became useful outside of the MGA framework is the term Stuck. 

Indeed, it is a useful skill to know when one is stuck in proof writing. Andrew Wiles, 

who famously proved Fermat’s Last Theorem said later in his career about the matter,  

“What you have to handle when you start doing mathematics … is accepting this state of 

being stuck” (Wiles, 2016, 1:00). So, I use this term to describe when students 

demonstrate an awareness that they are stuck while proving.  

Results 

 To highlight how my theoretical and analytic frame aided in my analysis, I present the 

result of this study in two sections: first around students’ Discourse Surrounding the Claim or 

conjecture (originally M from Sandefur’s MGA framework) and second around students’ 

Discussion Surrounding the Argument (originally G from Sandefur’s MGA framework). Finally, 

I demonstrate when students are stuck when writing proofs with MI.  

Students’ Discussing the Claim (M) 

 As students were engaging in group proof exercises on induction, the majority of their 

discussion was centered around composing the proof or the discourse surrounding the argument 

(i.e., G). Groups spent little time discussing the conjecture, convincing themselves and the group 

whether or not the claim was true, or any technical aspects of the initial proving process.  These 

students largely were aware that their proofs should be done using the method of induction. If 

they had any discussion regarding the claim it was related to how to restate the conjecture in a 

more operable way or to put it into words. For instance, series ∑𝑛
𝑖=1 𝑖 can be represented 

operably as 1 + 2 + … + n, which can be restated in words as the sum of the first n integers. 

These types of discussions were rare, but useful as they summarized their claims.  
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 For instance, in the vignette I described above in my data analysis description, the 

student, Brad, restated the claim verbally as, “N factorial is greater than or equal to 2
𝑁−1

.” This 

verbal description was, perhaps, helpful in proving their claim by stating the key idea (Raman, 

2003) that factorials grow faster than exponentials. 

Theme 1: Students may not recognize the necessity of the base case 

 The main theme from students discussing the conjecture or claim (M) was their confusion 

on the necessity of the base case and its significance in the proving process. As researchers have 

described previously, students have some difficulty in understanding the need for and usefulness 

of the base case. For instance, one group was proving the claim, “If n is a natural number, then 

the sum of the first n even numbers is n*(n+1).” In the beginning of their group’s discussion, 

John stated, “I guess the first thing is to plug in for 1, then plug in for 2, and then do 1 through 5 

and see what we get. And then keep going.” Indeed, some students struggle with understanding 

how the base case helps them to prove the result. As John stated, they need to check case after 

case, “and then keep going.” He does not recognize that the first case is indeed the base case. On 

a positive note, this is potentially an important sense-making moment for John, in understanding 

that proving results by induction is proving an infinite sequence of statements and in becoming 

personally convinced of the validity of the claim.  

In another group-proving episode, students were proving the claim, “If n is a natural 

number, then 𝑛! ≥  2𝑛−1.” Again, early on in this group proving episode one student, Brad, 

stated to the group, 

 I just want to settle a couple cases. Like 1! is greater than or equal to 2
0
= 1. 2! is 

gonna be 2, [which] is greater than or equal to 2. So at least settling those and 
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then. So if we assume the case is, well, we'll write out the base case or whatever. 

I'd like to do a couple of them 

To Brad, the base case serves two purposes, to satisfy the rules of induction but also to convince 

himself of the claim. This is not problematic, but we want students to understand that the base 

case is the first statement of an infinite sequence of statements. There seemed to be some 

confusion among students about how many cases were necessary to state in a proof by MI to 

convince themselves and convince the potential reader of their proofs.  

Students Discussing the Proof (G) 

Theme 2: Students face difficulties in stating the inductive hypothesis and proving the inductive 

step 

 Research on students’ learning of induction has shown that the largest obstacle to their 

understanding the method and completing proofs is their struggle with the inductive hypothesis 

(Dubinsky, 1989; Harel, 2001; Arnold & Norton, 2019). An example of this issue is highlighted 

in the following exchange shown in Table 3.2. This conversation is a continuation of students 

discussing the claim, “If n is a natural number, then the sum of the first n even numbers is 

n*(n+1).”  

Table 3.2 

Students discuss the inductive hypothesis  

Speaker 

(Pseudonym) Student Quote / Exchange 

John 

So N is equal to K. Do we have to do K plus one or K minus one? It's K minus 

one right?  

Dennis 

Yeah so it’s K + 1. And since it’s an even number we would have to do I think 

2K + 2. I think?  

 ... 
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John 

So we set that in there. I'd say, therefore, if the conjecture holds equals N= K, 

then it holds for N equals K plus one. Can we say that automatically? 

 

First, John demonstrates his lack of understanding about the significance of the inductive 

hypothesis. From this quote I notice that he does not understand the domino analogy and the 

iterative nature of the proofs by induction and how the inductive hypothesis allows one to prove 

this iterative claim. He then demonstrates his incomplete understanding, asking if now that they 

have met the criteria for mathematical induction (the base case and proving P(k) → P(k+1)) 

whether they can assume automatically that their conjecture is true.  

 In the following class session, Dennis and John have a similar exchange shown in Table 

3.3 below. During this exchange and group-proving episode, this group was proving the claim, 

“If 𝑛 is a natural number and 𝑛 ≥ 4, then  3
𝑛 > 2𝑛2 + 3𝑛.” Prior to this discussion the group had 

settled on whether they had satisfied the base case, and were trying to word how to prove the 

inductive step. 

Table 3.3 

John’s struggle with the inductive hypothesis 

Speaker 

(Pseudonym) Student Quote / Exchange 

John 

Yeah. I don't know about you guys, but I think if you did three to the K plus 

one first before we did three to the N=K. And then if you notice that if you 

put the (K+1) into the 𝑁2, that should make a quadratic formula... 

Dennis 

Yeah, but the thing about induction is that you have to start with N=K 

Otherwise you'd be working backwards. 

John Ok. You can't you can't work backwards at all. Is that a rule? 

Dennis 

It's just… It'd be counterproductive because you'd start with the base case and 

then you'd be trying to go below the base case. 
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This exchange shows the value in group proving as a sense-making exercise. By allowing 

students to compose induction proofs in groups, these students were able to have rich discussions 

and relay their current understandings of the mode of induction to each other. This group 

continues to grapple with their understanding of the inductive hypothesis, shown in the exchange 

in Table 3.4. 

Table 3.4 

Continued discussion of the Inductive Hypothesis 

Speaker 

(Pseudonym)  Student Quote / Exchange 

Dennis The test for N equals K. Can we just... do we just substitute in K for N? 

John 

I think so, I mean , that's the one that's confusing me because it doesn't really 

help you in any way that much. 

Taylor 

Oh, I think she said the reason why it helps you is because that step is like the 

induction step. 

John Hmm 

Taylor So doing that allows you to do K plus one. 

 

Again, in this exchange we see that these students do not fully understand the necessity of the 

inductive hypothesis and what this affords them. This exchange highlights that students do not 

see that stating the inductive hypothesis is the antecedent of the implication statement P(k) → 

P(k+1) (i.e., the inductive step). John is correct  that the switching of variables is not necessary to 

prove results by induction. However, the method of induction requires you to assume P(n) is true 

and use this assumption to demonstrate that P(n+1) is true; it is this iterative process that allows 

you to make the claim about an infinite sequence of statements. 
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 Another result from research which I feel is critical in promoting students’ rich 

understanding of induction is that the sequence of tasks can impact students' understanding of 

induction (Harel, 2001). In the following quote shown in Table 3.5, this notion is highlighted. 

Table 3.5 

Greg’s reliance on a previous ‘trick’ in proving by induction 

Speaker 

(Pseudonym) Student Quote 

Greg 

Are you supposed to add it to the other side? Or are you supposed to plug in 

K+1 for all the Ks? 

 

As I mentioned above, Harel (2001) has noted that the sequencing of tasks in textbooks 

potentially impacts students’ understanding of induction, particularly how to state or assume the 

inductive hypothesis. Indeed, there is a qualitative difference between proving results by 

induction which are summations and results which are statements about inequalities. In this 

excerpt, Greg is relying on his previous knowledge of how to produce induction proofs about 

statements with summations, namely that he should add or multiply the next term in the 

sequence.  

Theme 3: When proving with induction students recognize when they are stuck 

A key result from this study is that students recognize when they are stuck while writing 

induction proofs in ITP courses. I have described this above as an asset, and I continue to believe 

that recognizing this is beneficial when writing proofs. Typically when writing induction proofs, 

students recognized they were stuck in two distinct ways: (i) on how to state the inductive 

hypothesis and (ii) when manipulating the algebra of the stated inductive hypothesis to arrive at 

the desired conclusion (i.e., proving the inductive step).  
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 In the following quote in Table 3.6, I note that Dennis questions how he (and the group) 

would go about assuming the inductive hypothesis and proving the inductive step. As I described 

above, the sequencing of tasks can impact how students attempt to prove results by induction.  

Table 3.6 

Dennis describes his hypothesis on proving the inductive hypothesis (G1 10/29) 

 

Speaker 

(Pseudonym) Student Quote 

Dennis 

And..would we prove the case for (K+1) by just multiplying both sides by 3? 

And then showing that that's....greater..[trails off] 

 

I highlight this quote to again demonstrate how the sequencing of tasks may impact students’ 

production of induction proofs, but also here that Dennis is stuck on how to move forward with 

proving the inductive step. Potentially due to his initial experiences in proving results by 

induction (i.e., The task in Appendix A), Dennis is stuck on how to move forward with his 

assumption in order to prove P(k+1).  

 In another exchange, students get stuck as they try to manipulate their way through the 

complex algebra of proving the inductive step. This is shown in Table 3.7 below as this group 

attempts their proof of the claim, “If 𝑛 is a natural number and 𝑛 ≥ 4, then  3
𝑛 > 2𝑛2 + 3𝑛.” 

Table 3.7 

Students discuss manipulating the algebra when proving the inductive step(G3 10/29) 

Speaker 

(Pseudonym) Student Quote / Exchange 

Brad Gotcha. Are you kinda stuck on where to go from here? 

Asad Um no I mean yeah kinda 
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Brad 

Yeah I can't figure out what to do with that three on the other side since its 

multiplication and not...we just need to show that (4n + 3) is going to be greater 

than whatever 3
𝑛

 is multiplied by 3. Could we divide by 3 and then just have a 

bunch of fractions on the right? I don't know if you could do that. 

 

Here it is important to highlight that these students did not get stuck in stating the assumptions of 

the inductive hypothesis such as in Table 3.6, but rather they got stuck in how to now manipulate 

the algebra to arrive at their desired conclusion. This group’s proof is shown in Figure 3.2 below. 

Figure 3.2 

Group 3’s proof of the claim “If 𝑛 is a natural number and 𝑛 ≥ 4, then 3
𝑛 > 2𝑛2 + 3𝑛” 

 

As this group describes above, the trouble with completing this proof which they describe is that 

a factor of 3 cannot be divided cleanly on both sides, leaving them with fractions. It is critical 

that these students recognize that this potential division by 3 does not help them in their proof, 

and they must find another way to productively move forward.  

Discussion & Limitations 
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 As I have highlighted above, students continue to grapple with the intricacies of proving 

by mathematical induction in typical ways highlighted by previous literature. Indeed, students 

struggle with understanding the necessity of the base case (Dubinsky, 1989; Palla et al., 2012) 

and face difficulties in both stating the inductive hypothesis and proving the inductive step 

(Dubisnky, 1986; 1989; Harel, 2001; Arnold & Norton, 2019). Nonetheless, many students were 

able to successfully complete induction proofs and perform the necessary algebra when stating 

the inductive hypothesis and proving the inductive step.  

These results are important, as the intent of the (ITP) course is to alleviate students’ 

struggles in proof writing. However, as I have demonstrated and described above, students 

continue to struggle with the conceptual and technical aspects of proving with mathematical 

induction. Thus, instructors of proof-based mathematics courses (i.e., courses past the ITP 

course) should keep in mind that students may still be learning how to productively utilize 

various modes of proof, such as induction. As induction is an important technique when proving 

results in Analysis and Number Theory, it is important to understand that students in these 

courses may not have yet mastered this technique of proof. Another key finding from this study 

and from my broader dissertation work is that students recognize when they are stuck in writing 

their proofs. This is important as we do not want students to force their way through a proof 

using incorrect reasoning or logic. When proving by induction there are many ways that students 

can get stuck.   

 This study was not without its limitations and delimitations. First, this study took place in 

the Fall of 2020, which was the 2nd semester for these students under Covid-19 precautions and 

the first full-time semester on Zoom. This has many potential unknown impacts on 

sociomathematical norms (Yackel & Cobb, 1996) and how authority is manifested in group-
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proving episodes (Bleiler et al., 2020). As this study was conducted with students using Zoom, 

all group proofs were done collaboratively via Google Doc. The field is unaware how this 

transition to online-learning impacts students’ learning, particularly students’ group learning. 

Finally, in order to preserve fairness amongst the learners in the class, no research-participants 

were asked to reflect on their learning experiences or were interviewed in order to further 

understand their group interactions.  

Conclusions  

 This study sought to understand the struggles that students face as they learn to write 

proofs by mathematical induction in an ITP course. I found that students in this course faced 

typical challenges when composing proofs by induction. These struggles include not 

understanding the necessity of the base case (Harel, 2001; Stylianides et al., 2007) and how to 

state the inductive hypothesis and prove the inductive step (Brown, 2008; Stylianides et al., 

2007).  

Research has shown that the method of quasi-induction is promising for students (Harel, 

2001; Arnold & Norton, 2019) in that it helps students to understand the iterative nature of 

proofs by induction. Students in this study demonstrated quasi-inductive, iterative thinking when 

describing the base case. This study also demonstrated that the teaching strategy outlined in this 

study did have some effective components, such as students attending to the precise definition of 

induction as they composed their proofs. Future studies should examine how quasi-induction and 

examining induction proofs can be productively combined to further students’ understanding.   
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CHAPTER 4 UNDERSTANDING THE CONDITIONAL AND ITS ROLE IN PROOF 

Introduction 

Throughout the last several decades universities across the United States have begun 

offering Introduction to Proof (ITP) courses to help university students make the transition from 

their early mathematics coursework, such as Calculus or Linear Algebra, with proof-based 

mathematics courses, such as Abstract Algebra or Number Theory. Several recent studies (David 

& Zazkis, 2020; Dawkins et al., 2020) have illuminated the nature and scope of these ITP 

courses. The Standard (David & Zazkis, 2020) ITP course has three core topics which are 

designed to help students begin to develop as mathematical provers: (1) mathematical logic; (2) 

proof techniques; and (3) sets and functions. In this manuscript, I will attend specifically to the 

potential connections in student understanding between the first two core topics: mathematical 

logic and techniques of proof (e.g., proof by contraposition, proof by contradiction). The goal of 

this work is to provide practitioners of these ITP courses with a useful synthesis of the literature 

surrounding how students make sense of mathematical logic (c.f., Topic 1, David & Zazkis, 

2020) as well as the techniques of proof (c.f., Topic 2, David & Zazkis, 2020) and to provide 

vignettes from a standard ITP course highlighting the themes that arose from my reading and 

synthesis of the literature       

Cognitive scientists and reasoning theorists (Johnson-Laird, 1995; Evans et al., 2007) 

have long described humans’ general difficulty with understanding and analyzing arguments that 

involve the conditional statement (P→Q, read “If P, then Q”). To this end, scholars in 

mathematics education (Brown, 2013; 2018) have described how university students may 

inaccurately use techniques of proof that rely on the conditional statement. Mathematics 

education scholars have also engaged in numerous studies on how students utilize, and 
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potentially misuse, the various techniques of proof (e.g., contradiction, contraposition, 

mathematical induction) (Brown, 2013; 2018). By and large these studies are focused on how 

students utilize a singular technique of proof for a given conjecture. To date, there have been few 

studies or analyses of the literature which describe the connections, if any, between how students 

utilize their understanding of the rules of logic and how they use the various techniques of proof. 

This is potentially important with each technique’s unique reliance on the conditional statement. 

See Table 4.1 for the syntactic connection between the conditional and each technique of proof. 

Table 4.1 

Conditional Use Per Proof Technique 

Proof Technique Conditional Use 

Direct Proof of P→Q P → Q 

Proof by Contraposition of P→Q ~Q → ~P 

Proof by Contradiction of P→Q (P and ~Q) → F 

Proof by Mathematical Induction of P(n) 

for all natural numbers, n. 
P(1) and [(P(n) → P(n+1)] 

 

Data & Setting 

         As I have described above, this manuscript is intended as a resource for instructors of ITP 

courses that synthesizes the key challenges students face in logic and proof writing. To bring to 

life some of the broad findings from previous literature, I present vignettes from a recent 
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research study that was situated within an inquiry-based ITP course. To this end, it is worth 

describing the general structure of the ITP course so that readers of this work can make more 

thoughtful connections to their classroom and students’ thinking and learning. Offered at a large 

public university in the Southeastern United States, the course was inquiry-oriented, and students 

largely worked together in groups discussing definitions, theorems, and writing proofs. This ITP 

course falls into the Standard category outlined by David and Zazkis (2020) in that students first 

learn logic, followed by proof techniques, and then they apply this knowledge in proving results 

about sets and functions. The course took place in the Fall of 2020, so students all joined 

synchronous class sessions remotely via Zoom. Students regularly worked together in small 

groups (Zoom breakout rooms) where they recorded their ideas in a collective Google Doc.  

I transcribed, coded, and analyzed 15 episodes of group-proving to study the connections 

that students made between logic and the techniques of proof. I also analyzed three episodes of 

students engaging in the Wason selection task (Wason, 1966; 1968), and analyzed three groups 

of students examining and critiquing proofs by mathematical induction as they learned the 

definition and mode of argumentation. It is from these 21 episodes that I highlight issues from 

the literature surrounding students’ understanding of logic and the techniques of proof. Largely, 

my analysis of students’ work has been on their spoken word as they produced group-proofs. 

Thus, I use this manuscript as a platform to discuss students’ final written--- in this case typed---

products alongside their discussions around these proofs, while also highlighting themes from 

the literature which scholars have shown students struggle with as they develop as proof writers. 

By examining students’ final proofs, I will help practitioners of proof-based mathematics courses 

to make connections between their students’ discussion around proof writing and how this is 

reflected in their written (or typed) proofs. Similarly, their written work gives further insight into 
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how they are making sense of the course material and learning how to write proofs, which is the 

intent of the course. Thus, I use this manuscript to reflect upon common areas of struggle for 

students, which are informed by previous research literature, and brought to life by classroom 

vignettes and students’ proofs.  

Setting the Stage 

As I have observed and reflected on how students learn in ITP courses, on their struggles 

and how to alleviate them, I have noticed three key themes: 

1. The conditional statement plays an essential role in proving and students struggle 

with understanding its logical form. 

2. Students struggle to ‘begin’ a proof (Weber, 2001). 

Students struggle to manipulate conjectures in the form of the conditional (P → Q) into other 

logical forms to be proved (i.e., its contrapositive or contradictory statement). 

Thus, I structure this manuscript according to these three themes. Within each theme I will 

briefly present related literature surrounding these issues, as well as present vignettes and student 

work which highlight these issues, so that practitioners of ITP courses can be better prepared to 

help students to overcome these difficulties. 

Theme 1: The conditional statement plays an essential role in proving and students struggle 

with understanding its logical form 

 In the following section, I first present vignettes and the final written solution to two 

student groups as they engaged in the Wason selection task (Wason, 1966; 1968) to illuminate 

the types of discussion that students have surrounding these conditional reasoning tasks and to 

show their groups’ final solution. I then briefly summarize the literature on students engaging in 
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similar sorts of reasoning tasks. Finally, I describe how these data shed a new light on some of 

these research findings.  

 Students’ Engagement in the Four Card Problem 

 In the beginning of the course under study, students were introduced to various important 

terms and definitions in logic, such as logical quantifiers (i.e., for all, ∀; there exists, ∃) and 

logical connectives (i.e., and, ∧; or, ∨; conditional, → ; biconditional, ↔; negation, ~). As I have 

described above, the conditional statement (P→Q, read “P implies Q”) plays an essential role in 

proving conjectures in mathematics, and is a demonstrated source of difficulty as students write 

proofs which rely on its’ manipulation (Brown, 2013; 2018; Hub & Dawkins, 2018). In order to 

help students make the connection between the truth-table definition of the conditional (Table 

4.2) and conditional arguments, students engaged in the Wason Selection Task (Wason, 1965), 

otherwise known as the Four-Card Problem.   

Table 4.2 

Truth-Table Definition of the Conditional Statement  

 

P (antecedent) Q (consequent) P → Q (conditional) 

T T T 

T F F 

F T T 

F F T 

 

 In the following vignettes from my dissertation data and group-work exercises students 

engaged in the Four Card Problem (Wason, 1966; 1968) shown in Figure 4.1 below. 

Figure 4.1 
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The Four-Card Problem. 

 

The solution to this problem is to flip cards (a) and (d) to check the truth of the claim. 

Card (a) must be flipped because there is a circle on one side, and so there must be an even 

number on the back for the claim to be true or else it would be the case that T → F, which results 

in a false implication. Similarly, Card (d) must be flipped because if there was an even number 

on the other side it would again be a case of  T → F. 

As students were reasoning through this task, Group 1 (a small group of 3 students, 

Anthony, Eliza, and Greg) had the following exchange shown in Table 4.3: 

Table 4.3 

Student exchange about the Four Card Problem 
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Speaker 

(Pseudonym)  Student Quote / Exchange 

Anthony 

OK. I think we need to turn over all four because we need to see if each and 

every one has the rule, is true. Because if we turn (a), (b), and (d), it might be 

the case that (c), on the other end, instead of it being a circle, it's a square. 

Eliza 

This is the implication. Right? [Pointing to the statement “If one side of a card 

is a circle, then the other side is even.”] I think you only need to turn (a), (c), 

and (d) because it's only regarding if one side of the card is a circle. So, we 

don't care if it's a square. So, we don't even need to turn (b). We only need to 

turn (a), (c), and (d). We need to turn (a) because if it's a circle we're expecting 

an even number on the back side. 

Anthony Hmm yeah you're right 

Greg 

Yeah, I would also argue you don't need to turn to (c) because it doesn't matter 

if [the other side of] (c) is a square or circle, you know? 

 

In this student vignette there are several things worth highlighting. First, similar to 

Wason’s (1966; 1968) original study, it is not uncommon for students to incorrectly solve this 

problem at first. Billy and Eliza’s responses were typical of many students in this class. Second, 

Billy and Eliza’s explanations of why it is that they must turn (incorrect) cards are particularly 

illuminating. In their explanation, both students emphasized the word if which has a significant 

meaning in this context. Scholars in cognitive science (e.g., Johnson-Laird, 1995; Evans et al., 

2007) have described different modes of thinking which one can have about the conditional. 

Amongst these are the probabilistic view (Evans et al., 2007), which captures Billy’s description 

that “it might be the case” that cards need to be flipped. Eliza, however, demonstrates a different 

type of reasoning about the conditional which is not aligned with the probabilistic paradigm 



69 
 

(Evans et al., 2007). From their discussion, there is no evidence that students have connected the 

truth-table definition of implication (or conditional) to this task yet. Greg, however, is able to 

correctly reason about only needing to turn cards (a) and (d) and convinces his peers of the same. 

When writing their final justification, the group does connect to the truth-table definition of 

implication, citing the truth values of the antecedent (the “if” part of the conditional) and the 

consequent (the “then” part of the conditional). The group comes to this final conclusion in 

written form: 

The cards that would need to be flipped are cards (a) and (c). It is unnecessary to 

flip card (b) because your friend’s claim does not deal with what is on the other 

side of a square card, and it is unnecessary to flip card (c) because the claim is not 

false if the other side of the card is a square. 

This response pattern was typical of the other research groups’ responses to the task. That is, 

although all members of the group did not initially agree upon which cards needed to be flipped 

to prove the claim, given the opportunity to discuss with their peers led them to make either 

explicit or implicit connections to the truth-table and thus accurately respond to the prompt. As 

another example, see Group 2’s description for why cards (a) and (d) must be flipped: 

We only need to flip 2 cards, the circle (i.e., card (a)) and the 3 (i.e., card (d)).  If 

the circle were to have any number which is odd on it, the statement would not 

hold, so we must flip it.  The statement would also not hold if the 3 had a circle on 

its back, so it must also be flipped.  The square and the 8 could have anything on 

the other side without affecting the statement.  

Again, these students described which cards needed to be flipped and how it would 

impact the statement. Although there is no explicit mention of the truth-table, these 

students give a clear description that provides an implicit nod to each row of the 

conditional truth-table and definition in their own words. 
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Literature on Students’ Understanding of Conditional Reasoning Tasks 

Several studies have shown that students who study mathematics past the compulsory 

level (i.e., past high school) perform better on conditional reasoning tasks than their non-

mathematical counterparts. Inglis and Simpson (2008; 2009) utilized a quantitative approach to 

study undergraduates’ understanding of the conditional statement using conditional reasoning 

tasks shown in Figure 4.2. These authors found that the more mathematics courses a student 

took, the better they performed on these conditional reasoning tasks.  

Figure 4.2 

Inglis & Simpson’s Typical Reasoning Task 

A typical reasoning task from Inglis & 

Simpson (2008, p.191) for the rule if ~p then 

q, with an explicitly negated premise (~q). 

This problem concerns an imaginary letter-

number pair. Your task is to decide whether 

or not the conclusion necessarily follows from 

the rule and the premise. 

 

Rule: If the letter is not H then the number is 

1. 

Premise: The number is not 1 

Conclusion: The letter is H. 

(YES – it follows) (NO – it does not follow) 

 

 Other studies have demonstrated that studying higher education does improve 

performance on conditional reasoning tasks, but that studying mathematics leads to further 

improvement than those studying, say, English Literature (Attridge & Inglis, 2013). These 

longitudinal results were replicated in a follow up study in the UK where Attridge and colleagues 

(2016) found that students studying high levels of mathematics improved in their conditional 

reasoning skills over time. 

 Connecting Research to the Classroom 



71 
 

It is perhaps tempting to instructors of ITP courses to assume that all of their students 

possess a rich understanding of logic and conditional arguments which the literature suggests 

(i.e., Inglis & Simpson, 2008; 2009; Attridge et al., 2016). However, the vignettes I provided 

above demonstrate that many students enter into these courses in need of further refinement of 

their conditional reasoning skills. Indeed, as these students were engaging in a reasoning task 

that research suggests they would perform well on, many students expressed difficulty in 

describing why certain cards needed to be flipped or not in the Four Card Problem. Again, as I 

have described above in the brief review of literature, all of the studies which I mentioned were 

done using a quantitative approach, comparing students with higher levels of mathematical 

training to those with less mathematical training. So, to say that mathematics majors perform 

better than others does not help to illuminate the potential misunderstandings that these students 

possess, and how to help them alleviate these misconceptions or gaps in understanding.  

Theme 2: Students struggle to ‘begin’ a proof (Weber, 2001) 

One issue that students have expressed in their struggles in proof writing is that they do 

not know where to begin or start their proof (Weber, 2001). As scholars have described, the 

language of mathematical proofs is complicated and foreign to those outside of the community 

(Burton & Morgan, 2000). Often when proving a conjecture in mathematics, it is useful to begin 

with an imperative (e.g., Let, Suppose, Assume) to make the stated conjecture operable. When 

proving a conjecture in the form of a conditional statement (P → Q), a mathematician would not 

simply re-state “P” in its given form. For instance, when proving the conjecture “If an integer n 

is even then its square is even,” a mathematician would not begin their proof with the phrase, “If 

an integer n is even.” Rather, they would use an imperative to make the antecedent (the “if” part 
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of the conditional) operable in order to arrive at the consequent (the “then” part of the 

conditional). So, a mathematician would instead say, “Let n be an even integer.” 

How Would a Novice Approach this Problem? 

In the ITP course under study a group of 4 students (Lisa, Eliza, Dennis, and Rose) were 

attempting a proof of the stronger version of the example conjecture stated above, “An integer is 

even if and only if its square is even.” Notice that this problem is stated as a biconditional (↔) 

statement, with the forward ( →) direction being “If an integer is even, then its square is even,” 

and the backward ( ← ) component being “If an integer's square is even, then the integer is 

even.” The students wrote the following proof for the forward direction shown in Figure 4.3. 

Figure 4.3 

Direct Proof of forward direction of the claim (if an integer is even, then its square is even) 

 

First, what I would like to mention about this proof is that it is logically correct. 

However, their proof would benefit from some restructuring and more precise language. For 

instance, as I mentioned above, using imperatives (e.g,. Let) to make a claim operable is often 

useful in proof writing. While these students did indeed use such a term, it was not to restate 

their given conjecture, which they had reframed as P→Q, but rather it was ‘letting’ their variable 

z be an integer. Indeed, they began their proof with an “if-then” statement, restating the forward 

direction of the biconditional claim. Although these students were able to productively prove this 
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result, one can imagine how this imprecise use of language and terms would inhibit their proof 

writing of more complex mathematical results. Additionally, their proof lacks a general structure 

and suffers from some grammatical issues, which the ITP course is intended to help alleviate. 

For instance, their proof contains no punctuation. This makes it difficult to tell what things they 

have inferred from previous lines of their proof and impacts the flow when reading it.  I have 

observed throughout my experiences in ITP courses that the main barrier to students ‘starting’ a 

proof is is that they do not understand  the usefulness of imperatives and how to state the given 

conjecture to be proved. This is one topic where instructors should make students aware of the 

subtleties of language when beginning a mathematical proof. When proving a conjecture in the 

form of P → Q, novices of proof writing do not understand the difference between stating “P” 

and stating “Let P be true” in order to prove Q. 

Thoughts on Proving by Induction 

Research has shown that there are certain predictable ways that students struggle with 

understanding and adopting the method of mathematical induction.Largely, these issues are 

related to the definition and various components of proofs by mathematical induction, such as 

the base case and proving the inductive step. Indeed, students view the stating of the base case as 

an unnecessary step (Stylianides et al., 2007) and do not understand its importance in the 

structure of proofs by mathematical induction (Palla et al., 2012). Similarly, students have 

demonstrated a lack of understanding when proving the inductive step (Dubinsky 1986; 1990; 

Harel, 2001). Indeed, students have demonstrated that they view the inductive hypothesis as a 

form of circular reasoning (Palla et al., 2012), and they also struggle in the mechanics of proving 

the inductive step.  
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Another potential reason for students’ demonstrated difficulties in adopting induction as a 

method of proving is that they struggle in stating the inductive hypothesis. Proofs using 

mathematical induction must first demonstrate the base case (i.e., The first step in the infinite 

chain of statements) is true, and then prove the inductive step, that the P(k) case implies that the 

P(k+1) case is true. Stating that P(k) is true is what mathematicians refer to as the inductive 

hypothesis. As I have described above, students struggle in ‘beginning’ a proof. This struggle 

appears in a different manner when students are proving with mathematical induction, as most 

students are familiar with the definition of induction and the necessity of the base case, though 

they might fail to recognize its importance (Palla et al., 2012). ather, I have observed that 

students struggle with stating the inductive hypothesis more than in actually proving the 

inductive step, and what language is necessary in order to assume the inductive hypothesis.  

For instance, in one illuminating proof of the conjecture, “If 𝑛 is a natural number and 

𝑛 ≥ 4, then  3
𝑛 > 2𝑛2 + 3𝑛.” students have the following exchange shown in Table 4.3. 

Table 4.3 

Students’ discussion about replacing N for K in the inductive hypothesis 

Speaker 

(Pseudonym) Student Quote / Exchange 

Dennis The test for N equals K. Can we just... Do we just substitute in K for N? 

John 

I think so, I mean , that's the one that's confusing me because it doesn't really help 

you in any way that much. 

 

 To these students, stating the inductive hypothesis and replacing the variable N for K 

does not seemingly afford them anything. Combining this conversation with their written work 

leads me to believe that they possess a checklist mentality in terms of proving by mathematical 
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induction. That is, students have been shown to view mathematical induction as a procedural 

proof method. Their final typed proof of this conjecture is shown in Figure 4.4. 

Figure 4.4 

Students’ final typed proof of the conjecture  

 

 There are several things worth noting from this proof. First, the group tested a case below 

the given claim. This highlights students’ potential misunderstandings with the necessity of the 

base case in proving claims with induction and confusion over its importance in proving with 

this method. Second, the students ended their proof with a pseudo-induction proof, showing 

examples of a claim that they needed to be true in order to verify their original result. But most 

importantly, and relevant to this manuscript, is that these students, instead of using an imperative 
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clause (e.g., let, suppose), used the word ‘test’ to describe the truth of an arbitrary case (i.e., 

stating the inductive hypothesis). When proving by induction you must assume or let the 

inductive hypothesis be true, rather than test for it. This issue again highlights the complex issue 

of what it means to prove a conjecture of the form if P then Q, to a novice. It would likely be 

beneficial for students to have the logical structure of proof methods explicitly pointed out to 

them, and they would also benefit from having pointed conversations about what it means, and 

how to prove that a conditional statement is true (Brown, 2013; 2018). 

Theme 3: Students struggle to manipulate conjectures in the form of the conditional (P → 

Q) into other logical forms to be proved 

The third and final theme I have noticed about students’ learning in an ITP course, is that 

when they prove indirectly, handling the logical manipulation of the conjecture has a unique 

difficulty. Again, as I have described above and have strewn throughout this manuscript, human 

beings struggle with conditional statements and arguments which rely on it, and mathematics 

majors are still susceptible to these difficulties. Given students’ demonstrated struggle with the 

conditional statement, it is no wonder that they have (predictable) struggles with adopting and 

utilizing indirect modes of proof which rely on manipulating a conditional statement into a new 

logical form and translating this form in the English language.  

Does P → Q mean the same as ~Q → ~P ?   

Indeed, scholars have demonstrated that students struggle in two predictable ways when 

proving indirectly. The first, which I highlight in the following section, is that students, though 

they are aware that P → Q is logically equivalent to ~Q → ~P (its contrapositive), may struggle 

in understanding that these statements are still logically equivalent. Studies have shown that 

mathematics majors and humans in general view implication statements as cause and effect 
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(Brown 2013; Harel, 2001). Consider for example a student using contraposition to prove the 

conjecture “An integer is even if and only if its square is even.” It is reasonable for students to be 

suspicious if they have actually proved the desired result. Indeed, how does proving a result 

about odd numbers relate to proving a biconditional statement about even numbers and their 

squares? 

A Sample Case 

As I have posited above, to novices of proof writing, it is reasonable to assume that 

students may fail to make the connection between the English translation of a conjecture in the 

form of a conditional (P → Q) to its contrapositive (~Q → ~P). In the ITP course under study, a 

group of 3 students (Greg, Anthony, and Zoren) were proving the claim, “If L and M are odd 

integers, then L * M is an odd integer.” During this group-proving exercise the students have the 

following illuminating exchange shown in Table 4.4 

Table 4.4 

Students’ conversation about transforming the contrapositive claim 

Speaker 

(Pseudonym) Student Quote / Exchange 

Zoren 

So we have to prove two implications. The first one is “if L or M is not odd 

then L times M is not odd.”  

John So, instead of saying not odd then you could write even. 

Anthony Are those the same thing?  

 

 Indeed, deciding whether a not even number is equivalent to an odd number is an 

important conversation for these students to have. Importantly, they do recognize that in order to 

prove their claim by contraposition they must negate both the antecedent (the “if”) and the 
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consequent (the “then”), but do not immediately recognize that the negation of odd is even. And 

similarly, these students did not discuss whether or not this new claim, written as the 

contrapositive, proved their original claim. As I have described above and literature suggests, 

this can be another intellectual hurdle for students to face in proof writing. 

Conclusion 

 In this paper I described the main challenges that students face as they learn throughout 

an Introduction to Proofs course. First, I described how the conditional statement (P → Q) plays 

an essential role in proving and in the language of mathematics, and that undergraduate students 

in mathematics enter into ITP courses with a limited understanding of conditional statements and 

arguments which rely on its structure. Second, I described how students face difficulties in 

beginning a proof (Weber, 2001). I posit that this is due to their misunderstandings of how to 

prove a conditional statement, namely by assuming P and logically deducing Q. Novices in proof 

writing struggle due to their unfamiliarity with the particular language of mathematical proof, 

such as using imperatives. Finally, I described how students face difficulties when proving 

indirectly, as this requires them to manipulate a conditional statement (P → Q) to its 

contrapositive (~Q → ~P) or its contradictory (P and ~ Q) claim.  

 Instructors of ITP courses should highlight the conditional and its importance throughout 

the course. Indeed, tasks such as the Wason (Wason, 1966; 1968) Selection Task and other 

conditional reasoning problems are beneficial in helping students to make the connection 

between the truth-table definition of implication and arguments which rely on the conditional. 

One suggestion I have for instructors of ITP courses is to have discussions about how to prove 

conditional statements in mathematics and continuously point out the logical structure of 

mathematical claims which arise in the course. This will necessarily lead to the introduction of 
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imperative clauses (e.g., let, suppose, assume) which are a crucial but seemingly under-

emphasized part of proving (Burton & Morgan, 2000). Finally, when students are proving 

indirectly, scholars have suggested (Brown, 2013; 2018) for students to first identify the logical 

structure of the conjecture, and identify its components. Offloading some of the intellectual work 

of switching and negating a conjecture to the symbols allows students to focus more on proving 

in their argument. Students should be encouraged to utilize their logical knowledge which they 

have just learned early on in these typical ITP courses as they develop as provers.   
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 CHAPTER 5 CONCLUSION 

The purpose of this study was to gain an understanding into the ways that students in an 

Introduction to Proofs course develop as mathematical provers, in particular how they make 

connections between logic and the various techniques of mathematical proof. I use this 

conclusion to describe holistically what you have just read in the first four chapters, and to share 

some insights and anecdotes I gained as a researcher of students’ learning mathematical proof.  

In the first chapter, I described the complexity of mathematical proof, with its unique 

reliance on symbols and syntax (Burton & Morgan, 2000; Weber & Alcock, 2004), as well as 

relying on key ideas (Raman, 2003) or conceptual insight (Sandefur et al., 2013). Amongst these 

complex components of proving is that conjectures in mathematics are often stated in the form of 

a conditional (P → Q), which scholars in cognitive science (e.g., Johnson-Laird, 1995; Evans et 

al., 2007) and scholars in mathematics education (e.g., Hub & Dawkins, 2018) have shown to 

present difficulties in proof and understanding conditional arguments. Due to the complex issues 

with proof and proving, many universities around the United States have begun offering 

Introduction to Proof courses to help students to overcome the complexities of learning 

mathematical proof. Recent studies (e.g., Cook et al., 2019; Dawkins et al., 2020; David & 

Zazkis, 2020) have illuminated the nature and scope of these courses. Typically (David & 

Zazkis, 2020) Intro to Proof courses cover three main topic areas: (1) logic; (2) techniques of 

proof; and (3) sets and functions. With students’ demonstrated difficulties in logic and proving, I 

designed and implemented a study to investigate the connections that students make between 

logic and the techniques of proof. In this study, I followed a typical Introduction to Proof course 

throughout the semester as they engaged in typical course activities such as reading and 

understanding definitions, and writing group proofs.  
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In the second chapter, I described the first research study I engaged in, where I sought to 

understand the connections that students make between logic and both direct and indirect modes 

of proof (i.e., contrapositive and contradiction). To study this, I analyzed 9 episodes of students 

engaging in group-proofs where they utilized direct proof, proof by contradiction, and proof by 

contraposition. Mathematical induction was intentionally left out of this study as students learned 

induction separately from the other techniques of proof, and studies on induction are typically 

solely focused on this proof technique. In this study I found three major themes. First, students 

are aware when they must utilize their knowledge of logic to manipulate conjectures to be 

proved. The second theme I recognized is that when students are proving indirectly, they offload 

the work of manipulating the conjecture to the symbols or syntax. Finally, the third theme I 

found was that students recognize when they are stuck in writing a proof. I describe this as an 

asset, as we do not want students to absent mindedly manipulate symbols or make deductions 

which are not true. All of these findings are promising, as the intent of the course is to help 

students to make the connections between logic and the techniques of proof, and they indeed do.  

In the third chapter, I described the second research study I engaged in where I sought to 

understand the struggles that students have when learning to write proofs by mathematical 

induction. To study this, I analyzed six episodes of students doing group-proofs with 

mathematical induction. Using the modified MGA framework from Sandefur and colleagues 

(2013), I found that students have typical struggles with adopting the mode of induction as a 

viable proof method. One such struggle is that students may lack understanding of the necessity 

of the base case, which is consistent with many other studies on induction (Dubinsky, 1986; 

1990; Harel, 2001; Stylianides et al., 2007). Another typical struggle students have when 

learning about induction is how to state the inductive hypothesis in an operable way, and to 
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prove the inductive step, which is again consistent with prior research on students’ learning of 

induction (Harel, 2001; Palla et al., 2012). Harel (2001) found that quasi-induction was a 

productive teaching strategy to help alleviate students' struggles with proving by induction.  

Finally, in the fourth chapter, I wrote a practitioner-minded piece where I described the 

three major themes which I viewed throughout the entire course which encapsulate students’ 

learning. In my view, the role of the conditional statement (P → Q) cannot be overstated in this 

course. Indeed, the conditional statement is a main connecting piece between the logic and proof 

techniques section of the course. Thus, I used Chapter 4 to describe three main themes related to 

the conditional as students transition through an Introduction to Proofs course. First, I presented 

an insider view of students’ reasoning through a typical conditional reasoning task in a small 

group. Most previous research utilizing this conditional task is performed on large quantitative 

scales, comparing mathematics majors to other groups of learners (e.g., Attridge & Inglis, 2013; 

Attridge et al., 2016; Inglis & Simpson, 2008; 2009). I also pointed out that students in 

Introduction to Proof courses do not all possess the same understanding of conditional 

arguments. Second, I described how students often struggle in starting a proof (Weber, 2001) and 

I posited and showed how using imperatives (i.e., Let, Suppose, Assume) can potentially help 

students to overcome this struggle. Finally, I described how students may struggle when proving 

results indirectly, either with contradiction or contraposition. . Here I showed that students have 

difficulty which stems around the conditional and its successful manipulation, and its translation 

back into a mathematical conjecture. This is a complicated process which should not be 

overlooked by practitioners of Introduction to Proof courses, and other courses where proving is 

a heavy component of the course.  
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As I have written conclusions in each research (Chapter 2 and 3) and practitioner-themed 

(Chapter 4) manuscript, I use these final paragraphs to reflect on lessons I have learned as a 

researcher of students in Introduction to Proof, and to offer some anecdotal musings having 

completed a dissertation during a pandemic and also having had experience as a proof-researcher 

prior to times of Covid (Bleiler-Baxter et al., 2019; 2020) and online learning of mathematical 

proof.  

As I have described above, and in several other chapters, the importance of the 

conditional statement cannot be overstated. Although teaching the definitions of logical 

connectives and their truth-tables may occur in introductory-level philosophy courses, there is a 

reason that many Introduction to Proof courses cover this topic in detail early on in the semester 

(David & Zazkis, 2020). Again, this is due to the complex interplay between logic and the 

techniques of proof which rely on the conditional and its manipulation. As I have observed as an 

instructor (via teaching internship) and researcher of students in ITP courses, one key notion 

which is not often covered in the curriculum is the use of imperatives (e.g., Let, Suppose, 

Assume). As I have described in detail in Chapter 4, the lack of use of imperatives (or their more 

sophisticated use) can cause significant issues within students’ proofs. Indeed, a part of this 

course’s goals is to help students learn to write proofs. Understanding the affordances that 

imperatives can give novices offers some insight into why it is that mathematicians use such 

particular language. It is easy as an expert in mathematics and experienced proof writer to forget 

the nuanced language that was previously foreign to me as a mathematician. And so, it is no 

wonder that this material is largely absent from ITP courses, in spite of its importance. Indeed, it 

is easy to assume that providing students with logical tools, and knowledge of proof methods is 
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enough to promote their growth as proof writers. However, these students demonstrated that the 

grammar of mathematical proof can have large impacts on the success of their proof-writing.  

Lastly, as I have mentioned above, I have experience as a researcher of students learning 

in-person in ITP courses, and online via Zoom in the ITP course under study. I would like to 

offer some anecdotes as a researcher comparing both of these mediums. Students in this study 

benefited from their instructor having had to transition to the online-learning of proof earlier in 

the year when Covid protocols first began during the Spring of 2020 (one semester prior to this 

study). As such, and anecdotally to me as an observer, the beginning of the course under study 

largely resembled other ITP courses which I have previously studied (e.g., Bleiler-Baxter et al., 

2019; 2020). However, again anecdotally, there was a stark contrast in students’ group-proofs 

throughout the semester compared to in-person learning. This is, by my observation, due to 

students’ collaborative capabilities via Zoom and their collective Google Doc. In previous 

semesters, students completed group proofs with pens or markers on large poster paper. 

Obviously, these different mediums afford different benefits and have different constraints. 

When students work in Zoom, it is easier for them to modify their proofs in real-time compared 

to on chart-paper. Also, while using individual computers and collaborating in a Google Doc, 

students could use features in Google Doc which are unavailable when writing on chart paper, 

such as using copy-and-paste, and editing grammar and tense without having to cross out or 

erase previously written work. This led to more visually appealing proofs, and allowed students 

to expand in their language more so than they would with markers and paper. An interesting 

future study could compare students’ learning in an ITP course with computers as they write 

group-proofs, and compare their conversations and written final products to students proving on 

paper.    
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