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ABSTRACT 

Unsupervised machine learning algorithms suffer from uncertainty that results are 

accurate or useful.  In particular, text document clustering algorithms such as Latent 

Dirichlet Allocation (LDA) and Latent Semantic Analysis (LSA) give no guarantee that 

documents are clustered in a manner similar to human readers.  Using a semi-supervised 

approach on text document clustering, we show that the selection of training data can be 

statistically optimized using LDA and LSA.  Using this method, a human reader 

categorizes a percentage of the data as an analysis step, then feeds the partially-labeled 

data into bootstrap training and testing steps.  Using mutual information to discover 

which documents were better for training, the algorithm does a post-processing step using 

the optimized training set.  The results show that mutual information values are higher 

when the statistically optimized training set is used and indicate that human-like 

performance is better achieved with optimized training data.	
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CHAPTER I 

INTRODUCTION 

 In the Information Age, it has become difficult for many fields of study to 

adequately process the large amounts of text data that exist [19, 5].  Specifically, 

journalists often have trouble when receiving huge datasets that contain unknown 

information to be able to report on the topics contained in them.  Most people find 

information they need either through searching the internet using keywords or by clicking 

on relevant links [19].  Data is expanding in such a way that technology needs to enable 

everyone to find information in a smarter way.  While there are some tools in existence 

that allow us to cluster and tag documents for analyses, the methods can be improved 

[20].  

 No clear solution has emerged that is best for categorizing a large, unsorted 

volume of text documents.  Much research has been done on topic modeling, and while 

methods exist, they are not mainstream [12].  Topic modeling is difficult to accomplish 

and must be tailored for each dataset, since it is important that the results be 

comprehensible to humans [14].  There are also factors that must be adjusted, such as 

model parameters and training data size, to make it work properly [15].  Building on two 

methods that have been previously studied, we will focus on improving the ways to 

model text and extract data from large datasets.   

 The Afghan War Diary (AWD) serves as a prime example of a dataset chosen for 

research, due to journalists' inability to gain meaning out of the 77,000 text reports 

contained in it, in addition to its being leveraged by past research from others [6, 21].  

The AWD is important because although it was processed by many professional data 
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journalists, much information has yet to be extracted from it.  Many of the analyses done 

on the dataset by journalists were descriptive in nature, whereas the methods utilized by 

computer scientists and statisticians obtained predictive results.  Research has been done 

on the AWD dataset using Latent Dirichlet Allocation (LDA) and point process modeling 

(PPM), as well as other algorithms [6, 21].      

Latent Semantic Analysis (LSA) is another algorithm that has popularity among 

those seeking to gain a better understanding of unorganized text. LSA was first discussed 

in a paper by Landauer et al. in 1998 and has been used in a multitude of studies 

surrounding text analysis [1, 3, 2, 14].  For example, LSA was used to provide emotional 

context of summaries from TV shows to generate user preferences [3].  Another study 

used LSA to provide a solution for identifying spam with unsupervised algorithms [2].  In 

a study done by Chang et al. that compared human performance to text modeling 

algorithms, LSA is mentioned as one of the first topic modeling methods that attempted 

to duplicate human selection when analyzing text [14].   

While results from previous studies yielded a set of topics for the AWD dataset, 

the unsupervised nature of LDA and LSA have introduced significant uncertainty on 

whether the topic models produced were reflective of topic models humans might 

produce.  In most cases, similarity to human-like topic modeling would be preferred, but 

efforts to better achieve human-like topic modeling of the AWD using the above 

approaches have yet to be implemented.   

In this study, we aim to improve the performance of unsupervised algorithms on 

topic modeling of the AWD dataset by using a bootstrap statistical augmentation of the 

LDA and LSA methods.  This statistical analysis is applied to the topic clustering results 
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from the two methods using manually labeled data.  Grooming the LDA and LSA 

methods using human-labeled data creates a process by which unsupervised algorithms 

can be statistically molded to “think” more like humans.  This approach is not distinct to 

one method or dataset, but can be applied to any system that can be curated by hand.  

Executing this semi-supervised technique on uncategorized datasets has potential to shed 

much light on previously unexplored raw text.        
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CHAPTER II 

BACKGROUND    

Topic Modeling 

 Topic modeling is a way of distributing topics over documents to obtain a 

collection of documents grouped into topics.  Figure 1 shows how topic modeling is done 

in several steps.   

 

Figure 1. Overview of the topic modeling approach.  
 

Tokenization segments text into a word array, typically breaking on punctuation 

or whitespace characters.  Removing stop words is done next, which removes words like 

“for” and “the”, which do not contribute to the overall meaning of the document.  

Stemming, which is the next step, is the process of reducing similar words to their roots.  

For example, “planning”, “planner”, and “planned” would all reduce to “plan”.  This 

allows multiple, semantically-related word forms to be treated equally regardless of how 

they are used in the language.  Finally, a document-term matrix is created, which maps 

each word to how frequently it occurred in the text.  Topic modeling algorithms usually 

differ in how they subsequently process the document-term matrix.    
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Output from topic modeling algorithms can vary.  With LDA, a list of terms by 

topic is returned, along with a probability of topic membership for each document.  LSA 

produces a matrix of documents and terms, where correlated terms are in rows and 

documents in columns.  Each document is therefore quantified as a vector in a space of 

correlated terms, allowing for ease of clustering into topics using a variety of statistical 

clustering techniques.  The output obtained in this study was a set of documents clustered 

into topics, much like the output of data clustering, but using raw text instead of 

quantitative data as input.    

The Afghan War Diary 

 The AWD is a set of nearly 77,000 documents detailing aspects of the 

Afghanistan War that were previously unknown to the public, and this dataset has been 

too large to be more than descriptively useful to journalists so far.  The AWD was made 

public on July 25, 2010, but was sent to the New York Times, the Guardian, and Der 

Spiegel prior to it being released to the public.  The dataset spans the years 2004 to 2009, 

and contains time, position, and a brief summary of each event, among other fields.  The 

documents are one of the most complete looks at the Afghanistan War that is available to 

the public [17].  Since the documents are such a massive set of data, many journalists, 

including the three newspapers to which the dataset was originally sent, were not able to 

adequately sort and analyze them.  Although several news sources did analyze the 

documents, much of the text data in specific was left uninvestigated, and it has been left 

to computer scientists to do much of the processing of the text [21].   

Figure 2 shows a sample report summary included in the AWD.  This report 

discusses a suspicious incident that occurred on a certain date, describing how a white car 
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followed an ambassador’s motorcade.  The incident seemingly did not result in any action 

taken by the military.  Someone wishing to get information on all the incidents of 

surveillance during this time period would need to rely on a keyword search of the AWD 

reports.  Keyword searches, while valuable, require that a human know the exact words, 

or at the very least synonyms, of the words they would like to search, as well as an 

evaluation of the returned documents after the keyword search has taken place.  

Therefore, for this type of large dataset, artificial intelligence becomes crucial for 

adequate analysis of the text.     

 

Figure 2. A sample report summary from the AWD.  

 

Studies on the Afghan War Diary 

A few studies have attempted to use the data in the AWD to predict the outcome 

of incidents that occurred during the Afghanistan War, such as looking at fatalities and 

intensity of conflict [16, 21, 17].  These methods succeeded in being useful to not just 
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describe what was in the documents, but to gain more knowledge than was included in 

the AWD metadata.   

LDA and Model Trees 

The LDA and model tree approach described by Rusch et al. was able to show 

that fatality rates per incident could be obtained from just the text portion of the 

documents [21].  Rusch et al. demonstrated that the AWD text can be modeled into topics 

using LDA and model trees [21].  LDA is a process that was presented by Blei et al. in 

2012 [18].  Although LDA is not limited to text applications, it is very useful for them 

[18, 9, 5, 7].  LDA is a specific version of the broader study of topic modeling, of which 

there are many varieties [4, 7].   

Many studies have been done on LDA, including topic modeling solutions that 

include searching for keywords after LDA preprocessing [11].  Some research used LDA 

for automatically tagging short texts [12, 6, 8].  There was even a study done on using 

LDA for the prevention of data leaks [10].   

In the LDA and model tree approach, the results of the text modeling steps were 

then used to create a model tree that contained partitioned topics and the frequency of 

words used in them.  Figure 3 shows a word cloud that very simply demonstrates how the 

sample report summary from Figure 2 might be split into more and less used words.   
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Figure 3. A sample text summary from the AWD represented as a word cloud, 
demonstrating the LDA method of finding most-used words. 

  

Point Process Modeling 

Point process modeling was used to show that the intensity of conflicts could be 

predicted using spatial and temporal data [17].  Zammit-Mangion et al. demonstrated that 

by looking at data from 2004 to 2009, they could predict conflicts and intensity of 

conflicts for a year after that [17].  Rusch et al. suggested combining the LDA and model 

tree approach with the point-process modeling approach using spatial and temporal data 

as the node model and partitioning the data based on the generated topics [21]. 

Continuing to study these documents may give further insight into the value of the 

tools used for text modeling and statistical analysis.  For example, combining the two 
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methods could potentially improve the accuracy of the PPM model by leveraging the 

quantitative summaries provided by LDA.   

Overview of Latent Dirichlet Allocation 

 Latent Dirichlet Allocation, or LDA, is a probabilistic model.  Blei describes a 

topic to be “a distribution over a fixed vocabulary” [19].  The method works in a few 

steps [18].  First, a number of topics must be supplied to the algorithm.  Then, a set of 

topics is randomly spread over the document set using a Dirichlet distribution.  After that, 

for each word in each document, a topic is chosen from the first step, and a word is 

chosen from the initial distribution [18].  This step is iterative, and the topic structure is 

gradually improved as the algorithm continues over multiple runs.  In this way, the topics 

contained in the document set are discovered without any prior knowledge of what the 

document contained.  “The central computational problem for topic modeling is to use 

the observed documents to infer the hidden topic structure,” describes the study by Blei et 

al. [19].  That is the main idea behind the LDA method, to gather a hidden topic structure.  

This can be considered opposite to a keyword search, where the topic structure is 

considered known and the documents need to be produced.   

 Figure 4 shows a sample run of the code used for the LDA approach described in 

this study, where LDA attempts to select topic labels for each document set.   The LDA 

terms drawn from each topic are listed under the topic number.  In this particular set of 

documents, there was a high volume of documents that discussed the military having 

discovered caches of weapons or ammunition (e.g. topics 4 and 5).  In most of the runs of 

the LDA code on this document subset, there are multiple topics with the term “cach” as 
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the main term, which is most likely due to that word appearing in so many of the report 

summaries.   

 

Figure 4. Sample LDA output, including the terms returned from a single run.  
 

Overview of Latent Semantic Analysis 

Latent Semantic Analysis (LSA) is another topic modeling approach.  LSA 

combines a vector space model with singular value decomposition (SVD).  In LSA, 

tokenization, stop word removal, and stemming are all done prior to creating the 

document-term matrix, where the text is converted into a text matrix, M, which is m x n 

in size.  SVD is then applied to the text matrix, M.  The SVD can be calculated by: 

𝑀 = 𝑈∑𝑉& 

U is an m x n matrix, ∑ is an m x n matrix and V is an n x n matrix.  U and V are 

unitary matrices and ∑ is a diagonal m x n matrix containing the singular values of M.   

In the code used to run the LSA method in this study, k-means was used to cluster 

the documents from the LSASpace, the first k column vectors of the U matrix, into topics.  

This provided us with a list of document numbers corresponding to the topic in which 

they were placed, allowing us to quantitatively compare the LSA results with the LDA 

results.   

Motivation to Compare LDA and LSA 

 Very few text analysis solutions have been used on the AWD in order to extract 

information from the report summaries alone.  In this research, we compared LDA and 
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LSA using a bootstrap statistical method to improve them.  Although the LDA and LSA 

methods have been used separately on other datasets, they have yet to be compared 

against each other while being tested on the AWD.  Therefore, using these particular 

topic modeling algorithms on the AWD dataset is a useful exercise.  LDA was selected 

due to its leverage in other studies on the AWD, in addition to its being a popular topic 

modeling algorithm [21].  LSA was selected due to its having been tested in past studies 

against human selection of topics [14].  

Additionally, none of the previous studies on the AWD discussed ways in which 

LDA and LSA might be modified to gain larger insight into what lies in the 77,000 report 

summaries.  Quantitatively contrasting LDA and LSA utilizing a statistical measurement 

should provide more depth and detail than what researchers uncovered in the past.   
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CHAPTER III 

METHODS 

The research presented here had five primary steps.  The first was to reproduce 

the LDA and model tree approach on the AWD as described by Rusch et al. [21].  The 

second was to write LDA code that clustered 100 pre-labeled documents into five topics.  

Thirdly, an LSA approach was written that created an LSASpace and clustered the 100 

documents into five topics using k-means.  The fourth step in the process was to compare 

the two algorithms by statistically quantifying the topics returned from each one and 

performing post-processing with machine-selected training values.  After those four goals 

were met, further analysis was done.  The fifth step was to run both algorithms again 

using only 10% of the labeled data and discarding the other 90% of the labels.  Using this 

partial labeling technique, it was hoped that the algorithms would still produce a training 

set for post-processing that would improve the performance of LDA and LSA.  

Reproducing the LDA and Model Tree Study 

We reproduced the LDA and model tree approach using source code obtained 

from the authors of the Rusch et al. study [21].  The code contained three phases and was 

written in the R programming language. This code needed several minor edits due to 

updates to the R language since the time it was written.  

The three phases can be summarized as follows.  Phase 1 completed the LDA and 

created a document-term matrix with the raw dataset.  Then, the rows in the AWD that 

did not contain a summary were removed.  Phase 2 removed the word “report” out of 

each report, since all the summaries contained this word.  Then, 100 topics were derived 
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from the dataset, and the 30 most frequent terms from each topic were stored.  Phase 3 

cleaned the data and stored it to a file.  Then, the analysis of the data was done using a 

negative binomial S4 statistics model.  Results were plotted into a tree based on the latent 

topics.   

The source code to create the tree was also written by the authors of the Rusch et 

al. study [21].  The tree combined the topics discovered by LDA using a negative 

binomial model and helped to predict the number of fatalities in the AWD by obtaining 

the ten most frequent terms from the topics and the number of documents that were 

assigned to them.  This approach provided results that predicted the fatalities that 

occurred during the span of the dataset.    

Unfortunately, we were not able to produce the model tree from the raw AWD 

dataset, even though we obtained the source code from the authors.  Final data had been 

saved at some point and allowed the tree to be created, but we were not able to produce it 

by running their full analysis.  This was possibly due to the age of the code and the 

improvements made to the R language, but it appeared there were missing pieces of the 

data and incomplete code fragments in the materials and source code provided by the 

authors.  Therefore, a full rewrite of the code was necessary to perform an LDA analysis 

on the AWD.  The model tree from the Rusch et al. study is shown in Figure 5.   

The deficiency of the Rusch et al. code led to a manual curation of a 100-

document subset of the AWD.  This was done to validate the performance of LDA and 

LSA on the data.   
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Figure 5. Model tree for the combined fatalities, created using a negative binomial 
model.  This figure was recreated for this study with pre-processed data and code 

provided by Rusch et al. [21].  
 

Curating the Dataset 

To analyze how well the LDA and LSA methods were sorting the dataset, a 

random 100-document subset of the Afghan War Diary was first extracted and sorted into 

topics by hand for comparison.  Figure 6 shows a breakdown of the percentages of human 

labeled topics in a pie chart.  We see that 54% of documents fell into one topic and 32% 

into another.      
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Figure 6. Percentage breakdown of human-labeled topic assignments. 

 

The human labeled topics can be summarized as follows: Topic 1 – 

Direct/Indirect Fire, Topic 2 – Cache/Mine/IED Found, Topic 3 – Explosion/Hostile 

Action, Topic 4 – Surveillance/Reconnaissance, and Topic 5 – Propaganda.  This curated 

subset was used as the trusted data against which the remainder of the analysis was 

tested.  LDA and LSA were compared against the topics chosen by hand to review how 

accurately each algorithm was categorizing the report summaries.   

Rewriting the LDA Code 

Beginning with a simple LDA example found online and code fragments from the 

Rusch et al. study, the following LDA method was used for the initial test run of the 

algorithm [21, 22].  Like the original source code from the Rusch et al. paper, the code 
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for this research was written in R.  The code for all analyses included in this paper is 

publicly available online at https://github.com/varali/lda-lsa/.   

The documents were read in from a CSV file, which was drawn from the original 

AWD dataset.  The hand-curated labels were contained in a separate file of two columns: 

a document index that corresponded to each of the 100 documents and a topic number 

from one to five.  Then, the documents were mapped into topics using LDA.  

Joint Distribution Matrices and Mutual Information 

A heat map plot was created for each run of the program in the initial LDA testing 

phase, which showed the confusion of the algorithm between different topics.  The plot 

was generated from a joint probability distribution, which was a matrix of probabilities 

that correlated the machine-selected topic with the human-selected one.  The y-axis of 

this plot corresponded to the expected topic (human-selected) and the x-axis 

corresponded to the topic in which the algorithm placed the document.  The grid was 

initialized to all zeroes, and was incremented for each testing value in the set, at the x-

value for the machine-selected topic number and the y-value for the human-selected topic 

number.  For instance, if the human-selected topic was two and the machine placed the 

document in topic four, the grid was incremented at the location (4, 2).  When all values 

in the set had been incremented in their proper locations, the entire matrix was divided by 

the total number of testing values, creating a joint probability matrix.   

The topics were compared with the original human-labeled topics by passing 

them through a function called cluster_sort() [23].  This function used the median value 

of the indices of the topics to make sure that a difference in the arbitrary topic labels (i.e. 
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1, 2, 3, 4, 5) per run would not constitute a difference in the logical topic in which the 

document was placed.  The cluster sort function is shown in Figure 7.   

 

Figure 7. The cluster_sort() function in R.  From Phillips, Colvin, and Newsam, 
2011 [23]. 

 

The plots were constructed in heat map form, showing by color where exactly 

LDA differed from the human-labeled choices from topic to topic.  Three plots are shown 

in Figures 8-10, one containing a low mutual information (MI) value, one a mid-range 

value, and one a high value.  The colors in the heat maps demonstrate how high the 

probability was for all documents being placed in that topic, and the grid allows the 

machine-selected topic to be correlated with the expected topic.  The legend on the right 

side of the graph shows how the probability values map to the colors.  See Figures 8-10 

for an example of this.   

As for the MI values given at the top of each plot, those were calculated by 

summing the rows and columns of the joint probability distribution matrix, then 

computing the outer product of those vectors. The MI value is achieved by multiplying 

the probabilities from the joint distribution matrix times the log2 of the joint distribution 

matrix divided by the outer product of the marginal probability vector.  The MI value 
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measures the mutual dependence between the human-labeled documents and the 

machine-labeled ones.  The higher the MI value, the better the machine-selected topics 

matched the human-selected topics.  Mutual information can be calculated by the 

following equation, where p(x, y) is the joint probability distribution and p(x) and p(y) are 

the marginal probabilities.   

𝐼 𝑋; 𝑌 = 	 𝑝 𝑥, 𝑦 log3
𝑝(𝑥, 𝑦)
𝑝 𝑥 𝑝(𝑦)

6789∈;

	 

In Figures 8-10, a perfect match between the machine- and human-labeled choices 

would be that all high-value color blocks fall on the upward diagonal of the chart, where 

topic one meets one, two meets two, etc.  This scenario would also produce the highest 

MI. 

 

Figure 8. LDA cluster assignment joint probability distribution function for a mutual 
information value of 0.255979.  
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Figure 9. LDA cluster assignment joint probability distribution function for a mutual 
information value of 0.718642. 

 

 

Figure 10. LDA cluster assignment joint probability distribution function for a mutual 
information value of 0.944925.   
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For the plot in Figure 8 with the mutual information value of 0.26, the LDA 

algorithm aligned with the expected topic decently well for topic one.  For the other 

topics, however, LDA misclassified nearly all documents, and did not classify anything 

correctly for topics three, four, and five.  For topic three in particular, LDA put all of 

them in topic two.  Looking back at the pie chart of manually labeled data (Figure 6), we 

see that topics three, four and five comprise only 3%, 5%, and 6% respectively, so it 

could be that these topics are data starved, which is why the algorithm did not do well in 

classifying them.   

For the plot in Figure 9 with the mutual information of 0.72, LDA did better, as 

evidenced by the upward diagonal of blue boxes.  In this run, it put some of the right 

documents into each topic, but it also did not accurately classify most documents that 

should have been in topic two.   

For the plot in Figure 10 with the highest mutual information value in this set, the 

value of 0.94, the algorithm was quite accurate in classifying the documents in topic one 

and some of the documents in topic two, but did not do very well in the other topics.  

LDA continued to do badly when it came to putting documents into other topics when 

they should have been classified in topic two.       

As evidenced above, the confusion matrix provided a lot more information about 

how LDA was classifying the documents.  With better mutual information values, the 

image plots tended to look cleaner and have simpler explanations on what went wrong 

when the algorithm was run.  Mutual information values were used to map how well the 

algorithm was doing, while the heat map plots visualize how confused the algorithm was 

against the curated topics.   
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Calibrating the LDA Algorithm 

After the LDA code was written, the alpha value in the LDA function was 

adjusted and the mutual information value for each alpha was plotted.  The alpha value is 

a free parameter that controls the smoothness of the topic-term distributions, and must be 

fit based on performance criteria independently for every dataset.  It was shown that for 

this dataset, the MI value peaked around the alpha values 5 and 50.  A plot is shown 

below of the alpha values at each exponential step of 10, where the values are peaking at 

5 and 50.  Near the 5 and 50 marks, where the algorithm did better, additional values of 

alpha were sampled to see if there were better MI values to be gained near those alphas.  

We chose to leave the alpha value at 50, since that seemed to be the optimal value for the 

AWD dataset.  

 

Figure 11. The alpha values of LDA on 100 documents of the AWD during the initial 
study of the LDA algorithm.     
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Training Set Optimization 

Since so few of the AWD reports were used (100 out of 77,000), the algorithm 

was run 10,000 times to obtain a median MI value for each document.  Running the 

algorithm so many times helped to make certain the median value would be accurate for 

all documents since training/testing sets were chosen from a random sample each time.     

For each run of the algorithm, a sample of 50 random documents was taken to be 

used for training, while the rest were used in the test set.  In the following example, 50 

training documents and 50 testing documents were used.  The R posterior() function was 

used to predict the topics for the test set after the algorithm was trained using the lda() 

function.  This function calculated the probability that a test document should be in a 

certain topic given the prior data that was used for training.   

Every time a document was used in the test set, its MI value was calculated and 

appended to the end of a vector of 100 lists.  For this training/testing slice of 50/50, at the 

program's end, there was a list of approximately 5,000 LDA MI values for each AWD 

report in the subset.  This information was recorded so that the results would show the 

median MI value for each document, as well as a distribution of the MI values for each.  

Figure 12 shows a diagram of the data structure created, and Figure 13 shows a code 

output example of part of the MI vector.   
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Figure 12. A diagram of the data structure used to contain the MI values for each 
document.   

 

 

Figure 13. A portion of the MI vector that was used to obtain medians for each document 
in the AWD subset.   

 

Once the data structure of each document’s MI values was obtained, the median 

was computed for each document.  This list of medians was sorted from greatest to least 
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and the documents with the lowest median values were selected as the training set that 

performed the best.  This was based on the logic that whenever those documents were not 

in the test set, the mutual information values were higher on average, therefore those 

documents must be better for training.  These selected training documents were used in 

the post processing step to attempt to get a higher MI.  Figure 14 contains box plots that 

show the distribution of medians across the 50 testing documents that were used.  This 

figure provides a visualization of how a distribution of MI values across 10,000 runs 

might result in a median MI value that could be used to gauge how well the document 

performed for training.   

The post processing step utilized the same code, but it only needed to be run once.  

Instead of taking a random sample of 50 documents for training, only the 50 documents 

with the lowest mutual information values were used.   

The dataset was then sliced into different training and testing sections.  The slices 

were 10 training, 90 testing; 25 training, 75 testing; 50 training, 50 testing, 75 training, 25 

testing; and 90 training, 10 testing.  For each slice, the pre-processing step of 10,000 runs 

was done, then the post-processing step was done, where the lowest mutual information 

values that came from the testing data were used for training in the post-processing step.  

In general, the number of training documents that were used in the statistical analysis step 

were also used in the post-processing step.  For example, if ten training values were used 

in the initial statistical analysis step of 10,000 runs, the ten documents with the lowest 

medians were taken to be used in training for the post-processing step. 
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Figure 14. LDA mutual information boxplots for 50 testing documents.  

 

LDA Partial Labeling 

 The semi-supervised step for LDA required the following changes to the original 

LDA statistical analysis code.  Before the loop which ran through the algorithm 10,000 

times, we drew a random “labeled” sample from the data.  Even though all the data was 

technically labeled, the 10 random samples we drew were the only labels used to 

compute MI during each run.  We took the sample before the looping began to simulate a 

real life experience, where in a large dataset, a human would desire to label as few 

documents as possible.  Taking the sample at the beginning ensured that we only counted 

the labels for exactly ten percent of the data.   
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 The next consideration was to make sure that there was an adequate number of 

labeled test documents.  Since only 10 out of 100 documents were labeled and for certain 

training/testing slices only 10 testing documents selected, it was necessary to check that 

at least two of the documents in the resulting test set were “labeled”.  This was due to the 

fact that if there was only one testing document selected that was “labeled”, it would 

either be in the correct topic or it would not be, completely skewing the MI value.  When 

a run of the code produced a set where less than two of the testing documents were 

“labeled”, we simply skipped this run and calculated a new random sample of 

training/testing documents.   

 Aside from considering the case where only one testing document was “labeled”, 

the partial labeling step was nearly identical to the statistical analysis step from above.  

We ran the LDA algorithm 10,000 times, taking a joint distribution matrix plot and an MI 

value each time.  The difference was in the fact that when the cluster_sort() function was 

run, we only considered the documents that were in the “labeled” set.  If a testing 

document was analyzed, but not in the labeled set, we assigned the MI value that was 

computed for only the documents that were in the testing set and also marked as labeled.  

For this semi-supervised approach, it was important that we run the LDA algorithm 

10,000 times to be certain that the median values evened out if there were any singular 

discrepancies in the MI values assigned to testing documents that were not in the labeled 

set.   
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Implementing Latent Semantic Analysis  

Aside from the differences in the two algorithms, nearly the same path was 

followed as was used for LDA to get the LSA method results.  First, an initial run of LSA 

was done to test the algorithm.  Since LSA doesn't have any parameters (e.g. alpha in 

LDA) to adjust, the only parameters that were analyzed were the ones that affected the k-

means function.  For this, the seed was set to zero using set.seed(0) in R, then the number 

of starts was set to ten.  The number of starts was set to ten because during initial testing, 

this was the lowest value where the same cluster assignments were produced for the same 

slice of training and testing documents.   

The goal for LSA was to return the same type of output that was returned from the 

LDA algorithm, which was why k-means was used for clustering.  This allowed us to get 

the text data returned in the LSASpace clustered into topics, with 50 random reports 

chosen for training each time and the rest of the documents being placed in the test set.   

The R fold_in() function was used to calculate the topics for the test set after the 

LSASpace was created using the training set.  Folding in is typically used in the LSA 

method in R to map additional documents (i.e. testing documents) into an existing 

LSASpace after SVD has been done on the training set.   

Initially, the document-term matrix was created using all the documents and split 

into training and testing just prior to the lsa() step being done.  This was to assure that all 

the terms from both the testing and training sets were mapped into the LSASpace.  After 

splitting the document-term matrix into training and testing sets and running the lsa() 

function, fold_in() was used to apply the testing set to the SVD done on the training set.  
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The two spaces were then mapped back into the same LSASpace at the index where they 

originally fell in the document-term matrix.  This method is illustrated on a high level in 

Figure 15.   

 

Figure 15. Fold_in() function overview.   

 

 Figure 16 shows a snippet of the output LSA produces.  This snippet is a few 

rows of a single column, or document, returned after the LSASpace was created.  The 

weight of each element in the figure below corresponds to the number of times it 

appeared in the document.  What can also be seen in Figure 15 is the stemming of the 

words.  For instance, the word “locat” below could mean that “locate”, “locating”, or 

“located” appeared in the LSASpace.    
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Figure 16. An excerpt of LSA output from one run of the algorithm.   
 

 Then, a distance matrix was computed from a text matrix version of the 

LSASpace, and weighting was done using the R function cmdscale().  This function 

returned a points matrix of five columns, where the rows contain coordinates of the 

points representing similarities in the data.  This matrix was put into the k-means 

clustering function, which returned a list of documents corresponding to the topics in 

which they were placed.   

The topics were then put into the cluster_sort() function to ensure the topics 

would not vary solely due to different topic values assigned.  For example, the topic 

numbers (1, 2, 3, 4, 5) would be assigned at random, so there was no guarantee the same 

logical topic would be assigned the same topic number each time.  See Figure 7 for the 

code for cluster_sort().   

The joint distribution matrix plots for the LSA algorithm were created as 

described above for LDA (see Figures 8-10).  
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LSA Partial Labeling 

 When completing the LSA partial labeling code, it was necessary to ensure that 

the randomly selected testing data contained at least two instances of “labeled” data, 

identical to the method explained in the LDA section above.  For LDA, the probability 

that the testing documents selected would be in different topics was high, since LDA 

tended to choose varied topic assignments.  For LSA, however, this was not the case.  

LSA tended to group most of the documents into one topic, only assigning a few 

documents (usually 4 out of 100) to the other topics.  Therefore, the testing documents 

that were considered “labeled” and fell into the randomly selected test set needed to be 

checked to make sure they were also in different topics.  Frequently, all of the testing 

documents that were in the “labeled” set were all in the same topic assignment, so those 

were skipped and a new random selection was calculated.   

 In all other ways, the LSA partial labeling code mirrored the method that was 

done in the LDA partial labeling code.  The MI values were calculated only from the 

human-labeled set that were included both in the randomly selected testing set and in the 

preselected labeled set that was done at program start.  Whatever value of MI that was 

computed for those was applied to all items in the testing set.  It was hoped that over 

10,000 runs, enough MI values would be calculated for each document that the overall 

median would be accurate.     
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Comparing the Two Algorithms  

Figure 17 contains the broad program logic that was used for both LDA and LSA.  

This was considered to be the statistical analysis step.  The number of iterations was 

always set to 10,000.    

 

Figure 17. Program logic for calculating mutual information medians for LDA and LSA.  

 

As an overview, after the 10,000 runs of each algorithm were complete, the 

documents with lower mutual information values were considered to be better training 

documents, since the mutual information values were higher when they were used for 

training.  With this information, a training set of the best documents were used to do one 
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final run of each algorithm.  The median value from this run was put over a boxplot of 

the 100 previous median values to gauge performance of the post processing step.   

The two algorithms were simple to compare, due to the fact that a single mutual 

information value was returned for both.  A higher mutual information value meant a 

better result when each algorithm was compared to the human-labeled data.  In addition 

to viewing the MI value, each algorithm output a heat map plot for each run of the 

program, showing a five by five grid of the human-labeled data versus the machine-

labeled data (see Figures 8-10).   
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CHAPTER IV 

RESULTS 

 The method behind the approach used in this study yielded definitive results.  For 

each run of the post-processing step for both LDA and LSA, the MI value was higher 

than in the statistical analysis step that preceded it.  In the semi-supervised approach that 

followed, this held true as well.  A short overview of the results follows.     

The full method consisted of analysis on 100 randomly selected documents out of 

approximately 77,000 reports from the AWD.  The 100 report subset was curated by 

hand, each document being placed into one of five topics.  The statistical analysis step 

was done using all the labels, and median values of MI were gathered.  The post-

processing step proved that the MI value over 10,000 runs of the algorithm improved 

using training documents selected during the statistical analysis step.   

 The semi-supervised step used only ten percent of the human labels.  Mutual 

information values were assigned by the algorithm to the testing documents, but only 

using the ten labels that were pre-selected randomly before the beginning of the program 

run.  The post-processing step showed that the MI value rose using only ten percent of 

the human labels.  Using two separate topic modeling algorithms, LDA and LSA, with 

the semi-supervised approach, we were able to show that having a human partially label 

ten percent of the AWD subset gained significant improvement in MI.   

 Figure 18 shows a line plot comparing LDA and LSA median MI values during 

the statistical analysis steps and the post-processing steps when all 100 of the labels were 

used.  The plot shows that median MI values using the statistically selected training 
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documents were always higher.  The post-processing MI medians can be seen in the plot 

below by viewing the blue line for LDA and the green line for LSA.   

 

Figure 18. Line plot of LDA and LSA median mutual information values during 
statistical analysis and post-processing with training sets of 10, 25, 50, 75, and 90 

documents.   

 

 Examining the median values on the line plots in Figure 18 yields the following 

conclusions.  Both algorithms undoubtedly performed better when the 90-slice of training 

values was used.  LDA in particular had very predictable results with regard to the 

median value rising as more training values were utilized.  LSA had a dip between the 10 

and 25 slices and the line chart resembles a U-curve. After passing the 50-slice of training 

data, the median for LSA began to rise again to peak at the 90 slice.    
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 When compared to each other, we see that initially, LSA performed better than 

LDA, viewing the orange and green LSA lines in Figure 18.  This is likely due to the fact 

that when examining the actual topic assignments LSA produced, we saw that LSA 

almost always grouped every item into one topic, only assigning a few documents into 

the remaining topics.  When compared against the human labeled topic assignments, this 

aligns moderately well.  

Looking back at the pie chart of hand-curated topics (see Figure 6), we recall that 

most of the documents fell into topics one and two.  If LSA confused the wording in 

topics one and two, putting the two groups together, this is highly likely the reason that 

LSA achieved such a high mutual information value for the 10-slice training set.   

LDA in particular had a high rate of change between the statistical analysis step 

and the post-processing step, suggesting it benefitted more greatly from the statistical 

bootstrapping than did LSA.  Figure 19 shows the improvement in MI in the two steps for 

each algorithm.   

Regardless of how LDA and LSA performed against one another, the most 

important result to consider is how they performed against themselves in the semi-

supervised statistical analysis step versus the post-processing step.  There was not a 

single case where the post-processing step did not outperform the statistical pre-analysis.  

This makes the case that selecting the best training data via quantitative mutual 

information values is a viable way to improve performance in these two algorithms.   
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Figure 19. Improvement between statistical analysis phase and post-processing phase for 
LDA and LSA.  

 

For the semi-supervised step, LDA and LSA individually performed better than 

they had in the partially labeled statistical analysis step, suggesting that using only some 

of the labels for these algorithms provides performance much like using all of the labels.  

Figure 20 compares LDA and LSA in the partial labeling step versus its post-processing.  

It is worthwhile to note that the training slices for LSA do not follow the pattern 

established in the previous plots, as only training slices of 10, 25, 50, and 75 are present.  

The 90 training slice has been left out due to the way in which LSA tended to categorize 

the documents.  Since LSA always grouped almost all documents into the same topic 

when running the statistical analysis step, it was nearly impossible to generate a sample 

of ten testing documents that were in two different topics, which was needed when 
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calculating MI.  LSA needed to frequently resample to find such a state, making it 

extremely time consuming to run.  In 24 hours, LSA had completed less than 100 runs of 

the needed 10,000.  For this reason, the 90 training slice for the LSA partial labeling step 

was not completed.   

It is also worthwhile to compare the results from Figure 18 with Figure 20.  The 

fully-labeled analysis (Figure 18) greatly outperformed the partially-labeled analysis 

(Figure 20).  This is to be expected, as the algorithm is functioning with only ten percent 

of the information in the semi-supervised step as it had in the fully-labeled step.   

 

Figure 20. Line plot of LDA and LSA median mutual information values in the partial 
labeling and post processing stages.  
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We also show a bar chart below in Figure 21 of the improvement in LDA and 

LSA MI values when run in the post-processing step versus a semi-supervised statistical 

analysis that used only 10% of the labels.  As a reminder, the 90 training slice for LSA is 

not present due to the exorbitant length of time that slice required to run.  We see again 

that LDA seemed to benefit more greatly than LSA by the used of this approach.   

 

Figure 21. Improvement between statistical analysis phase and post-processing phase for 
LDA and LSA during the partial labeling step. 

 

Figure 22 shows the results in boxplot form.  These boxplots demonstrate that the 

one run done with the training values selected from the partially labeled 10,000 runs has a 

median value much greater than any value from the statistical analysis step.  The red dot 

is the MI value from the post-processing run using the training values from the statistical 
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analysis step of partially labeled values.  Boxplots of LDA and LSA for each slice of 

training/testing sets are shown, except for the LSA 90/10 training/testing slice, which 

took too long to run.   

These plots demonstrate the rarity of randomly sampling to get a set of training 

documents that produces a high MI value for the 100-document subset.  Even the outliers 

from each set of values usually do not approach the MI value for the post-processing 

represented by the red dot.  Only in the 25 training slice of LSA does the MI value from 

the post-processing step come close to the highest outlier in the median MI values from 

the statistical analysis step.   

The boxplots in Figure 22 were generated by taking the median MI for each 

document in the statistical analysis step.  That means they are generated using 100 values 

each, whereas the red dot is the single MI value obtained from the post-processing step.   

 

Figure 22. LDA and LSA partial labeling box plots for all sample training/testing sets.  
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CHAPTER V 

DISCUSSION 

 Statistical analysis is common among supervised machine learning algorithms, but 

in the past has not frequently been able to be used for unsupervised algorithms such as 

LDA and LSA.  This is due to the difficulty in figuring out a quantitative method by 

which unsupervised algorithms can be measured.  Our results have shown promise using 

a semi-supervised approach.  By statistically analyzing the data in the AWD, we have 

shown that mutual information values get higher when just ten percent of the data is 

labeled by humans.  The human labeled data is used as the measure by which the 

unsupervised algorithms are calibrated and training set optimization allows the 

algorithms to perform in as human-like a manner as possible.   

 We have shown that this method is effective on two different text modeling 

algorithms, LDA and LSA.  Both of these methods have been proven in prior research to 

be useful for categorizing unsorted and non-curated data when using them in their 

natural, unsupervised states.  We have used both of them in a semi-supervised way to 

attempt to improve upon their performance.   

 LDA seemed to benefit more greatly from the semi-supervised approach.  Since it 

initially put the documents into more varied topics, we suspect that it was able to better 

hone in on which topics were more accurate after the better training documents were 

gathered together.  Since LSA tended to group most of the documents into one topic, it 

had less room to improve.   

 LSA initially had higher MI values, but they did not rise greatly as more and better 

training documents were selected.  The MI values did rise consistently after the post-



41	

	

processing step, but at a less steep rate than LDA.  This is likely due to the fact that LSA 

was often categorizing most of the documents into the same topic.  However, the LSA 

also benefitted from the training data being filtered into which documents produced 

higher MI values.     

 This work should improve the methods used by journalists in the way that data 

from data leaks is analyzed and given to the public.  By allowing a data scientist to use 

unsupervised machine learning algorithms such as LDA and LSA in a semi-supervised 

way, more information might be gleaned from the results of the topic modeling.  

Combining human curation of datasets with machine learning methods and tracking the 

results with statistical analysis provides a way to monitor how well previously 

unsupervised algorithms are sorting the data.   

 A drawback of this technique is that having humans pre-label the data gives the 

potential for the data to be mislabeled.  Any mislabeling of the data at the beginning of 

the program run would skew the pruning of the algorithm, providing erroneous results.    

 In the future, we would like to compare LDA and LSA to a null model to see how 

well they are doing against topics that are randomly sorted instead of comparing them to 

human sorted documents.  This has the potential to validate that the algorithms are 

categorizing reports as a human would since performance on randomized data is, by 

contrast, hypothesized to be completely random as well.   

 In addition, it might be helpful to change the number of topics we ask the 

algorithms to use.  In particular, the fact that LSA mainly put the documents into one 

topic each time could mean one of two things.  It could mean that the documents use 

similar wording and LSA is accurately putting them into topics, just too broadly.  It also 
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could mean LSA needs to be told to use more topics, therefore increasing the granularity 

of the clustering. 

 Due to the massive amount of report summaries included in the AWD, it was quite 

difficult to run this analysis on the full dataset.  With enough time, however, it would be 

interesting to curate ten percent of the entire dataset, approximately 7000 reports, and let 

the analysis run with all of the data to verify that the method holds true.  That would most 

likely entail adding more topics, as it is not presumed that the 77,000 records contain 

only the five topics discussed in this study.   

 Future work could also include combining the LDA method with point process 

modeling for a predictive approach to the data contained in the AWD.  The point process 

modeling approach was able to track intensity of conflict in space and time, so choosing 

LDA documents that increased the effectiveness of the geospatial and temporal analysis 

might glean some interesting results.  That could be done using the semi-supervised 

method in this study to filter the training data by documents that were shown to be better 

at clustering documents based on a certain attribute that was determined to be helpful for 

the point process method.  

 Another method of combining the two methods would be to access some 

quantitative data generated by the LDA step, such as the partitioned topics and add them 

to the PP modeling approach.  For instance, the PP modeling was done by finding the 

distance to each city that was listed as a latitude and longitude point, then mapping the 

intensity to that location.  Having information included from the LDA step would also 

make this process more precise, since modeling the topics in advance gave more details 

about the type of fatality that occurred in most instances.   
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