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ABSTRACT

Chimeric antigen receptor T cells (CAR T-cells) immunotherapy has been successful in the

treatment of liquid cancers. Currently, CAR T-cells immunotherapy has been investigated

for treatment of solid tumors, including glioblastoma (GBM) (brain cancers). Glioma cells

with CD70 expression antigen have been identified as a novel potential CAR T target for

glioma. Growing evidence from preclinical studies demonstrated that CD70 CAR T-cells

can induce potent antitumor response in xenograft and syngeneic models without adverse

effects. However, better understanding of the mechanism of CD70 specific CAR T therapy

against GBM in immunosuppressive tumor microenvironment requires improving its efficacy.

We propose two types of Mathematical models, one is a system of ordinary differential equa-

tions (ODEs) and the other is a system of fractional order ordinary differential equations

(FODEs) to explore the kinetics of CAR T-cells killing glioma. Although, the ODE model

provides very good results with mouse specific CAR T-cells (mCAR T) and human specific

CAR T-cells (hCAR T) immunotherapy against glioma in animal models, the cells memory

structure becomes significant which the ODE model does take into consideration. The frac-

tional order differential equations model addresses the cell memory structure. The fractional

order differential model shows very encouraging results for CAR T immunotherapy against

glioma. Computer simulations based on the models using Python and MATLAB program-

ming languages were used to quantify the anti-tumor efficacy of CD70 specific CAR T-cells

against gliomas in xenograft and syngeneic mouse models presented in preclinical studies.

The models suggests that the success of CAR T-cells treatment depends on individual tumor,

tumor growth rate, CD70 level of expression and dose of the treatment.
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CHAPTER 1

INTRODUCTION

Chimeric antigen receptor T cells (CAR-T cells) therapy is a novel cell-based immunother-

apy, in which T cells are genetically engineered to produce receptors on their surface to

identify tumor specific antigens. CAR-T cell therapy has shown promising results in liquid

cancers (hematologic), but success of CAR T cell therapy in treating solid tumors such as

glioblastoma (GBM), a highly aggressive form of primary brain cancer has been limited.

CAR T therapy in solid tumors is encountered by numerous challenges, including fewer ideal

tumor targets, immunosuppressive tumor microenvironment (TME), tumor heterogeneity,

and minimal migration and persistence of CAR T-cells within the tumors. Growing ev-

idence from new studies suggests that antigen CD70, a member of tumor necrosis factor

(TNF) receptor super-family, has been emerging as a novel target of CAR T-cell therapy for

gliomas. In the study, Ge et al [19] found that CD70 expression only on glioma cells and not

on normal brain tissue in primary and recurrent GBMs. Jin et al [22] reported that CD70

expression is linked with poor survival of malignant gliomas and which may associate with its

direct involvement in glioma chemokine productions and selective induction of CD8+ T-cells

death. They further demonstrated that targeting CD70-positive tumors with CAR T-cells

induces a potent antitumor response in xenograft and syngeneic models without adverse ef-

fects. Therefore, their data supported that CD70 is a good target for analyzing CAR-T cell

therapy against gliomas. Thus, constructing a mathematical model of CD70 targeted CAR-

T cells against tumor cells and its tumor microenvironment (TME) provide better analytical

framework for understanding, quantifying and predicting dynamics of CD70 CAR T-cells



2

killing glioma. In this work, we attempted to investigate the CD70-specific CAR T-cells

generate potent anti-tumor response against CD70+ gliomas in xenograft, and syngeneic

animal models using system of ordinary differential equations (ODE) and fractional order

ordinary differential equation (FODE) models. The mathematical models (ODE and FODE)

focus on interaction between glioma cells, CD70 CAR T-cells, memory-T cells, macrophages,

TGFβ (immune inhibiting factor), and IFNγ (immune stimulating factor) . The mathemat-

ical models developed here are built based on the data presented in [22,23] and the structure

of the mathematical models presented here are built based on the model presented in [3,39].

The proposed fractional order ordinary differential mathematical model is studied in terms

of Caputo fractional derivative due to its properties of non-locality and history or memory

containing information. The integer-order derivative is a local operator; hence it is unsuit-

able in the situation where the problems involve memory and hereditary complex natural

phenomena. On the contrary, a fractional derivative has an integral representation which

is global phenomena, so it manages to consider these memory and hereditary effects. Frac-

tional calculus is a powerful tool to describe the memory and hereditary properties of the

complex natural phenomena. The well-known Riemann-Liouville [51], Grunwald-Letnikov

and Caputo operators [6] have been successfully used to model the anomalous structures in

many real-world applications. Note that the characteristic property of differential equations

(classical and fractional) is the need of specified initial or boundary conditions to guar-

antee the uniqueness of the solutions. In this sense, Caputo fractional derivative is more

preferred than the Riemann-Liouville because it leads to physically interpretable initial con-

ditions. Adam-Bashforth-Moulton (ABM) type predictor-corrector scheme [14] is one of the

basic methods for solving fractional derivatives and it has an important place in the Caputo
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derivative because the initial conditions are required. For this purpose, we apply the ABM

algorithm and illustrate the results by graphics and give stability analysis of treatment free

and fixed points of the model.

We perform Sobol’s sensitivity analysis to identify the critical parameters that drive the

model output linking to glioma cells dynamics. We estimate the model parameters and

validate our model using data provided by [2, 3], in which human and mouse CD70-specific

CAR T-cells are tested respectively against human primary GBMs and murine glioma lines.

The dynamics of the models and some model parameters values are estimated from the data

presented in the publications [22], [23]. Simulations of the model also captures the dynamics

of other immune system components of our model such as Memory T-cells, macrophages,

IFNγ and TGFβ with various CAR T-cells dosages. We simulated the model with three

different CAR T-cells dosages, small, medium and maximum against glioma lines considering

two scenarios, one with three different human CD70 CAR T dosages against U87 glioma

lines and another with the three different murine-derived CD70 CAR T dosages against

KR70 glioma lines using data presented based on a published article from literature [22].

For both cases, our simulated results show that small dosages of CD70 CAR T-cells is not

able to eliminate the tumor burden. However, medium and large dosage of CAR T-cells

dosage inhibits the tumor burden completely. These simulation results obtained using ODE

and FODE models inline with the results which Jin et al [22] obtained in their preclinical

studies. Bifurcation analysis shows that models exhibit bi-stability where the CAR T-cells

threshold dosage exists. If the dosage is above or below the threshold drives the dynamics

of glioma in two states. Complete regression or lethal.

This work is assembled as follows: In Chapter 2, we describe the ODE model development
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and its biological significance and the quantitative analysis of ODE model involving positiv-

ity, boundness, equilibrium points and stability analysis. Chapter 3 consists of the derivation

of the fractional order differential equation depicting the interaction between glioma cells and

engineered immune system CAR T-cells involves Caputo fractional derivative. It will be fol-

lowed by the stability analysis of the system of fractional differential equations and fitting

model to animal data. In Chapter 4, we explore the sensitivity analysis by performing Sobol’s

sensitivity analysis method to identify the parameters that have the greatest impact on the

model output. Chapter 5 deals with the results, analysis and numerical simulations. Finally,

We conclude by presenting the detailed discussion of this work and suggesting directions for

future research in Chapter 6.
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CHAPTER 2

ORDINARY DIFFERENTIAL EQUATION MODEL (ODE MODEL)

2.1 Published preclinical data

In [22], 5×104 U87.Luc cancer cells were inoculated into the brain of NSG-B2m mice (immun-

odeficient laboratory mice). Seven days after tumor inoculation, various doses (105, 106, 107

cells per mouse of 8 mice per group) of CD70-specific human CAR T-cells (hCAR T-cells)

or control T cells (CTRL or NT T cells (Peripheral Blood Mononuclear Cells (PBMCs) from

a healthy donor were adoptively transferred into tumor-bearing NSG-B2m mice. The mice

were imaged to monitor tumor growth. They demonstrated that results depend on type

of T cells and T cells dose. They reported that complete tumor regressions were observed

in KR70-C tumor-bearing mice 17 days after tumor implantation. Significantly prolonged

survival was observed in the CAR T treated group of KR70-B tumor-bearing mice compared

with the NT T cells treated group, and 38% of the mice were cured by CAR T-cells.

In [22], due to the heterogeneous nature of gliomas, two types of models were used in

the study, groups of 6–8 weeks C57BL/6J (the most widely used inbred strain of laboratory

mice) mice (10 per group) were inoculated with 1× 105 KR70 tumor cells derived from

(i) A single clone of a CD70+ glioma cell line, KR70-C,

(ii) Nonselective bulk CD70-expressing tumors, KR70-B, which expressed various levels of

CD70 ( 70% positivity for CD70).

Then (1×107) NT or mCAR T-cells were adoptively transferred on days 5 and 7 post tumor

implantation. They observed complete tumor regressions in KR70-C tumor-bearing mice 17
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days after tumor implantation and significantly prolonged survival in the CAR T treated

group of KR70-B tumor-bearing mice compared with the NT T cell treated group.

2.2 Model development (ODE model)

In this chapter, we propose a six-compartment mathematical model using ordinary differen-

tial equations, in which we investigate the interactions between populations of glioma with

CD70 expression, effector CAR T-cells (which we just call them CAR T-cells), memory CAR

T-cells, macrophages, IFNγ(immune stimulating factor) and TGFβ (immune inhibiting fac-

tor). The mathematical model focuses on CD70 specific CAR T-cell therapy against glioma

cells with the aim to simulate and evaluate different therapeutic scenarios. We use mouse

CAR T-cells data in animal models from the experiment studies by Jin et al. [22] to calibrate

and validate our proposed models.

Either population of CD70 CAR T from mice or human is denoted by CT . The population

of memory CAR T-cells is denoted by CM and the population of glioma cells is denoted by

G. The population of macrophages is denoted by M . Concentration of immune stimulating

factor (IFNγ) and concentration of immune inhibiting factor (TGFβ) are denoted by Iγ and

Tβ respectively.

In order to make useful suggestions about potential treatment plans, we require our model

to meet reasonable biological assumptions. We make the following biological assumptions:

1. The Glioma cells growth is logistic without an immune response.

2. Upon contact, CAR T-cells kill glioma cells. In [22], data support that tumor recogni-

tion of gliomas by human and mouse CD70 CAR T-cells by IFNγ release and cytotoxic
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killing. They found out that irradiation enhances tumor CD70 expression and CAR T-

cells recognition. In our model, we introduce a parameter which scales this recognition

of tumor cells by CAR T-cells.

3. CAR T-cells will eventually become inactivated after some number of encounters with

glioma cells. CAR T-cells may be stimulated to proliferate upon contact with glioma

cells [2,28]. In [32,40], it is shown that CAR T-cells are not detected on blood exami-

nation after tumor elimination.

4. Memory CAR T-cells are converted to CAR T-cells after contact with tumor cells.

5. CAR T-cells are converted into memory T-cells at a certain constant rate upon reduc-

tion of glioma cells.

6. CAR T-cells are inhibited by glioma cells.

7. Memory T-cells have a death rate much smaller than that of CAR T-cells.

Next, we model how CAR T-cells hunt and kill glioma cells.

2.3 Tumor-cell lysis by CAR T-cells

The nonlinear fractional kill rate of glioma cells (G) by CAR T (CT ) cells which is based on

the fractional killing of tumor by CD8+ T cells introduced by De Philis et al [11] is given

by

D(CT , G)G =

(
d(CT

G
)l

s+ (CT

G
)l

)
G. (1)

Where, parameter d represents saturation level of fractional glioma cells killing by CAR

T-cells, and parameter s represents the steepness coefficient of the glioma- CAR T-cells
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competition term.

The above equation is equivalent to the equation below

D(CT , G)G =
dC l

TG

sGl + C l
T

. (2)

When l = 1, D(CT , G)G becomes the ratio dependent functional response, which is often

used in predator-prey models [49]. In this work, we used a more general functional form,

Beddington- DeAngelis functional response [4, 9] which cooperates search time. The search

time parameter is the time it takes for CAR T-cells to kill glioma cells. Generalized Bed-

dington–DeAngelis functional response of CT killing of glioma cells is given by,

D(w,CT , G) =
dC l

T

(w + sGl + C l
T )

, (3)

where w is related to the search time. When the search time is negligible (w = 0), Bedding-

ton–DeAngelis functional response becomes ratio dependent functional response.

2.4 ODE model

2.4.1 Dynamics of Glioma cells (G)

Next, we model the dynamics of glioma cells with CAR T-cells treatment and the role of

macrophages play in killing glioma cells. Combining all the assumptions from above, the

dynamics of glioma cells is given by

dG

dt
= rG

(
1− G

KG

)
−
(

1

e1/(γ dosage) + Tβ

)
D(w,CT , G)G−

(
α11

e1/(γ dosage) + Tβ

)(
G

G+ k1

)
M,

(4)



9

where,

D(w,CT , G) =
dC l

T

(w + sGl + C l
T )

.

We assume logistic growth pattern for glioma cells with intrinsic growth rate of r and car-

rying capacity of KG. The logistic growth given by the first term of the Equation (4). The

second term of the Equation (4) represents the CT induced glioma cells death. The pa-

rameter γ scales the CD70 expression of glioma cells. Small value of γ implies that glioma

cells have less CD70 expression. The expression 1/ (e1/γ dosage+ Tβ) of Equation (4) rep-

resents the immunosuppressive factor for the activity of CAR T-cells, e1 being the Michaelis

constant. D(w,CT , G) is the generalized Beddington–DeAngelis functional response of CT

killing of glioma cells. Third term of the Equation (4) represents the killing of glioma cells

by macrophages with rate of α11 and half saturation constant of k1. 1/ (e1/γ dosage+ Tβ)

represents the immunosuppressive factor for the activity of macrophages.

2.4.2 Dynamics of CAR T-cells (CT )

We model dynamics of CAR T-cells as follows:

dCT

dt
= αD

(
D(w,CT , G)2G2

K +D(w,CT , G)2G2

)
CT − αMCT + θMGCM − αGCT − µTCT . (5)

First term of the Equation (5) represents the recruitment of the CD70 specific CAR T-cells

by tumor cells. This is a modified Michaelis-Menten term, commonly used in tumor models

to govern cells-cells interactions [10, 26, 27]. The degree of the recruitment term is 2, this is

the simplest form of the equation best fitting the data provided in [13]. This assumption may

not fit our data, hence contributes to the weakness of our model. CAR T-cells differentiate
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at the rate αM into memory T-cells, which are assumed to provide long lasting protection to

the specific glioma/CD70antigen. This means in any future time in which memory T-cells

come into contact with tumor cells CD70 expression, memory T-cells are rapidly converted

into CD70 CAR T-cells, readily activated to prevent tumor progression, such mechanism

is modeled by the term θMGCM . Finally, we want our model to reflect the exhaustion or

limited activation of CAR T-cells resulting from interaction with a cancer cell [46]. A smaller

value of the parameter α indicates exhaustion or limited activation of CAR T-cells resulting

from interaction with cancer cells. The large values of α represents on average exhaustion

and hypo-activation of CAR T-cells, It is not modeled individually. The last term of the

Equation (5) shows degradation of CAR T-cells with rate of µT .

2.4.3 Dynamics of memory CAR T-cells (CM)

The memory CAR T-cells are modelled by the following equation

dCM

dt
= ϵαMCT − θMGCM − µMCM . (6)

Memory T-cells CM form the immunological memory, a key dynamic of the adaptive

immune system [8,45]. The first term of the Equation (6) represents differentiation of CAR

T-cells at a rate of ϵαM to memory T-cells where αM is rate of differentiation of CT in to

CM . Since different CT cells have different rate of differentiation in to CM which is repre-

sented by ϵ. Parameter ϵ is a scalar, value between 0 and 1. As mentioned, when in future

contact with the same antigen bearing cancer cells, they immediately return to the effector

phenotype at a per capita rate proportional to the tumor burden. In general, memory CAR
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T-cells have longevity, and therefore have a much lower mortality rate than the CAR T-cells,

i.e., µM << µT [39]. The dynamics are represented by the Equation (6).

2.4.4 Dynamics of immune stimulating factor (IFNγ)

The dynamics of IFNγ denoted by Iγ is modelled by the following equation

dIγ
dt

= α0 + α1

(
CT

CT +KF

)
− µF Iγ. (7)

where, α0 represents the source of interferon gamma. Second term of the Equation (7)

gives the production of Iγ by CT cells with production rate of α1 and half saturation con-

stant of KF . The third term of the Equation (7) shows the degradation of Iγ with rate of µF .

2.4.5 Dynamics of immune inhibiting factor (TGFβ)

Next, we develop the Dynamics of immune inhibiting factor (TGFβ). Evidence from previous

studies indicates, the glioma cells themselves secrete immunosuppressive factors such as

TGFβ, denoted by Tβ) [16]. Growth factor TGFβ produced by glioma inhibiting anti-tumor

immune surveillance and contributes to glioma progression.

We modelled the dynamics of TGFβ denoted by Tβ using the Equation (8)

dTβ

dt
= b1G− µ2Tβ. (8)

The first term of the Equation (8) is the source term which is proportional to the glioma

size and b1 being the release rate per glioma cells. The last term is the degradation of Tβ at
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a constant rate µ2.

2.4.6 Dynamics of Macrophages (M)

The dynamics of macrophages is governed by the following equation

dM

dt
= rMM

(
1− M

KM

)
+ a1

(
Iγ

k4 + Iγ

)(
1

e2 + Tβ

)
− α3

(
G

G+ k2

)
M. (9)

The first term of the Equation (9) characterizes the logistic growth of the macrophages with

intrinsic growth rate of rM and carrying capacity of KM in the absence of the glioma cells.

Iγ is the main cytokine associated with the activation of macrophages. In the second term of

the Equation (9), Michaelis–Menten form is used to describe the activation of microphages

by Iγ with the activation rate of a1 and half saturation constant of k4. The expression(
1

e2+Tβ

)
term represent the interruption of activity of microphages by Tβ. The last term of

the Equation (9) shows the death of microphages by glioma cells with rate of α3 and half

saturation constant of k2.

Thus, each mechanism is modeled individually, which results in the following system of

ordinary differential equations:
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dG

dt
= rG

(
1− G

KG

)
−
(

1

e1/(γ dosage) + Tβ

)
D(w,CT , G)G−

(
α11

e1/(γ dosage) + Tβ

)(
G

G+ k1

)
M,

dCT

dt
= αD

(
D(CT , G)2G2

K +D(CT , G)2G2

)
CT − αMCT + θMGCM − αGCT − µTCT ,

dCM

dt
= ϵαMCT − θMGCM − µMCM ,

dIγ
dt

= α0 + α1

(
CT

CT +KF

)
− µF Iγ,

dTβ

dt
= b1G− µ2Tβ,

dM

dt
= rMM

(
1− M

KM

)
+ a1

(
Iγ

K4 + Iγ

)(
1

e2 + Tβ

)
− α3

(
G

G+ k2

)
M.

(10)

2.5 Proof of theorem of existence of positive solutions and bound-

ness

In this section, we prove existence of positive solutions and boundness of solutions.

Existence

Since the rates are Lipschitz in terms of the state variables, uniquenes and existence follows

easily from [25].

Positivity

Next, we prove positivity of the solution. From Equation 4, we get

dG(t)

dt
≥ r1G(t)

(
1− G(t)

Gmax

)
.
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Then,

G(t) ≥ A1e
∫
r1G(t)(1− G(t)

Gmax
)dt > 0, for all t > 0,

where A1 = G(0) is a positive constant.

From Equation 8 we note that,

dTβ

dt
≥ −µ2Tβ (since G(t) > 0, for all t > 0), (11)

Then,

Tβ ≥ A2e
−µ2t > 0 for all t > 0, (12)

where A2 = Tβ(0) is a positive constant.

From Equation 5, we note that,

CT

dt
≥ −αMCT − µTCT (since G(t) > 0. for all t > 0), (13)

Then,

CT ≥ A3e
−(αM+µ2)t > 0 for all t > 0, (14)

where A3 = CT (0) is a positive constant.

From Equation 6

dCM

dt
≥ −µMCM (since G(t) > 0, for all t > 0), (15)

Then,

CM ≥ A4e
−µM t > 0 for all t > 0, (16)
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where A4 = CM(0) is a positive constant.

From Equation 7, we use the following inequality,

dIγ
dt

≥ −µF Iγ since α0 > 0. (17)

We deduce that,

Iγ ≥ A5e
−µF t > 0 for all t > 0 (18)

where A5 = Iγ(0) is a positive constant.

From the last Equation 9, we see that,

dM

dt
≥ rMM

(
1− M

KM

)
(since G(t) > 0, F (t) > 0 and Tβ(t) > 0 for all t > 0),

Then,

M(t) ≥ A6e
∫
rMM(t)(1− M(t)

Mmax
)dt > 0, for all t > 0,

where A6 is a positive constant.

Boundness of solutions

Now, we show the boundness of solutions of the positive solutions in Equation 10. we get

the following inequalities. From the equation of the dynamics of glioma cells (Equation 4),

dG(t)

dt
≤ rG(t)

(
1− G(t)

Gmax

)
, (19)

Then,

G(t) ≤ B1Gmax

B1 + er1t
, (20)

lim sup
t→∞

G(t) ≤ Gmax = G, (21)
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where B1 is an arbitrary constant. By using standard Kamke comparison theory [24], from

the equation governing Tβ (Equation 8)

dTβ

dt
+ µ2Tβ ≤ b1G. (22)

Then,

Tβ(t) ≤
b1G

µ2

(1− e−µ2t) +B2e
−µ2t. (23)

Hence

lim sup
t→∞

Tβ(t) ≤
b1G

µ2

= T β(t). (24)

From equation governing CAR T-cells (Equation 5), we get

dCT

dt
≤ αDG− ρCT − µTCT . (25)

(26)

Then

CT ≤ αDG

ρ+ µT

(1− e−µT t) +B3e
−µT t. (27)

Hence

lim sup
t→∞

CT (t) ≤
αDG

ρ+ µT

= CT . (28)

From equation 7, we get,

dIγ
dt

+ µF Iγ = α0 + α1

(
CT

CT +KF

)
. (29)

Then, the following inequality,

dIγ
dt

+ µF Iγ ≤ α0 + α1. (30)
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0

d

dt
eµFtIγ ≤ (α0 + α1)e

µFt, (31)

eµF tI − I0 ≤
(α0 + α1)e

µF t

µF

− (α0 + α1)

µF

, (32)

I − e−µF tI0 ≤
(α0 + α1)

µF

− (α0 + α1)e
−µF t

µF

, (33)

I ≤ I0e
−µF t

µF

+
(α0 + α1)

µF

− (α0 + α1)e
−µF t

µF

, (34)

I ≤ I0 +
(α0 + α1)

µF

. (35)

2.6 Equilibrium points and Stability analysis

To study the behavior of the system, we determine the equilibrium points of the system and

analyze their stability. To obtain the equilibrium points of the ODE model (10), we set the

derivatives to zero,
dG

dt
= 0,

dCT

dt
= 0,

dCM

dt
= 0,

dF

dt
= 0,

dTβ

dt
= 0 and

dM

dt
= 0.

So, the Equation (4) has two equilibrium points. Tumor-free equilibrium point E1 which

has the zero population of the tumor cells and non-zero tumor equilibrium point E2 which

has the non-zero population of tumor cells.

The tumor-free equilibrium (E1) for all six state variables is given by

E1 =

(
G∗ = 0, C∗

T = 0, C∗
M = 0, F ∗ =

α0

µF

, T ∗
β = 0,M∗

)
, (36)

where M∗ = −b±
√
b2+4ac
2a

, a = − rM
KM

, b = rM and c = (a1α0KM )(
e2(k4+

α0
µF

)µF

) .
The stability of E1 is determined by the eigenvalues Jacobian matrix J(E1):

J(E1) =



J11 0 0 0 0 0
0 −αM − µT 0 0 0 0
0 αMϵ −µM 0 0 0
0 α1

KF
0 −µF 0 0

b1 0 0 0 −µ2 0

0 0 0 a1
e2k4

0 −rM

(
M∗

KM
− 1
)
− M∗rM

KM


.

Where J11 = r − M∗α11

(e1/γ dosage)k1
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By computing the Jacobian matrix J(E1) of the system, we obtain the eigenvalues of the

Jacobian matrix J(E1) about the equilibrium point E1:[
e1k1r − γM∗α11dosage

e1k1
,

(
KM − 2M∗

KM

)
rM ,−αM − µT ,−µM ,−µF ,−µ2

]
.

Using parameters in Table 2, we say that the eigenvalues are negative except for first two

eigenvalues, e1k1r−γM∗α11dosage
e1k1

and
(

KM−2M∗

KM

)
rM .

The stability of the tumor free equilibrium point E1 depends on the above two eigenvalues.

It is stable if e1k1r −M∗α11γ dosage < 0 and (KM − 2M∗)rM < 0. Namely, if

e1k1r −M∗α11γ dosage < 0, E1 is stable and E2 is unstable or

e1k1r −M∗α11γ dosage > 0, E1 is unstable and E2 is stable.

If e1k1r −M∗α11γ dosage < 0, tumor cells are killed by CAR T-cells and macrophages. In

this case, tumor-free equilibrium point E1 and the immune system can effectively fight tumor

cells.

If e1k1r − M∗α11γ dosage > 0, rate of tumor growth is greater than the rate of killing of

tumor by CAR T-cells and macrophages.

Non-zero tumor equilibrium point (E2) is given by,

E2 = (G∗∗, C∗∗
T , C∗∗

M , F ∗∗, T ∗∗
β ,M∗∗).

In this case, we find the value of the non-zero tumor equilibrium point (E2) numerically

instead of the analytical equilibrium solutions.

2.7 Bifurcation analysis

Local stability of the solutions depends on whether the eigenvalues of jacobian matrix are

negative or have negative real part. System consists of tumor free equilibrium point (E1)
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and non-zero tumor equilibrium (E2). The bifurcation diagram is given in Figure 1.

Figure 1: Bifurcation diagram. Here, G represents number of glioma cells and Vd = e1k1r
γM∗α11dosage

.

Stability of the tumor free equilibrium and the non-zero tumor equilibrium with respect to Vd < 1 and

Vd > 1.

.

Figure 2: Effect of Vd in varying dosage from small to maximum. Low CAR T dosages have

higher Vd values while maximum dosages have smaller Vd values.

.
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The eigenvalues of the jacobian matrix J (E1) about tumor free equilibrium point E1 are

given by

[
e1k1r − γM∗α11dosage

e1k1
,

(
KM − 2M∗

KM

)
rM ,−αM − µT ,−µM ,−µF ,−µ2

]
.

Tumor free equilibrium point E1 is stable if e1k1r− γM∗α11dosage < 0 and KM − 2M∗ < 0.

Tumor free equilibrium point E1 is unstable otherwise. The above stability condition is

equivalent to the following inequality

Vd =
e1k1r

γM∗α11dosage
< 1. (37)

If the tumor free steady state is unstable, the tumor-free equilibrium point and immune

system is enough to fight tumor cells. Next, non-zero tumor steady state points are given

by (G∗∗, C∗∗
T , C∗∗

M , I∗∗γ , T ∗∗
β ,M∗∗). For fixed M, and CT and Tβ =

(
b1
µ2

)
G, we can show easily

that Equation (37) has a unique non-zero positive G = G∗∗

r

(
1− G

KG

)
=

D

(k1r)/(α11M∗Vd) + Tβ

+
α11

(k1r)/(α11M∗Vd) + Tβ

M∗

G+ k1
. (38)

Since Tβ =
(

b1
µ2

)
G then T ∗∗

β is unique if G∗∗ is unique. If Vd < 1 the system has one

stable tumor free equilibrium.

Inequality of Vd in Equation (37) and corresponding Figure 2, show that Vd decrease with

the increase of dosages from small to maximum. Thus, From Figure 1, Vd drive tumor free

equilibrium point to the stability and non-zero tumor equilibrium to unstable state for the

smaller values of Vd (Vd < 1).
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If Vd > 1 tumor free equilibrium is unstable and non-zero tumor equilibrium is stable.

Similarly, with the increase of dosages from small to maximum, from Figure 1 and Figure

2, we see that, Vd directs tumor free equilibrium to unstable state and non-zero tumor

equilibrium to stability for the values of Vd greater than 1.

Using Inequality (37) to see how it affect the stability of the system.

Vd =
e1k1r

γM∗α11dosage
< 1.

Values of the corresponding parameters of the Inequality 37 given by,

Parameter Value

e1 0.205 µ gram
k1 2.7× 104 cells
r 0.539 day−1

α11 1.5× 24× 10−6 µ gram day−1

γ 290
M∗ 0.98× 106 cells

Table 1: Parameter values

.

We substitute parameter values in Table 1 to Inequality (37) for small (0.1× 106 cells),

medium(1.0× 106 cells) and maximum (10× 106 cells) dosages respectively. We found that

Vd > 1 for small dosage, see Figure 3. Therefore, system is unstable for small dosage. Vd > 1

for medium and maximum dosages. See Figure 3. Therefore, system is stable for medium

and maximum dosages. Biologically, this means small dosage is not able to eliminate the

tumor. However, medium and maximum dosages are able to eliminate the tumor. Here,

maximum dosage means the largest amount of dosage that one receives with safety.



22

Figure 3: Plot of Vd with respect to dosages for ordinary differential model. Vd > 1 for small dosage and

Vd < 1 for medium and maximum dosages. Therefore, system is unstable for small dosage and stable for

medium and maximum dosages.
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Parameters Definitions values units Source

r Growth rate for glioma cells 0.488 /day Estimated
KG Carrying capacity of the glioma cells 0.764 106 cells Estimated
e1 Michaelis Menten constant 0.01 µ g [36]
α11 Kill rate of macrophages 0.0036 µ g/ day [3]
k1 Half saturation constant 0.027 106 cells [31]
k5 Inhibitory parameter 0.02 µ g [3]
αD Maximum CT cells recruitment rate 0.0375 /day [13,27]

K
Steepness coefficient of the CAR T-cells
recruitment curve

0.2× 10−4 1012 cells2 [13, 27]

µT Death rate of CT cells 0.1694× 24 /day [3]

θM
Conversion coefficient of CM into CT

due to interaction with G
6 /106 cells day [39]

α Rate of inhibition of glioma cells by CT cells 0.045 106 cells day [39]
αM Rate of differentiation of CT in to CM 6 /106 cells day [39]
µM Death rate of macrophages 0.0194× 24 / day [3]
α0 Constant source of IFNγ 0.2 / day
α1 Rate of activation of IFNγ by CT cells
KF Half-saturation constant 0.095665 106 cells
µF Degradation rate of IFNγ 0.102× 24 / day [3]
s1 Constant source of Tβ 1.51932 µ g /day [3]
b1 Release rate per glioma cell 0.0138 µ g/106 cells day [3]
µ2 Degradation of Tβ 6.93× 24 / day [3]
rM Growth rate for macrophages 0.330× 24 / day [3]
KM Carrying capacity of the macrophages 1 106 cells [3]
a1 Activation rate of macrophages 2.7912× 10−6 106 cells [3]
K4 Half saturation constant 0.0105 µ g [44]
e2 Michaelis Menten constant 0.01 µ g [36]
ϵ Scalar (0− 1) [39]

Table 2:

The Model parameters used in the simulation of the system of six differential equations.
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CHAPTER 3

FRACTIONAL ORDER ORDINARY DIFFERENTIAL EQUATION MODEL

(FODE MODEL)

Next, we consider a cancer model using the fractional order ordinary differential equations.

Our mathematical model describes the effect of interactions between glioma cells and the

immune system, which includes macrophages, CAR T T-cells, memory T-cells, TGFβ and

IFNγ. As we are dealing with mice lacking immune components, we consider that the CAR

T-cells come only from immunotherapy, represented by populations of CAR T lymphocytes

(injected into mice). The model focuses on the role of CAR T-cells as immunotherapy to

brain tumor, with the aim to simulate and thus evaluate possible therapeutic scenarios and

validate the model with experimental results described above in [22]. The mathematical

model of the interaction between Glioma cells and engineered immune system CAR T-cells

involves Caputo fractional derivative.

Fractional order differential equations have emerged as a powerful mathematical frame-

work to describe dynamical behavior in many fields such as economy, finance, physics, en-

gineering and biology. Non-local property of fractional differential derivative and memory

effect of the fractional order differential equations makes mathematical modelling with frac-

tional differential equations more advantages than integer order differential equation models.

In particular, fractional differential equations are widely used in biological systems to study

dynamical behavior due to the memory effect that is the next state of fractional model de-

pends not only on its current state but also on all of its past states. In this chapter, we

study fractional order differential equations to understand the dynamics of CAR T therapy
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against glioma cells.

3.1 Caputo derivative

There are several approaches to the definition of fractional derivative, Riemann-Liouville,

Caputo, and Grünwald-Letnikov etc. In this work, we express fractional derivative in terms

of Caputo derivative which is defined below as

CDθ
0y(t) =

1

Γ(m− θ)

t∫
0

(t− τ)m−θ−1y(m)(τ)dτ, (39)

where, θ (m− 1 < θ < m,m ∈ Z) is the order of the derivative and m is the smallest integer

greater or equal to θ, y(m−1) is absolutely continuous on [0, T]. In our case, we consider the

case m = 1. Consider the initial value problem for FODE with Caputo’s derivative,

Dθ
t0
y(t) = f(t, y(t)) t ∈ [t0, T ], (40)

y(0) = y0, y
′(0) = y10, ..., y

(m−1)(0) = ym−1
0 (41)

where f(t, y(t)) is assumed to be continuous and y0, y
(1)
0 , ..., y

(m−1)
0 are the assigned values

of the derivatives at t0 = 0. Equations (40) and (41) are equivalent to Volterra integral

equation [14,18,50].

y(t) =Tm−1[y; 0] +
1

Γ(θ)

t∫
0

(t− τ)θ−1f(τ, y(τ))dτ, (42)

where Tm−1[y; 0](t) is the Taylor polynomial of degree m − 1 for the function y(t) centered

at t = 0, that is:

Tm−1[y; 0](t) =
m−1∑
k=0

y(k)(0)
tk

k!
. (43)
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To determine a discrete solution, we first discretize the time domain [0, T]. Now we use

evenly spaced points, tj, j=0, 1, 2, . . . , N-1 as follow,

0 = t0 < t1, ... < tj < ... < tn < tn+1 < tN = T, where, step size is given by h = tj+1 − tj.

A solution of Equation 42 can be expressed as a set of three terms [30],

y(tn+1) = Tm−1[y; 0](tn+1) + y∗(tn+1) + Y (tn+1). (44)

where y∗(tn+1) is the lag term which describe the memory effect in fractional order

differential equations and Y (tn+1) is the increment term. lag term y∗(tn+1) is defined by,

y∗(tn+1) =
1

Γ(θ)

tn∫
0

(tn+1 − τ)θ−1f(τ, y(τ))dτ. (45)

The increment term Y (tn+1) is described by

Y (tn+1) =
1

Γ(θ)

tn+1∫
tn

(tn+1 − τ)θ−1f(τ, y(τ))dτ. (46)

We can rewrite Equation (44) as below,

y(tn+1) = Tm−1[y; 0](tn+1) +
1

Γ(θ)

tn∫
0

(tn+1 − τ)θ−1f(τ, y(τ))dτ +
1

Γ(θ)

tn∫
0

(tn+1 − τ)θ−1f(τ, y(τ))dτ.

(47)

Adams-Bashforth-Moulton approach [14] is used to construct the predictor–corrector

method. Predictor–corrector method is applied to the Equation 47 to obtain the numerical

solution of the fractional order differential equations (FODE). Predictor–corrector method

uses an explicit method for the predictor step and an implicit method for the corrector step.
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3.2 Model development (FODE model)

We develop a mathematical model for the growth and control of glioma cells by administering

various doses of the CD70 CAR T-cells adoptively transferred into the tumor t ∈ {5, 7, 8, 18}

days after tumor inoculation, using a system of six non-linear coupled fractional ordinary

differential equations (FODEs), which captures the interactive dynamics of glioma cells (ma-

lignant brain tumor), macrophages, CD70 CAR T-cells, memory CAR T-cells, immunosup-

pressive cytokine (TGFβ) and immuno-stimulatory cytokine (IFNγ).

The state variables of the mathematical model that describes the temporal changes of

the kinetics of six population are as follows: namely, malignant gliomas G(t), macrophages

M(t), CD70 CAR T-cells CT (t), memory CAR T-cells CM(t), immunosuppressive factor

(TGFβ(t)) Tβ(t), and immuno-stimulatory factor(IFNγ(t)) Iγ(t).

The glioma cells grow logistically with growth rate and carrying capacity rθ and Kθ
G

respectively. A term representing the fractional cell kill of tumor cells by CAR T-cells is given

by the nonlinear function D(θ, w, CT , G). The function D(θ, w, CT , G) is the generalization

of the Beddington–DeAngelis functional response [4, 9, 49] which considers the search time,

handling time, and predator interference. For w = 0, θ = 1, the function D depends on the

populations CT and G but the experimental data in [13], show that percent lysis appears to

be a function of the ratio of CAR T-cells to tumor cells [10]. In the term D(θ, w, CT , G)G =

dCT
lθ G

wθ + sθ Glθ + CT
lθ
,

If θ=1,w=0, D(1, 0, CT , G) is the ratio-dependent functional response, which has been

used in predator–prey models. The ratio-dependent functional response considers the han-

dling time and the time wasted due to predator interference. This can be interpreted as the
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time it takes for CAR T-cells to kill tumor cells and the time wasted due to the encoun-

ters between CAR T-cells. When the search time is neglectable, the Beddington–DeAngelis

functional response becomes the ratio-dependent functional response. Hence D(θ, 0, CT , G)G

assumes that the time it takes for CAR T-cells to seek or recognize tumor cells is neglectable.

In this work, the search time is incorporated in tumor cells lysis by CAR T-cells.

Other parameters involved are dθ, sθ and θ representing the saturation level of fractional

tumor cells kill by CAR T-cells, steepness coefficient of the tumor lysis term D(θ, w, CT , G),

and order of the fractional derivative, respectively [1].

Note that when the search parameter w = 0 the tumor-free equilibrium in Equations

is asymptotically stable [48]. When the search time is positive, the effectiveness of tumour

cells lysis decreases. Since in here we are considering two type of CAR T-cells hCAR T, and

mCAR T-cells, we denote wh and wm parameters associated with search time for hCAR T

and mCAR T-cells respectively.

3.2.1 Dynamics of Glioma cells (G)

The dynamics of glioma cells is given by

dθG

dt
= rθG

(
1− G

Kθ
G

)
− DG

(e1/(γ dosage))θ + Tβ

− αθ
11

(e1/(γ dosage))θ + Tβ

GM

G+ kθ
1

. (48)

We assume that in the absence of immune system glioma cells follow logistic growth, given

by the first term of the Equation (48), rθ is the intrinsic growth rate of glioma cells and Kθ
G

is its carrying capacity, that is, the maximal tumor burden. rθ, Kθ
G and θ are estimated by

using the logistic model for tumor growth:

dθG

dt
= rθG

(
1− G

Kθ
G

)
. (49)
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and using data from in [19], Figure 2. The second and third terms of Equation (48) shows the

tumor growth inhibited by CAR T-cells and macrophages. The fractional killing rate by CAR

T-cells is represented by D. The glioma cells are eradicated by the macrophages at the rates

αθ
11. The factor

1

(e1/(γ dosage))θ + Tβ

is the major immunosuppressive factor for the activity

of both the macrophages and CAR T-cells, eθ1 being the Michaelis constant are proportional

to both G,CT and G,M respectively, with saturation for large G. Michaelis Menten term is

being incorporated to bring out the accessibility of the glioma cells to macrophages and CAR

T-cells, implying that the effect of macrophages and CAR T-cells efficacy follow Michaelis-

Menten saturation dynamics, k1
θ being the half saturation constant.

3.2.2 Dynamics of CAR T-cells (CT )

CAR T-cells dynamics is given by

dθCT

dt
=

αθ
DD

2G2

Kθ +D2G2
CT − αθ

MCT + θθMGCM − αθGCT − µθ
TCT . (50)

The first term in the Equation (50) represents the recruitment term of CAR T-cells are

activated by a number of triggers, including fragments of tumor cells that have been killed

by other CAR T-cells [21]. The second term represents CAR T-cells differentiate rate at a

rate αθ
M into long-term memory T-cells, which are assumed to provide long lasting protection

to the specific tumor/antigen. This means that at any future time in which memory T-cells

come into contact with same tumor cells, memory T-cells are able to rapidly be converted into

CAR T-cells, readily activated to prevent tumor progression. Such mechanism is modeled

by the third term θM
θGCM . Finally, CAR T-cells may be inhibited due to tumor modulated

immunosuppressive mechanisms according to the second last term αθGCT . The last term
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represents death rate of CAR T-cells.

3.2.3 Dynamics of memory T-cells(CM)

Memory T-cells are activated by tumor cells. This is a simplification of the intricate mech-

anism by which the tumor antigens activate the memory T-cells. Here we consider only the

effects associated with the activation of memory T-cells by the tumor, which provides a rapid

response to the presence of the target antigen presented by the tumor [35]. Memory T-cell

dynamics is given by

dθCM

dt
= (ϵαM)θCT − θθMGCM − µθ

MCM . (51)

The first term represents differentiation of CAR T-cells at a rate (ϵαM)θ to memory CAR

T-cells, Since different CT cells have different rate of differentiation in to CM which is rep-

resented by ϵ. Parameter ϵ is a scalar, value between 0 and 1. Since we are dealing with

immunodeficient mice. The second term represents contact with rate of the phenotype change

when memory T-cells contact the same antigenbearing cancer cells, they immediately return

to the CAR T-cells at a per capita rate proportional to the tumor burden. The last term

represents the death rate of memory T-cells at the rate µM
θ.

3.2.4 Dynamics of Macrophages (M)

Dynamics of macrophages, M is described by the Equation (52):

dθM

dt
= rθMM

(
1− M

Kθ
M

)
+ aθ1

Iγ
kθ
4 + Iγ

1

eθ2 + Tβ

− αθ
3

G

G+ kθ
2

M. (52)
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The first term represents the macrophages logistic growth in absence of glioma cells with

intrinsic growth rate rM
θ and carrying capacity KM

θ. The second term in Equation (52)

shows the activation of macrophages by Iγ at a rate a1, k4
θ being the half saturation con-

stant, implying the presence of Michaelis-Menten saturation dynamics. At the same time,

the term
1

e2θ + Tβ

interrupts the activity of macrophages, it is a degradation term with sat-

uration constant e2
θ. The third term gives the rate of immuno-induced macrophage death

by malignant glioma cells at the rate α3
θ, k2

θ being the half saturation constant standing

for the accessibility of glioma cells to macropahges.

3.2.5 Dynamics of the Cytokine (IFNγ).

Equation (53) represents the dynamics of IFNγ denoted by Iγ,

dθIγ
dt

= αθ
0 + αθ

1

CT

CT +Kθ
F

− µθ
F Iγ. (53)

Immune stimulating factor IFNγ activates the macrophages, which are capable of destroying

the glioma cells. We assume that CAR T-cells is a source of Iγ given by the first two terms

of the Equation (53). The last term shows the degradation of Iγ at a constant rate µF
θ.

3.2.6 Dynamics of the Cytokine TGFβ.

Experimental evidence [12] suggests that TGFβ is produced in a small quantity when pro-

duction of glioma cells is small, but it gets ample nutrient from the neighboring tissue. But

when glioma cells production grows sufficiently large resulting in lack of oxygen and space,

it starts producing TGFβ to destroy immune response for tumor growth [34]. Equation (54)
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describes the dynamics of TGFβ denoted by Tβ:

dθTβ

dt
= bθ1G− µθ

2Tβ. (54)

The first term in Equation (54) represents the source term which is proportional to the

glioma size, b1
θ being the release rate per glioma cells. The last term is the degradation of

TGFβ at a constant rate µ2
θ.

Thus our fractional model is given as follows:

dθG

dt
= rθG

(
1− G

Kθ
G

)
− DG

(e1/(γ dosage))θ + Tβ

− αθ
11

(e1/(γ dosage))θ + Tβ

GM

G+ kθ
1

,

dθCT

dt
=

αθ
DD

2G2

Kθ +D2G2
CT − αθ

MCT + θθMGCM − αθGCT − µθ
TCT ,

dθCM

dt
= (ϵαM)θCT − θθMGCM − µθ

MCM ,

dθM

dt
= rθMM

(
1− M

Kθ
M

)
+ aθ1

Iγ
kθ
4 + Iγ

1

eθ2 + Tβ

− αθ
3

G

G+ kθ
2

M,

dθIγ
dt

= αθ
0 + αθ

1

CT

CT +Kθ
F

− µθ
F Iγ,

dθTβ

dt
= bθ1G− µθ

2Tβ.

(55)

Variable Symbol Value

Glioma cells G 5× 104 cells
CAR T-cells CT 105 − 107 cells
Memory CAR T-cells CM 0 cells
Macrophages M 0 cells
Immune inhibiting factor Tβ 0 grams
Immune stimulating factor Iγ 0 grams

Table 3:

In the model, all state variables have initial value zero except glioma cells. The CAR T-cells

have zero initial value. Then after t ∈ {5, 7, 8, 18} days there is an injection of CAR T-cells.
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3.3 Equilibrium points and Stability analysis

The equilibrium points for fractional derivative model (55) are solutions of Equations (56):



rθG

(
1− G

Kθ
G

)
− DG

(e1/(γ dosage))θ + Tβ

− αθ
11

(e1/(γ dosage))θ + Tβ

GM

G+ kθ
1

= 0,

αθ
DD

2G2

Kθ +D2G2
CT − ρθCT + θθMGCM − αθGCT − µθ

TCT = 0,

(ϵαM)θCT − θθMGCM − µθ
MCM = 0,

rθMM

(
1− M

Kθ
M

)
+ aθ1

Iγ
kθ
4 + Iγ

1

eθ2 + Tβ

− αθ
3

G

G+ kθ
2

M = 0,

αθ
0 + αθ

1

CT

CT +Kθ
F

− µθ
F Iγ = 0,

bθ1G− µθ
2Tβ = 0.

(56)

So, the system (56) has two equilibrium points

E1 =

(
G∗ = 0, C∗

T = 0, C∗
M = 0,M∗, I∗γ =

αθ
0

µθ
F

, T ∗
β =

sθ1
µθ
2

)
, (57)

where

M∗ =
b+

√
b2 + 4ac

2a
, a = rθM , b = (rMKM)θ, c =

(a1α0KM)θ(
e2θ(k4

θ +
αθ
0

µθ
F
)µF

θ
) .

The second equilibrium point can be shown that it does exist and is unique, we call it, E2,

E2 = (G∗∗, C∗∗
T , C∗∗

M ,M∗∗, I∗∗γ , T ∗∗
β ).

The stability of equilibrium points E1 and E2 can be deduced by the eigenvalues of the

system Jacobian matrix J(E). The stability of E1 is determined by the eigenvalues Jacobian

matrix J(E1):
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J(E1) =



J11 0 0 0 0 0
0 −ρθ 0 0 0 0
0 αM

θ −µM
θ 0 0 0

−M∗αθ
3

kθ2
0 0 −rθM

(
2M∗

Kθ
M
− 1
)

a1(1−F ∗)

(F+kθ4)eθ2
− Fa1

(F+kθ4)(eθ2)
2

0
αθ
1

Kθ
F

0 0 −µθ
F 0

bθ1 0 0 0 0 −µθ
2


,

where J11 = rθ − M∗αθ
11

kθ1(e1/(γ dosage))θ
=

rθkθ1e
θ
1−M∗αθ

11(γ dosage)θ

kθ1e
θ
1

.

The local stability of the solution depends on whether the eigenvalues of the jacobian are

negative or have negative real part. By computing the Jacobian matrix J(E1) of the system,

we obtain the eigenvalues of the Jacobian matrix J(E1) about the equilibrium point E1:

[
eθ1k

θ
1r

θ − γθM∗αθ
11dosage

θ

eθ1k
θ
1

,

(
Kθ

M − 2M∗)rθM
Kθ

M

,−ρθ,−µθ
M ,−µθ

F ,−µθ
2

]
.

Using by parameters in Table 5, we see that the eigenvalues are negative except for first

two eigenvalues,
eθ1k

θ
1r

θ−γθM∗αθ
11dosage

θ

eθ1k
θ
1

and
(Kθ

M−2M∗)rθM
Kθ

M
.

The stability of the tumor free equilibrium point E1 depends on the above two eigenvalues.

It is stable if eθ1k
θ
1r

θ −M∗αθ
11γ

θdosageθ < 0 and (Kθ
M − 2M∗)rθM < 0. Namely, if

eθ1k
θ
1r

θ −M∗αθ
11γ

θdosageθ < 0, E1 is stable and E2 is unstable or

eθ1k
θ
1r

θ −M∗αθ
11γ

θdosageθ > 0, E1 is unstable and E2 is stable.

If eθ1k
θ
1r

θ−M∗αθ
11γ

θdosageθ < 0, tumor cells are killed by CAR T-cells and macrophages.

In this case, tumor-free equilibrium point E1 and the immune system can effectively fight

and kill tumor cells.

if eθ1k
θ
1r

θ −M∗αθ
11γ

θdosageθ > 0, rate of tumor growth is greater than the rate of killing of

tumor by CAR T-cells and macrophages.
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Bifurcation analysis shows that model exhibits bi-stability where the CAR T-cells threshold

dosage exists. If the dosage is above or below the threshold drives the dynamics of glioma

in two states. Complete regression or lethal, see Figure 4.

The bifurcation diagram is given in Figure 4.

Figure 4: Bifurcation diagram (FODE model). Forward bifurcation diagram with respect to Vd, where

V θ
d =

eθ1k
θ
1r

θ

M∗αθ
11(γ dosage)θ

and G is such that rθ
(
1− G

Kθ
G

)
= D

(k1r)θ/(αθ
11M

∗Vd)+Tβ
+

αθ
11

(k1r)θ/(αθ
11M

∗Vd)+Tβ

M
G+kθ

1
.

Vd = 1 is a bifurcation point.

3.4 Bifurcation analysis

The above stability condition is equivalent to the following Inequality (58)

V θ
d =

eθ1k
θ
1r

θ

M∗αθ
11γ

θdosageθ
< 1. (58)

If the tumor free steady state is stable, the tumor-free equilibrium point and immune

system is enough to fight tumor cells. Next, non-zero tumor steady state points are given by

(G∗∗, C∗∗
T , C∗∗

M , I∗∗γ , T ∗∗
β ,M∗∗). For fixed M, and CT and Tβ =

(
b1
µ2

)θ
G, we can show easily
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that Equation (59) has a unique non-zero positive G = G∗∗

rθ
(
1− G

Kθ
G

)
=

D

(k1r)θ/(αθ
11M

∗Vd) + Tβ

+
αθ
11

(k1r)θ/(αθ
11M

∗Vd) + Tβ

M

G+ kθ
1

. (59)

Since Tβ =
(

b1
µ2

)θ
G then T ∗∗

β is unique if G∗∗ is unique.

If Vd < 1 the system has one stable tumor free equilibrium. If Vd > 1 tumor free equilib-

rium is unstable and non-zero tumor equilibrium is stable. Hence When Vd = 1 we have a

bifurcation point, see Figure 4.

From (58),

V θ
d =

eθ1k
θ
1r

θ

M∗αθ
11γ

θdosageθ
< 1.

Parameter Value

e1 0.266 µ gram
k1 2.7× 104 cells
r 0.539 day−1

α11 1.5× 24× 10−6 µ gram day−1

γ 290
θ 0.77155
M∗ 0.98× 106 cells

Table 4: Parameter values for inequality V θ
d =

eθ1k
θ
1r

θ

M∗αθ
11γ

θdosageθ
< 1.

.

We substitute parameter values in Table 4 to Inequality (58) considering three dosages,

small (0.1× 106 cells), medium (1.0× 106 cells) and maximum (10× 106 cells) respectively.

We plot V θ with varying dosages by fixing other parameters in inequality 58 and found

that V θ
d > 1 for small dosage. See Figure 5, therefore, system is unstable for small dosage,
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and it is not able to eliminate the tumor. V θ
d < 1 for medium and maximum dosages, see

Figure 5, therefore, system is stable for medium and maximum dosages. However, medium

and maximum dosages are able to eliminate the tumor completely. Here, maximum dosage

means the largest amount of dosage that one receives with safety [22].

Figure 5: Plot of V θ
d with respect to dosages for fractional order differential model. V θ

d > 1 for small

dosage and V θ
d < 1 for medium and maximum dosages, where V θ

d =
eθ1k

θ
1r

θ

M∗αθ
11(γ dosage)θ

.

We plotted Vd with respect to dosages for the ordinary differential equation model and

V θ
d with respect to dosages for the fractional differential equation model in the same graph

(see Figure 6) to see how the memory affect the stability of the systems. For small dosage,

Vd and V θ
d values are greater than 1 in both models. For medium and maximum dosages, Vd

and V θ
d values are less than 1.

We found that the threshold CAR T dosage is 0.48×106 cells which is the minimum CAR

T dosage that eliminate the cancer. The X-coordinates of the intersection of the orange and

blue plots and Vd=1 line in Figure 6 shows the threshold dosage for both models. CAR T

dosage below this threshold dosage is not able to eliminate the tumor and cancer will grows
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to its lethal size. CAR T dosage above this threshold dosage is able to eliminate the cancer.

Figure 6: Plots of Vd with respect to dosages for ordinary differential model and V θ
d with respect to dosages

for fractional order differential model.

3.4.1 Impact of the fractional order derivative θ to the stability of the system

with small, medium and maximum dosages

We want to see how the fractional order derivative θ affect the stability of the system. Figure

8 represents the zoom in graph of Figure 7 showing results of impact of θ on V θ
d with respect

to dosages closer to (0.5 - 2.0) 106 cells.
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Figure 7: Impact of θ on Vd with respect to dosages for fractional order differential model. V θ
d > 1 for

dosage and V θ
d < 1 for medium and maximum dosages, where V θ

d =
eθ1k

θ
1r

θ

M∗αθ
11(γ dosage)θ

.

Figure 8: The zoom in graph of Figure 7 showing results of impact of θ on V θ
d with respect to dosages for

fractional order differential model closer to the medium dosage. V θ
d > 1 for small dosage and V θ

d < 1 for

medium and maximum dosages, where V θ
d =

eθ1k
θ
1r

θ

M∗αθ
11(γ dosage)θ

.

The model (55) representing the given set of assumptions, their estimation ultimately

defines the desired immunotherapy scenario, to which the model parameters are estimated
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using data from [15, 19, 22, 23]. There are several numerical methods to solve fractional

differential equations. In this work, We obtain the numerical solutions of prescribed model

using the ABM algorithm [15, 37]. In [22] they provide scientific evidence that targeting

CD70-expressing gliomas may offset the immunosuppressive effect and promote strong and

sustained antitumor responses. Due to the existence of the blood- brain barrier in gliomas,

they [22] claim that CAR T therapy is a superior strategy to other methods, as activated T

cells are not only able to pass through the barrier but are also capable of inducing a potential

antitumor response [5,17,29]. In [22] they illustrate that CD70 is highly expressed not only

by primary tumors, but also by recurrent tumors, which presents a consistent therapeutic

target for primary and recurrent gliomas. In addition, irradiation enhances CD70 expression

on tumors, providing good opportunity to enhance antitumor efficacy to combine standard

care with CD70 CAR therapy in glioma patients. In [22] demonstrated that CD70-specific

human and murine CAR T-cells induce complete regression/improved survival in CD70+

gliomas in both xenograft and syngeneic models without toxicity. CD70 CAR T-cells “did

not appear to block adaptive host immune responses” [47] and they showed in in their

experiments that CD70 CAR T-cells potently induce anti-tumor reactivity against CD70+

gliomas, both in vitro and in vivo. Thus, their data suggest that CD70 may be harnessed

as an immunotherapeutic target to improve outcomes in patients with gliomas. We believe

our mathematical approach provides a quantitative investigating the roles of CAR T dose,

immunosuppressive tumor microenvironment and individual uncertainties on the therapy

response.

In Chapter 5, we discuss the sensitivity of the parameters using Sobol’s method.
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CHAPTER 4

SENSITIVITY ANALYSIS

Sensitivity analysis allow us to quantify how the uncertainty in the output of a model is

related to the uncertainty in its parameters. Performing sensitivity analysis on the model,

one can identify and rank the parameters that have the greatest impact on the model output.

We use Sobol’s sensitivity analysis method [42], a global sensitivity analysis technique based

on variance decomposition is used to quantify sensitivity of individual parameters as well

as their joint effects contributing most significantly to the model output. Sobol’s method

measures sensitivity of the model output to model parameters with two measures: first-order

sensitivity index (Si), and a total order sensitivity index (STi
). first-order sensitivity index

(Si) estimates the contribution of individual parameter to the variance in the model output,

while STi
estimates the total contribution of each parameter after considering interactions

with other parameters [7,20]. Parameters with first and total order sensitivity indices greater

than 0.05 are considered significant to the model output [52].

4.1 Sobol’s Sensitivity analysis

Let us consider a mathematical model represented by a function

y = f(X) = f(x1, x2, x3, ..., xk),

where, y is the model output and x1, x2, x3, ..., xk is the input parameters and a square

integrable function f is defined in the k-dimensional unit hypercube Ωk,

Ωk = {X = (x1, x2, x3, ..., xk)| 0 ≤ xi ≤ 1; i = 1, 2, ...k}.
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The Sobol’s decomposition of f(X) into summands of increasing dimension [42] given by,

f(x) = f0 +
k∑

i=1

fi(xi) +
k∑
i

k∑
i<j

fij(xi, xj) + ...+ f1...k(xi, ..., xk). (60)

Sobol’ showed that if each term in the above expansion has a zero mean, then variance

decomposition of output(V (y)) can be written as follow:

V (y) =

∫
f(X2)dX − f0 =

k∑
i

Vi +
k∑
i

k∑
i<j

Vij +
k∑
i

k∑
i<j

k∑
j<l

Vijl + ...+ V1...k. (61)

Sobol’s sensitivity analysis measures sensitivity of the model output to model parameters

with two measures: first order sensitivity index (Si), and the total order sensitivity index

(STi
) [43].

First order sensitivity index Si is given by,

Si =
V [E(y|xi)]

V (y)
. (62)

Total order sensitivity index (STi
) is defined by,

STi
= 1− V [E(y|X∼ i)]

V (y)
. (63)

where X∼ i denotes all elements of X except xi

By dividing both side of the equation 61 by V(y), respective sensitivity indices should sum

up to 1.

k∑
i

Si +
k∑
i

k∑
i<j

Sij +
k∑
i

k∑
i<j

k∑
j<l

Sijl + ...+ S123...k = 1. (64)
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CHAPTER 5

RESULTS AND ANALYSIS

5.1 ODE Model

In this chapter, the model simulates CAR T-cells treatment of gliomas. Using global sensi-

tivity analysis, the important parameters of the ODE model are b1, µT , µ2, αM and e1. In

mice(animal) model, tumor cells were inoculated into the brain and after some days (after

t1 days, tumor burden has already undergone significant growth), mCAR T immunotherapy

was administered by injection. Initial conditions for the glioma cells population were set at

G(0) as the injected tumor cells, CT (0) = CM(0) = M(0) = 0 cells and Iγ(0) = Tβ(0) = 0µ

grams. At time t1 the immunotherapy is given (CT (t1) is the amount of CAR T-cells).

Before we perform sensitivity analysis and model simulations, we estimated parameters

r, KG of logistic model and parameters of l, d, s and w of Beddington DeAngelis functional

response. We assume that glioma cells grows logistically with the growth rate (r) and

the carrying capacity (KG) in the absence of the immune system and estimate r and KG

describe in the Table 5 using the data obtained in Figure 2 by Ge et al. [19]. Parameters of

Beddington DeAngelis functional response of CAR T-cells killing of glioma cells in Equation

3 are estimated and given in Table 6 and 7 using effector to target ratio data in the Figure

5 by Jin et al [22] and in the Figure 2 by Jin et al [23].
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Parameter Symbol Value Ranges.

Growth rate glioma cells r 0.4 day−1 [.18, .4]
Carrying capacity of glioma (tumor) KG 2.3065× 106cells [4× 105, 6× 106]

Table 5: Estimated parameters of growth rate (r) and carrying capacity (KG) of glioma cells using data

by Ge et al. [19].

d(day−1) s l w

CD70 (U87)+CTR-T cells 0.1043 0.0736 1.1378 0.3323
CD70 (U87)+hCAR-T 2.0000 0.7621 0.9352 0.2423

Table 6: The parameter estimates of d, s, l for hCAR T and control T-cells lysis on CD70+U87 glioma

cell lines using data by Jin, L et al [22] and Jin, L et al [23].

d(day−1) s l w

KR70+mCAR-T 1.9310 1.0183 0.5000 0.0277
KR70+Vector T 2.0000 1.4950 1.2071 0.4616

Table 7: The parameter estimates of d, s, l and w for mCAR T and vector T-cells lysis on murine glioma

lines KR70 using data by Jin, L et al [22] and Jin, L et al [23].

5.1.1 Sensitivity Analysis

We perform Sobol’s sensitivity analysis method on our model to identify important param-

eters and their interaction to the CAR T-cells immunotherapy against glioma for mouse

specific CAR T and human specific CAR T therapy scenarios. Sensitivity was determined

by considering the range of each parameter limited by 20% of the reference values shown in

Table 2 and sampled values from each parameter distribution. We consider two cases for

this sensitivity study, using data and without using data to assess the sensitivity analysis on

our model.



45

Sensitivity analysis performed in the absence of the data shown in Figure 9 indicate that

the first order and total order sensitivity indices of the parameter b1 are the highest among

other parameters in the model follow by µT , e1, µ2 and αM . Hence, b1, µT , e1, µ2, and αM are

the influential parameters that contribute to the model output mostly. First order Sobol’s

indices with higher index values indicating significant contribution of single parameters to

the model output.

Next, we performed sensitivity analysis incorporating data to explore the most important

parameters in our model. Sensitivity analysis results shown in Figure 10 indicate that µT , b1

and e1 are the most important parameters in the model.

Figure 9: Sensitivity analysis in the absence of the data. Total order and first order Sobol’s sensitivity

indices of model parameters are shown in this graph. Total order sensitivity indices (orange bar) and first-

order sensitivity indices (blue bar) are shown, respectively. The greater the sensitivity indices are, the more

sensitive parameters are for the model. Both first order and total order Sobol’s indices indicate that b1, µT ,

µ2, αM and e1 are the most influential model parameters.
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Figure 10: Sensitivity analysis using data Total order and first order Sobol’s sensitivity indices of model

parameters are shown in this graph. Total-order sensitivity indices (orange bar) and first-order sensitivity

indices (blue bar) are shown, respectively. The results indicate that parameter µT is the most important

parameter of the model, followed by the important parameters e1 and b1.

5.1.2 Parameter Estimation

Parameters θM , α, µT , αM , µ2 and e1 were estimated using the experimental data. Parameters

r, KG, d, s and l and w estimated see Table 5, 6 and 7. The remaining parameter values

used in the simulations are shown in Table 2.

We determined the two equilibrium points, tumor free equilibrium point (E1) and the

non-zero tumor equilibrium point (E2) of the system and the criteria for the stability of equi-

librium points. Tumor free equilibrium point E1 for both hCAR T and mCAR T treatment

scenarios as follow.

E1 =

(
G∗ = 0, C∗

T = 0, C∗
M = 0, I∗γ =

α0

µF

, T ∗
β = 0,M∗ = 0

)
. (65)

Using parameter values tuning and literature, we obtain the parameter values and substi-
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tute parameter values in eigenvalues of the jacobian matrix to get the following eigenvalues

for hCAR T and mCAR T-cells respective dosages.

The eigenvalues of the Jacobian matrix J(E1) about the equilibrium point E1:[
e1k1r−γM∗α11dosage

e1k1
, (KM−2M∗

KM
)rM ,−αM − µT ,−µM ,−µF ,−µ2

]
.

Eigenvalues of tumor free equilibrium point of hCAR T for small dosage,

[2.5578× 10−6,−0.7968,−0.26,−0.0450,−2.4480,−0.4090].

Eigenvalues of tumor free equilibrium point of hCAR T for medium dosage,

[−9.8174× 10−6,−0.7968,−0.26,−0.0450,−2.4480,−0.4090].

Eigenvalues of tumor free equilibrium point of hCAR T for maximum dosage,

[−1.3357× 10−4,−0.7968,−0.26,−0.0450,−2.4480,−0.4090].

Eigenvalues of tumor free equilibrium point of mCAR T scenario

for small, medium and Maximum dosages

Eigenvalues of tumor free equilibrium point of hCAR T for small dosage

[2.4847× 10−4,−0.7968,−0.245,−0.0450,−2.4480,−0.4090].

Eigenvalues of tumor free equilibrium point of hCAR T for medium dosage

[−6.909× 10−4,−0.7968,−0.245,−0.0450,−2.4480,−0.4090].

Eigenvalues of tumor free equilibrium point of hCAR T for maximum dosage

[−1.0448× 10−2,−0.7968,−0.245,−0.0450,−2.4480,−0.4090].

Positive eigenvalues for small dosage indicate that tumor free equilibrium points for both

hCAR T and mCAR T-cells scenarios are unstable. Medical point of view this means that
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the tumor will grow and drive the system to explosion.

5.1.3 Insights on hCAR T dosing strategy into the elimination of U87 tumor

We want to assess the relationship between human CD70 specific CAR T (hCAR T) im-

munotherapy dose and tumor response in mouse models. We perform three different simula-

tions with CD70 hCAR T therapy doses of small (1× 105), medium (1× 106 and maximum

(1× 107) cells against tumor burdens after 7 days of the inoculation of 5× 104 tumor cells.

We consider model parameters described in Table 2 and initial tumor burden of G0 = 5×104

cells. Figures 11-13 show that the dynamics of the three state variables, namely, malignant

CD70 specific hCAR T-cells and memory CAR T-cells and glioma cells. Maximum dose of

(1 × 107) cells is able to eliminate the tumor completely, higher number of CAR T-cells is

able to generate greater immunological memory pool. Medium dose of CAR T-cells (1×106)

cells applied after day 7 of tumor inoculation is able to eliminate the tumor after 10 days

of immunotherapy. Finally, small dose of CAR T 1 × 105 cells initially reduces the tumor

briefly. However, it grows back to 0.6× 106 cells.

5.1.4 The number of injected hCAR T-cells does affect treatment outcome

We simulate the results of the study that were presented in Figure 6A of [22]. In the

study [22], groups of mice were injected with 5× 104 tumor cells, then after 7 days of tumor

inoculation, mice were treated with different dosages 105, 106, and 107 cells of CD70 specific

human CAR T immunotherapy respectively. In the study, a complete regression was seen in

107 hCAR T-cells per mouse group, an intermediate effect in 106h CAR T-cells per mouse
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group, and no effect in the 105 hCAR T-cells per mouse group in survival.

Simulations for hCAR T scenario, We consider initial condition of G(0) = 5 × 104 as

the injected CD70 glioma cells and simulate the mathematical model with 105, 106, and 107

three doses of CAR T-cell therapy after 7 days of tumor inoculation. Figures 11-13 shows

simulated glioma cells, CAR T-cells and memory T-cells dynamics over time in response to

the 5× 104 cells tumor burden and CT (0)= CM(0)=0 cells.

In Figure 11, Simulation begins with G(0)=5×104 cells, and tumor grows in time until it

reaches about 0.35×106 cells in t = 7 days. At this time, mice were exposed with small (105

cells) dosage of CD70 hCAR T immunotherapy, which did not eliminate the tumor, tumor

burden reaches about 0.6× 106 cells about 17 days. In Figures 12 and 13, simulations show

the dynamics of memory T-cells and hCAR T for small dose of post hCAR T therapy, in

which CAR T-cells does not undergo rapid growth. Memory T-cells dynamics for small dose

of hCAR T in Figure 12 shows slow progression.

We simulate the CD70 hCAR T therapy of medium (106 cells) dose against G(0) = 5×104

glioma cells. In Figure 11, Beginning with G(0) = 5×104 cells, the tumor grows rapidly and

reaches about 0.35×106 cells at day 7 when CT = 106 cells of CD 70 CAR T immunotherapy

is applied, CAR T-cell therapy is able to eliminate the tumor about 32 days after CAR T

therapy. Simulation results in Figure 13 shows dynamics of hCAR T-cells in which hCAR

T-cells grows and reach to 16× 106 cells and decreases over time. Memory T-cells dynamics

for medium dose of hCAR T-cells in Figure 12 shows memory T-cells grow about 0.7× 106

after 106 hCAR T-cells dose introduced to mice.

We reproduce 107 CD70 CAR T-cells immunotherapy against glioma cells with simula-

tions. First, we consider G(0) = 5 × 104 tumor burden and after 7 days it increases about
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0.35 × 106 cells. At that time, CT = 107 CD70h CAR T-cells were introduced, complete

tumor elimination is observed about 18 days of hCAR T-cell therapy, see Figure 11. After

introduction of hCAR T-cell therapy, CT cells grows rapidly and reach to maximum value of

45× 106 and decreases over time while memory T-cells undergo rapid growth, see Figure 12.

Figure 11: Glioma cells dynamics. G(0)=5 × 104 CD70 glioma cells were injected to the mice. After

day 7 of tumor inoculation, Small, medium and maximum doses of hCAR T-cells is injected to the mouse

respectively. Small dose of hCAR T-cells is not able to eliminate the tumor. Tumor grows and reach to

0.6× 106 cells. Medium dose of hCAR T-cells eliminate the tumor about 28 days after application of hCAR

T-cell therapy. However, with maximum dose of hCAR T-cells, tumor elimination occurs around 5 days

after injection of hCAR T-cells.
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Figure 12: Dynamics of Memory T-cells. Beginning with G(0) = 5 × 104 glioma cells, when the

tumor reaches about 0.35 × 106 cells at day 7, small, medium and maximum cells doses of hCAR T-cells

is introduced respectively. Memory T-cell population is formed in dose dependent manner. Higher CAR

T-cells doses generate higher memory T-cells.

All our simulation results for human CD70 CAR T-cells immunotherapy scenario against

glioma cells agree with the in vivo study results presented in [22] Figure 6A.

5.1.5 Maximum expansion of human specific CAR T-cells (hCAR T) at day 7

of injection

We see the persistence of CAR T-cells for a long time. It has been described that when the

number of CAR T-cells injected is small, the therapy can fail [22]. However, the injection

of low CAR T-cells numbers is typically done when these cells do not expand well in-vitro,

which could be the result of a low stimulation capability. We simulated the effect of injected

CAR T-cells, and the dynamics of treatment was substantially affected, see Figure 13. A

reduction in dosage of the CAR T-cells led to slower growth of this population, resulting in

tumor growth reaching unacceptable levels without any pre-clinical response.



52

Figure 13: Dynamics of hCAR T-cells. Beginning with G(0) = 5×104 U87 tumor cells are introduced,

when tumor reaches about 0.35× 106 cells after day 7, small, medium and maxiumum dose of hCAR T-cells

are introduced. CAR T-cells grows and then gradually decrease over time.

5.1.6 Insights on mCAR T dosing strategy into the elimination of KR70 tumor

We want to explore the relationship between mouse CD70 specific CAR T immunotherapy

dose and tumor response in mouse models after 5, 7, 8 and 18 days of tumor inoculation.

Due to the heterogeneous nature of the glioma cells, we consider two types of tumors namely

KR70-C and KR70-B. We perform three different simulations with CD70 CAR T therapy

doses of small (1×105), medium (1×106 and large (1×107) cells against tumor burdens. The

cells, model parameters are described in Table 2 and initial tumor burden of glioma cells,

G0 = 1 × 105 cells. Figures 15- 14 show the dynamics of the three state variables, namely,

CD70 specific CAR T-cells and memory CAR T-cells and malignant glioma cells repectively.

Immunotherapy of mCAR T is applied separately after 5, 7, 8 and 18 days of tumor in-

oculation, Large dose of (1 × 107) cells is able to eliminate the tumor completely, higher

number of CAR T-cells is able to generate greater immunological memory pool. Although,
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Medium dose of CAR T-cells (1× 106) cells applied after day 5 of tumor inoculation is able

to eliminate the tumor, same dose of CAR T-cells performed after 7 of tumor implantation

is not able to eliminate it. It decrease but resumes growth to equilibrium state. Finally,

small dose of CAR T 1 × 105 cells initially reduces the the tumor. However, it grows back

for day 5 or day 7 of CAR T-cells immunotherapy.

5.1.7 The number of injected mouse specific CD70 CAR T-cells does affect

treatment outcome

We want to reproduce the scenarios described in Figures 6B and 6C of [22] with simulations.

In the Figure 14, Beginning with G(0) = 1× 105 KR70 tumor cells are introduced, when

tumor reaches about 0.35 × 106 cells after day 5, we performed CT = 1 × 105 small dose of

CD70 specific mouse CAR T (mCAR T) cells, which reduced the tumor briefly. Then grow

rapidly until it reaches around 0.6× 106 cells. See Figure 14.

For the medium dose, simulation begins with G(0) = 1×105 KR70 tumor cells, and tumor

progresses until it reaches about 0.35×106 cells in 5 days, At this time, CT = 1×106 of CD70

specific mouse CAR T (mCAR T) cells T is performed, it eliminate the tumor about 19 days

of CAR T-cell therapy. For the Maximum dose, simulation begins with G(0) = 1×105 KR70

tumor cells, it grows rapidly about 0.35× 106 cells in 5 days. at that time Maximum dose of

CT = 1× 107 were performed, it eliminates the tumor about 8 days of CAR T-cell therapy,

see Figure 14.
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Figure 14: Dynamics of Glioma cells. Initial CD70 glioma cells of G(0) = 1× 105 were injected to the

mice. After day 5 of tumor inoculation, small, medium and maximum doses of mCAR T-cells is injected to

the mouse respectively. Small dose of mCAR T-cells is not able to eliminate the tumor. Tumor grows and

reach to 0.6× 106 cells. Medium dose of mCAR T-cells eliminate the tumor about 25 days after application

of CAR T-cell therapy. However, with maximum dose of CAR T-cells, tumor elimination occurs about 8

days after injection of CAR T-cells.

5.1.8 Maximum expansion of mouse specific CAR T-cells (mCAR T) at day 5

of injection

Beginning with G(0) = 1 × 105 KR70 tumor cells are introduced, when tumor reaches

about 0.35× 106 cells after day 5, small, medium and maxiumum dose of mCAR T-cells are

introduced. CAR T-cells grows and then gradually decrease over time. For the medium and

small dose of mCAR T-cells, CAR T-cells decreases over the time [see Figure15]. Memory

T-cells population is formed in dose dependent manner. Higher CAR T-cells doses generate

higher memory T-cells and higher CAR T-cells doses generate higher memory T-cells, see

Figure 16.
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Figure 15: Dynamics of mCAR T-cells. Beginning with G(0) = 1 × 105 KR70 tumor cells are

introduced, when tumor reaches about 0.35 × 106 cells after day 5, small, medium and maxiumum dose of

mCAR T-cells are introduced. CAR T-cells grows and then gradually decrease over time. For the medium

and small dose of mCAR T-cells, CAR T-cells decreases over the time.

Figure 16: Dynamics of Memory T-cells. Beginning with G(0) = 1 × 105 glioma cells, when the

tumor reaches about 0.35 × 106 cells at day 5, small, medium and maximum cells doses of mCAR T-cells

is introduced respectively. memory T-cells population is formed in dose dependent manner. Higher CAR

T-cells doses generate higher memory T-cells.
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5.2 FODE Model

5.2.1 Sobol’s sensitivity analysis method

We present numerical simulations based on the parameters base values in Table 2. We use

sensitivity analysis to identify the model parameters that have the most influence on the

tumor compartment. It consequently provides useful insight into which model parameters

contribute most to the variability of the dynamics of glioma under CAR T-cells treatment.

We perform a global sensitivity analysis of our model. Then, we use global sensitivity anal-

ysis, Sobol’s Method. In the absence of information that characterizes the uncertainties in

the parameters of the model in Table 2, we assume that each parameter is a random variable

with uniform distribution in the range limited by 20% of the reference values indicated in

Table 2.

The main goal of sensitivity analysis of a glioma model is to investigate the dominant

factors associated with CAR T-cells treatment that affects the glioma dynamics greatly.

The analysis will determine the parameters that play an essential role in contributing to

variations in the outcome of glioma cells dynamics. We do the sensitivity analysis by using

the techniques as a combination of Saltelli sampling and the Sobol’s method to find out the

associated factors that are considered to be influential. The Sobol’s technique is considered to

be a reliable and efficient method in order to measure monotonic and nonlinear association

among inputs and output results in the model. The sensitivity analysis gives the scaled

Sobol’s sensitivity index and the total scaled sensitivity index, by which one can determine

the uncertainty level in the glioma model. The most dominant parameters associated with

our glioma model are to be those that have high Sobol’s indices values. Parameters with
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sensitivity indices greater than 0.05 are considered significant [52]. We seek parameters which

are sensitivity analysis of dynamics of glioma under CAR T-cells treatment to identify the

influence of the model parameters on the solutions for (a) CAR T-cells, and (b) glioma tumor

cells. The Sobol’ sensitivity indices are shown as bar-graph in Figure 17. It can be observed

from Table 2, that the most sensitive parameter is αM with the high scaled Sobol’ index

followed by b1 and µ2.

.

Figure 17: Sensitivity analysis (FODE model). Sensitivity analysis of a system to identify the influence

of the model parameters on the solutions for (a) CAR T-cells, (b) glioma tumor cells.We use scaled Sobol’s

sensitivity to rank sensitivity to the dynamics G cells population. The immune-therapy with mCAR T on

CD70+KR70 dosage ranging from 0.1 to 10 [106 mCAR T-cells]. CAR T-cells after 7 days implantation of

the tumor G(0) = 1× 105.
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Table 8: Sobol’s Method

Parameters Definitions S1 ST

e1 Michaelis Menten constant 0.060 0.176

k5 Inhibitory parameter 0.000 0.000

αD killing rate of glioma cells byCT cells 0.000 0.000

K Half saturation constant 0.000 0.000

µT Death rate of CT cells 0.001 0.000

θM Rate of change of CM to CT 0.000 0.000

α Rate of inhibition of glioma cells byCT cells 0.000 0.000

αM Rate of differentiation of CT in to CM 0.026 0.065

µM Death rate of CM 0.000 0.000

α0 Constant source of interferonγ 0.000 0.000

α1 Rate of activation of interferonγ by CT cells 0.000 0.000

KF Half-saturation constant 0.000 0.000

µF degradation rate of interferonγ 0.000 0.000

b1 release rate per glioma cells 0.12 0.19

µ2 degradation of Tβ 0.033 0.075

Model parameters sensitivity with initial conditions, G(0) = 0.44[106 cells], CT [0] = 10[106 cells ],

CM (0) = 0,F (0) = 0,Tβ(0) = 0 S1 is first order Sobol’s index and ST is total order Sobol’s index.

In this section, we use a system of fractional order ordinary differential equations model

(55) to simulate the scenarios of both human and mouse CARs in xenograft and syngeneic

orthotopic glioma models. For human CAR (hCAR) T cells, various doses (105 − 107) per

mouse were adoptively transferred into tumor-bearing mice 7 days after tumor inoculation

[22]. We assume that the mice lacked major immune cells components [22]. We also simulate

a mouse version (mCAR) in syngeneic mice. We incorporate heterogeneous gliomas by

simulating:

1. Tumors derived from a single clone of a CD70+glioma cell line KR70-C.

2. Bulk tumors, KR70-B

We simulate them for 17 days. We estimate a few of the most uncertain parameters, report



59

model predictions of anti-tumor response of CD70 CAR T-cells against CD70+gliomas.

5.2.2 Model fitting to experimental data

We fit a small number of the model parameters, θM , α, αM , µ2, e1, and µT , to CAR T-cells

data using a least squared error scheme. The data for fitting is from [23] (see Figure 2C).

Our model tracks down the dynamics of gliomas and CAR T-cells as follows:

1. In the first simulations, the model tracks down the number of gliomas cells for seven

days after innoculation of 5× 104 glioma cells (CD70+U87) with zero dosage of hCAR

T-cells administered.

2. Then after seven days the model tracks down glioma, hCAR T-cells, memory hCAR T-

cells after various doses ranging from 105 to 107 hCAR T-cells have been administered

on the seventh day.

3. In the second simulations, the model tracks down the number of KR70 tumor cells

(derived from a tumor clone we denote these cells by KR70-C) for five or seven days

after innoculation of 1×105 glioma cells with zero dosage of CAR T-cells administered.

4. Then after five or seven days the model tracks down glioma, CAR T-cells, memory

CAR T-cells after maximum dose 107 NT or CAR T-cells have been administered on

the fifth or seventh day. The simulations at day 10 and day 17 after the maximum

dose has been administered were compared to preclinical studies in [22].

5. In the third simulations, the model tracks down the number of KR70-B tumor cells

(bulk KR70 cells) for eight or eighteen days after innoculation of 1× 105 glioma cells
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with zero dosage of CAR T-cells administered.

6. Then after eight or eighteen days the model tracks down glioma, CAR T-cells, memory

CAR T-cells after maximum dose 107mCAR T-cells have been administered on the

eighth or eighteenth day. The simulations were tracked down at day 8 and day 18 after

the maximum dose has been administered to compare to preclinical studies in [22].

For all simulations, the initial conditions are found in Table 3. In Figure 18, we plot the

simulated CAR T-cells data, starting from the initial innoculation of CAR T-cells in mice

for 25 days, alongside the empirical data. Although towards the end CAR T-cells seems

to deep but seems to show up trend, this is okay eventually CAR T-cells will deep. Our

simulations show that the model provides a reasonable fit of the empirical data. All model

parameters values (both fit and estimated) can be found in Table 5, along with references

and estimated biological range. Initial baseline values are listed in Table 3.
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Figure 18: Model fit to CAR T-cells data Model fit to CAR T-cells data. The x-axis is the number of

days since the inoculation of the tumor, and the y-axis is the number of CAR T-cells (unit is 106 cells. The

dotted graph represents data of CAR T-cells of Figure 2c in [23]. The curve is the simulated number of CAR

T-cells.

In Figure 18, we plot the simulated CAR T-cells data, starting from the initial innocu-

lation of CAR T-cells in mice for 25 days, alongside the empirical data. Although towards

the end CAR T-cells seems to deep but seems to show up trend, this is okay eventually

CAR T-cells will deep. Our simulations show that the model provides a reasonable fit of the

empirical data.

All model parameters values (both fit and estimated) can be found in Table 2, along with

references and estimated biological range.
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5.2.3 The impact of inoculation of CAR T-cells on the tumor progression hu-

man xenograft glioma model

We examine the model-predicted response to the human CARs and non transduced T cells

treatments in human xenograft models. For hCAR, various doses (105–107 per mouse) of

the hCAR T-cells were transferred into tumor-bearing mice 7 days after tumor inoculation.

The simulation of the dynamics of glioma cells, see (Figure 19), shows that glioma cells

are completely eliminated after 17 days with medium and maximum doses treatment. The

maximum dose treatment eliminates the glioma cells at the faster rate than the medium

dose treatment. The small dose treatment has effect tumor, we see glioma cells increases

during this period of seven days. For NT T, various doses (105–107 per mouse) of the NT

T cells were transferred into tumor-bearing mice 7 days after tumor inoculation, but the

simulation of the dynamics of glioma cells, see (Figure 25), has no effect on the tumor,

infact for all three doses treatments we see that glioma cells increases during 17 days period.

Treatment with hCAR T-cells the maximum dose treatment has the highest levels of immune

stimulating factor see (Figure 22) but lowest level of immune inhibiting factor (Figure 23).

For simulations of the dynamics of hCAR T-cells, see (figure 20), and memory hCAR T-cells,

see (Figure 21). The simulation of recruitment of microphage dynamics, see (Figure 24).
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Figure 19: Glioma cells dynamics for FODE model. G(0) = 5 × 104 CD70 glioma cells were injected to

the mice. After day 7 of tumor inoculation, Small, medium and maximum doses of hCAR T-cells is injected

to the mouse respectively. Small dose of CAR T-cells are not able to eliminate the tumor.

.

Figure 20: Dynamics of hCAR T-cells with small, medium and maximum doses treatment of hCAR T-cells.
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Figure 21: Dynamics of memory hCAR T-cells with small, medium and maximum doses of treatment of

hCAR T-cells (FODE model).

.

Figure 22: Dynamics of immune stimulating factor with maximum dose of treatment of hCAR T-cells.
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Figure 23: Dynamics of immune inihibitor factor with small, medium, and maximum doses treatment of

hCAR T-cells.

.

Figure 24: Dynamics of microphages with maximum dose (107 cells) of treatment of hCAR T-cells.

During the first few days simulated, in maximum dosage treatment CAR T-cells expanded

evidencing a peak at about a few days post-injection, before their numbers stabilized and

start decreasing. Both the tumor and CAR T compartments experienced a continuous
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decrease towards undetectable values representing the dynamics of a mouse without residual

disease (Figure 19). The lower the dosage the peaks of the CAR T compartments take longer

to occur (Figures 20). We compare glioma, hCAR T and memory CAR T-cells dynamics for

ODE model and FODE model respectively. See Figures 29, 30 and 31.

.

Figure 25: Dynamics of glioma with small, medium and maximum doses of NT T-cells treatment.
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(a) Dynamics of Glioma, hCAR T and memory

cells compartments with maximum treatment

observed for first 100 days.

(b) Normalized plot of dynamics of Glioma, hCAR

T and memory T-cells compartments with maximum

treatment observed for first 100 days.

Figure 26: Dynamics of Glioma, hCAR T and memory T-cells compartments with maximum treatment

observed for first 100 days for FODE model.

The expansion of the CAR T populations was increasing by several orders of magnitude

compared to glioma compartment.
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(a) Dynamics of Glioma, hCAR T and memory

cells compartments with medium treatment

observed for first 100 days.

(b) Normalized plot of dynamics of Glioma, hCAR T

and memory T-cells compartments with medium treat-

ment observed for first 100 days.

Figure 27: Dynamics of Glioma, hCAR T and memory T-cells compartments with medium treatment

observed for first 100 days for FODE model.
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(a) Dynamics of Glioma, hCAR T and memory

cells compartments with small treatment observed

for first 100 days.

(b) Normalized plot of dynamics of Glioma, hCAR T

and memory T-cells compartments with small treat-

ment observed for first 100 days.

Figure 28: Dynamics of Glioma, hCAR T and memory T-cells compartments with small treatment observed

for first 100 days for FODE model.

In summary, the model predicts preclinical studies [22] that it takes longer for medium and

low dosage compared to maximum dose to eliminate glioma cells. The preclinical studies [22]

studies showed that the maximum dose treatment eliminates the glioma cells in 17 days of

treatment with hCAR T-cells.
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(a) Glioma cells dynamics for ODE model. (b) Glioma cells dynamics for FODE model.

Figure 29: Glioma cells dynamics for ODE model and FODE model.

(a) hCAR T-cells dynamics for ODE model. (b) hCAR T-cells dynamics for ODE model.

Figure 30: hCAR T-cells dynamics for ODE model and FODE model.
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(a) memory T-cells dynamics for ODE model. (b) memory T-cells dynamics for FODE model.

Figure 31: Memory CAR T-cells dynamics for ODE model and FODE model.

5.2.4 The impact of inoculation of non transduced (NT) T or mCAR T-cells

on the KR70-C tumor progression in syngeneic glioma models

In the first set of simulations, we assume the mice were intracranially inoculated with 1×105

KR70 tumor cells derived from a tumor clone, designated as KR70-C, and then adoptively

transferred maximum dose of (1×107) NT T cells on days 5 and 7 post tumor implantation.

The second set of simulations, we assume the mice were intracranially inoculated with 1×105

KR70 tumor cells derived from a tumor clone, designated as KR70-C, and then adoptively

transferred (1 × 107)mCAR T-cells on days 5 and 7 post tumor implantation. We observe

the tumor progression on the 10th day and 17th day days after the tumor implantation.

In Figures 32 and 33, illustrates that the less the tumor burden the more quickly the

tumor is eliminated.
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Figure 32: Dynamics of glioma compartment without treatment for the five days after innoculation of 105

of mCAR T-cells and then treated with maximum dose of 107 mCAR T-cells treatment. The mice were

intracranially inoculated with 1× 105 KR70 tumor cells derived from a tumor clone, designated as KR70-C,

and then adoptively transferred (1 × 107) mCAR T-cells on day 5 tumor implantation. Observations on

progression of the glioma days 10 and 17 to compare to experimental results [22]. The simulations were

inline with experimental results
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Figure 33: Dynamics of glioma compartment without treatment for the seven days after innoculation of

105 of mCAR T-cells and then treated with maximum dose of 107 mCAR T-cells treatment. The mice were

intracranially inoculated with 1× 105 KR70 tumor cells derived from a tumor clone, designated as KR70-C,

and then adoptively transferred (1 × 107) mCAR T-cells on day 7 tumor implantation. Observations on

progression of the glioma days 10 and 17 to compare to experimental results [22]. The simulations were

inline with experimental results.
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5.2.5 The impact of inoculation of non transduced (NT) T or mCAR T-cells

on KR70-B tumor progression in syngeneic glioma models

.

Figure 34: Dynamics of glioma compartment without treatment for the five days after innoculation of 105

of mCAR T-cells and then treated with maximum dose of 107 mCAR T-cells treatment. The mice were

intracranially inoculated with 1× 105 KR70 tumor cells derived from a tumor clone, designated as KR70-C,

and then adoptively transferred (1 × 107) mCAR T-cells on day 8 tumor implantation. Observations on

progression of the glioma days 20 and 28 to compare to experimental results [22]. The simulations were

inline with experimental results
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Figure 35: Dynamics of glioma compartment without treatment for the seven days after innoculation of

105 of mCAR T-cells and then treated with maximum dose of 107 mCAR T-cells treatment. The mice were

intracranially inoculated with 1× 105 KR70 tumor cells derived from a tumor clone, designated as KR70-C,

and then adoptively transferred (1 × 107) mCAR T-cells on day 18 tumor implantation. Observations on

progression of the glioma days 20 and 28 to compare to experimental results [22]. The simulations were

inline with experimental results.

By looking at Figures 34 and 35, the simulations supports that the more the tumor burden

the longer it takes to eliminate the tumor.

5.2.6 The comparison of the impact of inoculation of mCAR T-cells on tumor

progression in syngeneic glioma models using ODE and FODE models

We compare the simulation results of tumor progression when maximum dose of (1 × 107)

mCAR T cell therapy were introduced to the mice on days 5 and 7 post tumor implantation

from KR70 tumor cells derived from a tumor clone, named as KR70-C and then, maximum

dose of (1× 107) mCAR T cell therapy were introduced to the mice on days 8 and 18 post
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tumor implantation from bulk tumor named as KR70-B with ODE model and FODE model.

Our simulation results from both ODE and FODE models (Figures 36(a), 36(b), 36(e) and

36(f)) show that when tumor burden is less, mCAR T-cell therapy is able to eliminate the

tumor burden. However, mCAR T cell therapy is not able to eliminate the tumor burden

when it is large in ODE model (In Figure 36(c) and 36(d)) whereas mCAR T cell therapy

clears large tumor burden in FODE model.

(a) mCAR T-cells therapy at

day 5(ODE model)

(b) mCAR T-cells therapy at

day 7 (ODE model)

(c) mCAR T-cells therapy at

day 8 (ODE model)

(d) mCAR T-cells therapy at

day 18 (ODE model)

(e) mCAR T-cells therapy at

day 5 (FODE model)

(f) mCAR T-cells therapy at

day 7 (FODE model)

(g) mCAR T-cells therapy at

day 8 (FODE model)

(h) mCAR T-cells therapy at

day 18(FODE model)

Figure 36: The impact of inoculation of mCAR T-cells on tumor progression in syngeneic glioma models

using ODE and FODE models. (a),(b) KR70-C tumor progression after mCAR T-cell therapy at day 5

and day 7 of tumor inoculation using ODE model. (c),(d) KR70-B tumor progression after mCAR T-cell

therapy at day 8 and day 18 of tumor inoculation using ODE model. (e),(f) KR70-C tumor progression

after mCAR T-cell therapy at day 5 and day 7 of tumor inoculation using FODE model. (g),(h) KR70-B

tumor progression after mCAR T-cell therapy at day 8 and day 18 of tumor inoculation using FODE model.

When tumor burden is small, mCAR T-cell therapy is able to eliminate the tumor in both ODE and FODE

models (a, b, e, f). However, when tumor burden is large, mCAR T-cell clear the tumor burden only in

FODE model (g, h).
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5.2.7 The number of injected CAR T-cells does affect treatment outcome

We next studied the dynamics of Equation (55) under different numbers of injected CAR

T-cells. The model shows that the treatment is T-cells dependent which is in line with the

findings in [22]. T-cells dependent is displayed in Figures 37. The change of the injected

CAR T-cells load resulted in treatment results per mouse. A reduction in the time to peak

for maximum dosage compare with low dosage. The higher the dosage of CAR T-cells lower

the time peak.

Figure 37: The immunotherapy with mCAR T on CD70+U87 glioma is performed on day 7. Soon after

there is a decay of CT , which is partially converted into CM . There is an expansion of CAR T-cells, which

can reduce growth and eliminate the tumor. (Data extracted from [22].

We see the persistence of CAR T-cells for a long time. It has been described that when

the number of CAR T-cells injected is small, the therapy can fail [22]. However, the injection

of low CAR T-cells numbers is typically done when these cells do not expand well in-vitro,

which could be the result of a low stimulation capability. We simulated the effect of injected

CAR T-cells and the dynamics of treatment was substantially affected, see Figure 37. A
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reduction in dosage of the CAR T-cells led to slower growth of this population, resulting in

tumor growth reaching unacceptable levels without any pre-clinical response.

.

Figure 38: Dynamics Memory CAR T-cells under different dosages of CAR T-cells. The immunotherapy

with hCAR T on CD70+U87 glioma. The tumor is rapidly eliminated after a medium 106 hCAR T-cells or

a maximum 107 hCAR T-cells doseCAR T-cells.

5.2.8 Maximum expansion of Memory T-cells and CAR T-cells in vivo

We use system (55) to compute numerically the time tmax at which CAR T-cells peak.

At the time tmax, occurs between 7 to 21 days(which contains a typical range in clinical

studies) after injection of the CAR T-cells, the first maximum in their number, denoted

by CTmax = CT (tmax), is achieved during the expansion phase. The time tlmax for the lower

dosage injected CAR T-cells is larger than the time tmmax. The value of tmax can be calculated

from system (55) numerically.

Thus, the maximum number of CAR T-cells that can be achieved during the first expan-

sion phase will be related to the initial tumor burden G0 and injected CAR T-cells CT 0. Note
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that the contribution of CT 0 is very significant. Thus, evidencing that the initial number of

injected CAR T-cells does affect the peak.

It is easy to obtain numerical values to compute the tumor and memory T-cell loads in

mice at time tmax.

For managing toxicity, the maximum dose 107 CAR T-cells was most dose can be in-

jected per mouse [22]. Figure 38 shows the linear dependence of the maximum number of

CAR T-cells obtained from simulations of Equation (55). The above result points out to a

proportionality dependence between the total tumor load and the treatment outcome. In

fact, a strong correlation between disease burden at the time of CAR-T cell infusion and

treatment outcome.

5.3 The effect of memory on the hCAR T-cell therapy against the

glioma cells

The fractional derivatives play a significant role in describing the effects of memory in dy-

namical systems. Also, The fractional derivative order θ contributes to time delay in ordinary

differential models [38], [33]. When the θ value decreasing from 1, the memory effect of the

system increases, it takes more time to reduce the number of tumor cells. So, the classical

derivative solution gives a shorter period of disease We see from Fig. 39 that tumor cells

reduce to close to zero more than 100 days from tumor inoculation for θ = 0.70. However, for

θ = 1, the number of tumor cells reduced to close to zero for 20 days from tumor inoculation.

When the θ value decreasing, it takes more time to reduce the number of glioma cells. So,

the classical derivative solution gives a shorter period of disease. When the derivative order
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θ is reduced from 1, the memory effect of the system increases. Therefore, the results in

Figures 39, 40, 41 and 42, we see that, impact of the derivative order θ (0.7 ≤ θ ≤ 1) on the

glioma cells, CAR T-cells and memory T-cells populations.

5.3.1 The effect of memory on the tumor cells for different values of θ

.

Figure 39: The dynamical behavior of tumor cells for varying values of the fractional-order parameter θ

for maximum dose of hCAR T-cell therapy over time. The total number of tumor cells are smaller in the

case of θ = 1.0 than in the case of θ = 0.7. When the derivative order θ is reduced from 1, the memory effect

of the system increases which leads time delay in the system.
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.

Figure 40: The dynamical behavior of tumor cells for varying values of the fractional-order parameter θ

for smaller dose of hCAR T-cell therapy over time. The total number of tumor cells are larger in the case

of θ = 1.0 than in the case of θ = 0.7. When the derivative order θ is reduced from 1, the memory effect of

the system increases, and the tumor cells decrease.
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5.3.2 The effect of memory on the hCAR T-cells for different values of θ

.

Figure 41: The dynamical behavior of hCAR T-cells for varying values of the fractional-order parameter

θ for maximum dose of hCAR T-cell therapy over time. When the derivative order θ is reduced from 1,

the memory effect of the system increases. Therefore, number of hCAR T-cells increases and hCAR T-cells

persist for a long time in the system for θ = .7 than in the case of θ = 1.0 (integer order).
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5.3.3 The effect of memory on the memory T-cells for different values of θ

.

Figure 42: The dynamical behavior of memory T-cells for varying values of the fractional-order parameter

θ for maximum dose of hCAR T-cell therapy over time. When the derivative order θ is reduced from 1, the

memory effect of the system increases. Therefore, higher number of memory T-cells can be seen in the case

of θ = .7 than in the case of θ = 1.0 (integer order).
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CHAPTER 6

DISCUSSION

In 2020, Sahoo et al [41] modeled the dynamics between cancer cells and CAR T-cells as a

predator prey system with the CARRGO mathematical model: Chimeric Antigen Receptor

T-cells treatment Response in Glioma. Their model was two compartment model.

Our proposed six-compartment ODE and FODE models which focus on interaction be-

tween glioma cells, CAR T-cells, memory T-cells, macrophages, immune stimulating factor

(IFNγ) and immune inhibiting factor (TGFβ) were used to investigate the tumor response

against CAR T-cell therapy in mouse models. In particularly, human and mouse CAR T

therapy which targets CD70 antigen in U87 and KR70 tumors were considered in this work.

We used Beddington–DeAngelis functional response term for the tumor lysis by CAR T in

our model to incorporate search time assuming CAR T-cells need time to identify tumor cells

before destroying them. Before model simulations were performed, tumor growth rate (r)

and carrying capacity of the tumor (KG) were estimated assuming tumor grows logistically

in the absence of the immune system using tumor data. In addition to the parameters of the

Beddington DeAngelis functional response of CAR T-cells killing of glioma cells(d, s, l and w)

were estimated using previously published CAR T-cells data. We obtained some model pa-

rameter values from the published literature and estimated the remaining model parameters

through the simulations of the six-compartment model.

We analyzed our models which consists of system of ordinary equations and fractional

order differential equations for the steady states and determined the equilibrium points of

the system and conditions for the stability of the equilibrium points. We consider a set of
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parameter values, and found two equilibrium points for the models. An unstable tumor free

equilibrium point where tumor cells do not disappear over the time and stable equilibrium

point where tumor disappear over the time. We further found that the model exhibits

bistability where a dosage threshold exists. A CAR T-cells dosage above the threshold can

reduce to cancer free while below the threshold grows to a lethal size. Our simulated results

show that small dosages of CD70 CAR T-cells is below the threshold, hence it is not able

to eliminate the tumor burden. However, medium and large CAR T-cells dosages are above

the threshold, hence inhibit the tumor burden completely.

Sobol’s sensitivity analysis were performed on our six-compartment models considering

glioma dynamics against human and mouse specific CAR T-cells to identify the key param-

eters that drive the model output. The Sobol’s sensitivity analysis results of ODE model

indicated that b1, µT , µ2, αM and e1 are the parameters that contribute most significantly to

the model output whereas the Sobol’s sensitivity analysis results of FODE model indicated

that most sensitive parameter is αM with the high scaled Sobol’s index followed by b1 and

µ2.

We simulated the models with three different CAR T-cells dosages against glioma lines

considering two scenarios, one with three different human CD70 CAR T dosages against

U87 glioma lines and another with the three different murine-derived CD70 CAR T dosages

against KR70 glioma lines using data presented based on a published article from literature

[22].

We have to point out that our study is limited. The investigation of CAR T-cell therapy

of glioma mechanisms is still underway, and we still do not have a thorough understanding of

this novel treatment. A better understanding of these mechanisms can help us better improve
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the model in the future. There are many other mechanisms that we have overlooked in our

model. Our estimation of parameters is based on various publications and many of them

are in vitro studies. Moreover, these parameter values only reflect an average view though

they may vary significantly from individual to individual. For example, the total number

of cells, the percentage of CAR T-cells, and the production and clearance rates of immuno-

stimulatory factor, immunosuppressive factor and tumor may be very different for different

individuals.

In our FODE model, we chose Caputo fractional derivative because the immune system

and also the cancer cells have memory features. This model is specialized in macrophages

cells, Iγ and Tβ because they are important parts of the immune system. Moreover, the

model examines how CAR T-cells fight with tumor cells. The numerical solution of the

model was found with the help of the Adam-Bashforth-Moulton algorithm for fractional-order

model [37]. Different scenarios of the solution were displayed using graphs to visualize them.

The effectiveness of the cells of immune system are increasing in contrast, the effectiveness

of tumor cells are decreasing for different values of θ. It is seen that the small change in θ

has great results and the approximate solution depend on the fractional order θ. It has two

reasons, either of them is the Caputo fractional derivative is appropriate real-life problem

that is, it gives good results in such problems, the other is Caputo fractional derivative is

non-local derivative.

In this study, we have developed ordinary differential equations (ODE) and fractional

ordinary differential equations (FODE) models to study CAR T-cells response to tumor

growth which is based on our understanding of the interaction between the immune system

and tumor growth. We conclude that, the FODE model fits the data better and outperforms
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the ODE model for animal data. Although we obtained better results using FODE approach,

the numerical algorithms for solving FODEs are computationally expensive.

In future work, we will develop a mixture model which will consists of both system of

ordinary differential equations (ODE) and fractional ordinary differential equations (FODE)

to explore the CAR T-cells response to tumor growth. FODEs in the mixture model will

model cells (CAR T-cells, memory T-cells and macrophages) which have memory structures

and ODEs will model the stimulating and inhibiting factors (Iγ and Tβ which have no memory

structures.



88

BIBLIOGRAPHY

References
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