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ABSTRACT

This dissertation consists of two topics. The first topic is IMSmining: A Tool for

Imaging Mass Spectrometry Data Biomarker Selection and Classification. We devel-

oped IMSmining, a free software tool combining functions of intuitive visualization

of imaging mass spectrometry (IMS) data with advanced analysis algorithms in a

single package which is easy to operate. The main functions of IMSmining include

data visualization, biomarker selection and classification using advanced multivariate

analysis methods such as elastic net, sparse PCA, and wavelets. It can be used to

study the correlation and distribution of the IMS data by incorporating the spatial

information in the entire image cube and helping to find the distinction of the possible

features caused by the biological structure and the potential biomarkers.

The second topic is Non-Gaussian Penalized PARAFAC Analysis for Functional

Magnetic Resonance Imaging (fMRI) Data. Independent Component Analysis (ICA)

method has been used widely and successfully in fMRI data analysis for both sin-

gle and group subjects. As an extension of the ICA, Tensorial Probabilistic ICA

(TPICA) is used to decompose fMRI group data into three-mode of subject, tempo-

ral and spatial. But due to the independent constraint of the spatial components,

TPICA is not very efficient in the presence of overlapping of active regions of different

spatial components. Parallel Factor Analysis (PARAFAC) is another method to pro-

cess three-mode data and can be solved by alternating least-squares. PARAFAC may

converge into some degenerate solutions if the matrix of one mode is collinear. How-

ever, it is reasonable to find significant collinear relationships within subject mode of

two similar subjects in group fMRI data. Thus both TPICA and PARAFAC have un-

avoidable drawbacks. In this topic, we try to alleviate both overlapping and collinear

v



issues by integrating the characters of PARAFAC and TPICA together, which im-

poses a non-Gaussian penalty term to each spatial component under the PARAFAC

framework. The proposed algorithm can regulate the spatial components, as the high

nongaussianity is possible to avoid the degenerate solutions aroused by collinear issue,

and get rid of the independent constraint of the spatial components to bypass the

overlapping issue. This proposed algorithm outperforms TPICA and PARAFAC on

the simulation data. Its performance on real fMRI data is also comparable with other

algorithms.

vi



TABLE OF CONTENTS

LIST OF TABLES ix

LIST OF FIGURES x

CHAPTER 1: INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Imaging Mass Spectrometry Data . . . . . . . . . . . . . . . . . . . . 1

1.2 Neuroimaging Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

CHAPTER 2: IMSMINING: A TOOL FOR IMAGING MASS SPEC-

TROMETRY DATA BIOMARKER SELECTION AND CLASSIFI-

CATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Algorithm Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 EN4IMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.2 WEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.3 Wavelet4IMS . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Software Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.1 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.2 Data Visualization . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.3 Biomarker Selection . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.4 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

vii



CHAPTER 3: NON-GAUSSIAN PENALIZED PARAFAC ANALY-

SIS FOR FMRI DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Model Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.1 Tensorial PICA (TPICA) . . . . . . . . . . . . . . . . . . . . 18

3.2.2 PARAFAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Non-Gaussian Penalized PARAFAC . . . . . . . . . . . . . . . . . . . 21

3.3.1 Accelerative Method . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.2 Parameters Selection . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4.1 Simulation Data . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4.2 Real fMRI Group Data . . . . . . . . . . . . . . . . . . . . . . 30

3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5.1 Simulation Data . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5.2 Real fMRI Group Data . . . . . . . . . . . . . . . . . . . . . . 34

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

CHAPTER 4: FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

REFERENCES 48

viii



LIST OF TABLES

1 Experiment list of simulation. . . . . . . . . . . . . . . . . . . . . . . 30

2 Experiment results of the means and variances of ρ in three algorithms. 32

3 Characterization of control and autism populations [1]. . . . . . . . . 45

ix



LIST OF FIGURES

1 Interface of GUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Pipeline of GUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Simulation data of spatial components (SC) and time courses (TC). . 28

4 Paradigm used for fMRI experiment. The checkerboards were showed

at the high bar period and hidden at the low bar period. [2] . . . . . 31

5 Error bars of the experiment results. . . . . . . . . . . . . . . . . . . 36

6 Experiment A in the case of low noise, high overlapping and high

collinear. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7 Experiment B in the case of low noise, high overlapping and low collinear. 38

8 Experiment C in the case of low noise, low overlapping and high collinear. 40

9 Experiment E in the case of high noise, high overlapping and high

collinear. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

10 Experiment result on the real fMRI data. . . . . . . . . . . . . . . . . 41

x



1

CHAPTER 1

INTRODUCTION

1.1 Imaging Mass Spectrometry Data

Mass spectrometry (MS) and imaging mass spectrometry (IMS) are both important

techniques in proteomics. IMS is a novel technology that is able to incorporate spa-

tial biochemical information in full molecular range [3]. However, there are still many

challenges in data processing due to high dimensionality, huge differences between

the number of predictors and the sample size, and the incorporation of both spectral

and spatial information. All these challenges pose great difficulties in model selection

and data processing.

Several software tools are commonly used for IMS/MS data analysis. Biomap and

Tissue View are mainly for data visualization. Both software tools lack advanced data

analysis functionality such as multivariate analysis methods for biomarker selection

and classification. MarkerView and ClinProTools are packages for MS data analy-

sis. Technically, IMS data after using Biomap or Tissue View based on visualization

can be exported and then imported to MarkerView or ClinProTools for further data

analysis. However, this is not feasible for IMS data processing, especially for those in

high resolution. PCA and clustering are most commonly used for IMS data analysis

[4]. LDA and multivariate analysis of variance [5] and PCA combined with support

vector machine (SVM) [6] were used to process IMS data. However, these methods

have their limitations of handling high dimensional IMS cubes and incorporating spa-

tial information.
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It is essential to extract the complex/hidden patterns from the IMS data. Modern

statistical methods should be used to complete a series of operations for biomarker

selection and classification in potential application to disease and cancer diagnosis.

This part will be discussed in Chapter 2.

1.2 Neuroimaging Data

Functional Magnetic Resonance Imaging (fMRI) is a noninvasive technique for study-

ing brain activity. The main principle of fMRI is using the difference of blood oxy-

genation level dependent (BOLD) to observe the local changes of deoxyhemoglobin

concentration in the vascular of the brain. In addition, the area and intensity of

neural activity in the brain depend on various tasks.

Usually higher neural activity needs more oxygen to support energy consump-

tion. So in order to measure the neural activity of the brain region, we use a signal

named blood oxygen level dependent (BOLD) which reflects the blood oxygenation

level [7]. The mechanisms behind the BOLD signal mainly relies on the different

magnetic responses between the deoxyhaemoglobin and oxyhaemoglobin. In detail,

deoxyhaemoglobin has the effect of suppressing the MR (Magnetic Resonance) sig-

nal, while oxyhaemoglobin does not. Neural activity arouses the oxygen demand

which speeds up the blood flow carrying lots of oxyhaemoglobin, so that less deoxy-

haemoglobin gives rise to an increase of MR signal.

Since fMRI data consists of complex spatial-temporal correlation structure with a
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mass of noisy and useless information, statistical analysis plays a key role to analyze

and discover the active brain regions and their connections. In general, in the first

step, we need to design some specific experiments to acquire the fMRI data. Then

some preprocessing tasks are necessarily completed before we use the statistical tools

to analyze the data. These preprocessing tasks usually include realignment, coreg-

istration, segmentation, normalization and smoothing. In the data analysis step,

powerful statistical tools like parameter estimation, hypothesis testing, and variance

analysis will help us understand the fMRI data based on various statistical models.

The aims of fMRI analysis include locating regions of the brain activated by a

certain task, determining distributed networks that correspond to brain function and

making predictions about psychological or disease status. Popular models in process-

ing the fMRI data include General Linear Model (GLM), Independent Component

Analysis (ICA) and Parallel Factor Analysis (PARAFAC). GLM is a hypothesis-

driven method without adaptivity. ICA has been challenged recently by a number

of studies showing that independence is not adaptive for blind source separation in

fMRI [8]. PARAFAC is a method to process three-mode data [9].

This part will be discussed in Chapter 3.
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CHAPTER 2

IMSMINING: A TOOL FOR IMAGING MASS SPECTROMETRY

DATA BIOMARKER SELECTION AND CLASSIFICATION

2.1 Introduction

IMSmining software package is mainly for IMS data visualization, biomarker selection,

model validation, and classification. Visualization functions include the spectrum of

a single pixel, the average spectrum of an area, and intensity distribution matrix at

a fixed m/z value. The analysis functions include not only PCA, SVM, and LDA

methods, but also the most recently developed models SPCA [10, 11], Wavelet4IMS

[12], EN4IMS (Elastic Net) [13] and WEN (Weighted Elastic Net) [14] by using the

spatial information. The motivation is to provide a convenient and automatic way to

analyze and extract useful information from the high dimensional and complex IMS

data by not only utilizing the spectrum information within individual pixels but also

studying the correlation and distribution using the spatial information.

The remainder of the chapter is organized as follows: In Section 2.2, the main

algorithms such as EN4IMS, WEN, Wavelet4IMS are briefly introduced. In Section

2.3, we give the details of the implementation of the software. A summary of the

pipeline of this software is given in Section 2.4. Finally, remarks and a brief discus-

sion are presented in Section 2.5.

This work has been published in [15]. This software package can be downloaded

from http://capone.mtsu.edu/dhong/IMSmining.htm.
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2.2 Algorithm Content

2.2.1 EN4IMS

Let us consider the multiple linear regression model with n observations. Suppose

that xj = (x1j, · · · , xnj)T , j = 1, · · · , p are linear independent predictors and y =

(y1, · · · , yn)T is the response vector. If we use X = [x1, · · · , xp] represent the predictor

matrix, the linear regression model can be expressed as

y = Xβ + ε (1)

where β = (β1, · · · , βp)T and the noise term ε ∼ N(0, σ2In). The naive elastic net

(EN) criterion is to minimize the following function [16]:

L(λ1, λ2, β) = ‖y −Xβ‖2
2 + λ1‖β‖1 + λ2‖β‖2

2. (2)

There are two penalty terms in equation (2). The `1 term enforces the model to

generate sparse solution and the quadratic term can achieve the group effect. Zou et

al. [16] mentioned that the naive EN has some weakness that will result in double

amount of shrinkage. Therefore, the EN algorithm modified the naive elastic net as:

β̂(EN) = (1 + λ2)β̂(naive EN). (3)

where β̂(naive EN) is the solution of naive elastic net and β̂(EN) is the modified

solution of elastic net. β̂(EN) is given in [16] by

β̂ = arg min
β
βT ((XTX + λ2I)/(1 + λ2))β − 2yTXβ + λ1‖β‖1. (4)

In the IMSmining software, we apply EN4IMS [13] based on the above EN algo-

rithm to estimate the biomarkers. EN4IMS algorithm incorporates a spatial penalty

term into the EN model. IMS information provides huge spatial information located
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in each individual pixel. One important fact is that pixels in different locations of

the same disease should have similar intensity values, which means the standard

deviation of the intensities at the true biomarkers should be small. Conversely, the

standard deviation would be very large among the complex tissue structure like bones.

So in EN4IMS, we use a parameter τ to balance two items together. One is the

RSS of the linear model and another is the average of spatial standard deviations of

the selected ion intensities. In detail, we use 10-fold CV to minimize the following

formula:

(1− τ)‖y − ŷ‖2
2 +

τ

M

M∑
j=1

√∑N
i=1(xij − µj)2

N − 1
, 0 < τ < 1. (5)

where N is the number of all cancer pixel, xij is the intensity of a fixed jth m/z value

at pixel i, µj is the average intensity of all cancer pixels at this fixed jth m/z value

and M is the cardinality of active set determined by the EN4IMS model [13].

2.2.2 WEN

In order to consider more precise biomarker selection, Hong and Zhang [14] proposed

the following model named Weighted EN (WEN):

arg min
β

1

2
‖y −

p∑
j=1

xjβj‖2
2 + nλ1

p∑
j=1

ωj|βj|+
n

2
λ2

p∑
j=1

|ωjβj|2. (6)

where ωj > 0, j = 1, · · · , p are weighted penalty coefficients. In [14], the LARS-

WEN algorithm is provided to solve the above WEN model. Experiments show that

WEN not only reduces the number of side features but also helps discovering new

biomarkers.
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2.2.3 Wavelet4IMS

To meet challenges in IMS data processing, an effective and efficient algorithm for

IMS data biomarker selection and classification by using methods of multi-resolution

analysis are proposed. In [12], L. Xiong and D. Hong proposed Wavelet4IMS algo-

rithm. In addition to apply wavelet transform for IMS data de-noising, measurement

for the similarity of wavelet coefficients is introduced, and the idea of wavelet pyramid

method for image matching is applied for biomarker selection and the Naive Bayes

classifier is used for classification in the wavelet coefficient space. Performance of the

algorithm is evaluated with real data and the results of our experiments show that

the multiresolution method has higher accuracy in classification.

2.3 Software Description

IMSmining allows users to visualize IMS data, to discover biomarkers, and to perform

a pixel level classification for different IMS data sections. This software package is

designed to give users a maximum level of convenience together with high flexibility.

2.3.1 Interface

Figure 1 shows the interface of the software based on MATLAB GUI. The first menu

is data type options. We can import the data from .mat file or .txt folder or ex-

port the biomarker. The next menu contains seven algorithmic options: EN4IMS,

WEN, PCA+SVM/LDA, SPCA+SVM/LDA and Wavelet4IMS. We can also use

“view menu” to view the spectrum of a single pixel or the average spectrum of a

selected area. Toolbar icons can be used to zoom in, zoom out, drag, or rotate the

data cube. There are also four figure windows including training, spectrum, testing,
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and result. One can use the mouse to drag the squares to select the cancer and

noncancer area for training and testing.

Figure 1: Interface of GUI

2.3.2 Data Visualization

IMSmining provides different methods of visualization for IMS data. Users can see

intensity distribution images of different m/z values by clicking on different m/z val-

ues on the spectrum image. Users can also see spectrum of different pixels just by

clicking on different pixel positions on the distribution images. Users can enlarge the

spectrum to see whether the m/z value is corresponding to a true peak. The inter-

active responses between the intensity images (Upper Left Window) and the spectra

(Upper Right Window) are extremely convenient and provide a better understanding

of the spatial distribution information for a selected m/z peak. Furthermore, users
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can directly select an area of pixels from the upper left window to see the mean

spectrum of these selected pixels.

2.3.3 Biomarker Selection

IMSmining provides a series of algorithms, which include very recently developed

EN4IMS, WEN models and Wavelet4IMS for IMS data analysis, and other methods

such as PCA, SPCA and SVM popularly used in IMS community. Here, m/z values

selected by the model are considered as potential biomarkers.

In EN4IMS algorithm, a spatial penalty term is incorporated into the cross val-

idation step of the EN model [16] for IMS data processing [13]. The WEN model

associates the weighted coefficients of EN model with intensity spreading informa-

tion and thus provides a systematic consideration for the spatial information of the

IMS data for biomarker selection and classification. Both models inherit good prop-

erties from the EN method which produces a sparse model with high prediction

accuracy. By taking the spatial information into consideration, these two models

help to distinguish the IMS feature peaks caused by biological structure differences

from those truly associated with diseases. In Wavelet4IMS algorithm, IMSmining

transforms each mass spectrometry to wavelet space and select biomarkers based on

multi-resolution analysis.

2.3.4 Classification

IMSmining provides model validation and classifies testing samples. Users can select

the training data region directly from the training data figure. After analyzing the

training data sets to create the predictive model, validation of models can be done on
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the selected cancer and noncancer square area of the testing data sets. To enhance

the chance of finding the best model, the tuning parameter λ of EN4IMS and WEN

algorithms can be changed accordingly by users. As a result, we can obtain the

classification rates of the selected testing area. Besides implementing EN4IMS or

WEN algorithm, IMSmining has one method named Wavelet4IMS which uses feature

vectors selected from wavelet domain combining with a naive Bayes classifier for

classification. IMSmining also can use PCA or SPCA to reduce the dimension of the

data and then continue to use SVM or LDA for classification.

2.4 Pipeline

Figure 2 shows the pipeline of IMSmining. After importing the data, users can either

view the image of the data or process the data based variety of algorithms. If users

only want to view the image, users have two choices: point or area. Then users can

import a single pixel or just simply click on the data image. Users also can drag the

mouse to select an area to calculate the major statistical value of this specifical area.

In another branch, users have three steps to complete the model prediction: algo-

rithm selecting, training image selecting and testing image selecting. Users can stop

the algorithm at each step and start over in another algorithm. After users select the

images, they need to use the mouse to drag both of the cancer and noncancer area.

Once the calculation has been done, IMSmining will show the comparative cancer

and noncancer result.
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Figure 2: Pipeline of GUI

2.5 Discussion

We developed a software package called IMSmining based on algorithms of EN4IMS,

WEN, SPCA and Wavelet4IMS. We have applied this software tool to real IMS data

[13, 14]. Compared with other currently popular methods, the models of EN4IMS,

WEN and Wavelet4IMS work more efficiently and effectively for IMS data process-

ing in terms of confirming new biomarkers, producing a more accurate feature list

including significant peaks, and providing more accurate classification results.

We would like to thank Shannon Cornett, Sara Frappier, and Richard M. Caprioli

from the VUMSRC for valuable discussions and providing IMS data sets for the study.

This research was partially supported by Middle Tennessee State University Faculty

Research Grant #2-21519 and TDCI Grant #33501-12168.
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CHAPTER 3

NON-GAUSSIAN PENALIZED PARAFAC ANALYSIS FOR FMRI

DATA

3.1 Introduction

Independent Component Analysis (ICA) is one of the most popular methods to an-

alyze fMRI single or group data especially when the time courses are not available

[17, 18, 19, 20], such as the application of autism experiments [21]. Unlike General

Linear Model (GLM) [22], ICA is a more general and totally data-driven method to

decompose the mixed data into mixing matrix and source signals. One fundamental

prerequisite requirement of ICA is that the distributions of the independent source

signals must be non-Gaussian [23]. Under this assumption, because Gaussian variable

has the largest entropy among all random variables with equal variance, one popular

algorithm called fastICA [23] decomposes the data by projecting the data onto the

unmixing directions such that the projected data have the maximum nongaussianity.

Such unmixing directions of the inverse of the mixing matrix are mutual orthogonal

and can be calculated by Newton algorithm. The projected data form the indepen-

dent source signals. In the application of fMRI data (Temporal × Spatial), we usually

call the source signals as spatial components.

Many variants and improvements of ICA have developed in the past decade [24].

(1) In the application of fMRI, the data usually have temporal or spatial prior infor-

mation. Such information can be used as the reference or constraint to improve the

accuracy and robustness of the spatial components. The temporal information can
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be the time courses of the design matrix in the experiment [25, 26]. The spatial infor-

mation can be the atlas-defined masks [27, 28] or the cortex based information [29].

(2) In some situations, the independent constraints are too strong to hold for some

correlated spatial components. Subspace ICA [30, 31, 32] divides the spatial com-

ponents into several groups and allows certain correlation of the components within

the same groups. Multi dimensional ICA [33] or topographic ICA [34] models the

dependence through the spatial structure of the fMRI data, such as the neighboring

voxels. (3) Considering the sparsity character of the spatial components of the fMRI

data, the sparsity constraint can be added to the fastICA to impose this character of

the spatial components [35].

Besides the above developments of ICA to improve the accuracy and robustness of

spatial components through the characters themselves, it is very natural to consider

the presence of the Gaussian noise in the fMRI data. The earlier work in [36, 37]

used a joint likelihood or the Gaussian moments to address this issue. Probabilistic

ICA (PICA) [38] is another way to generalize the noise free ICA to incorporate the

Gaussian noise. PICA assumes that the noise covariance is isotropic so that PICA

could use a similar formula comparing with Probabilistic PCA (PPCA) [39] to esti-

mate and remove the noise before decomposing the data.

FMRI data usually contains multiple subjects as a group data. The heuristic way

to process the group data is either combining the results of each subject or taking the

average of all subjects. Beckmann and Smith [40] developed a three-mode ICA algo-

rithm named Tensorial Probabilistic ICA (TPICA), which is suitable to decompose

the group fMRI data into three-mode (subject × temporal × spatial). Basically, as
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an extension of the PICA, TPICA not only decomposes fMRI data into the mixing

matrix and spatial components by PICA, but also continues to decompose the mixing

matrix to the tensor product of time courses and subject loadings. In TPICA, the

mode of spatial components has the priority to be processed, while the other two

modes are estimated by rank one approximations of mixed matrix. Based on TPICA,

Y. Guo continued to refine the spatial components modeling by Gaussian Mixture

Model and divide the tensor product of mixing matrix into different groups. This

work has been completed in [41, 42]. The solution can be approximated by EM [43],

but this complex algorithm models every mode deeply and thus is time consuming.

Parallel Factor Analysis (PARAFAC) is another popular method to process three-

mode data [44, 9, 45] and is becoming a new approach to process brain information and

big data [46, 47]. Unlike TPICA, three modes are equally processed in PARAFAC.

By the alternating least square (ALS) approach, one mode is estimated by least-

squares from observed fMRI data while fixing other two modes. The three modes

are iterated and alternated until the algorithm reaches convergence. PARAFAC does

not require the independent constraint of the mode to achieve the solutions. One

important property of PARAFAC is that the solution is unique under proper condi-

tions. However, because PARAFAC highly relies on the effective decomposition of

least-squares, PARAFAC may converge to some degenerate solutions if one mode of

the data cannot meet the full rank requirement of the least-squares.

In fMRI data, it is reasonable to find significant collinear relationships of the sub-

ject loadings mode within two similar subjects. PARAFAC also may converge very

slowly due to inaccurate estimation of the number of the spatial components. Based
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on these reasons and some experiments, the authors of TPICA [40] concluded that

TPICA is more robust and accurate than PARAFAC when it comes to estimating

the underlying spatial components.

However, TPICA assumes that the spatial components of fMRI data are mutually

independent. The contradiction is that it is very common to observe the overlapping

of active regions of different spatial components in the spatial mode. In [48, 8], A.

Stegeman, N. Helwig and S. Hong admitted that ICA is still the most effective way to

deal with two-mode fMRI data, while in the three-mode group fMRI data, they argued

that if fMRI data do have trilinear structure, PARAFAC can achieve unique decom-

position under proper conditions, such as when the number of spatial components

is correctly determined. So without the consideration of the independent constraint

among spatial components, PARAFAC can perform much better than TPICA in the

presence of overlapping of activate regions in the spatial mode.

So both TPICA and PARAFAC have advantages and disadvantages in processing

fMRI data. Although PARAFAC performs better in overlapping issues, it may suf-

fer from collinear issues, which are very common between similar subjects. Similarly,

TPICA does not worry about collinear issues, but it is not very effective to solve over-

lapping issues in three-mode fMRI data. Both of them cannot process three-mode

fMRI data perfectly. However, if we can combine the advantages of PARAFAC and

TPICA and eliminate their disadvantages, we may figure out a way to process fMRI

group data to avoid both collinear and overlapping issues. One typical method is to

impose some constraints or penalty terms on three modes of PARAFAC [49, 50] to

avoid the degenerate solutions. Alternatively we can combine PARAFAC and ICA
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by imposing the independent constraints in PARAFAC [51]. However, in the appli-

cation of fMRI, one of the main tasks is to locate the active regions of the spatial

components. We may only need to impose the constraints on each spatial component

of the spatial mode [52]. In [53, 54], the authors proposed a new penalty based on

the Information Entropy for the spatial mode of the constrained PARAFAC analysis

of resting EEG that allowed the identification in time, frequency and space of those

brain networks with minimum spectral entropy.

Inspired by the method of penalty based PARAFAC, via imposing a non-Gaussian

penalty term for the spatial components within the PARAFAC, we propose an algo-

rithm that combines advantages and eliminates disadvantages of both TPICA and

PARAFAC simultaneously. In the case of collinear issues, the degenerate solution

of spatial components can be alleviated because the non-Gaussian penalty term can

regulate each spatial component to be as non-Gaussian as possible. Meanwhile, this

new algorithm can overcome the overlapping issue because it is still based on the

PARAFAC, which does not need the independent constraint of the spatial compo-

nents. Experiments of simulation data under different situations show that the pro-

posed algorithm improves both accuracy and robustness compared with TPICA and

PARAFAC. The results of this proposed algorithm on real fMRI data are also con-

sistent with other methods. This work has been submitted to Neurocomputing.

This chapter is organized as follows: In Section 3.2, we will briefly review the

related necessary algorithms. Then, we will propose our own non-Gaussian penalized

algorithm in Section 3.3. We design a series of experiments in 3.4. The simulation

and real data results will be presented in Section 3.5. Finally, in Section 3.6, we will
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discuss this proposed algorithm and potential future improvements.

3.2 Model Review

Suppose that the observed fMRI group data Y consists of N subjects. Each subject

contains V voxel samplings on T time points. Under the assumption that fMRI data

has the trilinear structure, Y (V × T × N) can be represented as a combination of

three outer products:

Y =
K∑
k=1

ak ⊗ bk ⊗ ck. (7)

where K is the number of components and ⊗ is the outer product. Vector ak ∈ RV

is the spatial component. Vector bk ∈ RT is the time course. Vector ck ∈ RN is

the subject loading. For this three-way data, PARAFAC is one popular algorithm to

decompose the data Y into three modes.

We can reshape the matrix Y to two dimensions via one mode, such as:

YA = (C �B)AT = MAT . (8)

where AV×K = [a1 a2 · · · aK ], BT×K = [b1 b2 · · · bK ], CN×K = [c1 c2 · · · cK ]. C � B =

((Bdiag(c1))T , · · · , (Bdiag(cK))T )T denotes Khatri-Rao product of C and B. Using

this format, we can deem A as K independent spatial components of spatial mode

and M as the mixing matrix. Then this equation turns into a ICA problem which is

to decompose fMRI group data into mixing matrix M and spatial mode A.

ICA cannot be generalized to group subjects analysis naturally because different

subjects in the group do not share the same independent components. Temporal

concatenation of each subject data is the most popular way to organize the group
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data. Under this scheme, the group data can be easily processed as a single subject

data and solved using same ICA method in each iteration. Then, we can use some

back-reconstruction methods [20] to rebuild each subject specific modes.

3.2.1 Tensorial PICA (TPICA)

Negentropy can be used to characterize the nongaussianity of spatial components.

For a random vector a, negentropy of a is defined as:

J(a) = H(agauss)−H(a) (9)

where H(a) = −
∫
f(a)logf(a)da is the differential entropy of a. One of the most

important properties of the entropy is that a Gaussian variable agauss has the largest

entropy than any other variables with the same variance. So negentropy of one random

variable a is always negative and an indicator the nongaussianity of a. It is not easy

to calculate the value of negentropy using formula (9). In general, we can estimate

the negentropy approximately using this formula [23]:

J(a) ∝ [E{G(a)} − E{G(v)}]2 (10)

where v is Gaussian variable with zero mean and unit variance, G is any nonquadratic

function.

FastICA [23] decomposes the data by projecting the data onto the rows of M−1

such that the projected data ak have the maximum negentropy. M−1 is an orthogonal

matrix and can be calculated by Newton algorithm.

FastICA is noise free and needs squared mixing matrix. Probabilistic model [38]

PICA is one way to incorporate the gaussian noise:

YA = MAT + E. (11)



19

where E denotes concatenated isotropic Gaussian noise matrix and time series data

at each voxel follows N(0, σ2I).

Let Ỹ = UK(NΛK)
1
2VK be its rank-K SVD. By using the property of equal

variance at both sides, we can solve the explicit solution of equation (11).

M̃ = UK(ΛK − σ2IK)
1
2QT (12)

σ̃ =
1

NT −K
ΣNT
i=K+1λi (13)

where λi denotes the diagonals of Λ, Q denotes the rotation matrix coming from an

ICA algorithm.

The TPICA algorithm continues to model M by the Khatri-Rao product of subject

mode C and temporal mode B. At first, TPICA uses PICA to estimate the spatial

mode A and mixing matrix M . Then, TPICA rebuilds the temporal components B

and subject loadings C from mixing matrix M . If we reshape the ith column M as a

N × T matrix mi and calculate its SVD decomposition:

mi = UmΛmV
T
m (14)

ci � bi ≈ mi can be approximated by the rank-one approximation of mi. TPICA

iterates these two steps by initializing the input of PICA in step one by the results

of step two.



20

3.2.2 PARAFAC

Harshman [9] proposed the PARAFAC method for decomposing the three-way data.

The goal of PARAFAC is to minimize the following error:

A,B,C = argminA,B,C =‖ Y −
K∑
k=1

ak ⊗ bk ⊗ ck ‖2
2 . (15)

PARAFAC treats all three modes equally and does not incorporate any spatial or

temporal information. This means that PARAFAC itself does not restrain the inde-

pendence of the spatial components, which is one key constraint in TPICA.

The most attractive feature of PARAFAC is the uniqueness of its solution under

proper conditions. Regardless of the scaling of values, the decomposition of A,B,C

is unique if

rA + rB + rC ≥ 2K + 2 (16)

where r is the rank-r of the matrix. The rank-r is the largest number r such that

every subset of r columns of this matrix is independent.

Alternative Least Squares(ALS) is the basic method to solve this problem. ALS

iterates least-square estimation for one of A,B,C while fixing the other two matrices.

The iterative pseudo code is as following:

A = YAZ(ZTZ)−1 where Z = C �B

B = YBZ(ZTZ)−1 where Z = C � A

C = YCZ(ZTZ)−1 where Z = B � A

(17)

where Y• is the reshape of Y according to the modes.
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PARAFAC is sensitive to the estimated number of source signals and the rank of

the matrices of three modes. Some constraints can be added to PARAFAC model

to avoid degenerate solutions. In some applications, imposing the related meaningful

constraint can improve the accuracy and interpretation of the solutions. Without loss

of generality[52], if we want to add one penalization P (A) on the mode A, we can

modify the first equation from formula (17) as:

Ã = argmin(‖ YA − ZAT ‖2 +λP (A)) (18)

The nonnegative penalty parameter λ balances the weights of two terms. With the

penalty, PARAFAC does not treat the modes equally any more. It can incorporate the

related information into one specific mode to improve the quality of the corresponding

components.

3.3 Non-Gaussian Penalized PARAFAC

In the formula (18), the constraint or penalty is restricted on the whole matrix A.

But in the application of fMRI data, we only want to regulate each spatial component

which is the column a of A. So at first, we need to decompose the product of two

matrices A and Z to the summation of k products of their corresponding columns.

‖ YA − ZAT ‖
= ‖ YA − ΣK

i=1,i 6=jzia
T
i − zjaTj ‖

= ‖ Yj − zjaTj ‖
(19)

where zj is jth column of Z, Yj = Ya − ΣK
i=1,i 6=jzia

T
i . The solution of column aj by

least-squares is âj =
Y T
j zj

zTj zj
. We can iterate this procedure to estimate matrix A until

it converges.
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In the ICA analysis of fMRI data, the fundamental assumption is that the spa-

tial components A follow non-Gaussian distribution. The core method of factICA

algorithm is to find a direction to project fMRI data Y so that the projected spatial

component a is as non-Gaussian as possible. So in a similar way, inspired by formula

(18), we can impose the non-Gaussian penalty on each column a of spatial components

A to increase their nongaussianities. Because nongaussianity can be approximated by

negentropy, we can set the reciprocal of negentropy of aj as the penalty term P (aj).

min ‖ Yj − zjaTj ‖ +λ̄P (aj) (20)

Then in the case of collinear issue, the degenerate spatial component can be regulated

to approximate the correct component.

In [52], it was proved that the solution of (20) is equivalent to the solution of this

following object function:

min ‖ aj − âj ‖ +λP (aj) (21)

where âj is least-squares solution
Y T
j zj

zTj zj
and λ = λ̄

zT z
.

If the parameter λ is set appropriately, this algorithm will increase the negentropy

of each spatial component aj and keep the regulated component aj not too far away

from their initial value âj. After standardizing the vector aj and âj and substituting

them into the negentropy formula, we have the non-Gaussian penalized formula:

min ‖ āj − ¯̂aj ‖2 +λ 1
(E(G(āj)−E(G(v)))2

where āj =
aj−mean(aj)

std(aj)
, ¯̂aj =

âj−mean(âj)

std(âj)

(22)

where v is Gaussian signal with zero mean and unit variance, G is one nonquadratic

function.
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The derivative of the object function (22) for āj is the deepest increasing direction

d.

d = 2(āj − ¯̂aj)−
2λg(āj)

V (E(G(āj))− E(G(v)))3
(23)

Here, we choose nonquadratic function G(u) = 1
p

log cosh(pu) and its derivative

g(u) = tanh(pu), where p = 1.

Choose the âj as the initial value of aj and move the āj slightly along the negative

direction d by step size α one time to decrease the value of object function (22).

Then restandardize the new value of āj and move it again along with the current new

direction d. Iterate this procedure until it converges. Finally, retrieve the value aj =

āj ∗ std(âj) + mean(âj).

This new algorithm can overcome the overlapping issue because it is still based

on the PARAFAC framework, which does not need the independent constraint of the

spatial components. However the difference is that under this proposed algorithm

framework, three modes are not equally processed anymore. Spatial mode will be

calculated column by column and each column will be regulated by non-Gaussian

penalty. Thus, this new algorithm is composed of three nesting loops. The first loop

is PARAFAC framework. The second loop is least-squares solution of each component

aj of matrix A. The third loop is to optimize the current component aj using the non-

Gaussian penalty. So this algorithm needs to calculate three relative errors η1, η2, η3

inside each loop to compare with the predefined terminate parameter εd, εA, εY . If

all relative errors ηi, i = 1, 2, 3 are less than predefined parameter εi, i = 1, 2, 3, this

algorithm converges to a stable decomposition of fMRI data Y .
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Initialization:

1. Reshape Y to Ya, Yb, Yc and initialize A,B,C.

Iterative Procedure:

1. B = YbZ(ZTZ)−1 where Z = C � A

2. C = YcZ(ZTZ)−1 where Z = B � A

3. First Sub Iterative Procedure. Set column number j = 1. (Calculate columns

aj of A one by one.):

3.1 âj = Yjzj(z
T
j zj)

−1 where zj is jth column of Z = C �B

3.2 Second Sub Iterative Procedure. (Non-Gaussian Penalty of aj):

3.2.1 āj = ¯̂aj + α ∗ d
norm(d)

.

3.2.2 Calculate η1 = norm(previous d)−norm(d)
norm(d)

. If η1 > εd , return to step 3.2.1.

Otherwise continue to step 3.3.

3.3 If j = K, continue to step 3.4. Otherwise set j = j + 1 and return to step

3.1.

3.4 Calculate η1 = norm(previous A)−norm(A)
norm(A)

. If η2 > εA, set j = 1 and return to

step 3.1. Otherwise continue to step 4.

4. err = Ya − ZAT , Calculate η1 = norm(previous err)−norm(err)
norm(err)

. If η3 > εY , return to

step 1. Otherwise, stop this algorithm.
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The above pseudocode is the outline of the proposed algorithm.

3.3.1 Accelerative Method

Because this proposed algorithm contains three nesting iterations and the Khatri-Rao

product is a time consuming calculation if the dimensions of matrices are very high, it

is slower than TPICA, especially when applying it to real fMRI data. We can speed

up this algorithm in two ways. (1) Use final result of TPICA as the initial input

of A,B,C. The experiments in the next section shows that this initial setting can

dramatically reduce the time consuming of this proposed algorithm. Our proposed

algorithm can improve the results of TPICA remarkably. No matter how small the

stopping criterion of TPICA is, this improvement cannot be achieved by TPICA

alone. (2) For multiple subjects fMRI data, during the preprocessing step, we can

use subject-specific PCA to reduce the data of each subject individually. Suppose

Pi(M ∗ T,K < M < T ) is the PCA reducing matrix for ith subject data Yi(T ∗ V ),

i = 1..N . We have
Yi = (C(i, :)�B) ∗ AT

PiYi = (C(i, :)� PiB) ∗ AT
Y ∗i = (C(i, :)�B∗i ) ∗ AT
Y ∗i ≈ (C(i, :)�B∗) ∗ AT

where C(i, :) is the ith row of C which is also the ith subject loading, and B∗ is the

mean of B∗i , i = 1..N . After subject-specific PCA preprocessing, the reducing fMRI

data Y ∗ is [Y ∗T1 · · ·Y ∗TN ]T . So we have

Y ∗ ≈ (C �B∗) ∗ AT (24)

Based on (24), we can still assume that the reduced fMRI data Y ∗ has trilinear

structure. After the calculation of the proposed algorithm, we can use Pi, i = 1..N to

finish the back-reconstruction step.
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3.3.2 Parameters Selection

This new algorithm has five parameters to be considered: penalty parameter λ, step

size α, three terminate parameters εd, εA, εY . Appropriate values of these paraments

are needed to lead to successful decomposition. Inappropriate values of these para-

ments only result in meaningless and inaccurate decomposition. Here are some sug-

gestions and experiences to choose the efficient values for these parameters.

The most important parameter among them is the penalty parameter λ. The

value of λ is the key to balance the non-Gaussian penalized weight and the similar-

ity between initial component âj and improved component aj. If λ is too big, the

nongaussianity of component aj increases too fast regardless of the similarity, so that

aj diverges to meaningless value and it is very hard to converge. On contrast, if λ

is too small, aj is influenced too slightly by the penalized term. So aj converges to

the nearby of âj very soon. The best choice of λ should be a moderate value and is

mainly estimated associated with the value of âj and its negentropy. We can check

the chosen λ by if the algorithm increases a bit of negentropy of aj each time and

converges before the predefined maximal loop times. If the value is failed to pass this

test, we may decrease the λ until it meets the above rules.

We may also use the step size value α to adjust the changing of aj in each step.

But because this object function is not unimodal, in order to avoid the erratic chang-

ing of aj, we suggest choosing a small value for α.

Three termination parameters ε can be set depending on the balance of desired

accuracy and running time. Small ε can improve the accuracy in expense of the time
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consuming. But εA can be set a little larger than other two ε, because all columns of

A move in different directions so that A could change a lot in the third nesting loop.

3.4 Experimental Design

We verify our algorithm on both simulation data and real fMRI group data. For

simulation data, we compare the results of three algorithms with the ground truth

design. For the real fMRI group data, we compare the result of our algorithm with

the that in [2].

3.4.1 Simulation Data

We generate four two-dimensional matrices of size 46*56 to represent slices of brain

voxels. Each matrix simulates one spatial component (SC) and contains an active

region with size 11*16. In Figure 3, (a)-(d) shows these four simulated spatial com-

ponents and their active regions. The voxel value of the background is 0. The voxel

value at the active region is randomly sampled from uniform distribution [0,1]. In

order to show the different effects of low and high overlapping SCs, we design two

copies of the third SC. The one in (c) is the low overlapping case of SC3 and SC2,

while the one in (d) is the high overlapping case of SC3 and SC2. Two overlapping

results are demonstrated visually in (e) and (d). If we define the ratio between the

shared region and the active region as the overlapping rate, the rate of the low one in

(e) is 20% and the rate of the high one in (f) is 70%. SC1, SC2 and one SC3 together

form the matrix A with three spatial components.

We simulate time courses (TC) using the convolution of the stimulus functions
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with the hemodynamic response function(HRF) which is generated by SPM function

[55] spm hrf(). We use block design pattern and a single peaked function as the stim-

ulus functions for TC1 and TC2 respectively. TC3 is a noised version of TC1. Each

TC contains 150 time points and is shown in (g)-(i) of Figure 3 respectively. These

three TCs together form the matrix B with three times courses.

SC 1 SC 2 SC 3-low overlapping

SC3

high overlapping
SC2&3 low overlapping SC2&3 high overlapping

TC1 TC2 TC3

Figure 3: Simulation data of spatial components (SC) and time courses (TC).
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In order to verify the advantage of our proposed algorithm in processing collinear

issue of the subject loading in group ICA, we provide two subject loading matrices

C in equation (25). C1 is a full rank squared matrix which represents low collinear

case, while the rank of C2 is only 2 which causes the collinear issue.

C1 =

 1 1 1
1 1 2
3 1 3

 , C2 =

 1 1 1
1 1 2
2 2 3

 (25)

We also consider the noise effect to evaluate the robust of three algorithms. We

define the SNR of the data Y as

SNR =
(C �B)AT

E
(26)

where E is the Gaussian noise adding on the fMRI data. The mean of E is 0. The

standard deviation σ of E has two values: 0.2 and 0.8. Based on the formula (26),

the corresponding values of SNR are about 1.5 and 0.35. Note that a low SNR value

means high noise level.

In Table 1, we design eight different tests against three indicators: noise level,

overlapping level and collinear level. Each indicator has two contrasting values: low

and high. Noise level is evaluated by SNR of the data Y , overlapping level is evalu-

ated by overlapping rate of the shared region, and collinear level is evaluated by the

rank of subject loading matrix C. In the next section, we will show the comparison

method of these three algorithms and the experimental results.
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Table 1: Experiment list of simulation.

Noise Level Overlapping Level Collinear Level
(SNR) (Overlapping Rate) (Rank of C)

Experiment A Low (1.50) High (70%) High (2)
Experiment B Low (1.50) High (70%) Low (3)
Experiment C Low (1.50) Low (20%) High (2)
Experiment D Low (1.50) Low (20%) Low (3)
Experiment E High (0.35) High (70%) High (2)
Experiment F High (0.35) High (70%) Low (3)
Experiment G High (0.35) Low (20%) High (2)
Experiment H High (0.35) Low (20%) Low (3)

3.4.2 Real fMRI Group Data

We use the data from [2] completed at Johns Hopkins University. Data from nine

normal subjects were acquired on a Philips 1.5T Scanner. Functional scans were

acquired with an echo planar sequence (64× 64, flip angle = 90, TR = 1 sec, TE

= 39 msec) over a 6-min period for a total of 360 time points. A visual paradigm

was designed in which an 8Hz reversing black and white checkerboard was presented

intermittently in the left and right visual fields. The checkerboards were shown for

30 seconds and were resumed after 60 seconds. Subjects were focusing on a central

cross on the checkerboard during the entire 6 minutes. The paradigm is depicted in

Figure 4. In this experiment, we only have partial data of three subjects instead of

nine subjects used in [2].
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Figure 4: Paradigm used for fMRI experiment. The checkerboards were showed at the high bar

period and hidden at the low bar period. [2]

3.5 Results

3.5.1 Simulation Data

In experiments A-H, we run each algorithm ten times and compare results of SC with

the ground truth SC in Figure 3 using congruence coefficient ρ, where

ρ =
aT b√

(aTa)(bT b)
, given column vectors a, b. (27)

Value ρ can be used to measure the similarity between the restored component and

the truth component. Table 2 shows the means and variances of ρ of each algorithm

in each experiment. Figure 5 draws the content of Table 2 in the format of error bars.

Then we can compare these three algorithms intuitively.

In Figure 5, the results of three algorithm in each experiment are showed in one

separate subfigure. The horizontal axis lists three algorithms in the order of TPICA,

PARAFAC and proposed algorithm from left to right with the color of green, blue

and red respectively. The vertical axis represents the value of ρ. The black line seg-
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ments depicts three mean values. Three vertical error bars of TPICA, PARAFAC

and proposed algorithm represent the intervals of one standard deviation away from

the means of ρ.

Table 2: Experiment results of the means and variances of ρ in three algorithms.

TPICA PARAFAC New Algorithm
Mean(Variance) of Congruence Coefficient

Experiment A 0.9527(0.0000) 0.9124(0.0041) 0.9777(0.0002)
Experiment B 0.9567(0.0000) 0.9875(0.0000) 0.9896(0.0000)
Experiment C 0.9815(0.0000) 0.9227(0.0033) 0.9861(0.0000)
Experiment D 0.9861(0.0000) 0.9873(0.0000) 0.9897(0.0000)
Experiment E 0.7407(0.0008) 0.6803(0.0056) 0.8680(0.0001)
Experiment F 0.8043(0.0002) 0.8343(0.0002) 0.8958(0.0000)
Experiment G 0.7737(0.0002) 0.7237(0.0036) 0.8722(0.0000)
Experiment H 0.8418(0.0000) 0.8350(0.0001) 0.8940(0.0000)

From Figure 5, it is very clear to see that all the assumptions in the previous sec-

tions are verified in these eight experiments. (1) The proposed algorithm is the best

one compared with TPICA and PARAFAC in all eight experiments. Not only the

mean value of proposed algorithm is the highest, but the standard deviation of the

proposed algorithm is also the smallest. A higher mean value means a better decom-

position, and a lower standard deviation indicates a more stabilized algorithm. Thus

this proposed algorithm overcomes both the collinear and overlapping issue in this

simulation. (2) High noise level can lower down the performances of all algorithms.

Experiments (a)-(d) with high level of noise are generally better than experiments

(e)-(h) with low level of noise. If the noise level is set to be even higher, it would be

very hard for any algorithm to decompose the data into meaningful components. (3)

High collinear level can dramatically reduce the performance of PARAFAC. Experi-
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ments (c) and (g) are typical cases with high collinear level and low overlapping level.

We can see that, in these two experiments, PARAFAC is the worst one and is not

very stable. Adding a non-Gaussian penalty term on the spatial mode can conquer

this intrinsic drawback of PARAFAC. (4) High overlapping level can decrease the

performance of TPICA although it is still a quite robust algorithm. Experiments (b)

and (f) are testing on high overlapping level and low collinear level. TPICA is clearly

the worst one, especially in experiment (d). The independent requirements of ICA

hinder any modifications based on itself to deal with the overlapping issue. Thus, we

need to modify the algorithm based on PARAFAC in order to avoid this issue.

Figures 6-9 show the decomposition results of the first run of experiments A, B, C

and E. These figures again verify the above conclusions visually. The time courses in

Figures 6-9 are standardized by subtracting their means and divided by their standard

deviations. Figure 6 shows the results in the case of low noise, high overlapping and

high collinear. We can see that the active regions of SC2 and SC3 of TPICA can not

detach from each other very well. One active region of SC includes a light shaded

region from another SC. Figure 7 shows the results in the case of low noise, high

overlapping and low collinear. We can see that TPICA performs worst under this

situation. The results of time course in TPICA are not very consistent with the

truth values and the spatial components in TPICA still have obvious shaded regions

around the truth components. Figure 8 shows the results in the case of low noise, low

overlapping and high collinear. This time both TPICA and the proposed algorithm

outperform PARAFAC. PARAFAC leads to the degenerate solutions. The first spatial

component in the results of PARAFAC is totally meaningless. Figure 9 shows the

results in the case of high noise, high overlapping and high collinear. We choose
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this experiment results to demonstrate the performance of these three algorithms

under serious conditions of noise, overlapping and collinear. The recovered spatial

components and time courses of our proposed algorithm are also the most consistent

with the truth values.

3.5.2 Real fMRI Group Data

We embed our algorithm into the GIFT package [56]. The final results of our algo-

rithm are summarized in Figure 10, which is generated by GIFT. The threshold value

is 2.0 and the slice range is -52:4:8. The activated spatial map shows right visual

cortex (blue), left visual cortex (red); a transiently task-related component (TTR,

green) in bilateral occipital/parietal cortex. These results are consistent with the

results in [2], while here we only use three subjects instead of nine.

The head part of Figure 10 shows three time courses of the below components.

The blue one is the time course of right visual cortex and the red one is the time

course of left visual cortex. The peaked and flat periods of two time courses are

equivalent to the paradigm in Figure 4 used to control the showing and disappear of

the checkerboards in the left and right visual fields.

3.6 Discussion

We successfully alleviate both overlapping and collinear issues aroused by ICA and

PARAFAC by adding a non-Gaussian penalty term to the spatial mode calculation

of the PARAFAC. The advantages of this proposed algorithm have two aspects: get

rid of independent constraint to alleviate the overlapping issue and regularize the
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Experiment G Experiment H

Figure 5: Error bars of the experiment results.

TPICA
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PARAFAC

Non-Gaussian Penalized PARAFAC.

Figure 6: Experiment A in the case of low noise, high overlapping and high collinear.
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TPICA

PARAFAC

Non-Gaussian Penalized PARAFAC.

Figure 7: Experiment B in the case of low noise, high overlapping and low collinear.
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Non-Gaussian Penalized PARAFAC.

Figure 8: Experiment C in the case of low noise, low overlapping and high collinear.

TPICA

PARAFAC
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Non-Gaussian Penalized PARAFAC.

Figure 9: Experiment E in the case of high noise, high overlapping and high collinear.

Figure 10: Experiment result on the real fMRI data.
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alternative linear regressions to avoid the degenerate solutions. The core method is

to add the non-Gaussian term from fastICA to one step of ALS from PARAFAC. Ac-

tually, we can extend this kind of idea which combines the ALS and penalty term to

solve other similar problems, unless the problems can be modeled by trilinear struc-

tures.

This algorithm also can be viewed as the combination of the characters of ICA and

PARAFAC. The strategy of the fastICA is to project fMRI data onto several orthog-

onal directions to maximize the nongaussianity of the projected data, which are the

spatial components. So the assumption of nongaussianity is the key character of the

spatial components to identify and extract them. The potential degenerate solutions

of PARAFAC can be regulated towards the directions (23) of high nongaussianity to

maximize the proposed object function (22). By this non-Gaussian penalty term, the

degenerate solutions could be improved to good solutions. On the other hand, in the

overlapping situation, mutual orthogonal directions calculated by ICA cannot distin-

guish the correlated spatial components very well. This proposed algorithm is still

based on the PARAFAC framework, which does not need the independent constraint

of the spatial components. Thus, it can separate the correlated components better

than the ICA method.

This proposed algorithm uses the result of fastICA as the initial input. In this

way, the algorithm can converge faster and run more robustly than random initial

values. Additionally, this better result obtained by this proposed algorithm cannot

be achieved by either TPICA or PARAFAC no matter how small the tolerance value

of the convergence is, how large the maximum iteration time is, and how exact the
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initial value is. In other words, the improvement of our proposed algorithm is be-

cause of the intrinsic modification of the penalty term and cannot be achieved by the

parameter settings of the other two algorithms. PARAFAC is not robust even when

we use the results of TPICA as the initial value.

We want to mention the following three points for future discussion and modifica-

tion. Firstly, λ is the key parameter to achieve the best performance of this proposed

algorithm. An incorrect λ value can lead this algorithm into a meaningless decompo-

sition of the fMRI data. The choice of proper λ should consider the balance of the

similarity and nongaussianity. Sometimes we can run this algorithm using the recom-

mended default value at first and adjust the lambda value to rebalance the weights

of two parts of the object function. We will think about a better or even automatic

way to choose the λ value later.

Secondly, this proposed algorithm is more time consuming than other algorithms

due to the calculations of the penalty term and the tensor product. However, this

disadvantage could be ignored if the fMRI data does not need real-time computing.

Time spent on a better decomposition is deserved because it can save even more time

in the next step for screening and explaining the components. We also can use the

modified PARAFAC for large-scale problems to overcome this issue [57, 58]. In de-

tail, the new approach includes computing Hadamard products instead of Khatri-Rao

products and employing relatively small matrices.

Thirdly, some may argue the assumption that fMRI is strictly trilinear data may

not be realistic in applications. However, the running results of our algorithm are
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consistent with the results in the original paper. Additionally, this assumption has

already been discussed in other papers [40, 8]. We also can apply this non-Gaussian

penalty to other applications as long as the data is mixed from non-Gaussian sources

and has a trilinear structure. In the future, we may try to apply this non-Gaussian

penalty strategy to two-mode data to decompose the correlated source signals instead

of independent source signals.
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CHAPTER 4

FUTURE WORK

In Chapter 3, both ICA and PARFAC only consider three modes, subject × tem-

poral × spatial, directly and intuitively based on the structure of the fMRI data.

However, in a typical fMRI experiment, the demographic and symptoms assessment

information including the age and gender of the subjects were also collected. For

example, in [1], forty high-functioning adolescent and young adult males with autism

were compared with 40 male typically developing control volunteers. The range of

these 40 patients with autism is from 12 to 42. In many medical applications such

as autism and Alzheimer’s disease, age is a vital parameter to evaluate and estimate

the severity level of the disease of one subject. In other words, the same disease may

show and develop dramatic difference of the fMRI data along the increasing of the

age of one subject. However, in [1], fMRI data of all the subjects with autism were

analyzed without considering the difference of age. Thus if we could incorporate the

age as one parameter to process the fMRI data of different subjects, the results would

reflect more accurate details of the disease.

Table 3: Characterization of control and autism populations [1].

Autism Control
Characterization Mean(SD)(range) Mean(SD)(range)

Age 22.7 (7.4) (12 to 42) 21.6 (7.4) (8 to 39)
VIQ 107.9 (18.9) (63 to 139) 113.5 (12.7) (90 to 140)
PIQ 106.2 (13.6) (81 to 133) 111.8 (12.1) (88 to 135)
· · · · · · · · ·

Some other biological prior information already have been incorporated into fMRI



46

data analysis, such as the atlas-defined masks [27] and the cortex based information

[29]. So similarly, we would like to analyze fMRI data joint with the subject-specific

information such as ages.

In [59], Liu, Li, and Wu proposed a new feature screening and variable selection

algorithm for varying coefficients. This model is a generalization of the classical

linear regression model with different regularization penalty terms. Basically, the

coefficients of this model are not a series of numbers, but the functions of a univariate

variable. Let y be the response and x = (x1, . . . , xp)
T ∈ Rp be the p-dimensional

predictor. We have the following varying coefficient model:

y = β0(u) + xTβ(u) + ε (28)

where ε is the error term with zero mean, β0(u) is the intercept function, and

β(u) = (β1(u), . . . , βp(u))T .

In this model , if we let the variable u be the age of the subjects, y be the fMRI

data, and x be the design matrix, we could use two-stage approach [59] along with

various penalty functions, such as LASSO and EN, to analyze the fMRI data with

age as the parameter.

The remaining issue is that typical medical fMRI experiments are not block de-

sign, but are event-related design. Hence, the design matrix x does not exist in the

autism experiment [21]. The heuristic method is to combine the ICA and model (3.6).

In the first step, we can use ICA to decompose the fMRI data into the product of

temporal components x and spatial components β. In the second step, we can use

x to approximate the design matrix. Hence, we can use the two-stage algorithm in
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[59] to incorporate the age u of all subjects. We can iterate these two steps until

the algorithm meets certain criterions. In the future, we will test this model on both

simulation and real fMRI data.
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[54] E. Mart́ınez-Montes, R. Sarmiento-Pérez, J. M. Sánchez-Bornot, P. A. Valdés-

Sosa, Advances in Cognitive Neurodynamics ICCN 2007: Proceedings of the



55

International Conference on Cognitive Neurodynamics., Springer Netherlands,

Dordrecht, 2008, Ch. Information Entropy-Based Penalty for PARAFAC Anal-

ysis of Resting EEG, pp. 443–446.

[55] SPM, http://www.fil.ion.ucl.ac.uk/spm/.

[56] GIFT, http://mialab.mrn.org/software/gift/index.html.

[57] A. H. Phan, P. Tichavsky, A. Cichocki, Fast alternating ls algorithms for high or-

der candecomp/parafac tensor factorizations, IEEE Transactions on Signal Pro-

cessing 61 (19) (2013) 4834–4846.

[58] A. H. Phan, A. Cichocki, PARAFAC algorithms for large-scale problems, Neu-

rocomputing 74 (11) (2011) 1970–1984.

[59] J. Liu, R. Li, R. Wu, Feature selection for varying coefficient models with

ultrahigh-dimensional covariates, Journal of the American Statistical Associa-

tion 109 (505) (2014) 266–274.


