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ABSTRACT

Isoperimetric inequalities date back to ancient Greece where figures with equal

perimeters but different shapes were compared (Zenodorus, On Isoperimetric Fig-

ures). The original problem was to maximize the area contained within a curve of

specified length. In Euclidean geometry the result is a circle. This can be generalized

to shapes on non-Euclidean surfaces as well as for higher dimensions where we seek

to maximize the hyperdimensional volume respective to the hyperdimensional surface

area.

The subject of this thesis is isoperimetric constants in planar graphs with hyper-

bolic properties. We first analyze isoperimetric constants in the flat plane which has

curvature 0 and then give an overview of two isoperimetric constants that give a hy-

perbolicity criterion for infinite vertex-regular, face-regular planar graphs. Finally we

extend the concept to general planar graphs with hyperbolic properties and establish

that the same constants serve as a lower bound.
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CHAPTER 1

INTRODUCTION

1.1 Isoperimetric Problems

The original isoperimetric problem dates back to ancient Greece and can be stated

in the following manner: Among all simple closed curves with given length, which

one bounds the largest area? Equivalently one could ask: Among all planar shapes

with same area which one has the smallest perimeter? Zenodorus (an ancient Greek

mathematician) gave us our first insight into proving that it was in fact the circle

that minimized the area, however the complete problem was not solved until 1841 by

Jacob Steiner (who also left a flaw in his proof which was later amended). This leads

to the following inequalities:

Let R be any planar shape with fixed area: Area(R), then

Area(R)

Perimeter(R)
≤ c

Perimeter(R)

Area(R)
≥ 1

c

where the equality holds precisely when R is a circle. Here we say that 1
c

is the

isoperimetric constant.

Definition 1.1 For a planar shape R we say that 1
c

= Perimeter(R)
Area(R)

is the isoperimetric

number of R.

In this thesis we will study the discrete version of this inequality. To this purpose

we will present an equivalent definition for it at end of this chapter after having
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established some necessary definitions. In Chapter 3 we will further elaborate on this

definition so that we may discuss isoperimetric inequalities of graphs with hyperbolic

properties, that is, those which can be embedded in a hyperbolic plane.

1.2 Graph Theory Concepts and Definitions

A graph is a pair G = (V,E) such that the elements of V are the vertices of the graph

G and the elements of E are the edges of the graph G. The usual way to picture a

graph is by drawing a dot for each vertex and joining two of these dots by a line if the

corresponding two vertices form an edge. Just how these dots and lines are drawn

is considered irrelevant: all that matters is the information of which pairs of vertices

form an edge and which do not. [2]

Figure 1: V = {1, ..., 8}, E = {{1, 3}, {1, 5}, {3, 5}, {4, 6}, {4, 8}, {6, 7}}

The vertex set of a graph is denoted V (G) and its edge set E(G). The order of

a graph G, denoted |G|, represents the number of vertices in the graph. Similarly

the number of edges is denoted by ||G||. Graphs therefore may be finite or infinite

according to their order.

A vertex v is said to be incident with an edge e if v ∈ V (e), hence an edge may

be defined by its endpoints x, y ∈ V (G) and may be written as xy (or yx). If xy is
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an edge of G, we say vertices x, y ∈ V (G) are neighbors. Two edges e, f ∈ E(G) are

said to be adjacent if they have an endpoint in common.

The union of two graphs G and K represents the union of their respective vertex

and edge sets and is denoted G∪K := {V (G)∪ V (K), E(G)∪E(K)}. Similarly the

intersect of two graphs is G∩K := {V (G)∩ V (K), E(G)∩E(K)}. If V (K) ⊆ V (G)

and E(K) ⊆ E(G) then K is a subgraph of G and we write K ⊆ G. If K ⊆ G and

K 6= G then K is a proper subgraph of G. If K ⊆ G contains each edge xy ∈ E(G)

for x, y ∈ V (K), then K is an induced subgraph of G.

The set of neighbors of a vertex v ∈ V (G) is denoted NG(v). The degree of a

vertex v ∈ V (G), denoted degG(v), is the number of edges in E(G) which are incident

to v. If all the vertices of a graph G have the same degree d, then G is said to be

vertex-d-regular, or briefly d-regular.

A graph which can be drawn on the (Euclidean) plane in a manner such that it

edges intersect only at their endpoints is said to be planar. An empty region which is

completely bounded by a set of edges in a planar graph is referred to as a face. The

set of faces of a graph G is denoted F (G) and the number of edges which bound a face

R ∈ F (G) is the degree of a face, denoted by dG(R). If all the faces of a graph G have

the same degree f , then G is said to be face-f -regular, or briefly f -regular. A planar

graph which is both vertex-d-regular and face-f -regular is denoted as a (d, f)-regular

graph, or briefly (d, f)-graph.

For a connected simple graph G embedded into the plane we define ∂(G) to be

the (smallest) set of edges which encloses the entire set of faces F (G) of the graph

(in this definition we do not consider the exterior face to be an element of F (G)).

A directed graph is a graph where each edge is given a direction by selecting an

initial vertex and a terminal vertex. If the initial vertex and the terminal vertex are
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the same vertex, say x0, then edge x0x0 is said to be a loop. If a graph has multiple

edges connecting a pair of vertices then the graph is said to be a multigraph. A

graph that does not have any loops or multiple edges is said to be simple. A graph

is connected if any two vertices in the graph can be linked by a path of alternating

vertices and edges.

Definition 1.2 For a finite, simple, connected graph G embedded into the plane we

define ϕ = |∂(G)|
|F (G)| to be the isoperimetric number of the graph.

In Chapter 3 we will offer some similar definitions for isoperimetric numbers of infinite

graphs.
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CHAPTER 2

SURFACES AND THEIR TESSELLATIONS

2.1 Introduction

A tessellation (or tiling) is the result of covering a surface with polygons or other

geometric shapes so that there are no overlaps or gaps.

Figure 2: Two plane tessellations.

A regular tessellation is the result of covering a surface with congruent regular

polygon. In such a tessellation each (internal) vertex in the tessellation will have

the same degree. A tessellation with a f -gon (a polygon with f sides) will have face

degree f . Hence, a regular tessellation may be defined mathematically by a pair (d, f)

representing its vertex and face degrees, respectively.

Figure 3: The (3, 6) plane tessellation.
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It should be noted that while the flat plane may be tessellated by (3, 6), as well

as by (4, 4) and (6, 3), it cannot be tessellated by (3, 7) or (3, 5), or any other regular

tessellation. The following function, which we will discuss in the next section, will

help put this curious property into perspective. For d ≥ 3 and f ≥ 3:

H(d, f) = 4− (d− 2)(f − 2)

and

H ′(d, f) =
1

2
−

(
1

d
+

1

f

)

2.2 Platonic Solids

A platonic solid is a regular, convex polyhedron with congruent faces of regular poly-

gons. A proof that there are precisely 5 platonic solids was given by Theaetetus (a

classical Greek mathematician), these solids are the Tetrahedron (four faces), the Hex-

ahedron (six faces), the Octahedron (eight faces), the Dodecahedron (twelve faces),

and the Icosahedron (twenty faces).

Figure 4: The Platonic Solids
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Claim 1 If R is a platonic solid with vertex degree d and face-degree f then H(d, f) >

0 and H ′(d, f) < 0

Proof: Let R be a platonic solid with V vertices, E edges and F faces, and let d, f be

the respective degrees of the vertices and faces. Observe that each edge joins precisely

2 vertices and lies on precisely two faces, hence fF = 2E = dV . By Euler’s formula

[2] we have: V − E + F = 2. It follows that V = 2E
d

, F = 2E
f

and therefore

2E
d
− E + 2E

f
= 2

2E
d(−2E)

− E
(−2E)

+ 2E
f(−2E)

= 2
(−2E)

−1
d

+ 1
2
− 1

f
= − 1

E

1
2
−

(
1
d

+ 1
f

)
< 0

which gives H ′(d, f) < 0.

Now observe the following equivalent statements:

1
2
−

(
1
d

+ 1
f

)
< 0

1
2
− d+f

df
< 0

1
2
< d+f

df

0 < 2d+ 2f − df

−4 < −4 + 2d+ 2f − df

−4 < −(d− 2)(f − 2)

4− (d− 2)(f − 2) > 0

which gives H(d, f) > 0. �
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Claim 2 If R is a (d, f)-tessellated surface with H(d, f) > 0 then R is a platonic

solid.

Proof: Assume, by way of contradiction, that there exists a (d, f)-tessellated surface R

such that 4−(d−2)(f−2) > 0 (d ≥ 3 and f ≥ 3) and (d, f) /∈ {(3, 3), (4, 3), (3, 4), (5, 3), (3, 5)}.

Then (d, f) = (4, 4), (d, f) = (4, 5), (d, f) = (5, 4), (d, f) = (5, 5), d ≥ 6, or f ≥ 6.

Observe that H(4, 4) = 0, H(4, 5) = H(5, 4) = −2, H(5, 5) = −5. Thus it must

be the case that either d ≥ 6, or f ≥ 6.

Since d ≥ 3 and f ≥ 3 we have (d−2) ≥ 1, (f −2) ≥ 1 and therefore (d−2)(f −2) ≥

max{(d− 2), (f − 2)}. Suppose that d ≥ 6, then (d− 2)(f − 2) ≥ (d− 2) ≥ 4 which

isn’t possible. Thus we must conclude that f ≥ 6. But then (d − 2)(f − 2) ≥ 4, a

contradiction.

We now must show that {(3, 3), (4, 3), (3, 4), (5, 3), (3, 5)} correspond uniquely to the

platonic solids. Recall from Claim 1 that

fF = 2E = dV,

and from Euler’s formula we have

V − E + F = 2.
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It follows:

V − dV

2
+
dV

f
= 2;

V

(
1− d

2
+
d

f

)
= 2;

V

(
2f − fd+ 2d

2f

)
= 2;

V =
4f

2f − fd+ 2d
;

V =
4f

4− (d− 2)(f − 2)
.

Similarly, by observing that 2E
d
− E + dE

f
= 2 and fF

d
− fF

2
+ F = 2 we get

E =
2df

4− (d− 2)(f − 2)

and

F =
4d

4− (d− 2)(f − 2)
.

Therefore we have that E,F, and V are uniquely defined by d and f . All we have

left to verify is that each pair (d, f) corresponds to a distinct platonic solid. Observe

the following:

(d, f) = (3, 3) implies E = 6, F = 4, and V = 4 which corresponds to the tetrahedron.

(d, f) = (4, 3) implies E = 12, F = 8, and V = 6 which corresponds to the octahedron.

(d, f) = (3, 4) implies E = 12, F = 6, and V = 8 which corresponds to the hexahedron.

(d, f) = (3, 5) implies E = 30, F = 12, and V = 20 which corresponds to the dodecahedron.

(d, f) = (5, 3) implies E = 30, F = 20, and V = 12 which corresponds to the icosahedron.

�
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2.3 The Flat Plane

2.3.1 Tessellations of the Flat Plane

In the previous section we discussed the five regular tessellations with H(d, f) > 0 and

demonstrated that they correspond uniquely to the Platonic Solids. We now proceed

to investigate tessellations of the Flat Plane with an aim to demonstrate that there

are exactly 3 regular tessellations.

Claim 3 If (d, f) is a regular tessellation of the Flat Plane then H(d, f) = 0 and

H ′(d, f) = 0.

Proof:

Let G be the graph of the Flat Plane tessellated with regular polygons, where each

polygon has f ≥ 3 sides and each vertex lies at the intersection of d ≥ 3 polygons.

Note that, while we are not restricting which polygon we are using, it must be the

case that each polygon is an f -gon in the regular tessellation.

Observe that since we are in the Flat Plane then the polygons must obey Eu-

clidean geometry. Thus the interior angle must sum up to (f − 2)180◦ and therefore

each interior angle measures (f−2)180◦
f

. Furthermore, since each vertex lies at the in-

tersection of d polygons which leave no gaps in between, then the d angles of each

face must sum up to 360◦ and therefore

d =
360◦

(f−2)180◦
f

or simply d(f) = 2f
f−2 .

We note that d(3) = 6, d(4) = 4, d(5) = 10
3
, d(6) = 3, thus we can tessellate the

Flat Plane with (regular) triangles, squares and hexagons, but not with pentagons

since we may not have 31
3

pentagons meeting at a vertex.
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However the following argument demonstrates that {d(f)}∞f=3 is a monotone de-

creasing sequence:

f ≥ 3

2f(f − 1) > 2f(f − 1)− 4

(2f)(f − 1) > 2(f + 1)(f − 2)

2f

f − 2
>

2(f + 1)

(f + 1)− 2

d(f) > d(f + 1)

It follows that if f = 6 + n, n ∈ Z+, then d(f) < d(6) = 3 which is not possible.

We conclude that the only regular tessellations of the Flat Plane are:

Figure 5: (3, 6), (4, 4), (6, 3).

Furthermore, each of these tessellations correspond to

H(d, f) = H ′(d, f) = 0.

2.3.2 Isoperimetric Constant of the Flat Plane

Having categorized the tessellations of the Flat Plane we are now interested in cal-

culating the isoperimetric number of a flat plane tessellation as defined in Definition

1.2. However a graph embedded in the Flat Plane may be finite or infinite, yet our

definition applies only to graphs with finite boundaries and finite discrete area. We

will address this in depth in chapter 3 where we give a definition that encompasses
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planar graphs of any order. In this chapter we will continue to work with Definition

1.2 for finite graphs and will avoid defining isoperimetric constants for infinite graphs.

Instead we will discuss a related constant which we refer to as the isoperimetric limit

of a graph. This constant will serve as a lower bound for the isoperimetric constant

when define it in Chapter 3.

Definition 2.3 For a planar (d, f)-graph G and a face R0 ∈ F (G) we define a lens

set centered at R0 to be the set of subgraphs {L0, L1, L2, ...} where L0 = G[R0] and

Ln = {R ∈ F (G)− F (Ln−1) | V (R) ∩ V (Ln−1) 6= ∅}, n = 1, 2, 3, ....

Definition 2.4 For a planar (d, f)-graph G and for a lens set center at a face R0

we define Wn to be the n-ball subgraph centered at R0 by Wn = G[
⋃n
i=0 Ln].

Definition 2.5 For a planar (d, f)-graph G and for finite subgraphs W0,W1,W2, ...

of G we define the isoperimetric limit φ(Wn) = lim
n→∞

ϕ(Wn)

Claim 4 The isoperimetric limit of a regular Flat Plane tessellation is φ = 0..

Observe that ϕ compares the cardinality of a non-empty set of edges to the car-

dinality of a nonempty set of faces, hence φ is a non-negative number.

Proof that φ(3, 6) = 0:

Let G be the graph of the Flat Plane tessellated with regular hexagons, that is

the (3, 6) tessellation. We will show that the isoperimetrical constant of the (3, 6)

tessellated flat plane is 0. Select a face R0 ∈ F (G) and set L0 = G[R0], an induced

subgraph of G.

Let Ln = {R ∈ F (G) − F (Ln−1) | V (R) ∩ V (Ln−1) 6= ∅}, n = 1, 2, 3, ... Here we

use L to represent the different lenses of an induced subgraph of G centered at face

R0.
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Further, let Wn = G[
⋃n
i=0 Ln]

Figure 6: W0, W1, W2

Set ∂(W0) = E(W0) and let ∂(Wn) = {e ∈ E(G) | e ∈ E(Wn)∩E(Wn+1)}. Finally

set Pn = |∂(Wn)|. That is, Pn is the number of edges on the boundary of induced

graph Wn.

Then P0 = 6, P1 = 18 and in general Pn = 12n+ 6.

We are now interested in how many faces are bounded by each subgraph Wn, thus

set An = |F (Wn)|

Then A0 = 1, A1 = 7 and in general An = 1 +
n∑
i=0

6i. Having established these we

are now interested in ϕn = Pn
An

, or more interestingly ϕ(G) = lim
n→∞

Pn
An

.

φ(G) = lim
n→∞

ϕn = lim
n→∞

12n+ 6

1 +
n∑
i=0

6i
= lim

n→∞

12n+ 6

1 + 6
n∑
i=0

i
= lim

n→∞

12n+ 6

1 + 6
n∑
i=1

i

= lim
n→∞

12n+ 6

1 + 6 (n)(n+1)
2

= lim
n→∞

12n+ 6

1 + 6n
2+n
2

= lim
n→∞

12n+ 6

1 + 3(n2 + n)

= lim
n→∞

12n+ 6

3n2 + 3n+ 1
= 0.

�

We have shown that the flat plane has isoperimetric limit 0 under the (3, 6) tessel-

lation. We are interested in verifying that flat plane’s isoperimetric properties are

preserved under other tessellations.
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Proof that φ(4, 4) = 0:

Let G be the graph of the Flat Plane tessellated with squares, that is the (4, 4)

tessellation. We will show that the isoperimetric limit of the (4, 4) tessellated flat

plane is also 0.

We define Pn and An as before to demonstrate that ϕ(G) = lim
n→∞

Pn
An

= 0

Figure 7: W0, W1, W2

Observe that Pn = 8n+ 4 and An = 1 +
n∑
i=0

8i

φ(G) = lim
n→∞

ϕn = lim
n→∞

8n+ 4

1 +
n∑
i=0

8i
= lim

n→∞

8n+ 4

1 + 8
n∑
i=0

i
= lim

n→∞

8n+ 4

1 + 8
n∑
i=1

i

= lim
n→∞

8n+ 4

1 + 8 (n)(n+1)
2

= lim
n→∞

8n+ 4

1 + 8n
2+n
2

= lim
n→∞

8n+ 4

1 + 4(n2 + n)

= lim
n→∞

8n+ 4

4n2 + 4n+ 1
= 0.

�

Thus we have verified that isoperimetric properties are conserved under this tessella-

tion as well. We proceed to the remaining Flat Plane tessellation, (6, 3).

Proof that φ(6, 3) = 0:

Let G be the graph of the Flat Plane tessellated with equilateral triangles, that

is the (6, 3) tessellation. We will show that the isoperimetrical constant of the (6, 3)
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tessellated flat plane is also 0.

We define Pn and An as before and demonstrate that φ(G) = lim
n→∞

Pn
An

= 0

Figure 8: W0, W1, W2

Observe that Pn = 6n+ 3 and An = 1 +
n∑
i=0

12i

φ(G) = lim
n→∞

ϕn = lim
n→∞

6n+ 3

1 +
n∑
i=0

12i
= lim

n→∞

6n+ 3

1 + 12
n∑
i=0

i
= lim

n→∞

6n+ 3

1 + 12
n∑
i=1

i

= lim
n→∞

6n+ 3

1 + 12 (n)(n+1)
2

= lim
n→∞

6n+ 3

1 + 12n
2+n
2

= lim
n→∞

6n+ 3

1 + 6(n2 + n)

= lim
n→∞

6n+ 3

6n2 + 6n+ 1
= 0.

�

2.4 The Hyperbolic Plane

2.4.1 Generating Functions in Hyperbolic Tessellations

In the previous section we demonstrated that each tessellation of the Flat Plane

yields the same isoperimetric limit φ = 0. This will not be the case in hyperbolic

tessellations, a fact that we will discuss in the next chapter. Before doing so we

will find the isoperimetric limit of one such tessellation with the aim to gain some

understanding on the general formula.
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Consider the graph G of a regular (7, 3) tessellation which corresponds to a Hy-

perbolic Plane. Select a vertex x0 and set L0 = G[x0]. For n = 1, 2, 3, ... set

Ln = {R ∈ F (G) | V (R) ∩ V (Ln−1) 6= ∅}. Finally set Wn = G[
⋃n
i=0 Ln].

Figure 9: W0, W1, W2, W3

For n = 1, 2, 3, ..., set An = {x ∈ V (Wn−Wn−1) : |NWn(x)∩V (Kn−1)| = 2} and

set Bn = {x ∈ V (Wn −Wn−1) : |NWn(x) ∩ V (Wn−1)| = 1}. Then at each lens we

are separating the vertices into two sets, the set An of vertices on the nth lens which

have two interior edges incident to it and the set Bn of vertices on the nth lens which

have one interior edge incident to it. Since our graph is a triangulation (f = 3) each

vertex has precisely one or two interior incident edges. [4] [5]

Further, we set an = |An| and bn = |Bn|. Observe that a1 = 0, b1 = 7 and

an+1 = an + bn, bn+1 = 2bn + an, n = 1, 2, 3, .... Since a lens Ln has precisely an + bn

vertices on the boundary, this gives us that there are an + bn edges on the boundary

of Wn.

Although this method is effective for calculating the boundary of small subgraphs

it becomes quite cumbersome when estimating large subgraphs. For example, to

calculate the boundary of B4 we would first need to calculate a1, b1, a2, b2, a3, b3. To

avoid this we will convert this recursive relation into a generating function by linear

algebra:
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(
an+1

bn+1

)
=

(
1 1
1 2

)(
an
bn

)
(
an+1

bn+1

)
=

(
1 1
1 2

)2(
an−1
bn−1

)
(
an+1

bn+1

)
=

(
1 1
1 2

)n(
a1
b1

)
(
an+1

bn+1

)
=

(
1 1
1 2

)n(
0
7

)

By diagonalizing the matrix we have:(
1 1
1 2

)n
= (PDP−1)n = PDnP−1

where P =

(
−1+

√
5

2
−1−

√
5

2

1 1

)
, D =

(
3+
√
5

2
0

0 3−
√
5

2

)
, P−1 =

( √
5
5

5+
√
5

10
−
√
5

5
5−
√
5

10

)
.

Observe that Dn =

(
λ1

n 0
0 λ2

n

)
, λ1 = 3+

√
5

2
, λ2 = 3−

√
5

2
. Here λ1, λ2 correspond

to the eigenvalues of the original 2× 2 matrix.

By expanding the product we have:(
an+1

bn+1

)
=

(
7
√
5
5

(λ1
n − λ2n)

7(5+
√
5

10
)λ1

n + 7(5−
√
5

10
)λ2

n

)
, λ1 =

3 +
√

5

2
, λ2 =

3−
√

5

2
.

Therefore we have

|∂(Wn+1)| = 7

√
5

5
(λ1

n − λ2n) + 7(
5 +
√

5

10
)λ1

n + 7(
5−
√

5

10
)λ2

n

Or simply:

|∂(Wn+1)| =
7

5

(
5 + 3

√
5

2

)
λ1

n +
7

5

(
5− 3

√
5

2

)
λ2

n.
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Figure 10: Right triangle edges corresponding to vertices

Having shown that we can efficiently calculate the length of the boundary for an

arbitrary ball graph Wn we are now interested in how many triangles it encloses, that

is what is its discrete area?

Observe that some triangles point inwards and others point outwards, thus we

cannot simply count the bases of the triangles. However each triangle in Ln has a

rightmost edge (right ≈ clockwise) which is incident to a vertex on the boundary

of Ln. Conversely, each vertex on the boundary is incident to either one or two of

these edges. In fact, we can declare that a vertex in An is incident to exactly two of

these rightmost (interior) edges and a vertex in Bn is incident to exactly one of these

rightmost (interior) edges. This leads us to:

|F (Ln)| = 2an + bn

and therefore

|F (Wn)| =
n∑
k=1

2ak + bk,

equivalently

|F (Wn)| =
n∑
k=1

2(7

√
5

5
(λ1

k−1 − λ2k−1)) + 7(
5 +
√

5

10
)λ1

k−1 + 7(
5−
√

5

10
)λ2

k−1
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Equivalently,

|F (Wn)| =
n∑
k=1

7(1 +
√

5)

2
λ1

k−1 +
n∑
k=1

7(1−
√

5)

2
λ2

k−1

However we can generalize this statement by observing that it is the sum of a finite

geometric sequence 1:

Let Sn =
n∑
k=1

{λi∈{1,2}}k−1. Then

Sn =
λi
n − 1

λi − 1

Therefore we have

|F (Wn)| = 7(1 +
√

5)

2

(λ1
n − 1)

(λ1 − 1)
+

7(1−
√

5)

2

(λ2
n − 1)

(λ2 − 1)
.

Recall from the previous section that we define ϕn to be the ratio of the boundary

to the area of a graph Wn with n lenses, that is,

ϕn =
|∂(Wn)|
|F (Wn)|

=

7
5

(
5+3
√
5

2

)
λ1

n−1 + 7
5

(
5−3
√
5

2

)
λ2

n−1

7(1+
√
5)

2
(λ1

n−1)
(λ1−1) + 7(1−

√
5)

2
(λ2

n−1)
(λ2−1)

Since the numerator and denominator share the same power of λ it is conceivable

that lim
n→∞

ϕn 6= 0 for our (7, 3) tessellation.

Recall that λ1 = 3+
√
5

2
, λ2 = 3−

√
5

2
< 1, hence lim

n→∞
λ2

n = 0. Observe that λ1 = 1
λ2

,

1Thank you Dr. Stephens.
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then it follows:

lim
n→∞

ϕn = lim
n→∞

|∂(Wn)|
|F (Wn)|

= lim
n→∞

7
5

(
5+3
√
5

2

)
λ1

n−1 + 7
5

(
5−3
√
5

2

)
λ2

n−1

7(1+
√
5)

2
(λ1

n−1)
(λ1−1) + 7(1−

√
5)

2
(λ2

n−1)
(λ2−1)

= lim
n→∞

7
5

(
5+3
√
5

2

)
λ2λ1

n + 7
5

(
5−3
√
5

2

)
0

7(1+
√
5)

2
(λ1

n−1)
(λ1−1) + 7(1−

√
5)

2
(0−1)
(λ2−1)

= lim
n→∞

7
5

(
5+3
√
5

2

)
3−
√
5

2
λ1

n

7(1+
√
5)

2
(λ1

n)

( 3+
√
5

2
−1)

= lim
n→∞

7
5

(
5+3
√
5

2

)
3−
√
5

2
λ1

n

7λ1
n

= lim
n→∞

7(4
√
5)λ1

n

20

7λ1
n =

√
5

5

It is worth noting that

√
5

5
= (3− 2)

√
1− 4

(7− 2)(3− 2)
= (f − 2)

√
1− 4

(d− 2)(f − 2)
; f = 3, d = 7.

We will discuss this in more detail in the following chapter.
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CHAPTER 3

MAIN THEOREM AND OTHER RESULTS

3.1 Introduction

In this chapter we will investigate isoperimetric constants for graphs with hyperbolic

properties, that is, graphs satisfying in some manner H(d, f) ≤ 0. First we will take

a look at some preliminary results for (d, f)-graphs, following which we will introduce

the main theorem which gives a lower bound for a general hyperbolic tessellation.

Let G be a connected undirected graph without loops and multiple edges, where

V (G) is the set of vertices of G, E(G) is the set of edges in G and F (G) is the set

of faces in G. For x ∈ V (G), the degree of x in G, denoted by degG(x), implies

the number of edges incident with x. The neighborhood of x in G, denoted NG(x),

implies the set of vertices adjacent to x in G. For R ∈ F (G), the degree of R in G,

denoted d(R), implies the number of edges of the boundary of R.

A graph G is said to be a (d, f)-graph if it satisfies the following:

(1) G is planar and already embedded in the plane;

(2) G is regular in the ordinary sense, that is, degG(x) = d for every vertex x ∈ V (G)

and d ≥ 3;

(3) Every face in R is an f -gon, that is, d(R) = f for every face R ∈ F (G), where

F (G) is the set of faces of G, d(R) is the number of edges of the boundary of R and

f ≥ 3.
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A graph G is said to be a (d+, f+)-graph if it satisfies the following:

(1) G is planar and already embedded in the plane;

(2) G is not necessarily vertex-regular and degG(x) ≥ d for every vertex x ∈ V (G)

and d ≥ 3;

(3) G is not necessarily face-regular and d(R) ≥ f for every face R ∈ F (G), where

F (G) is the set of faces of G, d(R) is the number of edges of the boundary of R and

f ≥ 3.

Observe that a (d, f)-graph is always a (d+, f+)-graph but the converse is not gener-

ally true. We will refer to (d+, f+)-graphs broadly.

Set H(d, f) = 4 − (d − 2)(f − 2). It is well known that, if G is a (d, f)-regular

planar graph and if H(d, f) = 0, then G is one of the platonic graphs, which are finite

regular polyhedra. If G is a (d, f)-regular planar graph with H(d, f) ≤ 0, then G is

an infinite graph [4]. In this paper we deal only with (d+, f+)-graphs G satisfying

that (d− 2)(f − 2) ≥ 4 where d = min{degG(x)|x ∈ V (G)}, f = min{d(R)|R ∈ G}.

The following are two isoperimetric constants discussed in [4]. The first, α(·), is an

analogue of Cheeger’s constant, and the other, α∗(·), gives a “hyperbolicity criterion

for an infinite planar graph” [4]. These α(·) and α∗(·) are defined as follows:
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Definition 3.6

α(G) = inf{|E(∂vK)|/Area(K) | K is a finite subgraph of G}

where

Area(K) =
∑

x∈V (K)

degG(x)

and

E(∂vK) = {xy ∈ E(G) | x ∈ V (K), y ∈ V (G)\V (K)};

Definition 3.7

α∗(G) = inf{|E(∂fK)|/|F (K)| | K is a finite subgraph of G}

where

E(∂fK) = {xy ∈ E(K) ∩ E(F ′) | F ′ ∈ F (G)\F (K)}.

The following theorem declares exact values of α(·) and α∗(·) for a (d, f)-regular

graph.

Theorem 3.8 For a (d, f)-regular planar graph G satisfying

H(d, f) = 4− (d− 2)(f − 2) ≤ 0, we have

α(G) =
d− 2

d

√
1− 4

(d− 2)(f − 2)

and

α∗(G) = (f − 2)

√
1− 4

(d− 2)(f − 2)
.

A proof of this Theorem is given in [4]. The first equality was also given independently

by [3].
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3.2 Main Theorem

In this section we will discuss the main theorem of this paper which gives a lower

bound for general planar graphs with hyperbolic properties. The remainder of this

chapter will be devoted to developing necessary definitions and lemmas so that we

may prove this theorem in Section 3.5.

Theorem 3.9 For a planar graph (d+, f+)-graph G satisfying H(d, f) = 4 − (d −

2)(f − 2) ≤ 0 we have

α(G) ≥ d− 2

d

√
1− 4

(d− 2)(f − 2)

and

α∗(G) ≥ (f − 2)

√
1− 4

(d− 2)(f − 2)

That is, for any finite subgraph of K ⊂ G:

inf

{
|E(∂vK)|
Area(K)

}
≥ d− 2

d

√
1− 4

(d− 2)(f − 2)

and

inf

{
|E(∂fK)|
|F (K)|

}
≥ (f − 2)

√
1− 4

(d− 2)(f − 2)

3.3 Definitions

We introduce the concept of two n-balls in a similar manner to the ones discussed in

[4] but with the condition of regularity removed:
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Definition 3.10 For a planar graph G, we pick and fix a vertex x0 ∈ V (G) and

define the (vertex-centered) n-ball Bn = Bn(G, x0) in G as follows:

B0 = G[{x0}] and Bn = G[{R ∈ F (G) | V (R) ∩ V (Bn−1) 6= ∅}], n = 1, 2, ...

For this n-ball Bn, we also set

Vn = {x ∈ V (Bn)\V (Bn−1)} for n = 1, 2, ...; V0 = x0

Definition 3.11 For a planar graph G, we pick and fix a face R0 ∈ F (G) and define

the (face-centered) n-ball B∗n = B∗n(G,R0) in G as follows:

B∗0 = G[{R0}] and B∗n = G[{R ∈ F (G) | V (R) ∩ V (B∗n−1) 6= ∅}], n = 1, 2, ...

For this n-ball B∗n, we also set

V ∗n = {x ∈ V (B∗n)\V (B∗n−1)} for n = 1, 2, ...; V ∗0 = V (R0)

Definition 3.12 [4] For any finite subgraph K of G, we pick and fix a vertex x0 ∈

V (K); we set Bn = Bn(G, x0) in G as defined in Definition 3.4. and we set B∗n =

B∗n(g, x0) in G as defined in Definition 3.5.

We set

N = N(K, x0) = max{n | V (K) ∩ Vn 6= ∅}

For n = 0, 1, ..., N , we denote

Wn to be the subgraph of K induced by F (K) ∩ F (Bn)
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and

Fn = F (Wn)\F (Wn−1)

Similarly we set

N∗ = N∗(K,R0) = max{n | V (K) ∩ V ∗n 6= ∅}

For n = 0, 1, ..., N∗, we denote

W ∗
n to be the subgraph of K induced by F (K) ∩ F (B∗n)

and

F ∗n = F (W ∗
n)\F (W ∗

n−1)

Definition 3.13 For a finite planar graph WN (or equivalently for W ∗
N) induced

from a planar subgraph K ⊂ G and a vertex v ∈ Vk (V ∗K) as defined in Definition 3.4.

(Definition 3.5.), we say P = P (K, v) is an outward path rooted at v given that

(i) |V (P )| ≥ 2;

(ii) v is a start vertex for P , that is |NP (v)| = 1;

(iii) If x is an internal vertex in P ∩ Vn and degG(x) > 3

then |NP (x) ∩ Vn−1| = 1

and |NP (x) ∩ Vn+1| = 1 ;

(iv) If x is an internal vertex in P ∩ Vn and degG(x) = 3

then |NP (x) ∩ Vn| = 1

and |NP (x) ∩ Vn−1|+ |NP (x) ∩ Vn+1| = 1 .

(v) P has an end vertex z ∈ VN , and |V (P ) ∩ VN | = 1 ;
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That is P is a finite path with the properties that

(1) P begins at v ∈ Vk (equivalently V ∗k ) and ends at z ∈ VN (V ∗N);

(2) P travels outwards in a most efficient manner.

Definition 3.14 For an outward path P (K, v) = v, x1, x2, ..., xn, xn+1, ..., z, we say

P is a right-leaning path rooted at v if:

(1) v ∈ Vk and x1 ∈ NG(v) ∩ Vk+1;

(2) If min{degG(xi) : xi ∈ V (P )} > 3, then:

xn+1 ∈ NP (xn) ∩ Vn+1 is the rightmost vertex of NG(xn) ∩ Vn+1, (n ≥ 1);

(3) If min{degG(xi) : xi ∈ V (P )} = 3, then:

x2n+1 ∈ NP (x2n) ∩ Vn is the rightmost vertex of NG(x2n) ∩ V2n+1, (n ≥ 0), and

x2n+2 ∈ NP (x2n+1) ∩ Vn+1 is the rightmost vertex of NG(x2n+1) ∩ Vn+1, (n ≥ 0).

The preceding definition defines paths that begin at a vertex v ∈ Vk (equivalently

V ∗k ), continue through a neighboring vertex of v in Vk+1 (V ∗k+1) and then extends

outwards (whenever possible) choosing the rightmost vertex each time.

Observe that for v ∈ Vk (V ∗k ) there exist λ = |NK(v) ∩ Vk+1| (V ∗k+1) disjoint right-

leaning paths rooted at v. For simplicity we will index them P1, P2, ..., Pλ such that
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Figure 11: Two right-leaning paths at x

P1 is the leftmost path and Pλ is the rightmost path.

Definition 3.15 For a graph K and a vertex v ∈ Vn = Vn(K) (similarly for V ∗n )

we define an outward V -wedge rooted at vertex v, denoted ∨(v), to be the induced

(smaller) subgraph bounded by ∂(K) and by two neighboring outward, right-leaning

paths Pi, Pi+1 (1 ≤ i ≤ λ− 1) rooted at v.

Figure 12: V-wedges

Definition 3.16 For a graph K, a face R ∈ Fn = Fn(K) and an edge e = [xy] ∈

E(R) ∩ Fn+1 we define an outward U-wedge rooted at edge e, denoted t(e), to be

the induced (smaller) subgraph bounded by ∂(K), by the edge e and by two outward,

right-leaning paths Pi(x), Pi(y) (1 ≤ i ≤ λ− 1) rooted at x and y respectively.
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Figure 13: U-wedges

3.4 Assumptions and Lemmas

Assumption 3.1 [4] We may make the following assumptions on finite subgraph K

of G:

(a) for every e ∈ E(K) there exists a face R ∈ F (K) such that e ∈ E(R);

(b) K is connected and has no cut-vertex 2;

(c) ∂fK, the subgraph of K induced by E(∂fK), is connected and a cycle.

The proof of the validity of these assumptions is given in [4] and is therefore omitted

here.

Lemma 3.17 Let G be a (d+, f+)-non-regular planar graph satisfying H(d, f) =

4− (d−2)(f −2) ≤ 0 and K be a subgraph of G satisfying Assumption 3.1. Let
∨

(x)

be an outward V -wedge contained between paths Pi and Pi+1.

If |Pi| = |Pi+1| and if
∨

(x) is (d, f)-regular then

|E(∂f
∨

(x))|
|F (
∨

(x))|
≥ (f − 2)

√
1− 4

(d− 2)(f − 2)

where ∂f
∨

(x) = ∂fK ∩
∨

(x).

2A cut-vertex is a vertex which if removed would separate the graph into two disjoint subgraphs.
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Proof: Since |Pi| = |Pi+1| we identify corresponding vertices and edges and glue

d copies of
∨

(x) to form a (d, f)-regular ball, say B. Then by Theorem 1.1.:

|E(∂f
∨

(x))|
|F (
∨

(x))|
=

d|E(∂f
∨

(x))|
d|F (

∨
(x))|

=
|E(∂fB)|
|F (B)|

≥ (f − 2)

√
1− 4

(d− 2)(f − 2)
.

Figure 14: Gluing of V-wedges

Lemma 3.18 Let G be a (d+, f+)-non-regular planar graph G satisfying H(d, f) =

4 − (d − 2)(f − 2) ≤ 0 and K be a subgraph of G satisfying Assumption 3.1. Let

e = [xy] be an edge in K and
⊔

(e) be an outward U-wedge contained between paths

Pi(x) and Pi(y).

If |Pi(x)| = |Pi(y)| and
⊔

(e) is (d, f)-regular then

|E(∂f
⊔

(e))|
|F (
⊔

(e))|
≥ (f − 2)

√
1− 4

(d− 2)(f − 2)

Proof: same argument as with
∨

(x).
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Lemma 3.19 Let H be a finite, planar graph and let H1, H2 be subgraphs of H such

that F (H1), F (H2) 6= ∅ and F (H1) ∩ F (H2) = ∅ and F (H1) ∪ F (H2) = F (H). Then

|E(∂fH)|
|F (H)|

≥ min

{
|E(∂fH ∩H1)|
|F (H1)|

,
|E(∂fH ∩H2)|
|F (H2)|

}

Proof: Let

ϕ = min

{
p

q
,
s

t

}
,

where

p = |E(∂fH ∩H1)|, q = |F (H1)|,

s = |E(∂fH ∩H2)|, t = |F (H2)|.

It follows:

p

q
≥ ϕ,

s

t
≥ ϕ;

p ≥ qϕ, s ≥ tϕ;

p+ s

q + t
≥ qϕ+ tϕ

q + t
= ϕ.

Figure 15: Separating a graph into two subgraphs

We have demonstrated, in the preceding lemmas, that regions
∨

(·) and t(·) can

be contracted and that their contractions do not increase the isoperimetric ratio. A

restriction of these ratios is that their outward bounding paths must be of equal

length. However if the paths aren’t of the same length then the region cannot be
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contracted in general. The following lemma allows us to deal with this occurrence

by demonstrating that the outermost layer of a graph, if it is (d, f)-regular, may be

contracted and the resulting graph will have a smaller (or equal) isoperimetric ratio.

Lemma 3.20 For a finite subgraph K of G and induced subgraph WN = G[F (K) ∩

F (BN)]. If WN 6= BN and WN ,WN−1 satisfy the following conditions:

(1) deg(v) ≥ d, d(R) ≥ f, for all v ∈ V (WN−1), R ∈ F (WN−1)

(2) deg(v) = d, d(R) = f, for all v ∈ V (WN\WN−1), R ∈ F (WN\WN−1).

then

|E(∂fWN)|
|F (WN)|

≥ min

{
|E(∂fWN−1)|
|F (WN−1)|

, (f − 2)

√
1− 4

(d− 2)(f − 2)

}
.

Proof:

Let

S = F (WN) \ F (WN−1).

Observe that induced graph G[S] may be disconnected. Thus S can be expressed as

the union of edge disconnected sets S1, ..., Sk such that

S = S1 ∪ ... ∪ Sk,

E(Si) ∩ E(Sj) = ∅, 1 ≤ i 6= j ≤ k

Let

A = E(∂fWN) ∩ E(∂fWN−1)

Bi =
(
E(∂fWN) \ A

)
∩ E(Si), 1 ≤ i ≤ k

Ci =
(
E(∂fWN−1) \ A

)
∩ E(Si), 1 ≤ i ≤ k
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Observe that

|E(∂fWN)|
|F (WN)|

=
|E(∂fWN−1)|+ |B| − |C|
|F (WN−1)|+ |S|

.

Therefore, by Lemma 3.16, it suffices to show that

|Bi| − |Ci|
|Si|

≥ (f − 2)

√
1− 4

(d− 2)(f − 2)
,

for each 1 ≤ i ≤ k.

Assume, by way of contradiction, that there exists a counterexample. Since this coun-

terexample must be finite there must exist a minimal counterexample. Let K ⊂ G

be a minimal counterexample, let Si be the smallest subgraph of K such that

|Bi| − |Ci|
|Si|

< (f − 2)

√
1− 4

(d− 2)(f − 2)
,

and let s = |{R ∈ F (Si)}|.

Let

FN = F (WN)\F (WN−1) and fN = |FN |

A+
N−1 = V (G[FN ]) ∩ VN−1,

AN−1 = {x ∈ A+
N−1 | xy ∈ ZN for any y ∈ NK(x) ∩ VN},

aN−1 = |AN−1|,

where ZN is the set of edges xy for which there exists two faces R1, R2 ∈ FN such

that xy ∈ E(R1) ∩ E(R2).
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Further, we inductively define {ak}N−1k=0 by

Fk = F (Wk)\F (Wk−1) and fk = |Fk|

A+
k−1 = V (G[Fk]) ∩ Vk−1,

Ak−1 = {x ∈ A+
k−1 | xy ∈ Zk for any y ∈ NK(x) ∩ Vk},

ak−1 = |Ak−1|,

where Zk is the set of edges xy for which there exists two faces R1, R2 ∈ Fk such that

xy ∈ E(R1) ∩ E(R2).

By assumption WN 6= BN and therefore a0 = 0. Thus we may set

m = max{0 ≤ k ≤ N − 1|ak = 0}.

Now consider the induced graph F =
⋃N
k=m{Fk}. If F is (d, f)-regular then we know

by [4] that

|E(∂fWN)| − |E(∂fWN−1)| ≥
√

(f − 2)((d− 2)(f − 2)− 4)

d− 2
(|F (WN)| − |F (WN−1)|

and therefore

|Bi| − |Ci|
|Si|

≥ (f − 2)

√
1− 4

(d− 2)(f − 2)
.

Thus we may conclude that there exists a face R ∈ F (F) with d(R) > f or there

exists a vertex x ∈ V (F) with deg(x) > d.

Set

lF = max{m ≤ k ≤ N − 1|∃R ∈ F (Fk) satisfying d(R) > f}
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and set

lV = max{m ≤ k ≤ N − 1|∃x ∈ V (Fk) satisfying deg(x) > d}

and let

l = max{lF , lV }.

If lF > lV then let Q ∈ F (Fl) satisfying d(Q) > f and let e = st ∈ E(Q) ∩ E(Fl+1).

Since lF > lV and Fl represents the largest indexed non-regular Fk we have that

t(e) is (d, f)-regular. Furthermore we have that |Pi(s)| = |Pi(t)| thus we may con-

tract region t(e) ⊂ F and obtain a smaller graph. We denote said graph as t(e) ⊂ F .

By the assumption of minimality of K we must have that:

|E(∂fWN ∩ t(e))| − |E(∂fWN−1 ∩ t(e))|
(|F (WN ∩ t(e))| − |F (WN−1 ∩ t(e))|

≥
√

(f − 2)((d− 2)(f − 2)− 4)

d− 2

And since t(e) is (d, f)-regular we have by [4]:

|E(∂fWN ∩ t (e))| − |E(∂fWN−1 ∩ t (e))|
(|F (WN ∩ t (e))| − |F (WN−1 ∩ t (e))|

≥
√

(f − 2)((d− 2)(f − 2)− 4)

d− 2

But then by Lemma 3.16

|E(∂fWN)| − |E(∂fWN−1)|
(|F (WN)| − |F (WN−1)|

≥
√

(f − 2)((d− 2)(f − 2)− 4)

d− 2

which is a contradiction.
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If lF ≤ lV then let v ∈ V (Fl) ∩ Vl be a vertex satisfying d(Q) > f . Then
∨

(v) is

(d, f)-regular with |Pi(v)| = |Pi+1(v)|. By the same argument as above we conclude

that

|E(∂fWN )|−|E(∂fWN−1)|
(|F (WN )|−|F (WN−1)|

≥

min{ |E(∂fWN ∩
∨
(v))|−|E(∂fWN−1 ∩

∨
(v))|

(|F (WN ∩
∨
(v))|−|F (WN−1 ∩

∨
(v))|

,
|E(∂fWN ∩

∨
(v))|−|E(∂fWN−1 ∩

∨
(v))|

(|F (WN ∩
∨
(v))|−|F (WN−1 ∩

∨
(v))| } ≥√

(f−2)((d−2)(f−2)−4)
d−2 .

Once again a contradiction. �

3.5 Proof of Main Theorem

LetG be a (d+, f+)-non-regular planar graph satisfyingH(d, f) = 4−(d−2)(f−2) ≤ 0

and let K be a finite subgraph of G. We assume that K is such as described in As-

sumption 3.1. Furthermore, let WN = G[F (K) ∩ F (BN)] where N = N(K, x0) =

max{n | V (K) ∩ Vn 6= ∅}.

Let ϕ(K) = |E(∂(K))|
|F (K)| . We will show that ϕ ≥ (f − 2)

√
1− 4

(d−2)(f−2) .

Let δN = max{degG(x)|v ∈ VN} and let x ∈ VN be a vertex with degG(x) = δ.

If δ = d we have nothing left to reduce and we may continue onto the next procedure.

If δ > d, let e = [xy] be an edge where x ∈ VN and y ∈ V (G \ K). Since α ∗ (·)

does not measure said edges we may delete e and ϕ(K \ e) = ϕ(K). We continue by

deleting outward edges until δ = d and let the resulting be K(δN ).

ϕ(K(δN )) = ϕ(K)
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Let γN = max{dK(δN )(R)|R ∈ FδN} and let Q ∈ FδN be a face with d(Q) = γN . If

γN = f we have nothing left to reduce (in FδN ) and we may continue. If γN > f , let

e = [uv] ∈ E(Q) ∩ E(∂(K(δN ))). We contract edge e to a vertex u = v. Observe that

ϕ(K(δN )/{e}) =
|E(∂(K(δN )))| − 1

|F (K(δN )/{e})|
=
|E(∂(K(δN )))| − 1

|F (K(δN ))|
<
|E(∂(δN))|
|F (K(δN ))|

= ϕ(K(δN ))

Continuing in like manner we contract edges in E(Q)∩E(∂(K(δN )) until each face in

FδN has degree f . Let the resulting graph be K(γN ).

ϕ(K(γN )) ≤ ϕ(K)

Observe that FγN is (d, f)-regular. Applying Lemma 3.5 we contract region FγN , let

K(N ′) be the resulting graph. By Lemmas 3.4. and 3.5. we have

ϕ(K(γN )) ≥ min

{
ϕ(K(N ′)) , (f − 2)

√
1− 4

(d− 2)(f − 2)

}

and hence

ϕ(K) ≥ min

{
ϕ(K(N ′)) , (f − 2)

√
1− 4

(d− 2)(f − 2)

}

Now observe that K(N ′) is actually WN−1 = G[F (K) ∩ F (BN−1)] and N − 1 = N ′

where N ′ = N ′(K, x0) = max{n | V (K(N ′)) ∩ Vn 6= ∅}. Thus we may iterate the

process N − 1 times and each time

ϕ(K) ≥ min

{
ϕ(K(N ′)) , (f − 2)

√
1− 4

(d− 2)(f − 2)

}
where K(N ′) is the resulting graph. Let K0 be the result of N − 1 iterations. Ob-

serve that K0 = W1 is a 1-ball centered at xo with λ = (x0) faces. Let F (K0) =
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{R1, R2, ..., Rλ}. It follows that

ϕ(K0) =
|E(∂(K0))|
|F (K0)|

=

λ∑
i=1

(|E(Ri)| − 2)

λ
≥

λ∑
i=1

(f − 2)

λ
= f − 2

Therefore

ϕ(K) ≥ min

{
f − 2 , (f − 2)

√
1− 4

(d− 2)(f − 2)

}
≥ (f − 2)

√
1− 4

(d− 2)(f − 2)
.

�

Thus we have shown that

α∗(G) ≥ (f − 2)

√
1− 4

(d− 2)(f − 2)

by reducing a graph K to a (d, f)-graph. An argument in [4] is given to demonstrate

that this graph must also satisfy

α(G) ≥ d− 2

d

√
1− 4

(d− 2)(f − 2)
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3.6 Summary

For a planar (d+, f+)-graph G satisfying H(d, f) = 4− (d− 2)(f − 2) ≤ 0 we have

α(G) ≥ d− 2

d

√
1− 4

(d− 2)(f − 2)

and

α∗(G) ≥ (f − 2)

√
1− 4

(d− 2)(f − 2)

Conjecture 3.21 For a planar (d+, f+)-graph G satisfying

H(d, f) = 4 − (d − 2)(f − 2) ≤ 0. If D = max{degG(x) | x ∈ V (G)} exists and if

F = max{dG(R) | R ∈ F (G)} exists, then

α∗(G) ≤ (F − 2)

√
1− 4

(D − 2)(F − 2)

It is worth noting that while this would give an upper bound for the isoperimetric

number for the general graph it would not necessarily be a good bound, for if a graph

G is locally (d, f)-regular but tends to (D,F )-regularity elsewhere then the constant

α∗(G) would tend towards (f − 2)
√

1− 4
(d−2)(f−2) since α∗(G) is defined to be the

infimum ratio, inf

{
|E(∂fK)|
|F (K)|

}
, of all subgraphs K ⊂ G. Thus while this conjecture

may be interesting to some (at least one) and likely achievable, it is the author’s

opinion that a new ratio must be defined to give an effective upper bound.
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