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ABSTRACT 

 Planet Earth is currently experiencing a loss of biodiversity characterized by 

population declines that exceed the accepted background extinction rates. One of the 

drivers of this decline are emerging pathogens, with fungi representing a disproportionate 

percentage of pathogens causing decline. In 2006, Pseudogymnoascus destructans was 

introduced into the United States and has rapidly spread, threatening extinction of 

multiple bat species. The threat of emerging fungal pathogens has led to increased 

interest in understanding how the host associated cutaneous microbial assemblage 

interacts with fungal pathogens, particularly within the context of host health. In order to 

understand how the host associated microbial assemblage interacts with fungal 

pathogens, it is imperative to understand how assemblages are structured and maintained 

across the landscape. Metacommunity theory provides a way to understand local patterns 

within the context of interactions at the regional scale. The overall objective of my work 

is to understand how the bat cutaneous microbial assemblage interacts with P. 

destructans across the landscape. Previous work has suggested that there is a decoupling 

of taxonomy and function within microbial assemblages, therefore, I am interested in 

understanding how both taxonomic and functional assemblages respond to the presence 

of P. destructans. To address these objectives, I sampled bat cutaneous microbial 

assemblages across Tennessee and used high-throughput DNA sequencing techniques to 

characterize bat cutaneous microbial assemblages both taxonomically and functionally 

across the landscape in the presence/absence of P. destructans. Results indicate that the 

presence of P. destructans correlates with a shift in taxonomic microbial assemblage 
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structure but not necessarily function. Additionally, at the landscape scale, results suggest 

that the environment is one of the main drivers of the bat cutaneous microbial assemblage 

structure, and that the presence of P. destructans influences this relationship. I also tested 

and found that microorganisms composing the bat skin microbiome have antifungal 

activity against P. destructans.  
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CHAPTER I: INTRODUCTION 

A disturbance is a discrete event that causes a change or disruption in ecosystem 

or community structure (White and Pickett 1985). The agents of ecosystem disturbance 

can be either physical or biological in nature. Physical agents of disturbance include 

events such as fires, storms, and floods, whereas, biological agents include predation, 

grazing, or nonpredatory behaviors that displace other organisms (Sousa 1984). The 

frequency that a community is exposed to such events can allow for the evolution of 

disturbance reliant or resistant communities. Microbial community response to 

disturbance is understudied, however, researchers assume that these microbes respond to 

disturbance by being resistant, resilient, and/or with functional redundancy (Allison and 

Martiny 2008). A resistant community can experience disturbance with no impact on the 

community composition or function, whereas, resilience is the ability of a community to 

return to a pre-disruption state (Shade et al. 2012). Functional redundancy is defined as 

the ability of a community to maintain its original function despite its composition 

changing (Allison and Martiny 2008). A microbial community is considered stable in the 

face of disturbance if resistance/resilience is observed at both the community and 

functional levels (Pimm 1984). Disturbances can be both naturally occurring (i.e. 

hurricanes) or anthropogenically sourced. Anthropogenically sourced disturbance can 

include events such as deforestation (Friedman and Reich 2005) or the introduction of 

nonnative species (Sanders et al. 2003).  

 Nonnative species occur outside of a natural geographic distribution and are not 

naturally found within an ecosystem or habitat. The majority of introduced nonnative 

species are unable to successfully reproduce or are outcompeted (Zenni and Nuñez 2013), 
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however, those that do mate can form populations outside of their endemic range 

(Richardson et al. 2000). Invasive species often dominate over native species and 

frequently have negative impacts on native biodiversity (Crooks 2002). Well known 

examples include invasive species’ ability to outcompete native species for resources 

(Petren and Case 1998), direct consumption of native species (Savidge 1987), and 

introduction of pathogens/parasites (i.e. Cryphonectria parasitica, the fungal agent of 

chestnut blight). Impacts to native biodiversity can affect both the structure and function 

of macro- and microorganism communities (Kourtev et al. 2002; Carlsson et al. 2004). 

Pseudogymnoascus destructans, the causative fungal agent of white-nose 

syndrome (WNS), was introduced into Howes Cave, New York in 2006, and has since 

caused declines in bat populations across the eastern United States (Blehert et al. 2009). 

As of April 2021, bats with WNS have been identified in 35 states and seven Canadian 

provinces. Pseudogymnoascus destructans, but not WNS, has been found in four 

additional states (whitenosesyndrome.org). Pseudogymnoascus destructans infects bats 

during winter and causes them to increase the frequency of arousal from hibernation, 

which ultimately can lead to death (Reeder et al. 2012). Declines within hibernacula are 

rapid, with reports as high as 90% occurring yearly (Frick et al. 2010). White-nose 

syndrome has severely impacted bats, causing population declines of three federally 

listed bat species (Myotis sodalis [Indiana bat], Myotis grisescens [Gray bat], and Myotis 

septentrionalis [Northern long-eared myotis], Blehert et al. 2009; Leopardi et al. 2015). 

Furthermore, research predicts that WNS may cause the regional extinction of Myotis 

lucifugus (Little Brown Bats) by 2026 (Frick et al. 2010). The loss of bats concerns both 

conservation biologists and the farming industry, due to the important role that bats play 
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in cave ecosystems, and on the landscape in pest control (Boyles et al. 2011; Kunz et al. 

2011). As a result, there has been interest in understanding ways to mitigate bat declines.   

Patterns in host microbial community structure have been correlated with 

phylogenetic (Carrillo-Araujo et al. 2015), environmental determinants (Avena et al. 

2016; Lemieux-Labonté et al. 2016), interspecific interactions (Song et al. 2013), social 

behaviors (Tung et al. 2015), and disease state (Cho and Blaser 2012; Lemieux-Labonté 

et al. 2017). The processes that drive microbial assembly patterns are thought to be 

similar to those governing macro-communities, namely selection, drift, speciation, and 

dispersal (Vellend 2010; Nemergut et al. 2013). Understanding processes that influence 

disease outcome for the host has both theoretical and applied implications.    

The concept of the disease triangle was created in order to understand the 

relationship between various factors that result in disease outbreaks (Scholthof 2007). 

The three main factors influencing disease outcome include a susceptible host, virulent 

pathogen, and a favorable environment (McNew 1960). A diverse community of 

microbes survive on the cutaneous layer of vertebrates and are known to influence 

disease dynamics (Belden and Harris 2007; Grice and Segre 2011). Bacterial species in 

the microbiome compete with pathogenic or transient invaders, through the production of 

antimicrobial compounds, and prevent colonization of non-community members 

(Rollins-Smith 2009; Cornelison et al. 2014). Numerous studies have found antifungal 

bacterial species within the cutaneous microbial assemblage of bats (Cornelison et al. 

2014; Hoyt et al. 2015; Cheng et al. 2016; Grisnik et al. 2020), as well as, within the 

microbiome of non-mammal organisms, including amphibians (Lauer et al. 2007; Harris 

et al. 2009) and reptiles (Hill et al. 2017). The identification of antifungal taxa within the 
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bat microbiome has led to an interest in using the microbiome to treat P. destructans 

infection. Pseudomonas species are known to have anti-P. destructans activity both in 

vitro and in vivo (Hoyt et al. 2015; Cheng et al. 2016). Bats that are P. destructans 

positive have a microbiome enriched with Pseudomonas species, as well as, other 

bacterial genera that have been reported to exhibit antifungal activity (Lemieux-Labonté 

et al. 2017).  

One of the major risks involved with using antifungal taxa as a treatment for 

disease is the possibility of introducing a potentially harmful bacterial strain into a 

nonnative environment. This is of particular concern when introducing bacteria into 

caves, which are fragile ecosystems that are highly susceptible to numerous sources of 

degradation (Parise and Pascali 2003; Barton 2006). In order to minimize potential 

damage to this ecosystem, it is important that any candidate antifungal species be both a 

member of the bat cutaneous microbiome and found in the cave environment. 

Understanding the factors that influence the bat and cave microbiome is important for 

determining the potential use of antifungal bacteria for disease treatment (Avena et al. 

2016). The cutaneous microbiomes of M. lucifugus in P. destructans positive caves are 

enriched with antifungal bacteria relative to M. lucifugus found in P. destructans naïve 

caves (Lemieux-Labonté et al. 2017). Ecological processes like selection and 

environmental filtering are thought to drive skin enrichment of bacterial species that 

inhibit the growth of P. destructans and provide an innate immune response for bats 

(Grice and Segre 2011; Lemieux-Labonté et al. 2017). The potential implications of these 

microbe-pathogen interactions on host health is not fully understood. 
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Coupling of community assemblage structure with microbial function is a rapidly 

developing area in microbial community ecology. Metagenomic shotgun sequencing has 

allowed for researchers to determine functional differences within microbial communities 

using a collection of reference databases (Sharpton 2014). Functional community 

profiling can serve as a proxy for gene expression to approximate community function 

(Greenblum et al. 2011). Metagenomic shotgun sequencing has shown utility in 

determining differences between healthy and diseased human gut microbiome metabolic 

pathways (Morgan et al. 2012), however, our understanding of microbiome function over 

space and time in non-model organisms like bats is poorly understood.  

In order to understand dynamic systems, it is important to consider scale of 

measurement, including both temporal and spatial aspects (Wiens 1989). Fine scale 

studies (those within a single patch or microsite) allow for a mechanistic understanding 

of system processes, however, without sampling at the broader scale (metacommunity 

level), these patterns cannot be translated into ecosystem processes (Wiens 1989). A 

classic example was observed between two bird species, the Least Flycatchers 

(Empidonax minimus) and American Redstarts (Setophaga ruticilla). At the fine scale (4-

hectare plots) Least Flycatchers negatively influence the distribution of American 

Redstart territories, suggesting competitive exclusion of American Redstarts by Least 

Flycatchers, however, when looking to the regional scale, these two species are positively 

associated with one another (Sherry and Holmes 1988). The importance of scale has 

frequently been observed within macro-community ecology, however, there has only 

recently been an interest in understanding the influence of scale on microbial community 

structure and function (Nemergut et al. 2013). The current lack of understanding is likely 



6 
 

 
 

due to the differences in biologically relevant scales between host organisms and 

microbial taxa and is likely confounded by sampling efforts. For example, the actual 

bacterial diversity within a soil sample is likely underestimated using metabarcoding and 

sequencing due to the homogenization of unique microhabitats composing distinct 

bacterial communities (Nemergut et al. 2011). These cross-scale interactions have been 

acknowledged by ecologists and are considered with the application of metacommunity 

theory.   

Metacommunity theory was developed to recognize that patterns observed within 

local communities can be influenced by interactions at the much larger regional 

(metacommunity) level (Leibold et. al 2004). A metacommunity is frequently defined as 

a group of habitat patches that are linked by dispersal and interactions of species between 

these patches (Leibold et al. 2004; Costello et al. 2012). The rates of dispersal, and nature 

of these interactions, can influence the patterns that are observed within local and 

regional habitat patches (Miller et al. 2018). Therefore, in order to draw meaningful 

conclusions, it is important to observe patterns across scales. Leibold et al. (2004) 

described scalar interactions using terminology such as microsites, localities, and 

metacommunities, to describe fine to broad scale patterns within a system (Leibold et al. 

2004). Within my study system, a microsite was considered as a patch of skin on a bat 

host. Individual skin patches are interconnected forming a host-associated microbial 

assemblage (locality). Depending on bat species life-history (e.g. close communal 

hibernation), host-associated microbial assemblages (localities) of individual bats may 

interact with one another, or with the hibernation roost and/or cave environment. The 
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summation of interactions describes a metacommunity and the unit of study for my 

dissertation work.   

Current work has classified four simplified approaches to metacommunity theory 

including species-sorting, mass effects, neutral processes, and patch dynamics (Leibold et 

al. 2004). Environmental conditions dictate community composition during the process 

of species-sorting (Cottenie 2005; Leibold and Loeuille 2015). Mass effects are 

characterized by a strong influence of source-sink dynamics. If the rate of dispersal is 

high enough, some species can survive outside of their optimal environment, which 

contributes to variation in community composition (Cottenie 2005; Leibold and Loeuille 

2015). Neutral theory indicates the assembly of local communities is the result of purely 

stochastic factors, often resulting in unpredictable patterns of community composition 

across space. Patch dynamics are characterized by interspecific interactions resulting in 

extinctions that can be countered by dispersal. Patterns of patch dynamics can manifest in 

communities that vary both spatially and environmentally (Leibold et al. 2004).  

My dissertation research as outlined below utilizes metacommunity theory to 

understand interactions among bat-microbiome-fungal pathogen relationships (see Fig. 1 

and Fig. 2 for conceptual diagram). My main objective is to understand how the host 

microbiome responds to an invasive pathogen. More specifically, I will determine if the 

host microbiome is resistant to the pathogen and/or responds to invasion with functional 

redundancy. I will determine how the presence of a pathogen influences metacommunity 

structure and attempt to predict the relationship between the pathogen, environment, and 

assemblage variation. I hypothesize that the host microbiome is not resistant to pathogen 

mediated disturbance, but will be functionally redundant post disturbance. More 
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specifically, I hypothesize that changes in taxonomic composition will correlate with the 

presence of P. destructans, and that positive bats will have a microbial assemblage that is 

enriched with antifungal bacterial taxa. Additionally, I hypothesize that the presence of P. 

destructans will correlate with a shift in metacommunity structure, as well as, a shift in 

the relationship between structuring variables and community structure. My dissertation 

work will add to our understanding of microbial metacommunity theory and expand our 

knowledge of microbiome change to an invasive fungal pathogen.  

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Conceptual diagram of the spatial extent of sampling of bat skin, cave soil, 
and roost microbial assemblages. 
Bats were sampled in caves during the winter hibernation period. Caves were spread 
across Tennessee, with the majority of sampling occurring within three ecoregions 
(Interior Plateau in light green, South Western Appalachians in red, and Ridge and Valley 
in olive green). Photo credit: Daniel Istvanko.  
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Figure 2. Basic metacommunity structure of study. 
Caves (red dots) will be sampled across Tennessee during bat hibernation. Within each 
cave is a bat population (locality) whose cutaneous microbial assemblage (microsite) is 
sampled. Each locality is made up of interacting microsites. Bats within a cave will be 
divided into two categories, those with P. destructans present (+) and absent (-). Photo 
credit: Daniel Istvanko.  
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Abstract 

Since its introduction into the USA, Pseudogymnoascus destructans (Pd), the 

fungal pathogen of white-nose syndrome, has killed millions of bats.  Recently, bacteria 

capable of inhibiting the growth of P. destructans have been identified within bat 

microbial assemblages, leading to increased interest in elucidating bacterial assemblage-

pathogen interactions. My objectives were to determine if bat cutaneous bacteria have 

antifungal activity against P. destructans, and correlate differences in the bat cutaneous 

microbiota with the presence/absence of P. destructans. I hypothesized that the cutaneous 

microbiota of bats is enriched with antifungal bacteria, and that the skin assemblage will 
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correlate with P. destructans status. To test this, I sampled bat microbiota, adjacent roost 

surfaces, and soil from P. destructans positive caves to infer possible overlap of 

antifungal taxa, I tested these bacteria for bioactivity in vitro, and lastly compared 

bacterial assemblages using both amplicon and shotgun high-throughput DNA 

sequencing. Results suggest that the presence of P. destructans has an inconsistent 

influence on the bat cutaneous microbial assemblage across sites. Operational taxonomic 

units (OTUs) that corresponded with cultured antifungal bacteria were present within all 

sample types but were significantly more abundant on bat skin relative to the 

environment. Additionally, the microbial assemblage of P. destructans negative bats was 

found to have more OTUs that corresponded to antifungal taxa than positive bats, 

suggesting an interaction between fungal pathogens and the cutaneous microbial 

assemblage.  

Introduction 

Planet earth is currently entering its sixth major extinction event, with estimated 

rates of extinction 1000 – 10 000 times the accepted background rates (De Vos et al. 

2014). Major causes of extinction include habitat degradation and destruction, pollution, 

climate change, as well as introduced pathogens (Gibbons et al. 2000; McCallum 2007). 

Introduced fungal pathogens are currently impacting a diverse range of taxa including 

amphibians, reptiles, and mammals (Fisher et al. 2012). For example, the fungal 

pathogens (Batrachochytrium dendrobatidis and B. salamandrivorans) that cause 

chytridiomycosis in amphibians are often cited as responsible for one of the greatest 

losses of biodiversity in recorded time (Gray et al. 2015). In addition, Pseudogymnoascus 
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destructans (Pd), the causative agent of white-nose syndrome (WNS), has caused bat 

populations to plummet in the US (Blehert et al. 2009).   

 Since its introduction to the United States in 2006, P. destructans has spread 

rapidly, killing millions of bats (Blehert et al. 2009). Clinical signs of white-nose 

syndrome present as cup-like erosions and ulcerations on the cutaneous layer of 

hibernating bats (Meteyer et al. 2009). Infection with P. destructans causes a hibernating 

bat to increase the frequency of arousal bouts, leading to the bat expending valuable 

energy reserves (Reeder et al. 2012). Within infected hibernacula, initial declines were 

reported as between 20 – 90% (Frick et al. 2010; Langwig et al. 2012). However, since 

then, some species have exhibited population stabilization in the years following an 

initial population crash (Dobony et al. 2011; Langwig et al. 2012; Frick et al. 2017).   

Several North American bat species experienced population declines since the 

introduction of P. destructans (Langwig et al. 2012). These declines are not uniform 

across species and over time, with some bat species showing resistance to P. destructans 

infection (Langwig et al. 2017). Differences in persistence are hypothesized to be due to 

behavioral changes (Langwig et al. 2012), or alternatively, through genetic resistance and 

evolutionary rescue (Maslo and Fefferman 2015). Perimyotis subflavus (Tri-colored bats) 

initially experienced high levels of population decline, however, recent population 

stabilizations were observed (Langwig et al. 2012; Langwig et al. 2017). This is 

especially intriguing since P. destructans is still highly prevalent in many cave systems in 

the northeast which is an endemic area for P. subflavus (Frick et al. 2017).  

A potential mechanism to explain innate immunity and disease tolerance in P. 

subflavus is a shift in the bat cutaneous microbial assemblage with selection for bacterial 
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taxa with protective antifungal capabilities (Lemieux-Labonté et al. 2017). The cutaneous 

layer of vertebrates hosts a diverse community of microbes interacting synergistically and 

potentially influencing disease dynamics (Belden and Harris 2007; Grice and Segre 

2011). Recent studies have documented antifungal ‘probiotic’ bacterial species within the 

cutaneous microbiota of bats (Hoyt et al. 2015). Previous work has shown that the 

addition of antifungal bacteria to frog skin led to a reduction in morbidity due to 

chytridiomycosis, suggesting the role of this host-associated assemblage in skin defense 

(Harris et al. 2009). In addition, M. lucifugus (Little brown bats) persisting in P. 

destructans positive hibernacula have a microbiome with relatively more abundant 

antifungal bacterial species compared to bats from P. destructans naïve caves (Lemieux-

Labonté et al. 2017). Selection and environmental filtering may serve as a mechanism for 

this cutaneous enrichment by P. destructans antagonists, and as a result might provide an 

innate immune response to fungal pathogenicity, although functional implications of the 

bat microbial assemblage composition are not fully understood.  

Shotgun metagenomic sequencing allows for the elucidation of functional 

differences in microbial assemblages by comparing genomic DNA sequences within a 

sample to functional databases (Sharpton 2014). The presence of protein coding genes 

within a microbial assemblage serves as a proxy for the potential gene expression and 

thus function within that community (Greenblum et al. 2011). Recently, Louca et al. 

(2016) used shotgun metagenomic sequencing to show that host microbial assemblages 

can be taxonomically diverse, however, express functional redundancy. Metagenomic 

sequencing has infrequently been used to study wildlife host-microbiota-pathogen 

interactions but has shown utility to characterize differences in metabolic pathways 
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between individuals with/without inflammatory bowel disease (Morgan et al. 2012), 

which parallels this system.  

The goal of this study was to elucidate patterns of community composition and 

function of the cutaneous microbial assemblage of P. subflavus in the presence of P. 

destructans. Additionally, I was interested in the overlap of microbes between the host 

and substrates within the host environment (i.e. roost and soil). My objectives were to 1) 

isolate cutaneous microbes with antifungal activity from the cutaneous microbial 

assemblage of bats, 2) use amplicon sequencing to characterize the microbial 

assemblages within the cave ecosystem including cave soil, bat roosts, and P. destructans 

positive/negative bats, to determine if antifungal activity is ubiquitous throughout the 

cave environment or correlates with P. destructans status, 3) determine if shotgun 

metagenomic sequencing is a viable method to understand shifts in cutaneous microbial 

assemblage function in the presence of a fungal pathogen.  I hypothesized (1) that the 

cutaneous microbial assemblage of bats hosts taxa with antifungal activity against P. 

destructans. I also postulate (2) that bat skin is enriched with antifungal bacteria relative 

to the surrounding cave environment. Finally (3), I hypothesize that the taxonomic 

cutaneous assemblage of bats would correlate with P. destructans status (Lemieux-

Labonté et al. 2017).  

Methods 

Field work and sample collection 

To characterize the bat cutaneous microbial assemblage, I collected 83 cutaneous 

swabs from P. subflavus in conjunction with statewide surveys at 20 caves throughout 

East/Central Tennessee between December and April 2017. At each cave site two 
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cutaneous swabs (sterile Puritan polyester tipped swabs, Puritan) were collected from 

each bat. One swab was placed into a sterile dry tube for high-throughput sequencing 

(HTS) and the second was stored in a tube filled with sterile 15% glycerol and 2x R2B 

broth for isolation of bacteria into pure culture. Similar to Langwig et al. (2015), each 

swab was aseptically removed from the packaging and briefly dipped into a Falcon tube 

of sterile Millipore water. Ten swab strokes were taken from each bat including five 

strokes on the muzzle/ears and five from wings and fur while avoiding the mouth. To 

characterize the environmental pool of microbes, a corresponding roost sample and soil 

sample were collected adjacent to hibernating bats from each site. Roost swabs were 

collected by briefly dipping a swab into sterile Millipore water, then taking 10 strokes, 30 

cm in length, of the cave wall at each of the main locations where bats were sampled. 

Soil samples were collected from beneath the roosting bats, being sure to avoid guano, by 

aseptically scooping soil into a sterile 15 mL Falcon tube. All samples were stored on ice 

in the field and transferred into a -20 C freezer until processing in the lab.   

Bacterial isolation, identification, and antifungal challenge assays 

Cutaneous swabs (n = 55 bat individuals) from frozen glycerol tubes were streak 

inoculated onto primary plates with R2A agar amended with 5% cycloheximide and 

incubated at 10 – 11 C. Morphologically distinct bacterial colonies were selected from 

primary plates, Gram stained, characterized using a light microscope, and isolated into 

pure culture. I chose 236 bacterial isolates that were morphologically unique and 

challenged them for antifungal activity against a two-week-old culture of P. destructans 

that was grown on Sabouraud dextrose agar (SDA) media at 10 – 11 C. To make a lawn 
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of P. destructans covering the surface of an agar plate, we harvested 2 cm2 of P. 

destructans and further cut it into approximately 5 mm2 pieces with a sterile scalpel 

before adding it into a 50 mL Falcon tube with 10 mL of sterile Millipore water and 10 

small (2 mm) silica beads. The slurry was vortexed at 1800 RPM for 2 minutes to 

thoroughly homogenize the P. destructans mycelium/conidia. The concentration of 

fungal conidia and fragments/mL (‘propagative units’) was quantified using a 

hemocytometer and diluted to a standardized concentration of 2.5×106 propagative 

units/mL. I inoculated 100 µL of the homogenized slurry onto a 100 mm R2A petri plate 

and spread the liquid across the surface using a glass rod to make a fungal lawn. Each 

bacterial strain was point inoculated using a sterile swab onto independent plates in 

triplicate over top of the fungal lawn. After 14 days of growth, the diameter of the zone 

of inhibition was measured, and those that exhibited antifungal activity were sequenced 

using Sanger sequencing.  

To DNA sequence, the 16S ribosomal RNA (rRNA) gene was amplified using 

primers 8F/1492R (Lane 1991) in 20 µL reactions containing 10 µL 2x Phire buffer, 1 µL 

of 8F (10 µM) primer, 1 µL of 1492R (10 µM) primer, 0.4 µL polymerase, 6.6 µL of 

PCR grade water, and 1 µL of bacterial cell suspension. Thermocycling conditions 

included initial denaturation at 98°C for 5 min, followed by 35 cycles of 98°C for 5 s, 

50°C for 5 s, 72°C for 30 s, and a final extension cycle of 72°C for 1 min. PCR products 

were purified using ExoSap-IT and sent to MCLAB Molecular Cloning Laboratories for 

Sanger sequencing. Sequences were edited in ChromasPro and compared to the 

Greengenes database (Greengenes Database Consortium, Second Genome, Inc.) for 

taxonomic identification purposes. The 16S sequences of antifungal strains were also 
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compared to the high-throughput sequencing data (described below) using a localized 

BLAST database developed in Bioedit (version 7.0.5.3; available at 

http://jwbrown.mbio.ncsu.edu/BioEdit/bioedit.html) to determine if antifungal bacteria 

isolated from the bat cutaneous microbiome were also found in the environment (soil or 

roost).    

Characterization of microbial assemblage structure and function 

DNA was extracted from 83 P. subflavus cutaneous swabs, 40 roost swabs, and 

37 soil samples using the Qiagen DNeasy PowerSoil HTP 96 kit, following the 

manufacturer’s protocol to a final elution volume of 100 µL. DNA extraction, PCR setup, 

and post PCR processes were all conducted in separate AirClean System hoods using a 

dedicated set of pipettes that were routinely autoclaved and UV crosslinked in between 

experiments. DNA was concentrated four-fold to a volume of 25 µL on a Thermo 

Scientific Savant SpeedVac. PCR amplification and high-throughput sequencing 

followed the Illumina 16S Metagenomic Sequencing Library Preparation protocol. More 

specifically, the V4 region of the 16S rRNA gene was PCR amplified using primers 

806R/515F (Caporaso et al. 2011) in 25 µL reactions containing 12.5 µL MCLAB 2x Hi-

Fi taq, 1 µL of 806R (10 µM), 1 µL of 515F (10 µM), 5.5 µL PCR grade water, and 5 µL 

concentrated DNA template. Thermocycling conditions included initial denaturation at 

95°C for 2 mins, followed by 35 cycles of 98°C for 10 s, 55°C for 15 s, and 72°C for 5 s 

and a final extension cycle of 72°C for 5 min. Samples were size selected to remove 

primer/adapter dimers using MAGBIO Highprep magnetic beads after the initial PCR, as 

well as after the index PCR step. After both the amplification and indexing reactions, 

PCR products were quantified on a Qubit fluorometer 3.0 per the manufacturer’s protocol 
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and visualized for amplicon size (450 bp) on an Agilent 2100 Bioanalyzer according to 

the DNA 1000 protocol, and then normalized. After library quality control and 

quantitation, the library (4 picomolar concentration) was loaded on an Illumina MiSeq v2 

flow cell and sequenced using a 500-cycle reagent kit (Paired-end 2×250 reads). Base 

calling was done on the Illumina MiSeq, demultiplexed, and converted to FastQ format 

for bioinformatic analyses.   

Quantitative PCR (qPCR) was used to determine the presence/absence of P. 

destructans on cutaneous swabs. Reactions were performed in triplicate on a Roche 

LightCycler480 II following the qPCR assay described by Muller et al. (2013) to amplify 

the fungal intergenic spacer region (IGS) of rRNA. PCR reactions (10 µL volume) 

contained 5 µL 2x Primetime MasterMix, 0.4 µL forward primer (20 µM), 0.4 µL reverse 

primer (20 µM), 0.1 µL probe (20 µM), 3.1 µL PCR grade water, and 1 µL of DNA. 

Thermocycling conditions included a 3 min activation step at 95C, followed by 50 

cycles of 95C for 3 s, and 60C for 30 s. Each qPCR plate included both a positive 

control as well as a no template negative control run in triplicate. DNA extraction blanks 

were also tested with qPCR in order to determine if contamination occurred during the 

DNA isolation process. Criteria for a positive individual was exponential amplification in 

triplicate at or before Ct 40 (Muller et al. 2013; Janicki et al. 2015). Samples that tested 

positive for one or two of the three replicates were re-analyzed. If they were still 

ambiguous after the second time (amplifying in one or two reactions) the sample was 

considered positive (Ellison et al. 2006).  To determine the fungal load of P. destructans 

DNA present within each sample, a standard curve was created using a serial dilution of 1 
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× 1010 – 1 amplicon copies of a synthetic gBlock (Integrated DNA technologies) 

fragment that matched the targeted region for qPCR in Muller et al. (2013). An equation 

was calculated to determine the number of copies per reaction by comparing the average 

Ct to the known gBlock amplicon copy number. The log copy number of the fungal IGS 

rRNA gene per qPCR reaction was calculated using the formula, y = -0.2936x + 11.439, 

with x being the average Ct value for each sample completed in triplicate.  

Shotgun sequencing was used to characterize the functional profile of the bat 

cutaneous metagenome. The swab samples collected in this study yielded notoriously low 

quantities of DNA (≈ 1 ng total yield) making library preparation for shotgun sequencing 

challenging. Therefore, after obtaining qPCR results, isolated DNA was pooled into P. 

destructans positive (n = 19 pooled samples) and negative (n = 7 pooled samples) 

categories to ensure sample input quantity was appropriate to proceed with library 

preparation based on the manufacturer’s minimum suggested input quantity of 1 ng of 

total DNA. The pooled positive/negative samples were collected from the same set of six 

caves in an effort to control for site as contributing to variation in functional profiles. 

Unfortunately, due to low DNA yield from independent swabs we were unable to 

sequence biological replicates of samples in P. destructans positive/negative categories. 

PCR amplification and high-throughput sequencing followed the Illumina Nextera DNA 

Flex library preparation protocol. After library quality control and quantitation, the 

library was loaded onto an Illumina MiSeq v2 flow cell and sequenced using a 500-cycle 

reagent kit (Paired-end 2×250 bp reads).  
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Bioinformatic analyses 

 A total of 19 413 692 DNA sequence reads were obtained from amplicon 

sequencing (cutaneous, roost, and soil samples). Data were processed using mothur 

v1.40.2 (Schloss et al. 2009) by assembling paired-end reads into contigs. Sequences that 

contained homopolymers greater than eight nucleotides or contained any ambiguous base 

calls were removed. Unique sequences were then aligned to the SILVA v123 bacterial 

reference database (Quast et al. 2012). Sequences were curated to the V4 region, pre-

clustered allowing for two nucleotide differences and chimeras removed using the 

vsearch function (Rognes et al. 2016). Sequences were classified into taxonomic 

lineages, and those that were identified as Archaea, Eukaryota, chloroplast, mitochondria, 

or unknown were removed (Kozich et al. 2013). Sequences were then clustered using 

cluster.split and operational taxonomic units (OTUs) were assigned at 97% similarity 

(Schloss and Westcott 2011). Rare OTUs appearing less than ten times and those found 

in the negative control DNA extraction blanks (n = 178 OTUs) were also removed from 

the dataset (Lindahl et al. 2013). A total of 3 504 518 sequence reads passed all filtering 

steps and were used in downstream analyses. A total of 29 samples (16 cutaneous swabs, 

9 soil, 4 roost) did not pass the quality control and filtering steps due to poor sequencing 

depth coverage and were removed from the dataset (final dataset n = 67 bat cutaneous 

samples, n = 28 soil samples, n = 36 roost samples). I normalized the dataset by 

subsampling each library at 1300 sequence reads. All mothur commands are included in 

Appendix A for study reproducibility purposes.    

DNA sequences from the shotgun metagenomics sequencing were analyzed using 

the Metagenomics Rapid Annotation (MG-RAST) pipeline version 4.0.3 (Meyer et al. 



24 
 

 
 

2008) (http://metagenomics.theseed.org). Sequences were filtered to include only 

bacterial DNA using the REFSEQ database at 60% similarity.  The subsystems database 

(Aziz et al. 2008) was used to generate functional gene profiles with a minimum 

alignment length of 45 bp and E - value cutoff of E < 1 × 10-5 (Randle-Boggis et al. 

2016), and samples were normalized to allow for comparisons.   

Statistical analyses 

To test if the bat cutaneous microbial assemblage differed from the environment, 

the bacterial OTU alpha diversity was calculated using the inverse Simpson index and 

data were normalized using a cubed root transformation (Morris et al. 2014). Alpha 

diversity was compared between the bat cutaneous microbial assemblage and the 

environmental samples (both roost and soil) using a linear mixed-effects model (LMM) 

with a random intercept of site and sample type as the sole fixed effect (package lme4, 

function lmer; Bates et al. 2014). The effect of sample type was determined by using a 

likelihood ratio test comparing nested models with and without sample type as a fixed 

effect.  

In order to assess community level differences, beta diversity was calculated 

using the vegdist function in the vegan package to generate a Bray-Curtis dissimilarity 

matrix (Okansen et al. 2013). This matrix was further analyzed using the metaMDS 

function to generate a non-metric multidimensional scaling (nMDS) ordination and 

visualized using ggplot2 (Wickham 2016). The adonis function was used to perform a 

permutational multivariate analysis of variance listing geographic site as ‘strata’, using 

999 permutations on the Bray-Curtis dissimilarity matrix to determine if skin, soil, or the 

roost were explanatory variables for OTU assemblages. Since the bat skin differed (see 
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results) from the surrounding environment, I ran an indicator analysis (indicator values > 

30,  < 0.05) in mothur in order to determine OTUs that were indicative of each sample 

type (e.g. soil, roost, or bat skin), with the intention of determining which OTUs were 

indicative of the bat microbial assemblage for downstream analysis. I selected 11 OTUs 

that were explanatory of the bat skin microbial assemblage regardless of space (cave 

site). The adonis function was used to perform a permutational multivariate analysis of 

variance stratified by site, using 999 permutations on the Bray-Curtis dissimilarity matrix 

of the 11 indicator OTUs to test if the explanatory variables including cave site and P. 

destructans status (positive/negative) or interactions between these factors were 

predictive of skin microbial assemblages. The betadisper function was used to test for 

homogeneity of variances between P. destructans positive and negative bats.  Alpha 

diversity was calculated using the inverse Simpson index, and then compared between P. 

destructans positive and negative bats using a linear mixed-model. P. destructans status 

was set as the fixed effect and geographic site as the random intercept, model fit was 

assessed using a likelihood ratio test to compare nested models with and without P. 

destructans status as a fixed effect. I performed a distance-based redundancy analysis 

(Db-RDA) using the capscale function in vegan to model fungal load of P. destructans 

(determined through qPCR) on Bray-Curtis dissimilarity values from the microbial 

community of P. destructans positive/negative bats. Fungal load and OTU relative 

abundances were normalized using a cube root transformation prior to the Db-RDA 

analysis.  
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To determine if bacteria with antifungal activity were found more frequently on 

bat skin, the roost, or in the soil, I compared the quantity of cultured antifungal bacteria 

found within each sample (richness). To assess if these antifungal bacteria were more 

abundant on bat skin or soil/roosts I created a local BLAST database by using the 

get.oturep command in mothur to extract a representative DNA sequence for each OTU 

in the high-throughput dataset. This allowed for me to compare 16S rRNA gene 

sequences from cultured antifungal bacteria to high-throughput data to determine if both 

richness and abundance (sequence read count) differed by sample type and/or P. 

destructans status. To determine if sample type (bat skin, the roost, or the soil) was 

enriched with antifungal bacterial taxa, I used two separate linear mixed-effects models 

in the package lme4 to compare the richness or abundance of antifungal bacterial taxa 

with sample type as the fixed effect and site set as the random intercept. Model fit was 

assessed using a likelihood ratio test to compare nested models with and without sample 

type as a fixed effect for both sets of models. Abundance was log transformed to fit 

assumptions of normality. To determine if there was a higher richness or abundance of 

antifungal bacterial taxa based on P. destructans status, I again used two separate linear-

mixed models, setting P. destructans status as the fixed effect and site as the random 

intercept. Model fit was assessed by using likelihood ratio tests of nested models, with 

and without P. destructans status, as a fixed effect for both sets of models. Abundance 

was log transformed to fit assumptions of normality. All statistical tests were performed 

with alpha () set at 0.05. 
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Results  

In total, 73 bat individuals (88%) tested positive in qPCR assays for the presence 

of P. destructans (Appendix B). All 20 caves had at least one P. destructans positive bat. 

All ten P. destructans negative bats were living amongst P. destructans positive 

individuals within eight of the 20 caves, only two of the negative bats were found in the 

same cave. Of the 236 bacterial isolates that I challenged against P. destructans, I found 

18 with antifungal activity that were members of the bat cutaneous microbial assemblage 

(Table 1). BLAST results (> 97% match, E < 1 × 10-5) indicated that DNA sequences of 

all 18 antifungal isolates corresponded to OTUs from amplicon sequencing found in the 

bat cutaneous microbial assemblage or in the cave environment. The antifungal bacterial 

OTUs were classified as 16 bacterial genera occurring in three phyla (Table 1).  Of the 18 

antifungal bacterial species isolated from bat cutaneous swabs, 12 were found in all three 

sample types (cutaneous microbial assemblage, cave soil, and bat roost). One isolate 

occurred in the roost and the bat cutaneous microbial assemblage (CCB33.5, 

Pseudomonas sp.), and four antifungal isolates were found exclusively in the bat 

cutaneous microbial assemblage (CCB1.4 Arthrobacter sp., CCB52.1 Bacillus sp., 

CCB53.6 Corynebacterium sp., and CCB57.2 Enterococcus sp.) (Table 1). There was no 

difference between the models with and without sample type set as the fixed effect, 

suggesting OTUs that corresponded with cultured antifungal bacteria were present within 

all sample types (LMM, 2 (2) = 2.28, p > 0.05, Fig. 3). When comparing antifungal OTU 

abundance, the model with sample type set as a fixed effect suggested that antifungal 

OTUs were more abundant in the bat cutaneous microbial assemblage (LMM, 2 (2) = 
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28.09, p ≤ 0.05, Fig. 4). The addition of P. destructans status significantly increased 

model fit explaining antifungal OTU richness (LMM, 2 (1) = 4.88, p ≤ 0.05, Fig. 5). 

However, P. destructans status did not influence model fit in describing antifungal 

bacterial abundance (LMM, 2 (1) = 0.05, p > 0.05, Fig. 6), suggesting that antifungal 

bacteria were not more abundant on P. destructans positive relative to negative bats.  
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Table 1. Heat map showing the identities of antifungal bacteria isolated from bat cutaneous swabs. The column labeled as 
‘Isolate’ is colored to indicate strength of anti- P. destructans activity (size of zone of inhibition (zoi) with darker colors 
representing a larger zoi). The columns labeled as ‘Bats’, ‘Soil’, or ‘Roost’ show the percentage of the samples within each 
category that anti- P. destructans bacteria were found. More ubiquitous bacteria have darker shading (based on a BLAST search, > 
97% match, E < 1 × 10-5). 

Isolate Otu Phylum Class Order  Family Genus Bats Soil Roost 

 

Percent of 
samples 

CCB1.4 Otu011978 Actinobacteria Actinobacteria Actinomycetales Microbacteriaceae Arthrobacter 3% 0% 0% 90% 

CCB3.1 Otu001538 Proteobacteria Gammaproteobacteria Xanthomonadales Xanthomonadaceae Lysobacter 6% 7% 11% 80% 

CCB307.1 Otu000086 Firmicutes Bacilli Bacillales Bacillaceae Bacillus 39% 64% 49% 70% 

CCB307.9 Otu000053 Actinobacteria Actinobacteria Actinomycetales Microbacteriaceae Agromyces 58% 57% 51% 60% 

CCB311.5 Otu000010 Actinobacteria Actinobacteria Actinomycetales Nocardiaceae Rhodococcus 58% 18% 41% 50% 

CCB313.6 Otu001968 Proteobacteria Alpha proteobacteria Rhizobiales Rhizobiaceae Rhizobium 4% 4% 3% 40% 

CCB314.4 Otu003502 Proteobacteria Betaproteobacteria Burkholderiales Alcaligenaceae Achromobacter 6% 4% 0% 30% 

CCB315.5 Otu000397 Proteobacteria Alpha proteobacteria Rhizobiales Phyllobacteriaceae Aminobacter 24% 43% 14% 20% 

CCB33.13 Otu000647 Proteobacteria Alpha proteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas 15% 21% 16% 10% 

CCB33.5 Otu003445 Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas 1% 0% 3% 1% 

CCB36.2 Otu001121 Proteobacteria Gammaproteobacteria Xanthomonadales Rhodanobacteraceae Luteibacter 9% 7% 5% 0% 

CCB41.2 Otu000050 Actinobacteria Actinobacteria Actinomycetales Streptomycetaceae Streptomyces 30% 36% 49% 

 CCB43.2 Otu003788 Actinobacteria Actinobacteria Actinomycetales Streptomycetaceae Streptomyces 3% 4% 5% 

CCB43.6 Otu008587 Actinobacteria Actinobacteria Actinomycetales Microbacteriaceae Microbacterium 1% 4% 8% 

CCB44.6 Otu000038 Actinobacteria Actinobacteria Actinomycetales Nocardiaceae Nocardia 58% 7% 54% isolate - zoi (cm) 

CCB52.1 Otu005913 Firmicutes Bacilli Bacillales Bacillaceae Bacillus 1% 0% 0% 3 

CCB53.6 Otu004987 Actinobacteria Actinobacteria Actinomycetales Corynebacteriaceae Corynebacterium 3% 0% 0% 2 

CCB57.2 Otu000546 Firmicutes Bacilli Lactobacillales Enterococcaceae Enterococcus 6% 0% 0% 1 

 0.01 
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Figure 3. Comparison of the number of culturable antifungal bacteria on bat skin, 
the roost, or in the soil. 
There was no significant difference between the presence of bacteria with anti- P. 
destructans activity between the three communities (p > 0.05).   
 

 

 

 

 

 

 

 

 
Figure 4. Relative abundance of antifungal bacteria within each sample type. 
Bats have a microbial assemblage enriched with antifungal bacteria (p < 0.05). Letters 
signify significant differences (p < 0.05). 
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Figure 5. Comparison of the number of culturable antifungal bacteria on bat skin 
based on P. destructans status.  
The number of antifungal bacteria found on bat skin is significantly different between P. 
destructans positive and P. destructans negative bats (p < 0.05).  Letters signify 
significant differences (p < 0.05). 
 

 

 

 

 

 

 

 

 
 
Figure 6. Comparison of the abundance of culturable antifungal bacteria on bat 
skin based on P. destructans status  
The relative abundance of DNA sequence reads that correspond to bacteria that had anti- 
P. destructans activity in vitro in positive/negative bats does not differ by P. destructans 
status (p > 0.05). 
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 High-throughput sequencing analysis revealed that the bat cutaneous microbial 

assemblage contained 4784 OTUs, the roost site 2482 OTUs, and the soil environment 

5589 OTUs. The average bat cutaneous microbial assemblage was significantly distinct 

from both the roost and the soil average microbial assemblages (PERMANOVA, F2, 130 = 

4.68, p ≤ 0.05, R2 = 6.8%, Fig. 7, Table 2). Similarly, sample type influenced alpha 

diversity (LMM, 2 (2) = 28.97, p ≤ 0.05), with bat skin having the lowest diversity 

relative to the environment.  I found that the effect of P. destructans status on the 

microbial assemblage was variable among cave sites (PERMANOVA, F5, 66 = 1.58, p ≤ 

0.05, R2 = 9.8%, Table 3). There was no difference in alpha diversity between P. 

destructans positive and negative bats (LMM, 2 (1) = 0.0484, p > 0.05). There was also 

no difference between the dispersion of variances between positive and negative bats 

(betadisper, F1, 65 = 0.158, p > 0.05). Additionally, the DB-RDA (capscale) analysis 

revealed six OTUs that correlated with an increase in P. destructans copy number, two of 

which had antifungal activity in vitro (Fig. 8).   
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Figure 7. Non-metric multidimensional scaling ordination showing beta diversity 
patterns of the bat cutaneous microbiota compared to the cave roost and cave soil 
microbial assemblages. 
The average bat cutaneous microbial assemblage is distinct from the roost and soil 
microbial assemblage (F2, 130 = 4.6823, p ≤ 0.05, R2 = 6.8%). 
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Table 2. Analysis of average assemblage similarity across sample type.  
Adonis test on all OTUs within the bat cutaneous microbial assemblage, roost, and cave 
soil samples to determine differences in sample type. There is a significant difference 
between sample types (p < 0.05). 
 

 

 

 

 

Table 3. Analysis of average assemblage similarity across P. destructans status.  
Adonis test on 11 indicator OTUs descriptive of variation in the bat skin microbial 
assemblage regardless of site or P. destructans (Pd) status. There is a significant 
difference between cave sites (p < 0.05) and a significant interaction between cave site 
and P. destructans status (p < 0.05).  
 

 
 
 
 
 
 
 
 

 

 

 

 

 

 
Df Sums of 

Squares 
Mean 

Squares 
F test R2 Pr (>F) 

Sample 
type 

2 3.81 1.90 4.68 0.07 0.001 

Residuals 128 52.01 0.41 
 

0.93 
 

Total 130 55.81 
  

1 
 

 
Df Sums of 

Squares 
Mean 

Squares 
F test R2 Pr(>F) 

pd 1 0.48 0.48 1.82 0.02 0.058 
site 19 7.95 0.42 1.59 0.37 0.001 

pd:site 5 2.08 0.42 1.58 0.10 0.005 
Residuals 41 10.77 0.26 

 
0.51 

 

Total 66 21.28 
  

1 
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Figure. 8. Capscale analysis modeling P. destructans fungal load on Bray-Curtis 
dissimilarity values from the microbial assemblage of P. destructans positive and P. 
destructans negative bats. 
Colored circles represent the microbiota of P. destructans positive (blue) and P. 
destructans negative (red) bats. Light green ovals around OTU labels indicate a bacterial 
isolate that was found in vitro to inhibit the growth of P. destructans. The blue vector 
indicates the direction of increasing P. destructans fungal load from qPCR results and the 
relationship with bat cutaneous microbial assemblages, P. destructans load, and indicator 
OTUs.  
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The metagenomic profiling of functional genes provided a proof-of-concept that 

host-microbiome-pathogen interactions can be elucidated for wildlife pathogens using 

shotgun sequencing. Reads (3 193 964) from P. destructans negative bats averaged 183 

base pairs in length. Of the reads that passed quality control, 39 027 (2%) were ribosomal 

RNA genes, 406 670 (21.05%) sequences contained predicted proteins with known 

function, and 1 486 296 (76.9%) sequences were predicted proteins with unknown 

function. Reads from P. destructans positive bats (2 864 036) averaged 205 base pairs in 

length. Of these reads that passed quality control, 27 444 (2%) were mapped to rRNA, 

263 036 (15.09%) were predicted proteins with known function, and 1 452 225 (83.3%) 

were predicted proteins with unknown function. The most abundant functional gene 

classes for both negative and positive bats were clustering based subsystems (negative n 

= 13% of reads with predicted function, positive n = 14%), genes involved in 

carbohydrate metabolism (negative n = 11% of reads with predicted function, positive n 

= 12%), and genes involved with amino acid and derivatives metabolism (negative n = 

9% of reads with predicted function, positive n = 9%). Tentative genes involved in 

disease resistance included those with production of secondary metabolites (negative bats 

n = 0.3% of reads with predicted function, positive n = 0.5%), and virulence, disease, and 

defense (negative bats n = 2.8% of reads with predicted function, and positive bats n = 

3%; Fig. 9).  
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Figure 9. Comparison of functional gene categories between P. destructans positive 
(inside circle) and P. destructans negative (outside circle) bats. 
Overall, it appears that bat cutaneous microbial assemblages exhibit functional 
redundancy regardless of P. destructans status. 
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Discussion 

This study elucidated the interaction between the host microbial assemblage, a 

wildlife pathogen, and environmental microbial communities. I determined that the bat 

microbial assemblage contains antifungal taxa, and is enriched with antifungal bacterial 

taxa when compared to the cave environment, supporting my first two hypotheses. 

Additionally, I found bats that are P. destructans negative have a microbial assemblage 

that has more antifungal bacterial taxa compared to positive bats supporting my third 

hypothesis. More specific to my objectives, I found that the effect of P. destructans on 

the bat cutaneous microbial assemblage varied spatially (between cave sites), further 

supporting the idea that the maintenance of the cutaneous microbial assemblage is driven 

by a complex interaction between the host and environment. Previous studies have shown 

that patterns in host microbial community structure were correlated with phylogenetic 

(Carrillo-Araujo et al. 2015) and environmental patterns (Avena et al. 2016; Lemieux-

Labonté et al. 2016), interspecies interactions (Song et al. 2013), and social behaviors 

(Tung et al. 2015) suggesting that the drivers of microbiome community assembly are 

diverse and complicated to elucidate. Lemieux-Labonté et al. (2017) determined that the 

little brown bat (M. lucifugus) microbial assemblage differed between P. destructans 

positive cave sites compared to P. destructans naïve sites. They concluded that this 

difference could be confounded by geographical distances between cave sites (~1900 km 

apart).  I also found significant differences in microbial assemblage composition between 

bats at different geographic sites, one possible explanation for this pattern is that 

microbial dispersal may be an explanatory factor for differences in skin microbial 

assemblages of different bats with/without P. destructans. 
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I found that bacterial isolates with anti- P. destructans activity are ubiquitous 

throughout the cave environment and on bat skin. This result might suggest potential 

source-sink dynamics between the environment and host skin. Cave environments are 

known to host microbial species capable of producing bioactive compounds (Ghosh et al. 

2016). Antifungal taxa being found throughout the caves that I sampled, suggests that the 

environment may serve as a source for anti- P. destructans bacteria that can colonize bat 

skin. Alternatively, this pattern could be explained by bats shedding these bacterial cells 

into the surrounding environment with the soil acting as a sink. Determining the 

directionality of this source-sink relationship would require more carefully controlled 

experiments. When the relative abundance of each antifungal bacterium was quantified, 

the bat assemblage had a higher abundance of antifungal producing bacteria relative to 

the surrounding environment. In addition, total bat assemblages have a lower alpha 

diversity than the surrounding environment, which suggests that the bat skin may act as a 

selective medium for a particular community of bacteria. Similarly, previous work has 

shown that salamander skin acts as a selective medium for anti-Batrachochytrium 

dendrobatidis taxa, relative to the environment (Loudon et al. 2016).  

I found that P. destructans status did not influence the overall alpha diversity of 

the bat cutaneous microbial assemblage. Ange-Stark et al. (2019) found similar patterns 

of unaltered bacterial assemblage alpha diversity for P. subflavus in P. destructans 

positive/negative bats. However, at a finer scale, I found that bats that were P. 

destructans negative had a microbial assemblage that had more antifungal taxa present. 

This result supports the hypothesis that antifungal taxa may play a role in host protection 

from invading fungal pathogens. Previous work by Lemieux-Labonté et al. (2017) also 
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showed enrichment of antifungal bacteria on little brown bats exposed to P. destructans 

when compared to individuals in P. destructans naïve caves. However, neither study is 

able to determine if antifungal bacteria enrichment is a cause or effect of P. destructans 

status. Future studies should work to address this by tracking the fate of P. destructans 

negative bats within this system, as well as, tracking the antifungal taxa present within 

each assemblage. Alternatively, when taking a more quantitative approach, I found two 

antifungal isolates correlated with increasing P. destructans fungal load (CCB44.6 and 

CCB311.5; Fig. 8). One of the isolates (CCB 311.5) was determined to be a species of 

Rhodococcus, a genus previously identified with anti-P. destructans activity (Cornelison 

et al. 2014). Taken together these results suggest that the host microbial community may 

influence or be influenced by fungal pathogen invasion, however the interactions between 

fungus and individual antifungal bacterial taxa is complex.    

 This study, like others (Loudon et al. 2016; Lemieux-Labonté et al. 2017) focused 

exclusively on culturable bacteria with antifungal activity and is therefore biased by 

microbes able to grow on synthetic media. Additionally, in vitro assays included co-

culture of one bacterium with P. destructans, when in reality, antifungal bacteria are part 

of a much larger community. Designating a bacterial species as an antifungal member of 

the microbiome is likely an oversimplification of microbial function within the 

community. Cryptic antibiotics were discovered in co-culture of bacteria as a potential 

result of bacterial interactions (Onaka et al. 2011), further indicating the need to 

understand the bacterial assemblage as a whole rather than the simplistic interactions 

described here. Additional work within this system will allow for a more thorough 
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understanding about how ecological patterns translate into functional processes in 

complex host-microbe-pathogen systems. 

Recent work has found taxonomic diversity but functional redundancy in 

microbial systems (Louca et al. 2016) and suggested that microbial communities should 

be classified by function rather than using OTU data. Bacterial assemblages have been 

suggested to form stochastically from within a pool of functionally similar but 

taxonomically distinct organisms (Burke et al. 2011). Here, I attempted to determine if 

bat skin bacterial communities are functionally redundant, and if the presence of a fungal 

pathogen could alter microbial community function. Functional profiles seemed to have 

minor differences (Fig. 9), however, overall it appears that there is considerable 

functional redundancy between bats with/without P. destructans. While there appears to 

be functional redundancy in taxonomically diverse assemblages across geographic space, 

it is difficult to discern for the population of bats sampled here given the small sample 

size. The limiting factor for biological replication in this study was low DNA yield. 

Whole genome amplification using multiple displacement amplification (MDA; Oh et al. 

2014) is a viable option to improve DNA yield for metagenomic library preparation.  

However, Direito et al. (2014) has shown that MDA is biased against some DNA 

fragments, potentially limiting its utility. Additionally, all metagenomic studies are 

limited by the databases used to make functional predictions. In this study, like others 

(Louca et al. 2016, Rebollar et al. 2018), I was only able to predict ≈ 20% of functional 

genes. Producing more data is the only way to explore these relationships and allow for 

continued development of reference databases. This study served as a proof of concept to 

establish that functional genes can be profiled for wildlife-pathogen-microbiome 
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communities and will allow for future work to better elucidate functional differences 

between P. destructans positive/negative bats.   

This study aimed to elucidate differences in the host bacterial community 

assemblages between P. destructans positive and negative bats. I determined a 

differential effect of P. destructans on bat microbial assemblages across space. I found 

that antifungal taxa were ubiquitous throughout the cave environment, but enriched in the 

bat cutaneous microbial assemblage, suggesting a potential source-sink relationship of 

environmental microbial communities and the host microbiome. Additionally, I found 

that P. destructans negative bats had a microbial assemblage with more antifungal 

bacterial taxa compared to P. destructans positive bat assemblages, supporting the 

hypothesis that the bat cutaneous microbial assemblage may play a role in disease 

defense.  

Acknowledgements 

I would like to thank Daniel Istvanko, Cory Holiday, Chris Simpson, Chris Ogle, and 

Dustin Thames for assistance during field work, Megan Wharton for assistance during 

lab work, Joshua Grinath for statistical help, and Sarah E Bergemann for helpful 

comments. This work was approved by IACUC TTU-16-17-003 and USFWS 2009-038. 

Funding and support for this research project was provided by Tennessee Wildlife 

Resources Agency as a State Wildlife Grant to DMW. All raw sequence data were 

submitted to GenBank SRA under the accession number  

PRJNA565423 and PRJNA565431.  

 

 



43 
 

 
 

References 
Avena CV, Parfrey LW, Leff JW et al. Deconstructing the bat skin microbiome: 

influences of the host and the environment. Front Microbiol 2016;7:1–14. 
Ange-Stark MA, Cheng TL, Hoyt JR et al. White-nose syndrome restructures bat skin 

microbiomes. bioRxiv 2019, DOI:10.1101/614842. 
Aziz RK, Bartels D, Best AA et al. The RAST server: Rapid annotations using 

subsystems technology. BMC Genom 2008;9:75-89.  
Bates D, Maechler M, Bolker B et al. Package lme4. R package version 1.1–7. 

https://cran.r-project.org/web/packages/lme4/index.html. 
Belden LK, Harris RN. Infectious diseases in wildlife: the community ecology context. 

Front Ecol Environ 2007;5:533–39. 
Blehert DS, Hicks AC, Behr M et al. Bat white-nose syndrome: An emerging fungal 

pathogen? Science 2009;323:227. 
Burke C, Steinberg P, Rusch D. Bacterial community assembly based on functional genes 

rather than species. PNAS 2011;108:14288–93.  
Caporaso JG, Lauber CL, Walters WA et al. Global patterns of 16S rRNA diversity at a 

depth of millions of sequences per sample. PNAS 2011;108:4516–22. 
Carrillo-Araujo M, Taş N, Alcántara-Hernández RJ et al. Phyllostomid bat microbiome 

composition is associated to host phylogeny and feeding strategies. Front Microbiol 
2015;6:1–9. 

Cornelison CT, Keel MK, Gabriel KT et al. A preliminary report on the contact-
independent antagonism of Pseudogymnoascus destructans by Rhodococcus 
rhodochrous strain DAP96253. BMC Microbiol 2014;14:1–7.  

De Vos JM, Joppa LN, Gittleman JL et al. Estimating the normal background rate of 
species extinction. Conserv Biol 2014;29:452–62. 

Direito SOL, Zaura E, Little M et al. Systematic evaluation of bias in microbial 
community profiles induced by whole genome amplification. Environ Microbiol 
2014;16:643–57.  

Dobony CA, Hicks AC, Langwig KE et al Little brown myotis persist despite exposure to 
white-nose syndrome. J Fish Wildl Manag 2011;2:190–95. 

Ellison SL, English CA, Burns MJ et al. Routes to improving the reliability of low-level 
DNA analysis using real-time PCR. BMC Biotechnol 2006;6:33.   

Fisher MC, Henk DA, Briggs CJ et al. Emerging fungal threats to animal, plant, and 
ecosystem health. Nature 2012;484:186–94. 

Frick WF, Pollock JF, Hicks AC et al. An emerging disease causes regional population 
collapse of a common North American bat species. Science 2010;329:679–82. 

Frick WF, Cheng TL, Langwig KE et al. Pathogen dynamics during invasion and 
establishment of white-nose syndrome explain mechanisms of host persistence. 
Ecology 2017;98:624–31. 

Ghosh S, Kuisiene N, Cheeptham N. The cave microbiome as a source for drug 
discovery: reality or pipe dream? Biochem Pharmacol 2016;134:18–34.  

Gibbons JW, Scott DE, Ryan TJ et al. The global decline of reptiles, deja vu amphibians. 
Bioscience 2000;50:653–66. 



44 
 

 
 

Gray MJ, Lewis JP, Nanjappa P et al. Batrachochytrium salamandrivorans: the North 
American response and a call for action. PLoS Pathog 2015, 
DOI:10.1371/journal.ppat.1005251. 

Greenblum S, Turnbaugh PJ, Borenstein E. Metagenomic systems biology of the human 
gut microbiome reveals topological shifts associated with obesity and inflammatory 
bowel disease. PNAS 2011;109:594–99. 

Grice EA, Segre JA. The skin microbiome. Nat Rev Microbiol 2011;9:244–253.  
Harris RN, Brucker RM, Walke JB et al. Skin microbes on frogs prevent morbidity and 

mortality caused by a lethal skin fungus. ISME J 2009;3:818–24. 
Hoyt JR, Cheng TL, Langwig KE et al. Bacteria isolated from bats inhibit the growth of 

Pseudogymnoascus destructans, the causative agent of white-nose syndrome. PLoS 
One 2015, DOI:10:e0121329. 

Janicki AF, Frick WF, Kilpatrick AM et al. Efficacy of Visual Surveys for White-Nose 
Syndrome at Bat Hibernacula. PLoS One 2015, DOI:10.1371/journal.pone.0133390.  

Kozich JJ, Westcott SL, Baxter NT et al. Development of a dual-index sequencing 
strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq 
Illuminia sequencing platform. Appl Environ Microbiol 2013;79:5112–20.   

Lane, DJ. 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds.). Nucleic 
acid techniques in bacterial systematics. New York: John Wiley and Sons, 1991, 
115–75. 

Langwig KE, Frick WF, Bried JT et al. Sociality, density-dependence and microclimates 
determine the persistence of populations suffering from a novel fungal disease, white-
nose syndrome. Ecol Lett 2012;15:1050–57.  

Langwig KE, Frick WF, Reynolds R et al. Host and pathogen ecology drive the season 
dynamics of a fungal disease, white-nose syndrome. Proc Royal Soc B 2015, 
DOI:10.1098/respb.2014.2335.  

Langwig KE, Hoyt JR, Parise KL et al. Resistance in persisting bat populations after 
white-nose syndrome invasion. Philos Trans Royal Soc B 2017;372:1–9.  

Lemieux-Labonté V, Tromas N, Shapiro BJ et al. Environment and host species shape 
the skin microbiome of captive neotropical bats. PeerJ 2016, DOI: 
10.7717/peerj.2430.  

Lemieux-Labonté V, Simard A, Willis CKR et al. Enrichment of beneficial bacteria in 
the skin microbiota of bats persisting with white-nose syndrome. Microbiome 
2017;5:115–30. 

Lindahl BD, Nilsson RH, Tedersoo L et al. Fungal community analysis by high-
throughput sequencing of amplified markers - a user’s guide. New Phytol 
2013;199:288–99.  

Louca S, Jacques SMS, Pires APF et al. High taxonomic variability despite stable 
functional structures across microbial communities. Nat Ecol Evol 2016, DOI: 
10.1038/s41559-016-0015.   

Loudon AH, Venkataraman A, Treuren WV et al. Vertebrate hosts as islands: dynamics 
of selection, immigration, loss, persistence, and potential function of bacteria on 
salamander skin. Front Microbiol 2016, DOI:10.3389/fmicb.2016.00333.  



45 
 

 
 

Maslo B, Fefferman NH. A case study of bats and white-nose syndrome demonstrating 
how to model population viability with evolutionary effects. Conserv Biol 
2015;29:1176–85. 

McCallum ML. Amphibian Decline or Extinction? Current Declines Dwarf Background 
Extinction Rate. J Herpetol 2007;41:483–91. 

Meteyer CU, Buckles EL, Blehert DS et al. Histopathologic criteria to confirm white-
nose syndrome in bats. J Vet Diagn Investig 2009;21:411–14.   

Meyer F, Paarmann D, D’Souza M et al. The metagenomics RAST server-a public 
resource for the automated phylogeneitc and functional analysis of metagenomes. 
BMC Bioinform 2008, DOI:10.1186/1471-2105-9-386. 

Morgan XC, Tickle TL, Sokol H et al. Dysfunction of the intestinal microbiome in 
inflammatory bowel disease and treatment. Genome Biol 2012, DOI:10.1186/gb-
2012-13-9-r79. 

Morris EK, Caruso T, Buscot F et al. Choosing and using diversity indices: insights for 
ecological applications from the German Biodiversity Exploratories. Ecol Evol 2014; 
4:3514–24.  

Muller LK, Lorch JM, Linder DL et al Bat white-nose syndrome: a real-time TaqMan 
polymerase chain reaction teste targeting the intergeneic spacer region of Geomyces 
destructans. Mycologica 2013;105:253–59. 

Oh J, Byrd AL, Deming C et al. Biogeography and individuality shape function in the 
human skin metagenome. Nature 2014;514:59–64.  

Oksanen J, Blanchet FG, Friendly M et al. Vegan: Community Ecology Package. R 
package version 2.5-2 2018. https://CRAN.R-project.org/package=vegan (05 Sept. 
2019, date last accessed). 

Onaka H, Mori Y, Igarashi Y et al Mycolic acid containing bacteria induce natural-
product biosynthesis in Streptomyces species. Appl Environ Microbiol 2011;77:400–
06. 

Quast C, Pruesse E, Yilmaz P et al. The SILVA ribosomal RNA gene database project: 
improved data processing and web-based tools. Nuc Acids Res 2012, 
DOI:10.1093/nar/gks/1219. 

Randle-Boggis RJ, Helgason T, Sapp M et al. Evaluating techniques for metagenome 
annotation using simulated sequence data. FEMS Microbiol Ecol 2016, 
DOI:10.1093/femsec/fiw095. 

Rebollar EA, Gutiérrex-Preciado A, Noecker C et al. The skin microbiome of the 
neotropical frog Craugastor fitzingeri: inferring potential bacterial-host-pathogen 
interactions from metagenomic data. Front Microbiol. 2018; 
DOI:10.3389/fmicb.2018.00466. 

Reeder DM, Frank LC, Turner GG et al. Frequent arousal from hibernation linked to 
severity of infection and mortality in bats with white-nose syndrome. PLos One 
2012, DOI:10.1371/journal.pone.0038920. 

Rognes T, Flouri T, Nichols B et al. VSEARCH: a versatile open source tool for 
metagenomics. PeerJ 2016, DOI:10.7717/peerj.2584.  

Schloss PD, Westcott SL, Ryabin T et al. Introducing mothur: open-source, platform-
independent, community-supported software for describing and comparing microbial 
communities. Appl Environ Microbiol 2009;75:7537–41. 



46 
 

 
 

Schloss PD, Westcott SL. Assessing and improving methods used in operational 
taxonomic unit-based approaches for 16S rRNA gene sequence analysis. Appl 
Environ Microbiol 2011;77:3219–26. 

Sharpton TJ. An introduction to the analysis of shotgun metagenomic data. Front Plant 
Sci 2014;5:1–14.  

Song SJ, Lauber C, Costello EK et al. Cohabitating family members share microbiota 
with one another and with their dog. eLife 2013, DOI:10.7554/eLife.00458. 

Tung J, Barreiro LB, Burns MB et al. Social networks predict gut microbiome 
composition in wild baboons. eLife 2015, DOI:10.7554/eLife.05224.001.   

Wickham H. ggplot2: Elegant Graphics for Data Analysis. New York: Springer-Verlag, 
2016.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



47 
 

 
 

CHAPTER III: HOST MICROBIAL ASSEMBLAGE FUNCTIONAL 

REDUNDANCY TO FUNGAL PATHOGENICITY 

Matthew Grisnik1, Joshua B Grinath2, John P. Munafo Jr3, Donald M Walker1 

1 Middle Tennessee State University, Department of Biology, Murfreesboro, Tennessee 

37132, USA 

2 Idaho State University, Department of Biological Sciences, Pocatello, Idaho 83209, 

USA 

3 University of Tennessee Knoxville, Department of Food Science, Knoxville, Tennessee 

37996, USA 

Abstract 

Understanding how host associated microbial assemblages respond to pathogen 

invasion has implications for host health. Until recently, most work has focused on 

understanding the taxonomic composition of these assemblages. However, recent work 

has suggested that microbial assemblage taxonomic composition is decoupled from its 

function, with assemblages being taxonomically varied but functionally constrained. 

Therefore, there is increased need for understanding host associated microbial 

assemblage function. My objective was to understand how the host cutaneous microbial 

assemblage responds to fungal pathogen invasion within a functional context. I 

hypothesized that there will be no difference in the functional assemblages between P. 

destructans positive and negative bats, and that this pattern will be driven by the 

functional redundancy of bacterial taxa. I hypothesize that the bat cutaneous microbial 

assemblage will have functions for the production of antifungal metabolites. To test this, 

I used a combination of shotgun metagenomic and amplicon sequencing to characterize 
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the bat cutaneous microbial assemblage in the presence/absence of P. destructans. 

Results show that while there is a shift in taxonomic assemblage composition between P. 

destructans positive and negative bats, there is no difference between functions. 

Additionally, results show that at a broad scale there is likely functional redundancy 

across bacterial taxa, however at a finer scale, there is variation in functional capabilities.      

Introduction  

Understanding the processes that drive community assembly is central to 

microbial ecology (Nemergut et al. 2013). It is important to elucidate factors that 

influence the host associated microbial assemblage as this community is hypothesized to 

influence host health (Belden and Harris 2007; Grice and Segre 2011). Host microbial 

assemblages can be described by their functional and/or taxonomic composition. Recent 

work has shown that a wide range of factors can influence the taxonomic composition of 

host cutaneous microbial assemblages such as host evolutionary history (Carrillo-Araujo 

et al. 2015), environmental patterns (Avena et al. 2016; Lemieux-Labonté et al. 2016), 

host behavior (Song et al. 2013; Tung et al. 2015), and presence of disease (Cho and 

Blaser 2012; Lemieux-Labonté et al. 2017). While a considerable amount of work has 

gone into understanding factors that influence microbial taxonomic assemblages, those 

that influence assemblage function are less well understood. 

Functions present within the host associated microbial assemblage have been 

suggested to play a role in host development (Braendle et al. 2003), nutrient acquisition 

(Gill et al. 2006), and host fitness (Dharampal et al. 2020). The relationship between host 

associated microbial assemblage function and host health suggests that understanding 

functional rather than taxonomic assemblages may be a more informative measure in 
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microbiome science (Allison and Martiny 2008; Louca et al. 2018; Escalas et al. 2019). 

Additionally, recent work has suggested that microbial community taxonomic 

composition can be decoupled from its function, with communities being taxonomically 

variable, but functionally redundant (Green et al. 2008; Burke et al. 2011; Louca et al. 

2016). Two mechanisms have been proposed to explain this pattern including microbial 

niches may be filled by a lottery type mechanism, with selection for functionally 

redundant bacteria, of which the taxonomic identity is largely determined through 

stochastic processes (Burke et al. 2011). Alternatively, individual taxa may vary in 

functional capabilities, however, as an assemblage they have similar function (Allison 

and Martiny 2008). Microbial communities may be assembled through species sorting 

mechanisms (environmental selection) across functional groups, but with neutral 

processes dictating which taxa fill the functional role (Van der Gucht et al. 2007). For 

this to be the case, individual bacterial taxa likely have a wide range of functional 

capabilities (Louca et al. 2018). Additionally, metabolic functions show a lack of 

phylogenic signal (Aguilar et al. 2004), further supporting the idea that multiple taxa can 

play similar roles within an assemblage.  

Host associated cutaneous microbial assemblages play a role in host defense 

(Grice and Segre 2011; Rebollar et al. 2018; Grisnik et al. 2020) due to their ability to 

produce antifungal compounds (Flórez et al. 2015). Previous work has shown that 

individual bats that are exposed to, but not invaded by P. destructans, have microbial 

assemblages enriched in antifungal bacterial taxa (Lemieux-Labonté et al. 2017; Grisnik 

et al. 2020). However, it is likely that using taxonomic data to infer function is an 

oversimplification of these complex communities. Until recently, microbial community 
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function has been limited to interpretation within a phylogenetic context (Langille et al. 

2013), however, the development of metagenomic sequencing has allowed for the 

inference of community metabolic profiles (Sharpton 2014). Functional pathways 

including membrane transport, biosynthesis of secondary metabolites, and metabolism of 

terpenoid and polyketides are important in host defense from fungal pathogens (Rebollar 

et al. 2018). These pathways are hypothesized to play an essential role in bacterial 

communication within a microbiome, as well as, bacterial response to external stimuli 

such as pathogen invasion (Flórez et al. 2015; Rebollar et al. 2018). Understanding the 

differential abundance of important functional pathways may provide insight into 

microbial assemblage response to fungal pathogen invasion.  

Fungal pathogens have impacted multiple animal phyla and are considered a 

predominant threat to worldwide biodiversity (Fisher et al. 2012). The fungal pathogen 

Pseudogymnoascus destructans was introduced into the United States in 2006 and has 

contributed to the decline of multiple species of bats and threatens several more with 

extinction (Langwig et al. 2012; Langwig et al. 2015). Bat declines were not consistently 

observed across species or sites, suggesting that some bats are able to persist in the 

presence of P. destructans (Dobony et al. 2011; Langwig et al. 2012; Frick et al. 2017). 

One species that has recently shown signs of persistence despite a P. destructans rich 

environment, is the Tri-colored bat (Perimyotis subflavus; Langwig et al. 2017). A 

variety of mechanisms including behavioral changes (Langwig et al. 2012), genetic 

resistance and evolutionary rescue (Maslo and Fefferman 2015), acquired resistance, 

and/or antifungal properties of the host cutaneous microbial assemblage are hypothesized 

to explain Tri-colored bat resistance to P. destructans (Lemieux-Labonté et al. 2017).  
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The objective of this study was to use a combination of shotgun metagenomic and 

amplicon sequencing to understand how the host cutaneous microbial assemblage 

responds to fungal pathogen invasion within a functional context. Specifically, I aimed to 

1) determine if host microbial assemblages exhibit functional redundancy in the presence 

of a fungal pathogen, 2) understand how microbial assemblage function relates to disease 

status, and 3) determine the presence of genes responsible for antifungal metabolite 

production in the bat cutaneous microbiome. If functional redundancy is observed, it 

would suggest that species sorting mechanisms drive functional community assembly in 

the face of pathogen mediated disturbance. More specifically I hypothesize that there will 

be no difference in functional assemblages between P. destructans positive and negative 

bats. I hypothesize these patterns to be driven by functional redundancy of bacterial taxa. 

Additionally, I hypothesize that the bat cutaneous microbial assemblage will have 

functions associated with the production of antifungal metabolites, suggesting the role of 

the microbiome in host defense from pathogens.     

Methods 

Field Work/Sample Collection 

Cutaneous swabs from 252 P. subflavus individuals were collected from caves 

throughout Tennessee during the 2017 to 2019 statewide surveys (January-April).  

Specifically, when a bat was located, a sterile swab (Puritan polyester tipped swabs, 

Puritan VWR cat # 10805165) was briefly dipped into a Falcon tube of sterile Millipore 

water and five swab strokes of each bat muzzle/ear and five from wings/fur were taken. 

These samples were temporarily stored on ice in the field and moved to storage at -80°C 

until processing.  
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Quantitative PCR Assays 

Quantitative PCR (qPCR) was performed to determine the presence of P. 

destructans within each sample. Each sample was tested in triplicate on a Bio-Rad C1000 

Thermal cycler following the qPCR assay described in Muller et al. (2013). Briefly each 

PCR reaction was 10 µL total volume and contained 5 µL 2x Primetime MasterMix, 0.4 

µL forward primer (20 µM), 0.4 µL reverse primer (20 µM), 0.1 µL probe (20 µM), 3.1 

µL PCR grade water, and 1 µL of DNA. Thermocycling conditions consisted of a 3 min 

activation step at 95°C, followed by 50 cycles of 95°C for 3 s, and 60°C for 30 s. 

Additionally each qPCR plate contained a positive and a no template negative control run 

in triplicate. DNA extraction blanks were also analyzed using qPCR to rule out 

contamination during the DNA extraction process. A positive sample was defined as 

exponential amplification in triplicate at or before Ct 40 (Muller et al. 2013; Janicki et al. 

2015). Ambiguous samples (those that amplified in one or two of the 3 replicates) were 

re-analyzed, if one or more reactions amplified the sample was then considered positive 

(Ellison et al. 2006). While false positive and negative designations are always a 

possibility, Shuey et al. (2014) determined that as low as 8 fg of P. destructans can be 

detected with this assay.    

Characterization of Microbial Assemblage Structure and Function 

 Swabs from 187 P. subflavus individuals were selected for DNA extraction based 

on P. destructans status. DNA was extracted using the Qiagen DNeasy PowerSoil HTP 

96 kit following the manufacture’s protocol. Final elution (~ 100 µL) was concentrated 

four-fold to a final volume of ~25 µL using an Eppendorf Vacufuge plus. To reduce 

contamination, each step (DNA extraction, PCR setup, and post PCR processes) were 
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conducted in separate PCR cabinets. Additionally, each cabinet had an assigned set of 

pipettes that were routinely sterilized by autoclaving. Lastly in order to reduce potential 

bias caused by well to well contamination each sample was randomly distributed across 

DNA extraction and PCR plates (Minich et al. 2019).   

Shotgun Metagenomic Sequencing  

A total of 54 P. subflavus individuals from 17 caves were selected for shotgun 

metagenomic sequencing based on their P. destructans status (n = 27 negative and n = 27 

positive individuals). Due to low DNA yield from individual swabs, samples were 

combined based on P. destructans status into six pooled libraries (three P. destructans 

positive and three P. destructans negative pools) with a final quantity of DNA greater 

than 1 ng in each pool. Each pooled sample consisted of nine individual bat samples. 

Samples were prepared following the Illumina Nextera DNA Flex library preparation 

protocol and loaded onto an Illumina NextSeq flow cell and sequenced (paired-end 2 × 

150 bp reads).  

Amplicon Sequencing  

 Swabs from 159 P. subflavus (n = 28 negative, n = 131 positive individuals) were 

selected from 45 caves for 16S metabarcoding and amplicon sequencing. Samples were 

prepared following a slightly modified version of the Illumina 16S Metagenomic 

Sequencing Library Preparation protocol. The V4 region of 16S rRNA marker was 

targeted using the primers 806R/515F (Caporaso et al. 2011). PCR reactions consisted of 

12.5 µL MCLAB I-5 Hi-Fi Taq mastermix, 1 µL of 806R (10 µM), 1 µL of 515F (10 

µM), 5.5 µL PCR grade water, and 5 µL DNA template for a total volume of 25 µL. PCR 

was performed with an initial denaturation at 95°C for 2 mins, followed by 35 cycles of 
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98°C for 10 s, 55°C for 15 s, and 72°C for 5 s, with a final extension cycle of 72°C for 5 

min. After amplicon PCR and indexing steps MAGBIO High-prep magnetic beads were 

used to remove primer/adapter dimers. Each sample was quantified using a Promega 

Quantus Fluorometer, normalized, pooled at 4 picomolar concentration, and loaded onto 

an Illumina MiSeq v2 flow cell. Sequencing was performed using a 500-cycle reagent kit 

(paired-end, 2 × 250 bp reads).  

Amplicon Bioinformatics 

Processing of amplicon sequencing reads was done using mothur v 1.42.1 

(Schloss et al. 2009). Contigs were assembled from paired-end reads and I removed any 

sequences containing homopolymers greater than eight nucleotides or ambiguous base 

calls. Unique sequences were identified and aligned to the SILVA v123 bacterial 

reference database (Quast et al. 2012). Sequences were then trimmed to the V4 region 

and pre-clustered allowing for two nucleotide differences. Chimeras were removed using 

the vsearch function in mothur (Rognes et al. 2016), and sequences were classified into 

taxonomic lineages. Non-target reads, those that were identified as Archaea, Eukarya, 

chloroplasts, mitochondria, and unknowns were removed. Sequences were clustered into 

operational taxonomic units (OTUs) at 97% similarity using the cluster.split command in 

mothur (Schloss and Westcott 2011). Rare OTUs (n < 5) were removed from the dataset 

as well as those that were found within the DNA extraction blank controls (n = 1669 

OTUs). A total of 5 701 307 sequences passed all quality control filtering steps. Data 

were then normalized by subsampling each library at 1200 sequence reads. Subsampling 

was chosen as the normalization method as previous work has shown that it is the most 

effective way to account for variation in final library size post sequencing (Weiss et al. 
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2017). OTUs were selected as the focal taxonomic level of study, as previous work has 

suggested that there is a lack of a difference in broadscale ecological patterns observed 

when comparing OTUs and ASVs (Glassman and Martiny 2018). All mothur commands 

are included in Appendix C.   

Shotgun Metagenomic Sequencing and Bioinformatics  

DNA sequences from shotgun metagenomics sequencing were analyzed following 

the MetaWRAP pipeline (Uritskiy et al. 2018). More specifically, the MetaWRAP 

read_qc module was used to trim adapters from sequencing reads and remove human and 

bat-based contamination. To remove bat-based contamination I used the genome for 

Eptesicus fuscus which is the closest relative to P. subflavus with a genome sequence in 

the NCBI database. The metaWRAP assembly module (using MegaHIT option; Li et al. 

2015) was then used to assemble reads. Reads were binned into draft genomes on a per 

sample basis using three binning module algorithms; CONCOCT (Alneberg et al. 2014), 

Maxbin (Wu et al. 2016), and metaBIN (Sharma et al. 2012), and then consolidated into 

a single draft genome bin using the Bin_refinement module with refinement parameters 

set to the default (70% completion, 5% contamination). I used Salmon (Quant_bins 

module) to quantify bins (Patro et al. 2017), which calculates weighted contig abundance 

by multiplying the contig read depth by contig length, and then standardizes to the total 

abundance. PROKKA (Seemann 2014) was used for functional gene prediction of 

metagenome bins. I then used the output from Salmon to determine bins that were 

differentially abundant on P. destructans positive and negative samples, as well as, bins 

that were found only in one disease category. In total nine metagenome bins were 

selected for further analysis. I then used BlastKoala (Kanehisa et al. 2016) to classify 
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metabolic functions using the KEGG database at both the pathway and at the KEGG 

ortholog (KO) level for each of the nine metagenome bins. Gene functional identity is 

determined based on an evaluation of sequence similarity scores and best hit relations 

(Kanehisa et al. 2013). Additionally, in order to take phylogenetic relationship of the 

bacterial metagenomes into account, I created a species tree within KBase (Arkin et al. 

2018). The species tree was created using 49 universal genes defined by Clusters of 

Orthologous groups (COGS; Tausov et al. 2000). The nine bat cutaneous bacterial 

metagenomes were combined with closely related publicly available genomes to form a 

multiple sequence alignment (MSA) and were then curated using Gblocks (Castresana 

2000). The curated MSA was then used to build a phylogenetic tree, inferred with 

FastTree2 (Price et al. 2010). Both KEGG pathways and KEGG orthologs were mapped 

back to the species tree to assess potential functional phylogenetic signal or redundancy.       

Statistical Analyses 

To address questions of functional redundancy, I used a multi-teared approach 

outlined by the subheadings below. For purposes of data curation, I removed the bottom 

5% of OTUs based on abundance (OTUs that were observed less than two times), as 

previous work has suggested that rare taxa can influence assemblage analyses (Presley et 

al. 2010). Since I was interested in determining if there are differences in the presence of 

functions, I transformed the abundance data to presence/absence.  

Assessment of Functional Redundancy - I performed an indicator analysis to 

identify OTUs that are indicative of P. destructans presence or absence within a sample 

using the multipatt function in R package indicspecies (De Cáceres et al. 2020). 

Assemblages were then averaged by site within disease category (P. destructans presence 
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or absence) to remove the nestedness of the dataset, which resulted in one to two 

“averaged assemblages” for each site, including one for P. destructans positive and one 

for P. destructans negative bats. I used a generalized linear model (GLM) to compare the 

abundance of indicator OTUs for P. destructans negative samples between P. destructans 

positive and P. destructans negative averaged samples.  

I then used Tax4Fun2 (Wemheuer et al. 2020) to make functional predictions 

based on the 16S rRNA amplicon data. I ran Tax4Fun2 twice, once on the full dataset (P. 

destructans negative, n = 28; P. destructans positive, n = 131), and once on just the 

indicator OTUs of P. destructans negative samples. This allowed for me to predict the 

functions (KEGG orthologs) associated with the OTUs that are indicative of P. 

destructans negative samples and determine if they are found within P. destructans 

positive assemblages. Tax4Fun2 makes functional predictions using previously 

sequenced and annotated bacterial genomes. Since many microbial taxa do not have a 

representative genome sequence, Tax4Fun2 provides a metric, the fraction of taxonomic 

units unused (FTU), to assess how well represented the data is by the functional database. 

I used a GLM to compare the FTU values between site averaged P. destructans positive 

and P. destructans negative samples to ensure that there was no difference in how well 

particular disease state assemblages were represented.     

Functional gene annotations were presence/absence transformed and the least 

abundant 5% of functions were removed (abundance of less than 1.5 x 10-5). Functional 

assemblages were averaged by site within a disease category to remove nestedness of the 

data. I then ran a GLM to compare the richness of the KEGG orthologs associated with P. 
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destructans negative indicator OTUs between P. destructans positive and P. destructans 

negative samples averaged by site.  

Assessment of Community Level Function - To determine if the presence of P. 

destructans correlated with a change in taxonomic or putative functional assemblage 

structure I generated three distance matrices for total beta diversity (SOR), turnover 

(SIM), and nestedness (SNE) components of Sørensen diversity on the averaged 

assemblage data (package betapart; Baselga and Orme 2012) for both OTU (16S rRNA 

data) and Tax4Fun2 (predicted functions) data. I then compared beta diversity measured 

as multivariate dispersion (betadisper function, package vegan; Oksanen et al. 2013) 

across P. destructans status. I then used permutational multivariate analysis of variance 

(PERMANOVA) with 999 permutations (function adonis; package vegan) on SOR, SIM, 

and SNE metrics to assess the influence of P. destructans status on average assemblage 

structure.  

Assessment of Metagenomic Assembled Genomes - In order to determine 

functional differences, comparisons were made using nine metagenome bins that were 

differentially abundant between P. destructans disease categories (Fig. 10). I selected and 

assessed 22 major functional pathways with a focus on three pathways of hypothesized 

interest including the abundance of genes within the biosynthesis of secondary 

metabolites, membrane transport, and metabolism of terpenoids and polyketides 

pathways. These markers were chosen to assess bacterial-fungal interactions of the 

microbiome.  
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Figure 10. Heatmap comparing the abundance and presence/absence of bins across 
P. destructans status. 
 Heatmaps comparing Abundance (A) and the presence/absence of bins (B) between P. 
destructans negative (P49, P50, P51) and P. destructans positive (P52, P53, P54) 
samples. Bins 56 and 57 are found only on Pd positive samples while Bins 41, 46, and 33 
are only found on Pd negative. Bins 19,52, and 55 are more abundant on positive 
samples, while Bins 46 and 9 are more abundant on negative. 
 

 

Results 

Functional Redundancy - High-throughput sequencing resulted in a total of 7498 

OTUs. Indicator analysis run on the 16S rRNA data revealed 147 OTUs that were 

indicative of samples without P. destructans and four OTUs that were indicative of 

samples with P. destructans. OTUs indicative of P. destructans negative bats were more 

abundant within P. destructans negative assemblages relative to P. destructans positive 

assemblages when averaged by site (GLM; z = -17.01, p < 0.05, Fig. 11A).  
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The percentage of OTUs used by Tax4Fun2 in the predictions of KEGG orthologs 

was on average 28% of OTUs (average FTU = 0.72, min = 0.35, max = 0.86). FTU 

values were not significantly different between P. destructans positive and P. destructans 

negative samples (GLM; z = -0.36, p > 0.05). Tax4Fun2 identified 6357 KEGG orthologs 

(KOs) associated with the OTUs that were indicative of P. destructans negative samples. 

These KOs were significantly more abundant on P. destructans positive samples than on 

P. destructans negative samples when averaged by site (GLM; z = 4.59, p ≤ 0.05; Fig. 

11B).  

Community Level Functional Redundancy - Taxonomic beta diversity, measured 

as multivariate dispersion, was not significantly different between P. destructans positive 

and negative bats (betadisper; SOR: F 1, 54 = 0.1, p > 0.05; SIM: F 1, 54 = 1.7, p > 0.05; 

SNE: F 1, 54 = 3.7, p > 0.05). However, PERMANOVA revealed that average taxonomic 

assemblage structure differed between P. destructans positive and negative bats averaged 

by site for both total and turnover (PERMANOVA; SOR: F 1, 54 = 1.3, p < 0.05; SIM: F 1, 

54 = 1.4, p < 0.05, Fig 11C), but not the nestedness component of beta diversity 

(PERMANOVA; SNE: F 1, 54 = 1.0, p > 0.05). There was no significant difference in 

multivariate dispersion of putative functions determined by Tax4Fun2 (betadisper; SOR: 

F 1, 54 = 1.2, p > 0.05; SIM: F 1, 54 = 1.4, p > 0.05; SNE: F 1, 54 = 0.04, p > 0.05) between P. 

destructans positive and negative bats averaged by site. Additionally, there was no 

significant difference in average structure of putative microbiome function between P. 

destructans positive and negative bats averaged by site (PERMANOVA; SOR: F 1, 54 = 

2.3, p > 0.05; SIM: F 1, 54 = 1.5, p > 0.05; SNE: F 1, 54 = 3.1, p > 0.05, Fig 11D).  
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Figure 11. Comparison of P. destructans negative indicator taxa (A) and punitive 
function (B) across P. destructans status. Non-metric multidimensional scaling 
ordination for taxonomic assemblage structure (C), and functional assemblage (D) 
across P. destructans positive and negative bats. 
A). Abundance of taxa indicative of P. destructuans negative samples compared between 
P. destructuans positive and P. destructuans negative bats averaged by site. B). 
Abundance of KEGG Orthologs associated with the OTUs indicative of P. destructuans 
negative samples compared between P. destructuans positive and negative bats averaged 
by site. There is a significant effect of P. destructans (p < 0.05) on average taxonomic 
assemblage structure (C), however, there is no significant effect of P. destructans (p < 
0.05) on average functional assemblage structure (D). 
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Metagenomic Assembled Metagenomes - The nine metagenomes that were 

selected for more in-depth analysis included bin number 56 (Flavobacteriaceae), and bin 

57 (Sphingopyxis) were only found on P. destructans positive samples, whereas, bins 33 

(Antricoccus), 41 (Staphylococcus), and 46 (Parvularculaceae) were only found on P. 

destructans negative bats. Bins 19 (Ralstonia), 52 (Rhodococcus), and 55 

(Micrococcaceae) were more abundant on P. destructans positive samples, whereas, bins 

46 (Parvularculaceae) and 9 (Euzebyaceae) were more abundant on P. destructans 

negative bats (Fig. 10). Using BlastKoala, I was able to annotate between 33.4% and 

62.3% of reads from nine metagenome bins. I found that at the broadest scale (KEGG 

functional pathways) the metagenomes appeared functionally redundant, with some 

minor variation (Fig. 12). The pathways with the highest relative abundance within each 

metagenome were carbohydrate metabolism (mean = 17.5%, SD = 0.04), amino acid 

metabolism (mean = 15.7%, SD = 0.01), metabolism of cofactors and vitamins (mean = 

8.7%, SD = 0.007), and energy metabolism (mean = 8.2%, SD = 0.01).  

 

 

 

 

 

 

 

Figure 12. Broadscale functional redundancy across functional pathways. 
Stacked bar chart of KEGG identified functional pathways for the 9 selected Bins. In 
general, there appears to be functional redundancy across differentially abundant Bins. 
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Variation was observed within the KEGG pathway for the biosynthesis of 

secondary metabolites based on P. destructans status (Fig. 13A). Metagenomes of 

bacteria in P. destructans positive samples had genes that play a role in carbapenem 

biosynthesis. Metagenomes of bacteria living on P. destructans negative bats had genes 

involved in biosynthesis of various secondary metabolites (specifically cycloserine, 

staphyloferrin A and B, roseoflavin, dapdiamides, grixazone, ethynylserine, and 

aerobactin). Metagenomes that are more abundant on P. destructans negative samples 

had genes involved with the staurosporine biosynthesis pathway (Fig. 13B). 

Metagenomes of bacteria on P. destructans positive bats had genes responsible for 

penicillin and cephalosporin biosynthesis.  

KEGG pathways for membrane transport showed some minor differences when 

comparing metagenomes by disease state. For metagenomes found only in P. destructans 

positive samples, genes associated with a phosphotransferase system are missing from 

bin 56 (Fig. 13C). This gene is also missing from bin 52, a representative metagenome 

differentially abundant, on P. destructans positive bats (Fig. 13D).  

Within a phylogenetic context I found that broadscale functions exhibit functional 

redundancy across four distinct bacterial phyla (Fig. 14). For example, genes involved in 

amino acid metabolism were highly conserved across all nine metagenomes, with only 

minor variation in abundance. At a finer scale (within pathways; Fig. 15), there is more 

variation. For example, genes associated with amino acid biosynthesis are fairly 

conserved across all metagenomes, however, genes associated with cellular processes 

vary across both closely and distantly related bacterial phyla (Fig. 15). 
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Figure 13. Fine scale functional variability across functional orthologs. 
 Stacked bar chart of gene relative abundance within hypothesized KEGG pathways of 
interest. Charts A, C, and E represent bins that are unique to one P. destructans status 
(bins 56 and 57 P. destructans positive, and bins 33, 41, and 46 P. destructans negative). 
Charts B, D, and F are bins that are associated with differential abundance between P. 
destructans status (bins 19, 52, and 55 are more abundant on P. destructans positive 
whereas bins 46 and 9 are more abundant on P. destructans negative). Charts A and B 
represent genes within the biosynthesis of secondary metabolites KEGG pathway. Charts 
C and D represent genes within membrane transport pathway. Charts E and F represent 
genes within the metabolism of terpenoids and polyketides pathway. While most genes 
are represented in assemblages regardless of P. destructans status, there are some 
differences in relative abundance. * indicates questionable functions based on 
comparisons to nonbacterial databases. 
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Figure 14. Broadscale functional redundancy regardless of bacterial taxonomy. 
 Bacterial phylogeny showing conserved functions as determined by KEGG pathways across the nine selected metagenomes. 
Overall, there is broadscale functional redundancy regardless of bacterial taxonomy. Branches highlighted in yellow are the nine 
focal metagenomes. 
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Figure 15. Fine scale functional variation within a phylogenetic context. 
Bacterial phylogeny showing functional variation within the KEGG orthologs within three select pathways (Biosynthesis of 
secondary metabolites, membrane transport, and metabolism of terpenoid and polyketides). Branches highlighted in yellow are the 
nine focal metagenomes. Overall, there is variation in the presence of functional genes between individual taxa as well as variation 
between phyla. * indicates questionable functions based on comparisons to nonbacterial databases.   
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Discussion 

This study aimed to understand how the taxonomic and functional component of 

the bat cutaneous microbial assemblage responds to pathogen invasion. Overall, I found 

that the presence of P. destructans correlates with a shift in assemblage taxonomic 

composition, however, this shift was not observed in overall metagenome function of 

skin assemblages. Results from Tax4Fun2 indicated a lack of overall difference in 

putative function of assemblages by P. destructans status. The lack of difference is likely 

caused by multiple bacterial taxa having similar functional pathways. However, when 

detailed observations were made, differences were noted within several pathways 

important for understanding bacterial-fungal interactions. More specifically, host 

associated bacterial metagenomes have genes present for the production of antifungal 

compounds, suggesting the potential role of these organisms in host defense from fungal 

pathogens. Overall, these results suggest that the host cutaneous microbial assemblage is 

likely assembled through species sorting mechanisms across functional groups, allowing 

the taxonomic composition to vary stochastically (Van der Gucht et al. 2007), and 

functional assemblages to be broadly redundant.  

At the community level, I observed a shift in taxonomic composition but 

conserved putative function across P. destructans status. This low resistance to P. 

destructans mediated change within the taxonomic assemblage has been observed in 

other studies and was hypothesized to be driven by environmental selection (species-

sorting) for taxa with antifungal properties (Lemieux-Labonté 2017; Grisnik et al. 2020). 

However, when the putative functional community was observed, broad scale differences 

were absent, suggesting functional redundancy within the system. While this does not 
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directly support the claim that taxa are selected based on the presence of antifungal 

functions, it does support the hypothesis that microbial communities are likely 

maintained based on function rather than taxonomy (Burke et al. 2011). Alternatively, a 

lack of an observed functional shift could be the result of functional resilience, with 

changes in assemblage function decreasing in magnitude over time. Results of the 

indicator analysis revealed that taxa indicative of P. destructans negative bats are less 

abundant on P. destructans positive bats, but their functions are taxonomically 

ubiquitous, supporting the notion that different bacteria share similar functions (Burke et 

al. 2011). The notion that bacteria share functions regardless of taxonomic identity is 

further supported by the phylogenetic trees (Figs. 14 and 15) that show a lack of 

taxonomically conserved functions across the nine analyzed metagenomes that were 

representative of four different bacterial phyla. Taxonomic shifts of indicator taxa on P. 

destructans positive bats correlated with changes in putative function. This partially 

contradicts metagenome results, however, it is important to note that Tax4Fun2 was only 

able to use ~28% of OTUs per sample to determine putative assemblage function. This 

number, while low, is on par with studies of host associated microbial assemblage 

functions utilizing shotgun metagenomic methods (Louca et al. 2016; Rebollar et al. 

2018; Grisnik et al. 2020). Only a fraction of bacterial taxa associated with bat skin are 

represented in reference databases and highlights the need for continued development of 

genomic, microbial resources and reference databases.  

Within the shotgun metagenomic data I found that at the broadest scale (KEGG 

functional pathways), bacterial metagenomes appear functionally redundant (Fig. 12 and 

14). This was expected, as these pathways represent ubiquitous and essential cell 
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functions, likely represented across most bacterial phyla (i.e., amino acid metabolism). 

The conserved nature of these functions is observed within the phylogenetic tree, where 

these broadscale functions are seen across all nine metagenomes, regardless of 

relatedness. Similar to this study, Rebollar et al. (2018) also found amino acid 

metabolism, carbohydrate metabolism, and metabolism of cofactors and vitamins to be 

the most abundant pathways within frog skin microbial assemblages. Additionally, other 

studies have found functional pathways such as respiration to represent functional 

assemblages, despite differences in taxonomic assemblage structure (Girvan et al. 2005; 

Langenheder et al. 2005). Past research has shown that at this level, functional 

assemblages can change based on environmental interactions. For example, Morris et al. 

(2020) showed that functional pathway abundance in nectar microbial assemblages 

depended on interactions with pollinators, or alternatively pollen-exploiting insects. In 

this study, carbohydrate metabolism and amino acid and derivatives metabolism were 

differentially abundant, suggesting that while these pathways may be important as core 

pathways for bacterial survival, the abundance may be system dependent.     

At a finer scale, I investigated the KEGG orthologs present within three pathways 

hypothesized to be important in host defense. I observed intergenomic variation, for 

example, the genes for the phosphotransferase system (PTS; membrane transport 

pathway) are missing within the metagenomes of two bacterial taxa found on the skin of 

P. destructans positive bats (Fig. 13C-D). The phosphotransferase system is involved 

with bacterial uptake of a variety of carbohydrates (Deutscher et al. 2006) some of which 

are likely present on bat skin (Nassar et al. 2008). Previous work on mouse distal gut 

microbial assemblages found an enrichment of PTS genes within mice fed a “western 
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diet” high in fats (saturated and unsaturated) and carbohydrates used as human food 

additives (Turnbaugh et al. 2008). This suggests that shifts in the presence of these genes 

may be an indicator of the trophic structure of the assemblage and might suggest 

differences in the availability of these carbohydrates as an energy source within the bat 

cutaneous microbial assemblage. The lack of taxonomic signature of PTS genes further 

supports the hypothesis that multiple bacterial taxa have similar functions. The 

differential presence of these genes suggests that while individual taxa may differ in their 

energy source, there is assemblage level redundancy since metagenomes from both 

disease states have PTS genes. Genes coding for secondary metabolite antibiotic 

compounds are found in all draft genomes regardless of P. destructans status and 

bacterial taxonomy. These antibiotics include monobactam, novobiocin, and 

streptomycin. Previous work has suggested the role of antibiotics in competition within 

microbial assemblages (Chao and Levin 1981). However, more recently the role of 

antibacterial compounds has been called into question, and instead studies have suggested 

their role in interspecies bacterial communication (Goh et al. 2002; Yim et al. 2007). 

Regardless of their role within the assemblage, the ubiquitous presence of genes for the 

production of antibacterial compounds suggests their importance, as well as, overall 

redundancy within the system. In general, intergenomic variation in functions suggests 

that if assemblages are formed via species sorting on functions, the selection is at the 

assemblage level, allowing for moderate variation in functional capabilities between 

individual bacterial taxa.  

 Several orthologs coding for secondary metabolites support the notion that skin 

bacterial assemblages of bats play a role in protecting the host from pathogens (Lemieux-
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Labonté 2017; Grisnik et al. 2020). For example, the antifungal compound staurosporine 

(Li et al. 2014) is produced by a variety of actinomycetes (Park et al. 2006) and was 

found in metagenomes of P. destructans negative bats (Fig. 13B). This is suggestive of 

the role of microbially produced staurosporine in the protection of bat hosts, however, a 

controlled experiment would be necessary to confirm this conclusion. The secondary 

metabolite validamycin A has the potential to play a role in slowing the spread of fungal 

pathogens, and is widely used to control rice sheath blight (Robson et al. 1988). 

Validamycin A is inhibitory, but not lethal to fungi, as it has the ability to slow the rate of 

hyphal extension (Trinci 1984). Validamycin is often cited as being produced by species 

of Streptomyces (Guirao-Abad et al. 2013) and has been shown to halt the growth of a 

variety of basidiomycetes, but with limited effects on ascomycete fungi (Robson et al. 

1988; Guirao-Abad et al. 2013). Interestingly previous work has shown that cultured 

Streptomyces sp. have the ability to inhibit the growth of P. destructans on a petri plate 

(Grisnik et al. 2020). Orthologs for the production of Validamycin were present within 

all metagenomes, regardless of the P. destructans status, suggesting that the bacterial taxa 

surveyed in this analysis were redundant in regard to this function.  

Overall, shotgun metagenomic data revealed patterns of functional redundancy 

within broad functional categories, but variation within select orthologs coding for 

specific pathways. I, like others (Rebollar et al. 2018), suggest the continued 

development of shotgun metagenomics as a method to better understand functional 

diversity within host associated microbial assemblages. However, I stress that within this 

study, samples were pooled due to low concentrations of DNA, likely resulting in an 

underestimate of functional variation between individual bat hosts. Lastly, it is important 
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to acknowledge the limitations of shotgun metagenomic sequencing, specifically, there is 

no way to determine if genes are transcriptionally active under a set of ecological and 

host-based conditions. Additionally, it is important to note that function is based on best 

fit to annotated functional genes, potentially resulting in incorrect annotation. Future 

work should aim to overcome these limitations by using methods such as 

metatranscriptomics or qPCR to determine how functions are being expressed rather than 

functional capability as well as continued development of functional reference databases. 

This study aimed to elucidate the interaction between microbial assemblage 

structure and function in the presence of a fungal pathogen, with implications for host 

health. Overall, I found that taxonomy and function are decoupled, with multiple 

bacterial taxa having similar functions at a broad level, thus suggesting functional 

redundancy. At finer scales, variation was observed between bacterial taxa functional 

capabilities and/or ecological roles. This suggests that if assemblages are formed via 

species sorting of functions, the level of selection is likely at that of the assemblage, 

allowing individual taxa to vary somewhat in functional capabilities, but maintaining 

overall function.  
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Abstract 

Metacommunity theory provides a framework for how community patterns arise 

from processes across scales, which is relevant for understanding patterns in host-

associated microbial assemblages. Microbial metacommunities may have important roles 

in host health through interactions with pathogens; however, it is unclear how pathogens 

affect host microbial metacommunities. Here, I studied relationships between a fungal 

pathogen and a host-associated microbial metacommunity. I hypothesized that a fungal 

pathogen of bats, Pseudogymnoascus destructans, correlates with a shift in 

metacommunity structure and changes in relationships between community composition, 

and factors shaping these assemblages, such as ecoregion. I sampled bat cutaneous 

microbial assemblages in the presence/absence of P. destructans and analyzed microbial 

metacommunity composition and relationships with structuring variables. Absence of P. 

destructans correlated with a metacommunity characterized by a common core microbial 

group that was lacking in disease positive bats. Additionally, P. destructans presence 
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correlated with a change in the relationship between community structure and ecoregion. 

These results suggest that the fungal pathogen intensifies local processes influencing a 

microbial metacommunity and highlights the importance of cutaneous microbial 

assemblages in host-pathogen interactions. 

Introduction 

 Elucidating how patterns of community structure relate to underlying structuring 

variables and processes of community assembly is a primary goal of community 

ecologists. Patterns observed at one scale of observation can be directly influenced by 

processes occurring at another scale (Levin 1992). For example, rescue effects describe 

the process by which species can persist in unfavorable local environments through 

dispersal from regional source populations (Brown and Kodric-Brown 1977). 

Communities interacting between scales, including local and regional, form a spatial 

patchwork of taxa referred to as a metacommunity (Leibold et al. 2004).   

Metacommunities are defined as groups of habitat patches, linked by species 

dispersal and interactions between taxa among these patches (Leibold et al. 2004; 

Costello et al. 2012). Both local and regional processes contribute to shaping 

metacommunity structure and the distribution of species across habitat patches (Costello 

et al. 2012). By using pattern-based assessments, one can analyze species distributions 

along environmental and spatial gradients to diagnose metacommunity structure (Leibold 

and Mikkelson 2002; Presley et al. 2010). 

 Leibold and Mikkelson (2002) developed a framework to identify 

metacommunity patterns, called the Elements of Metacommunity Structure (EMS), 

which uses three metrics to describe metacommunity structures: coherence, turnover, and 
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boundary clumping (Fig. 16). Coherence is measured as the number of embedded species 

absences from a site and describes the overall response of a community to an 

environmental or spatial gradient (Fig. 16A). Turnover is measured as the number of 

species replacements across samples. Boundary clumping describes clustering in species’ 

range boundaries and is a metric that defines how cohesive species ranges are across sites 

(Leibold and Mikkelson 2002). After determining the EMS, an idealized distributional 

pattern including hyperdispersed species loss, clumped species loss, evenly spaced, or 

Clementsian (Fig. 16B-E) can be used to describe metacommunity structure (Leibold and 

Mikkelson 2002; Presley et al. 2010). Clementsian structure (Fig. 16E) describes 

communities of species that have similar responses to environmental differences, 

resulting in discrete community boundaries (Clements 1916; Leibold and Mikkelson 

2002; Presley et al. 2010). Specifically, Clementsian metacommunities have positive 

coherence, turnover, and clumping, meaning there are less absences (positive coherence) 

but more frequent species replacements (positive turnover) than expected by chance 

alone. Additionally, Clementsian metacommunities have clumped species boundaries 

defined by positive boundary clumping. For example, Clementsian succession occurs 

when communities of species replace each other over time, with little overlap in 

community composition. Evenly spaced metacommunities (Fig. 16D) are similar to 

Clementsian, in that they have positive coherence and turnover, but they have 

hyperdispersed species boundaries as opposed to clumped species loss. Evenly spaced 

metacommunities still exhibit turnover, with species replacing each other across sites, 

however there are no distinct communities characteristic of Clementsian 

metacommunities. Nested patterns consist of less diverse assemblages making up subsets 
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of more diverse communities (Patterson and Atmar 1986; Leibold and Mikkelson 2002; 

Presley et al. 2010). Nested community structures result from positive coherence, but 

negative turnover, where species do not replace each other but rather, are lost from sites. 

For example, nested sites are made up of subsets of species from a much larger species 

pool. Nested metacommunities that exhibit positive clumping have clumped species loss 

(Fig. 16C) where species are lost from sites in groups. Those with negative clumping 

have hyperdispersed loss (Fig. 16B) where individual species are lost from sites. While 

EMS analyses provide descriptions of metacommunity structure, they do not reveal the 

variables responsible for such processes.  
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Figure 16. The elements of metacommunity structure and their resulting patterns. 
Plus signs (+) indicate a significantly positive relationship, whereas minus signs (-) 
indicate a negative relationship. A. metacommunity with checkerboard pattern. B. nested 
metacommunity with hyperdispersed species loss. C. nested metacommunity with 
clumped species loss. D. evenly spaced metacommunity. E. Clementsian metacommunity 
structure. (Modified from Presley et al. (2010) using the software Inkscape 1.0 
www.inkscape.org).  
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Complementary analyses are needed to elucidate the variables driving 

metacommunity structure. The influence of geographic distance on community structure 

is assessed using distance-decay models, which estimate the rate of species turnover 

along a gradient (Nekola and White 1999). Positive relationships between community 

dissimilarity and geographic distance may indicate that species’ distributions are highly 

affected by dispersal limitation (Tornero et al. 2018), whereas, the lack of a relationship 

suggests that environmental filtering and species sorting may be more important for 

determining community structure (Heino 2013). Species sorting and environmental 

filtering emphasize the role of the local abiotic environment in determining what species 

can persist within an assemblage, resulting in assemblages correlating with local habitat 

factors, such as precipitation (Leibold et al. 2004). In addition, permutational multivariate 

methods are frequently implemented to understand the effects of environmental factors 

on community patterns. For instance, permutational models can distinguish differences in 

community composition and turnover across environmental variables, as well as the 

interactive effects of multiple environmental variables (Walker et al. 2019). Interactive 

effects are especially important to consider when new structuring variables, such as 

invasive species or anthropogenic perturbations, are introduced to a metacommunity, as 

they might change the role of established structuring factors. 

While macroorganismal metacommunities have been studied in some detail 

(Presley et al. 2012; Heino et al. 2015; Tornero et al. 2018), minimal work has focused 

on characterization of host-associated microbial metacommunities (Hernández-Gómez et 

al. 2017; Brown et al. 2020; Wilber et al. 2020). Understanding variation in structure of 

host-associated microbial metacommunities may be especially important given the role of 
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host assemblages in pathogen defense (Belden and Harris 2007; Grice and Segre 2011). 

For instance, the pathogenic fungus Pseudogymnoascus destructans, the causative agent 

of white-nose syndrome, was introduced into the United States in 2006, and is 

responsible for massive bat population declines (Blehert et al. 2009; Frick et al. 2016). 

Recently, declines have been shown to be highly variable across space, bat species, and 

time (Langwig et al. 2017). Tri-colored bats (Perimyotis subflavus) have shown recent 

population stabilizations possibly due in part to the presence of antifungal bacteria 

composing the cutaneous microbial assemblage (Langwig et al. 2012; Langwig et al. 

2017). Previous work has shown P. subflavus that are exposed to, but not invaded by P. 

destructans, have microbial assemblages enriched in antifungal bacterial taxa (Grisnik et 

al. 2020). Determining the structure and drivers of bat cutaneous microbial 

metacommunities in relation to this fungal pathogen may improve our understanding of 

microbial metacommunity response to fungal invasion, as well as our understanding of 

assemblages that are resistant to fungal invasion.  

The objectives of this study were to understand how the presence of a fungal 

pathogen correlates with the composition of a host-associated cutaneous microbial 

metacommunity and its structuring factors. I investigated the relationship between P. 

destructans and the cutaneous microbial metacommunity of P. subflavus across 48 sites 

in Tennessee, USA. I hypothesized that the presence of P. destructans would be 

correlated with a shift in 1) metacommunity structure and 2) relationships between 

structuring variables and community composition. I tested the first hypothesis using 

EMS, further informed by indicator operational taxonomic unit (OTU) and fungal 

pathogen load analyses. I tested the second hypothesis with distance-decay and 
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permutational models to understand how spatial and environmental variables structure the 

bat cutaneous microbial assemblage in the presence/absence of a fungal pathogen.  

Methods 

Sample collection 

Swabs from 369 individuals of adult P. subflavus were collected during statewide 

surveys between December 2016 and March 2019 across 57 cave sites in Tennessee. 

After bioinformatics processing and quality control, 249 P. subflavus from 48 sites were 

statistically analyzed (see methods below). Each bat had its cutaneous microbial 

assemblage sampled following the protocol outlined in Grisnik et al. (2020). Briefly I 

took five swab (sterile Puritan polyester tipped swabs, Puritan, Guilford Maine) strokes 

of each bat muzzle/ear and five from wings/fur while avoiding the mouth using one 

sterile swab per bat individual. Due to the conservation status of P. subflavus, when 

possible, bats were left hanging attached to their roost and swabbed without disturbing 

torpor. All samples were stored on ice in the field and permanently at -20° C until 

processing. This study was approved by the Tennessee Technological University 

Institutional Animal Care and Use Committee (TTU-16-17-003) and USFWS (2009-

038). All methods were carried out following relevant guidelines and regulations. I 

isolated DNA from 369 bats using the Qiagen DNeasy PowerSoil HTP 96 kit following 

the manufacturer’s protocol. Each plate of 96 samples contained a single DNA extraction 

blank (n = 8 total blanks) to filter out kit-based contamination during bioinformatics 

processing and quantitative PCR reactions (see below). When setting up each DNA 

extraction plate and subsequent library preparation, the location of samples on each 96 

well plate was randomized, in order to reduce biased effects of well-to-well 
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contamination (Minich et al. 2019). Extracted DNA was then used for molecular 

characterization of the microbial community, as well as, qPCR for the detection of P. 

destructans.    

Characterization of microbial community 

 Each step of library preparation (DNA isolation, PCR setup, and post PCR 

processes) was separated into specific PCR cabinet hoods with designated pipettes to 

minimize environmental and/or cross-contamination. Pipettes were autoclaved, and UV 

crosslinked periodically throughout library preparation. Once isolated, DNA was 

concentrated, using an Eppendorf Vacufuge plus, to a final volume of ~25 µL. After 

concentration, PCR amplification and high-throughput sequencing was performed 

following a modified version of the Illumina 16S Metagenomic Sequencing Library 

Preparation protocol. Specifically, I targeted the V4 region of 16S rRNA marker using 

primers 806R/515F (Caporaso et al. 2011). Each PCR reaction contained 12.5 µL 

MCLAB I-5 Hi-Fi taq mastermix, 1 µL of 806R (10 µM), 1 µL of 515F (10 µM), 5.5 µL 

PCR grade water, and 5 µL DNA template. PCR amplification was performed with an 

initial denaturation at 95°C for 2 min, followed by 35 cycles of 98°C for 10 s, 55°C for 

15 s, and 72°C for 5 s, with a final extension cycle of 72°C for 5 mins. MAGBIO High-

prep magnetic beads were used to remove primer/adapter dimers after amplicon PCR and 

indexing steps. Samples were quantified with a Promega Quantus Fluorometer then 

normalized, pooled at a 4 picomolar concentration, and loaded onto an Illumina MiSeq 

v2 flow cell. Sequencing was performed in eight separate runs each using a 500-cycle 

reagent kit (paired-end, 2 × 250 bp reads).  
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Quantitative PCR 

 To determine the presence or absence of P. destructans within a sample I 

followed the protocol outlined by Muller et al. (2013) to amplify the fungal intergenic 

spacer region (IGS). Each reaction was run in triplicate on an Agilent AriaMx Real-Time 

PCR system, and contained 5 µL 2x Primetime MasterMix, 0.4 µL forward primer (20 

µM), 0.4 µL reverse primer (20 µM), 0.1 µL probe (20 µM), 3.1 µL PCR grade water, 

and 1 µL sample DNA for a total of 10 µL per reaction. Thermocycling conditions 

included a 3-min activation step at 95°C, then 50 cycles of 95°C for 3 s and 60°C for 30 

s. Each plate included both a known concentration of synthetically made P. destructans 

DNA (gBlocks; Integrated DNA Technologies) to serve as a positive control and a no 

template negative control (run in triplicate) to account for within plate contamination. A 

positive sample was indicated by exponential amplification in triplicate with a Ct value of 

less than 40 (Muller et al. 2013; Janicki et al. 2015). If samples did not test positive in 

triplicate, they were re-tested, and were considered positive if there was amplification in 

at least one of the three subsequent reactions (Ellison et al. 2006). In order to quantify P. 

destructans fungal load, qPCR reactions of a serial dilution of synthetic DNA was used to 

generate the standard curve equation y = -0.2936x + 11.439, with x being the average C t 

value for each sample run in triplicate, and y being the log DNA copy number.  

Bioinformatic analysis 

 Amplicon sequencing reads were processed using mothur v1.42.1 (Schloss et al. 

2009). A total of 48 442 995 raw data sequence reads were obtained from eight 

sequencing runs. Paired-end reads were assembled into contigs, and sequences containing 

homopolymers greater than eight nucleotides or any ambiguous base calls were removed. 
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I identified unique sequences and aligned them to the SILVA v123 bacterial reference 

database (Quast et al. 2012). After alignment, sequences were trimmed to the V4 region 

and pre-clustered allowing for two-nucleotide differences between clusters. Chimera 

removal was then done using the vsearch function in mothur (Rognes et al. 2016). 

Sequences were classified into taxonomic lineages and reads identified as Archaea, 

Eukaryota, chloroplast, mitochondria, and unknown were removed. The cluster.split 

command in mothur was used to cluster sequences into operational taxonomic units at 

97% similarity (Schloss and Westcott 2011). OTUs that appeared less than five times 

were considered rare and were removed from the dataset. Additionally, OTUs that were 

found within the DNA extraction blanks were also removed (n = 1669 OTUs). OTUs 

were selected as the focal taxonomic level rather than ASVs, as previous work has shown 

that there is negligible difference in ecological patterns observed when OTU or ASV data 

are analyzed (Glassman and Martiny 2018).  In total 5 701 307 sequences (11.7%) passed 

all quality control steps. I compared final library sizes across all samples and found that 

they were significantly different (Kruskal-Wallis: χ2 [2] = 83.98, p < 0.05). Therefore, the 

data were normalized by subsampling each library at 1200 sequence reads (Weiss et al. 

2017). Data were subsampled as previous work has shown that it is an effective way to 

account for variation in library size (Weiss et al. 2017). The final OTU × sample matrix 

included 268 samples of P. subflavus. Since I was interested in observing variation 

between P. destructans positive and negative bats over geographic distance I 

standardized the data so that geographic distances between sample sites were equal for P. 

destructans positive and negative P. subflavus. This resulted in a total of 249 P. subflavus 
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(40 P. destructans negative and 209 positive) used for the statistical analysis described 

below. All mothur commands are included in Appendix C for reproducibility purposes.  

Statistical analyses 

Previous work has shown that rare OTUs can skew the results of elements of 

metacommunity structure (EMS) analysis (Presley et al. 2010). Prior to conducting 

analyses, all OTUs that summed to less than two were removed resulting in 12 603 OTUs 

in the complete OTU × sample matrix. All analyses were conducted in R 3.4.2 (R Core 

Team 2020) using  = 0.05 unless multiple comparisons were made, and thus Bonferroni 

adjusted. 

I used the metacom package (version 1.5.3) in R (Dallas 2014) to determine if the 

presence of P. destructans correlated with changes in metacommunity structure of 

cutaneous microbial assemblages as outlined in Leibold and Mikkelson (2002) and 

Presley et al. (2010) following the Elements of Metacommunity Structure (EMS) 

framework. I evaluated three EMS metrics (coherence, turnover, and boundary clumping) 

using a site-by-species presence/absence matrix to determine metacommunity structure. 

Coherence was assessed as the number of embedded species absences, or the number of 

gaps/interruptions in species distributions, within an ordinated community matrix (Fig. 

16). The number of observed absences was compared to an expected number of absences 

determined through the formulation of a null distribution created from simulated matrices 

with 1000 iterations. Negative coherence describes a pattern of significantly more 

observed embedded absences than predicted by the null model, and a metacommunity 

perceived with a “checkerboard” appearance (Fig. 16A). A random metacommunity is 
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identified when there is a non-significant difference between observed and expected 

embedded absences. Significantly less embedded absences indicate positive coherence, 

which is suggestive of species responding to a structuring gradient. The latter pattern 

requires further analysis of turnover and boundary clumping for more specific 

designation of metacommunity structure. Turnover, was assessed to describe the number 

of times a species is replaced by another between two sites. As with coherence, the 

number of turnover events observed is compared to the number of expected events using 

a null model prediction. If there are significantly more replacements than expected by 

chance, this represents positive turnover and signals a Clementsian (Fig. 16E) or evenly 

spaced (Fig. 16D) metacommunity structure. If there are significantly less replacements 

than expected, this represents negative turnover and signals a nested metacommunity 

structure. Boundary clumping was evaluated using Morisita’s index to describe how 

distinct blocks of species are clumped along a range boundary. A Morisita’s index 

significantly greater than one, indicates clumped species loss (positive turnover: Fig. 

16E; negative turnover: Fig. 16C), whereas, an index value significantly fewer than one 

indicates evenly spaced, i.e. hyperdispersed, species loss (positive turnover: Fig. 16D; 

negative turnover: Fig.16B). To assess significance for each EMS metric I used the 

default fixed-proportional null model (“r1”), 1000 permutations, and allowed for null 

matrices to have empty rows and columns (Dallas 2014). EMS analysis was performed 

using the metacommunity function (Dallas 2014) and analyses for P. destructans positive 

and negative samples were run separately. 

In order to further describe how P. destructans status correlated with changes in 

community structure I performed an indicator analysis using the multipatt function in R 
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package indicspecies (version 1.7.9; De Caceres et al. 2020). I used a generalized linear 

mixed-effects model (GLMM) with the glmer function (package lme4; Bates et al. 2020) 

assuming a Poisson error structure, with site set as the random effect to account for 

nested data, to compare the abundance of significant indicator taxa of P. destructans 

negative bats across all samples. Additionally, I compared the amount of P. destructans 

present (number of copies using qPCR) to the abundance of indicator taxa using a 

GLMM assuming a Poisson error structure, with site set as the random effect. To 

determine if fungal load influenced community dissimilarity, I converted fungal copy 

number to a distance matrix representing differences between samples using the dist 

function with Euclidean distances. This allowed for us to determine if bats having more 

similar fungal loads have more similar microbial assemblages. The resulting distance 

matrix was compared to total beta diversity (Sørensen dissimilarity: SOR), the turnover 

(Simpson dissimilarity: SIM), and nested (nestedness: SNE) components of total beta 

diversity (package betapart; Baselga and Orme 2012). To address the nested structure of 

the data, a dummy variable was created to describe the pairwise site level comparisons by 

grouping the samples by geographic distances into a categorical “site contrast” variable. 

Due to issues resulting in singular fit of mixed models, I then averaged both fungal load 

and beta diversity (SOR, SIM, and SNE) by the “site contrast” variable resulting in an 

average dissimilarity between two samples, thus removing the nested structure of the 

data. I then used a GLM (function glm) to compare average fungal load difference to 

average beta diversity metrics. The GLM was run assuming a binomial distribution with 

log transformed fungal load dissimilarity set as a fixed effect. 
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To assess how the presence of P. destructans correlated with differences in the 

rate of turnover and patterns of distance-decay, I compared total beta diversity (SOR), the 

turnover (SIM), and nestedness (SNE) components of Sørensen diversity across 

geographic distances. Pairwise geographic distances between samples were computed as 

the Euclidian distance between sample points using the dist function in the package 

vegan (Oksanen et al. 2019) Similar to the analysis comparing assemblage dissimilarity 

to fungal load difference, beta diversity (SOR, SIM, and SNE) was averaged by site 

contrast, in order to remove the nested structure of the dataset, and to accommodate 

issues of singular fit in the mixed models. The relationship between average community 

dissimilarity and average geographic distance (distance-decay relationship) was 

determined using a generalized linear model (GLM). GLM was performed assuming a 

binomial distribution using the glm function with geographic distance, P. destructans 

status, and the interaction between these variables being set as fixed effects and a 

Bonferroni adjusted p-value of 0.016. The analysis was conducted using type II sum of 

squares with the Anova function in the package car (Fox et al. 2016) to account for 

unequal sample sizes across groups. 

To elucidate how environmental variables influenced beta diversity across P. 

destructans status I compared variation in beta diversity, measured as multivariate 

dispersion (function betadisper, package vegan), across P. destructans status, ecoregion 

(specifically ecoregion level 3, as delineated by the Environmental Protection Agency), 

and P. destructans × ecoregion interaction. Ecoregion was selected as the environmental 

variable as it represents a composite variable encompassing multiple fine scale 

environmental factors. A Tukey’s post hoc test was then used to determine pairwise 
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differences between the groups of the interactive effect. I used permutational multivariate 

analysis of variance (PERMANOVA) stratified by site with 999 permutations using the 

adonis function (package vegan) on SOR, SIM, and SNE dissimilarity metrics to assess 

the influence of ecoregion on average assemblage similarity. Explanatory variables 

included ecoregion, P. destructans status, the P. destructans x ecoregion interaction, as 

well as year and site as covariates accounting for data structure. The PERMANOVA 

assumption of homogeneity of variance was violated, however previous work (Anderson 

and Walsh 2013) has shown that PERMANOVA is robust to violations of this 

assumption when the variable with the greater sample size has a larger variance, as seen 

with these data.  

Results 

Of the 249 individuals of P. subflavus studied, quantitative PCR (qPCR) results 

indicated that there were 40 negative and 209 P. destructans positive bat individuals 

collected from 48 sites across three ecoregions (Interior, Ridge and Valley, and the South 

West Appalachians; Fig. 17A). All sites were determined to have at least one P. 

destructans positive bat. Post processing of high-throughput sequence data resulted in a 

mean read depth of 194 550 sequences per sample (14 899 – 2 968 637 reads) and a total 

of 11 071 OTUs for P. destructans positive and 3370 OTUs for P. destructans negative 

bats. 
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Figure 17. Distance decay analysis. 
A. Map of the study system, red dots indicate sample sites. Samples were collected across 
three Tennessee ecoregions (Interior Plateau in light green, South West Appalachians in 
red, and Ridge and Valley in olive green). Map produced using ArcGis 10.7.1. 
(https://desktop.arcgis.com/en/arcmap/) Copyright 1995-2018 Esri. All rights reserved. 
Published in the United States of America. Distance-decay relationships, comparing 
geographic distances between sites and B. total beta diversity, C. turnover, D. nestedness, 
for P. destructans positive (dashed line and black dots) and P. destructans negative (solid 
line and grey dots) bats averaged by site. There is no significant relationship between 
geographic distance and community dissimilarity (SOR: GLM; z = 0.79, p > 0.05; SIM: 
GLM; z = 0.86, p > 0.05; SNE: GLM; z = 0.96, p > 0.05) or decay rates between disease 
states (p > 0.05) for any metric (SOR; ANOVA; p > 0.05, SIM; ANOVA; p > 0.05, SNE; 
ANOVA; p > 0.05).   
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Metacommunity structure 

Metacommunities for both P. destructans positive and negative bats showed 

positive coherence, with significantly (p ≤ 0.05) less embedded absences than expected 

based on null models (positive = 1 142 539 embedded absences, 1 376 131.98 ± 1943.23 

expected; negative = 46 167 embedded absences, 52 651 ± 186.4 expected; Fig. 18, Table 

4). The P. destructans positive metacommunity was characterized by significant positive 

turnover (p ≤ 0.05, 2.48e+10 replacements; simulated mean 2.26e+10 ± 2.25e+08), while 

the P. destructans negative metacommunity had significant negative turnover (p ≤ 0.05, 

42 579 240 replacements; 47 012 450 ± 1 005 206 expected replacements). Both P. 

destructans positive and negative metacommunities had significant clumping of species 

range boundaries (positive bats; Morisita’s index = 1.44, p ≤ 0.05; negative bats; 

Morisita’s index = 1.39, p ≤ 0.05). Together, these results indicate that the P. destructans 

positive metacommunity can be described as having a Clementsian structure (Fig. 16E), 

whereas, the P. destructans negative metacommunity had a nested structure with 

clumped species losses (Fig. 16C; Presley et al. 2010).  
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Figure 18. Visual representation of microbial metacommunities across P. 
destructans status. 
 Site by species incidence matrix for OTUs on P. destructans positive/negative bats 
describing the actual metacommunity patterns. EMS analysis suggests a Clementsian 
structure for P. destructans positive and a nested structure for P. destructans negative bat 
microbial metacommunities.  

 

 

 

 

 

 

 

 

 

 

 



97 
 

 
 

Table 4. Results for the EMS analysis of bats across P. destructans status. Results 
suggest Clementsian metacommunity structure for P. destructans positive bats, and a 
nested metacommunity structure for P. destructans negative bats (Presley et al. 2010). 
 

P. destructans positive bats 

  Coherence p-value 

Absences 1 142 539 ≤ 0.0001 
Simulated mean 1 376 131.9 (± 1,943.2) 

 

  Turnover   

Turnover   2.48 e +10 ≤ 0.0001 
Simulated mean 2.26 e +10 (± 2.25 e +8) 

 

  Boundary   

 Index    1.44 ≤ 0.0001    

P. destructans negative bats 

  Coherence p-value 

Absences 46 167 ≤ 0.0001 
Simulated mean 52 651 (± 186.4) 

 

  Turnover   

Turnover   42 579 240 ≤ 0.0001 
Simulated mean 47 012 450 (± 1 005 206) 

 

  Boundary   

 Index  1.39 ≤ 0.0001 
 

 

A total of 14 OTUs were identified as indicator taxa for P. destructans positive 

and 363 OTUs for negative bats. The group of indicator OTUs for the P. destructans 

negative bats represents the common taxa occurring across the individual microbial 

communities that contributed to the nestedness in metacommunity structure. OTUs 

indicative of P. destructans negative bats were significantly more abundant on P. 

destructans negative, relative to P. destructans positive bats (GLMM; z = -62.84, p ≤ 

0.05; Fig. 19A,). Additionally, there was a significant negative relationship between log 
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transformed fungal load and indicator taxa abundance (GLMM; z = -10.78, p ≤ 0.05; Fig. 

19B), with increased fungal load predictive of fewer indicator taxa. However, similar 

patterns were not found when analyzing the relationship between P. destructans load and 

the nested component (SNE) of averaged community dissimilarities (GLM; z = -0.10, p > 

0.05; Fig. 19C). Between site average community dissimilarity (SOR and SIM) was not 

related to the between site average difference in log transformed fungal load (GLM; 

SOR; z = 0.237, p > 0.05; SIM; z = 0.798, p > 0.05). 

Relationship between community structure and structuring variables 

All three measures of beta diversity lacked a distance-decay relationship (SOR: 

GLM; z = 0.79, p > 0.05; SIM: GLM; z = 0.86, p > 0.05; SNE: GLM; z = 0.96, p > 0.05; 

Fig. 17). There was no difference in the rate of decay between positive and negative bats 

for total beta diversity (SOR; ANOVA; p > 0.05, Fig. 17B), the turnover component of 

beta diversity (SIM; ANOVA; p > 0.05; Fig. 17C), or nestedness (SNE; ANOVA; p > 

0.05 Fig. 17D). Multivariate dispersion was statistically different between P. destructans 

positive and negative bats for total beta diversity (SOR: betadisper; F1, 247 = 5.89, p ≤ 

0.05). Interestingly, analyses of multivariate dispersion indicated that there was a 

significant interactive effect between P. destructans status and ecoregion for both total 

beta diversity and turnover (betadisper; SOR: F5, 243 = 15.232, p ≤ 0.05; SIM: F5,243 = 

8.646, p ≤ 0.05, Fig. 20A-B, Fig. 21). Post-hoc analysis of the interaction term for total 

beta diversity showed that dispersion was not different across ecoregions for P. 

destructans positive bats but varied for P. destructans negative bats (Fig. 20A). In 

general, dispersion was large in P. destructans positive bats, with negative bats within the 

Interior Plateau having significantly less dispersion (Fig. 20A), largely driven by a 
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difference in the turnover component (Fig. 20B). PERMANOVA revealed that average 

community composition (multivariate centroids) differed between P. destructans status 

and ecoregion when analyzing both total dissimilarities and the turnover component, but 

not nestedness, and that these effects were independent of each other (Fig. 21, Table 5).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



100 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 19. Nestedness analysis.  
A. Comparison of the abundance of P. destructans negative indicator taxa between P. 
destructans positive/negative samples. Indicator taxa are significantly more abundant 
within P. destructans negative samples (GLMM; z = -62.84, p ≤ 0.05). B. Comparison of 
the abundance of P. destructans negative indicator taxa by fungal load. There is a 
significantly negative relationship between indicator taxa abundance and amount of P. 
destructans present (GLMM; z = -10.78, p ≤ 0.05). C. Comparison of the (log) difference 
in average fungal load and average nestedness (SNE) of bats averaged by site. There is no 
significant relationship between similarity in fungal load and nestedness (GLM; z = -
0.10, p > 0.05). 
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Figure 20. Comparison of beta diversity measured as multivariate dispersion across 
the interaction of ecoregion and P. destructans status. 
Betadisper analysis comparing beta diversity measured as multivariate dispersion across 
the interaction of ecoregion and P. destructans status, for A. total beta diversity (SOR), 
B. turnover (SIM), and C. nestedness (SNE). Different lowercase letters indicate a 
significant difference (p ≤ 0.05) between groups, lowercase letters are missing from panel 
C due to lack of significant differences between groups. There is a significant interaction 
between P. destructans status and ecoregion for both total beta diversity as well as 
turnover (SOR: F5, 243 = 15.232, p ≤ 0.05; SIM: F5,243 = 8.646, p ≤ 0.05).  



102 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21. Non-metric multidimensional scaling ordination for P. destructans 
positive and negative bats. 
 Non-metric multidimensional scaling ordination for A. P. destructans positive and B. P. 
destructans negative bats across ecoregions (A. stress 0.17; B. stress 0.14). There is a 
significant effect of P. destructans, year and ecoregion (p < 0.05), however, there is no 
significant interaction between P. destructans status and ecoregion. There is significant 
variation in dispersion across ecoregions for P. destructans negative bats (B).  
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Table 5. Analysis of average assemblage similarity across P. destructans status and 
Ecoregion. 
 PERMANOVA results for total beta diversity (SOR), the turnover component of beta 
diversity (SIM), and the nested component of beta diversity (SNE). There is a significant 
difference between P. destructans status, Ecoregion, and year for both SOR and SIM (p < 
0.05). 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Total Beta 
Diversity 

Df 
Sums of 
squares 

Mean 
squares 

F test R2 p-value 

P. destructans 
status 

1 0.746 0.746 1.7403 0.006 0.018* 

Ecoregion 2 1.427 0.713 1.664 0.012 0.011* 
year 1 0.795 0.794 1.8541 0.007 0.001*** 
site 45 24.357 0.541 1.2626 0.216 0.771 
P. destructans 
status:Ecoregion 

2 0.905 0.452 1.055 0.008 0.107 

Residuals 197 84.454 0.428   0.749   
Total 248 112.683     1   

       

Turnover Df 
Sums of 
squares 

Mean 
squares 

F test R2 p-value 

P. destructans 
status 

1 0.862 0.861 2.139 0.008 0.003** 

Ecoregion 2 1.591 0.795 1.975 0.014 0.033* 
year 1 0.605 0.605 1.502 0.005 0.012* 
site 45 23.712 0.526 1.308 0.221 0.72 
P. destructans 
status:Ecoregion 

2 0.876 0.437 1.087 0.008 0.22 

Residuals 197 79.344 0.402   0.741   
Total 248 106.99     1   

       

Nestedness Df 
Sums of 
squares 

Mean 
squares 

F test R2 p-value 

P. destructans 
status 

1 -0.007 -0.007 -7.92 -0.045 1 

Ecoregion 2 -0.01 -0.005 -5.955 -0.067 0.347 
year 1 0.009 0.009 11.111 0.063 0.105 
site 45 -0.01 -0.0002 -0.269 -0.069 0.737 
P. destructans 
status:Ecoregion 

2 -0.0003 -0.0001 -0.22 -0.002 0.745 

Residuals 197 0.174 0.0008   1.121   
Total 248 0.156     1   
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Discussion 

 This study characterized the metacommunity structure of host microbial 

assemblages in the presence of a fungal pathogen. Overall, support was found for both of 

my hypotheses, I determined that the presence of P. destructans correlated with a change 

in cutaneous microbial metacommunity structure and loss of indicator OTUs from the 

core skin assemblage. Additionally, I found that the presence of P. destructans correlated 

with a change in relationship between community structure and an environmental 

structuring variable. These results suggest that the presence of P. destructans alters 

cutaneous microbial metacommunity structure by intensifying local processes, such as 

species sorting mechanisms or antagonistic species interactions.  

 The cutaneous microbial assemblages of P. destructans negative bats were 

characterized by a nested metacommunity structure with clumped species loss. The 

presence of numerous indicator taxa within negative bats further supported the inference 

of a nested metacommunity structure. Nested metacommunities have been observed in a 

variety of organisms, including Bryophytes (Heino et al. 2015), macroinfauna (Alves et 

al. 2020), and bats (Presley et al. 2012), and likely represent variation in species-specific 

characteristics such as dispersal ability and tolerance to environmental conditions 

(Presley et al. 2010). This is supported by previous work, which has shown the 

importance of host environment in shaping the cutaneous microbial assemblage (Walker 

et al. 2019) and suggests that OTU-specific tolerances to host environmental conditions 

might drive the clumped OTU loss seen in P. destructans negative bats. 

 The core microbiome is defined as the taxonomic identity of the most common 

bacterial taxa within a system (Risely 2020). Pairing of the EMS and indicator analysis 
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results for P. destructans positive bats suggested a loss of bacterial OTUs from the core 

microbiome. This loss might suggest alteration in community function and host defense 

against pathogens (Harris et al. 2009; Lemieux-Labonté et al. 2017; Grisnik et al. 2020). 

Nucleotide BLAST searches (based on ~250 bp region) revealed that indicator taxa 

identified in this study were not genetically identical to cultured bacteria with in vitro 

anti-P. destructans activity identified in Grisnik et al. (2020). However, seven of 363 

indicator taxa were identified to the same genera of anti-P. destructans bacteria identified 

previously (Grisnik et al. 2020), including Nocardia, Rhodococcus, Streptomyces, 

Luteibacter, Lysobacter, and Sphingomonas. Each of these bacterial genera were detected 

on both positive and negative bats. Alternatively, bacteria with antifungal activity could 

have been gained to form the core microbiome of P. destructans negative bats, but 

additional work is required to mechanistically explain the correlational patterns found 

here. It is also important to acknowledge that approaches to understand assemblage 

function in vitro likely oversimplify complex inter- and intra-specific interactions at the 

community level, and further work to understand how bacterial function relates to fungal 

pathogenicity is warranted.  

 The cutaneous microbial assemblage of P. destructans positive bats exhibited 

turnover with boundaries clumped along an environmental gradient (Clementsian 

structure). Clementsian structure is known to be common in both free living (Heino et al. 

2015) and host-associated microbial assemblages (Hernández-Gómez et al. 2017). 

Clementsian metacommunities can arise from antagonistic interactions preventing the 

coexistence of some taxa (Leibold and Mikkelson 2002; Alves et al. 2020). Interestingly, 

previous work showed an inverse relationship between P. destructans positive bats and 
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bacteria that inhibited growth of P. destructans (Grisnik et al. 2020), suggesting that 

antagonistic interactions might drive the shift to Clementsian metacommunity structure in 

microbial assemblages of positive bats.  

The lack of a distance-decay relationship in microbial assemblages suggests either 

a lack of dispersal limitation or absence of species sorting mechanisms driving the 

assembly of bat cutaneous microbial assemblages. Since bat host environment 

(ecoregion) had a significant impact on average assemblage structure and there was no 

significant distance-decay relationship, I can conclude that dispersal limitation does not 

have a predominant role in the assembly of the cutaneous microbial assemblages of P. 

subflavus. Bacterial dispersal limitation is consistent with previous work that has shown a 

lack of population structure in Appalachian bat species (Martin 2015; Wilder et al. 2015). 

This suggests that frequent roost switching and host dispersal may provide opportunities 

for microbial dispersal, and therefore, homogenization of bacterial assemblages across 

the region. Barriers to microbial dispersal between individual bats might be low, 

suggesting that the level of selection for microbial assemblage formation might be 

occurring at the colony level rather than the individual level (Kolodny et al. 2019). Other 

studies have attributed environmental heterogeneity as the underlying driver of distance-

decay relationships in microbial assemblages (Hillebrand et al. 2001; Reche et al. 2005; 

Fierer and Jackson 2006; Liu et al. 2015). The lack of a distance-decay pattern driven by 

environmental heterogeneity could be due to the similarity of cave environments across 

my study system, as bats were sampled during the winter hibernation period, and not on a 

variety of summer/winter roost sites. Alternatively, variation within cave environments 

across the study system could result in a patchy distribution, rather than a geographically 



107 
 

 
 

constrained gradient of environmental heterogeneity. The overall influence of host 

environment and species sorting mechanisms have been observed in the literature, as 

other studies have shown an influence of site on cutaneous microbial assemblage 

structure for a variety of host taxa (Avena et al. 2016; Lemieux-Labonté et al. 2016; 

Walker et al. 2019). These results suggest the role of the host environment in shaping 

microbial communities through species sorting regardless of P. destructans status. The 

presence of P. destructans does not alter the rate (slope) of distance-decay in microbial 

assemblages across geographic space. In the context of community assembly, I found a 

lack of a P. destructans mediated change in dispersal limitation and/or species sorting in 

bacterial assemblage formation. Previous work has suggested an inverse pattern showing 

that as levels of disturbance increase, the rate of turnover within assemblages decreases, 

suggesting that disturbances can act as ecological filters (Goldenberg Vilar et al. 2014).  

Results of permutational models indicated the role of the environment in shaping 

the bat cutaneous microbial assemblage. The PERMANOVA analysis indicates that the 

presence of P. destructans correlates with a difference in average community 

composition. Additionally, analysis of multivariate dispersion indicates that there is a 

significant interaction between P. destructans status and the environment, which suggests 

that the presence of P. destructans can alter the relationship between community 

structure and structuring variables, specifically the ecoregion where a bat is located. Of 

particular interest is the lack of significant differences in dispersion across ecoregions for 

P. destructans positive bats, despite significant differences for negative bats. In general, 

P. destructans positive bats have higher dispersion than negative bats. The presence of P. 

destructans within the Interior Plateau correlates with increased dispersion in the 
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turnover component of beta diversity compared to negative bats within that ecoregion. 

When the analysis of multivariate dispersion is coupled with the lack of a distance-decay 

relationship, it suggests that local processes (such as antagonistic interactions or species 

sorting) may be stronger in the presence of P. destructans. Previous work has suggested 

that disturbance increases the importance of species sorting mechanisms through the 

filtering of species that cannot persist within the disturbed environment (Chase 2007).  

I assessed metacommunity structure in cutaneous assemblages as they responded 

to the progression of fungal disease. There was no significant relationship between 

community similarity and fungal load, which serves as a proxy for disease progression. 

This suggests that the presence of P. destructans alone might be enough to alter the 

average microbial assemblage. Previous work has shown the opposite pattern with 

increasing fungal load being positively correlated with assemblage dissimilarity (Muletz-

Wolz et al. 2019). However, this study was done on salamanders infected with a chytrid 

fungus in a mesocosm setting, which could explain the conflicting results. Alternatively, 

due to the hierarchical structure of these data (bats nested within caves), the patterns I 

observed could be a result of site level averages rather than being representative of 

bacterial-fungal interactions on individual bats. While this is a valid concern, it has been 

shown that colony-level dynamics rather than individual identity better explain bat 

cutaneous microbial assemblage structure (Kolodny et al. 2019) suggesting valid 

ecological patterns observed during this study. The presence of P. destructans may drive 

the formation of a unique assemblage through deterministic processes, but within a 

disease state category (P. destructans positive or negative) the variation might be best 

explained by stochastic or species-specific factors. While this study failed to find a 
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relationship between assemblage-level similarity and fungal load, previous work has 

shown a correlation between pathogenic fungal load and specific bacterial taxa on bats 

(Grisnik et al. 2020). Pseudogymnoascus destructans load may induce OTU-specific 

abundance responses but not influence overall assemblage similarity in terms of species 

presence. Future research at a fine-scale temporal resolution and quantifying microbial 

relative abundances is necessary to understand the effects of disease progression on 

microbial assemblage structure. 

In order to understand interactions between host-associated microbial 

assemblages and pathogens it is important to take scale into account. The goal of this 

study was to elucidate if the presence of a fungal pathogen correlates with changes in 

metacommunity structure and the variables that structure these communities as they 

relate to assembly mechanisms. Results suggest that invasion of these communities by a 

fungal pathogen correlate with a shift in metacommunity structure likely driven by 

intrinsic factors that alter community assembly mechanisms. I hypothesize that the 

change in community structure is caused by increased strength of local processes within 

assemblages. Future work should aim to better understand potential antagonistic 

interactions within microbial assemblages as they may help describe observed shifts in 

metacommunity structure and role in pathogen defense. Additionally, future experimental 

work in a controlled setting is required to confirm the processes structuring bat skin 

assemblages. Lastly, this study was conducted exclusively on bacterial communities, 

future work should incorporate other members of the host associated microbiome 

including viruses and fungi. 
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Chapter V: Overall Conclusion 

 Recent estimates of extinction rates have indicated that Planet Earth is currently 

experiencing a period of biodiversity decline 1000-10,000 times the accepted background 

rate (De Vos et al. 2014). Drivers of biodiversity decline include infectious diseases, with 

pathogenic fungi emerging as one of the main causative agents (Fisher et al. 2012). 

Pseudogymnoascus destructans, the causative agent of white-nose syndrome, has caused 

rapid population declines of bats across the eastern United States, and is a major 

biodiversity conservation concern (Blehert et al. 2009). This developing conservation 

crisis has led to an increase in interest in understanding how hosts defend themselves 

from fungal pathogens, with recent emphasis on understanding the role of host associated 

microbial assemblages (Belden and Harris 2007; Grice and Segre 2011). Previous work 

has identified a number of bacterial taxa within cutaneous microbial assemblages of a 

variety of organisms that have antifungal capabilities (Harris et al. 2009; Cheng et al. 

2016; Hill et al. 2017; Grisnik et al. 2020).  

 A variety of factors correlate with overall assemblage structure, including host 

taxonomic relationships (Walker et al. 2019a), host behaviors (Tung et al. 2015), and 

host environment (Avena et al. 2016). Therefore, in order to better recognize potential 

interactions between fungal pathogens and host associated microbial assemblages, it is 

important to understand these assemblages within a metacommunity theory framework. 

Metacommunity theory provides a way to observe how assemblage patterns observed at a 

local level are influenced by interactions at a much larger regional level (Leibold et al. 

2004). By incorporating drivers of assemblage formation, we can better understand and 

predict how fungal pathogens interact with host associated microbial assemblages. My 



116 
 

 
 

overall goal was to understand how the bat cutaneous microbial assemblage interacts with 

Pseudogymnoascus destructans across the state of Tennessee. 

I found that the effect of P. destructans on the bat cutaneous microbial 

assemblage varies spatially. The importance of site has been observed in other studies 

(Avena et al. 2016; Walker et al. 2019b) and suggests the role of host environment or 

species sorting mechanisms in the maintenance of these complex assemblages. I found 18 

bacterial taxa that had anti-P. destructans capabilities. These taxa were found 

ubiquitously in the cave environment, but were enriched within the bat cutaneous 

assemblage, suggesting the role of bat skin in selecting antifungal taxa. Interestingly, 

there was a higher richness of these anti-P. destructans taxa found on P. destructans 

negative bats, supporting the hypothesis that these assemblages play a role in host 

defense from fungal pathogens. This was consistent with previous work that has shown a 

similar pattern, with pathogen exposed hosts having an assemblage enriched with 

antifungal bacterial taxa (Lemieux-Labonté et al. 2017).  

I found that P. destructans correlated with a shift in bacterial assemblage 

taxonomic structure, but this shift was not observed in overall function of the assemblage. 

This result is consistent with previous work that has shown a decoupling of taxonomic 

and functional assemblages (Burke et al. 2011; Louca et al. 2016). When a finer scale 

approach was taken, I observed variation between bacterial taxa metagenomes for 

orthologs hypothesized to play a role in host defense. Functional redundancy in the 

microbiome occurred at the broadest scale, specifically KEGG functional pathways, but 

some variation was observed within a pathway and dependent on P. destructans status. 

This suggests that if these assemblages are formed through environmental filtering or 
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species sorting of the functional, rather than the taxonomic, assemblage, it is likely that 

selection is acting at the functional pathway rather than the individual ortholog level.   

Within a metacommunity context, I found that the presence of P. destructans 

correlated with a shift in metacommunity structure, with P. destructans negative bats 

having a nested metacommunity characterized by a group of shared taxa, and P. 

destructans positive bats having a Clementsian metacommunity, or one characterized by 

turnover between sites. I found that host environment, specifically ecoregion, likely plays 

a role in shaping host associated microbial assemblage structure. Additionally, there was 

a significant interaction between host environment and P. destructans status, suggesting 

that the presence of this pathogen influences how the bacterial assemblage interacts with 

the environment. I hypothesize that this interaction is caused by local processes, either 

species sorting or antagonistic interactions within assemblages invaded by P. destructans. 

Multiple other studies have noted the importance of host environment in the formation of 

host associated microbial assemblages (Lemieux-Labonté et al. 2016; Walker et al. 

2019b).  

In conclusion, I found that P. destructans has a differential influence on microbial 

assemblage taxonomic structure across the landscape. Within a metacommunity context, I 

found that the presence of P. destructans correlated with a shift in metacommunity 

structure. However, when looking at community function I found that, despite changes in 

taxonomic assemblage structure, at broad scales bacterial taxa are likely functionally 

redundant and that the presence of P. destructans does not correlate with a shift in 

community level functional capabilities. Additionally, I found that P. destructans 

negative bats had a microbial assemblage with a higher richness of anti-P. destructans 
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bacterial taxa than P. destructans positive bats. These results suggest the potential 

importance of local processes (species sorting/environmental filtering or antagonistic 

interactions) in maintaining assemblage structure in the presence of a fungal pathogen. It 

is important to note that without manipulative studies, the processes behind patterns 

cannot be discerned, therefore more work needs to be done within a controlled setting to 

better understand the role of these structuring processes.  
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APPENDIX A: MOTHUR COMMANDS  
Linux version 
Using ReadLine 
Using Boost 
Running 64Bit Version 
mothur v.1.40.2 
Last updated: 4/23/2018 
by 
Patrick D. Schloss 
Department of Microbiology & Immunology 
University of Michigan 
http://www.mothur.org 
When using, please cite: 
Schloss, P.D., et al., Introducing mothur: Open-source, platform-independent, 
community-supported software for describing and comparing microbial communities. 
Appl Environ Microbiol, 2009. 75(23):7537-41. 
Distributed under the GNU General Public License 
Type 'help()' for information on the commands that are available 
For questions and analysis support, please visit our forum at 
https://www.mothur.org/forum 
Type 'quit()' to exit program 
Interactive Mode 
mothur > make.contigs(file=180607matt.txt, processors=12) 
mothur > summary.seqs(fasta=current) 
mothur > pcr.seqs(fasta=current, group=current, oligos=oligos.txt, rdiffs=3, pdiffs=1) 
mothur > set.current(fasta=180607matt.trim.contigs.pcr.fasta, processors=12) 
mothur > screen.seqs(fasta=current, group=current, maxambig=0, maxlength=253) 
mothur > set.current(fasta=180607matt.trim.contigs.pcr.fasta, 
group=180607matt.contigs.groups, processors=12) 
mothur > screen.seqs(fasta=current, group=current, maxambig=0, maxlength=253) 
mothur > summary.seqs(fasta=current) 
mothur > unique.seqs(fasta=current, count=current) 
mothur > summary.seqs(fasta=current) 
mothur > count.seqs(name=current, group=current) 
mothur > summary.seqs(fasta=current, count=current) 
mothur > align.seqs(fasta=current, reference=silva.v4.fasta) 
mothur > screen.seqs(fasta=current, count=current, start=1968, end=11550, 
maxhomop=8) 
mothur > summary.seqs(fasta=current, count=current) 
mothur > filter.seqs(fasta=current, vertical=T, trump=.) 
mothur > summary.seqs(fasta=current, count=current) 
mothur > unique.seqs(fasta=current, count=current) 
mothur > pre.cluster(fasta=current, count=current, diffs=2) 
mothur > chimera.vsearch(fasta=current, count=current, dereplicate=t) 
mothur > remove.seqs(fasta=current, accnos=current) 



122 
 

 
 

mothur > classify.seqs(fasta=current, count=current, 
reference=trainset9_032012.pds.fasta, taxonomy=trainset9_032012.pds.tax, cutoff=80) 
mothur > remove.lineage(fasta=current, count=current, taxonomy=current, 
taxon=Chloroplast-Mitochondria-unknown-Archaea-Eukaryota) 
mothur > summary.seqs(fasta=current, count=current) 
mothur > cluster.split(fasta=current, count=current, taxonomy=current, 
splitmethod=classify, taxlevel=4, cutoff=0.03) 
mothur > remove.rare(list=current, count=current, nseqs=10, label=0.03) 
mothur > get.oturep(list=current, count=current, fasta=current, method=abundance) 
mothur > 
set.current(fasta=180607matt.trim.contigs.pcr.good.unique.good.filter.unique.precluster.p
ick.pick.fasta, 
count=180607matt.trim.contigs.pcr.good.unique.good.filter.unique.precluster.denovo.vse
arch.pick.pick.count_table, 
list=180607matt.trim.contigs.pcr.good.unique.good.filter.unique.precluster.pick.pick.opti
_mcc.list, processors=12) 
mothur > make.shared(list=current, count=current, label=0.03) 
mothur > remove.rare(list=current, count=current, nseqs=10, label=0.03) 
mothur > make.shared(list=current, count=current, label=0.03) 
mothur > get.groups(shared=current, groups=negativelib2-Negativelib1-Negativelib3) 
mothur > 
remove.otus(shared=180607matt.trim.contigs.pcr.good.unique.good.filter.unique.preclust
er.pick.pick.opti_mcc.0.03.pick.shared, accnos=contam.csv) 
mothur > classify.otu(list=current, count=current, taxonomy=current, label=0.03) 
mothur > count.groups(shared=current) 
mothur > sub.sample(shared=current, size=1300) 
mothur > summary.single(shared=current, calc=sobs-coverage) 
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APPENDIX B: qPCR Results 
 

Swab 
Code 

Avg Ct 
Approx. # 

Copies 
CCB001 29.16 754.4387729 
CCB003 37.855 2.112379772 
CCB033 35.4 11.10605961 
CCB034 0 0 
CCB036 30 427.5628862 
CCB041 34.08 27.85197521 
CCB043 0 0 
CCB045 29.62666667 549.0754169 
CCB047 29.81 486.1653471 
CCB051 32.86 61.84491543 
CCB053 31.71 134.5686824 
CCB054 36.49 5.315400587 
CCB056 33.328 45.01030958 
CCB071 30.05 413.3519588 
CCB074 31.45666667 159.3470398 
CCB075 28.72 1015.799512 
CCB076 31.37333333 165.9434061 
CCB081 30.23666667 363.5264371 
CCB082 31.64 141.0899242 
CCB084 35.99 7.453083726 
CCB087 27.22666667 2781.454756 
CCB088 30.62333333 281.169365 
CCB089 31.28666667 178.7540951 
CCB129 31.74333333 131.5997911 
CCB130 30.17 381.1430456 
CCB131 35.10666667 13.60316607 
CCB137 32.00666667 110.6114282 
CCB138 30.40666667 326.2571214 
CCB140 29.67333333 534.4265186 
CCB141 31.5 155.0957867 
CCB221 0 0 
CCB222 0 0 
CCB224 30.05 599.5149258 
CCB231 34.96 14.95353942 
CCB232 37.608 2.509805115 
CCB233 31.46333333 159.3470398 
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Swab 
Code 

Avg Ct 
Approx. # 

Copies 
CCB242 33.42666667 42.06801305 
CCB244 0 0 
CCB254 35.98333333 7.503640175 
CCB255 33.10666667 52.58235102 
CCB256 31.00333333 217.4703232 
CCB261 38.91 0 
CCB262 32.17333333 98.60251673 
CCB264 31.36666667 169.6870892 
CCB277 0 0 
CCB280 30.984 220.4306595 
CCB294 30.59 286.9300275 
CCB295 32.72333333 67.98420135 
CCB296 31.89333333 119.1505359 
CCB297 35.36 11.41048226 
CCB298 31.58666667 146.9305147 
CCB305 32.02 109.1259406 
CCB306 30.578 286.9300275 
CCB307 28.94666667 869.5208494 
CCB311 32.63 72.73911286 
CCB312 34.912 15.57255954 
CCB313 31.298 177.7899468 
CCB314 35.31333333 11.88283317 
CCB325 0 0 
CCB331 35.41666667 10.95690762 
CCB332 31.87666667 119.9587689 
CCB333 33.89 30.82449711 
CCB334 27.675 2051.880197 
CCB335 36.01 7.352990418 
CCB364 34.32 23.04878305 
CCB365 27.53 2270.868573 
CCB366 29.84666667 476.404659 
CCB057 0 0 
CCB309 0 0 
CCB031 30.19 376.0243767 
CCB032 30.53666667 297.4641733 
CCB044 32.64666667 71.43954283 
CCB052 35.26333333 12.18106704 
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APPENDIX C: MOTHUR COMMANDS 
Linux version 
Using ReadLine 
mothur v.1.42.1 
Last updated: 01/09/2020 
by 
Patrick D. Schloss 
Department of Microbiology & Immunology 
University of Michigan 
http://www.mothur.org 
When using, please cite: 
Schloss, P.D., et al., Introducing mothur: Open-source, platform-independent, 
community-supported software for describing and comparing microbial communities. 
Appl Environ Microbiol, 2009. 75(23):7537-41. 
Distributed under the GNU General Public License 
Type 'help()' for information on the commands that are available 
For questions and analysis support, please visit our forum at https://forum.mothur.org 
Type 'quit()' to exit program 
[NOTE]: Setting random seed to 19760620. 
Interactive Mode 
 mothur > make.contigs(file=200109_stability.txt, processors=30) 
 mothur > pcr.seqs(fasta=current, group=current, oligos=oligos.txt, pdiffs=1, rdoiffs=3) 
mothur > summary.seqs(fasta=current) 
 mothur > screen.seqs(fasta=current, group=current, maxambig=0, maxlength=256, 
maxhomop=8, minlength=248) 
 mothur > summary.seqs(fasta=current) 
mothur > unique.seqs(fasta=current) 
 mothur > summary.seqs(fasta=current) 
 mothur > count.seqs(name=current, group=current) 
 mothur > summary.seqs(count=current) 
 mothur > pcr.seqs(fasta=silva.bacteria.fasta, start=11894, end=25319, keepdots=F) 
 mothur > system(mv silva.bacteria.pcr.fasta silva.v4.fast) 
 mothur > system(mv silva.bacteria.pcr.fasta silva.v4.fasta) 
 mothur > system(mv silva.v4.fast  silva.v4.fasta) 
mothur > align.seqs(fasta=200109_stability.trim.contigs.pcr.good.unique.fasta, 
reference=silva.v4.fasta) 
 mothur > summary.seqs(fasta=current, count=current) 
 mothur > screen.seqs(fasta=current, count=current, start=1968, end=11550) 
mothur > summary.seqs(fasta=current, count=current) 
 mothur > filter.seqs(fasta=current, vertical=T, trump=.) 
 mothur > summary.seqs(fasta=current, count=current) 
 mothur > unique.seqs(fasta=current, count=current) 
mothur > set.current(count=200109_stability.trim.contigs.pcr.good.good.count_table, 
fasta=200109_stability.trim.contigs.pcr.good.unique.good.filter.fasta, processors=24) 
 mothur > unique.seqs(fasta=current, count=current) 
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 mothur > summary.seqs(fasta=current, count=current) 
mothur > pre.cluster(fasta=current, count=current, diffs=2) 
mothur > summary.seqs(fasta=current, count=current) 
mothur > chimera.uchime(fast=current, count=current, dereplicate=t) 
mothur > chimera.uchime(fasta=current, count=current, dereplicate=t) 
mothur > summary.seqs(count=current) 
mothur > remove.seqs(fasta=current, accnos=current) 
mothur > summary.seqs(fasta=current, count=current) 
mothur > classify.seqs(fasta=current, count=current, reference=silva.nr_v132.pcr.align, 
taxonomy=silva.nr_v132.tax, cutoff=80) 
mothur > summary.seqs(fasta=current, count=current) 
mothur > remove.lineage(fasta=current, count=current, taxonomy=current, 
taxon=Chloroplast-Mitochondria-unknown-Archaea-Eukaryota) 
mothur > summary.tax(taxonomy=current, count=current) 
mothur > cluster.split(fasta=current, count=current, taxonomy=current, 
splitmethod=classify, taxlevel=4, cutoff=0.03) 
 mothur > summary.seqs(fasta=current, count=current) 
mothur > make.shared(list=current, count=current, label=0.03) 
 mothur > get.groups(shared=current, groups=Negativelib1-Negativeplate9-
Negativeplate8-Negativeplate6-Negativeplate5-Negativeplate4-Negativelib2-
Negativelib3-Negativelib4-Negativelib5-Negativelib6) 
mothur > remove.rare(shared=current, nseqs=5) 
mothur > classify.otu(list=current, count=current, taxonomy=current, label=0.03) 
mothur > count.groups(shared=current) 
mothur > sub.sample(shared=current, size=1200) 
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