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ABSTRACT

This paper focuses on PAP (Positive Airway Pressure) therapy compliance and automated

sleep staging. These are related to sleep medicine, data science, and signal processing.

During a sleep study, an EEG (electroencephalogram) recording is labeled with sleep stages

by a technician. The sleep stage labels combined with other recordings, observations,

and analysis are used to diagnose a patient with obstructive sleep apnea. PAP therapy is

the primary treatment for obstructive sleep apnea. Compliant use of the PAP thereapy is

considered 4 hours of use on 70% of nights. The PAP therapy focus is a retrospective

study on patients from OSA In Home (formerly Sleep Centers of Middle Tennessee) to find

the impacts of the dispenser of PAP therapy between durable medical equipment (DME)

supplier (DME group) versus those provided directly by an integrated sleep practice (ISP

group). The ISP group had a significantly higher rate of PAP adherence at 30 days (71% vs

66%; P = .004), 90 days (66% vs 56%; P < .00001), and 1 year (52% vs 33%; P < .00001)

following initiation of PAP therapy, relative to the DME group. There was a significantly

higher duration of PAP use among the ISP group at 30 days (357 vs 345 minutes; P =

.002), 90 days (348 vs 319 minutes; P < .00001), and 1 year (312 vs 164 minutes; P <

.00001). The automated sleep stageing focus is a study on REM sleep classification with

interpretable models. The interpretability of the model is based on relating the filters of

the CNN (Convolutional Neural Network) part of the model to clincal sleep markers used

by technicians to grade EEGs during a sleep study. The model is created using CNNs, full

connected neural networks, and GRUs (gated recurrent unit). The data is a unprocessed or

raw single channel EEG from ”The Sleep-EDF Database [Expanded]” [48]. The best results

produced 97% accuracy, 93% precision, and 89% recall. The data is then preprocessed

by DWT (multilevel discrete wavelet transform) with 45 different mother wavelets and

reconstructed as input to the CNN. The best f1 score with DWT preprocessing and with raw

data are 95% with coiflet 4 mother wavlet and 93% respectively. The filters of the CNNs are

ii



compared with Spearman’s rank coefficient to find filters that are most correlated in each

EEG frequency band. The most correlated filter was preprocessed with Daubechies order 8

mother wavelet had an aboslute value of the Peasron’s corelation coefficient of greater than

0.3415 with 15% of the other filters related to the same frequency band.
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CHAPTER I.

Introduction and Background

1.1 Introduction

Data science is an area of study characterized by the use of computer science, math-

ematics, and subject matter expertise to gain knowledge from information or data. Sleep

research advances topics like the algorithms, equations, and theories used to understand

sleep, the impact of sleep on all aspects of health, and the practice of clinical sleep medicine.

The following sections and chapters will cover the history, background, methods, data, and

results of several projects that use data science in sleep research.

Several different topics in sleep research may be amenable to study using data science

techniques. Some examples include PAP (positive airway pressure) therapy compliance,

Rapid Eye Movement (REM) sleep classification on raw data (REM sleep classification),

and REM sleep classification on data processed with wavelet decomposition (wavelet deep

learner).

This chapter covers the background and history of each project. The next 3 chapters,

Chapters 2, 3 and 4, each provide information specific to each project. This information

includes any collaborations, data, considerations, similar projects, methods, and results.

Each chapter also includes a discussion about the future of each project and next steps that

could be taken.

1.2 PAP Therapy

Obstructive sleep apnea is a medical condition characterized by brief and repeated

episodes of upper airway collapse during sleep. Untreated obstructive sleep apnea has been

shown to have numerous adverse effects, including impaired daytime functioning, increased

mortality, neurocognitive impairment, increased risk of traffic accidents, and higher chronic

disease burden[27, 59, 61]. Despite the fact that positive airway pressure (PAP) therapy

remains one of the most important treatment options for obstructive sleep apnea, long-term
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adherence remains a major barrier to successful treatment [27, 74, 95].

Suboptimal adherence is not a problem unique to the use of PAP therapy. In developed

countries worldwide, nonadherence rates for chronic disease care are estimated to be

between 25% and 50% [42, 75, 35]. Under the World Health Organization framework [77],

nonadherence to treatments for chronic disease is considered in a context broader than a

patient’s acceptance of recommended therapy. Rather, adherence is viewed as a multifaceted

interplay between numerous factors, such as the patient, the health care delivery system, the

medical condition, the nature of therapy, and the socioeconomic environment. The health

care delivery system, in particular, can affect the accessibility of services, data availability,

procedures around health information management, and training of clinicians. Regardless,

programs that support adherence are characterized by robust lines of communication between

the patient and his/her health care team [101] ideally in support of behavioral change.

The sleep medicine literature is rich with studies exploring demographic, clinical, and

technological factors predictive of adherence to PAP therapy. Such studies have most

consistently suggested that PAP adherence has been associated with consistent PAP usage

early in the course of treatment [49, 24, 94, 14, 73, 60], apnea-hypopnea index [60, 47, 62],

pretreatment sleepiness [49, 60, 47, 66], and perceived improvement in sleepiness after

treatment [60, 62, 82]. The correlation with other seemingly important factors, such as

patient age, sex, race, and presence of side effects, has been less consistent [95]. In addition

to these factors, recent fascinating work has studied the impact that psychological constructs

from the behavioral change literature [85, 68, 67, 69, 19, 20] seem to play on continuous

PAP adherence [85, 15, 78].

1.3 Sleep Stage Classification

Sleep stages are the most precise way to separate wakefulness from sleep state. Physi-

ological and pathologic events can be identified and studied through examining stages of

sleep or sleep stages. Certain health insurances require that wakefulness is separated from
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sleep state using an electroencephalogram (EEG) in order for a sleep study to be conducted.

Sleep stages are typically identified with a combination of biological signals recorded

during a polysomnography (PSG) or sleep study. These signals include, but are not limited

to, EEG derivations, electrooculogram (EOG) derivations, and a chin electromyogram

(EMG) [22]. Trained professionals and medical providers can score these signals by finding

clinical markers in the signals. In this case, the clinical markers are time dependent and

independent features of a signal with standards maintained by The American Academy of

Sleep Medicine (AASM).

Algorithms used to extract features from and automatically score a signal are well

established. The use of biological signals, such as the EEG, has been around for over 100

years. In 1968, the Rechtschaffen and Kales (R&K) sleep scoring standard [99], the first

accepted attempt to standardize sleep scoring, was created. Automated analysis of EEG data

has been around for over 50 years [84]. The AASM position states that home sleep apnea

test (HSAT) with automatic scoring can be used by clinicians, but the raw data from HSAT

recordings must be reviewed before decisions about a patient may be determined [8].

Many different algorithms can be used to categorize sleep stages. Successful methods

include Random Forrest for spindle detection [97, 76], support vector machines (SVM) [12],

wavelet decomposition [41], common frequency/spatial pattern [46, 16], autoencoders [55],

recurrent neural networks (RNN) [64], graph theory [26], and entropy calculations [64].

By far, the most common method consists of using Convolutional Neural Networks (CNN)

and RNNs [29, 93, 88, 87, 28, 56, 39]. Work has been completed to reduce the complexity

of algorithms for sleep stage classification[100]. Our research contributes to the field by

producing a model to increase the explainability of algorithms.

1.3.1 The Single Channel EEG

An EEG uses electrodes placed on the head to detect electric potentials in the brain. The

difference between the electric potentials of two electrode positions, called an EEG channel
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or channel, are recorded in regular intervals to produce brain waves. The electrode positions

are well-defined by the International 10/20 system [22, 2, 1]. The EEG channels that are

best to use were standardized originally by Rechtscheffen and Kales [71] commonly known

as the R&K standard. The American Academy of Sleep Medicine (AASM) maintains and

updates the R&K standard today.

Brain waves, activities, and events are defined by the amplitude, frequency, and identify-

ing factors of a single wave or grouping of waves. There are 5 EEG frequencies defined in

Table 1. The identifying factors include things such as what happens before/after the wave,

the difference in peeks of wave, and how much a wave stands out. [22]. Waves, activities, or

events, such as spindles or arousals, can be identified by a combination of these identifying

factors, the frequency, and the amplitude [22].

Table 1: The frequency and peak-to-peak amplitude of different brain waves as identified by
the AASM [22].

Name Frequency (Hz) Peak-to-Peak Amplitude (uV)

Slow Wave Activity 0.5-2.0 >75

Delta Waves 0-3.99 N/A

Theta Waves 4-7.99 N/A

Alpha Waves 8-13 N/A

Beta Waves >13 N/A

The international 10/20 system uses labels with letters and numbers to identify the

different electrode positions on the head referenced in Figure 1. The letters identify the

brain lobe that the electrode is over identified in Table 3. The numbers identify the position

in the direction going from one ear to the other. To find each position, a technician begins at

a starting position and moves around the head in percentages [1, 2].
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Figure 1: A representation of the electrode positions identified by the 10/20 system. Each
position is labeled by 1 to 3 letters and/or a number which are listed on the left side of this
image. Image courtesy of https://sleeptechstudy.wordpress.com/category/1020-system/ [1].

Table 2: The brain region that relates to every electrode location[1].

Abbreviation Brain Lobe/Region

Fp Frontal pole

F Frontal

T Temporal

C Central

P Parietal

O Occipital

M Mastoid
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Table 3: The brain region that relates to every electrode location[1].

Abbreviation Brain Lobe/Region

Fp Frontal pole

F Frontal

T Temporal

C Central

P Parietal

O Occipital

M Mastoid

EEG channels are defined by two electrode positions. For an adult EEG, the AASM

recommends the channels listed in Table 4. The data used for this study does not use

the channels recommended by the AASM [6], but the efficacy of the alternative electrode

positions are described by van Sweden et al. [17].

Table 4: The channels for an EEG to identify sleep stages as recommended by the AASM
[22]. Each electrode has backup electrode. Some important backups are Fpz for Fz and Cz
for C3.

Recommended Acceptable

F4-M1 Fz-Cz

C3-M1 Cz-Oz

O2-M1 C4-M1

Different electrode positions and channels detect different brain waves, activities, and

events. Table 5 list some of the brain waves, activities, and events and which lobe position

or channel detects them. This is one the reasons to use multiple channels for an EEG.
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Table 5: The brain regions/electrode channel that brain waves, activities, and events (marker)
are most likely to appear. To understand what stages are identified with each marker,
reference the AASM scoring guide [22]. Blanks space mean there was not any specifications
for this region/channel and marker combination. The “Yes” means that this channel does
identify Slow Waves while the “No” means that the channel does not identify Slow Waves.
“Maximal” implies the maximal wave amplitude will be recognized. “Adequate” means
adequate for identification. All information except “Adequate” was gathered from the
AASM scoring guide [22]. “Adequate” comes from the R&K standard [71]. E1-Fpz refers
to the frontal regions referenced to the contralateral ear or mastoid.

Slow Wave V-Waves K-complexes Spindles Sawtooth Alpha

Frontal Maximal

Central Maximal Maximal Maximal Adequate

Occipital Maximal

Fz-Cz No

E1-Fpz Yes

The definition and number of sleep stages has evolved over time. The R&K standard

originally defined 7 stages to identify sleep excluding non rapid eye movement (NREM)

which is a combination of stage 1, 2, 3, and 4 [71]. The AASM defines 5 stages to identify

sleep [22]. The AASM definition excludes Movement Time and combines stage 3 and 4.

Table 6 list all the stages from R&K. The data used for this study follows the R&K standard

stages with an extra identifier for unknown or ungraded stages [6].
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Table 6: The different sleep stages as identified by the R&K [71] and the AASM [22]. It is
important to note that Movement Time (MT) and Non-REM (NREM) are still used. Also,
NREM 3 from the AASM is a combination of Stage 3 and Stage 4 from R&K.

R&K AASM

Wakefulness (W) Wakefulness (W)

Movement Time (MT)

Stage 1 NREM 1 (N1)

Stage 2 NREM 2 (N2)

Stage 3
NREM 3 (N3)

Stage 4

NREM (1,2,3,4)

REM (R) REM (R)

Different brain waves, activities, and events (EEG markers) help define different sleep

stages. Every sleep stage is completely defined according to the AASM using many factors

of a PSG (polysomnogram) including the EEG, EOG, and EMG [22]. For example, REM

stage sleep uses an EOG to identify the rapid eye movement the stage is named after, but it

may be identified with sawtooth waves detected by an EEG. Automated sleep staging with

an EEG does not consider all the additional defining parameters from the PSG. Table 7 gives

an idea of the relationship between EEG markers and sleep stages.
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Table 7: Which sleep stages are identified by certain EEG markers as recommended by the
AASM [22]. Not every possible marker is identified. For example, stage N1 can follow
stage W, stage N2, and stage R under different conditions. An arousal is the cause of many
significant events including k-complexes.
NR: Not Required; R: Required; P: Possible; {Blank}: Not mentioned or not possible

W N1 N2 N3 REM

Slow Wave R

V-Waves NR

K-complexes P R P

Spindles P R P

Sawtooth NR

Alpha NR P P

Beta NR

LAMF {theta} R P R

Theta P

No Arousal R P

There is a current push to diagnose sleep associated diseases with a cheaper at home

study. PSG requires expensive equipment and a technician present. The AASM [22]

recommends that at least 3 EEG channels, 2 EOG channels, and a chin EMG among other

things for a PSG. Ventouras et al. [90], Ebrahimi et al. [36], and Crasto et al. [31], all used

a single EEG channel with accuracies between 85% and 95%. Shambroom et al. [81] tested

current equipment that uses a single channel EEG to do sleep staging. Sleep staging using a

single EEG channel would be cheaper than a PSG. This study will use a single EEG channel.

Aside from slow waves, any single brain wave, activity, or event (EEG marker) from an

EEG is not uniquely required in only 1 sleep stage. Slow waves are identified by E1-Fpz

channel, Table 5, and identify stage N3, Table 7. Although, Crasto et al. [31] was able to

break down stage N3 into stage 3 and 4 using channel Fpz-Cz. The dataset used in this
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study has channels Fpz-Cz and Pz-Oz available. The channel to identify slow waves is not

available. Since all other waves in Table 5 are adequately identified in the central and frontal

lobes, Fpz-Cz channel was used to for this study. Future studies may consider using other

frontal lobe channels.

The AASM and R&K recommend that sleep staging is completed in 30 second epochs

[22, 71]. Each epoch is assigned a single sleep stage [71] [22]. If an epoch exhibits features

of more than one stage, the R&K standard [71] strictly assigns each epoch the stage that

takes the most of the epoch . The AASM [22] has additional rules when the features of more

than one stage are exhibited in any epoch. The R&K standard [71] states 3 reason for 30

second epochs: too small epoch will be too cumbersome, too large epochs will miss out

on epoch details, and paper sizes for EEG machines typically fit 30 seconds of data. The

Physionet data set [6] used in this study has 30 second epochs marked with their sleep stage.

Current study uses 30 second epochs. The AASM and R&K both mention the necessity to

consider the stage before and after the epoch currently being scored. This study will use 3

epochs to stage a single epoch. In future studies, it may be best to identify each individual

wave. Once each wave is identified, epochs will not be required. Each stage could be

uniquely identified rather than being a potential group of stages identified by 1 stage.

REM sleep is the only stage that can be easily found by rapid eye movements. Rapid eye

movements are not detected with an EEG. There is not a required unique identifier for REM

sleep in the EEG. REM sleep is almost indistinguishable from N1 sleep in an EEG. Stages

W, N1, N2, and N3 are easily distinguishable from each other with an EEG (see Table 7).

Stages N1, N2, and N3 all have a unique EEG marker to identify them. Current study will

concentrate on REM sleep.

1.4 Signal Processing

A signal is a quantity that varies over space or time. There are numerous methods for

algebraic and computational analysis of signals. A computational analysis of a signal starts
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by taking samples of the signal. The following provides a brief description of computational

analysis of signals in 1 dimension in time otherwise known as digital signal processing.

A signal can be defined by various features of the rising or falling of the quantity. A

peak in a signal is any point that is higher than it’s neighboring points. A trough in a signal

is any point lower than it’s neighboring points. A wavelength is the amount of time between

two peaks or troughs. The frequency is the number of wavelengths that happen over a given

time.

Figure 2: Signal Attributes

Part of signal processing involves finding and extracting frequencies from a signal. Two

signals of the same number of samples can be combined by adding each sample in the same

time step to create a signal with two frequencies. It requires computational methods to start

with a signal with two frequencies and end with two signals with 1 frequency.

Figure 3: Combining Signals

A brainwave or a single channel from an EEG is a signal. It is a record of the difference

in electrode potentials over time. Byrne [25] states that the Fourier series is the most
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important tool in signal processing. Achermann [10] stated that Dietsch [34] performed the

first Fourier analysis on an EEG in 1932.

The Fourier series of a function is [33]

f (x) =
∞

∑
n=−∞

cne−
inπx
ℓ ,

where

cn =
1
2ℓ

∫ ℓ

−ℓ
f (t)e−

inπt
ℓ dt .

The Fourier integral theorem takes the limit as ℓ approaches infinite of the Fourier series

[33] to define a non-periodic function.

f (x) =
1

2π

∫
∞

−∞

eiwxdw
∫

∞

−∞

e−iwt f (t)dt.

The Fourier transform of a signal is derived from the Fourier integral [33].

F f (t) = f̂ (w) =
∫

∞

−∞

e−iwt f (t)dt = ⟨ f ,eiwt⟩.

All of these represent harmonic or sinusoidal waves. The transform and series go on

forever. The frequency of the waves of a Fourier Transform represent the Spectral Density

of the original wave [7]. The spectral density is a representation of the amplitude of a

wave[9], but the sinusoidal component of the transform does not allow if to capture local

information [33]. In other words, abrupt changes in amplitude may not be captured. It is

well-known that Fourier Transforms cannot investigate time and frequency simultaneously

[83, 36, 50, 31, 33].

Some of the different brain waves, activities, and events in the EEG signal are defined by

abrupt changes in amplitude over time. V-Waves are defined as ”sharply contoured waves

with a duration less than 0.5 seconds” [22] and literally look like a ”V”. K-complexes are
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defined by ”a well-delineated, negative, sharp wave immediately followed by a positive

component standing out from the background EEG, with total duration greater or equal to

0.5 seconds” [22]. Figure 4 shows the V-Wave and K-complex.

Figure 4: The V wave and K-complex used in the sleep stage scoring manual from the
AASM [22].

In order to provide descriptions of abrupt changes in amplitude over time like those

found in the EEG signal, time-frequency signal analysis representations were created.

Time-frequency representations can be classified as linear, quadratic, or higher-order rep-

resentations. Hlawatsch and Boudreaux-Bartels listed at least 25 different time-frequency

representations including 3 linear representations, Gabor, Short-time Fourier transform

(STFT), and Wavelet transform (WT), and 2 quadratic representations, Choi-Williams Dis-

tribution (CWD) and Wigner Distribution (WD) [44]. Several of the other representations

were modifications of WD [44]. The Wigner Distribution (WD), also known as Wigner-Ville

Distribution (WVD), and the Choi-Williams Distribution are both generated from the Cohen

”general class of bilinear shift-invariant, quadratic time-frequency distributions” [33]. The

WVD has been modified many times to create many time-frequency distributions [33] [7].

A general review of the methods used shows that Fourier and Wavelets are the primary

representations used for analyzing an EEG in sleep staging [102]. The word “wavelets”

means “small waves” (the sinusoids used in Fourier analysis are “big” waves), and in

short, wavelet is an oscillation that decays quickly. Mathematically, wavelets usually are
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basis functions of an L2 space that satisfy so-called multi-resolution analysis requirements

[32, 45, 58]. Wavelets, as building blocks of models, are well localized in both time and

scale (frequency). Signals with rapid local changes can be precisely represented with just

a few wavelet coefficients. Among those that used Fourier and Wavelets, the Wavelet

representations resulted in the highest accuracy results [83] [36] [50] [31] [102]. Fraiwan

et al. [38] used Choi-Williams Distribution (CWD), continuous wavelet transform (CWT),

and Hilbert-Huang Transform (HHT). Fraiwan et al. [38] found that CWT had the highest

accuracy. A Discrete Wavelet Transform (DWT) can decrease the processing time of a

CWT [33]. Ebrahimi et al. [36] and Crasto and Upadhyay [31] used Daubechies wavelet

order 2 filter with DWT. Crasto and Upadhyay [31] tested DWTs with Daubechies wavelet

order 2 to 6 to decompose a signal for input into an artificial neural network (ANN) finding

Daubechies wavelet order 2 to produce the most accurate results.

There are many time-frequency signal analysis representations that could be tested. The

Gabor Transform, Short-time Fourier Transform, the Wigner Distributions, and many more

could be tested with future studies. Since the Discrete Wavelet Transform has been tested

with the highest accuracy, this study uses the DWT to decompose the EEG signals.

The discrete wavelet transform is based on the concept of a function called the ”mother

wavelet” [33]

Ψa,b(t) =
1√
|a|

Ψ(
t −b

a
), a,b ∈ R,a ̸= 0.

This mother wavelet can be translated with b and dilated with a. It is part of the wavelet

transform of a function f [33].

WΨ[ f ](a,b) = ⟨ f ,Ψa,b⟩=
1√
|a|

∫
∞

−∞

f (t)Ψ(
t −b

a
)dt

The function Ψa,b(t) replaces eiwt in the Fourier integral [33]. Ψa,b(t) can be one of

many wavelets. In the Fourier series, the sinusoidal waves produced from eiwt lacking com-
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pact/local support property are the problem. Wavelet bases are orthonormal or orthogonal.

The wavelet transform (WT) has been successfully applied over an extraordinary range of

fields in order to decompose the non-stationary TS into time-frequency domain as well.

Since Daubechies wavelet order 2 produced high accuracy results in multiple papers [31]

[36], this study will use Daubechies wavelet order 2. Figure 5 shows the Morlet (symmetric)

and Daubechies-2 (non-symmetric) wavelets, respectively.

Figure 5: A plot of the Morlet wavlet and the Daubechies order 2 wavelet produced by
Matlab.

The discrete wavelet transform has many modifications to help it improve. Ebrahimi et

al. [36] used a wavelet packet tree (WPT), but there are many more such as the stationary

wavelet transform (SWT), complex-valued wavelet transform (CWT), dual-tree complex

wavelet transform (DTCWT), etc. Testing the differences in these modifications can be

completed in a future study.

This study will use the multilevel discrete wavelet transform. Each level is the transform

of the previous level. Each level is not as close to the original wave as the previous level,

but it shows more details to original signal and greatly reduces the number of coefficients

associated with the dilation parameter a and translation parameter b described above in the



16

mother wavelet.

1.5 Deep Learning

There are many types of ANNs. Heaton [43] listed feedforward networks, deep belief

networks, deep feedforward networks, and convolution networks as the best ANNs for

classification. Other studies have had high accuracy with feed forward back propagation

neural networks [31] [83] and multilayer perceptron neural networks [50] [90]. All of these

algorithms could be tested.

A neural network produces a non-linear decision boundary [57]. It is easy to understand

a neural network when it is described from regression which produces a linear decision

boundary.

Linear regression is based on the equation of a line. The equation of a line is y = mx+b.

Given any set of x and y coordinates, there exist a line that minimizes the distance between

the line and the coordinates [52]. In other words, there exist a red line that minimizes the

sum of the lengths of the blue dashed lines in Figure 6.
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Figure 6: The plot of line that was produced via linear regression on a set of coordinates.

If the coordinates of the line are represented by set x = [xi] and y = [yi] for i in range 1

to the number of points n and ŷ = m∗ x+b, where ŷ = [ŷi] for i = 1, · · · ,n, is the equation

of a line with m and b unknown, then the sum of the distances between the line and the set

is ∑
n
i=1 |yi − ŷi|, where |y− ŷ| is the absolute value of yi − ŷi. In linear regression, the the

square of yi − ŷi is used instead of absolute value. This makes the equation for the sum of

the distances from the line to the set of coordinates the squares error equation [52]

n

∑
i=1

(yi − ŷi)
2.

If ŷ is replaced with the equation of a line, the least squares equation becomes the cost

function for linear regression [52]

cost = J =
n

∑
i=1

(yi − (m∗ xi +b))2.
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In order to minimize this equation, the derivative with respect to m and b is taken and set

equal to 0. This results in a system of two equations and two unknowns that can be solved.

When x is multidimensional, the solution is still the same in the sense that the least squares

equation is minimized [52].

When there is not a solution to the multidimensional derivative of least squares, gradient

descent can be used to find m and b. Gradient descent is stepping along the gradient of a

function. Instead of solving for where the gradient equals zero by setting it to zero, gradient

descent takes small steps towards gradient value zero until it reaches it. Mathematically, it

looks like

wi+1 = wi +λ ∗∇J(wi),

where f is the least squares equation and λ is the step size or the learning rate. The following

image can help you visualize gradient descent. [52]

Figure 7: Gradient Descent image from https://sebastianraschka.com/faq/docs/closed-form-
vs-gd.html [5].

Let x and y be nodes. Let those nodes be represented by circles. The picture below is a

picture of 1 sample of a function in 2 dimensions. Take note that this is a picture of one xi

and one yi value or one sample.
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Figure 8: Function in node picture.

When this image is scaled up to multiple dimensions, it looks like.

Figure 9: Function with multiple inputs in node picture.

In order to turn this picture from a linear regression picture to a logistic regression

picture, the sigmoid function must be used. The sigmoid function returns a value between 0

and 1 always [53]

s(x) =
1

1+ e−x .
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Figure 10: Plot of the sigmoid function.

Once the sigmoid is applied, the nodes picture looks like the following [53].

Figure 11: Function with multiple inputs in sigmoid node picture.

Now that this picture is logistic regression, the output is always between 0 and 1. Instead
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of using least squares as the cost function, the cross-entropy is used as the cost function [53]

C =−
N

∑
n=1

ynlog(ŷn)+(1− yn)log(1− ŷn),

where y is the real solution, ŷ is the solution from logistic regression, and N is the number

of samples. Just like with multiple linear regression, the derivative of the cross-entropy

function C with respect to m and b is taken. When this derivative is set to 0, it can be solved

in certain situations. In the situations where it can not be solved, the gradient descent method

can be used to find the solution [53].

The next step to reaching a neural network is to assume that there are multiple outputs

per sample. The nodes picture becomes the following:

Figure 12: Function with multiple inputs and multiple outputs in a sigmoid node picture.

The final step in reaching a neural network is adding one more layer.
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Figure 13: Function with multiple inputs and layers and a single in a sigmoid node picture.

Notice that the function for y,z1, and z2 is still sigmoid. For the middle layers, the

sigmoid function can be replaced with 1 of many nonlinearity functions including hyperbolic

tangent, linear, step, and rectified linear unites (ReLU) [43]. For the sigmoid function for y,

there is a special case. While the function for y is sigmoid, the cost function can remain the

cross-entropy function. When there are mutliple output nodes, there is a special function

called the softmax function which should be used [51].

softmax = s f (ai) =
ai

∑
K
j=1 a j

,

where i = 1,2, · · · ,K with K the number of nodes in the output layer and

ai = exp(
Q

∑
j=1

w ji ∗ z j +bi),

where Q is the number of nodes in the layer previous to the output layer [51]. The nodes

picture become the following:



23

Figure 14: Function with multiple inputs, layers, and outputs in a ANN node picture.

When the softmax function is used, the cost function becomes the multiclass log likeli-

hood (ll) function

C = ll =
S

∑
s=1

K

∑
k=1

ys
klog(ŷs

k),

where S is the number of samples and K is the number of outputs. Once again, the derivative

of this function is taken. The variables w,g,m, and b, or the weights and biases, are solved

for using gradient descent. This is the feed forward backward propagation artificial neural

network used for this study [51].

1.5.1 Convolutional Neural Networks (CNN)

In convolutional neural networks (CNN), the weights are the multipliers used during

convolution.The basic form of convolution can be understood as a signal (F = ( f1, · · · , fk))

convolved by a filter (G = (g1, · · · ,gn)) to produce a convolved signal having the same

frequency as the filter

convolved signal = F ∗G =



f1 ∗g1 + f2 ∗g2 + ...+ fn ∗gn

f2 ∗g1 + f3 ∗g2 + ...+ f1+n ∗gn

...

fk−n+1 ∗g1 + fk−n+2 ∗g2 + ...+ fk ∗gn


.
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A signal is a series of points over time. A filter, in the case of convolution, is a series

of weights to act as multipliers on the signal. Each point in the convolved signal is a dot

product of the filter and an equal number of points from the signal. This process creates a

rolling window of points from the signal that are multiplied by the filter.

Figure 15: Convolution with Filter = [2]

In Figure 15, the filter has 1 point. Each point in the signal has a 1-1 mapping to the

convolved signal by multiplying it by a number. The point in the signal maps to a point in

the convolved signal at the same point in time.

convolved signal0 = f 1∗g1

conv(sin(3)) = sin(3)∗2

This is not generally true in convolution but illustrates a basic idea. When you choose a

filter with more than 1 point, there is not a 1-1 mapping.
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Figure 16: Convolution with Filter = [1,3,1]

In Figure 16, the filter has 3 points. Each point in the convolved signal is the dot product

of 3 points in original signal and the 3 points in the filter. For each point time, the points

taken from the original signal are the previous point, the current point, and the next point.

convolved signal0 = f 1∗g1+ f 2∗g2+ f 3∗g3

conv(sin(3)) = sin(2)∗1+ sin(3)∗3+ sin(4)∗1

In order for the convolved signal to begin and end at the same time as the original signal,

an extra point is added to the beginning and to the end. This is known as padding the signal

or simply padding.

There are many ways to implement padding and the number of points in the filter.

Padding can result in a convolved signal that is bigger, smaller, or the same size as the

original signal. The methods used in this algorithm always use padding that results in a

convolved signal the same size as the original signal.
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Figure 17: Convolution with Filter = [1,3,1] and Stride 2

The stride in convolution can be thought of as the number of time steps between each

point in the original signal used to produce a point in the convolved signal. In figure 17, a

stride size of 2 is used.

convolved signal0 = f 1∗g1+ f 3∗g2+ f 5∗g3,

conv(sin(3)) = sin(1)∗1+ sin(3)∗3+ sin(5)∗1.

The effect is using a limited number points to produce the convolved signal. When a

stride of 2 is used, about half of the points are used from the original signal. Stride can help

find trending information at various frequencies in the signal. In this algorithm, stride is

always kept the same.

In convolutional neural networks, the elements of the filter (G) becomes the weights of

the neural network layer (Wconv = w1,w2, · · · ,wn). These weights like all neural networks

can have a bias.
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if ConvolvedSignal0 = f 1∗g1+ f 3∗g2+ f 5∗g3,

then output0 = f 1∗w1+ f 3∗w2+ f 5∗w3+b.

A convolutional unit can contain multiple filters of the same size. The convolutional unit

is said to have a filter size consisting of the number of points in the filter or filters and the

number of filters.

Figure 18: Convolution Unit with 3 Filters

In Figure 18, the convolutional unit has a filter size that includes 3 filters. Each filter

convolves the entire signal producing 3 different convolved signals with the same number of

points as the original signal. Then the example equation of Wconv becomes the following.

signal10 = f 11∗w11+ f 13∗w12+ f 15∗w13+b1,

signal20 = f 21∗w21+ f 23∗w22+ f 25∗w23+b2,

signal30 = f 31∗w31+ f 33∗w32+ f 35∗w33+b3.

Each filter in a convolutional neural network can be thought of as recognizing a different

pattern in the signal. The output of the convolution is the parts of the original signal that

match the pattern in the filter.
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Figure 19: Two Signal Patterns

In Figure 19, there is 1 pattern plotted 2 times. One plot is an exact copy of the other

except it is flipped vertically. In general situations, these two patterns could be considered

the same pattern. In convolution, these are 2 different patterns. Each of these patterns would

require their own filter to be recognized. If this is the exact pattern to find, allowing this to

be the filter could extract them from the original signal.

When a convolutional neural network’s weights are trained, they may produce patterns

from the training data. This could make the convolution understandable. Also, these patterns

could be reused in other signal processing analysis.

1.5.2 Recurrent Neural Network (RNN)

A Recurrent Neural Network (RNN), in it’s simplest form, takes all or part of it’s output

and new data as input. In doing so, it uses information from previous outputs to make a

decision.
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Figure 20: Simple RNN

In figure 20, the output is a linear combination of of the input and the previous output.

Figure 21: RNN Cell
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Figure 21 is the exact same as figure 20 except each recurrent step is expressed explicitly.

Each RNN Kernel is a linear function of the previous output and additional input. All of

these RNN steps together make an RNN cell. Each input to an RNN Kernel may be a

replicated version of the input to the RNN cell or a part of it. The outputs from all kernels

can be combined to make the output from a single RNN cell.

Figure 22: RNN Unit

Figure 22 illustrates how multiples cells can combine to make an RNN Unit or an RNN

layer. An RNN cell can pass all the outputs from all of it’s RNN kernels or just one of

them. The output to the entire unit can be the output from all cells or just one of them. A

bidirectional RNN can take the outputs from all cells and process the data backward in time.

One of the major downsides to an RNN is the number of parameters or weights that

must be trained. An RNN is prone to over fitting and is notably impacted by the ”curse of

dimensionality”. It can require more data to train an RNN than other algorithms.

The RNN kernel is typically not referred to specifically. An RNN layer can be said

to use a different kernel or a different cell meaning the linear combination of inputs and

outputs in the kernel is constructed differently. The most popular RNN cells at this time are
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Long Short Term Memory (LSTM) and the Gated Recurrent Unit (GRU).

1.5.2.1 Long Short Term Memory (LSTM)

The LSTM is meant to help an RNN remember older information and forget information

that’s not useful. The LSTM works by using ”gates” to add or remove weight for new (input

gate i), old (forget gate f), and processed (output gate o) information.

It starts off similar to the equation as a regular RNN. The difference being the previous

gated output. The following formula has a weight for the input wi, weight for the previous

gated output wo, and bias b.

output = tanh(input∗wi+previousGatedOutput∗wo+b).

This output is then weighted with the 3 gates to create a candidate gate (gatedOutput).

The input gate (i), the forget gate (f), and the output gate (o). These gates are defined as

an activated linear combination similar to the output each with their own weights (starting

wit w) and biases (starting with b). The formula has weights for the input, wieghts for the

previous gated output, and bias for each gate. Respectively, the input gate has wigi, wogi,

and bgi. The forget gate has wig f , wog f , and bg f . The output gate has wigo, wogo, and bgo.

The gates have to use sigmoid activation function while the output can use any activation

function.

gatedOutput = o∗ tanh( f ∗previousOutput+ i∗output),

i = activationg(input∗wigi+previousGatedOutput∗wogi+bgi),

f = activationg(input ∗wig f +previousGatedOutput∗wog f +bg f ),

o = activationg(input ∗wigo+previousGatedOutput∗wogo+bgo).

The LSTM has more than 3 times as many weights as a simple RNN. The GRU algorithm

attempts to reduce this problem by reducing the number of weights in a gated algorithm.



32

1.5.2.2 Gated Recurrent Unit (GRU)

The GRU attempts to accomplish the same task as the LSTM with fewer weights. It

uses ”gates” to add or remove weight for old (reset gate f) and processed (update gate o)

information. Each gate and output have thier own weights (starting with w) and outputs

(starting with b).

f = activationg(input ∗wig f +previousGatedOutput∗wog f +bg f ),

o = activationg(input ∗wigo+previousGatedOutput∗wogo+bgo),

output = tanh(input∗wi+previousGatedOutput∗ f ∗wo+b),

gatedOutput = (1−o)∗output+o∗previousGatedOutput.

The GRU has fewer weights than the LSTM and more weights than a simple RNN.

While it still has significantly more weights than a simple RNN, it has less weights than a

LSTM.
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CHAPTER II.

PAP Therapy Compliance

2.1 Introduction

One of the factors influencing health behaviors that has been underexplored in the

PAP adherence literature are the structural health system impediments [20] that limit the

effectiveness of individuals’ attempts at self-management. Under the traditional model of

PAP fulfillment, a clinical provider writes a prescription for PAP therapy, while a durable

medical equipment (DME) company supplies the machine. Because of the numerous entities

involved in PAP care delivery, this division of labor has the potential to contribute to

unintended effects such as fragmented communication and heterogeneous troubleshooting

procedures. This may lead not only to an additional barrier but also to lost opportunity

to educate about the associated health risks and facilitate adherence. Furthermore, the

cognitive link between PAP device usage and health outcomes may become less apparent

to the patient when much of the PAP instruction is provided outside of a medical practice.

Often, the prescribing provider can be left out of the troubleshooting process altogether

before a patient has made the decision to discontinue therapy. This may be problematic,

given some evidence that an existing relationship with a sleep specialist prior to diagnosis of

sleep-disordered breathing (SDB) is associated with higher PAP adherence [65]. Similarly,

adherent patients tend to be more satisfied with the level of communication and education

they have received from the providers and staff providing their sleep care [98, 89]. Practices

may also be in a better position to address the common comorbid conditions that can affect

PAP adherence [30, 91]. As such, sleep specialty clinics may be well equipped to deliver

timely interventions to promote PAP adherence, provided they effectively leverage their

interdisciplinary clinical team to address some of the common barriers to PAP adherence.

The purpose of this study was to explore differences in PAP adherence between patients

receiving PAP therapy from a traditional DME provider and those patients receiving PAP
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therapy through an integrated sleep practice (ISP). We hypothesized superior PAP adherence

among patients who receive PAP therapy directly from an ISP, relative to those receiving

PAP therapy from a DME supplier.

2.2 Methods

This study was approved by the Institutional Review Board at Middle Tennessee State

University.

2.2.1 Study population

This retrospective cohort study followed patients who received their sleep care from

Sleep Centers of Middle Tennessee, a community-based sleep practice serving approximately

20,000 patients per year. Providers and staff at Sleep Centers of Middle Tennessee are

provided specific training to support patients using principles of evidence-based behavioral

sleep medicine [15, 13, 72]. The training was designed to be applied by the provider at

initial evaluation and follow-up visits, by the polysomnographic technologist at sleep studies,

and by DME staff during the initial PAP set-up visit.

We collected PAP adherence and demographic data from patients who initiated PAP

therapy between January 1998 and June 2018. As such, those patients diagnosed with

SDB but who pursued an alternative treatment modality or were lost to follow-up prior to

receiving PAP therapy were not included. For a best attempt at including only the continuous

PAP–naive population, patients with more than 1 continuous PAP provider over this 20-year

interval were excluded from the final analysis. In addition, patients who started PAP therapy

multiple times with the same DME provider had only data from the first trial analyzed. To

exclude age confounders introduced by anti–self-referral (ie, Stark) regulations, patients

65 years of age or older at the time of PAP therapy initiation were excluded from the final

analysis. Patients younger than 18 years of age or missing demographic characteristics were

also excluded. Finally, to ensure that data were reliably transmitted via cellular modem, we

included only patients from a subset of 4 DME companies that started treatment with PAP
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after 1 January 2012. After this date, these DME providers agreed to keep wireless modems

turned on indefinitely.

2.2.2 Procedures

All patients included in the study, regardless of the experimental group, had initial sleep

clinic visits with the same providers from the same sleep practice. Both groups of patients

received the same patient educational content during this visit. The procedures surrounding

technical administration, interpretation, and results communication of diagnostic studies

were also the same for each group of patients.

Upon receiving a diagnosis of SDB, patients were allowed to choose their DME provider,

based on insurance compatibility and personal preference. Patients received their PAP

supplies from either the ISP (ISP group) or 1 of 4 participating DME suppliers (DME group)

who agreed to leave the wireless modem activated indefinitely. For patients initiating PAP

therapy in the ISP group, DME staff were trained to elicit expectations and anticipated

problems with continuous PAP therapy, then to counsel and educate patients with the

principles of motivational enhancement in mind [13]. Participating DME providers were

also provided with a written copy of the practice’s PAP initiation protocols.

The protocol for scheduling follow-up visits was the same for patients from each group,

regardless of the DME provider. In general, the interval for each follow-up visit was guided

by the participants’ success with PAP adherence. Patients were asked to return for short-term

follow-up (ie, 3 months or less) until they achieved an average usage of at least 6 hours per

night. Once a patient achieved an average of at least 6 hours of nightly adherence, they were

scheduled for yearly follow-up.

2.2.3 Statistical analysis

Adherence rates for each of the groups were calculated at 30 days, 90 days, and 1 year

after the initiation of PAP therapy. An individual patient was classified as being adherent

during each of these intervals if he/she had at least 4 hours of PAP usage for at least 70%
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over the respective interval. For example, a patient would be classified as adherent at 90 days

if he/she used PAP for at least 4 hours on at least 63 of the first 90 days of use. Adherence

rates between the experimental groups were compared with chi-square test at each of these

intervals.

Average nightly durations of PAP use at 30 days, 90 days, and 1 year were also compared

between groups. Each patient’s PAP usage was averaged over the respective time interval.

Given nonparametric distribution of the mean nightly usage for each group, the duration of

PAP usage was compared between groups with a 1-sided Mann-Whitney U test.

2.3 Results

2.3.1 Study participants

Between January 1998 and June 2018, there were 15,853 patients in the original dataset

who initiated PAP therapy for SDB. Of these, 967 patients were excluded because they

had a PAP machine dispensed from both the ISP and a traditional DME company over this

time period, leaving 7,448 participants in the ISP group and 6,471 participants in the DME

group. After excluding patients who were started on PAP therapy outside of the target date

range, 2,257 participants remained in the ISP group while 3,009 participants remained in the

DME group. Patients without demographic data (235 excluded from ISP, 240 excluded from

DME) and outside of the age interval of 18–64 years (189 excluded from ISP, 714 excluded

from DME) were excluded. Of the 2,055 patients remaining in the DME group, 2,001

patients chose 1 of the 4 participating DME companies that agreed to keep the modems on

indefinitely. Available characteristics from each of these final groups are shown in Table 8.

2.3.2 Rate of PAP adherence

As stated above, patients were classified as adherent if PAP therapy was used for at

least 4 hours on at least 70% of days over 30-day, 90-day, and 1-year intervals. Table 9

shows the adherence rates for each of these groups at these intervals. Of the 2,001 patients

included in the DME group, 1,327 patients (66%) were adherent at 30 days, 1,116 patients
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Table 8: *Statistically significant at P <.05. BPAP = bilevel positive airway pressure; CPAP
= continuous positive airway pressure; DME = durable medical equipment; ISP = integrated
sleep practice.

Table 7. Baseline group characteristics.
Characteristic ISP Group DME Group P
Male, % 64.7 60.1 .003*
Mean age, years 46.7 47.4 .04*
White, % 84.5 80.5 .001*
Black, % 8.1 10.8 .004*
Other race/refused to report, % 7.4 8.6 0.2
Maintained on CPAP, % 92.5 92.8 0.8
Maintained on BPAP, % 6.2 5.6 0.5
*Statistically significant at P <.05. BPAP = bilevel positive airway
pressure; CPAP = continuous positive airway pressure; DME = durable
medical equipment; ISP = integrated sleep practice.

(56%) were adherent at 90 days, and 665 patients (33%) were adherent at 1 year. Of the

1,833 patients included in the ISP group, 1,296 patients (71%) were adherent at 30 days,

1,212 patients were adherent at 90 days (66%), and 961 patients (52%) were adherent at

1 year. Chi-square analysis showed that the ISP group had a significantly higher rate of

adherence at 30 days (P = .004), 90 days (P < .00001), and 1 year (P < .00001). Because

of the significantly higher rate of Whites and lower rate of Blacks in the ISP group, the

differences between experimental groups were also analyzed between these subgroups. The

results of this subgroup analysis are displayed in Table 9.
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Table 9: Values are n (%) unless otherwise indicated. For each group, patients were classified
as being adherent if they achieved at least 4 hours of PAP use on at least 70% of nights over
the respective time interval. P values were calculated with chi-square test. *Statistically
significant at P <.05. DME = durable medical equipment; ISP = integrated sleep practice;
PAP = positive airway pressure.

Number of patients adherent (adherence rate) at key

time intervals: ISP vs DME groups.

ISP Group DME Group P

White, n 1549 1611

30 days 1113 (73) 1107 (69) .006*

90 days 1059 (68) 940 (58) <.00001*

1 year 841 (54) 577 (36) <.00001*

Black, n 148 217

30 days 80 (54) 123 (57) .62

90 days 70 (47) 99 (46) .75

1 year 53 (35) 50 (23) .008*

Total, n 1833 2001

30 days 1296 (71) 1327 (66) .004*

90 days 1212 (66) 1116 (56) <.00001*

1 year 961 (52) 665 (33) <.00001*

Values are n (%) unless otherwise indicated. For each group,

patients were classified as being adherent if they achieved

at least 4 hours of PAP use on at least 70% of nights over

the respective time interval. P values were calculated with

chi-square test. *Statistically significant at P <.05. DME =

durable medical equipment; ISP = integrated sleep practice;

PAP = positive airway pressure.



39

2.3.3 Nightly duration of PAP usage

To determine whether there was a longer duration of PAP usage among patients in the

ISP group, each participant’s nightly usage was averaged over the respective 30 days, 90

days, and 1 year following PAP initiation. Of the 3,884 patients included in the final analysis,

all patients had evidence of at least some PAP usage. The median durations of average

nightly usage among the DME group at 30 days, 90 days, and 1 year were 345 minutes, 319

minutes, and 164 minutes, respectively. Median durations of average nightly usage among

the ISP group at 30 days, 90 days, and 1 year were 357 minutes, 348 minutes, and 312

minutes, respectively. To test our hypothesis that the ISP group had superior usage duration

among its participants, 1-sided Mann-Whitney U test showed significant differences between

groups at 30 days (p = .002), 90 days (p < .00001), and 1 year (p < .00001). Comparisons

between race subgroups are displayed in Table 10.
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Table 10: Each patient’s nightly duration of use was averaged over the respective intervals.
The usage durations reported in the table describe the median (± SD) of each group’s
average nightly use, in minutes. P values were calculated with 1-sided Mann-Whitney U test.
*Statistically significant at P <.05. DME = durable medical equipment; ISP = integrated
sleep practice; PAP = positive airway pressure.

Median average nightly use of individuals still using PAP

at key time intervals: ISP vs DME groups.

ISP Group DME Group P

White

30 days 366 (± 123) 353 (± 125) .004*

90 days 358 (± 132) 327 (± 133) <.00001*

1 year 322 (± 157) 184 (± 163) <.00001*

Black

30 days 311 (± 125) 298 (± 117) .62

90 days 284 (± 136) 279 (± 128) .39

1 year 233 (± 150) 122 (± 143) .001*

Total

30 days 357 (± 125) 345 (± 126) .002*

90 days 348 (± 134) 319 (± 134) <.00001*

1 year 312 (± 157) 164 (± 160) <.00001*

Each patient’s nightly duration of use was averaged over the

respective intervals. The usage durations reported in the table

describe the median (± SD) of each group’s average nightly

use, in minutes. P values were calculated with 1-sided Mann-

Whitney U test. *Statistically significant at P < .05. DME =

durable medical equipment; ISP = integrated sleep practice;

PAP = positive airway pressure.
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2.4 Discussion

The purpose of this study was to explore differences in PAP adherence between pa-

tients receiving PAP therapy from a traditional DME provider and those receiving PAP

therapy through an ISP. To evaluate aggregated adherence differences, we first compared

the proportion of adherent patients between each group. Our findings suggest superior PAP

adherence rates in the ISP group, both in the short term (30 days, 90 days) and the long term

(1 year). This difference remained significant when comparing the White subgroups. For

the Black subgroup, this difference in adherence rate between ISP and DME groups was

significant only at 1 year. In addition to superior rates of patient adherence, the average

nightly usage was also found to be superior between experimental groups at all time points.

This difference remained significant among all time points in the White subgroup and at

1 year in the Black subgroup. The long-term adherence rate of 52% in the ISP group was

comparable to rates published previously [49, 98], while average nightly use of 5.2 hours in

the ISP group was slightly better than averages previously published [49, 79].

Some may have noted differences in adherence rate between Black and White subgroups.

These differences were found to be significant at all time points (1 month, 3 months, and 1

year) within both the ISP group and the DME group. Although this issue was not addressed

in the initial set of hypotheses, we felt this was an important finding that should be added

to the current body of literature [98, 79, 80, 23, 92]. There are likely multiple contributing

factors through which race contributes to lower adherence rates, including shorter sleep

duration [11] and differences in cultural attitudes about sleep [21]. It is also likely a proxy

for other important latent variables such as socioeconomic status, which has also been shown

to influence PAP adherence [98, 23, 18]. While monitoring these practice metrics in the

future, we hope future work can uncover effective strategies for addressing these important

mediating factors.

Many clinicians working in sleep medicine have experienced the suboptimal communica-
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tion patterns and patient confusion related to fragmented care when dispensing PAP therapy

through the heterogeneous landscape of traditional DME providers. As a result, some

clinicians may find improved rates of adherence with integrated PAP care to be intuitive.

Although interaction between PAP initiation and DME providers has not been well studied,

we hypothesize that such integration has the potential to improve communication between

the patient and his/her interdisciplinary team, a factor known to be important in promoting

adherence to many interventions [40]. Second, an integrated care model fundamentally

improves the degree of standardization over the people and processes required to initiate PAP

therapy. As such, implementation and monitoring of new processes based on best-available

evidence become more feasible. For example, over the period studied, the practice’s PAP

initiation protocol was provided to participating DME companies, but we were only able

to confirm that the protocol was followed by those patients who chose the ISP as a PAP

provider. Although some may see this as a limitation in the study design, we believe that

such standardization could be an explanatory factor for the demonstrated differences in

adherence rate. It is worth noting that, although the PAP initiation protocol was a practical

application of evidence-based principles designed to improve attitudes and beliefs about

treatment, it did not go through the rigor of formal validation.

Restrictions surrounding age of participant enrollment was another major study con-

straint. Because our study involved patient referral to the practice’s internal DME company,

federal laws prohibiting physician self-referral [3] (commonly known as the Stark law)

precluded inclusion of Medicare patients into the ISP group. To avoid introducing age as a

confounding factor between groups, patients eligible for Medicare on the basis of age were

excluded from the study altogether, potentially limiting the generalizability to a typical sleep

medicine clinic population.

This study has several other important limitations to keep in mind. First, as is often

the case with retrospective cohort studies, there were statistically significant demographic
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imbalances between groups that may have biased the results. Also, given the disparate

adherence and clinical datasets, we were unable to explore other important confounding

factors, such as socioeconomic status, SDB severity, specific SDB diagnosis, and baseline

sleepiness. Admittedly, our methods to include only PAP-naive patients were imperfect

because patients who previously attempted PAP therapy outside of our region’s DME

providers (including the ISP) could not be reliably excluded from our final analysis. However,

we do not believe that there were systematic differences that would have introduced higher

rates of previously PAP-intolerant individuals into either experimental group. Although only

a subset of the above confounding factors have consistently proven to influence adherence

[95, 60, 47, 66, 98, 79, 80, 23], future work should continue to focus on controlling for these

important factors. Finally, along the same lines, a truly patient-centric study would have been

able to explore differences in other important outcomes, such as improvements in sleepiness

or neurocognitive symptoms. However, in light of previous evidence showing a linear

dose–response between the duration of PAP usage and these outcomes [98, 79, 86, 96], the

metrics available to us may provide a useful proxy to guide future patient-centered outcome

studies.

Despite these limitations, the study explored a pervasive issue, affecting both academic

and community-based sleep practices. The interactions between the traditional DME

providers and PAP adherence have been underexplored in the peer-reviewed literature.

The large difference in long-term (1-year) adherence rates between groups, in particular,

warrants further exploration into the role that the heterogeneous landscape of traditional

DME providers plays in long-term PAP adherence. As current health care trends drive

sleep medicine practices to adopt remote monitoring and chronic care management models,

further studies are needed to better understand the tradeoffs of receiving PAP therapy through

traditional DME providers.
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CHAPTER III.

REM Sleep Classification

3.1 Introduction

Sleep disorders are commonly seen in patients with neurodegenerative diseases. Specif-

ically, (Rapid Eye Movement) REM sleep behavior disorder (RBD) may be the initial

manifestation of neurodegenerative diseases such as Parkinson’s disease, dementia, and

multiple system atrophy.

Elements of the R&K standard that were defined because of the limitations of technology

of the time, like the use of 30 second epochs, still exist in the AASM standard. At the time

and to this day, there is a need to find a balance between interpretability (or explainability)

and complexity. The more complex the data and analysis the more difficult it is to interpret

and explain the results. Consequently, manually scored recordings are divided into 30

second epochs and scored with relatively few clinical markers (sleep spindles, k-complexes,

sawtooth waves, etc) while automatically scored recordings must be reviewed manually. In

manually scored recordings, the clinical markers and epochs can then be aggregated to define

a complex and interpretable pathology requiring a trained technician and time-consuming

methodologies. In automatically scored recordings, features defined by statisticians and

data scientist in effective algorithms can be too abstract and removed from previously

known clinical markers to carry meaning for clinical experts. The goal of this study is to

find relatively few clinical markers or features used by machine learning that can later be

aggregated to create an interpretable pathology of increased complexity.

The authors in [54] worked to make any sleep categorization algorithm more interpretable

via pretraining on clinical markers [54] which focuses directly on explainabilty. They argue

that algorithms trained on raw data learn more on noise than on actionable information

which is a common problem with the interpretability of CNNs. Their algorithm starts with

predefined clincial markers. The approach proposed in this paper differs by setting the
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filter size for each convolutional neural network to be representative of 5 frequency bands

explained in Table 11 and letting the algorithm find the clinical markers.

Table 11: Each convolutional network represents a different frequency band. The delta, theta,
and alpha frequency bands are gathered from common definitions. The Beta frequency band
is divided into 2 bands because it is the largest frequency band and noise in a signal can be
found in the highest frequencies. A midpoint value in the frequency band is chosen to be the
CNN Filter Frequency. The CNN Filter Size is calculated using the CNN Filter Frequency
and the sample rate of the data set. CNNFilterSize ≈ (samplerate)/(CNNFilter)

EEG Frequency Band to CNN Filter
EEG Frequency Band

(Hz)
CNN Filter Frequency

(Hz)
CNN Filter Size

(samples)
Delta (0-3.99) 2.8 35
Theta (4-7.99) 5.2 19
Alpha (8-13) 10 10
Beta1 (>13) 20 5
Beta2 (>13) 50 2

This approach is the first step in a series to accomplish multiple long-term goals. The

first-term goal is to create a model that is accepted by the AASM to score sleep without the

need for physician’s review. By creating a CNN model with fewer filters based on EEG

frequency bands, the filters and individual CNN sub models become relatable to clinical

markers. This paper focuses on the first step in that process: reducing the number filters per

EEG frequency band to a number that can be easily reviewed and understood. The second

long-term goal is to create a clinical marker basis for machine intelligence and ingenuity.

By allowing the algorithm to learn filters on raw data, a process can be created to learn

filters that are few enough to be interpreted by a human and mathematically relevant to the

machine learning process. The learned filters can then be used to by various algorithms as a

basis of diagnosis and investigation.

3.2 Methods

The Sleep-EDF Database [6] is a commonly used sleep staging dataset. The dataset

contains 197 whole-night PSG sleep recordings, containing EEG, EOG, chin EMG, and
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event markers. The sampling rate is 100 Hz. From this dataset, up to 12 nights of EEG

recordings from Fpz-Cz channel are used. To ensure the cleanest data set, the final weights

were trained using only 2 nights with a highest number of REM epochs were used. The 30

second epochs are scored using the R&K standard and “not scored” epochs. The movement

time and not scored epochs are removed because they are no longer in use according to the

AASM. All the wake stages in the beginning of each night are removed except the last one

because there could be hours of wake stages before sleep started. Because there were not

hours of wake stages to end the study, there are not wake stages removed at the end. The

stages were then labeled as REM or not REM.

The model used is a variation on the most common models, the CNN to RNN models

[29, 93, 88, 87, 28]. The variation is a limit on the number of filters and a filter that

matches a predefined frequency band explained below. The model in Figure 23 consists

of a convolution part and recurrent or memory part. The model implements python 3.6.8,

Tensorflow 1.14.0, and Tensorflow Keras 2.2.4.

The convolutional part consist of 5 CNN’s. The GACNN model [37] found the most

information can be extracted from an EEG signal using 4 different filter sizes for each CNN.

This model adds an additional CNN with a different size filter. There is 1 CNN for each

of the delta, theta, and alpha EEG bands and 2 CNNs for the beta EEG band for a total of

5 CNNs. Each CNN has a filter size that allows the frequency of the filter to fit within the

specified frequency band as described in Table 11. The beta EEG band spans the largest

frequency and is at the boundary of the sampling rate which can lead to noise in the signal.

Splitting the beta EEG into 2 CNN filter sizes is an attempt to separate out the noise and

extract more interpretable information.

Each CNN was trained independently on the 30 second epochs to score REM and not

REM. Each CNN is associated with a different frequency range in an EEG described in

Table 11. Each CNN has either 5 or 10 filters. The pooling layers pool size is on the left
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Figure 23: The figure labels the model input, the 5 convolutional networks applied to each
input, and the recurrent network applied to 3 time steps of the input. The input is a 30
second epoch. The 30 second epoch is copied to provide input to each of the 5 convolutional
networks. The first box of each convolutional network names the EEG band it represents
and labels the number of filters. Each box following represents different information about
the layer in the network it represents. Boxes about pooling layers define the scaling factor,
pooling method, and stride. Boxes about dense layers and recurrent layers define the output
size. The concatenate is meant to identify the concatenation of the output of all convolutional
networks as well as the concatenation of 3 input time steps.
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and the factor by which to downscale for strides is on the right in Figure 23. In each CNN,

the same activation, weight initializer, and bias initializer are used on each layer except the

final layer which always uses softmax. The activation function is always tanh. The weight

initializer and bias initializer is described in Table 11.

The output of the 5 CNNs are concatenated without any adjustment. A new CNN data

set is created with each record consisting of 3 epochs of the concatenated output of the

CNNs. Each record is labeled with the middle or current epoch. This duplicates the pre and

post epochs used to score the current epoch by technicians.

The RNN has 2 layers of bidirectional Gated Recurrent Units (GRU) cells, 3 fully

connected layers, and the final softmax layer. The input to the first GRU is the new CNN

data set. As can be seen in Figure 23, the first GRU layer outputs 104 dimensions and the

second 302 dimensions. All the other parameters were set to the default Keras parameters.

No optimization was required.

A random search algorithm for preprocessing and hyperparameter optimization searched

over 100,000 different configurations including GRU, Long Short Term Memory (LSTM),

bidirectional, and time distributed RNN models. The model presented here is the model

with the highest F1-score. While there were very few CNN models that worked, there were

many recurrent networks with high accuracy.

The algorithm consists of a signal processing, layers, and optimizer portions. The signal

processing portion applied frequency filters. The final model did not use any frequency

filters. The layers and optimizer used JSON structures to store and build models. The layers

available to search included 1-D convolution, flattening, fully connected, time distributed,

max pooling, average pooling, long short term memory, GRU, and bidirectional. The

optimizers available include stochastic gradient descent, Adam, Nadam, and root mean

square propagation.

Model selection training and final training were completed with different configurations
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to reduce model selection time and increase final training accuracy. For both, each CNN

and the RNN use 5 nights of the original data set for training data. They both use 10% of

the training data as validation data. For the CNNs, they both normalized the data with the

standard deviation and mean across the entire training set.

Model selection training included the number of nights as a hyperparameter and batch

size as function of epochs in those nights. The number of nights included in training was

restricted to leave at least 1 night for testing from a patient not included in the training set.

The batch size was calculated using the count of epochs in the training data divided by the

cross validation folds. There are always 10 cross validation folds.

Final training removed the cross validation and set the batch size to 32.

3.3 Results

An algorithm or tool that identifies a deep learning model for signal processing, a deep

learning model for categorizing REM sleep, and measurements for the deep learning model

are the three outcomes of this study.

The algorithm or tool can and has been reused for many different signal processing

categorization projects. Even though the current version lacks a user interface, it serves as a

proof of concept. With just a few parameters, this program can do a random search through

more than a trillion distinct configurations for deep learning models for signal processing. It

also has the ability to apply Fourier analysis as a preprocessing step. While it is a work in

progress, this strategy can be part of the learning ability of algorithms.

The deep learning model is described in Figure 23. The input to this model is 5 copies

of 3 consecutive 30 second epochs of a RAW EEG recording. The model assigns a label of

REM or not REM to the 2nd epoch where the epochs are ordered oldest to newest in time.

Each copy of an epoch is input to 1 of 5 CNNs. Each CNN is representative of a specified

frequency range. Each CNN model produces a one hot encoded output for REM and not

REM. The number for REM and not REM are individually less than 1 and combined add up
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to 1. For each epoch, these outputs are concatenated into a list. The concatenated output

for all 3 epochs is used as input to the GRU portion of the model. The GRU portion of the

model produces a one hot encoded output for REM and not REM. The output label is REM

when the one hot encoded REM output is greater than or equal to 0.5. Otherwise, the output

label is not REM.

Table 12 shows the number of true and false predictions for each part of the model.

The Delta CNN model had the most true REM. The Delta CNN model predicted the most

actual REM the CNN models. Since eye movement was not removed from the signal, it

is likely that eye movements are detected in this frequency. Note that eye movement has

been detected as noise in the Fpz-Cz EEG channel. Beta2 predicted the most False REM.

This is expected because N1 shares this frequency range with REM. Beta 1 predicted the

fewest number of actual REM. Finally, the RNN did the best at reducing False Non REM

and increasing REM.

Table 12: The top row is the count of REM and not REM epochs. Each of the following
row shows the correct REM, False REM, False not REM, and True not REM predictions for
each network in the model. The last row (RNN) takes 3 epochs for each input therefore it
has two fewer predictions.

Prediction Results Comparison
REM False REM False NotREM NotREM

Actual 1344 0 0 8330
Beta2 1007 585 337 7745
Beta1 5 40 1339 8290
Alpha 781 90 563 8240
Theta 143 34 1201 8296
Delta 1134 195 210 8135
RNN 1212 107 132 8221

Table 13 shows the percent of total epochs for each part of the model. The actual REM

is 13.89% of the total epochs. The actual NotREM is 86.11% of the total epochs. The RNN

predicted true REM as 12.53% of the total epochs and true NotREM as 85.00% of the the
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total epochs. The RNN produced the metrics described in Table 14.

Table 13: This table is intended to show the counts as a percentage of the total number of
epochs.

Prediction Results Comparison
REM False REM False NotREM NotREM

Actual 13.89% 0.00% 0.00% 86.11%
Beta2 10.41% 6.05% 3.48% 80.06%
Beta1 0.05% 0.41% 13.84% 85.69%
Alpha 8.07% 0.93% 5.82% 85.18%
Theta 1.48% 0.35% 12.41% 85.76%
Delta 11.72% 2.02% 2.17% 84.09%
RNN 12.53% 1.11% 1.36% 85.00%

Table 14 shows the comparison to other models. The models used for comparison use the

exact same dataset. These models attempted to score all stages of sleep, and while this could

be the end goal, focusing on one stage of sleep can help the model be more explainable. In

addition, other stages of sleep can have very specific clinical markers which can be easily

identified with simpler methods.

Table 14: Each model represented here posted calculated results using the same type of
output and the same dataset. While some models did look for all sleep stages and used
additional data sets, this table only shows comparisons of REM vs not REM on the Sleep-
EDF Database Expanded [37, 87, 63].

Model Comparisons
Model Accuracy Precision Recall F1-Score Kappa

GACNN 91.00 92.00 91.00 91.00 90.00
DeepSleepNet 80.90 83.90 82.40
SleepEEGNet 81.63 88.71 85.02
This Model 97.30 93.08 89.32 90.86 90.00

The GACNN model has a higher Recall and F1-Score 22. The GACNN model is very

similar, combining four CNN models into an RNN. To specify the difference, this model

contains much fewer CNN layers in each CNN model and much fewer filters in each CNN
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layer. This concept of using fewer filters is intended to help in the explainability of the

model.

3.4 Discussion

The objective of this research is to enable a neural network to produce findings that can

be explained. There are only 45 filters to interpret, which is easier than explaining the many

layers of fully connected networks. It is demonstrated that fewer filters may be employed to

stage sleep because the model produces results that are comparable to those of other high

accuracy models..

The results confirm other aspects of the definition of REM. Rapid eye movement can be

seen as noise in the Fpz-Cz channel with extremely low frequency. Since that noise was

not removed, the Delta CNN was able to detect it producing the highest accuracy results.

In manual scoring, REM stage typically has the highest frequency and Alpha frequency

sometimes. This correlates with Beta2 and Alpha CNN which both have high accuracy

results. Beta2 results are higher than Alpha. The CNN filter between Alpha and Beta2 has

very low accuracy. This frequency range can be attributed to the idea that many sleep stages

can be represented in this range.

There are numerous ways to proceed with this subject. For instance, attention layers can

be used to enhance this model. This might make the important filters easier to understand.

The frequency ranges could be further divided for good reason. Beta can be separated

specifically to narrow down the significant frequency range. It may be necessary to filter the

initial signal so that only certain frequency ranges exhibit the p value for each CNN filter.

Finally, other algorithms could be able to use CNN filters. These filters could be employed

in a reinforcement learner to comprehend brain wave sequences if the algorithms can only

recognize a small number of filters.

The final model reported in this paper is 1 of many that could have been used. The GRU

is used instead of LSTM to reduce the complexity of the model in addition to it’s improved
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results. While complexity is a major concern, complexity limitations were not considered

in place of producing a model that has learned clinical markers. The clinical markers in

this model can be analyzed and compared to clinical markers used today, but they were not

similar upon a visual inspection. Future versions of this model can be produced with the

automated tool to focus on clincial markers for more specific scenarios.

The algorithm or tool can be considered part of the model. Since models must be

improved and those improvements are strongly influenced by the input parameters, there

could be many models for various disease state categorizations. This is one reason to focus

on 1 sleep stage at a time. Each sleep stage could have it’s own set of models for various

disease states. Since degenerative brain disease is related to REM sleep and REM sleep

disorder, creating one model to categorize REM sleep and one for REM sleep disorder

would result in comparable clinical markers defined by the various CNNs. Since these

clinical markers can be explained in the same way as sawtooth waves, it creates a point of

discussion between clincians and statisticians that was not there before.

There are many additions to the tool or algorithm that are in process. This includes the

ability to speed up training by using transfer learning across similar models, the addition of

attention layers, and the addition of wavelet decomposition as an optional preprocessing

step. This will eventually be a tool that builds models from scratch. This differentiates other

deep learning automations that start with several pre-existing models.
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CHAPTER IV.

Wavelet Deep Learner

4.1 Introduction

Sleep stages are the most precise way to separate wakefulness from sleep state. Physio-

logic and pathologic events can be identified and studied through examining stages of sleep

or sleep stages. Certain health insurances require that wakefulness is separated from sleep

state using an electroencephalogram (EEG) in order for a sleep study to be conducted.

An EEG uses electrodes placed on the head to detect electric potentials in the brain. The

difference between the electric potentials of two electrode positions, called an EEG channel

or channel, are recorded in regular intervals to produce brain waves. One electrode is the

active electrode while the other is the reference electrode [22]. The electrode positions are

well-defined by the International 10/20 system [22] [2] [1]. The EEG channels that are best

to use were standardized originally by Rechtscheffen and Kales [71] commonly known as

the R&K standard. The American Academy of Sleep Medicine (AASM) maintains and

updates the R&K standard today.

Sleep stages are typically identified with a combination of parameters known as a

polysomnographic record (PSG). These parameters include, but are not limited to, elec-

troencephalogram (EEG) derivations, electrooculogram (EOG) derivations, and a chin

electromyogram (EMG) [22]. Elements from all 3 are used to identify sleep stages [22]. An

EEG monitors brainwaves. An EOG monitors eye movements. An EMG monitors muscle

movements. EEGs, EOGs, and EMGs all can use electrodes placed on the head and face.

An alternative to a PSG is an at home study. There can be many electrodes and channels

used in a PSG. The AASM recommends that 8 electrode positions creating 6 channels are

used for an EEG alone [22]. Using this many channels and the variety of parameters for the

PSG requires special training to use, special training to interpret, expensive equipment, and

likely a lab. Some at home studies use a single channel EEG requiring very little training
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to use, cheaper equipment, and no lab. The at home study still requires special training to

interpret.

Automated sleep staging can be accomplished with a combination of parameters from

a PSG [83, 38, 70, 50, 81] or a single channel EEG [90, 36, 31, 102]. Ebrahimi et al.

achieved 93% accuracy using the wavelet decomposition of a single channel EEG and a

neural network [36]. Kurt et al. achieved 97-98% accuracy using the wavelet decomposition

of EEG, EOG, and chin-EMG [50].

In order to automate sleep staging with an at home study, wavelet decomposition of

a single channel EEG will be used as a preprocessing step to the previously built CNN

to GRU neural network. The previous model will need to be optimized. Additional

layers such as attention layers can be added. Alvarez et al. [102] listed the following

algorithms, among others, in order of highest accuracy for sleep staging: ANN, support

vector machine (SVM), hidden Markov models, and discriminant analysis. Lotte et al. [57]

scored many algorithms for classification in EEG-based brain-computer interface including

linear discriminant analysis, support vector machine (SVM), ANN multilayer perceptron,

others ANNs, Bayes quadratic, hidden Markov model, k nearest neighbors, Mahalanobis

distance, and combinations. Even though Lotte et al. [57] concluded that the SVM would be

best for EEG-based brain-computer interface, they also stated neural networks are the most

used category of classifier. Seeing that both Alvarez et al. and Lotte et al. put significance

on SVMs and hidden Markov models, these two algorithms may be tested in the future.

There are many time-frequency signal analysis representations that could be tested. The

Gabor Transform, Short-time Fourier Transform, the Wigner Distributions, and many more

could be tested with future studies. Since the Discrete Wavelet Transform has been tested

with the highest accuracy, this study will use the DWT to decompose the EEG signals. Since

Daubechies wavelet order 2 produced high accuracy results in multiple papers [31, 36],

this will use Daubechies wavelet order 2. This study used the multilevel discrete wavelet
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transform.

4.2 Methods

4.2.1 Data

This study used the ”Sleep Recording and Hypnograms in European Data Format (EDF)”

data set or ”The Sleep-EDF Database [Expanded]” from physionet.org [6]. The portion of

the database used is from a study on healthy patients from 1987-1991. There are 20 patients

avaialable. There are 10 males and 10 females ranging from age 25-34 years old.

Each patient had two relevant files: a polysomnogram (PSG) recording in EDF format

and a hypnogram of annotations in EDF+. EDF is a standard format for exchanging EEG

recordings [4]. EDF+ has all the capabilities of EDF and the ability to contain annotations

[4]. The PSG recording included an EEG from Fpz-Cz and Pz-Oz electrode locations, an

EOG (horizontal), a submental chine EMG, an event marker, an oral-nasal respiration, and

rectal body temperature. The hypnogram is an annotation of sleep patterns. The annotations

included W for wakefulness, R for REM, 1 for stage 1, 2 for stage 2, 3 for stage 3, 4 for

stage 4, M for movement time and ? for not scored. Once the first annotation was reached,

the rest of the annotations were 30 seconds apart creating the 30 second epochs.

Special software is required to read the EDF and EDF+ files. EDFbrowser is a free EDF

and EDF+ reader that can export the contents to a text file. All the contents of the PSG and

hypnogram file were exported to a text file with the option to have time in seconds from the

first recording.

The PSG and hypnogram text files were imported into a custom python 3 script. The

python 3 script, epochs.py, used the pywavelets package to complete a wavelet decomposi-

tion of any suggested level. The output file contains the annotation and decomposition of

each epoch per line unless the annotation is for movement time or not scored. Movement

time and not scored epochs are skipped. All the awake epochs except the last one are

removed prior to the first epoch that is not a wake epcoch. The count of each annotation per
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file is printed to standard out.

4.2.2 Wavelet Decomposition

The EEG has a recording every 10 milliseconds. There are 3000 recordings per epoch.

This implies that the maximum decomposition level is 8. Each decomposition level produced

a different number of coefficients listed in Table 15.

Table 15: The number of coefficients produced for a 30 second epoch at each available level
of decomposition.

Level # of Coefficients

8 14

7 26

6 49

5 96

4 190

3 377

2 752

1 1501

During the decomposition process, the wavelet functions are convolved with the signal at

different scales and positions, resulting in a set of coefficients that represent the contribution

of each wavelet function to the signal at each scale and position. The coefficients at each

scale represent a different frequency band of the signal. After each convolution, the resulting

coefficients are down sampled, which means that the number of samples is reduced by

a factor of two by discarding redundant samples. The sampling rate after each level of

decomposition can be calculated using the following formula where the original signal has a

sample rate of fs and n is the level of decomposition

fsn =
fs

2n .
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The resulting sample rates are matched to EEG frequencies used in the previous defined

model in Table 16.

Table 16: DWT frequency bands and sample rates

Frequency Band DWT Level Sample Rate (Hz)

Beta2 ( >13 Hz) 1 50.0

Beta1 ( >13 Hz) 2 25.0

Alpha (8-13 Hz) 3 12.5

Theta (4-7.99 Hz) 4 6.25

Delta (0-3.99 Hz) 5 3.125

The reconstructed signal after each of five DWT levels on a sample 30 second epoch is

visualized in Figure 24.

Figure 24: Each plot shows a sample 30 second epoch at a different of level of wavelet
decomposition using Daubechies order 2 mother wavelet. The top plot is the original signal.
Each 1 down after that goes to a higher level of decomposition starting at level 1 and going
to level 5 respectively.
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4.2.3 Model

Each of these reconstructed signals is used as input to a CNN. The hyperparameters of

the neural network are tested using a custom hyperparameter random search. The random

search is divided into 4 steps: preprocessing/training parameters, the candidate builder, the

model builder, and the model trainer/tester. These are managed with the random search

python script.

A. Preprocessing/Training Parameters

The random search starts building a model by defining a few parameters based on the

preprocessing of data and training of the model. The preprocessing parameters include the

number and set of input files, the normalization standard deviation and mean, the mother

wavelet, the decomposition level, and the expected frequency band. The training parameters

include the number of cross validation folds, the validation split percentage, the max number

of training epochs, and the batch size. The following is a sample of the preprocessing and

training parameters.

dataFiles: input152.csv,input042.csv

cvFolds: 10

validation split: 0.1

epoch: 100

batchSize: 381

normSTD: 19.476044983423417

normMean: 0.017218097667286797

mother wavelet: db2

decomp level: 5
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frequency band: delta

The data files are preprocessed into 30 second epochs with labels. All the movement

time are removed. All wake stages except the last one before the first stage that is not wake.

The files use the following naming format with the patient number in 2 digits (PP) and the

night number in 1 digit (n)

inputPPn.csv.

The other preprocessing arguments are the normalization standard deviation (normSTD),

the normalization mean (normMean), the mother wavelet used in multilevel discrete wavelet

transform (mother wavelet), the decomposition level used in multilevel discrete wavelet

transform (decomp level), and the frequency band being represented by this CNN. The

normalization process is calculated across the entire dataset in the dataFiles parameter. The

mother wavelet is manually chosen.

The training arguments include the batch size of each epoch (batchSize), the number

maximum number of epochs for training (epoch), the number of cross validation folds

(cvFolds), and the validation split percentage in decimal (validation split). The batch size

is calculated to be the entire training data set given the record count in dataFiles (R), the

number of cross validation folds (C), and validation split (V) with the following formula.

The best epoch size is found through testing. The validation split and cross validation folds

are chosen as a baseline for showing generalization

batchSize = int((R∗ (1−V ))/C+1).

B. The Candidate Builder

The candidate builder creates a json structure with all the necessary information to build

a model. Each CNN candidate is expected to have a CNN layer followed by a collection of

dense layers. Hyperparameters specific to the CNN include the number of filters (defaulted
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to 5 or 10) and the kernal size (defaulted to 3, 5, 10, 20, or 66). The number of dense layers

and the number of nodes in each layer is a hyperparameter. The activation function, kernel

initializers, bias initializers, and optimizers are also all hyperparameters. The following is

an example candidate in json.

1 [

2 {

3 "layer": "conv1d",

4 "no_filters": 5,

5 "kernal_size": 19,

6 "padding": "same",

7 "activation": "tanh",

8 "kernel_initializer": "he_normal",

9 "bias_initializer": "random_normal"

10 },

11 {

12 "layer": "dense",

13 "output": 5,

14 "activation": "tanh",

15 "kernel_initializer": "he_normal",

16 "bias_initializer": "random_normal"

17 },

18 {

19 "layer": "dense",

20 "output": 2,

21 "activation": "softmax",

22 "kernel_initializer": "he_normal",
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23 "bias_initializer": "random_normal"

24 },

25 {

26 "layer": "compile",

27 "optimizer": "adam",

28 "loss": "categorical_crossentropy",

29 "metrics": [

30 "acc"

31 ]

32 }

33 ]

C. The Model Builder

The model builder reads the json structure and creates a Tensorflow Keras model. A

sample CNN model is shown in Figure 25.

D. The Model Trainer/Tester

The model trainer/tester trains the model, tests the model, and saves all relevant data.

The stopping condition is always based on the validation loss. There is an option to explore

the models with a tensor board. Each cross validation training and test set is created using a

the Scikit-Learn StratifiedKFold function. Each training set is trained using the batch size,

validation percentage, and maximum number of epochs parameters. This training is allowed

to save a large collection of metrics including all the fit history, a plot of the loss versus

validation loss, and a plot of the area under the ROC curve versus validation area under the

ROC curve. The fit history can include accuracy, precision, recall, f1 score, and area under

the ROC curve. Each test set is then used to get a collection of metrics that is always saved.

The test set collection of metrics inlcude true positive, false negative, false positive, true

negative, true positive, accuracy, sensitivity, specificity, recall, precision, f1 score, and the
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Figure 25: The output of model.summary() from Tensorflow Keras of a model built by
reading a candidate builder json structure.
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last loss calculated in the fit history.

4.2.4 Filter Comparisons: The Frequency Band Wavelet Model

Once all the models are trained, the CNN filters are extracted and examined for inter-

pretability. Each frequency band representative model trained on the data decomposed by

each mother wavelet (the frequency band wavelet model) produces a different set of filters on

each cross validation step. The filters extracted are the filters from the first cross validation

step with the highest f1 score for each frequency band wavelet model. Two methods of

comparison are used: visual comparison and spearman rank correlation.

The visual comparison is intended to see if there are any relationship to known clincial

markers in provided by the AASM. The clinical markers include but are not limited to

k-complexes, sleep spindles, and slow wave activity. K-complexes are sharp negative

EEG waves that occur during N2 sleep in response to external stimuli. The presence of

K-complexes can be used as a marker of sleep depth and stability. Sleep spindles are brief

bursts of EEG activity in the frequency range of 11-16 Hz that occur during N2 sleep. The

presence and density of sleep spindles can be used as a marker of sleep quality. Slow wave

activity is EEG activity in the frequency range of 0.5-4 Hz that occurs during N3 sleep.

The amount of SWA is an important marker of sleep quality, with higher levels of SWA

indicating deeper and more restorative sleep.

The spearman rank correlation is used as a first step numerical analysis of filters. The

assumption is that a filter can be found by every wavelet model is a high priority. The

Spearman’s rank correlation is calculated for the filters from each extracted frequency band

wavelet model against each of the other extracted filters for each wavelet models associated

with the same frequency band. For example, the theta coiflet 4 model filters are compared

against all the other models representing the theta frequency band. There are 5 or 10 filters

for each model. An example single comparison would be the 1st filter of the theta coiflet 4

model against the 10th filter of the theta haar model.
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The Spearman’s rank coefficient is then used to find filters that are found by other

training. A formula is used to find the filters with the most and highest correlations. The

formula uses the 95th percentile of all the Spearman’s rank coefficients as a threshold, the

filter threshold. The top 5 filters with the most Spearman’s rank coefficients greater than the

filter threshold are found to be the most relevant filters.

4.3 Results

There are tens of gigabytes of results that are available for review in a result set. Things

such as the exact model definition, the training parameters, and the results of each training

can be found in the result set. The following is a collection of sample and high priority

results. The wavelet model with the highest f1 score is coiflet 4. The examples are primary

based on that. Note that the full model is described in greater detail in a previous study so

it is not described here. The results described below include: training parameters, the fit

history with validation of a single training, the cross validation results of a single training,

the average cross validation results for all wavelet models, a plot of filters from the coiflet 4

model and none model, the plot of of the top 5 correlated filters from each frequency band,

and a description of those comparisons.

4.3.1 Training Parameters

The first part of the model completed through the random search is the model for the

delta frequency band. The preprocessing and training arguments are:

dataFiles: input152.csv,input042.csv,input171.csv,input161.csv,

input091.csv,input002.csv,input142.csv,input031.csv,

input082.csv,input151.csv,input101.csv,input032.csv

cvFolds: 10

validation split: 0.1

epoch: 100
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batchSize: 2054

normSTD: 20.366845241085922

normMean: -0.4573919127663568

mother wavelet: coif4

decomp level: 5

frequency band: delta

4.3.2 Fit History - Data

The training then creates the following ”fit history”.

Table 17: Fit History

loss accuracy precision recall f1 score auc roc

0.0018 1 1 1 1 1

0.0012 1 1 1 1 1

0.0008 1 1 1 1 1

0.0007 1 1 1 1 1

0.0006 1 1 1 1 1

0.0005 1 1 1 1 1

0.0005 1 1 1 1 1
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Table 18: Validation Fit History

val loss val accuracy val precision val recall val f1 score val auc roc

0.1018 0.9606 0.9606 0.9606 0.9606 0.9945

0.0978 0.9685 0.9685 0.9685 0.9685 0.9947

0.0797 0.9790 0.9790 0.9790 0.9790 0.9967

0.0773 0.9790 0.9790 0.9790 0.9790 0.9967

0.0812 0.9764 0.9764 0.9764 0.9764 0.9963

0.0844 0.9738 0.9738 0.9738 0.9738 0.9960

0.0843 0.9738 0.9738 0.9738 0.9738 0.9960

The fit history for the train data shows that the model prediction has 100 percent on all

metrics while the loss starts low and steadily decreases. The fit history for the validation start

of with all metrics in the 96% range and moving up while the loss starts low and steadily

decreases. This suggest the model is accurate with the ability to generalize.

4.3.3 Fit History - Plots

This fit history is then plotted in two different plots: loss vs validation loss and auc roc

vs validation auc roc. See Figure 26.

This visualization of the fit history is a simpler way to confirm this model is a good fit

for this data.

4.3.4 Cross Validation

After the training, the cross validation test data is used to create a different set of metrics.

This cross validation data is aggregated accross all cross validation folds in Table 19.

Table 19 identifies the true positives, false positive, false negatives, and true negatives.

Through 6 of the 10 cross validation fold there are 0 false positives and false negatives.

Table 19 identifies that these 6 folds are 100% accurate and the average accuracy is 97%.

Despite that the f1 score gets as low as 11% and the average f1 score is 85%. This is not
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Figure 26: The loss and validation loss of the first cross validation fold with data that has
been preprocessed with the multilevel discrete wavelet transform level 5 with mother wavelet
Daubechies order 2. The AUC ROC and validation AUC ROC of the first cross validation
fold with data that has been preprocessed with the multilevel discrete wavelet transform
level 5 with mother wavelet Daubechies order 2.

as good as other models and the other parts of this complete model need to be added to

improve the model.

4.3.5 Average Cross Validation

The same model is tested with wavelet decomposition using 28 different mother wavelets

and 1 without any wavelet decomposition. All the results produced 98% accuracy or higher

accuracy with an f1 score between 93% and 94%. Table ?? shows the average cross

validation results from all 22 mother wavelets. The coif4 mother wavelet has the highest f1

score with 0.9456. The db5 mother wavelet had the lowest f1 score with 0.9374. The model

without any wavelet decomposition is closer to the lowest f1 score with 0.9392 but notably

not the lowest.

Table 20: The average with confidence interval cross validation results of the model trained
with 29 different data sets. 28 of the data sets were preprocessed by 28 different mother
wavelets. 1 does not have any preprocessing. These are listed from highest f1score to lowest
f1score with the one without preprocessing highlighted in red.

Wavelet Recall Precision F1 Score

coif4 0.991 (0.9711, 1.0109) 0.9996 (0.9987, 1.0005) 0.9456 (0.8253, 1.0659)
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sym3 0.9911 (0.9715, 1.0107) 0.9999 (0.9997, 1.0001) 0.9451 (0.8237, 1.0665)

db4 0.9911 (0.9715, 1.0107) 0.9999 (0.9997, 1.0001) 0.9448 (0.8232, 1.0664)

haar 0.9911 (0.9715, 1.0107) 1 (1, 1) 0.9445 (0.8215, 1.0675)

coif5 0.991 (0.9711, 1.0109) 1 (1, 1) 0.9441 (0.8202, 1.068)

db6 0.99 (0.9708, 1.0092) 0.9981 (0.9959, 1.0003) 0.941 (0.8241, 1.0579)

sym7 0.9902 (0.9705, 1.0099) 0.9993 (0.9979, 1.0007) 0.941 (0.8177, 1.0643)

sym4 0.9897 (0.9708, 1.0086) 0.9981 (0.9957, 1.0005) 0.9407 (0.8248, 1.0566)

sym8 0.99 (0.9708, 1.0092) 0.9985 (0.9969, 1.0001) 0.9407 (0.8212, 1.0602)

db7 0.9901 (0.9704, 1.0098) 0.999 (0.9974, 1.0006) 0.9401 (0.817, 1.0632)

db1 0.9896 (0.97, 1.0092) 0.998 (0.9958, 1.0002) 0.9397 (0.8201, 1.0593)

sym6 0.9898 (0.9704, 1.0092) 0.9984 (0.9965, 1.0003) 0.9397 (0.8191, 1.0603)

db2 0.9899 (0.9705, 1.0093) 0.9985 (0.9967, 1.0003) 0.9397 (0.8187, 1.0607)

sym2 0.9899 (0.9704, 1.0094) 0.9986 (0.9964, 1.0008) 0.9397 (0.8176, 1.0618)

coif2 0.9901 (0.9704, 1.0098) 0.9988 (0.9972, 1.0004) 0.9397 (0.8167, 1.0627)

sym5 0.9898 (0.9699, 1.0097) 0.9984 (0.9968, 1) 0.9394 (0.8165, 1.0623)

None 0.9894 (0.9691, 1.0097) 0.9977 (0.9954, 1) 0.9392 (0.8173, 1.0611)

coif1 0.9898 (0.9699, 1.0097) 0.9985 (0.9969, 1.0001) 0.9391 (0.8155, 1.0627)

gaus1 0.9892 (0.9691, 1.0093) 0.9976 (0.995, 1.0002) 0.939 (0.8188, 1.0592)

db8 0.9896 (0.9698, 1.0094) 0.9983 (0.9967, 0.9999) 0.9388 (0.8155, 1.0621)

db3 0.9895 (0.9696, 1.0094) 0.9983 (0.9963, 1.0003) 0.9387 (0.8163, 1.0611)

gaus3 0.9892 (0.9697, 1.0087) 0.9976 (0.9952, 1) 0.938 (0.8193, 1.0567)

mexh 0.989 (0.9685, 1.0095) 0.9973 (0.9945, 1.0001) 0.938 (0.8165, 1.0595)

dmey 0.9895 (0.9696, 1.0094) 0.9981 (0.9959, 1.0003) 0.938 (0.815, 1.061)

gaus2 0.9891 (0.9683, 1.0099) 0.9976 (0.9948, 1.0004) 0.938 (0.8148, 1.0612)

gaus4 0.9891 (0.9686, 1.0096) 0.9975 (0.995, 1) 0.9378 (0.8149, 1.0607)

coif3 0.9891 (0.9696, 1.0086) 0.998 (0.9956, 1.0004) 0.9377 (0.8175, 1.0579)
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morl 0.9889 (0.9687, 1.0091) 0.9976 (0.995, 1.0002) 0.9376 (0.8165, 1.0587)

db5 0.9892 (0.9696, 1.0088) 0.9979 (0.9955, 1.0003) 0.9374 (0.8168, 1.058)

Table 21: The average with confidence interval cross validation results of the model trained
with 29 different data sets. 28 of the data sets were preprocessed by 28 different mother
wavelets. 1 does not have any preprocessing. These are listed from highest f1score to lowest
f1score with the one without preprocessing highlighted in red.

Wavelet Acc Spec F1 Score

coif4 0.991 (0.9711, 1.0109) 0.9996 (0.9987, 1.0005) 0.9456 (0.8253, 1.0659)

sym3 0.9911 (0.9715, 1.0107) 0.9999 (0.9997, 1.0001) 0.9451 (0.8237, 1.0665)

db4 0.9911 (0.9715, 1.0107) 0.9999 (0.9997, 1.0001) 0.9448 (0.8232, 1.0664)

haar 0.9911 (0.9715, 1.0107) 1 (1, 1) 0.9445 (0.8215, 1.0675)

coif5 0.991 (0.9711, 1.0109) 1 (1, 1) 0.9441 (0.8202, 1.068)

db6 0.99 (0.9708, 1.0092) 0.9981 (0.9959, 1.0003) 0.941 (0.8241, 1.0579)

sym7 0.9902 (0.9705, 1.0099) 0.9993 (0.9979, 1.0007) 0.941 (0.8177, 1.0643)

sym4 0.9897 (0.9708, 1.0086) 0.9981 (0.9957, 1.0005) 0.9407 (0.8248, 1.0566)

sym8 0.99 (0.9708, 1.0092) 0.9985 (0.9969, 1.0001) 0.9407 (0.8212, 1.0602)

db7 0.9901 (0.9704, 1.0098) 0.999 (0.9974, 1.0006) 0.9401 (0.817, 1.0632)

db1 0.9896 (0.97, 1.0092) 0.998 (0.9958, 1.0002) 0.9397 (0.8201, 1.0593)

sym6 0.9898 (0.9704, 1.0092) 0.9984 (0.9965, 1.0003) 0.9397 (0.8191, 1.0603)

db2 0.9899 (0.9705, 1.0093) 0.9985 (0.9967, 1.0003) 0.9397 (0.8187, 1.0607)

sym2 0.9899 (0.9704, 1.0094) 0.9986 (0.9964, 1.0008) 0.9397 (0.8176, 1.0618)

coif2 0.9901 (0.9704, 1.0098) 0.9988 (0.9972, 1.0004) 0.9397 (0.8167, 1.0627)

sym5 0.9898 (0.9699, 1.0097) 0.9984 (0.9968, 1) 0.9394 (0.8165, 1.0623)

None 0.9894 (0.9691, 1.0097) 0.9977 (0.9954, 1) 0.9392 (0.8173, 1.0611)

coif1 0.9898 (0.9699, 1.0097) 0.9985 (0.9969, 1.0001) 0.9391 (0.8155, 1.0627)

gaus1 0.9892 (0.9691, 1.0093) 0.9976 (0.995, 1.0002) 0.939 (0.8188, 1.0592)
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db8 0.9896 (0.9698, 1.0094) 0.9983 (0.9967, 0.9999) 0.9388 (0.8155, 1.0621)

db3 0.9895 (0.9696, 1.0094) 0.9983 (0.9963, 1.0003) 0.9387 (0.8163, 1.0611)

gaus3 0.9892 (0.9697, 1.0087) 0.9976 (0.9952, 1) 0.938 (0.8193, 1.0567)

mexh 0.989 (0.9685, 1.0095) 0.9973 (0.9945, 1.0001) 0.938 (0.8165, 1.0595)

dmey 0.9895 (0.9696, 1.0094) 0.9981 (0.9959, 1.0003) 0.938 (0.815, 1.061)

gaus2 0.9891 (0.9683, 1.0099) 0.9976 (0.9948, 1.0004) 0.938 (0.8148, 1.0612)

gaus4 0.9891 (0.9686, 1.0096) 0.9975 (0.995, 1) 0.9378 (0.8149, 1.0607)

coif3 0.9891 (0.9696, 1.0086) 0.998 (0.9956, 1.0004) 0.9377 (0.8175, 1.0579)

morl 0.9889 (0.9687, 1.0091) 0.9976 (0.995, 1.0002) 0.9376 (0.8165, 1.0587)

db5 0.9892 (0.9696, 1.0088) 0.9979 (0.9955, 1.0003) 0.9374 (0.8168, 1.058)

4.3.6 CNN Filters

The filters from each frequency band wavelet model are extracted and plotted for visual

inspection. The clinical markers such as k-complexes, v-waves, and spindles can be seen

in the filters. Slow waves can not be seen as easily. Figure 27 has the filters from coiflet 4

model and the none model (the model trained on data without preprocessing). The CNN

filter size makes it necessary to consider each frequency band independently. The CNN

filter size for each band is Delta (35), Theta (19), Alpha (10), Beta1 (5), and Beta2 (2).

The Spearman’s rank coefficient is then calculated for all wavelet models in the same

frequency band. This coefficient has more implications for the delta, theta, and alpha

frequency bands because of their filter size. The 95th percentile for the Spearman’s rank

coefficient is 0.34145658263305323. The percent of coefficients for the top 5 of each

frequency band that are higher than the 95th percentile are in Table 22.
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.

Figure 27: Filters from coiflet 4 wavelet model and the no wavlet model are plotted. The
filters are from the weights created during the cross validation with the highest f1 score.
Clinical markers such as k-complexes, v-waves, and spindles can be seen in the filters. Slow
waves can not be seen as easily.
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Table 19: Cross validation results and the average across those cross validations with data
that has been preprocessed with the multilevel discrete wavelet transform level 5 with mother
wavelet Daubechies order 2. The results identify the true positives, false positives, true
negatives, false negatives, accuracy, specificity, recall, precision, and f1 score of each cross
validation test set.

CV Fold True REM False REM False NonREM True NonREM
1 7 17 275 1983
2 228 11 54 1989
3 227 0 55 2000
4 223 63 59 1937
5 214 0 67 2000
6 270 2 12 1997
7 279 8 3 1991
8 278 0 4 1999
9 281 1 1 1998

10 99 25 183 1974
Average 210.6 12.7 71.3 1986.8
CV Fold Acc Spec Recall Precision F1 Score

1 0.872 0.992 0.025 0.292 0.046
2 0.972 0.995 0.809 0.954 0.875
3 0.976 1 0.805 1 0.892
4 0.947 0.969 0.791 0.78 0.785
5 0.971 1 0.762 1 0.865
6 0.994 0.999 0.957 0.993 0.975
7 0.995 0.996 0.989 0.972 0.981
8 0.998 1 0.986 1 0.993
9 0.999 0.999 0.996 0.996 0.996

10 0.909 0.987 0.351 0.798 0.488
Average 0.9633 0.9937 0.7471 0.8785 0.7896

Table 22: The frequency band wavelet models that have the biggest percent of Spearman’s
coefficients above the 95th percentile of Spearman’s coefficients. The 95th percentile of
Spearman’s coefficients is calculated across all models. Every wavelet model in each
frequency band is then ranked by the number of wavelet models it has a higher Spearman’s
coefficient with than the 95th percentile.

Freq Band wavelet 95th % % above 95th

delta 1st db8 0.3415 15.17
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delta 9th sym8 0.3415 14.83

delta 3rd db3 0.3415 11.72

delta 6th sym5 0.3415 11.72

delta 4th db7 0.3415 11.38

theta 4th None 0.4684 11.72

theta 9th db8 0.4684 11.03

theta 7th sym6 0.4684 11.03

theta 4th sym2 0.4684 10.69

theta 6th mexh 0.4684 10.00

alpha 6th db4 0.6485 10.00

alpha 5th coif2 0.6485 10.00

alpha 0th sym5 0.6485 10.00

alpha 0th dmey 0.6485 10.00

alpha 5th gaus3 0.6485 9.31

beta1 0th db2 0.9000 3.45

beta1 1st sym7 0.9000 3.45

beta1 1st coif4 0.9000 3.45

beta1 0th None 0.9000 3.45

beta1 3rd db7 0.9000 3.45

beta2 9th None 1.0000 0.00

beta2 2nd db7 1.0000 0.00

beta2 2nd sym2 1.0000 0.00

beta2 3rd sym2 1.0000 0.00

beta2 4th sym2 1.0000 0.00

Each of the top 5 models are then plotted in Figure 28 to be visually inspected. The

clinical markers such as k-complexes, v-waves, and spindles can be seen in the filters. Slow
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waves can not be seen as easily.

.

Figure 28: The plot of the top 5 wavelet models as identified with the calculation represented
in table 22

4.4 Discussion

Preprocessing with wavelet decomposition does provider marginal improvement in f1

score in most cases. From visual inspection, clinical markers can be seen in the CNN filters.

Preprocessing with wavelet decomposition does not definitively improve the ability to see

those clinical markers. Analysis on a collection of CNN filters from models trained on data

preprocessed with wavelet decomposition may provide insights in the future.

In future studies, every aspect of this study could be changed to improve necessary

results. The choice of EEG channel. The choice of sleep channel. The choice of sleep stage

could be changed. The choice of epoch size could be changed. Of time-frequency techniques,

the wavelet transform is the best choice, but the modification of wavelet transform should

be changed to possibly a continuous wavelet transform or a new modification of the discrete

wavelet transform. The support vector machine, multilayer perceptron, convolution neural

networks, deep feed forward neural networks, and the hidden Markov model should all be
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tested for classification.

This study was limited to a choice between two sleep channels. For at home studies,

there are different devices that use different channels. One device uses a two electrodes

around the Fpz electrode position. This position is basically on the forehead of a person and

would be one of the easiest positions to locate for an untrained person.

The goal of this paper is to support an at home sleep study. A sleep study needs to be

able to detect all stages, but it is very important for a sleep study to identify sleep from

wakefulness. If REM can not be identified, all stages can not be identified with a single

channel EEG.

The epoch was originally defined based on the ease of use. The complication of paper

size and time required for an analysis can be eliminated in choice of epoch size. A training

dataset may be difficult to find for a small epoch size, but each individual wave can be

classified based on the definitions provided by the AASM. This could result in epochs being

scored literally by which waves make up the majority of the epoch.

Time-frequency analysis has many new modifications for discrete wavelet transforms.

These modifications should be tested for improvements to the current discrete wavelet

transforms. Also, the continuous wavelet transform (CWT) can contain more detail than the

discrete wavelet transform (DWT). The CWT should be test against the new modifications

of the DWT.
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CHAPTER V.

Discussion

This paper focuses on PAP therapy compliance of ISP versus DME groups, a CNN

model for REM sleep stage classification with a single channel EEG, and interpretability

of the CNN model based on preprocessing data with many mother wavelets for DWT.

These studies are intended to have tangible impacts on clinical sleep medicine. The ISP

group has better PAP compliance rates at 30 days, 90 days, and 1 year. The CNN model

produces comparable fit metrics to current models. The DWT preprocessing allows for more

comparison to clinical markers.

These studies provide platforms for using data science to improve clinical sleep medicine

and research. STARK laws could be reviewed to reduce the need for patients to use a DME

PAP therapy dispenser and improve PAP therapy compliance resulting in better population

health. Methodologies of monitoring compliant use of PAP therapy could be improved. The

level of detail of clinical markers can be improved by investigating the CNN filters of the

models created. Various preprocessing techniques can be applied to study different diseases.

STARK law prevents ISPs from dispensing PAP therapy to patients. STARK law prevents

providers from profiting off of prescription drugs used within their own practice. Without

this law, providers could prescribe drugs based on the profit that they would receive rather

than the patient’s health. While this is important for prescription drugs, treatments such as

PAP therapy are not usually classified as prescription drugs. It is more common for them

to be classified as durable medical equipment. switching the current classification from

prescription drug to durable medical equipment would allow for providers to dispense PAP

therapy to their own patients resulting in better health outcomes for patients.

The monitoring of PAP therapy is completed by the PAP therapy dispenser. When

patients are not compliant, PAP therapy monitoring can initiate interventions to encourage

patients to be compliant. Interventions are generally better accepted by a trusted provider
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rather than a 3rd party. Monitoring is initially completed for insurance companies in the

first 90 days while long term compliance monitoring is deprioritized. Long term compliance

could help improve patient sleep health and over all health.

An EEG was originally divided into 30 second epochs according to the R&K standard

partially because a 30 second epoch fits on a piece of paper. Today, we no longer use paper

to review EEG recordings. Smaller epochs take more time to investigate by a technician

but provide a more detailed analysis. The clinical markers that we see today are used to

grade these 30 second epochs. EEG recordings can record beyond 1024 hertz. This level

of detail could provide insights into brain activity that we previously did not know existed.

Using a technician to investigate this level of granularity would be too time consuming and

difficult for clinical practitioners to interpret. Relevant interpretable information needs to be

discovered through data science methodologies like those described in this paper.

Patient populations with various understood characteristics need to be investigated. This

can be interpreted as patients of with various dieseases and/or brain types. A standard set of

CNN filters that are consistently learned across many models could be used as a description

of a healthy patient. Deviations from this standard set could be interpreted as indications of

various diseases. This standard set could be discovered by the investigation of CNN filters

across many model and preprocessing techniques.

Data science can provide many benefits to general human population health through the

investigation of clinical sleep medicine. Our ability to provide multi year monitoring and

interventions with data science techniques is growing. Our ability to provide granular and

interpretable investigations of medical imaging data such as EEG data is growing. As a

result of data science studies, patient health is improving.
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Archiv für die gesamte Physiologie des Menschen und der Tiere, 230(1):106–112,

December 1932.

[35] DiMatteo, M. R. Variations in patients’ adherence to medical recommendations: a

quantitative review of 50 years of research. Medical Care, 42(3):200–209, March

2004.

[36] Ebrahimi, F., Mikaeili, M., Estrada, E., and Nazeran, H. Automatic sleep stage

classification based on EEG signals by using neural networks and wavelet packet

coefficients. In 2008 30th Annual International Conference of the IEEE Engineering

in Medicine and Biology Society, pages 1151–1154, August 2008.

[37] Esfahanian, P. and Akhavan, M. GACNN: Training Deep Convolutional Neural

Networks with Genetic Algorithm. arXiv:1909.13354 [cs], September 2019. arXiv:

1909.13354.

[38] Fraiwan, L., Lweesy, K., Khasawneh, N., Wenz, H., and Dickhaus, H. Auto-

mated sleep stage identification system based on time–frequency analysis of a single

EEG channel and random forest classifier. Computer Methods and Programs in

Biomedicine, 108(1):10–19, October 2012.

[39] Goshtasbi, N., Boostani, R., and Sanei, S. SleepFCN: A Fully Convolutional Deep

Learning Framework for Sleep Stage Classification Using Single-Channel Electroen-

cephalograms. IEEE Transactions on Neural Systems and Rehabilitation Engineering,

30:2088–2096, 2022. Conference Name: IEEE Transactions on Neural Systems and

Rehabilitation Engineering.

[40] Haskard Zolnierek, K. B. and DiMatteo, M. R. Physician Communication and Patient

Adherence to Treatment: A Meta-Analysis. Medical Care, 47(8):826, August 2009.



84

[41] Hassan, A. R. and Bhuiyan, M. I. H. A decision support system for automatic sleep

staging from EEG signals using tunable Q-factor wavelet transform and spectral

features. Journal of Neuroscience Methods, 271:107–118, September 2016.

[42] Haynes, R. B., Montague, P., Oliver, T., McKibbon, K. A., Brouwers, M. C., and

Kanani, R. Interventions for helping patients to follow prescriptions for medications.

The Cochrane Database of Systematic Reviews, (2):CD000011, 2000.

[43] Heaton, J. Artificial Intelligence for Humans Volume 3: Deep Learning and Neural

Networks. December 2015.

[44] Hlawatsch, F. and Boudreaux-Bartels, G. F. Linear and quadratic time-frequency

signal representations. IEEE Signal Processing Magazine, 9(2):21–67, April 1992.

[45] Hong, D., Wang, J., and Gardner, R. Real Analysis with an Introduction to Wavelets

and Applications. Elsevier Academic Press, 2005.

[46] Huang, S., Zhu, J., Chen, Y., Wang, T., and Ma, T. Analysis and Classification of

Sleep Stages Based on Common Frequency Pattern From a Single-Channel EEG

Signal. In 2020 42nd Annual International Conference of the IEEE Engineering in

Medicine Biology Society (EMBC), pages 3711–3714, July 2020. ISSN: 1558-4615.

[47] Jacobsen, A. R., Eriksen, F., Hansen, R. W., Erlandsen, M., Thorup, L., Damgård,

M. B., Kirkegaard, M. G., and Hansen, K. W. Determinants for adherence to

continuous positive airway pressure therapy in obstructive sleep apnea. PloS One,

12(12):e0189614, 2017.

[48] Kemp, B., Zwinderman, A., Tuk, B., Kamphuisen, H., and Oberyé, J. The Sleep-EDF
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T., Hornero, R., and Campo, F. d. Usefulness of Artificial Neural Networks in the

Diagnosis and Treatment of Sleep Apnea-Hypopnea Syndrome. 2017.


	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER  Introduction and Background
	1.1 Introduction
	1.2 PAP Therapy
	1.3 Sleep Stage Classification
	1.3.1 The Single Channel EEG

	1.4 Signal Processing
	1.5 Deep Learning
	1.5.1 Convolutional Neural Networks (CNN)
	1.5.2 Recurrent Neural Network (RNN)


	CHAPTER PAP Therapy Compliance
	2.1 Introduction
	2.2 Methods
	2.2.1 Study population
	2.2.2 Procedures
	2.2.3 Statistical analysis

	2.3 Results
	2.3.1 Study participants
	2.3.2 Rate of PAP adherence
	2.3.3 Nightly duration of PAP usage

	2.4 Discussion

	CHAPTER REM Sleep Classification
	3.1 Introduction
	3.2 Methods
	3.3 Results
	3.4 Discussion

	CHAPTER Wavelet Deep Learner
	4.1 Introduction
	4.2 Methods
	4.2.1 Data
	4.2.2 Wavelet Decomposition
	4.2.3 Model
	4.2.4 Filter Comparisons: The Frequency Band Wavelet Model

	4.3 Results
	4.4 Discussion

	CHAPTER Discussion
	BIBLIOGRAPHY

