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ABSTRACT

Gravitational interactions between galaxies represent a fundamental cosmological pro-

cess. These interactions are responsible for numerous aspects of the formation and

evolution of galaxies, such as enhanced and suppressed star formation rates, the devel-

opment of tidal features, and the feeding active galactic nuclei. Given observational

data from systems of interacting galaxies, we seek to determine the values of various

dynamical parameters through the optimization of numerical models via genetic al-

gorithms. However, fitting these models can be quite difficult. The core challenges

include 1) developing an objective fitness function for quantifying the similarity be-

tween model and target images, 2) understanding the inherent symmetries of the

dynamical system which promote morphological degeneracies and impede optimiza-

tion, 3) determining the optimal genetic algorithm operators for the problem.

In this dissertation, we show how naive implementations of fitness functions can

yield unintuitive results. We then propose a novel fitness function which was devel-

oped by utilizing data from the Galaxy Zoo: Mergers project (GZM). The human-

scored models obtained from GZM were used to validate our fitness function and led

to the adoption of a tidal distortion term which dramatically improved results. We

also give a characterization of various geometric and dynamical symmetries inherent

within the system and show how the knowledge of these symmetries can be used

to reduce the volume of the parameter search space when performing optimization.

Lastly, we implement a real-coded genetic algorithm with features designed to ad-

dress these symmetries. Using simulated target systems with known parameters as a

surrogate for observational data, we test our fitness function and genetic algorithm

for robustness, accuracy, and convergence. We discuss the link between the degree

of tidal distortion present in a target image and the constraints on the dynamical

parameters using three different target systems with varying morphology.
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As an offshoot of our development of our work on the galaxy optimization prob-

lem, we also present a kernel mixing strategy which can be applied in both stochas-

tic optimization and adaptive Markov chain Monte Carlo contexts. The method is

flexible and robust enough to handle parameter spaces that are highly multimodal.

We provide results from several benchmark problems, incorporating the method into

simulated annealing, real-coded genetic algorithm, and adaptive Markov chain Monte

Carlo contexts. Results show a significant increase in performance in variants of these

methods which incorporate the mixing strategy over those which do not.
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Part I

Introduction

1 Motivation

Gravitational interactions between galaxies represent a fundamental cosmological pro-

cess. These interactions are responsible for numerous aspects of the formation and

evolution of galaxies, such as enhanced and suppressed star formation rates, the de-

velopment of tidal features, and the feeding active galactic nuclei [16, 17, 20, 31]. The

effective impulse applied by an interaction serves to perturb the galaxies out of their

equilibrium state, allowing us to probe their structure. In particular, the merger of

two galaxies is the central process for hierarchical theories of cosmological structure.

They also help us to better understand dark matter and its distribution [darkmap].

Due to very strict spatio-temporal limitations on observations, we cannot observe

these interactions or mergers over any meaning span of time or from multiple view-

ing angles. As such, simulation is a necessary and invaluable tool for studying these

phenomena. As computing power, software efficiency, and knowledge of extragalactic

dynamics have increased in the past decades, simulational research on interacting

systems of galaxies has become a significant and successful field of computational

astronomy. A particular problem of interest is that of reproducing the morphology

and dynamics of observed interacting systems (referred to as target systems). This

is done by finding simulation parameters which optimize a fitness function that com-

pares model images with images of the target system. Images of these target systems

come in two varieties: 1) brightness maps or (rarely) 2) redshift maps (allowing for

the determination of recessional velocity). In the first case, one is only able to fit to

the morphology of the target system. This promotes a great deal of degeneracy in the
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best-fit solutions since multiple disparate trajectories can produce similar morpholo-

gies. In the second case, one can fit to the target system’s morphology and dynamics.

Though this does not completely eliminate all degeneracy, it drastically reduces it and

allows for the estimation of absolute masses and interaction time (instead of merely

mass ratios and dynamical time). Unfortunately, this type of data is far more rare

than the typical brightness maps.

This dissertation will detail my contributions to the solution of this fitting prob-

lem. The next section will provide a more detailed description of the specific goal the

project and the key objectives met in order to achieve it. The remainder of the intro-

duction will be comprised of relevant background material in the form of 1) a brief

historical survey of extragalactic astronomy, 2) a discussion of the anatomy, classifi-

cation, and simulation of galaxies and their interactions, and 3) detailed descriptions

of our simulation code (SPAM) and available dataset (Galaxy Zoo: Mergers).

After the introduction, I include two papers which detail all of my contributions

to the project. The first paper, entitled “- - -,” describes our fitness function for

quantifying image similarity, our efforts to reduce morphological degeneracy through

the analysis of parameter transformations which preserve morphologies (called sym-

metries), and our real-coded GA for optimizing the fitness function. The second

paper, entitled “- - -,” is unrelated to the main galaxy project. However, during

our research, we developed a kernel mixing strategy for optimization and parameter

estimation. This was initially only applied to our own problem, but upon realizing

its potential, we decided to generalize it and devote an entire paper to it.

Finally, I present some concluding thoughts concerning the state of our project

and my contributions presented in this dissertation. I also discuss the future of this

project and what next steps we plan to pursue.
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2 Project Goal and Objectives

2.1 Project Goals

This dissertation represents the latest step in a long-running project, the goal of which

has been to develop an automated pipeline for the fitting of models of interacting

systems of galaxies to observational data. A major step in this project was completed

by Holincheck et al. [14]. In that paper, they present a semi-automated pipeline which

produces a set of best-fit models given an observational image of a target system. This

pipeline functions by generating a very large number of models (on the order of 105)

which are then assessed for fitness through several increasingly strict means. Some of

the more obviously erroneous models can be eliminated through a simple calculation

of the impulse approximation (a low impulse implies little tidal distortion and is thus

likely a bad morphogical match). Models which pass this test are then examined

by citizens scientists who can approve or reject them (for more information on this

process, see Section 4.2). The best models are finally assigned a fitness score based

on their frequency of approval by the citizen scientists.

While this method was very successful at finding best-fit models of the target sys-

tems tested, it was very time-consuming due to the amount of human labor required

by the citizen scientists. Our goal in this dissertation is to automate the citizen scien-

tists’ role in the pipeline through the development of various fitness and optimization

algorithms. The completion of this goal requires several key objectives to be met

(some of which were completed prior to this dissertation, but will be included here

for completeness). These objectives come in the form of functional units of software

and mathematics which perform specific tasks.
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2.2 Project Objectives

Given the goals of the project, we have four specific objectives for this work::

1. Develop a simulation code efficient enough to be used iteratively

in an optimziation context. This first objective was completed by Wallin et al.

[SPAM] via the SPAM code and it was was used by Holincheck et al. [14]. As a

restricted three-body code, it is O(n) and is therefore efficient enough to justify use in

an optimization context where it must be repeatedly called a large number of times.

2. Develop a method for visualizing simulation output to create an

accurate model image. Since SPAM outputs a file containing particle positions

and velocities, it must be processed appropriately in order to construct a recognizible

image of a galaxy interaction. Currently, we apply a simple 2D histogram to obtain

this image (with additional logarithmic scaling depending on the context). Assuming

that the particle density and the binning resolution are in the proper proportion,

this has been a sufficient strategy for our uses with synthetic target images thus far.

Another member of our team is developing a more realistic imaging system which

utilizes Gaussian blurring and a realistic brightness profile for the galaxies. We will

likely adopt this version when moving on to fitting observational targets.

3. Develop a robust fitness function for quantifying the similarity be-

tween given target and model images. Previous research has been somewhat

restricted by the lack of quality fitness functions. As we will show in Section 5, naive

functions such as a pixel brightness RMS error calculation are insufficient to even per-

form the simple task of distinguishing between significantly tidally perturbed systems

and unperturbed disk systems. We will present our new function that incorporates an

additional tidal distortion term to achieve superior performance. This function was

developed, tested, and validated by checking it against the citizen scientists’ scores

from the Galaxy Zoo: Mergers dataset.
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4. Develop robust methods for optimizing fitness and estimating the

various model parameters for a given target image. Due to the many degen-

eracies and ambiguities created by the restricted 3-body simplifications, the 3D-to-2D

projection, and complex nonlinear dynamics of the system, many common optimiza-

tion and parameter estimation methods are either inefficient or do not converge to the

proper solution. For this reason, we developed our several methods specially suited

for this task. This includes our kernal mixing strategy and our work on morphological

symmetries (allowing us to drastically reduce the volume of parameter space).

The first objective will be discussed in detail in Section 4.1. Our current solution

to the second objective is quite simple and so it will not receive very much attention.

Objectives three and four will comprise the main body of this dissertation.

3 Galaxies

This section will provide relevant and supplemental background information on galax-

ies. We will begin with an overview of the historical origin and development of galactic

astronomy. Then, we provide discussion of the anatomy and classification of galaxies.

Next, we will go over the evolution of galaxies via mergers and interactions between

them. Lastly, we will cover methods used to simulate the physics of galaxies and their

interactions. We will draw heavily from Mo et al. [26] as well as Struck’s review [34].

3.1 Historical development

The fields of galactic and extragalactic atronomy are quite recent (approximately 100

years old). This is due largely to the fact that the objects which we now recognize

as galaxies were once thought to be merely nebulae residing in our own Milky Way

galaxy. In 1781, Charles Messier published his eponymous Messier Catalog [23].
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Containing 103 different so-called “Messier objects,” this list mis-identified 34 galaxies

as one of several types of nebulae or star clusters. In 1888, John Dreyer released his

own New General Cataloge (NGC) containing over 7,000 objects (with two additional

supplements containing over 5,000 objects) [8]. Like Messier and several others before,

a multitude of galaxies were mis-identified.

The progression towards the modern understanding of galaxies began in the early

1900’s with several significant observations. In 1912, Slipher observed that the “An-

dromeda nebula” had a high redshift relative to other known nebulae, implying that

it was receeding at a high velocity. In 1917, Curtis deduced from the faint novae

in the “Andromeda nebula” that it was at the extreme distance of 150,000 parsecs1

(1 parsec = 3.26 light years) away from Earth [6], much farther than Shapley’s es-

timated size of the Milky Way (∼30,000 parsecs) [33]. This resulted in the famed

Shapley-Curtis debate over whether Andromeda actually resided in the Milky Way.

This debate was resolved by Hubble’s observation of Cepheid variable stars (a com-

mon gauge for cosmic distances) in the Andromeda, proving that Andromeda was in

fact an entirely separate galaxy.

Soon after the scientific community acknowledged the existence of new, separate

galaxies, one of the firsts tasks undertaken was to determine a classification scheme

for them and to understand their evolution. We will discuss the classification scheme

which arose in more detail in the following section. For now, we will simply state

that there are two main classes of galaxies: ellipticals and spirals. In an attempt

to articulate the then-current theory of their evolution (it has since been proven

incorrect), Hubble developed his famed “tuning fork diagram [18] (see Figure 1). It

was believed that ellipticals in the handle of the fork evolved into one of two types

of spiral galaxies by flattening due to rotation (it is now believed that ellipticals are

1Note that this estimate was incorrect. The true distance to the Andromeda galaxy is actually
2,500,000 light years
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Figure 1: Hubble’s “tuning fork” diagram (from [1]).

the results of a merger of two galaxies [38]). For this reason, ellipticals are often

referred to as early-type galaxies and spirals as late-type (though this is a misnomer,

the terminology persists to this day).

3.2 Anatomy and classification

Galaxies are some of the most complex, diverse, and majestic objects in the cos-

mos. As such, their characterization is dependent on a multitude of properties and

parameters. These include luminosity, surface brightness, the gas to stellar mass ra-

tio, redshift, and many others. Since our research is more focused on computational

aspects rather than astrophysical and observational aspects, a discussion of a small

selection of such terms will suffice. Perhaps the most important for our purposes

is morphology. Broadly speaking, morphology refers to the shape and structure of

a galaxy or interacting system of galaxies. This can include the presence of tidal

features such as tails and bridges (these are discussed in the following section) as well

as the class to which a given galaxy belongs.
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Figure 2: Left: Spiral NGC 1566. Right: Elliptical NGC 3610.
Source: ESA/Hubble & NASA.

Single galaxies may be classifed into 3 main types of morphology. Elliptical galax-

ies “are mildly flattened, ellipsoidal systems that are mainly supported by the random

motions of their stars” [26]. Ellipticals have little interstellar medium to drive the

creation of new stars, causing their star population to be dominated by older stars.

Ellipticals are typically the result of a merger of two spiral galaxies (or, rather, any

type)2.

The second main class of galaxies, spiral galaxies, “have highly flattened disks

that are mainly supported by rotation” [26]. Spiral anatomy can be divided into

three distinct regions. First, the disk is their predominant feature. This is the plane

in which the majority of the visible galactic mass can be found and is often divided

into two or more arms. Second, the galactic bulge is found at the center of the galaxy.

The is the brightest and densest region of the galaxy and is where the majority of new

star formation takes place. Third, the halo is the outermost part of the galaxy where

stars with only the most highly-eccentric orbits reside. However, despite the apparent

lack of baryonic matter, there is still a large amount of dark matter at this distance.

2As an interesting historical note, elliptical galaxies were once thought to be young galaxies, with
the justification being that they had not yet evolved into the highly flattened shape of spirals. In
reality, the opposite is true.
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This dark matter halo—which extends to the interior of the galaxy as well—is what

is usually referred to by the term halo.

The third class of galaxies contains the irregular galaxies. This class is comprised

a morphologically diverse cast of galaxies which do not fit neatly into either of the

first two categories. Such galaxies are often the result of interactions or mergers which

have not yet fully evolved into an elliptical shape.

A common feature in almost all galaxies is a supermassive black hole located in

the bulge which consumes and distributes a great deal of matter. These black holes

can have masses that range from a few million times more massive than the Sun to

more than a billion times more massive than the Sun. The mass of the bulge in

spiral galaxies or the mass of the entire elliptical galaxy is correlated with the mass of

the central black holes. When black holes are actively accreting material from their

neighborhood, they are termed active galactic nuclei.

Another important concept is that of the dynamics (or dynamical history) of a

galaxy or system of galaxies. This term (which is fairly general and can be used in

several ways) can refer to the either the trajectory of the system through phase space,

the evolution of a galaxy’s morphology over time, or specific descriptive parameters

(i.e., the time, distance, and velocity at the point of closest approach during an

interaction). Though this term is overloaded with connotations, we will try to make

our use of it clear from context.

3.3 Interactions and mergers

Like their indwelling stellar systems, galaxies interact via long-range gravitational

forces. Though galaxies are large extended bodies, when separated by large distances

(many times larger than the galactic radii), they can be treated as point masses since

the gravitational field gradient across their surfaces is negligible. However, when one
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galaxy nears another, the gravitational field gradient becomes substantial, causing a

large imbalance in the attractive force across their disks. This results in perturbations

and distortions in their morphologies known as tidal features. Common tidal features

include tails and bridges. Tails are elongated structures formed by stripping stars

and gas from the outer regions of the galaxies. Bridges are are strips of stars and gas

which form a connection (or, bridge) between the two galaxies.

A common type of interaction between galaxies is their merger, or collision. This

process is initiated when a system of galaxies becomes gravitationally bound. This

causes a series of close orbits which induce intense tidal distortions, resulting in the

galaxies’ eventual coalescence into a single, larger galaxy.

Figure 3: Hubble Telescope image of the NGC-2623 merger (left)
and NGC-4038/39 merger (right). Source: ESA/Hubble & NASA.

There are many different types of mergers which may occur:

� Binary merger : occurs between only two galaxies

� Multiple merger : occurs between 3 or greater.

� Minor merger : occurs when there is a significant size difference between the
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galaxies

� Major merger : occurs when the galaxies are roughly the same size

There also many different types of morphology which can result from mergers.

We will describe several:

� Ring galaxy : these are defined by a very prominent circular density wave and

can result from a nearly on-axis collision between two disk galaxies of similar

mass [22]

� Banana galaxy : closely related to ring galaxies, these are defined by asymmetric

density waves which resemble a banana shape and are formed in much the same

way as their ring counterparts but with an increased impact parameter (bewteen

the center and edge) [2]

� Spiral galaxy : spiral galaxies can be created in much the same way as ring

and banana galaxies, but with an even larger impact parameter (near the edge)

[spiral]

Mergers also play a vital role in the evolution of star populations within galaxies.

As two galaxies collide, their constituent gas and dust are funneled to the inner

regions of the galaxies. This seeds regions with sufficient material for star formation

to be strongly enhanced (while other regions are conversely suppressed). Mergerss

can rearrange and enhance star formation across galaxies.

Also, mergers are also critical for modern theories galaxy formation and evolution.

In the cold dark matter model (CDM), it is postulated that most galaxies extant today

are the result of a sequence mergers of smaller progenitors [34]. This is due to initial

fluctuations in the dark matter distribution soon after the Big Bang [7]. Denser

regions cluster together into large structures (clumps, filaments, etc.) and attract

galaxies which eventually merge.
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Figure 4: Left: Hubble Telescope image of the ring galaxy Hoag’s
Object. Right: Toomre’s simulations showing the effect on mor-
phology of varying the impact parameter [spiral]. The impact pa-
rameter decreases downward while simulation time increases right-
ward. As can be seen, spirals are created by high-impact collisions
while rings are created by low-imact collisions.

3.4 Simulation

Astronomical observations of interacting galaxies face many significant challenges.

Two which are insurmountable are 1) the brevity of the human lifespan relative to

cosmological timescales and 2) the availability of only a single spatial vantage point

for any given object. Given that the timescale of interactions in on the order of 108 yr

[34], there is no noticable change in morphology over the lifespan of a single human

observer (or even over the entire history of astronomy!). Also, given that the distance

to observed interacting systems is on the order of 106 ps or greater, we are too far from

them for parallax to provide a sufficiently different viewing angle. For these reasons,

simulations play an invaluable role in astronomical research, since researchers can
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Figure 5: Depiction of the hierachical theory of galaxies formation
via a merger tree [26].

simply construct models of interactions in computer systems3.

Numerous classes of methods for simulating galaxies and their interactions exist

in the literature. Due to the nature of gravitation as a pair-wise interaction and the

structure of galaxies being primarily a cloud of massive, interacting particles, the

most obvious method would be to set up a full n-body code which solves the ODE

system

d2~ri
dt2

=
∑
j 6=i

G
mj

||~ri − ~rj||2
r̂i→j + ~F ext

i (1)

where i, j = 1, · · · , n, r̂j→i is a unit vector pointing from particle j to particle i,

|| · || is the L2 norm, G is the universal gravitational constant, and F ext
i represents

any additional external forces from, say, dark matter, gas hydrodynamics, etc. While

this method is the most accurate and well-suited for high-resolution runs, it is also

the most time-consuming since it is O(n2). Thus, depending on the application and

computer hardware, runs with large numbers can take prohibitively long.

Hierarchical tree codes are an alternative to full n-body codes which make some

reasonable approximations for the sake of efficiency. Proposed by Barnes and Hut

3This fact was recognized relatively early on in the development of the field of extragalactic
astronomy. In 1941, Holmberg performed the first ever n-body simulation in his experiments on the
tidal distortions caused by close passage of disk nebulae [16, 17].
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[4], these methods work by recurisvely partitioning the simulation space until every

partition has a single particle in it. Upon calculation of the gravitational force for a

given particle i, other particels which are far from i but are mutually close can be

approximated by a new particle which has their total mass and is located at their

center of mass. This provides a significant speedup, granting this method an efficiency

of O(n log(n)).

For some applications, even hierarchical tree codes are too slow. In this case, one

can use the restriced 3-body method. First developed by Toomre and Toomre [39],

this method makes further simplifications for the sake of efficiency. The particles

which comprise the galaxy are massless, with the mass being supplied via an addi-

tional center of mass point (CoM) with a given mass distribution. The CoM imparts

a gravitational acceleration to the massless particles. However, since the particles are

massless, the particles do not impart an acceleration to the CoM. In simulations of

interactions in which there is more than one galaxy, the CoM’s of each galaxy will

interact and the massless particles will be attracted to both CoM’s. The simplifi-

caitons made by the restricted 3-body method give it a impressive efficiency of O(n).

As such, it is quite useful for running large batches of simulations (making it very

suitable for our purposes).

4 Previous Work: SPAM and Galaxy Zoo: Merg-

ers

This section will cover the main resources which were developed prior to my in-

volvement in the project: the SPAM simulation code and the Galaxy Zoo: Mergers

dataset. My contributions to the project heavily utilized each of these resources so

we will cover them in some detail.
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4.1 SPAM: Stellar Particle Animation Module

For our simulation code, we used the restricted three-body SPAM code (Stellar Par-

ticle Animation Module) developed by Wallin et al. [41]. The restricted 3-body

technique—first developed by Toomre and Toomre [39]—is able to drastically reduce

the complexity and runtime of the algorithm with minimal loss of accuracy. As such,

it is quite useful for running large batches of simulations (making it very suitable

for our purposes). The SPAM code makes several significant simplifications for the

sake of runtime, but since the galaxies are not simulated over a long time interval,

accuracy is retained. A detailed description of the code is contained in [41], so we

will provide only a brief overview of its functionality.

The reference frame of the simulation is set so that one galaxy (called the primary)

is initially at the origin with zero velocity and the other galaxy (called the secondary)

is given a relative position and velocity. Generally, the larger of the two galaxies is

considered the primary. The galaxies themselves are comprised of two parts: a center

of mass and a swarm of massless particles. The massless particles only interact with

the masses of the two galaxies while the centers of mass interact with both each other

and the particles. Initially these particles are placed in a thin disk of circular orbits

in specified orbital plane around the center of mass of their respective galaxy.

The list of dynamical parameters which describe the galaxies include the secondary

galaxy’s positions (x, y, z) and velocities (vx, vy, vz), both galaxies’ masses (Mp,Ms),

their radii (rp, rs), and their orientations in terms of altitude (θp, θs) and azimuth

(φp, φs) w.r.t. the z-axis. This gives a total of 14 parameters. Since the x, y position of

the galaxies are can be estimated by simple visual comparison with the observational

image, there are 12 free parameters in the model.

The gravitational acceleration of the centers of mass and massless particles are
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given by

d2 ~Rp

dt2
= G

Ms(|~Rp − ~Rs|)
|~Rp − ~Rs|2

r̂p→s + FDyn,p (2)

d2 ~Rs

dt2
= G

Mp(|~Rs − ~Rp|)
|~Rs − ~Rp|2

r̂s→p + FDyn,s (3)

d2~ri
dt2

= G
Mp(|~ri − ~Rp|)
|~ri − ~Rp|2

r̂i→p +G
Ms(|~ri − ~Rs|)
|~ri − ~Rs|2

r̂i→s (4)

for i = 1, · · · , Nparticles, where Rp and Rs are the center of mass positions, the ~ri

are the positions of the massless particles, and Mp(r) and Ms(r) are the cumulative

mass distributions of the two galaxies. These mass distributions are modeled after

the bulge, disk, and halo potential described by Hernquist et al. [13]. They are given

by

Mbulge(r) = Mbulge
4√
π

∫ r/hbulge

0

exp(−x2)x2dx (5)

Mdisk(r) =
Mdisk

2

∫ r/hdisk

0

exp(−x)x2dx (6)

Mhalo(r) = Mhalo
2αhalo√

π

∫ r/rc

0

exp(−x2)

x2 + q2
halo

x2dx (7)

M(r) = Mbulge(r) +Mdisk(r) +Mhalo(r) (8)

where hbulge, hdisk, rc represent the radii of the bulge, disk, halo (respectively), and

qhalo, αhalo are constants. Note that these functions depend only on the radius r from

the galactic center of mass and are, thus, spherically symmetric. Because of this, the

distributions are inaccurate in regions above or below the plane of the disk. Since

these functions are computationally complex to evaluate and must be called many

times throughout a simulation, they are pre-calculated at a set of fixed radial distances

and stored. During simulations, their value in between these radii is calculated via

linear interpolation.
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In addition to gravitational effects, SPAM also includes acceleration due to Cah-

ndrasekhar’s dynamical friction [5] (the expression is quite complicated, so we simple

refer to it as FDyn in the above equations). This phenomenon slows objects traveling

through a medium of gravitating particles by causing an increase in particle density

behind the object, thus increasing the gravitational force in the retrograde direction.

Due to the fact that restricted 3-body systems are incapable of replicating this behav-

ior naturally, it must be added artificially. The acceleration due to dynamical friction

on the centers of mass is given by

d2 ~R

dt2
=

4πG2M ln(Λ)

|v|3

(
erf(X)− 2X√

π
e−X

2

)
~v (9)

where X = v/σ, σ is the velocity dispersion (assuming a Maxwellian velocity distri-

bution), and Λ is a complex function of the distribution of gravitating particles.

Concerning the execution of SPAM, it is quite unique among simulation algo-

rithms. Given a list of final parameters, the centers of mass are placed at their

respective positions and integrated backward in time, past the point of closest ap-

proach to a fixed starting time. Then, the massless particle positions and velocities

are initialized. Finally, the system is integrated forward in time back to the original

center of mass positions. This initial backward time-stepping combined with the par-

ticular reference frame used were chosen in order to maintain alignment between the

simulated model and the observational image.

4.2 Galaxy Zoo: Mergers

From a computational perspective, the problem of finding an appropriate function

for comparing morphologies is a real challenge. It is difficult to find a method that

is robust enough to perform on a level equivalent to that of a human. By nature,
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humans are excellent at pattern recognition; and where it can be difficult to “train” an

algorithm to spot similarities between objects, humans can do it almost instinctively.

For this reason, Holincheck et al. [14] employed the help of thousands of Citizen

Scientists to assist the Galaxy Zoo: Mergers project in which they volunteered their

pattern recognition abilities to determine best-fit simulations for 62 observational

targets.

The Citizen Scientists’ activity was divided into two phases. After roughly 15,000-

200,000 simulations were performed for each of the targets, the Citizen Scientists

began their work, eventually scoring roughly 200-3,000 simulations per target. Soft-

ware was specially developed by the Galaxy Zoo: Mergers team to allow the Citizen

Scientists to do their work, which was divided into multiple phases. Phase one was

the identification of possible morphology matches out of the many thousands of sim-

ulations. This phase was divided into three steps, the first of which (called Explore)

displayed the target image along with eight simulation images surrounding it in a

3× 3 grid. Individuals click on any simulation images they determine to share mor-

phological aspects with the target. The second step (called Enhance) allowed users

to alter the values of the SPAM parameters in order to turn an image with relatively

similar morphology into one with a greater level of similarity. The third step (called

Evaluate) allowed individuals to rank the simulations they chose in order of morpho-

logical similarity. Few Citizen Scientists performed this step, so the data gathered

from it was not used (phase two essentially replaces the Evaluate step, so there was

no loss).

Phase two was the ranking of possible matches determined from phase one. The

Citizen Scientists analyzed the morphologies of the simulations via a vote-based tour-

nament scheme called the Merger Wars algorithm. In a typical session, an individual

is shown an image of the target (the actual merger) along with two simulations. The
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individual then chooses which simulation is most similar to the target, which counts

as a “win” for one and a “loss” for the other. (They can also select neither image,

thereby affording both images a loss.) Since it is entirely possible for images to be

judged poorly, every simulation participates in multiple rounds of the tournament so

that a poor round does not have a large impact on the results of the competition.

The fitness score of a particular simulation is then calculated as the percentage of

“wins” it achieved, with the maximum being 1.
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Part II

Current Work

This section is comprised of material to be published in forthcoming papers. The first

of these—entitled “A robust fitness function and genetic algorithm to morphologically

constrain the dynamics of interacting galaxies”— is a collaborative effort between

Matthew Ogden, John Wallin, and myself. We intend to submit it to the journal

Astronomy and Computing. It presents our efforts to create a fitness function and

real-coded genetic algorithm which together can fit simulations of interacting galaxies

to data.

The second paper—entitled “A kernel mixing strategy for use in stochastic opti-

mization and adaptive Markov chain Monte Carlo contexts”—is a collaborative effort

between Zachariah Sinkala, John Wallin, and myself. We intend to submit it to the

journal Frontiers in Applied Mathematics and Statistics. It presents and tests a Gaus-

sian kernel mixing strategy which can be applied in both stochastic optimization and

Markov chain Monte Carlo contexts.
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5 A robust fitness function and genetic algorithm

to morphologically constrain the dynamics of in-

teracting galaxies

The material from following section was taken directly from its associated paper with

minimal changes. However, due to the fact that we covered much of the relevant

introductory material in Section I, we eliminated that material from in order to avoid

repetition. Also, since this project has seen many contributors over its lifespan, a

brief overview delineating their contributions and my own will be useful. The main

resources I have used throughout this project which were developed by others would

include 1) the SPAM simulation code and 2) the Galaxy Zoo: Mergers models and

scores. Contributions which are purely mine would include 1) the real-coded GA and

2) the symmetry analysis. Our fitness function was a result of group effort, with all

members of our team taking part in its development in various ways.

5.1 Introduction

Mergers and interactions are the primary means through which galaxies undergo

significant evolutionary change [31]. They produce spectacular tidal features [16, 17]

and drive the formation of new stars [20]. However, due to the transience of the human

lifespan relative to cosmological time-scales, it is impossible to observe interactions

from more than a single cosmological time. Additionally, there is morphological

degeneracy due to information loss from projecting a 3-dimensional object onto a

two-dimensional image. Because of these limitations, revealing the dynamic and

morphological history of a particular interacting system can be very difficult.

The basic physics of gravitational interactions between galaxies can easily be sim-

ulated on a computer. However, reproducing the specific morphology and dynamics
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of an interacting system can be difficult. Constraining the dynamics purely based on

morphology can lead to ambiguity in the optimal solution due to various degeneracies

in the dynamical system (there is no unique solution).

The task we face is constraining the dynamical parameters of an interacting system

by fitting a simulated model to an observational target image. This problem has seen

much attention historically [9, 10, 20, 28, 30, 31, 35–37], but somewhat less in recent

years. This is due in part to a lack of data which allows for the development and

validation of improved fitness functions to compare a model with a target image

[14]. Fortunately, thanks to the Galaxy Zoo: Mergers project, human-ranked best-fit

models are available for 62 different interacting target pairs. With this dataset, we

were able to develop a fitness function which mimics the human rankings from Galaxy

Zoo: Mergers.

We take a similar approach to Wahde [40], using a genetic algorithm (GA) to fit

synthetic target images. Our GA uses a real-coded scheme instead of the binary-

coded scheme used by Wahde. We apply our fitness function and GA to several

synthetic target systems with varying morphologies and degrees of tidal distortion.

We explore how well the dynamics can be reproduced without additional kinematic

measurements such as radial velocity profiles across the system.

This paper is formatted in the following fashion. First, we derive our fitness func-

tion for quantifying image similarity. We demonstrate the advantages of our function

over a naive pixel-to-pixel comparison function. Next, we derive a set of transfor-

mations on the simulation parameters which describe the degeneracies inherent in

the restricted 3-body formalism and take steps to reduce their negative effects on

our GA’s performance. Then, we describe our real-coded GA which we used to opti-

mize morphological similarity. Lastly, we provide results of fitting models of several

different synthetic target systems.
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5.2 Quantifying Image Similarity with Fitness Functions

We now continue on to discuss the quantification of image similarity. Our goal was to

develop an automated method which can perform at a level comparable to the citizen

scientists’ pattern recognition displayed in Merger Wars.

5.2.1 Variance of model quality

For any given target image, the quality of models varies greatly. Figure 6 displays a

particular target image along with several model images which were obtained from

Galaxy Zoo: Mergers. The figure displays both the citizen scientist scores and a

Figure 6: Left: an observational target image. Right: Galaxy Zoo:
Mergers models of varying quality. Numbers above the model im-
ages are fitness scores between that image and the larger image on
the left.

naive fitness function score which performs a simplistic, two-dimensional correlation

between the target image T and model image M

Corr(T,M) =
Cov(T,M)√

Var(T )Var(M)
(10)
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where

Cov(T,M) =
NxNy

NxNy − 1

(Nx−1∑
i=0

Ny−1∑
j=0

(Ti,j − µT )(Mi,j − µM)

)
(11)

Notice the scores above each model image. The citizen scientist scores consistently

assign reasonable and intuitive scores to the models. On the other hand, while some

naive fitness function scores seem reasonable—for instance, the top left model (which

has the highest citizen scientist score) is better than nearly all other images—there

are some clear problems. The bottom right model (to which the citizen scientists

gave a score of 0.0) is scored more highly than the top center and top right models

despite the fact that it has no tidal features to speak of.

For a more holistic view of the data, Figure 7 displays a plot of the citizen scientist

scores vs. the naive fitness scores. In theory, we would like to see a trend which

Figure 7: Plot of the naive fitness function scores versus the citizen
scientist scores. Their Pearson correlation value is r = −0.189 (very
poor).

displays a significant, positive correlation between the two scores. However, there is
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no clear trend and there is instead a small negative correlation of r = −0.189.

Clearly, this simple function is insufficient to serve a robust fitness function. How-

ever, after trying roughly dozen other similarity metrics (including pixel RMS error,

pixel overlap fraction, and image moments to name a few), we discovered that they

all produce the same poor results when compared with the Merger Wars data. This

necessitated an analysis of the root cause of the failure of these functions.

5.2.2 Challenges of similarity scoring

Upon close examination of the Galaxy Zoo: Mergers data, we discovered several

factors which seem to be responsible for the lack of correlation between the human

scores and fitness scores:

1: The majority of models display a low degree of tidal distortion. Perhaps the

most basic challenge is the fact that the overwhelming majority of solutions in SPAM

parameter space (and consequently in the data) lead to models which display a little

to no tidal distortion. Thus, sampling a model at random from SPAM’s parameter

space (which is how Galaxy Zoo: Mergers operated) will most likely generate a model

with few tidal features.

2: Fitness scores of models with a small degree of tidal distortion are biased too

high. Compounding the difficulties created by the first challenge, the fitness values

of these low-distortion models are consistently higher than would be expected from

basic human pattern recognition abilities (see the example discussed above). This is

due to two factors. First, by nature of the alignment convention of fixing the primary

and secondary galaxies’ x, y position, any possible model is guaranteed to overlap

the target to some degree. Second, these regions where the model and target are

guaranteed to overlap are the galactic bulges, where there is a high concentration

of stars and very little morphological information. Thus, the majority of the score’s
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weight comes from regions which have the least impact on the similarity.

3: Scores of models with significant distortion tend to be biased too low if the

distortions are not aligned properly. Similarly, models which do have a similar mor-

phology but, say, the bridges and tails are rotated by several degrees are scored lower

than would be expected from basic human pattern recognition. This is because small

misalignments have a tremendous impact on naive pixel-to-pixel comparisons.

4: There is a a considerable amount of degeneracy within the parameter space

such that different values of the input parameters can produce nearly or even identical

images. This is due to a variety of factors and we will devote an entire section to this

idea later.

In light of these challenges, a key observation we made concerning the behavior of

our fitness functions was that a single function which performs a per pixel comparison

of the target and model images is insufficient for realistic performance. Combining

this with the fact that several of the challenges listed arise due to a particular model’s

degree of tidal distortion, our breakthrough occurred when we realized that the best

solution would be to simply quantify the degree of tidal distortion present in a model

and include that as a term in our fitness functions.

5.2.3 Quantifying tidal distortion

The common thread connecting each of these challenges is the degree of tidal dis-

tortion present in a model image. Thus, we decided to incorporate a measure of the

distortion into our scoring function. Since this solution involves multiple terms, let

us take a moment to distinguish between the two. The TM-score (target-model) is

the function which calculates a base similarity score between the target and model

images. The naive correlation mentioned earlier is an example of a TM-score. The

MU-score (model-unperturbed) is the function which quantifies the degree of tidal
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distortion in the model. This is done via comparison between the model image and

a third image called the unperturbed model image. This new image is created from

SPAM output by taking the unperturbed disk galaxies and translating them to the

final position defined by the SPAM parameters. These galaxies will be in alignment

with their perturbed model counterparts, but will not display any tidal features (see

Figure 8 for examples of unperturbed images). It is then possible to use the same

Figure 8: Demonstration of unperturbed model images. Note that
the top model is quite perturbed (as illustrated by the difference
plot on the right) while the bottom model barely differs from its
unperturbed twin. The right column shows the image difference
which allows clear identification of the regions of tidal distortion.

function which was used in the TM-score to calculate the degree of tidal distortion.

A high score (high similarity) would represent a low degree of distortion since the

model and unperturbed images are similar.

We can now reproduce the plot comparing the Merger Wars scores and the naive

correlation, but now including the quantified tidal distortion (also calculated via the

naive correlation) as an extra color axis (see Figure 9). It is now clear that the lack of

a trend is due to a large number of low-distortion models which the citizen scientists

correctly scored low but our naive fitness function incorrectly scored high. If we filter

out models with a naive correlation with their unperturbed counterpart of 0.85 or
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Figure 9: Left: citizen scientist scores versus naive fitness scores
w/ coloring based on tidal distortion (r = −0.189). Right: clone of
left plot with low distortion models filtered out (r = 0.589).

greater (the very low-distortion models), the trend is clearly visible and the initial

correlation of r = −0.189 between the Merger Wars data and the naive score improves

to r = 0.589.

5.2.4 Complete multi-factor fitness function

We are now in a position to discuss the final formulation of our fitness function. First,

we replace the naive two-dimensional correlation with a weighted correlation using

logarithmic intensity scaling

F1(T,M,w) = Corr(log(1 + T ), log(1 +M), w) (12)

where the weights are defined by

wi,j = |log(1+Ti,j)−log(1+Mi,j)|+|log(1+Ti,j)−log(1+Ui,j)|+|log(1+Mi,j)−log(1+Ui,j)|+c

(13)

These changes are designed to lower the significance of regions which are either too

bright or display little tidal distortion, respectively. We then multiply the tidal dis-
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tortion term to get our complete fitness function

f(T,M,UM , w) = F1(T,M,w) · F2

(
F1(M̂, ÛM ,1), F1(T̂ , ÛM ,1)

)
(14)

FC(T,M,UM , w) =


f(T,M,UM , w) f(T,M,UM , w) > h

h f(T,M,UM , w) ≤ h

(15)

where 1 represents a weighting of all 1’s and

F2(a, b) =


a a ≤ b

(1− a)/(1− b) a > b

(16)

Here, F1(M̂, ÛM ,1) is the model’s degree of tidal distortion and F1(T̂ , ÛM ,1) is an

approximation of the target’s distortion. Since there is no unperturbed target image

UT , we use the model’s in its place. We pass the fitness function through a threshold

given by Equation 15 with typical values being h = 0.01. This is done so that 1) the

correlation never returns a negative value—which would ruin the roulette selection

step in the GA—and so that 2) the population doesn’t contain individuals which have

a prohibitively low selection probability. Note that hatted image variables (e.g., M̂)

are truncated binary images where any pixels above a set threshold are set to 1 while

any below are set to 0 (this is to greater emphasize tidal features when quantifying

the degree of tidal distortion). Also, for the TM-score, we use a fixed image window,

but for the MU- and TU-scores, we allow the image window to vary in size with the

model so that all tidal features may be captured.

We can again recreate the correlation plots with the complete fitness function F2.

Using the complete fitness function with tidal distortion term, we now see a very

visible trend and achieve a significant positive correlation of r = 0.799 for both the
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Figure 10: Left: citizen scientist scores versus complete fitness
scores w/ coloring based on tidal distortion (r = 0.799). Right:
clone of left plot with low distortion models filtered out (r = 0.799).

filtered and unfiltered data.

5.3 Analysis of Morphological Symmetries

We now move on to discuss the various transformations which, when applied to the

SPAM parameters, produce similar or identical morphologies (or symmetries). We

will begin with an overview of symmetry, discussing what factors cause it to occur,

the challenges it creates, and some definitions of different types of symmetry. We will

then derive the transformations which represent the symmetries and discuss how to

mitigate the effects of these symmetries on optimization.

5.3.1 Causes and effects of symmetry

The presence of parameter degeneracy and morphological symmetry in the modeling

of systems of interacting galaxies causes the following major problem: given a target

image of an interacting system that one wishes to fit, there is not a single unique

solution which describes it. This is due to 1) degeneracy in the representation of

solutions due to the parameters themselves and 2) the fact that target images are two-
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dimensional projections (x, y) of a six-dimensional space (x, y, z, vx, vy, vz), causing

otherwise distinct images to look identical. At times, we have additional vz images

(adding a third dimension) which can reduce the degeneracy, but this is rarely the

case. Therefore, we will assume that only the x, y projection is included in any given

data.

From an optimization perspective, the problems above affect the parameter space

in such a way that it can be described by a single unique region which is mirrored into

other regions across several different parameter axes. Thus, to use the full parameter

space (including these mirrored copies) is vastly inefficient. As we will see, one of

the consequences of our investigation of these symmetries is our ability to limit the

search to a single unique region, thus increasing efficiency.

5.3.2 Types of symmetry

Symmetries may be grouped into several classes depending on their properties and

how they are created. Let us provide some useful terminology so that we may distin-

guish between them.

Symmetry. By the term symmetry, we mean a transformation between sets of

SPAM parameters which preserves an interacting system’s morphology.

Projective symmetry. This is a transformation which appears to be a sym-

metry when only viewing the two-dimensional x, y image projection. In reality, the

transformation may not be a true symmetry, but due to the projection, it is impossible

to determine without additional information.

Geometric symmetry. Geometric symmetries are transformations which are

achieved via the composition of rotations or reflections of the interacting system

about various axes. One easily discernible property of them is that they preserve

both the kinetic and potential energy.
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Dynamic symmetry. Dynamic symmetries are created by altering the parame-

ters in such a way that both the time-scale and interaction strength are altered but

the net effect on morphology cancels out. These do not preserve the energy, but they

preserve the ratio of kinetic to potential energy (K/U). This has the effect of scaling

the Lagrangian L = K − U and thus preserving the path of least action (or, orbital

trajectory).

We will now devote a section each to geometric and dynamic symmetries.

5.3.3 Geometrical symmetries

We will begin our investigation of symmetries with geometric symmetries. We will

describe our convention for labeling the various symmetries, derive the geometric

symmetries, and adjust the parameter space to account for them.

Creating and labeling symmetries The first matter to consider is identifying

which SPAM parameters contribute to the construction of geometric symmetries. It is

clear that the masses and radii cannot contribute to any geometric symmetries since

mass is not a geometric quantity and galaxies with different radii cannot overlap

perfectly. This leaves the positions, velocities, and orientation angles. It is also clear

that the secondary x, y positions cannot contribute since they must remain fixed

in order to maintain image alignment. As a consequence, vx, vy cannot contribute

either since changing their values without also changing the corresponding position

values would drastically alter the time, distance, and position of closest approach,

thus changing the degree of tidal distortion and the location of tidal features. This

leaves only 6 SPAM parameters which contribute to the construction of geometric

symmetries: z, vz, φp, φs, θp, θs. It is not clear which combinations of transformations

of these parameters will, in fact, result in symmetries, so we will consider the set of

all possible symmetries for each parameter.
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Before doing so, it should be stated that (unlike typical spherical coordinates)

the θ vales range from [0◦, 360◦] as opposed to [−90◦, 90◦]. This convention was

chosen because the rotation direction of the galaxies in SPAM is always counter-

clockwise with respect to the normal direction defined by φ, θ. Because of this, the

θ’s have twice the number of possible symmetries as the rest of the parameters. In

order to have an equal number of symmetries for each parameter (which makes the

following construction significantly simpler and convenient to use), we introduce two

auxiliary variables ψp, ψs which define the direction of rotation for each galaxy. A

value of +1 will represent counter-clockwise rotation while a value of −1 will represent

clockwise rotation. These parameters will be incorporated into SPAM by simply

adding 180◦ to their respective θ values if ψ = −1 and by doing nothing to the θ values

if ψ = +1. Given the auxiliary ψ variables, we have the set of all possible symmetries

given in Table 1. Interpreting these transformations is quite simple. For example,

Table 1: Possible symmetries for each parameter (including the
auxiliary ψ variables). Integers on top are transformation labels
and are used for brevity’s sake.

0 1

z −z
vz −vz
φp φp + 180
φs φs + 180
θp −θp
θs −θs
ψp −ψp
ψs −ψs

[1, 0, 0, 0, 0, 0, 0, 0] (or [−z, vz, φp, φs, θp, θs, φp, φs]) is shorthand for a transformation

which negates the z parameter. Individual singleton transformations like this one

do not necessarily produce symmetries, but combinations of them do. Together, this

combinations produce a total of 28 = 256 different transformations.

Several key observations to make about these transformations are 1) there are
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only 2 states for each parameter (0 representing the non-transformed value and 1

representing the transformed value), 2) applying the 1 transformation twice will result

in the 0 transformation (since they are all derived from either negating the parameter

value or adding 180◦) and 3) all of these transformations commute. Furthermore, we

can represent this space of transformations as an 8-dimensional vector space V over

the binary field K = Z/2Z = {0, 1} of integers mod 2. The proof that this is indeed

a vector space is trivial and will therefore be omitted.

Testing and analysis of symmetries In order to test all of these transformations

for symmetry, we took the SPAM parameters from a particular Galaxy Zoo: Mergers

model which had clear tidal features, applied all 256 transformations to it, generated

a model for each, and calculated the relative similarity of each of the models w.r.t.

the untransformed model. Models whose similarity was ≈ 1 were checked visually

for symmetry (note that SPAM’s random seeding of the massless particles makes it

impossible to get an exact match). After checking the models, we determined that

there were 8 models (one of these being the untransformed model itself) whose mutual

relative fitness was ≈ 1 followed by a significant drop in fitness for the remaining

models. Thus, there is an 8-fold degeneracy due to geometric symmetries. Table 2

gives the labels for these transformations.

Let us examine these transformations. The first transformation is the identity

transformation and is a trivial symmetry. The next two transformations are equiva-

lent to a 180◦ rotation of the galaxies about their rotation axes (there is a separate

symmetry for each galaxy). Since the galaxies are perfectly circular disks, this trans-

formation produces no difference in morphology. The fourth transformation is a

projective symmetry which performs a mirroring of the entire system in the z direc-

tion. Although this transformation preserves morphology up to projection, if vz data

is known, then this transformation produces a distinct system since all vz values are
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Table 2: Shown here are the transformation labels for the geometric
symmetries. We omit showing the model images since all 8 are
identical.

z vz φp φs θp θs ψp ψs

0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0
0 0 0 1 0 1 0 0
1 1 1 1 0 0 0 0
0 0 1 1 1 1 0 0
1 1 0 1 1 0 0 0
1 1 1 0 0 1 0 0
1 1 0 0 1 1 0 0

negated. The remaining four transformations are produces via compositions of the

previous (note that a composition of symmetries is itself a symmetry). This implies

that this set of 8 symmetries (let’s call it S) is a subspace of V . This is also trivial

to show and will be omitted. Note that while the original space V is 8-dimensional,

this subspace S is 3-dimensional with basis vectors given by the second, third, and

fourth vectors in Table 2.

Now, since these 8 transformations are symmetries, there should be 256/8 = 32

truly unique models out of all that were tested. To search for the 32 unique models,

we ran all comparisons of the 256 models and grouped them into subsets which all

mutually had relative fitnesses of ≈ 1, obtaining the images in Figure 11 and the

labels in Table 3.

There are several points to make about these transformations. First, there is a

clearly visible pattern, that being the fact that this set of transformations includes all

possible combinations of transformations of vz, θp, θs, ψp, ψs. This implies that this set

(call it U) is also a 5-dimensional subspace of V (again, we will omit the proof). Note

that due to the 8 symmetries, each of these unique transformations have 8 different

SPAM parameter representations. Second, many of these unique models are what we

might call half symmetries, i.e., transformations which only affect one galaxy (e.g.,
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Figure 11: Model plots of 32 unique SPAM transformations. See
labels above each image and relative fitness w.r.t. the top left image
on the left of each image.

Table 3: List of unique transformation labels.

z vz φp φs θp θs ψp ψs

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 1
0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 1
0 0 0 0 0 1 1 0
0 0 0 0 0 1 1 1
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 1
0 0 0 0 1 0 1 0
0 0 0 0 1 0 1 1
0 0 0 0 1 1 0 0
0 0 0 0 1 1 0 1
0 0 0 0 1 1 1 0
0 0 0 0 1 1 1 1

z vz φp φs θp θs ψp ψs

0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 1
0 1 0 0 0 0 1 0
0 1 0 0 0 0 1 1
0 1 0 0 0 1 0 0
0 1 0 0 0 1 0 1
0 1 0 0 0 1 1 0
0 1 0 0 0 1 1 1
0 1 0 0 1 0 0 0
0 1 0 0 1 0 0 1
0 1 0 0 1 0 1 0
0 1 0 0 1 0 1 1
0 1 0 0 1 1 0 0
0 1 0 0 1 1 0 1
0 1 0 0 1 1 1 0
0 1 0 0 1 1 1 1

see the first two images in Figure 11). Many of these are due to the dynamcis fof the

restricted three-body formalism. Third, we also have examples of transformations
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which appear to be symmetries in some cases and not in others. Observe Figure

11 again and note the model on the top right (with label [0,0,0,0,0,1,1,1]) and the

model beneath it (with label [0,0,0,0,1,1,1,1]). These two models look nearly identical,

which would lead one to believe that [0,0,0,0,1,0,0,0] (the relative transformation

between them) is a symmetry. However, now compare the model on the top left

(with label [0,0,0,0,0,0,0,0]) and the model beneath it (with label [0,0,0,0,1,0,0,0,0],

which is the transformed model). Although these two models have the same relative

transformation between them as the previous two, this transformation is clearly just a

half symmetry. So, depending on the SPAM parameter values, some transformations

can appear to be symmetries when they are not. This further increases the degeneracy

in an unpredictable way.

Implications of geometric symmetries for SPAM parameter search ranges

A fundamental consequence of the existence of these symmetries is that there are

separate regions of the SPAM parameter space which are identical copies of each other,

and therefore can be safely ignored during optimization. How do these symmetries

specifically affect the SPAM parameter space and create these copied regions? Let us

first look at some simplified, contrived examples.

Suppose we are optimizing a function defined on a 2-dimensional space with a

symmetrical transformation defined by [x,−y] or [0, 1] (so that negating y gives the

same function value). Then this means that each point in quadrant I is identical to a

point in quadrant IV (similarly for II and III). Therefore, we can safely ignore either

all y < 0 or all y > 0 (the choice does not matter since they are identical). Now,

suppose we are given another function with a symmetrical transformation defined by

[−x,−y] or [1, 1]. Then this means that each point in quadrant I is identical to a

point in quadrant III (similarly for II and IV). In this case, we can still only ignore a

single half-plane, but we have more choices of which to ignore. We could either ignore
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x > 0, x < 0, y > 0, or y < 0. Now, suppose we are given another function with two

symmetrical transformations defined by [1, 0] and [0, 1]. Then this means that each

point in quadrant I is identical to a point in quadrant II (via the first transformation)

and is also identical to a point in IV (via the second transformation). Moreover, each

point in quadrant I is identical to a point in quadrant III via the composition of both

transformations ([1, 1]). In this case, we can ignore multiple regions—say, x < 0 and

y < 0—and thereby retain only a single unique quadrant (in this case, quadrant I).

What we have learned here is that for each linearly independent symmetrical trans-

formation, we are able to restrict one of the parameters involved in that transforma-

tion to strictly its positive values (or negative values). Now, since the subspace of

symmetries S is 3-dimensional, we can reduce the range of 3 SPAM parameters (note

that a parameter’s range cannot be restricted twice). See Table 4 for a recap of the

basis of S. As an example, suppose we chose to restrict z, θp, θs. This would reduce

Table 4: Basis of symmetry subspace S.

z vz φp φs θp θs ψp ψs

0 0 1 0 1 0 0 0
0 0 0 1 0 1 0 0
1 1 1 1 0 0 0 0

the volume of the parameter search space by up to a factor of 23 = 8. This reduction

has a tremendous impact on search efficiency during optimization.

5.3.4 Dynamical symmetries

We will begin our discussion of dynamic symmetries just as we did for geometric

symmetries: by identifying which parameters are involved. First, galactic radii and

orientation angles are irrelevant to the concept of dynamic symmetries (at least for

the restricted 3-body case), so they may be ignored. Also, as before, x, y must

remain fixed for image alignment. In addition, changing z would not preserve the
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orbital trajectory (a necessary condition for dynamic symmetries) or tidal features.

This leaves vx, vy, vz,mp,ms. Now since the orbit must be preserved, the velocity

vector ~v can only be scaled, not rotated. However, in order to preserve the orbit,

we must also scale the masses mp,ms. This scaling must following the following

form: [vx, vy, vz,mp,ms, t] → [
√
αvx,
√
αvy,
√
αvz, αmp, αms, t/

√
α] for any α > 0.

Note that the t is neither a SPAM parameter nor explicitly involved in the actual

transformation but is nonetheless affected by the transformation, so we include it

anyway. To show that this transformation is in fact a symmetry, we will apply

Newton’s Second Law to the center of mass of the secondary galaxy (we will use

primed variables to represent transformed quantities):

~F ′s =
d~p′s
dt′

(17)

Gm′pm
′
s

r2
sp

r̂sp = m′s
d~v′s
dt′

(18)

G(αmpms)

r2
sp

r̂sp = ms
d(
√
α~vs)

d(t/
√
α)

(19)

Note that in the final equation, all α’s cancel and we are left with the first equation

with the primes removed, thus showing that trajectories are preserved up to the

time-scale.

The effect of this symmetry on optimization is that when there is no vz data, the

total mass of the system may be held fixed, thus removing it from the list of SPAM

parameters which need to be fit.

5.4 Optimization of Fitness Functions

We spent a great deal of time determining which optimization strategy would be

the best for our project. Prior to our transition to genetic algorithms (GAs), we

used adaptive Markov chain Monte Carlo (MCMC) methods. While these performed
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moderately well, they did not meet our desired standards. For this reason, we switched

over to GAs which have to be superior. However, despite moving on from MCMC

methods, we decided to carry over some features of adaptive MCMC methods and

incorporate them into the new GA context (some of which contributed to an increase

performance). In the following section, we will detail each aspects of our algorithm

and then provide some experimental results.

5.4.1 Variable Transformations

A realization that we had early on was that many of the default SPAM parameters

have poor convergence properties. For this reason, we performed several variable

transformations in order to obtain a parameter representation which would be more

suited to optimization.

Mass fraction and total mass: The first transformation converts the primary

and secondary masses mp,ms into the mass fraction and total mass mf ,mT :

mf =
mp

mp +ms

(20)

mT = mp +ms (21)

This is advantageous for two reasons. First, it utilizes the dynamic symmetry which

relates the total mass and velocity scaling (allowing us to easily hold mT fixed). Also,

when viewing citizen fitness scores vs. parameter value plots, mf has a much more

significant peak than either mp,ms. This is likely because it determines the relative

degrees of tidal distortion between the two galaxies.

Spherical velocity coordinates: Since both galaxies’ orientations are repre-

sented in terms of spherical coordinates, we also chose to convert the secondary ve-
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locity to spherical coordinates |v|, φv, θv:

|v| = (v2
x + v2

y + v2
z)

1/2 (22)

φv = atan2(vy, vx) (23)

θv = asin(vz/(v
2
x + v2

y + v2
z)

1/2) (24)

With this transformation, the kinetic energy is dependent on fewer parameters. Also,

it allows us to apply the spherical random walk used for the orientation angles to the

velocity coordinates as well.

Energy ratio: Since dynamic symmetries preserve the morphology by preserving

the orbit, we wanted a transformation which took advantage of this. Two conse-

quences of preserving the orbit is that 1) the ratio of kinetic and potential energy

(K/U) is preserved and 2) the Lagrangian L = K − U is preserved up to a scale

factor. For this reason, we also replace the velocity magnitude |v| with

R =
K + U

K − U
(25)

where

K =
1

2
ms|v|2 (26)

U = −Gmpms

|r|
(27)

This transformation also interacts nicely with the dynamic symmetries by directly

changing the energy ratios, which are preserved by the transformation. One issue

to consider with this symmetry is that when trying to convert back into the SPAM

parameters, solving for z requires evaluating a square root, leaving it unclear whether

to use the positive or negative solution. We navigate around this issue by representing
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all of our SPAM solution in the form of a symmetry which always has a non-zero z

value, thus allowing us to always take the positive solution.

Projected area: The final transformations replace the galactic radii with its

projected area:

Ap = r2
p|cos(θp)| (28)

As = r2
s |cos(θs)| (29)

This transformation was chosen primarily because of a frequent convergence problem

encountered during early testing. Often, the best-fit solution’s r and θ values were

incorrect by a small but significant amount. These errors were such that the galactic

disks and tidal tails would slightly misalign but in such a way as to roughly preserve

the projected area.

Combining all of these transformations, we get the following transformation from

the default SPAM parameter set to the new set:

[x, y, z, vx, vy, vz,mp,ms, rp, rs, φp, φs, θp, θs]→

[x, y, z, R, φv, θv,mf ,mT , Ap, As, φp, φs, θp, θs]

5.4.2 Genetic algorithm for optimizing image similarity

We present our GA in a general form in Algorithm 7 and then discuss each step in

more detail afterward.

There are numerous parameters which must be set at the beginning of a GA run.

These include the population size Npop, the number of generations Ngen, and the

number of GA phases Nph (explained below). Also, it is important to note that we

do not fit the rotation direction during the GA, but instead leave it fixed to either
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Algorithm 1: Real-coded genetic algorithm for image similarity optimiza-
tion

1: Initialize: Npop, Ngen, Nph, ψp, ψs
2: Initialize population: P̄ j,0, j = 1, · · · , Npop

3: Evaluate population to obtain fitness scores: F (P̄ j,0), j = 1, · · · , Npop

4: for n = 1 to Ngen do
5: if n 6= 1 then
6: Reseed bottom fraction of population
7: end if
8: Perform selection
9: Perform crossover

10: Perform mutation
11: Evaluate population to obtain fitness scores: F (P̄ j,n), j = 1, · · · , Npop

12: end for
13: for m = 1 to Nph do
14: Alternate b/t fixing parameters (φv, φp, φs, θv, θp, θs) and (z,R,mf , As, Ap)
15: Initialize population: P̄ j,0, j = 1, · · · , Npop

16: Evaluate population to obtain fitness scores: F (P̄ j,0), j = 1, · · · , Npop

17: for n = mNgen + 1 to (m+ 1)Ngen do
18: if n 6= mNgen + 1 then
19: Reseed bottom fraction of population
20: end if
21: Perform selection
22: Perform crossover
23: Perform mutation
24: Evaluate population to obtain fitness scores: F (P̄ j,n), j = 1, · · · , Npop

25: end for
26: end for

counterclokwise or clockwise. Since there are only four combinations of values (the

two galaxies each have two possible rotation directions), one can simply run a separate

GA for each case and determine which performed best. Many additional parameters

which allow for fine control over functionality will either be discussed below in the

following subsections detailing each aspect of the algorithm.

We use the notation P̄ j,n to refer to the SPAM parameter vector of the j-th

individual in the population at the n-th generation (specific parameter values can be

indexed with a subscript i: P j,n
i ). We define F (P̄ ) as the fitness score of the model
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produced from a given set of SPAM parameters P̄ (where F is the complete fitness

function discussed earlier).

GA phases: Before describing the steps in the GA, let us discuss the idea of

the GA phases. In the initial phase (the first loop in Algorithm 7), we allow all

parameters to be varied in order to find the general region of the optimal solution.

We then proceed in an alternating sequence of phases in which some parameters are

fixed and others are varied. In odd phases, we fix all parameters to their current

best-fit values except φv, φp, φs, θv, θp, θs. These parameters are highly susceptible to

geometric symmetries, so only varying them allows for a more fine-grained search. In

even phases, we exchange all of the fixed and varying parameters, so that we now

are varying z,R,mf , As, Ap while the angles are fixed at their current best-fit values.

This alternation of phases can be repeated as many times as desired. The purpose of

this scheme is to take a half symmetry which might be found in the initial phase and

(via the alternation) find the true values in a later phase.

Initialize/reseed population: Being robust optimization methods, GAs are in-

tended to be minimally dependent on starting conditions. However, when working

with 11 parameters which are all interrelated via complex non-linear dynamics, even

GAs can struggle when given a poor initialization. To give our GA the best possible

starting conditions, we generate an initial population of linearly-spaced sequence of

values for each parameter from its minimum to its maximum. A 2-dimensional ex-

ample of this where both parameters have a range of [0,1] and the population is size

5 would be given by {(0, 0), (0.25, 0.25), (0.5, 0.5), (0.75, 0.75), (1.0, 1.0)}. Note that

this population is essentially a perfectly correlated diagonal line through the center

of the space. Clearly, this would be a terrible initial population if no further steps

were taken. However, when a sufficiently large population is used, it has one useful

property in that the entire range of values for all parameters is covered. To make use
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of this property, we repeatedly apply a random shuffle to the parameters. For the

resulting initial population, we use the shuffling with the highest determinant of its

correlation matrix of all the parameters (since this would imply that it is the shuffling

which is the most “spread out” or, more precisely, the closest approximation to a true

uniform distribution).

In addition to initializing the population in the beginning of a GA run, we also

use the above method to reseed a portion of the population at each step in order to

maintain a high degree of genetic diversity. This is done by replacing a preset fraction

of lowest fit solutions with newly generated solutions from the initialization process.

We typically use a fraction of 1/8.

Evaluate population: The population fitness is evaluated by running a SPAM

simulation for each parameter vector, creating model and unperturbed images, and

calculating the fitness score via the complete fitness function discussed above. This

is done in parallel via Python’s Threads package, allowing for a tremendous speedup

since population evaluation is trivially parallel.

Selection: For selection, we implemented fitness-proportionate selection, or roulette

wheel selection, where the probability of selection is proportional to the fitness score.

The probabilities are obtained by normalizing the fitnesses across the current popula-

tion. We also implemented elitism, where Nkeep individuals are kept in the population

until the next generation (these solutions are not mutated). We select Npop pairs of

parents and let each pair produce one child. Our selection process is laid out in Al-

gorithm 2. Here, we define pj as the selection probability distribution derived from

normalized the fitnesses of the j-th generation. From this distribution, Npop −Nkeep

pairs of parents (labelled Āj, B̄j) are selected. After the random parent selection is

done, we perform the elitism step, where the Nkeep best individuals in the population

are saved as duplicate parent pairs (they are both parents Āj and B̄j so that crossover
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Algorithm 2: Fitness-proportionate selection

1: Let Āj, B̄j where j = 1, · · · , Npop be the parent solution vectors of the next
generation

2: Get selection probabilities: pj ∝ F (P̄ j,n)2

3: for j = 1 to Npop −Nkeep do
4: Select parents Āj, B̄j from the distribution pj

5: end for
6: Keep Nkeep best solutions as remaining parents

between them results in themselves).

Crossover: Our crossover method is essentially the real-coded equivalent of a

weighted randomized binary gene exchange crossover. In this scheme, child solutions

are given the parameter values of their parents with a probability based on the parents’

fitness (higher fit parents have a higher probability of given the child their genes).

Algorithm 3 describes our scheme.

Algorithm 3: Weighted randomized gene exchange crossover

1: Let C̄j where j = 1, · · · , Npop be the child solution vectors
2: for j = 1 to Npop do
3: for i = 1 to Nparam do
4: Randomly select a child’s parameter value Cj

i from (Aji , B
j
i ) proportional to

their fitnesses (F (Āj), F (B̄j))
5: end for
6: end for

We tested several other methods of crossover, which did not make their way into

the revision of the GA presented in this paper. Weighted mean crossover converged

fairly quickly for parameters which were less susceptible to false optima due to sym-

metries. However, parameters with significant symmetries (θp, θs, for example) were

difficult to converge on due to the fact that mean crossover would attempt to con-

verge in between the two symmetries. Another crossover technique which was quite

promising, but proved difficult to incorporate into our final scheme is a variation

on weighted randomized crossover. The variation is one of the features which was
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brought over from our previous work in adaptive MCMC methods. Using Haario’s

covariance matrix from the adaptive Metropolis method (AM) [11], after Nburn burn-

in generations, we transform the entire population to the principal component basis

before and after performing the weighted randomized gene exchange crossover (so

that crossover is done in the principal component basis). This method is advanta-

geous because it allows crossover to be performed along (hopefully) more relevant

parameter axes. Though this method performed well, it requires a burn-in time that

is a sizable percentage of the full runtime. This conflicts with our scheme of several

GA short phases where some parameters are held fixed.

Mutation: Our mutation step did retain an idea from our MCMC research (that

of kernel mixing). For most parameters, mutation is done by applying a random

Gaussian perturbation to the child solutions (see the following paragraph for excep-

tions). This perturbation is described by a diagonal covariance matrix whose values

are based on the parameter range and a scaling factor. Since the optimal scaling

factor in not known a priori, we implement a kernel mixing strategy in which each

diagonal element of the matrix may be scaled down (thinning the Gaussian in that

direction), held fixed, or scaled up (widening the Gaussian in that direction. This

scaling is applied randomly based on a presupplied set of mixing probabilities and

amplitudes. It is also applied separately for each parameter so that in a single step,

one parameter may be scaled up while another may be scaled down.

For the orientation and velocity angles, mutation is done by performing a random

walk over the unit sphere. In this case, each step in the walk is done along a particular

great circle. The direction is chosen from a uniform distribution while the distance is

chosen from the positive side of a Gaussian distribution (which is mixed in the same

fashion as the other parameters). The pseudocode for our mutation step in given

in Algorithm 4. In each step, we generate a new candidate individual Q̄j from each
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Algorithm 4: Mutation with parameter bounds

1: Initialize: Pmin
i , Pmax

i for i = 1, · · · , Nparam

2: for j = 1 to Npop do
3: if perturbing φ’s or θ’s then
4: Perform great circle transport for orientation and velocity angles
5: else
6: Perform kernel mixing on Σ to obtain Σ̂
7: Set: Q̄j ∼ N(C̄j, Σ̂)
8: end if
9: for i = 1 to Nparam do

10: if Qj
i < Pmin

i then
11: Set: P j,n+1

i = Pmin
i + ε

12: else if Pmax
i < Qj

i then
13: Set: P j,n+1

i = Pmax
i − ε

14: else
15: Set: P j,n+1

i = Qj
i

16: end if
17: end for
18: end for

child C̄j. We then check each of its components to ensure that it is within the allowed

search space [Pmin
i , Pmax

i ]. If any parameter lies beyond its limits, it is corrected via

truncation by replacing its value with one which is slightly within the search space

(a distance ε away from the boundary).

There are several additional mutation strategies which did not make the final revi-

sion of the algorithm. Like with crossover, we experimented with using Haarios’s AM

covariance matrix. However, it was rejected this for the same reason we rejected its

use in crossover. We also, experimented with adapting parameter ranges which were

intended to narrow the search onto the optimal region. This strategy was rejected

because there was no way to guarantee that the optimal region was not excluded in

the narrowing. In an attempt to combat the symmetries, we tested another technique

where we periodically apply random flips to the parameters susceptible to symme-

tries. This technique was rejected because it did not produce results of any better

quality. We also tested a kernel scaling idea from simulated annealing in which (due
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to cooling), the Gaussian perturbations get asymptotically smaller over runtime. Like

the adaptive ranges, this was incorporated in an attempt to narrow in on the optimal

region. However, this significantly decreases genetic diversity in the later generations

and was eliminated, as well.

5.4.3 Experimental testing of the GA

We performed extensive testing on our fitness function and GA. In this section, we

will give an overview of our testing methodology and the results of several example

tests to show the effectiveness of our methods.

Experimental methodology and GA hyper-parameter values Our primary

method of testing was to use a SPAM model with known parameters as a synthetic

target. Doing this allowed for the ability to quantify the accuracy of our fit by

1) visual comparison of the best-fit solution and target images, 2) convergence and

clustering of the various SPAM and additional dynamical parameters, and 3) direct

comparison of the best-fit and target parameter values.

In the testing of our GA, we used several different synthetic targets systems, but

for the sake of conciseness, we will present results from only three different systems.

The first system displays tidal features in both galaxies, the second displays no tidal

features in either galaxy, and the third displays tidal features in only one galaxy.

For all three target systems, we used a resolution of 4,000 particles per galaxy

(ppg) and 35 × 35 pixel images. For the third target, we performed an additional

10,000 ppg test (see below). The range of search space for each parameter was either

obtained via statistics from the Galaxy Zoo: Mergers data files or was manually

set. The ranges can be seen on the GA convergences plots below. We limited the

search space to only include one of the eight symmetries (z ≥ 0, 0 ≤ φp ≤ 180, and

0 ≤ φs ≤ 180). Also, we fixed the rotation direction ψ of the galaxies in the models to
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be the same as that of the target since we preferred to keep our GA real-coded. In a

case where one does not know the direction, one would simply need to run 4 instances

of the GA (one for each combination of directions). Concerning the GA’s parameters,

we use a population size of 28 (via elitism, we keep the top 4 best-fit solutions). For

the initial phase of the GA, we use 27 generations (plus the initial step) followed by

26 generations (plus the initial step) for each of the subsequent phases of parameter

alternation (for a total of 259 generations). We reseed the bottom 1/8 (lowest fitness)

of the population at each step using the method discussed earlier. Also, concerning the

mixing probabilities and amplitudes for the Gaussian perturbation in the mutation

step, we use a uniform 1/3 probability for either thinning, fixing, or widening the

Gaussian for each parameter. We also set the thinning and widening amplitudes to

be 1/3 and 3, respectively.

We did the majority of our work on a Linux machine equipped with two Intel®

Xeon® Gold 6254 CPU @ 3.10 GHz (72 threads total) and 768 GB of RAM. With the

parameters described above (4,000 ppg, 256 population size, 259 generations), this

system took roughly 12 hours to complete an entire GA run. Since SPAM is linear

in time, the 10,000 ppg run took a proportionately longer amount of time. Storage

requirements were minimal since SPAM particle files were processed and deleted over

the course of the GA.

Synthetic target 1 For our first test, we wanted a target which displayed signifi-

cant tidal features from both galaxies (tails and a connecting bridge). Such a model

is a best-case scenario for the GA to converge since there is a substantial amount of

morphological information present in the system (which serves to decrease the level

of degeneracy in the parameters).

Figure 12 displays our target image (which is Galaxy Zoo: Merger’s best-fit model

of SSDS ID 587722984435351614) and the GA’s best-fit model. We display these in
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two separate formats: a density plot (w/ log scaling) and scatter plot. We show

the density plot since it more closely models an observational image. We show the

scatter plot to more clearly visualize regions of low density and distinguish between

the primary (blue) and secondary (red) galaxies.

Figure 12: Synthetic target 1. Target images are on the top row
and the GA’s best-fit model images are on the bottom row. The
density plots on the left are plotted with a log scale. In the scatter
plots, the primary galaxy is blue and the secondary is red. The
fitness of the best model image was 0.937.

As can be seen from the figure, the GA achieved a high fitness (0.937). There are

three notable differences in morphology between the target and model images. First,

the primary galaxy’s top tidal tail is slightly thinner in the target than the model.

Second, the secondary’s rightward-pointing tail is slightly longer in the target than

the model. Third, there is a slightly larger gap between secondary’s leftward-pointing

tail and the galactic bulge in the target than the corresponding region of the model.

Moving on to Figure 13 and 5, we see the GA’s parameter convergence history and

best-fit values. From the plots and table, we see that most of the SPAM parameters

converged well (recall that x, y,mT are held fixed at the correct value). The z value

may appear inaccurate; however, the search range spanned [0,∼ 25], so we do not find
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Figure 13: Parameter convergence plots for synthetic target 1 using
the GA. The solid lines are the true parameter values while the
dotted lines are the best-fit parameter values. The first 11 plots
display the transformed SPAM parameters, the next 7 plots display
the orbital elements, and the final plot displays the fitness values.
Note that tmin is in the convention that a value of 10 is interpreted
as 10 time units prior to the final state shown in the plots. Also,
β = Mtot/(vminr

2
min) is a measure of the impulse applied to the

primary by the secondary.

Table 5: Table of parameter values for synthetic target 1 and its
best-fit GA model.

x y z R φv θv mf

target -9.939 -4.581 3.274 0.291 258.489 -23.275 0.486
model -9.939 -4.581 0.017 0.212 280.307 -12.235 0.389

mT Ap As φp φs θp θs

target 48.024 9.125 17.65 129.692 36.812 -41.785 51.429
model 48.024 9.742 16.022 140.538 34.092 -45.42 -48.451

tmin dmin vmin β i ω Ω

target 11.356 9.134 3.116 0.187 5.163 22.975 35.014
model 12.712 9.215 2.64 0.214 34.34 101.531 99.582

a difference of 3 to be significantly in error. Also, the model’s mass fraction mf is 20%

lower than the target’s, but this parameter doesn’t have a very large impact on the

morphology. At first glance, the model’s secondary altitude θs appears significantly

in error; however, it is merely the (approximate) negative of the target value. This

is due to one of the half symmetries discussed earlier. Flipping the altitude of the
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secondary does not affect the primary at all (given the restricted 3-body formalism)

and the effect on the secondary itself is minor. Concerning the orbital parameters,

the first four (none of which are angles) all fit quite well. However, the argument of

periapsis ω is off by 80◦. This is unrelated to the problem of θs since ω is defined by

the primary’s plane of rotation. Also, this error is unlikely to significantly affect the

morphology since a difference in ω merely amounts to rotating the point of closest

approach to a different angular location, leaving tmin, dmin, vmin unchanged. A similar

argument applies to Ω.

Synthetic target 2 For our second target, we wanted essentially the opposite

of the first: a target with minimal tidal features, making prone to high degrees of

parameter degeneracy. We were interested in how the GA would perform under such

poor conditions. Figure 14 displays the target (Galaxy Zoo: Merger’s best-fit model

of SSDS ID 587736941981466667) and the GA’s best-fit model.

Figure 14: Synthetic target 2. Target images are on the top row
and the GA’s best-fit model images are on the bottom row. The
density plots on the left are plotted with a log scale. In the scatter
plots, the primary galaxy is blue and the secondary is red. The
fitness of the best model was 0.946.
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Looking at the density plots, it is difficult to discern any morphological difference

between the target and model. However, looking at the scatter plot, we see that the

right half of the model’s secondary galaxy is significantly warped. This warping is

obscured in the density plot and so the model achieved a high fitness of 0.946.

Looking at the GA convergence plots in Figure 15, we see several interesting

features. As expected, the parameters responsible for the system’s geometry were

fit quite well while the parameters which govern the system’s dynamics display a

large amount of error. The reason for this is that the geometry of the system is

the only significant constraint (since there is are no tidal features). The geometric

parameters (the four orientation angles and the areas) were all fit well. Moving to the

dynamical parameters, we see a very significant error in the energy ratio R and the

velocity angles φv, θv. Surprisingly, the z parameter converged fairly well with visible

clustering in the GA run near the target value. This is unexpected since (given the

low distortion) large values are consistent with high fitness, and there shouldn’t be

any reason to favor lower values which might promote an increase in tidal distortion.

Similarly, the mass fraction mf fit better than expected since (as stated above) it

Figure 15: Parameter convergence plots for synthetic target 2 using
the GA.

doesn’t have a large impact on fitness.

Concerning the orbital parameters, i, ω are fit well but Ω is not (like due to
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Table 6: Table of parameter values for synthetic target 2 and its
best-fit GA model.

x y z R φv θv mf

target -0.273 0.19 0.669 0.755 340.999 57.573 0.539
model -0.273 0.19 1.362 0.176 85.028 31.849 0.684

mT Ap As φp φs θp θs

target 0.239 0.086 0.036 89.048 54.761 -21.867 66.515
model 0.239 0.087 0.046 118.982 82.289 -1.962 55.589

tmin dmin vmin β i ω Ω

target 8.27 0.625 1.6 1.245 114.051 18.899 62.544
model 10.102 0.908 0.709 0.409 104.1 28.248 138.288

the velocity angles being incorrect). Concerning the point of closest approach, the

model’s tmin was slightly larger (which might explain the additional tidal warping

in the secondary galaxy). However, the model’s dmin was approximately 50% larger

than the target while its vmin was less than 50% of that of the target. This led to the

model having a β value of approximately 1/3 of the target’s value.

Synthetic target 3 For the third target, we chose a system which had tidal features

present in only one galaxy. In our initial runs with 4,000 particles per galaxy, we

noticed that its high degree of tidal distortion caused the primary galaxy to become

quite diffuse. This made achieving a high fitness difficult due to a deceptively low

overlap between model and target pixels. For this reason, we increased the resolution

to 10,000 particles per galaxy.

Figure 16 displays the target (Galaxy Zoo: Merger’s best-fit model of SSDS ID

587726033843585146) and the GA’s best-fit models for both the 4,000 ppg (model 1)

and 10,000 ppg (model 2) runs.

As expected, the fitness for the 10,000 ppg run is higher (0.88) than the 4,000 ppg

run (0.74). This is due to both an improved match in morphology and a higher pixel

overlap due to the increased density. Looking at the images, we see that since the
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Figure 16: Synthetic target 3. Left: target/model images from
4,000 particles per galaxy run (fitness: 0.74). Right: target/model
images from 10,000 particles per galaxy run (fitness: 0.88).

Figure 17: Parameter convergence plots for synthetic target 3. Left:
plots for model 1. Right: plots for model 2.

smaller secondary galaxy is unperturbed, its morphology was fit very easily. Moving

onto the primary galaxy, we see that the general oblong shape is retained in the

model. However, the denser regions have somewhat differing profiles. Also, for model

2, the protrusion in the top right of the system is much more pronounced in the target

than the model.

Examining the parameters, we find that model 2’s values of z, φv, θv, Ap, As, θp
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Table 7: Table of parameter values for synthetic target 3 and its
best-fit GA models.

x y z R φv θv mf

target -0.493 -1.438 1.552 0.074 261.172 -8.735 0.467
model 1 -0.493 -1.438 0.539 -0.129 289.538 -51.039 0.4
model 2 -0.493 -1.438 0.822 -0.158 277.892 -34.453 0.369

mT Ap As φp φs θp θs

target 2.463 0.201 0.13 56.943 56.708 -83.172 0.0
model 1 2.463 0.721 0.157 72.268 64.868 -69.611 -15.389
model 2 2.463 0.273 0.124 76.612 95.072 -74.684 17.314

tmin dmin vmin β i ω Ω

target 9.696 1.18 1.921 1.096 111.386 37.074 11.951
model 1 2.356 0.275 2.83 11.537 88.61 154.285 23.141
model 2 2.463 0.032 4.212 561.548 90.27 63.959 21.592

were all nearer to the target value while model 1’s values of R,mf , φp, φs, θs were

nearer. Notice that the two models’ values of θs are separated by an approximate

half symmetry (they are also both very small, so the symmetry might not be a relevant

factor). Comparing the disk radii and distance of closest approach, we find something

interesting. Converting units back into SPAM units, we find that the primary radius

rp of the target, model 1, and model 2 are 1.28, 1.45, and 1.02, respectively. Also, the

dmin’s of these systems are 1.18, 0.275, and 0.032, respectively. So, for the target, dmin

is slightly smaller than rp (i.e., the collision was on the edge), while for the models,

it is significantly smaller (i.e., the collision was near the center).

In addition, both models also display bound orbits (since R < 0) while the target

is very slightly parabolic (R > 0). For these reasons, the first four orbital parameters

show significant error (especially tmin and β). Both models’ tmin shows a much more

recent collision than is the case for the target but with a significantly larger β. Also,

looking at dmin, vmin, both models had a much faster and close-range flyby than the

target. These factors combine to produce highly erroneous β values, particularly for

model 2.
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5.4.4 Discussion of GA Results

After analyzing the results from the above three tests, there are two principal insights

we have drawn: 1) there is an optimal range of degree of tidal distortion within which

fitting is easier and beyond which fitting is more difficult and 2) fitting is easier when

both galaxies are tidally distorted.

The first of these insights is demonstrated by the difference in success of fitting

targets 1 and 2. Target 1 had a substantial degree of tidal distortion, providing plenty

of morphological features. In this case, the parameters fit quite well. In target 2, it

was easy to find many models which matched the morphology and geometry; however,

we did not find the true values for many of the parameters. This is due to the lack of

discernible features in the system. We did not test a target with an extreme degree

of tidal distortion since such targets were not included in the Galaxy Zoo: Mergers

dataset. These targets are challenging to fit since they are often bound orbits which

have undergone multiple approaches. Such systems are highly sensitive to changes in

dynamical parameters and create chaotic morphologies.

The second of these insights is demonstrated by the difference in success of fitting

targets 1 and 3. In the case of target 1, both galaxies had roughly equal degrees of tidal

distortion. Conversely, all of the tidal distortion in target 3 was concentrated in the

primary galaxy. After adjusting the resolution, we were able to fit some parameters

well and recover the morphology to an extent, but our best model’s dynamics were

erroneous (see the orbital parameters). We suspect that this is primarily due to a lack

of tidal features in the secondary galaxy. Tidal features are created by translating the

initially circular orbits of particles (stars and gas) into elliptical orbits, making them

highly dependent on the dynamical time since the interaction occurred. When both

galaxies have tidal distortions, we have two independent measurements of dynamical

time, placing much stronger constraints on the parameters.
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5.5 Conclusions

In this paper, we have developed and tested a suite of methods for fitting models

of interacting galaxies to target systems. Our fitness function is able to reproduce

the citizen scientists’ rankings of the Galaxy Zoo: Mergers models to a significant

degree of accuracy. It is also able to identify low-distortion models and penalize their

score. Our analysis of the various types of symmetries inherent in the simulation

code’s representation of the galaxies also allows for 1) more efficient exploration of

parameter space by elimination of degenerate regions and 2) helpful analysis of GA

results to determine if a given parameter is truly inaccurate or merely a transformation

away from the true value.

Our experiments suggest that our real-coded GA achieves accurate results on

systems where both galaxies are tidally distorted. Given the true value of the total

mass, the best-fit model of target 1 gives a close approximation of the absolute time,

mass ratios, and orbital parameters, with one degeneracy present in θs. This and

other degeneracies can be eliminated with the inclusion of spectroscopic information

in the fitness function. This would also allow for determination of the absolute time

and total mass of the system.

Targets 2 and 3 show the limitations of using morphology alone to fit a system’s

dynamical parameters (given that they display less significant tidal features than tar-

get 1) when spectroscopic data is unavailable. Though our best-fit models reproduce

the morphology, they cannot reliably reproduce the dynamics of the system. For

systems without significant tidal distortion in both galaxies, the degeneracies present

in this dynamical system make it impossible to disambiguate the underlying orbital

dynamics.

In future work, we plan to 1) continue iterating on the fitness function through

the inclusion of various image transformations and machine learning techniques, 2)
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use our GA to fit a model to a true observational image of an interacting system, and

3) expand the number of test systems to further explore how well these systems can

be constrained.

61



6 A kernel mixing strategy for use in stochastic

optimization and adaptive Markov chain Monte

Carlo contexts

Like before, the material from the following section was taken directly from its asso-

ciated paper. However, we leave the introductory section unaltered since the material

contained within was not discussed in the dissertation’s introduction.

It is also worth noting that the origin of the method discussed in this section is

an old attempt to solve the galaxy fitting problem using MCMC methods. At that

point, the method was quite different. Although we eventually migrated to genetic

algorithms fort he galaxy fitting problem, we realized that the mixing method still

had potential, so we decided to write this paper.

6.1 Introduction

Mathematical models can be used to reproduce and study the behavior of many

physical systems in the world. In most cases, however, these models contain many

parameters which must be tuned in order for the model to accurately reproduce the

behavior of the system in a specific instance. This problem of fitting the parameters

of a mathematical model to data—as well as the related problem of uncertainty quan-

tification of said model parameters—is a ubiquitous problem in applied mathematics.

We can represent it as an optimization problem. Suppose we are given model f̄(θ̄)

(with parameters θ̄) and data y. We must solve the problem

min
θ̄
||f̄(θ̄)− ȳ|| (30)
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The value of θ̄ which minimizes this error can be found via various global optimization

methods and with subsequent analysis of uncertainty via sampling methods. However,

the efficiency of these methods depends largely on various parameters which must be

set. For this reason, methods with robust adaptive features which are able to tune

themselves depending on the problem are preferred.

In this paper, we will present a new kernel mixing method which can be imple-

mented in various global optimization methods and sampling methods. This method

mixes Gaussian distributions with varying covariance matrices so that an overall un-

derestimation or overestimation of the covariance matrix for the particular applied

problem does not have as significant of an impact on performance. We specifically test

this mixing method’s performance in a simulated annealing (SA), real-coded genetic

algorithm (GA), and Markov chain Monte Carlo context. All three of these meth-

ods have a similar underlying scheme for generating new solutions from Gaussian

perturbations and are thus prime candidates for testing our method.

We will begin with a brief overview of the MCMC, SA, and GA algorithms. We will

then discuss the kernel mixing method, its properties, and how it can be implemented.

We then test the three algorithms performance with and without our kernel mixing

scheme on two popular benchmark problems: the Ackley function and the thermal

isomerization of α-pinene.

6.1.1 The Metropolis method

First developed by Metropolis et al. [24] and later generalized by Hastings [12], is the

original MCMC method and is the foundation for all subsequent MCMC methods.

Given data y, Metropolis samples model parameters’ posterior distribution π(θ|y).

This distribution describes the probability of the model parameters given the data.

This distribution will have a peak at the values of the model parameters which best
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approximate the data.

However, as its name would imply, we do not have a priori knowledge of the

posterior. Therefore, we must express it in terms of distributions which we do know.

From Bayes’s Theorem, we obtain

π(θ|y) ∝ `(y|θ)p(θ)

where ` is the likelihood distribution and p is the prior distribution. The likelihood

`(y|θ) tells us the probability of the data given the parameters and is usually calcu-

lated from the model-data error

`(y|θ) ∝ exp
(
− ||f̄(θ̄)− ȳ||2/(2σ2)

)
(31)

where σ is is the measurement error. This can be easily calculated via a single model

evaluation with the given parameters. We may also have additional information

about what parameter values are most likely to be realized in the actual system. For

example, perhaps the parameters are uniformly distributed over a bounded space.

This information is incorporated via the prior distribution p. Together, the likelihood

and prior help us to reconstruct the posterior distribution up to a scale factor.

Let us look at how Metropolis performs its sampling. Given an initial state θ0

(superscript indices will refer to the time step), Metropolis generates new candidate

states and probabilistically accepts or rejects them based on relative posterior gains or

losses with respect to that of current state. Candidate state generation is performed

via sampling of the proposal distribution q(θ′|θn), defined as the probability that a

new state θ′ will be selected as a candidate for acceptance given the current state

θn. The most common choice of proposal distribution is the standard multivariate

Gaussian distribution. Whether acceptance or rejection is performed is determined by
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the acceptance probability α(θ′|θn), defined as the probability that the candidate state

θ′ will be accepted given the current step θn (see Algorithm ?? for the calculation

of the acceptance probability). The unification of these candidate generation and

acceptance steps is the kernel of the method, which defines the transition probabilities

between states. Over time, the distribution created from the samples will conform

to the posterior, at which point the method is said to have converged. Algorithm 5

shows a pseudocode implementation of Metropolis.

Algorithm 5: The Metropolis method

1: Initialize: θ0, N
2: for n = 1 to N do
3: Generate θ′ ∼ q(θ′|θn−1)

4: Compute α(θ′|θn−1) = min

(
1,

π(θ′|y)

π(θn−1|y)

)

= min

(
1,

`(y|θ′)p(θ′)
`(y|θn−1)p(θn−1)

)
5: Set θn = θ′ with probability α, else θn = θn−1

6: end for

It is a known fact that Metropolis is ergodic and is therefore guaranteed to con-

verge to the correct stationary distribution if given sufficient time. However, the

time to converge depends largely on the proposal distribution used. As stated, the

preferred proposal distribution is Gaussian, whose width is defined by a covariance

matrix (in fact, the term proposal width is often used in its place). If one chooses too

thin of a Gaussian, the chain may have difficulty escaping suboptimal modes within

an reasonable amount of time. On the other hand, too wide and the chain will have

an excess of rejections. Fortunately, this problem of the unknown proposal can be

largely alleviated through clever means such as kernel mixing and adaptive proposals.

Kernel mixing (or more precisely proposal mixing, since kernel would refer to the

composition of the proposal and acceptance steps) is a technique where the proposal
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used at each step in the chain may be chosen stochastically from a set. Consider

an example where we have two proposals Q1, Q2 and we have a probability 0.5 of

choosing either at any given step. Then, the proposal used at each step is simply

0.5Q1+0.5Q2—the linear combination of the kernels and their respective probabilities.

This is implemented by choosing either Q1 or Q2 at each step.

Another technique for improving the performance of MCMC is to use so-called

adaptive methods which allow the proposal to adapt to the state space as more and

more samples are obtained. Likely the most widely used adaptive MCMC method

is Haario’s Adaptive Metropolis (AM) [11] method. The core principle of adaptation

is the use of a continuously adapting Gaussian distribution as the proposal for the

standard Metropolis method. After beginning with an initial phase of non-adaptation

called the burn-in, the proposal becomes

qn(θ′|θn) = N
(
θn,

(
2.382

M

)
Σn + εI

)
(32)

where M is the dimension of the space (i.e., number of parameters), Σn is the co-

variance matrix computed from samples generated over past steps, and ε is a small

factor multiplied by an M ×M identity matrix included for regularization to ensure

positive-definiteness. This allows the Gaussian to continually re-scale and re-orient

itself as it “learns” the state space.

The AM proposal can also be modified via kernel mixing. A good example of this

is the version developed by Roberts and Rosenthal [AM˙RR]

qn(θ′|θn) = βN
(
θn,

(
2.382

M

)
Σn
)

+ (1− β)N
(
θn, Σ̂

)
(33)

where Σ̂ is a fixed covariance matrix and 0 ≤ β ≤ 1 (note that our convention is

different from theirs in that we have swapped the β and (1− β) terms).
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6.1.2 Simulated Annealing

Simulated annealing is a global optimization method with many similar properties to

the Metropolis method. Both use proposal distributions to generate candidate solu-

tions followed by an acceptance criterion. The main difference is the cooling aspect

of SA which causes it to be more restrictive and therefore less likely to accept candi-

dates worse than the current state. In lieu of the likelihood function, SA converts the

model-data error into a fitness value which is then maximized (instead of minimizing

the error). This is given by

F (θ̄) = exp(−||f̄(θ̄)− ȳ||/T n) (34)

where T n is the temperature which is cooled over time. Various cooling schedules may

be used, but for this paper we use an exponential cooling schedule

T n = T 0exp(−n/τ) (35)

where τ is the cooling factor. SA can be described by Algorithm 6 Note the directing

Algorithm 6: Simulated Annealing

1: Initialize: θ0, N
2: for n = 1 to N do
3: Generate θ′ ∼ q(θ′|θn−1)

4: Compute α(θ′|θn−1) = min

(
1,

F (θ′)

F (θn−1)

)
5: Set θn = θ′ with probability α, else θn = θn−1

6: end for

analogy between this and Algorithm 5.
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6.1.3 Real-coded Genetic Algorithms (GA)

For some complex optimization problems, simpler methods such as gradient descent

and even simulated annealing are not robust enough to find the global optimum. In

these cases, a popular alternative is the genetic algorithm (GA) (see the original paper

by Holland [15]). Taking inspiration from biological processes, GAs solve problems

by tackling it with an entire population of solutions which evolve and improve over

time in a survival-of-the-fittest fashion. Though the original GA proposed by Holland

used a binary encoding, many other researchers have used real-coded or real-valued

GAs (see [25, 27, 29]). We will be using the real-coded scheme.

Algorithm 7 shows the architecture of a canonical GA, which is very modular by

nature. Let us look more closely at each of these steps.

Algorithm 7: Real-coded genetic algorithm for image similarity optimiza-
tion

1: Initialize: Npop, Ngen, Nph, ψp, ψs
2: Initialize population: P̄ j,0, ∀j = 1, · · · , Npop

3: Evaluate population to obtain fitness scores: F (P̄ j,0),∀j
4: for n = 1 to Ngen do
5: Perform selection
6: Perform crossover
7: Perform mutation (obtaining new population P̄ j,n,∀j)
8: Evaluate population to obtain fitness scores: F (P̄ j,n),∀j
9: end for

The GA’s representation is simply how solutions to the problem are encoded in

the individuals in the population. In the case of real-coded GAs, the representation

is simply a vector of the model parameters.

Selection is the process by which individuals are paired off as parents for mating.

The most popular techniques for accomplishing this are roulette selection [15] (where

an individual’s selection probability is proportional to its fitness) and rank selection

[3] (where an individual’s selection probability is proportional to its rank). We used
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roulette selection in all of our GA tests.

Having selected the parent pairs, breeding of child solutions occurs through the

crossover operator. This operator creates children by combining the genetic material

of the parents. Depending on preference, one can create a single child from each

parent pair or two which replace both parents in the population (in second case, half

as many parent pairs are selected). For the case of real-coded GAs, all of the binary

coded crossover operators are available (such as single-point, multi-point, and uniform

crossover) with additional options due to the nature of the encoding. A common one

is the mean crossover

C1 = αP 1 + (1− α)P 2 (36)

C2 = (1− α)P 1 + αP 2 (37)

where α ∈ [0, 1] is uniformly distributed. Many different versions of this scheme exist

with various types of weighted means and distributions from which α may be drawn.

For our purposes, we use a version of mean crossover with the parents weighted by

their fitnesses:

Ci = F̂ (P 1)P 1 + F̂ (P 2)P 2 (38)

Here, F̂ (P 1) = F (P 1)/(F (P 1) + F (P 2)) and F̂ (P 2) = F (P 2)/(F (P 1) + F (P 2)).

After crossover, the mutation operator is applied to the resulting child solutions.

This is in order to maintain sufficient genetic diversity in the population throughout

the evolution of the population. Mutation is done by stochastically perturbing the

child solutions via a chosen kernel distribution. Various choices are available for this

kernel [19, 21]. We use a multivariate Gaussian distribution.
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6.2 Kernel Mixing Method

We now discuss our kernel mixing method. We will begin with a discussion of the mo-

tivation and advantages our using this method. We then discuss the mathematics and

implementation of the method in case of both diagonal and non-diagonal covariance

matrices.

6.2.1 Motivation and advantages

Incorporation of our kernel mixing method into either stochastic optimization or

MCMC contexts results in several advantages. First, as we have discussed, it isn’t

possible in general to know a priori what the optimal proposal width should be for

a given problem. This is makes adaptive methods attractive. However, even if one

were to choose the optimal “global” proposal width, this by no means guarantees

that certain regions of parameter space might not have a superior “local” optimal

proposal width. By applying our kernel mixing method, the proposal can cover a

range of widths for different parameters.

A second advantage is that when used in an MCMC context, no initial greedy

search is required find a good starting point in parameter space. This is because our

mixing method provides an increase in performance in optimization contexts. This

performance gain is inherited by MCMC implementations of the method.

Additional advantages that our method has over some more complex methods are

its trivial implementation and the minimal overhead it requires. The only significant

computational overhead encountered is the diagonalization of non-diagonal covari-

ance matrices. This overhead is only relevant when there is a very large number of

parameters and the covariance matrices is adaptive, requiring constant diagonaliza-

tion.
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6.2.2 The method

Our mixing strategy allows for the selection of one of three proposals: 1) the origi-

nal, fixed proposal, 2) a thinned proposal, and 3) a widened proposal. We included

both the thinner and wider proposals since overestimation and underestimation the

proposal width are both possible. Additionally, the thin proposal allows the chain

to squeeze into thinner modes while the wide proposal allows the chain to escape

suboptimal modes and traverse parameter space quickly. The resulting proposal for

a simple problem with one parameter has the form of the linear combination

q(θ′|θn) = ptN
(
θn, (Atσ)2

)
+ pfN

(
θn, (σ)2

)
+ pwN

(
θ, (Awσ)2

)
(39)

where σ is the fixed proposal width, 0 < At < 1 < Aw are the mixing amplitudes,

and pt, pf , pw are the mixing probabilities. This resulting mixture of Gaussians (each

with a different variance) will not necessarily have the same variance as the original

fixed variance σ2. However, given the thinning and widening amplitudes At, Aw, the

mixing probabilities can be set so that the mixed proposal will have identical variance

as the fixed proposal. This is useful if one desires to have control over the variance

of the mixed proposal. The probabilities that accomplish this are given by

(pt, pf , pw) =

(
(A2

w − 1)(1− pf )
(A2

w − A2
t )

, pf ,
(1− A2

t )(1− pf )
(A2

w − A2
t )

)
(40)

where the fixed probability pf is a free parameter, i.e., any value 0 ≤ pf ≤ 1 will

result in the same fixed variance.

Figure 18 illustrates a standard 2D Gaussian distribution and a mixture of Gaus-

sians according to the method described above. We have mixing probabilities of

(1/3, 1/3, 1/3) and mixing amplitudes of (1/3, 1, 3). There are two main features to

notice in the mixture plot. First, is the overall cross shape of the distribution, with a
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Figure 18: Left: standard Gaussian proposal. Right: mixed pro-
posal.

high probability density along and near the parameter axes. Second is that the peak

density in the center is higher in the mixed kernel than the standard Gaussian.

In the case of M parameters, each one is mixed independently (i.e., one parameter

could be thinned while another is widened). Therefore, one must account for all

combinations of each parameter being mixing in each of the three ways:

q(θ′|θn) =
∑

i1∈{t,f,w}

· · ·
∑

iM∈{t,f,w}

pi1 · · · piMN(θn, (Ai1σ1)2, · · · , (AiMσM)2) (41)

For convenience in the above, we define Af = 1 and N(µ, σ2
1, · · · , σ2

M) as an M -

dimensional normal distribution with diagonal covariance matrix given by (σ2
1, · · · , σ2

M).

6.2.3 Implementation

Regarding implementation, mixing for diagonal covariance matrices is applied accord-

ing to Algorithm 8. Given a fixed diagonal covariance matrix Σ, a new covariance

matrix Σ′ (initially the identity matrix I) is constructed by multiplying the diago-

nal elements of Σ by the square of the chosen mixing amplitude. Note that this is

equivalent to multiplying the eigenvalues by the amplitudes.

For general, non-diagonal covariance matrices, Algorithm 9 is used. The significant

differences are the diagonalization steps (2, 13) to obtain the eigenvalues. In the
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Algorithm 8: Mixing implementation for diagonal covariance matrices

1: Initialize: pt, pf , pw, At, Aw,Σ,Σ
′ = I

2: for m = 1 to M do
3: Choose (thinning, fixing, widening) from the distribution (pt, pf , pw)
4: if thinning then
5: Σ′m,m = Σm,mA

2
t

6: else if fixing then
7: Σ′m,m = Σm,m

8: else if widening then
9: Σ′m,m = Σm,mA

2
w

10: end if
11: end for

Algorithm 9: Mixing implementation for non-diagonal covariance matrices

1: Initialize: pt, pf , pw, At, Aw,Σ, D
′ = I

2: Diagonalize: D = V ΣV −1

3: for m = 1 to M do
4: Choose (thinning, fixing, widening) from the distribution (pt, pf , pw)
5: if thinning then
6: D′m,m = Dm,mA

2
t

7: else if fixing then
8: D′m,m = Dm,m

9: else if widening then
10: D′m,m = Dm,mA

2
w

11: end if
12: end for
13: Σ′ = V −1D′V

diagonal case, these were already given, but in the non-diagonal case, they must

be calculated. The ability to apply this mixing procedure to non-diagonal matrices

implies that it may be used in optimization and MCMC algorithms with adaptive

covariance matrices, such as Haario’s Adaptive Metropolis algorithm [11]. This merely

requires the diagonalization of the covariance matrix at each step in the algorithm.
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6.3 Numerical Experiments and Results

We now present tests of our mixing technique in SA, GA, and MCMC contexts. In

the SA case, we compare both standard SA and mixed SA with modified versions

using an adaptive proposal (following the pattern of AM). Solonen [SA˙AM] illus-

trates the difficulties in weighting the samples when applying the AM technique in

the SA context (the changing temperature affects a change in the posterior). They

propose multiple possible solutions to this challenge. Since our goal was to propose a

mixing method rather than an adaptive method, we take a very simplistic approach to

adaptation. Like AM, we accumulate samples over a burn-in period, after which their

covariance matrix is calculated. However, we do not continue to adapt the matrix any

further. We leave it to others to decide what the proper adaptive method for their

application should be. In the GA case, we compare a real-coded GA with a Gaussian

mutation operator to one which uses our mixing technique, as well as their adaptive

counterparts. Like the SA implementation of proposal adaptation, we accumulate

samples (the entire population at each generation) until the burn-in time is reached,

at which point the covariance matrix is evaluated and subsequently held fixed. In the

MCMC case, we compare Metropolis and Adaptive Metropolis with versions which

use our mixing technique. Tests on all three methods are done via two benchmark

problems, which will be discussed below.

We perform one test in the SA and GA cases and two in the MCMC case, each

of which uses an ensemble of runs over a range of proposal widths. This will allow us

to check for both best-case and average performance for each method. The test for

the SA and GA cases is a simple averaging of the best fitness at each time step over

an ensemble of runs. By “best” fitness, we mean to say we keep track of the highest

fitness achieved by the method at each step, rendering the sequence of fitnesses non-

decreasing. This allows us to examine the average rate at which the fitness improves
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across a broad range of proposal widths. What we will see is that each method has an

optimal range of proposal widths at which fitness increases most quickly. Deviations

from this optimal region slows performance. The mixing and adaptation techniques

implemented serve to extend this range so that performance is less sensitive to one’s

choice of proposal width.

The first MCMC test calculates a lower bound of the integrated auto-correlation

time (IAC) for the chain. The IAC is a measure of the length of time (in steps)

required for later steps in the chain to become de-correlated with earlier steps. It is

given by the formula

τint = 1 + 2
N ′∑
`=0

r` (42)

where r` is the autocorrelation of the chain at lag ` (an index offset) and N ′ is some

number of steps in the chain (usually the step at which r` reaches zero). This only

measures a lower bound since—in many cases—N ′ is prohibitively large. For this

reason, we simply choose the value of the IAC at some preset value of N ′ (usually

Nstep/8). By generating an ensemble of chains, we obtain statistics on this lower

bound for the IAC across a range of proposal widths.

The second test uses the scale reduction factor (SRF) (cite gelman and rubin).

This tests utilizes an ensemble of chains initialized at random locations and compares

the values of the between-chain variance B and the within-chain variance W . Given

M chains of length N , the SRF is given by R =

√
V̂ /W where

B =
N

M − 1

M∑
m=1

(θ̂m − θ̂)2 W =
1

M

M∑
m=1

σ̂m (43)

V̂ =
N − 1

N
W +

M + 1

MN
B (44)

where θ̂m, σ̂m are the sample mean and variance of the m-th chain and θ̂ is the overall
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sample mean across all m chains. Since the test itself requires an ensemble of chains,

we do not obtain statistics for the SRF. However, we do still calculate it over a range

of proposal widths.

6.3.1 Benchmark 1: Ackley function

For our first benchmark, we use the Ackley function, given by

f(θ̄) = a

(
1− exp

(
− 0.2

√√√√ M∑
m=1

θ2
m/M

))
+ b

(
e− exp

( M∑
m=1

cos(2πθm)/M
))

(45)

where a = 20, b = 4, and M = 5 is the number of dimensions. This is a common

benchmark function in optimization contexts since it has a large number of false

minima in which chains may become stuck. For the SA and GA cases, we calculate

fitness F via

F (θ̄) =
1

1 + f(θ̄)2
(46)

For the MCMC case, we used a uniform prior distribution over the entire search space

and used the likelihood function

`(ȳ|θ̄) = exp
(
− f(θ̄)2

2σ2

)
(47)

where σ = 5 (this value was chosen since it resulted in an acceptance rate of between

0.25 and 0.5).

Simulated Annealing Now, we present the results of the SA test on the 5D

Ackley function (see Figure 19). We have standard SA, mixed SA, adaptive SA,

and mixed/adaptive SA. The parameter space is set to θm ∈ [−10, 10] for m =

1, · · · , 5. In each case, we ran 50 randomly initialized instances of the particular

SA implementation over 40 evenly-spaced proposal widths. The mixing amplitudes
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used were (At, Aw) = (1/3, 3) and the mixing probabilities used were (pt, pf , pw) =

(3/5, 1/3, 1/15). The choice of amplitudes spans roughly an order of magnitude while

the probabilities were derived by setting pf = 1/3 and deriving the other two from

Equation 40. Also, both the cooling constant τ and the burn-in time were set to be

half the total number of time steps.

Figure 19: Results of SA test on the 5D Ackley function. Top
left: standard SA. Top right: mixed SA. Bottom left: adaptive SA.
Bottom right: mixed/adaptive SA. The horizontal axis displays
the step number while the vertical axis represents the the proposal
width (increases downward). The color axis displays the average
fitness across the 50 runs of each method.

Comparing the results from the test, we see that standard SA achieves its highest

average fitness (0.8592) at a proposal width of 0.5462, with performance dropping as

the width is either increased or decreased. In the mixed SA case, we have a higher

average fitness (0.9990) at a width of 0.1744. The mixed case also has the added

benefit that it achieves a higher average fitness over the entire range of tested widths.

This is especially true of the smallest widths under which standard SA made no
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progress while mixed SA achieved high fitness. Moving on to the adaptive case, the

method achieved a highest average fitness of 0.8174 at a width of 0.9923, which is lower

than that of the standard case. However, it had a significantly higher performance for

proposal widths larger than the standard SA’s optimal value, making it much more

robust. Finally, the mixed/adaptive case seems to inherit the best aspects of both the

mixed case (high peak performance) and adaptive case (robust performance across

a range of widths). It achieved a highest average fitness of 0.9986 (marginally lower

than the mixed case) at a width of 0.1746.

Genetic Algorithm Moving on to the results of the application of GAs to the 5D

Ackley function, we have standard GA, mixed GA, adaptive GA, and mixed/adaptive

GA. The parameter space was again set to θm ∈ [−10, 10] for m = 1, · · · , 5 with 30

randomly initialized instances over 25 different proposal widths. Identical values of

the mixing amplitudes, probabilities, and burn-in time were used.

We a similar increase in performance from the standard case to the mixed case as

was seen in the SA case. The standard GA case achieved a highest average fitness of

0.9698 at a width of 0.1520 while the mixed case achieved a highest average fitness of

0.9707 at a width of 0.0971. Unlike the SA cases, adaptation did not make significant

improvement in performance. Though the adaptive case did achieve a marginally

higher highest average fitness (0.9832) than the standard GA, it did not have the

effect of achieving a robust level of performance across a range of widths. Similarly,

the mixed/adaptive case merely performs marginally better with a highest average

fitness of 0.9764. See Table 8 for a comparison of the peak performance of the various

SA and GA methods.

Markov Chain Monte Carlo We now present the results of the IAC and SRF

tests on the MCMC implementation of our mixing method in the context of the Ackley
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Figure 20: Results of GA test on 5D Ackley function. Top left:
standard GA. Top right: mixed GA. Bottom left: adaptive GA.
Bottom right: mixed/adaptive GA. The horizontal axis displays
the step number while the vertical axis represents the the proposal
width (increases downward). The color axis displays the average
fitness across the 20 runs of each method.

Table 8: Summary of peak average fitness between all four SA and
GA cases on the 5D Ackley benchmark problem.

standard mixed adaptive mixed/adaptive

SA 0.8592 0.9990 0.8174 0.9986
GA 0.9698 0.9707 0.9832 0.9764

benchmark. We compare results from standard Metropolis (MH), mixed Metropolis

(MX), adaptive Metropolis (AM), and adaptive-mixed Metropolis (AX). We used

identical parameter ranges, mixing amplitudes, and mixing probabilities. The number

of step was set to Nstep = 211 with Nburn = Nstep/2. We tested a range of 20 proposal

widths with 100 chains generated for each in order to obtain reliable averages. Also,

recall that in the Ackley function, all parameters are identical, so we should not see

a significant difference in any of the plots of each parameter.
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Figure 21 shows the results of the IAC test. Examining any of the five plots,

Figure 21: IAC results of MCMC test on the 5D Ackley function.
The horizontal axis displays the proposal width (logarithmic scale).
The vertical axis is the average lower bound of the IAC.

we see that for proposal widths smaller than 2, there is a clear ordering of method

performance. In decreasing order we have AX, AM, MX, then MH. For these widths,

we see that the mixed methods are superior to their unmixed counterpart. For width

values larger than 2, we see that the two mixed methods become poorer than their

unmixed counterparts. Both of these phenomena can be explained by the presence

of the widening option in the mixing scheme.

Figure 22 shows the results of the SRF test. We see similar results in this test

Figure 22: SRF results of MCMC test on the 5D Ackley function.
The horizontal axis displays the proposal width (logarithmic scale).
The vertical axis is the SRF (logarithmic scale).
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as the previous one. For widths below 1, the mixed methods are superior. This is

reasonable, since without the widening option, the chain has difficulties escaping the

local minima of the Ackley function. Also, for widths greater than 1, all methods

achieve roughly the same SRF. At these widths, the chain can already escape the

local minima and does not need help from the widened proposal.

6.3.2 Benchmark 2: thermal isomerization of α-pinene

For our second benchmark test, we apply our method to the thermal isomerization

of α-pinene (y1) into dipentene (y2) and alloocimene (y3), which then yields α- and

β-pyronene (y4) and a dimer (y5). Assuming first-order kinetics, the ODE’s for the

system are given by

ẏ1 = −(θ1 + θ2)y1

ẏ2 = θ1y1

ẏ3 = θ2y1 − (θ3 + θ4)y3 + θ5y5

ẏ4 = θ3y3

ẏ5 = θ4y3 − θ5y5

(48)

with analytical solutions available in [multiresp]. The data to which the above

model must be fit is shown in Table 9 and was obtained by Fuguitt and Hawkins

[data], who reported concentrations for the reactant and four products at 8 different

times. Despite being a system of first order linear ODEs, this is a popular benchmark

problem. This first two parameters are easily identifiable since they contribute the

most to any error calculation. This is because are coefficients of the two variables

with the largest values (see the table). However, the remaining three parameters are

more challenging. The best known solution [] is θ̄∗ = ().

The most straightforward way to calculate a form of error for this problem would
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Table 9: Data for α−pinene concentrations from Fuguitt and
Hawkins [data].

t y1 y2 y3 y4 y5

1230 88.35 7.3 2.3 0.4 1.75
3060 76.4 15.6 4.5 0.7 2.8
4920 65.1 23.1 5.3 1.1 5.8
7800 50.4 32.9 6.0 1.5 9.3
10680 37.5 42.7 6.0 1.9 12.0
15030 25.9 49.1 5.9 2.2 17.0
22620 14.0 57.4 5.1 2.6 21.0
36420 4.5 63.1 3.8 2.9 25.7

be to simply calculate the sum of squared differences (between the data and the

model) in concentration of the chemical species at the given times. Initial testing

with this error calculation led to poor convergence, likely due to parameter space

being littered with local maxima. Therefore, we instead choose to calculate the sum

of squared differences in the derivatives

ε(θ̄)2 =

Nint−1∑
i=2

||f̄(ȳi, θ̄)− (ȳi+1 − ȳi−1)/(2dt)||2 (49)

where dt is the timestep, f̄ is the vectorized right-hand side of Equation 48 and the

ȳi are linearly interpolated from the data in Table 9. For the SA and GA cases, we

calculate fitness via

F (θ̄) =

(
1

1 + ε(θ̄)2

)
(50)

For the MCMC case, we again used a uniform prior distribution over the entire search

space and used the likelihood function

`(ȳ|θ̄) = exp

(
− ε(θ̄)2

2σ2

)
(51)

where σ = 15 (again chosen to achieve an acceptance rate of between 0.25 and 0.5).
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Simulated Annealing Now, we present the results of the SA test on the α−pinene

application (see Figure 23). We again use the 100 samples and 30 proposal width

values as in the previous problem. The parameter space is set to θm ∈ [0, 0.2] for

m = 1, · · · , 5. The mixing amplitudes used were (At, Aw) = (1/10, 2) and the mix-

ing probabilities used were (pt, pf , pw) = (0.501253, 0.333333, 0.165414). Since the

reaction coefficients which must be estimated are very small, we choose smaller am-

plitudes than in the Ackley case. Again, both the cooling constant τ and the burn-in

time were set to be half the total number of time steps.

Figure 23: Results of SA test on the α−pinene application. Top
left: standard SA. Top right: mixed SA. Bottom left: adaptive SA.
Bottom right: mixed/adaptive SA. The horizontal axis displays
the step number while the vertical axis represents the the proposal
width (increases downward). The color axis displays the average
fitness across the 100 runs of each method.

Reviewing the plot, we see very similar results to that of the Ackley test. We

see that the standard SA achieved a maximum average fitness of 0.9891 at a width

of 0.0010 with a significant drop in performance for larger widths. Moving on to

the mixed case, the highest average fitness achieved was 0.9999 at a fixed width of
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0.0001 (no smaller widths were tested). Like in the previous Ackley test, the mixed

method’s performance does not decrease as rapidly when widths far from the optimal

are chosen. In the adaptive case, the highest average fitness (a value of 0.9136 at a

width of 0.0010) was lower than in the standard case, yet it was more robust in that

it did not perform as poorly with proposal widths far from the optimal. Lastly, the

mixed/adaptive case has a marginaly lower highest average fitness (a value of 0.9994

at a width of 0.0010) than the mixed case. However, it was the most robust by far,

consistently achieving high fitness across the entire range of tested proposal widths.

Genetic Algorithm Moving on to the results of the application of GAs to the

α−pinene problem, we again have standard GA, mixed GA, adaptive GA, and mixed/adap-

tive GA. The parameter space was again set to θm ∈ [0, 1] for m = 1, · · · , 5 with 30

randomly initialized instances over 25 different proposal widths. Identical values of

the mixing amplitudes, probabilities, and burn-in time were used.

The results of this test are unique across all of the experiments we performed since

there is very little performance difference between the four different methods (with all

methods achieving a fitness of 0.9989 or greater). Perhaps the most noticable feature

of the plots is the superior performance for the adaptive and mixed/adaptive cases

(over their non-adaptive counterparts) for very small widths. Table 10 compares the

peak performance of the various SA and GA methods on the α−pinene application.

Table 10: Summary of peak average fitness between all four SA and
GA cases on the α−pinene application.

standard mixed adaptive mixed/adaptive

SA 0.9891 0.9999 0.9136 0.9994
GA 0.9989 0.9994 0.9995 0.9994

Markov Chain Monte Carlo We now present the results of the IAC and SRF tests

on the MCMC implementation of our mixing method in the context of the α−pinene
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Figure 24: Results of GA test on the α−pinene application. Top
left: standard GA. Top right: mixed GA. Bottom left: adaptive
GA. Bottom right: mixed/adaptive GA. The horizontal axis dis-
plays the step number while the vertical axis represents the the
proposal width (increases downward). The color axis displays the
average fitness across the 25 runs of each method.

problem. We compare results from standard Metropolis (MH), mixed Metropolis

(MX), adaptive Metropolis (AM), and adaptive-mixed Metropolis (AX). We used

identical parameter ranges, mixing amplitudes, and mixing probabilities. The number

of steps was set to Nstep = 211 with Nburn = Nstep/2. We tested a range of 20 proposal

widths with 100 chains generated for each in order to obtain reliable averages. Also,

recall that in the Ackley function, all parameters are identical, so we should not see

a significant difference in any of the plots of each parameter.

Figure 25 shows the results of the IAC test. Examining any of the five plots,

we see that for proposal widths smaller than 2, there is a clear ordering of method

performance. In decreasing order we have AX, AM, MX, then MH. For these widths,

we see that the mixed methods are superior to their unmixed counterpart. For width
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Figure 25: IAC results of MCMC test on the α−pinene problem.
The horizontal axis displays the proposal width (logarithmic scale).
The vertical axis is the average lower bound of the IAC.

values larger than 2, we see that the two mixed methods become poorer than their

unmixed counterparts. Both of these phenomena can be explained by the presence

of the widening option in the mixing scheme.

Figure 26 shows the results of the SRF test. We see similar results in this test

Figure 26: SRF results of MCMC test on the α−pinene problem.
The horizontal axis displays the proposal width (logarithmic scale).
The vertical axis is the SRF (logarithmic scale).

as the previous one. For widths below 1, the mixed methods are superior. This is

reasonable, since without the widening option, the chain has difficulties escaping the

local minima of the Ackley function. Also, for widths greater than 1, all methods

achieve roughly the same SRF. At these widths, the chain can already escape the

local minima and does not need help from the widened proposal.
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6.4 Conclusions

In this paper, we have proposed and test a Gaussian kernel mixing method that

can be easily implemented in a variety of stochastic optimization and Markov chain

Monte Carlo contexts. In the majority of test cases, the method served to provide

a substantial increase in performance when combined with the chosen base method.

Regarding its use in SA, significant improvement was seen in both test problems.

Similarly, in the MCMC implementation, our mixed method performed either as well

or slightly better than standard Metropolis or AM in both the IAC and SRF tests.

For the GA case, improvement was seen in the Ackley test problem. However, in

the α−pinene problem, a small reduction in performance was seen. Further testing

on more varied types of benchmark functions would be beneficial for determining for

which types of problems our mixing method is best suited. Additionally, an extension

of the method to beyond three discrete possibilities for mixing should be investigated.

More possible mixing amplitudes could be added. Also, a continuous mixing of the

form

q(θ′|θn) =

∫ b

a

ρ(A)N
(
θn, (Aσ)2

)
dA (52)

(with a < 1 < b) which preserves the variance σ2 would be a reasonable option.

87



Part III

Conclusions and Future Work

Galaxies and their interactions are a fundamental part of the evolution of our cosmos.

Their study grants us a deeper understanding of nature and her manifold complexity.

Simulations are an indespensible tool for the modern astronomer in this endeavor,

particularly when applied to the problem of fitting simulations of interacting galax-

ies to observational data. The contributions in this dissertation provide several new

methods for accomplishing this task in an efficient and robust manner. Through uti-

lization of the SPAM restricted three-body simulation code and Galaxy Zoo: Mergers’

human scores, we were able to complete our main objectives. As discussed in Sec-

tion 2, these objectives were to develop a robust fitness function for quantifying the

similarity between given target and model images and to develop robust methods for

optimizing fitness and estimating the various model parameters for a given target im-

age. The first of these was completed through the quantification of tidal distortion

via unperturbed model images. By incorporating this information into the fitness

function, we were able to construct a function which reliably penalized models with

significantly higher or lower degrees of distortion than the target. The second of

these objectives was completed through the development of our real-coded genetic

algorithm which was used to optimize our fitness function. Through the testing of

several synthetic targets with varying morphology, we were able to 1) demonstrate

the method’s ability to accurately reproduce morphological features and 2) identify

some principles which determine how successful the method will be given different

morphologies.

In addition to these two intended goals, we also achieved several unplanned but

welcome accomplishments. The first of these was a better understanding of the mor-
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phological degeneracy inherent to interacting systems (in particular, restricted three-

body systems). This work was cast in terms of symmetries, i.e., transformations of

the SPAM parameters which preserve morphology. Regarding geometric symmetries,

we identified that for any given set of SPAM parameters, there are seven additional

distinct parameter sets which reproduce the morphology identicially (though some

are only up to projection), for a total 8-fold degeneracy. Moreover, there are numer-

ous parameter transformations which only affect one galaxy in the system, further

compounding degeneracy in more unpredictable ways. To combat the performance-

suppressing effects of these symmetries on optimization, we simply restrict the param-

eters so that only one of the eight identical models is in the search space. Reagarding

dynamical symmetries, we showed that in cases where there is no additional vz data

to disambiguate whether the galaxy is approaching or receding, one can hold the

total mass fixed and simply fit the morphology. This is due to the fact that veloci-

ties, masses, and interaction time can be scaled in a way that preserves morphology.

The second of these unintended accomplishments was the development of our ker-

nel mixing strategy for application in stochastic optimization and MCMC contexts.

Originally developed during an earlier phase of our research when we were apply-

ing MCMC methods to the interacting galaxy problem, we realized that the method

had potential to improve performance in a variety of contexts. We demonstrated the

method’s quality by applying to two common benchmark problems.

Despite these achievements, science never sleeps. As such, we have several avenues

in mind for continuing this research:

1. Fitting to real, observational targets. Perhaps the most obvious next step

to take would be to apply our methods to observational images of real target systems.

Thus far, we have only tested our methods on various synthetic targets. Doing so

allowed us to directly assess optimization performance by comparing parameter values
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between the target and best-fit model. One item which will likely be required is the

more realistic imaging technique being developed by another member of our team.

2. Further development of fitness functions. Our current fitness function

performs well; however, there are many different techniques for constructing these

functions. One which we have looked into and seems to show promise is training ma-

chine learning and statistical techniques on the GZM models. In particular, we have

done preliminary testing in which we trained statistical models to predict the fitness

of SPAM models. The training and testing data was obtain by using the image anal-

ysis software WNDCHRM [32] to generate various image features and coefficients.

Early results show that these statistical models can achieve a high predictive accu-

racy with a small feature count. Surprisingly, even poorly predictive features (when

combined into a single model) can achieve surprisingly high accuracy if there are a

sifficient number of them. The possible downside of this technique is the need for

a large amount of data in the form of pre-scored models. Thanks to GZM we have

this data for 62 different targets, but that leaves the countless other targets not in

the GZM dataset. Our proposed solution to this problem is to train a single model

on all 62 targets simultaneously, in hopes of finding a universal statistical model for

predicting fitness. If this is possible, then the problem is solved. If it is not possible,

it is unclear whether the problem can be solved. Only further testing will reveal the

answer.

3. Parameter estimation and uncertainty quantification of galaxy stuff.

Another clear direction would be to apply our adaptive kernel mixing MCMC method

to quantify the uncertainy in the SPAM parameters for a given target system. Through

some other testing performed which was omitted from this dissertation (due to time

constraints and the fact that it was not done in as systematic and comprehensive a

way to claim the results with certainty), it seems that fitness is more sensetive to
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changes in some parameters than others. For example, the masses and radii do not

affect fitness as strongly as the velocities and altitude angles do. A careful analysis

of the sensitivity and uncertainty of the various parameters would be very beneficial.

4. Further analysis of half-symmetries and approximate symmetries.

Though we have largely addressed the problem of degeneracy, there is still a great deal

of it in the system, the majority of which stems from half-symmetries and approximate

symmetries. Since the relative similarity of these with the control model are not a

fixed value (the true symmetries are always a value of ≈ 1), it is difficult to predict

when they pose a threat to optimization performance. A further analysis on their

nature would be beneficial for further understanding the dynamics of the restricted

three-body system and improving optimization performance.
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and Star Clusters) Connoissance des Temps ou des Mouvements Célestes. Jan.

1781.

24. Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A. & Teller, E. Equation

of state calculations by fast computing machines. Journal of Chemical Physics

21, 1087–1092 (1953).

25. Meyer, T. P. & Packard, N. H. Local forecasting of high-dimensional chaotic

dynamics. M. Casdagli and S. Eubank, eds., Nonlinear Modeling and Forecasting.

Addison-Wesley. (1992).

26. Mo, H., van den Bosch, F. C. & White, S. Galaxy Formation and Evolution

(2010).

27. Montana, D. J. & Davis, L. Training Feedforward Neural Networks Using Ge-

netic Algorithms in Proceedings of the 11th International Joint Conference on

Artificial Intelligence - Volume 1 (Morgan Kaufmann Publishers Inc., Detroit,

Michigan, 1989), 762–767.

94



28. Oehm, W., Thies, I. & Kroupa, P. Constraints on the dynamical evolution of the

galaxy group M81. MNRAS 467, 273–289. arXiv: 1701.01441 [astro-ph.GA]

(May 2017).

29. Pedersen, J. & J., M. Genetic algorithms for protein structure prediction. Cur-

rent opinion in structural biology 6, 227–231 (1996).

30. Petsch, H. P. & Theis, C. Determining properties of the Antennae system -

Merging ability for restricted N-body in EAS Publications Series 44 (Jan. 2010),

33–36.

31. Roukema, B. F., Quinn, P. J. & Peterson, B. A. Spectral Evolution of Merg-

ing/Accreting Galaxies in Observational Cosmology (eds Chincarini, G. L., Iovino,

A., Maccacaro, T. & Maccagni, D.) 51 (Jan. 1993), 298.

32. Shamir, L. et al. Wndchrm - an open source utility for biological image analysis.

Source Code for Biology and Medicine 3 (2008).

33. Shapley, H. Studies based on the colors and magnitudes in stellar clusters. XII.

Remarks on the arrangement of the sidereal universe. The Astrophysical Journal

49, 311–336 (June 1919).

34. Struck, C. Galaxy collisions. Physics Reports 321, 1–137 (1999).

35. Theis, C. & Kohle, S. Multi-method-modeling of interacting galaxies. I. A unique

scenario for NGC 4449? Astrophysics and Space Science 370, 365–383. arXiv:

astro-ph/0104304 [astro-ph] (May 2001).

36. Theis, C. Modeling Encounters of Galaxies: The Case of NGC 4449. Reviews

in Modern Astronomy 12, 309. arXiv: astro-ph/9907237 [astro-ph] (Jan.

1999).

37. Theis, C. & Spinneker, C. M51 Revisited: A Genetic Algorithm Approach of Its

Interaction History. Astrophysics and Space Science 284, 495–498 (Apr. 2003).

95

https://arxiv.org/abs/1701.01441
https://arxiv.org/abs/astro-ph/0104304
https://arxiv.org/abs/astro-ph/9907237


38. Toomre, A. Mergers and Some Consequences in Evolution of Galaxies and Stellar

Populations (eds Tinsley, B. M. & Larson Richard B. Gehret, D. C.) (Jan. 1977),

401.

39. Toomre, A. & Toomre, J. Galactic Bridges and Tails. The Astrophysical Journal

178, 623–666 (Dec. 1972).

40. Wahde, M. Determination of orbital parameters of interacting galaxies using a

genetic algorithm. Description of the method and application to artificial data.

Astronomy & Astrophysics Suppl. Ser. 132, 417–429 (1998).

41. Wallin, J. F., Holincheck, A. J. & Harvey, A. JSPAM: A restricted three-body

code for simulating interacting galaxies. Astronomy and Computing 16, 26–33.

arXiv: 1511.05041 [astro-ph.GA] (July 2016).

96

https://arxiv.org/abs/1511.05041

	List of Figures
	List of Tables
	I Introduction
	Motivation
	Project Goal and Objectives
	Project Goals
	Project Objectives

	Galaxies
	Historical development
	Anatomy and classification
	Interactions and mergers
	Simulation

	Previous Work: SPAM and Galaxy Zoo: Mergers
	SPAM: Stellar Particle Animation Module
	Galaxy Zoo: Mergers


	II Current Work
	A robust fitness function and genetic algorithm to morphologically constrain the dynamics of interacting galaxies
	Introduction
	Quantifying Image Similarity with Fitness Functions
	Variance of model quality
	Challenges of similarity scoring
	Quantifying tidal distortion
	Complete multi-factor fitness function

	Analysis of Morphological Symmetries
	Causes and effects of symmetry
	Types of symmetry
	Geometrical symmetries
	Dynamical symmetries

	Optimization of Fitness Functions
	Variable Transformations
	Genetic algorithm for optimizing image similarity
	Experimental testing of the GA
	Discussion of GA Results

	Conclusions

	A kernel mixing strategy for use in stochastic optimization and adaptive Markov chain Monte Carlo contexts
	Introduction
	The Metropolis method
	Simulated Annealing
	Real-coded Genetic Algorithms (GA)

	Kernel Mixing Method
	Motivation and advantages
	The method
	Implementation

	Numerical Experiments and Results
	Benchmark 1: Ackley function
	Benchmark 2: thermal isomerization of -pinene

	Conclusions


	III Conclusions and Future Work
	REFERENCES


