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ABSTRACT

Bitcoin was created in 2009 by a person or group of persons under the name Satoshi

Nakamoto. Bitcoin trading quickly grew along with the creation of numerous other cryp-

tocurrencies in what is now the crypto market. Linear and non-linear methods have been

applied to the prediction of bitcoin price including Support Vector Machines, Autoregressive

Integrated Moving Average, Random Forests, and Recurrent Neural Networks among many

others. Grey System Theory, developed by Deng Julong in 1982, is a linear forecasting

method known for performing well with limited data sets. The aim of this research is to

forecast bitcoin price using a non-linear approach that incorporates Grey System Theory.

The result is a well generalized non-linear model trained on only 60 days of bitcoin price

data.
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CHAPTER 1

INTRODUCTION

In 2009, Satoshi Nakamoto created a cryptocurrency called bitcoin: a ”peer to peer

electronic cash system” that would effectively cut out the middle man or ”third party”. For

this to work, there would need to be a solution to the double spend problem - when the

same instance of digital currency is transacted multiple times. Nakamoto accomplished this

by creating a peer to peer network that would generate a chain of blocks (later dubbed the

blockchain) where each block was an immutable record of bitcoin transactions between

users. A block could only be added to the chain by way of a unique consensus algorithm

called ”proof of work”. The consensus nature of the algorithm also eliminated the possibility

of collusion between nodes on the network, thereby creating a ”trustless network”, one in

which trust is not needed[1].

Bitcoin trading quickly grew along with the creation of numerous other cryptocurrencies

in what is now the crypto market. The price of one bitcoin in 2010 was well under a penny.

The price broke $10 in 2012. About a decade later, one bitcoin reached its all-time-high of

$67,567 thus granting a bitcoin investment the highest potential return of all time. But the

asset has proven to be just as volatile as it is profitable. The constant boom and bust cycles

create few winners and many losers. At the time of this writing, one bitcoin is worth just

under $20,000, having fallen over 60% from the all-time-high [1].

Price data for bitcoin is fairly easy to obtain as it is tracked by various sources and

market exchanges. This data is considered sequential, or more specifically, time-series data:

observations collected over certain increments of time. In this case, bitcoin price is tracked

throughout time. In graphical terms, price is on the y-axis and time is on the x-axis. Other

examples of time series data include weather measurements, asset prices, annual sales, and

server performance, all collected over time.

The aim of this research is to forecast bitcoin price using a non-linear approach that
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incorporates Grey System Theory [2]. Both linear and non-linear methods have commonly

been used to predict asset price, and bitcoin is no exception. Out of the linear group, current

research includes Support Vector Machines (SVM), Logistic Regression (LR), univariate

Autoregressive (AR), Simple Exponential Smoothing (SES), Random Forests (RF), and

most notably Autoregressive Integrated Moving Average (ARIMA)[3][4][5]. For non-linear

methods - generally neural network based - current research includes Recurrent Neural

Networks (RNN), Long Short-Term Memory (LSTM), Gated Recurrent Unit Networks

(GRU), and WaveNets, to name a few[6][7][4][8][9][10][11].

The research is often times regression based; however, there is also work done with

respect to classification. The difference between regression and classification can be simply

explained using the asset price example: regression is forecasting the price while classifica-

tion is predicting the direction in which the price will move. Classification problems are

discrete in nature, and for asset prediction, there are only two considerable options: increase

or decrease. Linear and non-linear methods can and have been applied to classification

problems[12].

Research involving the prediction of bitcoin price began increasing around the year

2018, with many more papers published in 2020 and 2021. Linear and non-linear methods

are commonly compared with only a handful of novel approaches. In a 2018 paper on

forecasting time series stock market data obtained from Yahoo Finance, [3] compared the

traditional ARIMA linear method to the more modern deep learning method of LSTM. It was

found that the LSTM model reduced error by about 85 percent when compared to ARIMA

indicating a significant improvement[3]. However, a 2019 paper from [7] forecasting bitcoin

price, shows results that conclude the linear methods of ARIMA and SVR outperformed

their LSTM model due to a faster minimum convergence ability. [7] also claims that due

to the Efficient Market Hypothesis (the theory that a share price reflects all information

possible, thereby eliminating the possibility of beating the market), linear methods perform
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better when predicting the highly volatile bitcoin price than machine learning methods.

Another 2020 paper on bitcoin price forecasting compares linear methods along with a

simple artificial neural network to find that the SVM outperformed all the models while the

ARIMA and Bayesian methods outperformed all the univariate models [4]. Lastly, a 2020

paper forecasting bitcon price movement using continuous and discrete datasets showed the

random forest method performing the best on the continuous dataset and the artificial neural

network performing the best on the discrete dataset.

In terms of classification - predicting which direction the price will move - two papers

come to the forefront. In 2018, [9] compared the results of an LSTM model and an ARIMA

model tasked with classification. It was found that the LSTM model performed significantly

better than the ARIMA model with a 52 percent accuracy; however, the LSTM model took

much longer to train. Another paper from 2020, used random forests to forecast bitcoin

price direction while also analyzing how interest rates, inflation, and market volatility could

affect the price. The analysis showed a 5-day price prediction accuracy between 75 and 80

percent and an 85 percent accuracy for 10 to 20 day price prediction [5].

These comparative analyses and papers provide a good foothold for further research;

however, they lack in novel approaches to forecasting bitcoin price. A handful of papers and

research present novel ideas from 2020 to 2022 using methods inspired from actual trading

strategies, the Monte Carlo approach, and even performing twitter and social media platform

sentiment analysis [13][14][10]. In the Monte Carlo approach from [13], the future value of

bitcoin is forecasted using a fractional Ornstein-Uhlenbeck driven by a Levy process with

a time-variant Hurst parameter. The Hurst parameter revealed bitcoin’s dynamic random

behavior while also exhibiting periods of mean reversion. A Normal Inverse Gaussian

appeared to provide the best fit distribution and the entire approach resulted in 95 percent

price prediction accuracy on three different dates in 2019 [13]. Another novel idea came in

a 2022 paper from [14], where correlations between general sentiment of the community
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and bitcoin price were analyzed. The research produced a Recurrent Radial Basis Function

Network using big data from social media networks to predict bitcoin price with the model

being able to achieve a 93 percent accuracy[14].

When reflecting upon current research, a few key areas of potential present themeselves:

novel ideas using traditional approaches, traditional ideas using novel approaches, and novel

ideas using novel approaches. Additionally, most of the current research in bitcoin price

forecasting suggest their respective models could be used to make investment and/or trading

decisions; however, not all of their results show a high accuracy on testing data. Meaning,

their models train well but do not generalize well. In some cases, a result of 50 percent

accuracy is presented as high performance when 50 percent is simply the common sense

baseline (any human can predict with 50 percent accuracy whether the price will go up or

down at any time). A novel approach that results in high accuracy against testing (new) data

is lacking in current research.

Our work finds a marriage between forecasting bitcoin price, neural networks, and a

linear method called Grey System Theory. The first order Grey Model, GM(1,1), is a linear

system that learns constant parameters that can fit a small dataset and can also make reliable

short-term predictions; however, in a high variance dataset like bitcoin price, the GM(1,1)

has difficulty making reliable predictions[15]. Hence, our motivation to combine the novel

physics informed neural network with the GM framework. This enables us to learn non-

linear grey system parameters, which is able to capture the non-linearity in the dataset. There

is plenty of work on forecasting with Grey System Theory, but not much on forecasting

bitcoin prices. A 2020 paper from [16], does produce a 98 percent accuracy level based on

certain time frames using the GM(1,1) model, but significant potential exists in using an

adaptive grey model applied to time series forecasting. RNN’s and their many variations

have been used to forecast non-linear time series; our research will provide a comparison of

our Adaptive GS method alongside a simple RNN, LSTM, GRU, and Bidirectional-LSTM
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networks.

It is our intention to give a clear and broad view of bitcoin and our method for forecasting

bitcoin prices. We will begin by providing a closer look into the world of cryptocurrency

and blockchain in Chapter 2. Chapter 3 expands on the fundamentals of artificial neural

networks and the specific architectures we will be comparing. Chapter 4 dives into Grey

System Theory and our Adaptive Grey System Deep Neural Network approach. Lastly,

Chapter 5 presents the results.
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CHAPTER 2

CRYPTOCURRENCY

Bitcoin. What is it? Why was it created? What problem does it solve, if any? In this

chapter, we will be answering these important questions and more.

2.1Trusted Third Parties and the History of Money

To understand cryptocurrency, we have to take a step back and review basic economic

concepts of money, or mediums of exchange. Before money, as we know it today, goods and

services were exchanged directly - without any medium - by way of the barter system. For

example, Jon gave Mary 10 chickens for 1 goat. The barter system served its purpose but it

did not scale well, and as human civilizations grew, so did the need for strong currency and

economic systems.

Thus began a transition to commodity money. Commodity money is an object that

represents a certain amount of purchasing power while also having intrinsic value. Gold and

silver are popular examples but salt, copper, tea, silk, and many others were also used. Good

commodity money is durable, rare, intrinsically valuable, and easily exchangeable. Gold and

silver fits these characteristics well. But who decides the value of these objects? Governing

bodies generally declared the value within their nations but what about international trade?

And what about the supply of these monies? Many economic concepts come into play when

it comes to currency and trade and as markets continued to develop, so did money[17].

One of the difficulties of commodity money, specifically coins, was that the gold or

silver content of the coin couldn’t always be trusted. This would make international trade

especially difficult. So they traded debts, and IOU’s turned into paper money. All parties

agreed the IOU had value by trusting a solvent middleman. Thus introducing the trusted

third party. The first recorded trusted third party was the Medici family of France. This

“trust” gave the lender power and they quickly realized they could “create” money in the

form of more IOU’s or debt that could not be taxed nor debased. Fast forward to today,



7

and we find entire countries buying and selling each other’s debts. Many other financial

inventions arose throughout history; however, when it comes to bitcoin, a trusted third party

is the most significant[18].

As we continue through time and now focusing on the United States, from 1781 to the

1940’s, the U.S.A. adopted the Gold Standard: a system in which the currency derived

its value from gold and could be exchanged for gold at a certain rate. To prevent random

financial institutions popping up across the country without any regulation, a centralized

bank was created - the Federal Reserve. This allowed the United States to expand or contract

the dollar and control supply, all tied to the value of gold also reducing the regular boom

and bust cycles experienced in the American markets[19].

In 1929, the great depression affected the world. The Federal Reserve printed all the

money it could to bring life back to the economy but it needed gold. So in 1933 a law was

passed forcing all American citizens to sell their gold to the government at a fixed price or go

to prison. An even better rate was offered internationally making gold flow into the country

allowing for an increase in dollars printed. Buying other government’s gold allowed dollars

to be spread across the globe making the dollar a widely used and recognized currency. In

the devastation of World War 2, the U.S. dollar proved to be the most stable currency so

other countries pegged their currencies to the dollar, even further solidifying its position

as the world’s strongest currency. America now owned more than half of the world gold

reserves. Governments began disputing the value of their currency versus the dollar and

demanded to buy gold back for their paper currency. Although the gold standard had slowly

declined in use since the Great Depression, in 1971, President Nixon officially ended the

issue by severing the gold standard, ending the ability of foreign nations buying American

gold, and thus making the dollar a fiat currency: money with no intrinsic value and backed

solely by the full faith and credit of the United States government; the ultimate trusted third

party[19].
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2.2The Double Spend Problem

In the digital age of today, what is the point of paper money? A customer can buy a cup

of coffee through various digital means - with just a tap of their phone, even - rarely does

today’s consumer make a purchase with cash. But what exactly happens when a credit or

debit card is used to make a transaction? From a broad point of view, with every swipe, a

trusted third party collects the consumer and vendor’s information and exchanges the digital

funds accordingly. The main purpose of the trusted third party here is to prevent the digital

instance of the funds to be spent more than once. Imagine a line of code representing the

money, and then a bad actor simply copying and pasting that line of code and using it for

another transaction. This is called the double spend problem and it creates a costly issue

for banks, vendors, and consumers[20].

2.3Blockchain

A commonly overlooked but highly important distinction about the word “Bitcoin” is

that Bitcoin with a capital ‘B’ refers to the Bitcoin protocol and entire blockchain network.

Whereas bitcoin with a lower case ‘b’ refers to the digital asset. The blockchain can be

thought of as a digital ledger in which every entry, or transaction, must be approved and no

approved entry can be changed. Entries are grouped together in blocks which are ”chained”

together by way of a hash value; every block points directly to the previous block all the

way to the genesis block[21].

One of the most important features of the blockchain is how the blocks are approved.

This is done by a consensus algorithm: a computer process used in distributed systems

to reach an agreement on a single data value. A distributed system, in its most basic

form, is a group of independent computers (nodes) linked by a network. The consensus

algorithm and the distributed nature of Bitcoin’s architecture gives it the crucial quality of

decentralization[21]. A decentralized system is where decisions are made by every entity

in the network, as opposed to centralization where decisions are made by one or few entities.
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The Federal Reserve is an example of centralization[19].

The significance of decentralization can be further explained by the classic Byzantine

Generals Problem. A group of Byzantine generals have surrounded an enemy city and

must decide when to attack. The generals can only communicate with each other via one

messenger; however, one or more generals may be a traitor and can cause the entire army

to attack at the wrong time by sending their traitorous message to the other generals. The

problem is to find an algorithm such that the loyal generals are able to reach an agreement

upon when to attack. This problem has many applications towards reliable computer systems

and their inevitably faulty components[22].

In the case of the Bitcoin blockchain, the ”generals” are the nodes in the network and the

decision to attack is, instead, the verification of a bitcoin transaction by way of the consensus

algorithm. Many approaches to consensus have been developed; Bitcoin uses the Proof

of Work (PoW) approach. In PoW, the participants act as a kind of verifier by calculating

a hash value for the block header. This value must meet a set numerical requirement and

if one node achieves the correct calculation, all other nodes verify the work. This work

requires vast computational power and time consumption, and thus, an incentive is given to

the nodes in the form of bitcoin. The nodes performing these calculations are called miners

and the work they perform is called mining. Bitcoin mining is also how the total supply of

bitcoin in circulation increases[21].

2.4Current Market

Cryptocurrency is primarily traded through exchanges, a marketplace to buy, sell, and

hold. Coinbase, Binance, Gemini, and Kucoin are some of the more popular exchanges that

have millions, even billions of dollars of daily trading volume. As of October 2022, the

global market capitalization (MC) for cryptocurrencies is roughly $1 trillion with over

20,000 different cryptocurrencies in existence. That means the entire world has invested a

total of $1 trillion in cryptocurrencies. To put this in perspective, the current MC of Apple
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stock is over $2 trillion. Bitcoin has a current MC of $400 billion, roughly 40% of the

entire cryptocurrency market making it the market leader. All cryptocurrencies besides

bitcoin are referred to as altcoins with Ethereum having a MC of $140 billion making it the

largest altcoin and second largest cryptocurrency behind bitcoin.

A simple way to understand how the value of bitcoin fluctuates is by understanding the

relationship between supply and demand. If an asset is in high demand - everyone wants it

- it can be priced high. If it is in high demand, but there is also a high supply, it would be

priced more fairly at an equilibrium price. If it is in high demand, but there is a low supply,

the price will skyrocket[17]. Bitcoin has a maximum circulating supply of 21 million with

the current circulating supply to be around 19 million (supply increases as more bitcoin is

mined). This means it is quite scarce, almost like a digital gold[23].

There are two types of analysis when it comes to asset price: fundamental and technical.

Fundamental analysis involves measuring an asset’s intrinsic value by way of economic

and financial factors. For example, a stock’s value could be analyzed by researching the

company, leadership team, utility/usefulness of the asset, financial reports, etc. On the

other hand, purely analyzing market data and price action to identify trends is technical

analysis[23]. Forecasting bitcoin price using linear and/or non-linear methods using market

data would be considered technical analysis, which is the focus of this research.
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CHAPTER 3

ARTIFICIAL NEURAL NETWORKS

An artificial neural network (ANN) can be described as a data filtration and represen-

tation extraction mechanism. It receives inputs which pass through layers. The general

purpose of a layer is to extract a different, more useful representation of the previous input.

This process of continuously feeding data forward and backward through the ANN repeats

until an output is achieved which is measured for validity and accuracy. The more layers

a model has, the “deeper” it is said to be, hence the name deep learning. Deep learning

is a subset of machine learning with the most notable difference being the use of multiple

hidden layers in deep learning [12]. Each layer also has a predetermined number of units or

neurons through which data flows. A forward and backward pass through the training data

is called an epoch. The connections between each layer’s units have weights and a bias

which is used to offset results in an, ideally, more useful direction. The weights and biases

are updated as the model runs with the hope of finding potential solutions to the specified

problem. Optimizing weights and obtaining the result can be thought of as the “learning”

part of machine learning. The architecture of a simple ANN can be visualized in Figure (1)

where the lines between the nodes represent the weights.



12

Figure 1: Simple Representation of an ANN

From the mathematical perspective, an ANN is a composition of functions where the

task is to find optimal output functions that match some target function.

The ANN displayed in Figure (1) can be described as follows;

Y (X ,θ) = σ(WLσ(. . .σ(W2σ(W1X +b1)+b2) . . .)+bL), (3.0.1)

where X = [x1,x2,x3]
T is the input vector and Y = [y1,y2]

T is the output vector, and

L−1 is the number of hidden layers in the neural network. The neural network in (3.0.1)

is a composition of linear functions together with a nonlinear function denoted σ(·), σ is

usually called an activation function [24]. A backpropagation algorithm usually called an

optimizer is used to adjust the neural network trainable parameters θ , given as follows;

θ = [W1, . . . ,WL,b1, . . . ,bL].
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After each epoch, θ is updated until (3.0.2) is minimized.

θ
∗ = min

θ
Y (X ,θ). (3.0.2)

After understanding the input - layer - output feed forward architecture, the next concept

to be understood is that of a tensor. A tensor is a data structure that can be shaped and

formed to accommodate data and model requirements [12]. Tensors create the ability to

provide inputs in a way that the computer can understand: through code and numerical

values. Deep learning systems use tensors as their data structure making them fundamental

to the field. The shape of a tensor is a tuple of integers that describes the number of axes

and number of elements along each axis of a tensor. The dimensionality of a tensor refers

to the number of axes it has [12]. For instance, a rank-2 tensor, or 2D tensor, has two axes.

This is commonly known as a matrix with the rows being one axis and the columns being

another axis. A rank-1 tensor has one axis and is known as a vector or an array of scalar

values. A scalar is a rank-0 tensor. Dimensionality can also describe a structure such as a

vector; however, in this case, dimensionality describes the number of elements along the

axis and not the number of axes themselves. This is an important distinction to make and

can easily cause confusion. For example, a 2D tensor is not the same as a 2D vector. A 2D

tensor has two axes and a 2D vector has one axis with 2 elements along it[12]. Timeseries

data almost always follows a 3D tensor with the shape (samples, timesteps, features).

In order to shape tensors, manipulate them as we see fit, and ultimately glean useful

representations from them, operations like multiplication and addition must be performed.

Dot product between matrices and addition of vectors and scalars are common tensor

operations[12].

The most important operation performed on a tensor is done through an activation

function. This crucial function is what propels deep learning from linearity to non-linearity

and allows a model to search for and find solutions impossible for a linear model to find.
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Each unit has a designated activation function whose purpose is to decide whether or not

the unit is “activated” or not. To be activated means the weights and biases are updated.

These values are updated by taking partial derivatives and to do that, the chain rule is

applied. If a weight is changed in the first hidden layer, its effect can be seen in the output

of the next layer and the following layer and so on all the way to the output layer. This

enables the subsequent units and layers to update accordingly through a process called

backpropagation. To understand this process and how the chain rule enables the model

to update weights and biases in the right direction, more calculus is needed. Specifically,

finding derivatives and what that means when solving a problem using deep learning.

Take a smooth and continuous function whose input is a tensor i.e. a tensor function,

taking its derivative results in what’s known as a gradient. Just like the derivative of a

scalar function is the slope at a particular point, a gradient describes the curvature of a

multidimensional surface described by the function [12]. Knowing a function’s derivative

allows us to understand how a small change in the input affects the output. In deep learning,

a loss or cost function is used as a model assessment and different problems call for different

loss functions. A simple example of a loss function is Out put = Actual −Predicted. The

loss function is minimized through an optimization process called gradient descent where

the weights between the layers are updated. The “speed” of this process is determined by the

learning rate - a value chosen by the machine learning engineer. Changing the attributes,

such as the weights, of a neural network can be done in many different ways. These, such as

gradient descent, are called optimizers.

3.1Hyperparameter Tuning and Regularization

Many decisions need to made in order to improve the performance of a model. This

process is called hyperparameter tuning. So far, the following parameters have been

discussed and are choices that need to be made to improve a model’s performance:

• number of hidden layers
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• number of units

• number of epochs/batch size

• learning rate

• tensor shape

• training split (discussed below)

• loss function

• activation function

• optimizer

• dropout rate (if applicable)

When training a model, one of the most important aspects of model performance to

monitor is its training accuracy and its testing accuracy. Before training, the data must be

split into training data and testing data. These are fairly self-explanatory in that the model

is trained using the training data and tested on the testing data. The testing data simulates

what it would be like for the model to handle “new” data. How well the model performs on

training data is its training accuracy and how well it performs on testing data is its testing

accuracy. If a model has poor training and testing accuracy, it is said to be underfitting and

has made assumptions about the data and has not “learned” enough. If a model’s training

accuracy is higher than its testing accuracy, this is a clear sign of overfitting. This means

the model has memorized patterns in the training data but did not particularly “learn” the

data so it does not perform well on new data. It is like a student that crams all the material

the night before an exam but does not actually learn the material. That student may do well

on the specific material they memorized but perform poorly on the exam. Performance on

new data is called generalization and a model that generalizes well is a core objective for
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machine learning based problem solving. The entire process of hyperparameter tuning with

the intention of fitting the data accurately to prevent overfitting is called regularization. A

widely used regularization technique - and one used in this research - is dropout. Dropout

was developed by G. Hinton at the University of Toronto when he was at the bank and

noticed that the tellers rotated positions when serving bank customers. He discovered it was

a way to make it harder for the bank tellers to collude and steal from the bank. Applied

to machine learning, dropout randomly removes units from layers in order to reduce their

ability to memorize patterns in the data and promote generalization and ”learning” patterns

in the data[12]. In the following sections, we introduce different model architectures, their

mathematical representations, and sample code implementations using the keras library, an

open source library developed by Google labs that streamlines the machine learning coding.

3.2 Models

3.2.1 Recurrent Neural Network

A Recurrent Neural Network (RNN) is a specific type of ANN which is able to retain

information based on what it has seen thus far. A hidden state is maintained throughout

the processing of data and the state is updated between each sequence from the input and

previous hidden state. The hidden state can be thought of as a kind of ”memory” and an

RNN can be thought of as a For Loop that reuses quantities in the previous iteration of the

loop. As shown in Figure (2), an input and a hidden state is processed (in this case, by the

tanh activation function) and an output and new state is generated. These two values become

the input and new state of the next iteration until all the data is processed. The mathematical

representation of these processes can be seen in equation (3.2.1). Tanh represents the

hyperbolic tangent activation function, which has an output range between -1 and 1[12].
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Figure 2: Simple Representation of a RNN

ht = tanh(Wht ∗ht−1 +Wx(t) ∗ xt +b), (3.2.1)

• xt is the input at time t,

• ht is the hidden memory of the cell at time t,

• Wx(t) is the weight matrix of x at time t,

• Wh(t) is the weight matrix of ht−1 at time t.

Figure (3) shows the python code for the implementation of a simple RNN model.

Importing “SimpleRNN” from the Keras library allows for effortless implementation and

decision making. In each layer, decisions are made regarding number of units, activation

function, and dropout percentage. Another common activation function is the Rectified

Linear Unit (ReLU). In the compilation step (model.compile), the optimizer and loss

function are chosen, in this case, the adam optimizer and the mean squared error loss

function.
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The ReLu activation function is a simple max(x, 0) function where x is the input. It is an

element-wise operation applied to a tensor resulting in non-negative output. Our research

deals with asset prices that never go below zero, so the ReLU activation function is used

often[24].

from tensorflow.keras.layers import SimpleRNN

model3 = Sequential()

model3.add(SimpleRNN(units = 50, activation = ’relu’, return_sequences =

True, input_shape = (X_train.shape[1], 4)))

model3.add(Dropout(0.2))

model3.add(SimpleRNN(units = 60, activation = ’relu’, return_sequences =

True))

model3.add(Dropout(0.3))

model3.add(SimpleRNN(units = 80, activation = ’relu’, return_sequences =

True))

model3.add(Dropout(0.4))

model3.add(SimpleRNN(units = 120, activation = ’relu’))

model3.add(Dropout(0.5))

model3.add(Dense(units =1))

model3.compile(optimizer = ’adam’, loss = ’mean_squared_error’)

Figure 3: Simple RNN Implementation in Keras

Each time-step is a loop of the previous output. In theory, this means that the final output

should contain the relevant information of the entire dataset meaning only the final output

is needed; however, a problem known as the vanishing gradient - the calculated gradient

reduces to zero over time and therefore does not propagate useful information through the

network - prevents this from being the case[6]. This leads to the next model of choice: Long

Short Term Memory.

3.2.2 Long Short Term Memory

The Long Short Term Memory (LSTM) model is a variant of the RNN. The LSTM is one

of the most common models applied to timeseries data. It adds a way to “carry” information

across time steps and helps address the vanishing gradient problem. This ability essentially
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saves information for later, which makes older information from earlier timesteps remain

relevant and prevents them from vanishing[12][6]. As seen in Figure (4), C can be called

“carry” and imagined as a conveyor belt of information where signals can jump on and off

when necessary. This conveyor belt regulates the next output and the next state (remember

this is an RNN so it has states). These values are computed by way of transformations and

use of an activation function. The LSTM model contains a cell state and gates: forget,

input, and output. These gates control the flow of information through the LSTM model.

The forget gate decides what information to keep from the previous timesteps. A sigmoid

function compresses this value between 0 and 1 where 0 forgets and 1 remembers (equation

(3.2.2)).

ft = σ(Wf xt +U f ht−1 +b f ), (3.2.2)

The input gate quantifies the importance of the incoming information also by way

of a sigmoid activation function (equation (3.2.3)) for decision making along with a tanh

activation function for assigning a weight between -1 and 1 to the flowing information

(equation (3.2.4)).

it = σ(Wixt +Uiht−1 +bi), (3.2.3)

C̃t = tanh(WCxt +UCht−1 +bC), (3.2.4)

The output gate controls the output of the cell which becomes the next hidden state [6].

ot = σ(Woxt +Uoht−1 +bo), (3.2.5)

ht = ot ∗ tanh(Ct), (3.2.6)
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Figure 4: Simple Representation of an LSTM Network

Implementation of the LSTM can be seen in Figure (5). It is similar to the implementation

of the simple RNN especially due to the Keras library. Again, we use the ReLu activation

function, dropout regularization method, adam optimizer, and mean squared error loss

function.

model1 = Sequential()

model1.add(LSTM(units = 50, activation = ’relu’, return_sequences = True,

input_shape = (X_train.shape[1], 4)))

model1.add(Dropout(0.2))

model1.add(LSTM(units = 60, activation = ’relu’, return_sequences = True))

model1.add(Dropout(0.3))

model1.add(LSTM(units = 80, activation = ’relu’, return_sequences = True))

model1.add(Dropout(0.4))

model1.add(LSTM(units = 120, activation = ’relu’))

model1.add(Dropout(0.5))

model1.add(Dense(units =1))

model1.compile(optimizer = ’adam’, loss = ’mean_squared_error’)

Figure 5: Simple LSTM Implementation

3.2.3 Gated Recurrent Unit (GRU)

Another variant of the RNN is the Gated Recurrent Unit (GRU) model. It bears a

resemblance to the LSTM and also aims to resolve the vanishing gradient problem; however,
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the GRU gated architecture is different from LSTM’s. Instead of a forget, input, and output

gate like the LSTM, the GRU has only a reset and an update gate while also notably lacking

an output gate. The reset gate is used to decide how much of the past information to forget.

The update gate is used to determine how much of the past information should be passed

forward.

zt = σ(Wzxt +Uzht−1 +bz), (3.2.7)

rt = σ(Wrxr +Urht−1 +br), (3.2.8)

h̃t = tanh(Wxt +Urht−1 +bh̃), (3.2.9)

ht = (1− zt)∗ht−1 + zt ∗ h̃t , (3.2.10)

Due to the GRU’s fewer parameters and operations than the LSTM, it is generally

easier to train as seen in equations (3.2.7)(3.2.8)(3.2.9)(3.2.10). Figure (6) shows a simple

representation of the GRU architecture.
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Figure 6: Simple Representation of a GRU Network

from tensorflow.keras.layers import GRU

model4 = Sequential()

model4.add(GRU(units = 50, activation = ’relu’, return_sequences = True,

input_shape = (X_train.shape[1], 4)))

model4.add(Dropout(0.2))

model4.add(GRU(units = 60, activation = ’relu’, return_sequences = True))

model4.add(Dropout(0.3))

model4.add(GRU(units = 80, activation = ’relu’, return_sequences = True))

model4.add(Dropout(0.4))

model4.add(GRU(units = 120, activation = ’relu’))

model4.add(Dropout(0.5))

model4.add(Dense(units =1))

model4.compile(optimizer = ’adam’, loss = ’mean_squared_error’)

Figure 7: Simple GRU Implementation

Many more models exist each with their own strengths and weaknesses. For the purposes

of this research, we have chosen to use a simple RNN, LSTM, and GRU model to compare

with the Adaptive Grey Model which we introduce in the next chapter.
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CHAPTER 4

ADAPTIVE GREY MODEL

4.1 Grey System Theory

If being in the “grey area” could be turned into theory and defined by mathematics, it

would be called the Grey System Theory (GS). Developed by Deng Julong of Huazhong

University of Science and Technology in 1982, GS defines a system as having either

no information (black), full information (white), or a mixture of known and unknown

information (grey) [2]. In the real World, inaccuracies are more probable, so black and

white information are less likely. Most situations fall in between. GS uses partial and

incomplete information to make forecast. One major advantage of using GS is that it does

not require a lot of data and it does not require the available data to come from a particular

distribution [15]. The GS has been used in many prediction and forecasting tasks such as

time-series forecasting [25].

4.2 A residual Grey forecasting method

One of the widely used GS prediction models is the GM(1,1) [2, 25], which is a single

variable first order grey model. GM(1,1) uses four or more data points, and it can get a

high accuracy forecast [25] [26]. Creating this model begins with the construction of the

Accumulation Generating Operation (AGO) which increases the smoothness of the data or

sequence of data points used. The following steps essentially takes a data sequence and

“slides” it forward, making a new prediction with each iteration. Mathematically, this is

done by solving differential equations and finding parameter values. Similar to how neural

networks perform backpropagation and gradient descent to solve for parameters that reduce

the loss function. The following steps and equations were obtained from [15] and [26] and

the results are shown in Chapter 5.
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1. Construct the 1 - AGO sequence of X sequence. Set sequence

X (0) = (x(0)(1),x(0)(2) . . . ,x(0)(n)),

wherein

x(0)(k)≥ 0,k = 1,2 . . . ,n.

And X (1) is the 1 - AGO sequence of X (0) :

X (1) = (x(1)(1),x(1)(2) . . . ,x(1)(n)),

among which

x(1)(k) =
k

∑
i=1

x(0)(i),k = 1, . . .n (4.2.1)

2. Set the mean sequence of Z(1) of the 1 - AGO sequence

Z(1) = (z(1)(2),z(1)(3) . . . ,z(1)(n)),

among which

z(1)(k) =
1
2
(x(1)(k)− (x(1)(k−1)) (4.2.2)

The above two steps are to “whiten” the existing data by constructing the 1 - AGO

sequence and the mean value sequence respectively, so as to fully explore its inherent

laws and information.

3. Construct and solve the whitening differential equation. Set

x(0)(k)+az(1)(k) = b

as the mean value for of GM(1,1), hence the whitening differential equation would be:
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dx(1)

dt
+ax(1) = b (4.2.3)

Set the parameter vector as â = (a,b)T , therefore least squares method could be used

to estimate

â = (BT B)−1BTY (4.2.4)

Y =



x(0)(2)

x(0)(3)
...

x(0)(n)


,B =



−z(1)(2) 1

−z(1)(3) 1
...

...

−z(1)(n) 1


(4.2.5)

4. Calculate the response time. Parameter vector â could be calculated from (4.2.4) and

(4.2.5), therein - a is development coefficient, which reflects the development trend of

x̂(1) and x(0), and b is the gray action. The time response of x̂(1)(k) would be:

x̂(1)(k) =
(

x(0)(1)− b
a

)
e−a(k−1)+

b
a
,k = 1,2, . . . ,n (4.2.6)

from (4.2.6), the reduced reduction equation would be:

x̂(0)(k) = x̂(1)(k)− x̂(1)(k−1),k = 1,2, . . . ,n (4.2.7)

x̂(0)(k) = (1− ea)
[(

x(0)(1)− b
a

)
e−a(k−1)

]
,k = 1,2, . . . ,n (4.2.8)

And the analog sequence would be obtained from (4.2.8).

5. Construct residual sequence and conduct conditional decision. If the accuracy is not

up to the requirement, the residual tail segment method is used for correction. The
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residual sequence is defined as:

ε
(0) = (ε(0)(1),ε(0)(2), . . . ,ε(0)(n)) = (x(0)(1)− x̂(0)(1),x(0)(2)− x̂(0)(2), . . . ,x(0)(n)− x̂(0)(n))

(4.2.9)

if ∀k ≥ k0, the symbol of k0 is the same as that of ε(0)(k) and n− k0 ≥ 4, then

(∣∣∣ε(0)(k0)
∣∣∣),(∣∣∣ε(0)(k0 +1

∣∣∣), . . . ,(∣∣∣ε(0)(n)∣∣∣) (4.2.10)

is modellable residual segment, which can be constructed according to steps (1) to (4).

Its response time after the reduced reduction correction is:

x̂(0)(k+1) =


(1− ea)

(
x(0)(1)− b

a

)
e−ak, k < k0

(1− ea)
(

x(0)(1)− b
a

)
e−ak ±aθ

(
ε(0)(k0)− bθ

aθ

)
e−aθ (k−kθ ), k ≥ k0

(4.2.11)

That is, the analog value of the GM(1,1) model is used as the prediction result before

k0, and the simulated value after the residual segment compensation is used as the

prediction result after k0. Then perform the error test again and put it into use.

4.3 Adaptive Grey System Deep Neural Network

The GS version of the GM(1,1) was a linear regression, in which it estimates two

constant parameters, a and b, as seen from equation (4.2.3) [15]. The Adaptive Grey System

Deep Neural Network changes a and b into functions of time, thus converting the linear

constant parameters into non-linear functions. This transforms the GM(1,1) into a non-linear

approach where a and b can be estimated by way of a feed forward deep neural network that

is able to capture the non-linearity of the bitcoin price data.

We accomplished this by creating a system of three neural networks and three loss

functions all working simultaneously and interconnectedly. The loss functions serve as the

goal - what the network is supposed to optimize - where the outputs of the three neural

networks are all contained.
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DataLoss = min(|x0 − x0
p|+ |x1 − x1

p|+ |z1 − z1
p|) (4.3.1)

L1 = |
dx(1)p

dt
+a(t)x(1)p −b(t)| (4.3.2)

L2 = |x0
p +a(t)z(1)p −b(t)| (4.3.3)

Equation (4.3.1) intends to get the predictions as close to the actual values as possible and

equations (4.3.2) and (4.3.3) satisfy the GM(1,1) differential equations.

With these loss functions and three, three-layer neural networks each with 60 units, the

tanh activation function, and the adam optimizer, we have trained the AGS deep neural

network with just 60 days of bitcoin data. The results of the trained model are shown in

Chapter 5.
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CHAPTER 5

RESULTS AND DISCUSSION

The bitcoin price data used to produce the following results was the daily price from

June 13, 2017 to November 8, 2022 (1975 days) and it was obtained from Yahoo Finance.

1900 days were used to train the model, 60 for testing, and the last 15 days were used to

validate predictions. We chose this split due to the volatile nature of bitcoin and the intention

to make very short-term predictions. Making an accurate, short-term, 15 day prediction

would be a success; however, since the validation set is so small, plotting the training loss vs

validation loss proved fruitless and we did not include them. The data was also normalized

before training, meaning, all values were shrunk down to be between 0 and 1. This allows

for easier and more consistent computation among many other benefits. Figure (8) shows

the entirety of the bitcoin price data set.

Figure 8: Bitcoin Daily Price Data
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For the simple RNN, LSTM, and GRU models, a similar hyperparameter tuning process

was conducted. This process involved an iterative increase in units followed by increasing

layers. Units started at 50 then doubled and tripled for one, two, and three layer models. For

two and three layer models, 50 percent dropout was applied to each layer followed by 10

percent. The same dropout experiment was also applied to the three layer model; however,

switching between dropout between only one layer: the first or second. This experiment

yielded positive results for the Simple RNN but not for the LSTM or GRU.

The reasoning behind iteratively increasing units and layers was simple. These increases

in units and layers means the model, in theory, is able to expand the ability of the model to

search for possible solutions in the hypothesis space. More gradients are calculated which

means a deep search for the solutions. The reasoning behind the dropout experiments was to

reduce the possibility of the models memorizing the patterns of the data rather than learning

them. It is a regularization method intended to reduce overfitting.

The adam optimizer and the ReLu activation function was used across all experiments

with the models set to perform 4 epochs. The loss function used was the Mean Absolute

Error (MAE) which is calculated by 1
N ∑

N
i=1 |Yi − Ỹi|.

5.1 Simple RNN Results

As the number of units and layers increased, so did the performance of the simple RNN.

The simple RNN model showed the best results with 100 units, 3 layers, and 10 percent

dropout in the middle layer. Exceeding these numbers showed a significant decrease in

performance along with increased computation time.
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Figure 9: Simple RNN Results

# rnn3

simple_rnn_model_3 = Sequential()

simple_rnn_model_3.add(SimpleRNN(100, activation = ’relu’,

return_sequences = True, input_shape = x_train_uni.shape[-2:]))

simple_rnn_model_3.add(SimpleRNN(100, activation = ’relu’,

return_sequences = True))

simple_rnn_model_3.add(Dropout(0.1))

simple_rnn_model_3.add(SimpleRNN(100, activation = ’relu’))

simple_rnn_model_3.add(Dense(1))

simple_rnn_model_3.compile(optimizer=’adam’, loss=’mae’)

Figure 10: rnn3 Code

5.2 Simple LSTM Results

Neither dropout nor increased number of layers improved the simple LSTM performance.

Only a single layer with 100 units showed good results, with little to no improvement beyond

100 units. Slight dropout improved the two layer model, but it was still not as strong as the

single layer model’s performance.
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Figure 11: Simple LSTM Results

# lstm1

simple_lstm_model_1 = Sequential([

LSTM(100, activation = ’relu’, input_shape=x_train_uni.shape[-2:]),

Dense(1)

])

simple_lstm_model_1.compile(optimizer=’adam’, loss=’mae’)

Figure 12: lstm1 Code

5.3 Simple GRU Results

Dropout did not improve the simple GRU models as it did with RNN and slightly with

LSTM. Simply increasing the units made the GRU highly accurate with 150 units showing

almost perfect prediction over the 15 day period as seen in Figure (13).
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Figure 13: Simple GRU Results

# gru1

simple_gru_model_1 = Sequential([

GRU(150, activation = ’relu’, input_shape=x_train_uni.shape[-2:]),

Dense(1)

])

simple_gru_model_1.compile(optimizer=’adam’, loss=’mae’)

Figure 14: gru1 Code

5.4 GS Results

Grey System Theory and the majority of associated models are linear in nature and

Figure (15) shows the prediction a simple GM(1,1) model with no non-linear parameters

over a very short period of time with a small dataset.
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Figure 15: GS Results

5.5 Adaptive GS Results

Using the GM(1,1) construction steps discussed in Chapter 4, converted into Python

code and run as a physics informed neural network, we were able to enable this linear

method to learn non-linear grey system parameters. Figure (16) shows the results of the

Adaptive GS deep neural network over a two month period.

Figure 16: Adaptive GS Results
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CHAPTER 6

CONCLUSION

The invention of bitcoin and the associated blockchain technology has had a profound

impact on the world, especially the financial markets. No other asset has seen such returns

in the entire history of investing. And as the old saying goes, what goes up must come down.

Many investors have lost fortunes investing in this, and other, incredibly volatile asset.

Countless known and unknown factors contribute to the price of bitcoin; however, this

research performs a purely quantitative and technical analysis of bitcoin price action in order

to make short term predictions. Linear forecasting methods have been applied to bitcoin

price along with non linear methods in more recent years. Neural networks are one such

non linear approach to forecasting and this research utilizes the Recurrent Neural Network

architectures - including Long Short Term Memory and Gated Recurrent Units - to perform

predictions. Ultimately, a simple GRU model with 150 units performed the best in predicting

the bitcoin price movement over a 15 day period.

Our work finds a marriage between forecasting bitcoin price, neural networks, and

a linear method called Grey System Theory. The first order Grey Model, GM(1,1), is a

linear system that learns constant parameters that can fit a small dataset and can also make

reliable short-term predictions; however, in a high variance dataset like bitcoin price, the

linear GM(1,1) has difficulty making reliable predictions[15]. Hence, our motivation to

combine the linear GM(1,1) approach with deep neural networks. This enables the learning

of non-linear grey system parameters, which then captures the non-linearity in the dataset.

The resulting adaptive GS deep neural network trained on just 60 days, showed a well

generalized trained model.

Future work may include building more complex and computationally intensive Recur-

rent Neural Networks to generate long term predictions while continuing to compare the

results with more complex adaptive GS models with increased non-linear parameters. The
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adaptive GS model will then be extended to produce predictions. These methods may also

be applied to other predictive analytic fields with incomplete or limited data such as farming

yields, energy consumption, and environmental sciences.

The code for the Simple RNN, LSTM, GRU, GS, and Adaptive GS can be found on

github at the following link: https://github.com/ykhaliq2/MasterThesis.git
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