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ABSTRACT

Angiogenesis is the formation of new blood vessels from pre-existing vessels. It

is one of the main processes that help in the growth and spread of tumors. The

processes that lead to angiogenesis are very complex and involve several pathways. If

cancerous cells are successful in inducing angiogenesis then the harmless malignant

tumor cell becomes vascularized and is equipped with the ability to spread from one

part of its host to other distant sites. We construct a multiscale continuum model for

tumor angiogenesis in an attempt to understand the role of angiogenesis induced by

hypoxia (lack of oxygen of tumor cells). We model this process as a reaction diffu-

sion system of a system of semi-linear parabolic differential equations. For modeling

blood structures, we use a discrete model which comprises of systems of ordinary dif-

ferential equations and stochastic differential equations. We use analytic semigroups,

functional analysis and complex analysis to study the existence of positive global

solutions, linear stability and instabilities due to different diffusion rates (Turing In-

stability). We perform sensitivity analyis of the reaction system which is modeled

using ordinary differential equations and uncertainty quantification via polynomial

chaos expansion (the expansions depends on random parameters). For computing

the numerical solutions of the continuum model, we use B-spline collocation method.

Computations for the numerical methods were done using Python software.
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CHAPTER 1

INTRODUCTION

Tumor-induced angiogenesis is the process by which malignant cancerous cells re-

cruit endothelial cells to ensure their continual survival. This process is complex and

involves different pathways. We study angiogenesis in tumor cells that are driven

by hypoxia (lack of oxygen). Tumor cells become hypoxic when they no longer have

enough nourishment through diffusion from their neighboring environment. To con-

tinue survival, tumor cells release signaling factors which constitute the so called

angiogenic switch to recruit blood vessels to themselves in order to ensure continuous

growth [20].

The resulting vascular network that is formed as a result of tumor induced angio-

genesis is leaky due to loose binding of pericytes and exhibits abnormal and irregular

branching in the vessel network. The leaky vasculature assists the transportation of

cancerous cells to other parts of the body. This process is known as metastasis and

can potentially be fatal [3]. We note however that cancer is not the only disease that

develops as a result of pathological angiogenesis. Some of the other diseases include,

psoriasis, rheumatoid arthritis, macular degeneration due to age and stroke just to

mention a few. In 1979 Dr Judah Folkman of MIT children’s hospital postulated that,

angiogenesis is the main initiator for tumor growth and metastasis [20]. Since then

several scientists have been interested in investigating his hypothesis which has over

time developed into a big field of research for both experimentalists and modelers.

Advances made by researchers in the field of angiogenesis suggests that biological

experiments are insufficient to acquire detailed insights about the intricate dynamics

involved in tumor induced angiogenesis. Modelers and experimentalists alike agree



2

Figure 1: The following diagram show Hypoxic Inducible Factor -1 (HIF-1) signaling activated

as a result of oxygen deficiency in tumor cells. Endothelial cells respond to the hypoxic signals by

growing tip cells and moving along the gradient of the signaling factors towards the tumor site.

that complex time scales restrict experimental design and analysis [12].

The application of mathematical and computational techniques to construct mul-

tiscale models for tumor induced angiogenesis has been identified as an alternative

approach to the scientific investigation of cancers, by which experimentalist can refine

their hypotheses, focus experiments, and generate more accurate predictions. Many

researchers [10, 12, 46, 57] have demonstrated the value of this approach in providing

quantitative insights in the initiation, progression, and treatment of cancer.

The majority of the recent mathematical cancer models describes the overall be-

havior of cancers at a single biological time scale [12, 39, 40]. These models do not

account for the interactions between processes happening at varying time scales. Due
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to recent advancements in computational power it possible to simulate large com-

plex nonlinear systems associated with cancer [57]. Multiscale mathematical cancer

modeling involves the construction of models that capture cross-scale effects on the

overall behavior of cancer progression. These models have to quantify parameters

and establish relationships between biological processes that occur at different scales,

the complexity of model design is thus significantly increased.

We propose a multiscale continuum model that describes the effect of hypoxia on

pathological angiogenesis in conjunction with a discrete model to capture vascular

structure of the blood vessels growing towards the tumor. The continuum model

consists of a number balance on the endothelial cells, which is coupled with the set

mass balances describing selected factors in the micro-environment : the chemotactic

response to tumor angiogenic factors, the haptotactic response of endothelial cells to

adhesive gradient and the role of the inhibitors in the angiogenic process. We seek to

use mathematical and computational modeling to describe quantitatively the effect

that the Hypoxia Inducible Factor-1 has on tumor induced angiogenesis.

We assume the interactions between tumor cells and other cells as a reaction

diffusion system. One can describe this relationship by a weakly coupled system of

parabolic partial differential equations: Let Ω be a finite domain in Rn, n = 1, 2, 3

and x ∈ Rn be spatial coordinate and t denote the time, then the governing equations

corresponding to this system are given as

∂ui
∂t

= di∇2ui + fi(u, k), i = 1, 2, · · · , N, (0, T )× Ω (1)

where u is the state vector comprising of cells, (immune cells, host cells, endothe-

lial cells and tumor cells) protein concentration and chemical concentrations. The

function f models the interactions between proliferation, apoptosis, dynamics of pro-
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duction, uptake and degradation of the chemical components included in the model

and k is the vector parameter. In the absence of diffusion equation (1) becomes a

reaction equation which is an ordinary differential equation:

dui
dt

= fi(u, k), i = 1, 2, ..., N (2)

The state variables ui, i = 1, 2, . . . , N are non negative. Therefore the reaction equa-

tions must preserve positivity, that is ui(0) ≥ 0 at t = 0 implies ui(t) ≥ 0 for all

t ≥ 0. Equation (2) has this property if fi(u1, u2, . . . , ui−1, 0, ui+1, . . . , uN , k) ≥ 0.

This property guarantees global positive solutions for equation (2). The existence

of local and global solutions for ordinary differential equations is well covered in the

literature [27, 28, 29]. If we add the diffusion terms then the existence of positive

global solutions, depends on the quasi-positivity of the nonlinear part of equation (1),

which we call condition (P ) that is

(P), u ∈ RN
+ → fi(u1, ..., ui−1, 0, ui+1, ..., uN , k) ≥ 0. (3)

and the total mass of the component, must be a priori bounded on all finite T ′s,

(M), For all u ∈ RN
+ ,

N∑
i=1

aifi(ui, k) ≤ 0. (4)

Condition (M) can be generalized to the following condition;

(M?) for allu ∈ RN
+ ,

N∑
i=1

aifi(ui, k) ≤ C

(
1 +

N∑
i=1

ui

)
(5)

where C ∈ [0,∞). Note that when C = 0 condition M(?) becomes M . P and M are

sufficient to guarantee global positive solutions if the diffusion rates are equal. For

example if di = 0 in the case of ODEs then P and M? guarantees global existence

of positive solutions but if the diagonal elements are different, then the different
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diffusion rates can cause the loss of stability see [53, 54] and thus the two conditions

are insufficient. We need an extra condition to establish the global existence of

solutions. We impose an extra condition described as follows:

for all u ∈ RN
+

Lf(u) ≤

[
1 +

N∑
i=1

ui

]
b, (6)

where L is a lower triangular invertible matrix with nonnegative entries, b is a constant

vector in RN
+ and the usual order in RN is used. For the mathematical analysis

(existence of global positive solutions and linear analysis) of equation (1), we use

analytic semigroups, functional analysis and complex analysis.

Although the continuum model in equation (1) can provide significant insight

into the mechanism of angiogenesis, it cannot predict the vascular structures. We

consider next a discrete model for predicting the vascular structures that are formed

by sprouts. This model takes into account the existence of separate sprouts from

endothelial cells. A very well known model for describing the vascular network is

by Stokes and Lauffenburger [59]: In their model, the evolution of the tip velocity

is governed by a stochastic differential equation that comprises of viscous damping

terms, a white noise term to model motion, and a chemotactic term;

dvi(t) = −βvi(t)dt+
√
αdWi(t) + κ∇a sin

(
Φ

2

)
dt (7)

where β is the viscosity coefficient, W is the Wiener process, a white noise, a is tumor

angiogenic factor concentration, Φ is the angle between the direction the tip is moving

and that toward the tumor angiogenic factor source, and i denotes ith sprout. The

equation of the tip given by the deterministic equation

dxi
dt

= vi(t); (8)
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and the equation for average density is

dρi
dt

= kg
ρmax − ρi(t)
ρmax − ρmin

ρi(t)−
si(t)

Li(t)
ρi(t) + kb [ρpv(t)− ρi(t)]

−
νi∑
j=1

kb [ρi(t)− ρj(t)]
(9)

where kg is the proliferation rate, kb is the distribution coefficient, ρpv(t) is the number

of branches that the ith sprout has at time t, si in the instantaneous speed of the i th

sprout has calculated as si(t) = ‖vi(t)‖ and Li is the sprout length calculated from

dL

dt
= si(t). (10)

In equation (9), the first term represents the endothelial cell proliferation using a

logistic expression, the second term represent sprout elongation using an average ve-

locity and average length, the third term represents the rate of increase of the average

density of the ith sprout due to influx of the endothelial cells from the parent vessel,

and the fourth term represents the rate of loss of density due to the redistribution of

endothelial cells from the ith sprout to its νi branches.

In biological systems like angiogenesis, the parameters of the continuum model

are not always certain. Thus we need to quantify how uncertainty in the parameters

impacts the solutions to the reaction equation model associated with the multiscale

tumor induced angiogenesis model with uncertain parameters. We study uncertainty

quantification for reaction equation version of our model by using generalized poly-

nomial chaos expansions on the parameters [15]. We use local and global quantita-

tive sensitive analysis methods like elementary local sensitivity analysis and Sobols

method to reduce the number of parameters to consider for randomness for uncer-

tainty quantification. We do this because performing uncertainty quantification for a

large set of parameters is computationaly costly. Sensitivity analysis also helps us to

identify the parameters that have the most effect on the system behavior.
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For computing numerical solutions for the multiscale model proposed, we use a

Bspline collocation method and generalized polynomoal chaos for uncertainty quan-

tification. We perform all numerical computing using python.

1.1 Dissertation Outline

The dissertation is divided into 7 chapters. In Chapter 1 we present a general intro-

duction to modeling tumor induced angiogenesis and the various analysis that we will

be performed to establish the existence of gloabal positive solutions for the model.

Chapter 2 discusses the construction of the multiscale mathematical models for tu-

mor induced angiogenesis. We review existing models [31, 40, 39] and present the

framework of our multiscale model. Chapter 3 discusses the mathematical analysis

for the models we proposed in chapter 2. We discuss the local existence of solutions,

and the global existence of positive solutions using conditions, P , M? and the ex-

tra condition. For the mathematical analysis, we use analytic semigroups, funtional

analysis and complex analysis. In Chapter 4, we discuss linear analysis of the mul-

tiscale model. We present our numerical results for the multiscale model in Chapter

5 and show the effect of random parameters in the multiscale model in Chapter 6

and Lastly we conclude by discussing our results in Chapter 7 and some milestones

achieved.
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CHAPTER 2

MATHEMATICAL MODELS FOR TUMOR INDUCED

ANGIOGENESIS

2.1 A Simplified Continuum Model and its Associated

Discrete Model for Angiogenesis

Before we build a multiscale model, we consider in this section a simplified version

of the reaction diffusion equation which comprises of two state variables which rep-

resent tumor angiogenic factors and inhibitor concentrations. In the model below

the inhibiitor specifically binds to and removes TAFs from the system. This tumor

angiogenesis model was first proposed by [62] to study the proliferation of tumor an-

giogenic factors. [31] elaborated on [62] by adding the inhibitor component to study

the interaction between tumor angiogenic factors and the inhibitor. In [14] a step

function forcing term which depends on a time parameter τ0 was added to study the

effect of a tumor source on the overall dynamics of the system:

∂C

∂t
= Dc52 C +Q(t, τ0)−KC − µlC −KonIC,

∂I

∂t
= Di52 I −KonIC,

(11)

with initial conditions,

C(x, y, 0) =


1 max(|x− x0|, |y − y0|) ≤ α0,

0 otherwise,
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I(x, y, 0) =


10 |x− x0|+ |y − y0| ≤ α1,

0 otherwise,

where the state variables C and I represent the concentrations for tumor angiogenic

factors and inhibitor respectively, Dc and Di represent the diffusion rate constant for

tumor angiogenic factors (TAF) and inhibitors respectively, K, represents the natural

inactivation rate of TAFs, µ is the rate constant for the uptake of TAFs, l, denotes

local density of cells, Kon is the rate constant controlling the relationship between the

TAFs and inhibitors. The step function Q is assumed to be a time dependent source

term of the form

Q(t, τ0) =


0 if (0 ≤ t ≤ τ0),

Qp if (t ≥ τ0),

where τ0 is the time it takes the tumor to initiate new signaling factors, Qp is the

amount of signaling factors introduced after time t ≥ τ0 and α0, α1 are fixed positive

real numbers. This model gives us some insight into the mechanism of tumor angio-

genesis but do not predict the vascular network. To simulate the vascular structures

we couple the continuum model (11) with the following discrete model:

f(C) =


0 if 0 ≤ C < Ct,

1− exp[−α(C − Ct)], ifCt ≤ C,

f(I) =


0 if 0 ≤ I < It,

1− exp[−α(I − It)], if It ≤ I,
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where Ct and It are threshold functions imposed on this model in order to detect

when and where endothelial cells can grow or be suppressed. Next the direction of

growth which is affected by three main factors namely the endothelial cells previous

direction of motion, the TAF concentration gradient and the inhibitor concentration

gradient and lastly the rotational matrix which incorporates the possibility of random

directions. The equation for the direction of growth is defined as follows:[
Ex
Ey

]T
=

(
P

[
E0
x

E0
y

]T
+

(1− P )

2
f(C)

[
C0
x

C0
y

]T
− (1− P )

2
f(I)

[
I0
x

I0
y

]T)[
cosθ sinθ
−sinθ cosθ

]
,

(12)

and the length of growth is affected by the maximum velocity of the length increase

Vmax and a time increment ∆t which provide the extension of the vascular structure.

Its governing equations are defined as;

∆l = Vmax

∣∣∣∣f(C)

[
C0
x

C0
y

]
− f(I)

[
I0
x

I0
y

]∣∣∣∣∆t, (13)

Detail description of the model together with the associated variables is discribed in

[31]. The proof of global positive solutions for equation (11) is not obvious since the

diffusion rates are different [53, 54]. However, condition (P ) and (M?) are satisfied

for equation (11) . But they are not enough to guarantee global solutions. In chapter

3 we discuss additional conditions that will make the system (11) have global positive

solutions. We simulate the dynamics of the endothelial cell formation in response to

TAF which acts as a chemoattractant, see figure (2) and (3).
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Figure 2: Simulation describing the effect of TAF spread on the growth of blood vessels resulting

in vascularization.

Figure 3: Simulation describing the effect of the interpaly between TAF and inhibitor on the growth

of blood vessels.

In the next section, we start building the multiscale model by considering first a

cancer model for tumor induced angiogenic switch.
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2.2 A Cancer Model for Tumor Induced Angiogenic Switch

As a starting point for building a multiscale model, we the impact of cellular interac-

tions in the process of tumor induced angiogenesis as they are described in the model

proposed in [39] in order to understand the aggregate contribution and interaction

between, host cells, tumor cells, immune cells and endothelial cell on the growth of

the tumor. The model proposed by [39] studies the interactions that occur at a sin-

gle tumor location as diffusion is ignored. The diagram in figure (4) describes the

interaction between the various types of cells described at the cellular level.

ImmuneCell

Tumor Cell Endo. Cell

HostCell

+/− −

−

+/−

−

+/−

−

−

+

+

+

Figure 4: Flow graph for the interaction between host, tumor, immune and endothelial cells.

In figure (4) we observe that three main relations take place. The first relation

is between tumor and endothelial cells. This relationship is established when the

tumor cells become oxygen deficient and require oxygen and other nutrients through

endothelial cells to survive. A successful interaction results in the benign tumor
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becoming vascularized and metastatic [30]. This describes the so-called angiogenic

switch. The second relationship that is established is the one between tumor cells

and the immune cells. This occurs because immune cells begin to act in response

to abnormal behavior of tumor cells. Tumor cells can respond positively to immune

cells by initiating the apoptosis pathway and self destructing or tumor cells are able

to secrete chemicals that allow for more production of immune cells. With time the

tumor cells are able to develop resistance to the immune cells and thus are able to

operate freely irrespective of the presence of the immune cells [63, 56]. The last in-

teraction is between the host cells and the tumor cells which compete for resources

within the system.

In [39, 41] the above interaction is described using the laws of mass action and

Michealis-Menten kinetics which gives the following system of ordinary differential

equation;

dv1(t)

dt
= k1v1(1− v1)− k2v1v3,

dv2(t)

dt
=

k2v2v3

1 + v3

− k4v2v3 − k5v2 + k6v2v4,

dv3(t)

dt
= k7v3(1− v3)− k8v3v1 − k9v3v2 +

k10v3v4

1 + v4

,

dv4(t)

dt
=

k11v3v4

1 + v3

− k12v4,

where the state variables v1, v2, v3 and v4 represents the population of host, immune,

tumor and endothelial cells respectively, and the parameter values are given in table

1.

In section 2.3, we discuss subcellular interaction associated with apoptosis in the

tumor cell.
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Table 1: Parameter values for modeling angiogenic switch model obtained from Louise-

Viger [39, 41]

Parameter Meaning Parameter Value
k1 Host cell growth rate 0.518
k2 Host cell killing rate by tumor cells 1.500
k3 Effector immune cell growth rate 4.500
k4 Effector immune cell inhibition by tumor 0.200
k5 Effector immune cell natural death rate 0.500
k6 Simulation of effector immune cell by endo. cells 0.300
k7 Tumor growth rate 1.000
k8 Tumor killing rate by host cells 1.000
k9 Tumor cell killing rate by effector immune cells 2.500
k10 Tumor cell growth rate due to angiogenesis 0.750
k11 Endothelial cell growth rate 0.86
k12 Endothelial cell natural death rate 1./11.0

2.3 A Model of Apoptosis Effect in Tumor Spread

It has been observed that most cancerous cells trigger angiogenesis and metastasize

[24, 23] rather than initiate apoptosis. We consider a simplified model proposed by

[40] that describes the interplay between angiogenesis and apoptosis within a tumor

cell and the various chemical components that are implicated in each process. In

figure (5) we consider the two compartmental model describing the pathways for an-

giogenesis and apoptosis respectively. Oxygen actively participates in the mechanisms

in either compartments. The presence of Oxygen inhibits hif-1. In its absence hif-1

binds to P300 which is a co-activator to stimulate the production of vascular endothe-

lial growth factor (a particular type of tumor angiogenic factor) and hence starts the

process of angiogenesis which leads to the production endothelial cells. On the other

hand the lack of oxygen can also lead p53 to compete with HIF-1 and bind with

p300. In addition, p53 directly inhibits hif − 1 but triggers caspases (casp) which

activates cell death. Furthermore, oxygen induced Potassium is a hypothesized in
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[40] to inhibit casp.

Figure 5: The schematic diagram for the subcellular angiogenic and apoptotic pathway.

The resulting model describes the chemical interaction that exists within the two

compartments of the apopotic model as shown in figure (5). The chemical equations

are given as follows;
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O2 + (HIF − 1) →a3 �,

(HIF − 1) + P300 →a4 O2,

P300 + P53 →a5 �,

P53 + (HIF − 1) →a7 P53,

P53 →a9 CASP,

O2 →a11 K+,

CASP →a13 �,

K+ →a14 �.

A more detailed explanation of the model and the chemical interaction is provided in

[40] and the references therein. In [40] they used the laws of mass action to obtain

the following systems of ordinary differential equations:

dz1

dt
= a1 − a2z2z1 − a3z1z3 − a4z4z1,

dz2

dt
= a5 − a2z2z1 + a3z1z3 − a6z2,

dz3

dt
= −a3z1z3 − a7z3z4 + a8,

dz4

dt
= −a7z4z3 + a9 − a10z4,

dz5

dt
= a10z4 − a11z5z6 + a12 − a13z5,

dz6

dt
= −a11z5z6 + a6z2 − a14z6,

where the state variables z1, z2, z3, z4, z5 and z6 represents the concentrations of the

hypoxic inducible factor 1(HIF-1), oxygen, P300 co-activator, P53 protein, caspase

protease and potassium respectively. The parameter values are given in table 2.

In section 2.4, we construct the multiscale model for tumor induced angiogenesis.
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Table 2: Parameter values for modeling apoptotic effect in tumor spread obtained from

Laise [40]

Parameter Meaning Parameter Value
a1 Rate of production of HIF-1 1.520
a2 Interaction rate between HIF-1 and O2 0.900
a3 Rate of O2 production due to HIF-1 and P300 0.200
a4 Rate of P53 production due to P53 and HIF-1 0.700
a5 Rate of O2 production 1.800
a6 Rate of production K+ due to O2 0.200
a7 Rate of interaction between P300 and P53 0.001
a8 P300 production rate 0.060
a9 P53 production rate 0.050
a10 Rate of CASP production due to P53 0.100
a11 Rate of interaction between CASP and K+ 0.700
a12 CASP production rate 0.100
a13 CASP degradation rate 0.100
a14 K+ production rate 0.050

The multiscale model establishes a connection between cellular and subcellular level

interaction.

2.4 A Multiscale Scale Model on the Effect of Apoptosis and

the Angiogenic Switch

Having described the angiogenic switch model which is induced largely by hypoxia

we want to investigate the effect of hypoxia on the tumor cell proliferation. Since

the model for the apoptotic pathways captures the pathway of hypoxia we decided to

establish a connection between the two models to understand more clearly the effects

of hypoxia. If tumor cells takes the apoptotic pathway, then we assume that there

is an interaction between the tumor cells and the Caspases protease. This gives rise

to a new term that we include in the tumor model. We observe that this interaction
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occurs at some given rate k13. However, if the angiogenic pathway is to be activated,

then there exists an interaction between the HIF-1 pathway and the endothelial cells

as hypoxia drives the production of endothelial cells. This interaction also occurs at a

give rate k14. In addition equation
dv2(t)

dt
=
k2v2v3

1 + v3

−k4v2v3−k5v2 +k6v2v4, in section

2.3 is replaced by
du8(t)

dt
=
k2u8u9

1 + u9

− k4u8u9 − k5u8 +
k6u8u10

1 + u10

.

This addition ensures that the overall solution structure is controlled. We can thus

formulate a multiscale model from the previous models discussed by establishing a

connection between the apoptotic pathway in tumor cells and the HIF-1 pathway

effects on endothelial cell production as follows;

du1(t)

dt
= a1 − a2u2u1 − a3u1u3 − a4u4u1,

du2(t)

dt
= a5 − a2u2u1 + a3u1u3 − a6u2,

du3(t)

dt
= −a3u1u3 − a7u3u4 + a8,

du4(t)

dt
= −a7u4u3 + a9 − a10u4,

du5(t)

dt
= a10u4 − a11u5u6 + a12 − a13u5,

du6(t)

dt
= −a11u5u6 + a6u2 − a14u6,

du7(t)

dt
= k1u7(1− u7)− k2u7u9,

du8(t)

dt
=
k2u8u9

1 + u9

− k4u8u9 − k5u8 +
k6u8u10

1 + u10

,

du9(t)

dt
= k7u9(1− u9)− k8u9u7 − k9u9u8 +

k10u9u10

1 + u10

− k13u5u9,

du10(t)

dt
=
k11u9u10

1 + u9

− k12u10 +
k14u1u10

1 + u1

.

(14)

The state variables and parameters for the first six equations and last four equations

have their usual meaning described in section 2.2 and 2.3 respectively. We estimate

the parameters k13 and k14 using linear regression of the caspases model solution to

the caspases data (caspases data obtained from [32]).
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One obtains a multiscale reaction diffusion system when diffusion terms are intro-

duced into equation (14) which describes the temporal spatial distribution of the

various state variables.

2.5 Spatio-Temporal Models for Tumor Induced

Angiogenesis

Adding diffusion terms in a reaction model may give more insight about the systems

behavior. A classical example where the addition of diffusion terms gives more details

is descibed in [10]. Including the diffusion terms, one obtains the following spatio-

temporal multiscale system of partial differential equations defined on a rectangular

domain:

∂u1(t)

∂t
= d1∇2u1 + a1 − a2u2u1 − a3u1u3 − a4u4u1,

∂u2(t)

∂t
= d2∇2u2 + a5 − a2u2u1 + a3u1u3 − a6u2,

∂u3(t)

∂t
= d3∇2u3 − a3u1u3 − a7u3u4 + a8,

∂u4(t)

∂t
= d4∇2u4 − a7u4u3 + a9 − a10u4,

∂u5(t)

∂t
= d5∇2u5 + a10u4 − a11u5u6 + a12 − a13u5,

∂u6(t)

∂t
= d6∇2u6 − a11u5u6 + a6u2 − a14u6,

∂u7(t)

∂t
= d7∇2u7 + k1u7(1− u7)− k2u7u9,

∂u8(t)

∂t
= d8∇2u8 +

k2u8u9

1 + u9

− k4u8u9 − k5u8 +
k6u8u10

1 + u10

,

∂u9(t)

∂t
= d9∇2u9 + k7u9(1− u9)− k8u9u7 − k9u9u8 +

k10u9u10

1 + u10

− k13u5u9,

∂u10(t)

∂t
= d10∇2u10 +

k11u9u10

1 + u9

− k12u10 + k14u1u10,

(15)
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with Neumann

(
∂u

∂n
= 0

)
or Dirichlet boundary conditions u = 0. With initial con-

ditons

ui(x, 0) =


γ0, max(|xi − xi0|, |yi − yi0|)

0, otherwise

ui0 is the initial condition for the reaction terms in the multiscale model. We discuss

the existence of global positive solutions and stability of the multiscale model in

chapter 3 and 4 respectively. A draw-back of the multiscale reaction diffusion system

is that it does not represent the blood vessels distribution in response to tumor

angiogenic factors. In order to do this, we use a discrete stochastic equation in

predicting the vascular network.

2.6 Discrete Model for Tumor Induced Angiogenesis

Stokes and Lauffenburger used a random diffusion term to control the random move-

ment of the endothelial cell tips instead of the rotation matrix used in [14, 31]. In

the discrete model the ith subscript denotes the state of the ith blood vessel sprout.

The model is comprised of a deterministic tip equation;

dxi
dt

= vi(t),

whiles the movement of the tip velocity is governed by a stochastic differential equa-

tion;

dvi(t) = −βvi(t)dt+
√
αdWi(t) + κ∇a sin

(
Φ

2

)
dt,

where β is the viscosity coefficient, W is the Wiener process, a white noise, a is TAF

concentration, Φ is the angle between the direction the tip is moving and that toward
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the TAF source, and i denotes ith sprout. Φ is defined more explicitly as

Φ = cos−1

[
(xa − xi)cosθi + (ya − yi)sinθi

((xa − xi)2 + (ya − yi)2)1/2

]
and finally the equation for the average density is

dρi
dt

= kg
ρmax − ρi(t)
ρmax − ρmin

ρi(t)−
si(t)

Li(t)
ρi(t) + kb [ρpv(t)− ρi(t)]−

νi∑
j=1

kb [ρi(t)− ρj(t)]

where, kg is the proliferation rate, kb is the distribution coefficient, ρpv(t) is the number

of branches that the ith sprout has at time t, si in the instantaneous speed of the ith

sprout has calculated as si(t) = ‖vi(t)‖ and Li is the sprout length calculated from

dLi
dt

= si(t). (16)

Table 3: Parameter values for modeling discrete stochastic differential equation are

obtained from Stokes and Lauffenburger [59]

Parameter Meaning Parameter Value
ρp Linear cell number density 10e-4
kg Proliferation rate constant 0.02
kb Cell redistribution rate constant 0.4
ρmax Maximum linear cell number density 2.00
ρmin Minimum linear cell number density ρmax/11
β Decay rate constant of velocity 1.0/5.5
S Root mean square speed 40.00
α Spectrum of white noise β · S
κ Chemotactic responsiveness 0.5
∇a Attractant gradient 3.5e− 15
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CHAPTER 3

EXISTENCE AND UNIQUENESS OF MULTISCALE REACTION

DIFFUSION SYSTEM

3.1 Introduction

We will describe results and tools developed for mathematical analysis of the multi-

scale reaction diffusion system in section 2.4. This is a system of strongly coupled

semi-linear parabolic partial differential equations. We show that this reaction diffu-

sion system satisfy two main natural properties:

(i) Positivity of the solutions is preserved for all time.

(ii) The total mass of the components is controlled for all time.

Condition (ii) suggests that solution should exist for all time. But, it turns out that

the answer is not so simple. This explains why so many partial results in different

directions are found in the literature on reaction diffusion systems. Thus the general

question of global existence of positive solutions is still an open problem.

If we assume there is no diffusion, the multiscale reaction diffusion system be-

comes a reaction system which can be represented as an ordinary differential equation

where f : [0,∞)N → RN is a given regular function (representing reaction terms),

u : [0, T ) → RN , and N = 10, is the unknown vector function (representing state

variables).

u̇(t) = f(u), u(0) = u0 ≥ 0. (17)
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If f satisfies
N∑
i=1

f(ui) ≤ 0 then a local solution exists and may be extended on a

maximal interval [0, T ?) [49, 61].

If f is a quasi-positive (fi(u1, ..., ui−1, 0, ui+1, .., uN) ≥ 0), i = 1, 2, . . . , N then u(t) ≥

0 for all t [49]. In addition, if we add the system and integrate:

∀ t,
N∑
i=1

ui(t) ≤
N∑
i=1

u0i ,

together with positivity, then this implies u(t) stays uniformly bounded on [0, T ?). It

follows that T ? = +∞ and the solution is global [49].

Next if we consider diffusion to occur in the reaction system we get (N = 10)

reaction diffusion equations, u = u(t, x), (t, x) ∈ [0,∞) × Ω is the unknown vector

function. Let QT = (0, T ) × Ω be a cylinder, where Ω is a bounded open subset of

Rn, n = 1, 2, 3 and we assume that it has at least a C2-boundary condition. We

write the multiscale reaction diffusion system as follows:

ut = D∆u+ f(u), on QT = (0, T )× Ω,

Neuman boundary conditions:
∂u(t, x)

∂ν
= 0, t > 0, x ∈ ∂Ω

Initial conditions: u(0, x) = u0(x), x ∈ Ω,

(18)

where D is an N ×N diagonal matrix with positive diagonal entries. f : RN
+ → RN

is a (C1)N -function, u0 are given.

The positivity condition (i) is satisfied if and only if f is quasi-positive which

again means that, for fi, i = 1, ..., N ;

(P), u ∈ RN
+ → fi(u1, ..., ui−1, 0, ui+1, ..., uN) ≥ 0, i = 1, 2, . . . , N. (19)

Condition (ii) on the apriori bound of the total mass is satisfied for instance when,

for some a ∈ RN
+ :

(M), For all u ∈ RN
+ ,

N∑
i=1

aifi(ui) ≤ 0. (20)
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To see this in a simple case where the diagonal elements of D are the same, we add

up the N equations after multiplying each i-th line by ai and integrate over (0, t)×Ω.

For these boundary conditions, we will have −
∫

Ω
4u(t, x)dx ≥ 0, so that we obtain

the apriori estimate; for all t ∈ (0, T ),
N∑
i=1

∫
Ω

aiui(t, x)dx ≤
N∑
i=1

∫
Ω

aiui(0, x)dx. If the

ui are initially non-negative then they remain non-negative so that this implies

for all i = 1, ...,m, supt∈(0,T ) ‖ui(t)‖L1(Ω) < ∞, supt∈[0,T ]

N∑
i=1

∫
Ω

ui(t, x)dx < ∞. Then

the total mass of the components is uniformly bounded for all time as well as the

L1(Ω)-norm of each component (This means the total mass of the components is

uniformly bounded for all t ∈ [0, T ] and L1(Ω)-norm of each component is uniformly

bounded as well for all t ∈ [0, T ]). If we replace the property (M) by a more general

condition (M?); then for some C ∈ [0,∞)

(M?) for all u ∈ RN
+ ,

N∑
i=1

aifi(ui) ≤ C

(
1 +

N∑
i=1

ui

)
, (21)

condition (M?), gives the same conclusion [50].

We consider next problem (18) as an evolution equation in suitable Banach space

(X = (LP (Ω))N or (Cα(Ω))N) such that

u = U, f(u, k) = F (U, k), t ≥ 0

where U and F (U) are functions belonging to a suitable Banach space or subspace of

X. The choice of X depends on what results we are expecting, or on the regularity

of the initial condition data. We write equation (18) as an abstract Cauchy problem:

Ut = −AU + F (U, k), t ≥ 0,

Initial conditions: U(0) = u0,
(22)

where A = −D4u, D(A) = {u ∈ X : ∂u
∂n

= 0}. Our main interest is to study the

well-posedness of the Cauchy problem (22). That is we seek for a suitable Banach
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space X such that −A generates an analytic semigroup in X and then show that the

Cauchy problem (22) or its integral form

u = e−tAu0 +

∫ t

0

e−(t−s)AF (u) ds, (23)

generates a strong continuous flow in X. In particular, for any u0 ∈ X there exist a

time interval I = [0, T ) and a unique function u(t) ∈ C(I;X) satisfying (23). The case

T <∞ and for T =∞ correspond to the local and global well-posedness respectively.

The solution in the function space of X of the integral equation (23) is usually defined

as the mild solution of the Cauchy problem (22). We note in addition that, since mild

solutions are differentiable with respect to time, t, they are thus strong solutions of

the problem (22) due to the regularity of the analytic semigroup e−At. The (Lp(Ω))N

theory or (Cα(Ω))N , α ≥ 0, theory together with the bootstrap method implies that

the mild solution u of the problem (22) is also a classical solution [47]. The theory

of ordinary differential equations is not easily extendible to these type of problems.

The main obstacle is that the linear operator A is defined on a proper subspace of

X, and it is not continuous.

We need a spectral property of A in order for us to define the solution of the

following equation:
Ut = −AU, t ≥ 0,

U(0) = u0.
(24)

Let us denote the solution of the homogeneous equation (24) by e−tAu0. We use the

following spectral property of A to define the solution e−tAu0: the resolvent set of A

contains a sector S = {λ ∈ C : λ 6= 0, | arg λ| < θ}, with π
2
< θ < π and moreover

‖(λI − A)−1‖L(X) ≤
M

|λ|
, λ ∈ S. (25)

If A satisfies the spectral property we say that A is sectorial operator [26]. L(X) is a

set of all linear bounded operators form X into X. Just like in ordinary differential
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equations, in general the solution of equation (22) is defined only in small time interval

[0, T ]. The problem of global existence of a positive solution of equation (22) applies to

the multiscale reaction diffusion system in section 2.4 of chapter 2. We give sufficient

conditions for global existence of positive solutions.

The theory of analytic semigroups is a tool for studying parabolic partial differen-

tial equations, in particular the multiscale reaction diffusion systems. Yosida is one

of the main contributors to analytic semigroups [38]. Since Yosida’s contributions,

the analytic semigroups have attracted great attention by researchers working on the

foundations of the theory, as well as by researchers working on applied problems.

Analytic semigroups have proved to be applicable to a wide array of partial differ-

ential equations which have a parabolic structure, typically reflecting the fact that

the processes they model are irreversible in time. The range of applicability includes

problems in areas as diverse as physics, biology, chemistry, ecology, medicine, fluid dy-

namics, free boundary problems, phase transitions, material sciences, and geometric

evolutions laws, to mention only a few.

3.2 Preliminaries and Definitions

In this section, we state the preliminaries on linear operators in Banach space and cal-

culus for Banach space valued functions defined on a real interval. The preliminaries

are assumed to be either known to the reader or extend easily from finite dimensional

theory;

Definition 3.1 The family of operators {etA : t ≥ 0} is an analytic semigroup, if it

satisfies

e(t+s)A = etAesA, t, s ≥ 0, e0A = I,
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and the function (0,∞)→ L(X), t→ etA is analytic.

Definition 3.2 A linear operator A : D(A) ⊂ X → X is sectorial if there are

constants ω ∈ R, π
2
< θ < π, M > 0 such that

(i) The resolvent set of A contains a sector Sθ,ω = {λ ∈ C : λ 6= ω, | arg λ−ω| < θ},

(ii)

‖R(λ,A)‖ = ‖(λI − A)−1‖L(X) ≤
M

|λ− ω|
, λ ∈ Sθ,ω. (26)

For every t > 0, the two conditions in Definition (3.2) make us to define a bounded

linear operator etA on X, through an integral formula. Let r > 0, η ∈ (π/2, θ), and

the curve

γr,η = { λ ∈ C : | arg λ| = η, |λ| ≥ r} ∪ {λ ∈ C : | arg λ| ≤ η, |λ| = r, }

oriented counterclockwise. For each, t > 0 we set

etA =
1

2πi

∫
γr,η+ω

etλR(λ,A)dλ, t > 0. (27)

Lemma 3.3 If A is a sectorial operator then the integral in (27) is well defined, and

it is independent of r > 0 and η ∈ (π/2, θ).

Theorem 3.4 Let A be a sectorial operator and let etA be represented by integral

(27). Then, the following statements are true:

(i) etAx ∈ D(Ak) for all t > 0, x ∈ X, k ∈ N and if x ∈ D(Ak), then

AketA = etAAk, t ≥ 0,

(ii) etAesA = e(t+s)A for any t, s ≥ 0.
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(iii) There exist constants M0,M1,M2, .., such that

(a)

‖etA‖L(X) ≤M0e
ωt, t > 0,

(b)

‖tk(A− ω)etA‖L(X) ≤Mke
ωt, t > 0,

where ω is the real number in Definition 3.2. In particular, (iii) (b) implies that

for every ε > 0 and k ∈ K there is Ck,ε > 0 such that

‖tk(AketA)‖L(X) ≤ Ck,εe
(ω+ε)t, t > 0. (28)

(iv) The function t→ etA belongs to C∞((0,∞);L(X)), and the equality

dketA

dtk
= AketA, t > 0, (29)

holds for every k ∈ N.

Statement (ii) in Theorem 3.4 tells us that the family of operators etA satisfies

the semigroup law, an algebraic property which is coherent with the exponential

notation. Statement (iv) tells us that eAt is analytically extendable to a sector by

analytic continuation. Therefore, it is natural to give the following definition.

Definition 3.5 If A is a sectorial operator. The function e−tA : [0,+∞) 7→ L(X) is

called the analytic semigroup generated by A (in X).

Coming back to the Cauchy problem (24), one notice that Theorem 3.4 implies that

the function

u(t) = e−tAx, t ≥ 0
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is analytic, with values in D(A) for t > 0, and by (iv) it is a solution of the differential

equation in (24), for t > 0. Moreover, u is continuous also at t = 0 (u(t) ∈ X) if

and only if x ∈ D(A) and in this case u is a solution of the Cauchy problem (24).

If x ∈ D(A) and Ax ∈ D(A), then u is continuously differentiable up to t = 0, and

it satisfies the differential equation also at t = 0, i.e., u′(0) = Ax. The proof of

uniqueness of the solution, u(t) = e−tAx0, to (24) uses Gronwal inequality.

Suppose {e−tA : t ≥ 0} is an analytic semigroup of bounded linear operators on X.

Also, let F be an X-valued mapping on D(F ) ⊂ [0,+∞)×X that is continuous with

respect to some fractional power of A. We will investigate the existence of solutions

and determination of invariants sets for the Cauchy problem (22). We will study (22)

indirectly by studying the following integral equation that is obtained from (22) by

variation of constants:

U(t) = e−tAu0 +

∫ t

0

e−(t−s)AF (U(s), k)ds, t ≥ 0. (30)

3.3 The Multiscale Reaction Diffusion System has Proper-

ties P and M or M?

We show that the multiscale reaction diffusion systems satisfies properties (P) and

(M) or (M?). To show condition (P) we proceed as follows;

f1(0, . . . , u10) = a1 > 0, f6(u1, . . . , 0) = a6u2 > 0,
f2(u1, 0, . . . , u10) = a5 + a3u1u3 > 0, f7(u1, . . . , u7, . . . , u10) = 0,
f3(u1, u2, 0, . . . , u10) = a8 > 0, f8(u1, . . . , 0, . . . , u10) = 0,
f4(u1, u2, u3, 0, . . . , u10) = a9 > 0 f9(u1, . . . , u9, u10) = 0,
f5(u1, . . . , 0, u10) = a10u4 + a12 >, 0 f10(u1, . . . , u10) = 0.

(31)

since fi(u1, 0, u3, . . . , u10) ≥ 0 for i = 1, · · · 10 then f is quasi-positive. Thus condition

(P) is satisfied.
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Next we check condition (M?) for the multiscale reaction diffusion system.

Let u = (u1, u2, u3, u4, u5, u6, u7, u8, u9, u10) then the reaction terms for the multiscale

model is given as

f1(u) = a1 − a2u2u1 − a3u1u3 − a4u4u1,

f2(u) = a5 − a2u2u1 + a3u1u3 − a6u2,

f3(u) = −a3u1u3 − a7u3u4 + a8,

f4(u) = −a7u4u3 + a9 − a10u4,

f5(u) = a10u4 − a11u5u6 + a12 − a13u5,

f6(u) = −a11u5u6 + a6u2 − a14u6,

f7(u) = k1u7(1− u7)− k2u7u9,

f8(u) =
k2u8u9

1 + u9

− k4u8u9 − k5u8 +
k6u8u10

1 + u10

,

f9(u) = k7u9(1− u9)− k8u9u7 − k9u9u8 +
k10u9u10

1 + u10

− k13u5u9,

f10(u) =
k11u9u10

1 + u9

− k12u10 +
k14u1u10

1 + u1

,

since

f1 + f2 + · · ·+ f10 ≤ a1 + a5 + a8 + a9 + a12 + a10u4 + k1u7 + k2u8 + k6u8+

k7u9 + k11u10 + k14u1 + k10u9.

Let A = a1 + a5 + a8 + a9 + a12, k? = max(k1, k2, k6, k7, k11, k10), such that A? =

max(A,K?)then

f1 + f2 + · · ·+ f10 ≤ A+
∑
i

k?ui, i = 1, 2, 4, 7, 8, 9, 10

≤ A? +
N∑
i=1

A?ui,

= A?(1 +
N∑
i=1

ui).
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Since A? is nonnegative and A? ∈ [0,∞), it implies that the multiscale reaction

diffusion system satisfies the condition (M?).

3.4 Local Existence and Uniqueness Using Semigroups

Lemma 3.6 Let u0 ∈ (L∞(Ω))N . Then, there exists T > 0 and a unique classical

solution to the multiscale system on [0, T ]. If T ? denotes the supremum of all these

T ′s and

sup
t∈[0,T ?]

(
N∑
i=1

‖ui(t)‖L∞(Ω)

)
< +∞ then T ? = +∞ (32)

Furthermore, if the nonlinearity f is quasi-positive then

u0 ≥ 0 implies that u(t) ≥ 0, for all t

Proof: The proof follows easily from [50]. For ordinary differential equations, the

local existence result is proved via a Banach fixed-point argument.

In the case of parital differential equations, we proceed as follows; We choose an

adequate ball B subset of C(QT ,RN) under the L∞(QT )-norm and we consider the

mapping û ∈ B → u ∈ B which takes û to the solution of the following initial-

boundary value problem;

∂u

∂t
−D4u = f(û) on QT ,

∂u

∂ν
= 0 (or u = 0) on (0, T )× ∂Ω,

u(0) = u0,

which we rewrite using variational constant formula as

u(t) = e−Atu0(x) +

∫ t

0

e−A(t−s)f(û(x, t))dt,
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where A = D4u, D(A) = {u ∈ (L∞(Ω))N : ∂u
∂t
,4u ∈ C(Ω)}. Thus by the locally

Lipschitz property of f , this is a strict contraction if T is small enough. Hence the

existence of a solution on [0, T ] and on a maximal interval [0, T ?). The solution to

the variational form is a mild solution to the reaction diffusion equation. If u ∈ D(A)

then u is a classiscal solution of the reaction diffusion equation. The characterization

(32) follows from the fact that T ? depends only on the L∞-norm of the initial data.

Finally, the solution obtained in this way is regular since {e−At, t ≥ 0} is analytic

semigroup. Note that any weak solution with values in L∞(QT ) is actually regular

enough to be a classical solution, and it is even C∞ in the interior of QT if f is

itself C∞. Using (32), in order to prove global existence of classical solutions for the

multiscale model, it is sufficient to prove that if T ? < +∞ then the solutions u are

uniformly bounded on [0, T ?). Thus, a priori L∞-bounds imply global existence.

If all the diffusion coefficients are equal in any reaction diffusion system (for all i =

1, ..., N, di = d) then

∂
(∑N

i=1 aiui

)
∂t

− d4

(
N∑
i=1

aiui

)
≤ 0,

by maximum principle, we get

for all t ∈ [0, T ?), ‖
N∑
i=1

aiui(t)‖L∞(Ω) ≤ ‖
N∑
i=1

aiu0i‖L∞ ,

combining positivity, this implies a uniform L∞ bound on each ui(t),

thus T ? = +∞. The situation is quite more complicated if the diffusion coefficients are

different from each other. We need an extra condition to guarantee global solutions.
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3.5 Global Existence of Classical Solutions

Theorem 3.7 If f ∈ C1
(
[0,∞)N ,RN

)
is at most polynomial growth and satisfies the

quasi-positivity condition (P) and there exist b ∈ RN and a lower triangular invertible

N ×N matrix L with nonnegative entries such that for all u ∈ RN
+

Lf(u) ≤

[
1 +

N∑
i=1

ui

]
b, (33)

where the usual order in RN is used. Then the systems

ut = D∆u+ f(u), on QT = (0, T )× Ω,

∂u

∂ν
= 0 ( or u = 0) , on (0, T )× ∂Ω,

u(0, .) = u0 ∈ L∞(Ω), u0 ≥ 0,

(34)

has positive global solutions.

We show that the reaction terms for the multiscale model satisfy equation (33) of

theorem (3.7) by constructing the associated lower triangular matrix L and vector b

as follows;

f1(u) ≤ a1 := A1,

≤

(
1 +

N∑
i=1

ui

)
A1,

f1(u) + f2(u) ≤ A1 + a5 := A2,

≤

(
1 +

N∑
i=1

ui

)
A2,

f1(u) + f2 + f3(u) ≤ A2 + a8 := A3

≤

(
1 +

N∑
i=1

ui

)
A3,

f1(u) + · · ·+ f4(u) ≤ A3 + a9 := A4,

≤

(
1 +

N∑
i=1

ui

)
A4
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f1(u) + · · ·+ f5(u) ≤ A4 + a12 + a10 := A5,

≤ (1 + u4)A5

≤

(
1 +

N∑
i=1

ui

)
A5

f1(u) + · · ·+ f6(u) ≤ A5 + a6 := A6,

≤ (1 + u2)A6

≤

(
1 +

N∑
i=1

ui

)
A6,

f1(u) + · · ·+ f7(u) ≤ A6 + k1 := A7,

≤ (1 + u7)A7,

≤

(
1 +

N∑
i=1

ui

)
A7,

f1(u) + · · ·+ f8(u) ≤ A7 + (k2 + k6) := A8,

≤

(
1 +

N∑
i=1

ui

)
A8

f1(u) + · · ·+ f9(u) ≤ A8 + (k7 + k10) := A9,

≤ (1 + u9)A9,

≤

(
1 +

N∑
i=1

ui

)
A9

f1(u) + · · ·+ f10(u) ≤ A9 + (k11 + k14) := A10,

≤ (1 + u10)A10

≤

(
1 +

N∑
i=1

ui

)
A10
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Thus we obtain the following lower triangular matrix L, for the reaction terms asso-

ciated with the multiscale model as

L =



1.0 0 0 0 0 0 0 0 0 0
1.0 1.0 0 0 0 0 0 0 0 0
1.0 1.0 1.0 0 0 0 0 0 0 0
1.0 1.0 1.0 1.0 0 0 0 0 0 0
1.0 1.0 1.0 1.0 1.0 0 0 0 0 0
1.0 1.0 1.0 1.0 1.0 1.0 0 0 0 0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 0 0 0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0 0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0


and the vector b as

b =



A1

A2

A3

A4

A5

A6

A7

A8

A9

A10


such that Lf(u) ≤ (1 +

∑10
i=1 ui)b. The remaining part of the proof follows from

Pierre [50].

The multiscale model satisfy theorem (3.7) and therefore, there exist global positive

solutions for the multiscale model described in equation (14).
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CHAPTER 4

LINEAR ANALYSIS

4.1 Introduction

In this chapter, we give conditions for the multiscale reaction diffusion system (14)

to exhibit diffusion driven instability (Turing Instability) at steady state. We assume

all the hypothesis of chapter 3 so that global positive solution u exists and is uni-

formly bounded for initial data in L∞(Ω). In the next section we state the necessary

definitions and results on stability.

4.2 Stability

In this chapter, the ultimate fate of the system is our main focus, that is asymptotic

state as time goes to infinity. Let u∗ ≡ u∗(x) be a uniform steady-state solution of the

multiscale reaction diffusion system (14). For Dirichlet boundary conditions, uniform

steady states of (14) are possible if and only if u? = 0. Moreover, a uniform steady

state u? are stable against uniform perturbations, if and only if u? is a stable state of

the homogeneous system:

du

dt
= f(u, k).

We define the Helmholtz operator: H = −D4+ I such that for α ≥ 0 we let the

fractional powers of H be defined as Hα. The domain of Hα, D(Hα) is equipped with

the graph norm ‖ ·‖αD(H) = ‖ ·‖p+‖Hα‖p is continuously embedded in C(Ω) equipped

with the sup norm, provided α > 0 [37].

Definition 4.8 The uniform state u?(x) ≡ u? is Lyapunov stable if for any ε >
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0, there exist δ > 0 such that any solution u with ‖u0 − u∗‖D(Hα)N < δ satisfies

‖u(t)− u∗‖D(Hα)N < ε for all t > 0.

Definition 4.9 The uniform steady state u?(x) ≡ u? is asymptotically stable in the

sense of Lyapunov if there exist δ > 0 such that if ‖u0 − u∗‖D(Hα)N < δ then

‖u(t)− u∗‖D(Hα)N → 0, as t→∞.

u∗ is said to be unstable if it is not stable. u∗ is globally asymptotically stable if every

solution of (14) converges to u?(x) ≡ u?

Now we consider linearization about a spatially homogeneous steady state. Let w(t) =

u(t)− u?. The evolution of perturbation of w(t) is

dw

dt
= Jw +Q(w)

where J is the Jacobian of f, evaluated at u?

Q(w) = o(w), as, w → 0.

‖Q(w)−Q(v)‖(L2)N ≤ h(ρ)‖w − v‖D(Hα)N for ‖w‖D(Hα)N ≤ ρ, (35)

for some function h : R+ → R+, continuous in 0 with h(0) = 0. By subtracting Bw

on both sides we obtain an equation for the perturbed solution w,

∂tw + Lw = Q(w), (36)

where L = D4−B. If w(t) ≡ 0 is an asymptotically stable solution of the linearized

system

∂tw −D4w = Bw, (37)
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then we say that u∗ is linearly stable. If the intersection σ(L) ∩ {λ ∈ C|Reλ < 0} is

non-empty where σ(L) is the spectrum of L, then we say that u∗ is linearly unstable.

Lemma (4.10) is essential in proving theorem (4.11).

Lemma 4.10 Let {e−At, t ≥ 0} be an analytic semigroup generated by a sectorial

operator −A and let δ ≥ 0 be such that −A+ δ generates an analytic semigroup. The

following properties then hold for the semigroup e−At and the fractional powers of A:

1. e−At : (Lp(Ω))N → D(Aα) for all t > 0,

2. ‖e−At‖D(Aα) ≤ Cα,pt
−α exp(−δt)‖u‖p for all t > 0, u ∈ (Lp(Ω))N ,

3. e−tAAαu = Aαe−Atu for all t > 0, u ∈ D(Hα).

Proof: It follows directly from Theorem 6.13 in [26]

Theorem 4.11 1. If u∗ is linearly stable then u∗ is asymptotically stable;

2. If u∗ is linearly unstable then u∗ is unstable.

Proof Since L is a sectorial operator ([26] section 1.3) then it generates an analytical

semigroup {e−Lt, t ≥ 0}. Let η > 0 be such that Reλ > η whenever λ ∈ σ(L). By

lemma 4.10 there exist Φ ≥ 1 such that

‖e−Ltw‖D(Hα)N ≤ Φ exp(−ηt)‖w‖D(Hα)N ,Φt
−α exp(−ηt)‖w‖(L2(Ω))N .

By inequality (35), ρ > 0 so that

h(ρ)Φ

∫ ∞
0

ξ−α exp(−(η − s) ξ) dξ < 1

2
,

‖Q(w)‖(L2)N ≤ h(ρ)‖w‖D(Hα)N , for ‖w‖D(Hα)N ≤ ρ,
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where 0 < s < η

Let ‖w(0)‖D(Hα) ≤
ρ

2Φ
. Then by continuity of the solution ‖w(t)‖D(Hα)N ≤ ρ on

some time interval and therefore by variation of constants:

‖w(t)‖D(Hα)N ≤ Φ exp(−ηt)‖w(0)‖D(Hα)N

+ h(ρ)Φ

∫ t

0

(t− τ)−α exp(−η(t− τ))‖w(τ)‖D(Hα)Ndτ,

≤ ρ

2
+ h(ρ)Φ

∫ t

0

(t− τ)−α exp(−η(t− τ))dτ < ρ.

Therefore,

‖w(t)‖D(Hα)N < h(ρ). (38)

By continuity, either ‖w(t)‖D(Hα)N < ρ for all t > 0 or ‖w(t)‖D(Hα)N = ρ at some

finite time t. The second case is not possible since it contradicts the sharp inequality

(38). Thus ‖w(t)‖D(Hα)N < ρ for all t > 0.

Let

Θ(t) = sup
0≤ξ≤t

‖w(ξ)‖D(Hα)N exp(sξ), t ≥ 0.

By inequality (38), we get

‖w(ξ)‖D(Hα)N exp(sξ) ≤ Φ exp(−(η − s)t)‖w(0)‖D(Hα)N

+ h(ρ)Φ

∫ ξ

0

(ξ − τ)−α exp(−η(t− τ))dτ ×Θ(ξ),

≤ ρ

2
+

1

2
Θ(t),

for all 0 ≤ ξ ≤ t and thus

Θ(t) ≤ ρ

2
+

1

2
Θ(t).

and Θ(t) ≤ ρ and hence

‖w(t)‖D(Hα)N ≤ ρ exp(−st).
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This shows that u∗ is asymptotically stable. Hence part 1 of the theorem is true.

Next we prove part 2. We show that there exist ε > 0 and a sequence {u(n)
0 }∞n=1 ∈

(L2(Ω))N such that supt≥0 ‖un(t) − u∗‖D(Hα)N ≥ ε > 0, where un are the solutions

corresponding to the initial data un0 . Let 0 /∈ σ(L). If 0 ∈ σ(L) then by assumption,

there exist β > 0 such that the spectrum is disjoint from the ball in C with center 0

and radius 2β. Note that we assume the eigenvalues of the operator L are real. Let

σ1 = σ(L)∩ {λ ∈ C|Reλ < 0} and σ2 = σ(L) \ σ1, where σ1 is a set of finite numbers

in C.

We diagonalize
∞∑
n=1

λn〈w,wn〉(L2)Nwn,

as follows:

we decompose the set J into (N − 1) disjoint subsets Ji as follows;

Ji = {i}, i = 1, 2, . . . , N − 2,

and

JN−1 = {N − 1, . . . , J}.

We set

Xi = span{wn : n ∈ Ji}, i = 1, 2, . . . , N − 1

and

XN = span{wn : n ∈ {J + 1, J + 2, . . . }}.

such that

(L2(Ω))N = X1 ⊕X2 ⊕ · · · ⊕XN

For each projection operator onto Xi is denoted by Pi, i = 1, . . . , N .

Now, let Li be a restriction of L to Xi, i = 1, 2, . . . , N−1 then Li is finite dimensional,
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and therefore bounded and generates an analytical semigroup eLit, so that there exist

χi1 and χi2, such that for t ≤ 0:

‖eLit‖D(Hα)N ≤ χi1 exp(−βt)‖PNw‖2, χ
i
2t
−α exp(−βt)‖PNw‖D(Hα)N for t > 0,

i = 1, 2, . . . , N − 1.

Let χ = max{χi1, χi2, i = 1, 2, . . . N − 1}.

We claim that E(t) given by the expression:

E(t) =

(
N−1∑
i=n

σie
−Li(t−ξ) +

∫ t

ξ

eLi(t−τ)PiQ(E(τ))

)
+

∫ t

−∞
e−LN (t−τ)PNQ(E(τ)), (39)

solves the semi-linear parabolic reaction diffusion equation for σi ∈ Xi and t < ξ,

i = 1, . . . , N − 1. To prove the claim we define the operator T by

TE(t) =

(
N−1∑
i=n

e−Li(t−ξ)σi +

∫ t

ξ

e−Li(t−τ)PiQ(E(τ))dτ

)
+

∫ t

−∞
e−LN (t−τ)PNQ(E(τ))dτ,

It follows that T maps

Bρ(0) = {w ∈ (C((0,∞);D(Hα)))N | ‖w‖D(Hα)N ≤ ρ, }

where C(0,∞) is equipped with the norm

‖u‖∞ = sup
Ω
‖u‖, ‖u‖ = max

1≤i≤N
|ui|, (40)

ρ > 0 is such that

χk(ρ)

(
N−1∑
i=1

(
1

2
β−1‖Pi‖

)
+ ‖PN‖

∫ ∞
0

s−α exp(−βs)ds

)
≤ 1

4χ
,

maps into itself. The following computation, then shows that T is a contraction on

Bρ(0) :
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‖TΨ− TE(t)‖D(Hα)N ≤

∣∣∣∣∣
N−1∑
i=1

χk(ρ) exp(2β(t− τ))‖Pi‖‖Ψ(τ)− E(τ)‖D(Hα)N

∣∣∣∣∣
+

∫ t

−∞
χk(ρ) exp(−β(t− τ))(t− τ)−α‖PN‖

× ‖Ψ(τ)− E(τ)‖D(Hα)Ndτ,

≤ χk(ρ)
N−1∑
i=1

‖Pi‖
∣∣∣∣∫ t

ξ

exp(2β(t− τ))dτ

∣∣∣∣
+ χk(ρ)‖PN‖

∫ t

−∞
(t− τ)−α exp(−β(t− τ))dτ

× sup
t≤ξ
‖Ψ(t)− E(t)‖D(Hα)N ,

<
1

2
× sup

t≤ξ
‖Ψ(t)− E(t)‖D(Hα)N ,

by choice ρ, and for Ψ, E ∈ Bρ(0). Hence, by Banach’s Fixed Point Theorem there

is a unique fix point in Bρ(0). To show that E is a solution of equation (36), we

consider the projections of E onto Xi, i = 1, . . . , N . First

PiE(t) = e−Li(t−ξ)σi +

∫ t

ξ

e−Li(t−τ)PiQ(E(τ))dτ

= e−Li(t)e−Li(−s)σi + e−Li(t)
∫ 0

ξ

eLi(−ξ)PiQ(E(τ))dτ

+

∫ t

0

e−Li(t−τ)PiQ(E(τ))dτ, for 0 ≤ t ≤ ξ, i = 1, . . . , N − 1,

and similarly

PNE = e−LN (t)

∫ 0

−∞
e−LN (t−τ)PNQ(E(τ))dτ

+

∫ t

0

e−LN (t−τ)PNQ(E(τ))dτ, for 0 ≤ t ≤ ξ,
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hence

E(t) =
N∑
i=1

Pi(E(t))

=
N∑
i=1

e−L(t)

(
e−Li(−ξ)σi +

∫ 0

ξ

e−Li(−s)PiQE(τ)

)
+

∫ 0

−∞
eLN (t−τ)PNQ(E(τ))dτ

+

∫ t

0

e−LN (t−τ)QE(τ)dτ

= e−L(t)E(0) +

∫ t

0

e−L(t−τ)QE(τ))dτ, for 0 ≤ t ≤ ξ,

where

eLw =
N∑
i=1

eLiPiw.

Thus we conclude that E is the solution of equation (36) with

w(0) = E(0).

Next, we show that ‖E(t)‖D(Hα)N ≤ 2χ‖σ‖D(Hα)N exp(2β(t − ξ)) for t ≤ ξ. From

equation (39):

‖E‖D(Hα)N ≤ χ exp(2β(t− ξ))‖σ‖D(Hα)N

+ χk(ρ)

((
N−1∑
i=1

1

2β
‖Pi‖

)
+ ‖PN‖

∫ ∞
0

ξ−α exp(−βξ) dξ

)
× sup

0≤s≤ξ
‖E(τ)‖D(Hα)N , ∀ t ≤ ξ

but then

sup
0≤s≤ξ

‖E(τ)‖D(Hα)N ≤ χ exp(2β(t− ξ))‖σ‖D(Hα)N ,

therefore,

‖E(t)‖D(Hα)N ≤ sup
0≤s≤ξ

‖E(τ)‖D(Hα)N ≤ 2χ exp(2β(t− ξ))‖σ‖D(Hα)N , ∀t ≤ ξ. (41)
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Now we are ready for the final estimate. By equation (39) we obtain:

‖E(ξ)− σ‖ ≤
∫ ξ

−∞
χ(ξ − s)−α exp(−β(ξ − s))‖PN‖

× 2χ exp(2β(ξ − s))‖σ‖D(Hα)Ndτ,

= 2χ2‖PN‖‖σ‖D(Hα)N

∫ ξ

−∞
(ξ − s)−α exp(−3β(t− τ))dτ,

then by inequality (40)

‖E(ξ)− σ‖ ≤ 1

2
‖σ‖D(Hα)N , (42)

But then, ‖E(ξ)‖D(Hα)N ≥ 1
2
‖σ‖D(Hα)N .

The theorem now follows, since if we choose ‖σ‖D(Hα)N ≤ 1
2

and ξ = n then by

equation (41)

‖w(0)‖D(Hα)N = ‖E(0)‖D(Hα)N ≤ ρ exp(−2βn)→ 0, for n→∞,

while

sup
0≤t≤n

‖w(t)‖D(Hα)N ≥ ‖w(n)‖D(Hα)N ≥
1

2
‖σ‖D(Hα)N , ∀ n ∈ N,

and therefore u∗ is unstable [37]. �

Theorem (4.11) tells us that linear stability is a sufficient condition for stability

of the nonlinear system. We used this in the next section to state the sufficient

conditions for the general autonomous system to exhibit diffusion instability.

4.3 Sufficient Conditions for Diffusion Driven Instability

One of the factors that influence diffusion driven instabilities is the diameter of Ω of

the reaction diffusion equation. We transform x and t to x̃ and t̃ using the following

transformations; x = γ
1
2 x̃ and t = γt̃, where γ is a fixed parameter. Then using the
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new variables the system is transformed into ;

ut̃ −D4̃u = γf(u) in Ω̃× (0,∞)
∂u

∂ν̃
= 0 on ∂Ω̃× [0,∞)

u = u0 on Ω̃× {t = 0}
(43)

where Ω̃ = {x ∈ Rn|γ−1/2x ∈ Ω, n = 1, 2, 3}. We can vary γ to study the effect that

the diameter of Ω has on the solution. Suppose u∗ ∈ RN
+ such that f(u∗) = 0. We

denote f ? = f(u?). For convenience we omit the tilde notation on the transformed

system Then we write the Jacobian matrix as;

B =

(
∂f ?

∂r

)
. (44)

Next we define diffusion driven instability;

Definition 4.12 If the following two conditions

1. u∗ is asymptotically stable in the absence of diffusion,

2. u∗ is unstable in the presence of diffusion,

are met, then the autonomous reaction-diffusion model is said to have diffusion driven

instabilities.

We first give sufficient conditions which guarantees condition (1) above.

Theorem 4.13 All roots of the characteristic polynomial P (λ) = det(λI − B) = 0

have negative real parts iff 4l =

∣∣∣∣∣∣∣∣∣∣∣

c1 c3 . . .
1 c2 c4 . . .

0 1 c2
...

... . . . . . .
...

0 0 . . . cl

∣∣∣∣∣∣∣∣∣∣∣
> 0, l = 1, . . . , N together with

condition cn > 0.
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The linearized version of (43) becomes

∂tw −D4w = γBw, (45)

If we ignore the diffusion term in equation (43) then

∂tw = γBw, (46)

where

w = u− u∗.

The ordinary differential equation in (45) is asymptotically stable if the eigenvalues

of γB have negative real part. We can calculate for the eigenvalues by solving

det(λI −B) = 0.

Re(λ) < 0 if and only if Hurwitz determinants are all positive (47)

Therefore condition 1 in definition (4.12) is satisfied. To verify condition 2 in the

definition (4.12), we consider the linear system of equation (37) and determine the

condition for linear instability and then summarize using theorem (4.11).

It is well know in literature that the solution, w(x, t), to the system (4.11) can be

written as

w(x, t) =
∞∑
i=1

cki exp(λkit)Xki(x), (48)

where {cki} depend on the initial condition and Xki are the eigenfunctions of the

Laplacian:

−4Xki = k2
iXki in Ω, (49)

∂

∂ν
(X)ki = 0, on ∂Ω,

u? is linearly unstable if and only if Re(λki) > 0 for some i ∈ {1, 2, 3, . . . .}

It is well known that ki’s are real, and we can write them as follows 0 ≤ k2
1 ≤ · · · <
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k2
i ≤ . . . , and k2

i → +∞ for i→∞.

Inserting Cki exp(λkit)Xki(x) into equation (45) we get

(
λkiI − γB + k2

iD
)
Xki = 0, i = 1, 2, 3, . . . .

To obtain non-trivial solutions, the coefficient matrix must be singular which means

det
(
λkiI − (γB − k2

iD)
)

= 0

In other words, this is a characteristic polynomial, associated with a matrix γB −

k2
iD for each i We find that λki which determines stability of the uniform steady

state to infinitesimal perturbation of the form Xi are the eigenvalues of matrix

B̂(k2
i ) = (γB − k2

iD). The eigenvalues are the roots of the characteristic polyno-

mial det (λkiI − (γB − k2
iD)) = 0.

Corollary 4.14 If the following conditions are satisfied:

1. all Hurwitz determinants of the characteristic polynomial det(λI − B) = 0 are

all positive.

2. If cN = 0. There exist a positive γT such that γ = γT, for some J . λ(k2
J) = 0.

For γ < γT u
? is stable, while for γ > γT then the multiscale reaction-diffusion

system exhibits diffusion-driven instabilities at u?.

The corollary (4.14) is telling us the following: A Turing instability occurs when

for the first time a single real λki , for some nonzero k, passes through a controlled

parameter γ is varied, while the real part of all other eigenvalues of B̂(k2
i ) remains

negative. That is, as the control parameter is changed, the uniform steady state of

the multiscale reaction diffusion becomes unstable at γ = γT to perturbations with

a nonzero wave number kT and the spatial mode XkT (x) grows into a stationary
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spatially nonuniform solution of the multiscale model beyond the Turing threshold

γT (time independent concentration pattern). The final pattern is determined by the

nonlinear terms of the kinetic rate functions and can differ qualitatively from the

unstable Turing mode XkT (x).
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CHAPTER 5

NUMERICAL SOLUTIONS FOR TUMOR INDUCED

ANGIOGENESIS MODELS

5.1 Introduction Numerical Methods

Numerical methods are used as a means for finding solutions to differential equa-

tions which do not have closed form solutions or whose solutions may be difficult

to solve using known techniques. To obtain a solution for an ordinary or partial

differential equation using a numerical approach, we replace the continuum function

with a discretization over a finite space. This transformation results normally in a

discrete problem which is solvable over some finite set. Many techniques for solving

such discrete problems are available [45, 36]. These methods are known collectively

as numerical methods for differential equations. The function x̄(t) is a numerical

solution of the differential equation ẋ if x̄ satisfies the differential equation and makes

the residual small. That is the difference between the actual solution ẋ and the ap-

proximate solution x̄ is small enough in the framework of weighted residuals. We can

write x̄ as a linear combination of some basis function φj(t) such that

x̄(t) =
N∑
j=0

x̃jφj(t).

Numerical method can thus be classified, based on the trial functions φj. We call

the numerical methods that arises from choosing trial functions of overlapping local

polynomials of low order as finite difference methods. If the trial functions are local

smooth functions (polynomials of fixed degree which are non-zero only on sub domain

on which the function is defined), then the numerical method is known as the Finite
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element method and lastly if the trial functions are global smooth functions such

as Fourier series or B-splines then we call the numerical method Spectral numerical

method. In our research we will be using spectral method with B-splines as our trial

functions. One reason why we decided to use bslpines is that they have compact

support. For example consider the following ODE model by Bock

x
′

1(t) = x2(t), (50)

x
′

2(t) = µ2x1(t)− (µ2 + ρ2)sin(ρt), (51)

with initial conditions x1(0) = 0 and x2(0) = π and t ∈ [0, 1].

This system when using numerical integrators to solve can lead to wrong solutions

due to error propagation and sometimes due to the stability of the methods being

used.However using B-spline collocation method we obtain a good approximation to

the solution to (50) We show with several numerical examples using integrators from

Python and Matlab to illustrate this bottle neck.

Figure 6: Solutions to equation (50) using various Matlab solvers. The solvers do not yield correct

approximate results due to instabilities.
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Figure 7: Solution to equation (50) using various Python solvers. The solvers do not give accurate

approximation to the solution due to possible instabilities.

If one is not careful with how the solutions to the differential equations are being

approximated, a black box solver could lead to false results. We thus implemented

our technique for approximating the differential equation using B-spline collocation

method.

Figure 8: Solution to equation (50) using Bspline Collocation Method. This method gives an exact

approximation to the analytic solution.
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5.1.1 Preliminaries and Definition for B-Spline Collocation Method

Definition 5.15 A spline function is a piecewise polynomial of order k (the poly-

nomial degree is k − 1 at most) defined on the interval Λ =]a, b[, whose high order

derivatives possess jump-discontinuities at some breakpoints ξ = {ξii = 1, · · · , l + 1}

defined by

a = ξ1 < ξ2 < · · · < ξi < · · · < ξl < ξl+1 = b, (52)

In our work, we will restrict our characterization to splines having jump-discontinuities

at their m+1 derivatives at each ξi ∈ Λ, that is splines belonging to the space Cm(Λ).

The spline u(x) is commonly described in its B-representation as

u(x) =
N∑
i=1

αiB
k
i (x), (53)

where Bk
i (x) is a special spline function of order k called the B-Spline which has, in

particular, the property of having compact support. The number N of the B-splines,

depending on the order k and the index of regularity m, will be defined in the ensuing

sections. Next we shall define explicitly the function Bk
i (x), for k = 1

B1
i (x) =


1 if x ∈ [ξi, ξi+1],

0 otherwise,

and an efficient construction of the B-Spline of order k > 1 is given by the recurrence

relation [13, 8]

Bk
i (x) =

x− ti
ti+k−1 − ti

Bk−1
i (x) +

ti+k − x
ti+k − ti+1

Bk−1
i+1 (x), (54)

where

• ti − knots ie ti, i = 1, · · · , N + k,
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• N − the number of B-splines ie N = l(k −m− 1) +m+ 1,

• l− the number of intervals between knots,

• m - index of regularity or smoothness of the B-spline,

The regularity of the B-spline basis is imposed through the definition of the knots by

requiring

tk+(i−2)(k−m−1)+1 = · · · = tk+(i−1)(k−m−1 = ξi for i = 2, · · · , l (55)

The construction of the basis leaves freedom in the first k and last k of the knots. A

convenient choice for the approximation of the boundary value problem is to set

t1 = · · · = tk = a, tN+1 = · · · = tN=k = b, (56)

5.2 Example of B-spline Construction for Ordinary and

Partial Differential Equations

In this section we will show how to construct the B-spline basis matrix and its deriva-

tive and use it to solve a few examples. Suppose we want to approximate an ordinary

differential equation using cubic B-splines and t-collocation points then we will need

to derive the B-spline functions together with their derivatives from either the general

recursive formula given as:

Bk
i (x) =

x− ti
ti+k−1 − ti

Bk−1
i (x) +

ti+k − x
ti+k − ti+1

Bk−1
i+1 (x), (57)



54

or an explicit cubic B-spline formula [48]:

Bi(t) =
1

h3



(t− si−2)3, if t ∈ [si−2, si−1]

h3 + 3h2(t− si−1) + 3h(t− si−1)2 − 3(t− si−1)3, if t ∈ [si−1, si]

h3 + 3h2(si+1 − t) + 3h(si+1 − t)2 − 3(si+1 − t)3, if t ∈ [si, si+1]

(si+2 − t)3, if t ∈ [si+1, si+2]

0 otherwise

whose first derivative is given as,

B
′

i(t) =
1

h3



3(t− si−2)2, if t ∈ [si−2, si−1]

3h2 + 6h(t− si−1)− 9(t− si−1)2, if t ∈ [si−1, si]

−3h2 − 6h(si+1 − t)− 9(si+1 − t)2, if t ∈ [si, si+1]

−3(si+2 − t)2, if t ∈ [si+1, si+2]

0 otherwise

higher order derivatives if required can be taken in a similar way. Suppose we want to

solve the following Initial value problem y
′ − 2y = 0 when y(0) = 2 where t ∈ {0, 2}

using 5 B-splines and however many collocation points. Then to generate the number

of B-splines we first have to define our knot vector over the the interval where the

solution is to be found as follows;

[ s0 = 0 s1 = 0 s2 = 0 s3 = 0 s4 = 1 s5 = 2 s6 = 2 s7 = 2 s8 = 2 ]

note that the number of additional 0 and 2’s at the end of the points is due to the

order of the B-spline. When using a cubic B-spline we add 3 zeros and 3 twos at the
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ends respectively and this has a knot vector as defined above.

Having created our knot vector we can begin the process of finding our 5 B-spline

by iterating through the explicit B-spline function. If we do that we can see that we

obtain our first B-spline when i = 2, that is;

B1(t) =
1

h3


(1− t)3, if t ∈ [0, 1]

0, otherwise

if we make an increment of i = 3 we obtain our next B-spline as follows:

B2(t) =
1

h3



h3 + 3h2(1− t) + 3h(1− t)2 − 3(1− t)3, if t ∈ [0, 1]

(2− t)3, if t ∈ [1, 2]

0. otherwise

Following the same process we can obtain all our 5 B-splines and subsequently their

derivatives. For example the derivatives of the first and second B-splines will be given

as follows

B
′

1(t) =
1

h3


−3(1− t)2, if t ∈ [0, 1]

0, otherwise

and

B
′

2(t) =
1

h3



−3h2 − 6h(1− t) + 9(1− t)2, if t ∈ [0, 1]

−3(2− t)2, if t ∈ [1, 2]

0. otherwise

We are now in a position of construct our Basis matrix and derivative of the basis

matrix as follows: Recall that the cubic B-spline approximation to a function is given
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as;

y(t) =
N−1∑
i=0

ciB
3
i (t). (58)

Thus we can form our system of equations for three collocation points as follows (we

choose three collocation points for illustrative purpose only)

y(t) = c0B
3
0(t) + c1B

3
1(t) + c2B

3
2(t) + c3B

3
3(t) + c4B

3
4(t) (59)

Thus for t = 0 , 1 , 2

y(0) = c0B
3
0(0) + c1B

3
1(0) + c2B

3
2(0) + c3B

3
3(0) + c4B

3
4(0)

y(1) = c0B
3
0(1) + c1B

3
1(1) + c2B

3
2(1) + c3B

3
3(1) + c4B

3
4(1)

y(2) = c0B
3
0(2) + c1B

3
1(2) + c2B

3
2(2) + c3B

3
3(2) + c4B

3
4(2)

We can derive our Basis matrix from the above system of equations and proceed to

find our derivative matrix and the solution for the given initial value problem.

B3
i (t) =

 B3
0(0) B3

1(0) B3
2(0) B3

3(0) B3
4(0)

B3
0(1) B3

1(1) B3
2(1) B3

3(1) B3
4(1)

B3
0(2) B3

1(2) B3
2(2) B3

3(2) B3
4(2)

 (60)

Similarly we obtain the B
′
i(t) matrix as follows

B3′

i (t) =

 B3
0(0) B3′

1 (0) B3′
2 (0) B3′

3 (0) B3′
4 (0)

B3′
0 (1) B3′

1 (1) B3′
2 (1) B3′

3 (1) B3′
4 (1)

B3′
0 (2) B3′

1 (2) B3′
2 (2) B3′

3 (2) B3′
4 (2)

 (61)

The system can then be solved for the coefficients c and thus we can find the approx-

imate solution for the function. For the example given above we can find the solution

as follows;

B3′

i (t)− 2B3
i (t) = 0 (62)

We can apply the initial condition to obtain the appropriate right hand side and solve

for the B-spline coefficients, c. Finally we can find our B-spline approximation to the
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solution, as

y(t) =
N−1∑
i=0

ciB
3
i (t). (63)

5.3 Computational Algorithm for B-spline Collocation Method:

Ordinary Differential Equations

To compute approximate solutions to the ordinary differential equation for initial and

boundary value problems using B-spline collocation method, we use the following al-

gorithm:

Algorithm 5.1: B-spline Collocation Method for ODEs.

• 1. Create your Basis matrix using the following information: knot vector, degree

of B-spline, collocation points

• 2. Create the nth derivative Basis matrix depending on the order of your ode.

• 3. Create the approximation matrix, V and make sure the necessary conditions

are met.

• 4. Construct the right-hand side vector and make sure the first row of the

approximation matrix is set appropriately, if its an initial value problem else if

its a boundary value problem then set the last row of V appropriately as well.

Since the initial and or boundary condition is known.

• 5. Since the approximation matrix V is not normally square multiply V by its

transpose on both sides of system

• 6. Solve for coefficients of the B-spline, c
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• 7. Approximate solution to the ordinary differntial eqation is y = Bc.

5.4 Nonlinear B-spline Collocation Method for Ordinary Dif-

ferential Equations

Algorithm for solving nonlinear B-spline with polynomial type nonlinearity, is slightly

different from the general algorithm 6.1. The initial steps for creating the basis and

differential matrices are the same and so we will skip those in this algorithm. We

proceed as follows:

Algorithm 5.2: B-spline Collocation Method for Non-linear ODEs.

• 1. Define the right hand side equation as a function.

• 2. Take the tensor product of the differential matrix and the identity matrix.

The size of the identity matrix depends on the number of equations.

• 3. Set V appropriately for the initial conditions ie that make substitutions

appropriately if we know the initial conditions.

• 4. Setup the initial guess vector using the information from the initial condi-

tions.

• 5. Create the nonlinear function to find residue

• 6. Check condition of matrix. If ill conditioned resolve this issue with singular

value decomposition (SVD) of the ill conditioned matrix.

• 7. Using the Newton Krylov nonlinear solver in python we evaluate for the

solution of the coefficients.
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• 8. Write the B-spline form of the approximation to the function and graph

results.

We demonstarte the above procedure described in the algorithm (6.2) with the tumor

angiogenesis model on apoptosis and its effect on tumor spread discussed in chapter

2. Consider the systems of reaction equations

dy1

dt
= a1 − a2y2y1 − a3y1y3 − a4y4y1,

dy2

dt
= a5 − a2y2y1 + a3y1y3 − a6y2,

dy3

dt
= −a3y1y3 − a7y3y4 + a8,

dy4

dt
= −a7y4y3 + a9 − a10y4,

dy5

dt
= a10y4 − a11y5y6 + a12 − a13y5,

dy6

dt
= −a11y5y6 + a6y2 − a14y6,

where the state variables y1, y2, y3, y4, y5 and y6 represents the concentrations of the

hypoxic inducible factor 1(HIF-1), oxygen, P300 coactivator, P53 protein, caspase

protease and potassium respectively. The parameter values are given in table 2.

We obtained the following results using the B-spline collocation method discussed in

algorithm 5.2

In the next subsection we discuss the numerical results for the system of reaction

equations in the multiscale model constructed in chapter 2.

5.4.1 Numerical Results for A Multiscale Model for Tumor Induced

Angiogenesis

In this subsection we solve the resulting system of reaction equations for the multiscale

tumor induced angiogenesis model. The parameter values have their usual meaning
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Figure 9: Solution profile for HIF-1 and O2.

Figure 10: Solution profile for CASP and P300.

as explained in chapter 2. Here because of the nonlinear terms in rational form, our

B-spline method could capture precisely the solution profile. We however used the

python solver dopri5 to obtain the solutions. This is because compared to the other

solvers for the test case problem, dopri5 had the best approximation to equation

(50). The results for the reaction equations for the multiscale model were obtained
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Figure 11: Solution profile for P53 and K+.

as follows;

du1(t)

dt
= a1 − a2u2u1 − a3u1u3 − a4u4u1,

du2(t)

dt
= a5 − a2u2u1 + a3u1u3 − a6u2,

du3(t)

dt
= −a3u1u3 − a7u3u4 + a8,

du4(t)

dt
= −a7u4u3 + a9 − a10u4,

du5(t)

dt
= a10u4 − a11u5u6 + a12 − a13u5,

du6(t)

dt
= −a11u5u6 + a6u2 − a14u6,

du7(t)

dt
= k1u7(1− u7)− k2u7u9,

du8(t)

dt
=

k2u8u9

1 + u9

− k4u8u9 − k5u8 + k6u8u10,

du9(t)

dt
= k7u9(1− u9)− k8u9u7 − k9u9u8 +

k10u9u10

1 + u10

− ηu5u9,

du10(t)

dt
=

k11u9u10

1 + u9

− k12u10 + ξu1u10.

The following are the solution profiles for the 10 state variables for the multiscale

model.
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Figure 12: Solution to multiscale tumor angiogenesis model. The graph on the left shows the

solution profile of HIF whiles the graph on the right shows the solution profile of O2

Figure 13: Solution to multiscale tumor angiogenesis model. The graph on the left shows the

solution profile of P300 whiles the graph on the right shows the solution profile of P53
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Figure 14: Solution to multiscale tumor angiogenesis model. The graph on the left shows the

solution profile of CASP whiles the graph on the right shows the solution profile of K+

Figure 15: Solution to multiscale tumor angiogenesis model. The graph on the left shows the

solution profile of host cells whiles the graph on the right shows the solution profile of immune cells.
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Figure 16: Solution to multiscale tumor angiogenesis model. The graph on the left shows the

solution profile of host cells whiles the graph on the right shows the solution profile of immune cells.

5.5 Computational Algorithm for B-spline Collocation Method:

Partial Differential Equations

To approximate partial differential equations using B-splines we adapt the elegance

of tensor products to help us in the space and time discretization. The following is

our algorithm for finding numerical approximation for partial differential equations.

Algorithm 5.3: B-spline Collocation Method for PDEs.

• 1. Create the basis matrix using collocation points in the x and t directions.

The degree and knot vector is required when creating the basis matrix.

• 2. Depending on the order of the partial differential equation, the nth derivative

of the basis matrix can be taken.

• 3. If the equation has a partial derivative in x then to obtain the correct partial

derivative, take the tensor product between the nth order derivative matrix and

the basis matrix of t.
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• 4. Formulate a discretized form the PDE with the various tensor products

appropriately taken in the required direction according to the structure of the

PDE.

• 5. If the problem is formulated as an initial value PDE then we code the initial

value function as a sub-function to be used in the solution process.

• 6. As in the case of the ODE, because the initial condition is known, we replace

the sub-matrix row in V with the original sub-matrix row in for the tensor

product Kron(Bt,Bx) from the first row to the length of the collocation points

used in the discretization.

• 7. If the problem has boundary values, set the boundaries by replacing every

first and last row in V with the rows from the tensor products for the boundary

condition at a and the boundary condition at point b.

• 8. Multiply V by its transpose if V is not square and solve for c using a linear

solver. Graph results and check with an analytical solution.

5.6 B-spline Collocation Method for Semi-linear Partial Dif-

ferential Equations

Lastly we demonstrate how to solve semi-linear partial differential equations using

the B-spline collocation method. The Algorithm we used in achieving this results is

as follows;
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Algorithm 5.4: B-spline Collocation Method for PDEs.

• 1. Write the left hand side operator using tensor products obtained from the

basis and differential matrix

• 2. The expression for the left hand side using the B-spline approximation for

the gradient function.

• 3. Setup the initial condition vector depending on the number of equations

given.

• 4. Define the non linear part of the equation as a function.

• For example if there are n−equation, then we will have n−nonlinearfunctions

• 5. Create a PDE function to be used in solving the system of algebraic equations

resulting from the B-spline discretization.

• 7. Use the initial guess to obtain the initial B-spline coefficients.

• 8. Setup a boundary fixer. The boundary fixer ensures that the boundary

conditions remain the same as the solution is solved.

• 9. Using an appropriate solver in python solve the system over the desired time

span. The resulting solution is the desired coefficients

• 10. Use the coefficients to write the B-spline approximation for the system and

graph results.

Consider the multiscale reaction-diffusion model for the tumor angiogenesis, this

model describes spatial interaction between host cells, effector immune cells, tumor



67

cells, endothelial cells at the cellular level. It also includes subcellular interactions,

between, HIF − 1, O2, P300, P53, Caspases and Potassium. We assume the model

is defined on a square domain with Neumann boundary conditions. The model pa-

rameters and state variables are described in detail in chapter 2.

∂u1(t)

∂t
= d1∇2u1 + a1 − a2u2u1 − a3u1u3 − a4u4u1

∂u2(t)

∂t
= d2∇2u2 + a5 − a2u2u1 + a3u1u3 − a6u2

∂u3(t)

∂t
= d3∇2u3 − a3u1u3 − a7u3u4 + a8

∂u4(t)

∂t
= d4∇2u4 − a7u4u3 + a9 − a10u4

∂u5(t)

∂t
= d5∇2u5 + a10u4 − a11u5u6 + a12 − a13u5

∂u6(t)

∂t
= d6∇2u6 − a11u5u6 + a6u2 − a14u6

∂u7(t)

∂t
= d7∇2u7 + k1u7(1− u7)− k2u7u9

∂u8(t)

∂t
= d8∇2u8 +

k2u8u9

1 + u9

− k4u8u9 − k5u8 +
k6u8u10

1 + u10

∂u9(t)

∂t
= d9∇2u9 + k7u9(1− u9)− k8u9u7 − k9u9u8 +

k10u9u10

1 + u10

− ηu5u9

∂u10(t)

∂t
= d10∇2u10 +

k11u9u10

1 + u9

− k12u10 +
ξu1u10

1 + u1

We obtained the following results from solving the system using B-spline collocation

method;
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Figure 17: Reaction diffusion solution for HIF-1 in space at different times.

Figure 18: Reaction diffusion solution for tumor cell concentration in space at different times.

Figure 19: Reaction diffusion solution for Endothelial cell concentration in space at different times.
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CHAPTER 6

UNCERTAINTY QUANTIFICATION AND SENSITIVITY ANALYSIS

So far we have assumed that the model parameters of reaction diffusion systems are

known. But most biological parameters are uncertain or variable. We will quantify

the uncertainty in the solution of the system using statistics such as mean and vari-

ance. To compute mean and variance we must compute multiple integrals. These do

not have, in general, closed form solutions. Quadrature methods are used to com-

pute integrals numerically. This method for uncertainty quantification becomes more

computationally intensive as the dimensionality of the parameter space gets larger.

One way of overcoming this obstacle is to apply sensitivity analysis methods to the

system of random differential equations. Sensitivity analysis helps us to rank sen-

sitivity of parameters for the system. Then we choose the top ranked parameters

as uncertain and the remaining parameters as fixed in performing uncertainty and

sensitivity analysis.

The most popular method for uncertainty quantification is the Monte Carlo method.

The reason why the method is very popular is because it is stable [16]. The drawback

is that it is computationally inefficient due to its low convergence rate. In this chapter

we discuss a method for uncertainty quantification which is moderately stable and

highly efficient.

We discuss uncertainty quantification without diffusion parameters. The same

approach can be extended when diffusion rates are included. In the next section,

we discuss the necessary definitions and preliminaries for sensitivity analysis and

uncertainty quantification.
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6.1 Definitions and Preliminaries

In order to perform uncertainty and sensitivity analysis, we need an efficient sampling

numerical quadrature method that can be used to compute the mean and variance

and determine distributions and uncertainty bounds for the model output. The higher

the dimensionality of the parameters, the more computationally expensive to perform

uncertainty quantification. Thus we require sensitivity analysis to reduce the number

of parameters under consideration. Next we discuss preliminaries and definitions of

sensitivity analysis.

One of the aims of sensitivity analysis is to quantify the relative contribution of

individual parameters to variability in the model output. The reasons for sensitivity

analysis include the following;

1. Determine whether the model is robust or fragile with regards to various pa-

rameters.

2. Determine whether the model can be simplified by eliminating processes that

involve insensitive parameters.

The methods for sensitivity analysis are classified as local and global.

Local sensitivity is the study of how the variation in the output of a model de-

pends on the model’s input. For the purpose of parameter selection, each parameter

associated with the probability distribution is sampled N times in order to generate N

vectors of the parameters. The model is evaluated for each set of parameter vector and

the model output is recorded. Sensitivity analysis is used to rank the input parame-

ters according to their influence on the output. There are different types of sensitivity

analysis, including qualitative and quantitative sensitivity analysis methods. Quali-

tative sensitivity methods include correlation analysis (CA), regression analysis (RA)
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and Gaussian process(GP) [15]. Quantitative Sensitivity analysis methodsinclude el-

ementary effects sensitivity screening analysis method, fourier amplitude sensitivity

analysis (Fast), multivariate adaptive regression spline (MARS), delta test (DT) and

sum of trees (SOT) [65]. We use the elementary effects sensitive screening analysis to

reduce the dimension of the parameter space for the multiscale tumor angiogenesis

model.

6.2 The Elementary Effects Screening Method

The elementary effect for the i-th input variable at [0, 1]k is the first difference ap-

proximation to the derivative of f at x:

EEi(x) =
f(x+ hei)− f(x)

h

where h is a small fixed positive real number, ei is the unit vector in the direction of

the i-th axis and f is the model output [15]. This is a local measure of sensitivity

The average EEi(x) for various points x in the input domain may be calculated in

order to obtain a more global measure of the relative influence of each factor

µi =
1

r

r∑
j=1

EEi(xj).

In calculating the elementary effect of the input parameter, only a single parameter

is varied at a time, thus this method does not detect interactions between the input

parameters.

Definition 6.16 Local methods consider how the output changes about a base point.

These methods may vary many parameters or a single parameter. Global methods on

the other hand characterize how the model output depends on the model inputs over

a wide range of input variables
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Some global sensitive analysis methods are based on analysis of variance (often using

Monte Carlo methods). The sensitivity indices of the parameters quantify the impact

that the parameter has on the output uncertainty [65]. It measures the part of the

output variance which can be attributed to variability in the parameter. We note

that the sensitivity index has the following properties;

1. Each index has a value Si ∈ [0, 1], i = 1, 2, . . . , np, where np is the number of

parameters under consideration.

2.
∑np

i Si = 1,

where the first-oder index which measures the main effect is given as

Sj =
Var(E[z|xj])

var(z)

where x is the parameter and z is the output. The total effect index, that measures

the residual variability due to interactions between xi and other parameters is

STj =
E[var(z|xj)]

var(z)
.

The sensitivity indices S1 is a collection of all contains the first-order sensitivity

indices, which tell us how much each input variable contribute to the overall output

variability function over the domain and ST contains the total indices, which include

the interaction effects with other variables. A second order index si,j tells us the

level of interaction effects between xi and xj whiles a third order index si,j,k tells us

the level of interaction between the three parameters xi, xj and xk. We use Sobols

method for the global sensitive analysis.
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6.3 Sobol’s Method of Sensitivity Analysis

Sobol’s method is one of the most established and widely used methods of sensitivity

analysis, capable of computing the total sensitivity indicies (TSI) [65]. TSI measures

the main effects of individual parameter and all the interactions (of any order) in-

volving that parameter [65]. For example, if there are three input parameters say, A,

B, and C, then the total effect of parameter A on the output is given as,

TS(A) = S(A) + S(AB) + S(AC) + S(ABC),

where TS(i) is the total sensitivity index of parameter i and S(Aj) denotes the

second-order sensitivity index for the parameter A and j (for j 6= A). Sobol’s method

uses the decomposition of variance to calculate the Sobol’s sensitivity indices [65].

The basis of the method is the decomposition of the model output function y =

f(x) into summands of variance using combinations of input parameters in increasing

dimensionality. This can be used to determine the sensitivity of the output to the

variation of an input parameter with input parameter space given as [0, 1]k [65].

The main idea behind Sobol’s approach for computation of sensitivity indices is the

decomposition of the function f(x) into summands of increasing dimensionality:

f(x1, .., xk) = f0 +
k∑
i=1

fi(xi) +
∑

1≤i<j≤k

fij(xi, xj) + ...+ f1,2,3,..,k(x1, .., xk). (64)

The expansion of f(x) is called an Anova-representation of f(x) if:∫ 1

0

fi1,i2,i3,..,is(xi1 , .., xis)dxk = 0 for k = i1, ..., is. (65)

A consequence of (65) is that all summands in (64) are orthogonal: if (i1, ..., is) 6=

(j1, ..., jl), then ∫
[0,1]k

fi1,i2,i3,..,isfj1,..,jldx = 0. (66)
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Since at least one of the indices will not be repeated, the corresponding integral will

vanish due to (65). It follows that if the x are random variables uniformly distributed

in [0, 1]k , then f(x) is a random variable and its expectation and variance given

specific variable combinations can be computed as follows:∫
[0,1]k

f(x)dx = f0∫
f(x)

∏
k 6=i

dxk = f0 + fi(xi)∫
f(x)

∏
k 6=i,j

dxk = f0 + fi(xi) + fj(xj) + fij(xi, xj)

and fi1,..is(xi1 , ..., xis) are be random variables with variance D and Di1,...,is . The

sensitivity indices are thus defined as the ratios

S(i1, ..., is) = Si1,...,is =
Di1,...,is

D
,

known as the global sensitivity indices. Si is the first-order sensitivity index for factor

xi, which measures the main effects of xi on the output (the partial contribution of i

to the variance of f(x)). Similarly, Sij, for i 6= j is called the second-order sensitivity

index. In addition, we have that

k∑
s=1

Ss +
∑

1≤i<j≤k

Sij + ...+ S1,2,...,k = 1

6.3.1 Application of Sobel’s Method

Sobols method is relatively easy to implement using Monte Carlo based integration

f0 = E(f(x)) ≈ 1

N

N∑
k=1

f(xk),

D =

∫
f 2(x)dx− f 2

0 ≈
1

N

N∑
k=1

f 2(xk)− f 2
0 ,
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Di = D − 1

2

∫
[f(x)− f(x′i, xi)]

2dxdx′−i,

≈ D − 1

2N

N∑
k=1

[f(xk)− f(x′ik, x−ik)]
2,

Dtot
i =

1

2

∫
[f(x)− f(x′i, xi)]

2dxdx′−i ≈
1

2N

N∑
k=1

[f(xk)− f(x′ik, x−ik)]
2,

Compute total sensitivity effects for the three parameters using

Dtot
i =

1

2

∫
[f(x)− f(x′i, xi)]

2dxdx′−i ≈
1

2N

N∑
k=1

[f(xk)− f(x′ik, x−ik)]
2

sort the parameters according to their sensitivities. Here recall that the purpose of

sensitive analysis is to reduce the number of parameters in order to scale down the

computational complexity for performing uncertainty quantification.

6.4 Uncertainty Quantification

After the sensitive analysis we reduce the parameter space within which to perform

uncertainty quantification. In general we can compute mean and variance using Monte

Carlo integration. However Monte Carlo method is not efficient. As an alternative

Figure 20: This figure describes the pipeline for performing uncerntainty quantification.

to Monte Carlo simulation, we consider orthogonal polynomials such as Lagrange

or Legendre polynomial to compute the mean and variance. The solutions of the

differential equations are approximated using orthogonal polynomials,

u ≈ ûM(t; k) =
N∑
n=0

cn(t)Pn(k), N = M + 1
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like Lagrange and Legendre polynomials where cn are the polynomial coefficients,

and Pk are the Lagrange or Legendre polynomials. The interpolation has much bet-

ter convergence than the naive Monte Carlo method [15]. However if N is large, the

approximation becomes inefficient [16]. So we need a better polynomial approxima-

tion. In the next section we discuss polynomial chaos which can be used to achieve a

better polynomial approximation.

6.5 Polynomial Chaos

We seek an ideal polynomial expansion

u(x, a, k) ≈ û(t, a, k) =
K∑
n=0

cn(t)Pn(a, k), K = M + 1 (67)

to resolve the associated inefficiencies associated with using Lagrange and Legendre

polynomials to approximate the mean and the variance. In order to obtain a better

polynomial expansion, we need to define first the structure (inner product and norm)

of the solution space for such a polynomial. We define, inner product spaces weighted

with probability distributions,

〈u, v〉Q = E(u, v)

=

∫
fQ(q)u(t, q)v(t, q) dq

and its associated norm

‖u‖Q =
√
〈u, v〉
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where Q = (a, k) is a random parameter vector. We define next when two polynomials

in the expansion of the solution u are orthogonal;

〈Pn, Pm〉Q =


‖Pn‖2

Q n = m,

0 m 6= n.

In the expansion (67) we define the coefficients through least squares minimization

minc0,...,cN ‖u− uM‖2 such that〈
N∑
n=0

cnPn, Pk

〉
, =

N∑
n=0

cn〈Pn, Pk〉Q, k = 0,. . . ,N,

= ck〈Pk, Pk〉Q,

where

ck =
〈u, Pk〉
‖Pk‖2

Q

are known as the fourier coefficients. Minimizing the least squares is equivalent to

the minimization of the variances;

(c0, . . . , cN) = argmin
c0,...,cN

‖u− ûM‖Q,

= argmin
c0,...,cN

‖u− ûM‖2
Q,

= argmin
c0,...,cN

E((u− ûM)2),

= argmin
c0,...,cN

V ar(u− ûM).
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If the polynomials in the expansion of the approximate solutions are orthogonal then

we can calculate mean and variance as follows;

E(ûM) = E

(
N∑
n=0

cnPn

)
,

=
N∑
n=0

cnE(Pn),

=
N∑
n=0

cn〈Pn, P0〉Q,

= c0,

and

V ar(ûM) = V ar

(
N∑
n=0

cnPn

)

=
N∑
n=0
m=0

cncm(E(PnPm)− E(Pn)E(Pm),

=
N∑
n=0
m=0

cncm〈Pn, Pm〉Q − c2
0,

=
N∑
n=1

c2
n‖Pn‖Q.

Now we can construct an orthogonal polynomial expansion using Gram-Schmidt or-

thogonalization as follows;

P0 = v0,

Pn = vn −
n−1∑
m=0

〈vn, Pm〉Q
‖Pm‖2

Q

,

= vn −
n−1∑
m=0

E(vn, Pm)

E(P 2
m)

.

Gram-Schmidt method is known to be unstable for higher order polynomial terms

[16]. This is because the vandermonde matrix associated with the polynomials are
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ill-conditioned. Thus Gram-Schmidt orthogonalization is not enough.

We find that a better way of numerically constructing the orthogonal polynomials is

through the three-term discretized Stiltjes recursion. This method is stable and has

a recursion relation is given as:

Pn+1 = (x− An)Pn −BnPn−1, P−1 = 0 P0 = 1,

where

An =
〈qPn, Pn〉Q
‖Pn‖2

Q

and

Bn =


‖Pn‖2

Q

‖Pn−1‖2
Q

n > 0,

‖Pn‖2
Q n = 0,

〈Pn, Pm〉Q = E
(
P (1)
n . . . P

(D)
nD · P

(1)
m . . . P

(D)
mD

)
,

= E
(
P

(1)
n1 · P

(1)
m1

)
. . . E

(
P

(D)
nD · P

(D)
mD

)
,

=
〈
P 1
n1, P

1
m1

〉
Q
. . .
〈
PD
nD, P

D
mD

〉
Q
.

6.6 Application of Sensitive Analysis and Uncertainty

Quantification to Multiscale Model

We begin by obtaining the right parameter set by using data from [32] described in

table (4). We performed the parameter estimation using the method discussed [60].

Having obtained the appropriate parameter sets, we performed local sensitivity anal-

ysis using the elementary effects screening method. The output in figure (6.6) shows

the ranking for the most sensitive parameters.
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Figure 21: Relative sensitivitiy rank for the multiscale tumor angiogenesis model. The results

shows that the parameters, a5, a11, a13 and ρ1 from the multiscale model are the most sensitive.

We used next the Sobol’s method with uniform parameter range to further screen

the parameters to reveal the parameter that have the most influence on the model

outcome. Applying the Sobol’s method we got the results in Table (5).

Lastly we performed uncertainty quantification on the multiscale model where the

high ranked parameters a5 and a11 are varied. We obtained the following solution

profiles for each of the state variables in the multiscale model;
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Table 4: Time course data for Caspases gene expression [32].

Time 15min 30min 1h 2h 3 h 4 h 5h 6h 7 h 8h
CASP4 0.97 0.69 1.87 0.79 1.23 2.22 1.32 1.07 1.57 1.19
CASP6 1.15 0.76 1.23 0.87 1.00 1.42 1.23 0.93 1.37 1.32
CASP7 1.07 0.79 1.11 0.79 1.52 1.01 1.04 0.93 1.15 0.87
CASP9 1.04 0.87 1.28 0.62 1.32 1.68 1.07 1.11 1.63 1.57

Time 8 h 9h 10 h 12 h 24 h 36 h 48 h 60 h 72 h
CASP 4 1.19 1.23 0.84 4.61 2.3 0.73 1.07 0.45 1.07
CASP 6 1.32 1.46 1.19 2.22 1.19 0.68 1.19 0.56 1.15
CASP 7 0.87 1.00 1.07 2.46 2.55 0.93 1.46 0.45 0.97
CASP 9 1.57 1.68 1.47 1.75 1.15 1.32 1.75 1.00 1.37

Table 5: First order and total sensitivity index for multiscale model using Sobol’s

method. The parameters a5, a11, a13 and ρ1 from the elementary sensitivity test were

the only parameters considered in the Sobol’s analysis.

Parameter S1 S1 Conf ST ST Conf
a5 0.00 0.00198 0.000731 0.000289
a11 1.00 0.25438 0.997793 0.051659
a13 0.00 0.00014 0.000008 0.000006
ρ1 0.00 0.00000 0.000000 0.000000

Figure 22: The figure on the left represents the solution profile for host cells exhibiting Jeff’s

phenomenon, whiles the figure on the right represents the solution profile for immune cells exhibiting

Jeff’s phenomenon in the multiscale model.
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Figure 23: The figure on the left represents the solution profile for tumor cells exhibiting Jeff’s phe-

nomenon, whiles the figure on the right represents the solution profile for endothelial cells exhibiting

Jeff’s phenomenon in the multiscale model.

Figure 24: The figure on the left represents the solution profile for HIF-1, whiles the figure on the

right represents the solution profile for O2 concentration in the multiscale model.
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Figure 25: The figure on the left represents the solution profile for P300 coactivator, whiles the

figure on the right represents the solution profile for P53 gene concentration in the multiscale model.

Figure 26: The figure on the left represents the solution profile for Caspases, whiles the figure on

the right represents the solution profile for Potassium gene concentration in the multiscale model.

6.7 A Discrete Stochastic Model for Blood Vessel Growth

The draw back of the continuum models is lack of actually representing the blood

vessels distribution in response to angiogenesis. In order to do this, we couple a

discrete stochastic equation in predicting the vascular network to the multiscale model
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presented above. In this model [46, 59], we use a random diffusion term to control

the random movement of the endothelial cell tips instead of the rotation matrix used

in [14, 31]. In the discrete model the ith subscript denotes the state of the ith blood

vessel sprout. The model is comprised of a deterministic tip equation given as;

dxi
dt

= vi(t),

whiles the movement of the tip velocity is governed by a stochastic differential equa-

tion given as;

dvi(t) = −βvi(t)dt+
√
αdWi(t) + κ∇a sin

(
Φ

2

)
dt,

where β is the viscosity coefficient, W is the Wiener process, a white noise, a is TAF

concentration, in this model we relate the TAF concentration with the multiscale

reaction diffusion equation by taking a set of random numbers between the maximum

and minimum TAF concentrations, Φ is the angle between the direction the tip is

moving and that toward the TAF source, and i denotes ith sprout. Φ is defined more

explicitly as

Φ = cos−1

[
(xa − xi)cosθi + (ya − yi)sinθi

((xa − xi)2 + (ya − yi)2)1/2

]
and finally the equation for the average density is

dρi
dt

= kg
ρmax − ρi(t)
ρmax − ρmin

ρi(t)−
si(t)

Li(t)
ρi(t) + kb [ρpv(t)− ρi(t)]−

νi∑
j=1

kb [ρi(t)− ρj(t)]

where, kg is the proliferation rate, kb is the distribution coefficient, ρpv(t) is the number

of branches that the ith sprout has at time t, si in the instantaneous speed of the ith

sprout has calculated as si(t) = ‖vi(t)‖ and Li is the sprout length calculated from

dLi
dt

= si(t). (68)
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In addition, we considered the term ∇a to be a function depending on the tumor

concentration from the reaction diffusion equation. We obtained the following results

for the vascular network structure using the discrete stochastic differential equation

Figure 27: Two Simulations of tumor induced angiogenesis vascular growth in response to TAF.

The figure shows blood vessel sprouts at different locations responding and growing towards tumor

source.



86

CHAPTER 7

CONCLUSION AND FUTURE WORK

We constructed a semi-linear parabolic multiscale model for tumor angiogenesis by

establishing a relation between intracellular and intercellular dynamics. We analyzed

the resulting system for the existence of solution through semigroups. We showed

that the system satisfies the positivity condition and mass control structure, thus

ensuring that the solutions does not blow up in finite time. Having established that

existence of solutions for the model, we went ahead to solve the resulting system using

a B-spline collocation method.

Since most parameters in biological systems are not known or else variable, we

investigated the sensitivity and uncertainty of the model output to the parameters.

Since large parameter sets increase the computational complexity of performing un-

certainty quantification, we reduced the parameter space ( the number of parameters

to consider as uncertain) by applying local and global sensitivity analysis on the re-

action terms in the model. We plan to extend this concept to include the diffusion

terms. Having identified the most sensitive parameters, we performed uncertainty

quantification on the model with deterministic parameters and uncertain parameters,

where the uncertain parameters were those identified through the sensitivity analysis.

Finally since continuum models do not capture the vascular structures in the

process of angiogenesis, we solved a discrete stochastic differential equation whose

chemotactic term depends on the highest and lowest tumor concentration from the

multiscale model. Future work will focus on this model and provide a better coupling

between the multiscale model and the growth of the blood vessels.
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