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ABSTRACT

Student retention is a challenging task in higher education, since in general more

students remaining in the university means better academic programs and higher

revenue. Thus, improving retention rates can not only help current students achieve

academic success, but help future students as well. The objective of this thesis is to

employ data mining and predictive tools on student data to predict student retention

among the freshman students. In particular, we aim to identify freshman students

who are more likely to drop out so that preemptive actions can be taken by the

university. Through data analysis, relevant variables are identified to incorporate

into models for prediction. Missing values are taken into consideration, and missing

value imputation methods are explored.

This thesis begins by introducing the theory behind missing value imputation and

prediction methods before applying them on the student data set. For imputation,

Mean Substitution and Multiple Imputation are considered, while predictive models

consist of Logistic Regression and Random Forests. The final model results in the

identification of several key variables, as well as areas for further study.
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CHAPTER 1

THE PROBLEM: MTSU STUDENT RETENTION

Student retention, measured by whether a student completes a college degree in six

years or less, is a useful measure of a university’s overall success and student sat-

isfaction. As of 2012, MTSU has a student retention rate of 53 percent, which is

fourth-best among Tennessee’s four-year public universities [3], but with only half of

the students completing the degree, much improvement can be made. In order to

address student retention, we must understand why students withdraw from school

to be able to make any improvement. The goal of this thesis is to generate a model to

predict student retention as well as identify factors contributing to students dropping

out. Once an understanding of the situation is developed, the university can better

assist them in completing their degree.

Student retention is a challenging task in higher education and it is reported that

about one fourth of students dropped college after their first year [18]. In general,

more students remaining in the university means better academic programs and higher

revenue. Thus, improving retention rates can not only help current students achieve

academic success, but also improve the chances of academic success for future stu-

dents, improving the university overall. Recent study results show that intervention

programs can have significant effects on retention, especially for the first year [12].

Thus for this thesis, focusing on the freshman class may yield the most immediate

progress towards a long term goal.

While ideally we want to improve retention for all students, minority groups have

often faced more difficulties while completing their degree. We will consider possible

issues within minority groups as well as the general student body to see if there are

different factors for specific demographics of students.

This thesis is a continuation of work done by Drs. Cen Li, John Wallin, Qiang

Wu and Michael Hains at MTSU [20].



2

1.1 Current Research

Being an area of concern for many universities, retention research has already been

pursued with some measurable success. For example, through data mining and anal-

ysis, administrators at South Texas College discovered that students who register

late for a course are more likely to withdraw. Realizing that this has a negative im-

pact, South Texas College decided to eliminate late registration [9]. Students at the

University of Alabama built a predictive model of student retention and found that

commuter students are more likely to drop out. Consequently, the university devel-

oped student retention strategies including requiring all freshmen to live on-campus

[9]. These and other successful cases have shown that an analysis of retention can

have a beneficial effect on the university and student success.

The current literature generally describes two different approaches. Some studies

have focused on prediction and emphasize comparing and testing different classifi-

cation models. Popular models are seen coming from both statistical and computer

science approaches, with logistic regression, support vector machines, decision trees,

and neural networks commonly being implemented. Other studies instead focus on

identifying crucial student retention factors to develop an understanding of the under-

lying relationships, identifying key variables to address. For our study, an exploration

of both topics can be insightful into implementing an intervention program.

While the results from different studies may vary, common variables have be

found that can already be used to be model retention. Researchers have consistently

found high school GPA, admissions test scores, gender, and ethnicity to be significant

predictors, which should be included in any predictive model [4]. We can then expect

that with MTSU students these variables will also be important in the analysis.
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1.2 MTSU Data Set

The data set used was provided by the Office of Institutional Effectiveness, Planning

and Research (IEPR) at MTSU. The comprehensive student data includes informa-

tion from all the students enrolled at MTSU between 2007 and 2013. This data set

includes over 100 variables incorporating information about academic, social, and fi-

nancial aspects of the students from before they enter MTSU to the point when they

graduate or leave MTSU. Variables are compiled from different sources, including

FAFSA, ACT, and other university data.

This data was further broken down into target groups, yielding the following sizes

for each group in our study.

Table 1: Sample Sizes By Target Group

Student Group Total Students
African American 3122
Disabled 391
First Generation 792
Hispanic 645
All 41238

Table 2 depicts the current percentages who stayed, transferred, or dropped out for

different student groups. The target groups had very different numbers compared to

the entire student body, which could speak to either the size of the groups or differ-

ent factors affecting for the groups. In every student group, a larger percentage of

the students who did not stay at MTSU dropped out of school completely, with the

highest percentage of students transferring seen in the Disabled Student group.
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Table 2: Freshman Status By Student Group

Student Group Stayed Transferred Dropped
African American 0.60 0.11 0.29
Disabled 0.48 0.19 0.33
First Generation 0.70 0.08 0.22
Hispanic 0.67 0.07 0.26
All 0.57 0.11 0.32

1.3 Missing Data

While the data set itself is large, there are some entries with missing values. Accurate

analysis of the data requires handling the missingness in some way. We will explore

the implications of missingness in the course of our analysis to see how, if at all,

missingness affects the method used for analysis. For example, if we were more likely

to be missing data for students with low GPA’s, our data might be biased, which

would in turn bias the final model.

Most variables in the dataset are completely observed, but there are 24 variables

with missing values. Table 3 below presents a list of the percentage of missingness by

variable. The overall missingness in the dataset is approximately 6%, so in general

the percentage of missingness is very small. However, missingness for the specific

variables can be very high. Some variables, such as Term GPA with 0.03%, have

almost all data observed, but others, such as Father Education Level with 91%, are

very sparse. If we examine it even further at the demographic level, we see even more

variation within target groups. Since there is no general rule of thumb as to what

point missingness renders the data useless, it is difficult to determine at exactly what

point we must throw away some data, if at all. The goal of handling missing data is

to retain as much of the original data as possible in order not to lose any information

within the data at hand, thus we must consider missingness when handling the data.
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Table 3: Percent Missing Per Variable By Student Type



6

1.4 Prediction

Student Retention can be viewed as a classification problem, with a set of discrete

outcomes. In the classification setting, the goal is to label a new occurrence as a class,

though the determining of which class is model dependent.

In our data set, we have three possible cases: the student stayed, the student

transferred, or the student dropped. After initial exploration, predicting student

transfer was found to be a difficult task; there are a variety of variables that come

into play when a student transfers that may not be present in the data set. For

example, a student might need to transfer closer to home for family reasons, or they

might want to transfer to a school with a different program not available at MTSU.

Including those students in the model led to very poor performance. If we take into

consideration that a transfer student is still pursuing their degree, even though the

student might not benefit MTSU directly, they are not in as much need of assistance

to continue their education. For our purposes, we will remove those students from

the data for now in order to better identify the students withdrawing from school

completely.

With that in mind, we are faced with a binary classification problem. The student

can be labeled either yes or no for staying in school, so the model selection needs to

be adequately suited for this type of prediction. We will explore models with different

assumptions to see how they perform.

1.5 Variable Selection

An issue that we face with our data set is the sheer size of the data. While more

data is generally good data, including data that is not related with the outcome

creates noise in the model, and it makes it more difficult to understand the interplay

of different variables when the variable set is large. In order to have an accurate

and interpretable model, we must perform some type of variable selection to focus on
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the most important variables. While the simplest approach is just selecting variables

with a high correlation with our outcome, this only takes into consideration one level

of correlation, ignoring possible interaction effects between sets of variables.

Some initial work in this regard has already been done. We will explore the current

variable selections as well as possibilities for other variable selection processes.

1.6 Structure of This Thesis

The remaining chapters will discuss the various details of our analysis. Chapter 2 will

provide an overview of missing value methods, then discuss the implementation on the

MTSU data. Chapter 3 outlines several popular prediction methods for a retention

model, followed by a discussion for the implementation on the MTSU data. Chapter

4 discusses the results of the final models, exploring the implications of missingness

and variable selection and its effects on accuracy and interpretation.
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CHAPTER 2

MISSING VALUE METHODS

The handling of missing data can be performed in a variety of ways with different

underlying assumptions required to implement. In this chapter we will first properly

define the missingness mechanism, identify the missingness mechanism in our data,

and then explore common methods for handling missingness.

2.1 Mechanism of Missingness

To understand the behavior of missingness, a few basic notions about missing values

must be defined.

2.1.1 Definitions

Let D denote an incomplete dataset with r variables D = {A1,A2, . . .Ar} and n in-

stances. For each variable Aj, j = 1, 2, . . . r, Aj contains two parts, A = {Aobs,Amis},

where Aobs is the set of observed elements and Amis is the set of missing elements.

Similarly, the entire dataset D also consists of two components, D = {Dobs,Dmis},

where Dobs is the set of observed values and Dmis is the set of missing values.

Let R be a response indicator matrix with the same dimensions as D to describe

the missingness. Each element of R is defined as rij = 1 if the value is missing,

else rij = 0, where rij corresponds to the ith instance at variable Aj, i = 1, 2, . . .n,

j = 1, 2, . . . r.

The aim of imputation is to fill in all the blanks of incomplete dataset D, where

rij = 1 , so that the estimated complete dataset D can be used for succeeding

statistical analysis.



9

2.1.2 Missing Mechanism

Since most popular methods of imputation depend on several assumptions to hold,

in order to apply any procedure to a missing data set, the underlying missingness

mechanism must first be identified. The missingness mechanism determines how the

missing data are generated and it is a potential factor that will affect the imputation

results. Thus, a comprehensive study of the noise impact on imputation methods

must take different missingness mechanisms into account. There are three types of

missing data mechanisms according to Little and Rubin [13]:

Definition 2.1 Missing Completely At Random (MCAR): If Pr(R|Dmis,Dobs) =

Pr(R), then the missing mechanism is defined as MCAR, where Pr represents the

probability.

MCAR implies that the missingness is unrelated to both the missing and observed

values in the dataset. For example, consider a survey that is being performed on a

group of students and participants are asked to fill out a questionnaire. If the data

is MCAR, a participant flips a coin to decide whether to complete each survey entry.

Definition 2.2 Missing at Random (MAR): If Pr(R|Dmis,Dobs) = Pr(R|Dobs),

then the missingness mechanism is called MAR.

MAR means the missingness depends on observed values but not on missing values.

In our survey example, the data would be MAR if male participants are more likely

to refuse to fill out information regarding their GPA. Whether or not they provide

their GPA does not depend on the GPA itself, only their gender.

The issue with MAR is not whether gender itself can predict their GPA, but

whether gender is a mechanism to explain whether or not a student will report their

GPA. This mechanism can be used to identify whether a pattern of missingness exists

within the data [14]. The MAR assumption is valid if only if it can be assumed that the

pattern of missing variables is conditionally random, given the observed mechanism

variables.
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Definition 2.3 Missing Not At Random (MNAR): If Pr(R|Dmis,Dobs) is not equal

to Pr(R|Dobs) and it depends on Dmis, then the missing data is MNAR.

MNAR implies that there is a pattern within the missing data to explain why it

is missing. For example, the survey data would be MNAR if participants with low

GPAs were more likely to leave out their GPA.

Since the mechanism for missingness is not random at all, MNAR data have to

be handled differently if we want to use the data. Most popular approaches operate

under the assumption of the data being at least MAR, and some approaches have

been suggested to better meet this assumption. Indeed, in order to push the data

towards MAR, it has been suggested to include auxiliary variables that are correlates

of missingness and/or correlates of the variable of interest. Including the former can

help to reduce bias and move the situation closer to MAR; including the latter may

help to reduce variance [5].

2.2 Identifying Missing Mechanism

If the data are MAR, then we can ignore the missing data without worrying about

biasing the overall data set. If, on the other hand, the data is MNAR, then the

observed data is a biased sample since the missing data contains information about the

response, so the missing data cannot be ignored. Unfortunately, there is not a set way

to determine MAR and MNAR, and it is even more difficult to distinguish between

MAR and MCAR without additional information [7]. However, most imputation

methods only require MAR to hold, which is a more reasonable assumption to meet.

Most analysts operate under the assumption of MAR, and if the model results

seem questionable, a reevaluation of the MAR assumption is required. If the analyst

is unsure whether or not the data are MAR, it is common advice to collect information

about any characteristics that might even remotely affect missingness and include

those variables in the imputation model [16]. These variables can always be removed
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for the prediction model, but can help push the data towards MAR in the imputation

process.

2.3 Missing Value Methods

There are several standard methods used to handle missing data, each with its own

benefits and problems. We will first discuss classical methods, then explore more

rigorous modern approaches.

2.3.1 Traditional Methods

1. Listwise (Case) Deletion

The most trivial way to deal with missing data is simply to throw it out. Listwise

Deletion entails removing instances in the data set that have a missing value

within i [1]. Listwise Deletion is the most common solution to missing values,

so common that it is often the default method in statistical software packages.

While common, it is the most dangerous, because for it to be valid, it requires

the strict assumption of MCAR to ensure the dataset is not biased, but MCAR

does not always hold. However, it is generally preferred because it is seen as

conservative; it does not have to create data, but generally loses 20%− 50% of

the data as a trade off. Indeed, if we were to take this approach with the MTSU

data set, approximately 60% of the instances would be lost.

If MCAR is met, Listwise Deletion results in a smaller sample size, thereby

inflating the standard errors and reducing the level of significance. As a re-

sult, employing listwise deletion increases the risk of a Type II error. With a

larger sample this risk is reduced, but still important. The sample may still be

representative, but the cost is paid in the loss of statistical power [1].

On the other hand, if MCAR is not met, Listwise Deletion can yield biased esti-

mates, since the removed data may leave out a part of the population of interest,
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thus not giving a representative sample. The estimates may not be correct, and

in some instances may reverse the direction of effects, asserting negative rela-

tions that are actually positive and vice versa. The cost for employing it is paid

with biased estimates [1].

In either case, the use of Listwise Deletion does not seem powerful enough to be

deemed the default method, which has spurred the development of the methods

discussed below.

2. Mean Substitution

Mean Substitution is another popular method to employ, replacing missing val-

ues with the mean for that variable, or the mode if the variable is discrete [8].

Mean Substitution only requires that the data be MAR, which is a much more

reasonable assumption than MCAR. This method is based on the fact that the

mean is a reasonable guess of a value for a randomly selected observation from

a normal distribution. If MAR does not hold, however, the mean may be a poor

guess. For example, billionaires might be less likely to supply their salary, and

a substitution of a mean of approximately $60, 000 would be a very poor guess

for their true salary.

Mean Substitution is especially problematic when there are many missing val-

ues. If 30% of the data is missing and the mean is supplied for all of them,

30% of the data then has zero variance, thus greatly attenuating the variance

of the variable and thus underestimating the correlation of income with any

other variable. As a result, Mean Substitution potentially distorts relationships

between variables by pulling estimates of the correlation toward zero [8].

3. Regression Substitution

Regression Substitution extends the concept of Mean Substitution, but instead

of simply using the variable’s mean value, a regression formula is created, using

other variables in the data set as predictors to estimate a value for the missing
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values in the current variabl [11]. When only one variable has missing values,

this is easy enough to implement, but when more than one variable has missing

values, dealing with missing variables in the predictors has to be addressed.

If we simply ignore the missing instances for creating the regression model, we

may find the same complications seen in Listwise Deletion. If on the other hand

we want to include those cases, we must create some estimate for the missing

values in the predictor variables, which leads us to the original issue. Using

Mean Substitution may be a practical choice, but again, the variances will be

affected.

Once missing values are dealt with, there is also the issue of determining what

type of regression to perform, and whether or not to include a subset of predic-

tors in each model [11]. In a data set with a small number of variables this might

be manageable, but as the size of the variables grow, so does the complexity in

model building.

With all of these complications in mind, Regression Substitution does give us

the benefit of a confidence interval around each missing value estimate. This

can be useful in analysis, but depending on the algorithm used for prediction,

inclusion of the confidence interval in the prediction model may not be possible,

or may not be easily implemented. Because of these complications, Regression

Substitution may not provide improved estimates over Mean Substitution, and

with the added difficulty in implementation for the model building stage of

analysis, Mean Substitution is still commonly preferred.

2.3.2 Modern Methods

While the methods described thus far are often used, they are far from optimal for

handling missing data except under specialized circumstances. In trying to address

the shortcomings addressed above, several modern methods have been developed to

create more rigorous estimates. These methods have their own drawbacks, especially
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when the data set is large. The Curse of Dimensionality is especially noticed in

methods involving integrals, which quickly become intractable as the dimensionality

of the problem grows. Modifications to the algorithms have been employed with this

issue in mind, but still require significantly greater computational expense.

1. Expectation Maximization (EM)

EM is a maximum likelihood approach that replaces all missing values with

maximum likelihood derived values based on the assumed distribution of the

data. The approach is based on the observed relationships among all the vari-

ables and injects a degree of random error to reflect uncertainty of imputation

[1]. The EM algorithm consists of iterating through cycles until convergence to

a predicted value of the distribution parameters θ is met. Cycles consist of per-

forming an expectation (E) step, which creates a function for the expectation of

the log-likelihood evaluated using the current estimate for the parameters, and

a maximization (M) step, which computes parameters maximizing the expected

log-likelihood found on the E step. These parameter estimates found on the tth

iteration are then used to determine the distribution of the latent variables in

the (t+ 1)th iteration. Values are imputed iteratively until successive iterations

are sufficiently similar.

To express the process mathematically, the complete-data log-likelihood is l(θ|y).

The expected value of the function is

Q(θ|θ(t)) =

∫
l(θ|y)f(Ymis|Yobs, θ = θ(t))dYmis

The goal of M step is then to find θt+1

Q(θ(t+1)|θ(t)) ≥ Q(θ|θ(t))
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for all θ.

Each successive iteration has more information because it utilizes the informa-

tion from the preceding iteration. This iterative process is continued until the

covariance matrix for the next iteration is virtually the same as that for the

preceding iteration. The process generally converges quickly, but if there are

many missing values and many variables, it can involve a great deal of computer

time, which can be a significant weakness over traditional approaches.

The end result of the EM algorithm is one fully completed data set. Although

it is an improved estimate over traditional methods, it has one inherent flaw.

All the methods thus far have resulted in only one completed data set. Be-

cause this approach to imputation omits possible differences that could occur

in independent runs of the algorithm, this single imputation will tend to under-

estimate the standard errors and thus overestimate the level of precision, giving

more apparent statistical power than the data justifies. Also, we must note that

the algorithm requires some initial values to begin, and may suffer from poor

starting values.

2. Multiple Imputation (MI)

Multiple imputation is a way to overcome some of the inherent flaws of EM. MI

allows pooling of m different parameter estimates derived from independently

generated complete data sets to find an improved parameter estimate. MI im-

putations generally produce somewhat different solutions from each data set. If

these m solutions are similar, it gives credence to the validity of the imputation.

However, if they are markedly different, then it is important to incorporate this

uncertainty into the standard errors [15].

MI involves a 3-step process. First, m data sets are created using data aug-

mentation techniques. While there are different augmentation techniques that

can be applied, in general we aim to draw random samples from a function of
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the missing values, conditional on the other variables in the data set. Schafer

suggests a Markov Chain Monte Carlo (MCMC) technique to sample from the

target posterior predictive distribution, which is commonly employed [15].

After the m sets have been created, a predictive model is then employed on

each data set, getting m different parameters β̂i for the desired parameter βi.

The final step of MI is then to compute pooled estimates of the parameters β̂i

and standard errors s1, . . . , sm [14]. Thus the point estimate for the parameters

is:

β̂ =
1

m

m∑
i=1

β̂i

A final variance estimate Vβ reflects variation within and between imputations:

Vβ = W + (1 +
1

m
)B

where

W =
1

m

m∑
i=1

s2i

B =
1

m− 1

m∑
i=1

(β̂i− β̂)2

One drawback with MI is that there is not a set standard for the number of

imputations to use. The general recommendation is between 3 and 10 [19],

which is based on Rubin’s definition of the key criterion, the fraction of missing

information γ. In a univariate sample with values missing at random, γ is ap-

proximately the fraction of cases with missing values. In a multivariate sample,

γ is more complicated because different variables and cases contribute different
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amounts of information about different parameters.

Together with the number of imputations m, the fraction of missing information

γ governs the relative efficiency of an estimate, which is approximately (1+ γ
m

)−
1
2

in standard error units. In other words, standard errors based on m imputations

are (1 + γ
m

)
1
2 − 1 larger than they would be with infinite imputations; the

excess is close to γ
2m

, especially if γ
m

is small. For example, with 40% missing

information and 10 imputations, standard errors are about 2% larger than their

minimum possible value. With more imputations this can approach zero, but

eventually the costs in storage and computing time outweigh the marginal gains

in efficiency [19].

For implementing MI, the R package MI was used. Since the MCMC approach

requires a posterior distribution, the package selects appropriate posterior dis-

tributions based on the variable types being imputed. While the package has

built-in support to make a guess as to the variable types, it is possible to set

the variable types manually to ensure proper implementation. Table 4 lists the

default models corresponding to variable types.

Table 4: MI Functions By Variable Type

Variable Types MI Function
Binary mi.binary

Continuous mi.continuous
Count mi.count
Fixed mi.fixed

Log-continuous mi.continuous
Nonnegative mi.continuous

Ordered-Categorical mi.polr
Unordered-Categorical mi.categorical

Positive-Continuous mi.continuous
Proportion mi.continuous

Predictive-Mean-Matching mi.pmm
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Mi.fixed imputes values by using the observed observation since they are all the

same value. Mi.categorical uses a multinomial log-linear model to impute un-

ordered categorical variables. Mi.continuous, mi.binary, mi.count, and mi.polr

fit Bayesian version of the generalized linear models (bayesglm() and bayespolr()

in the arm package). The Bayesian version of the generalized linear model is

different from the classical generalized linear model in that it adds a Student-t

prior on the regression coefficients [17]. Once the conditional distributions have

been assigned, the algorithm proceeds by starting off with reasonable starting

values for the missing values, then iterates through every variable with a missing

value in the data set. For each variable, it samples from the target distribution

outlined in Table 4, making random draws from the distribution to fill in the

missing variables. Once each variable has had values imputed, the algorithm

begins again at the first variable, sampling from the target distribution to fill

in the missing values again. This process continues until the change from one

iteration to the next is sufficiently small [16]. This process is implemented for

m different data sets to create complete data sets. A predictive model is then

implemented for the variable of interest on each data set, giving m parameter

estimates, which are then pooled together for one final parameter estimate.

2.4 MSTU Data Set

With a variety of methods available, one aim of this thesis is to compare the accuracy

and efficiency between traditional and modern methods, especially when performing

on a data set of this size. Considering the computational demands of the latter, there

may be few gains to be made when the data size is sufficiently large. For this analysis,

Mean substitution was employed due to its ease and relatively similar accuracy over

Regression Substitution. For a modern method, MI was also implemented, given its
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popularity and ease of use. Implementation of each method will be discussed below.

2.4.1 Data Cleaning and Preprocessing

A difficult step in any analysis is the data preparation phase, not because of the

complexity of the task, but because it can take a bit of manipulation to get the data

into a usable format for a model. Much work in this regard was already completed

in the initial research, resulting in data tables for each target group and documen-

tation explaining variable values. For this thesis, a little more manipulation had to

be performed, including encoding missing values as NA and normalizing continuous

variables.

A few variables used for bookkeeping were dropped, such as the level code variable,

which indicated undergraduate status; since we are studying undergraduate students

only, the variable was by definition constant, thus held no statistical insight. Variables

with missingness too high to allow for the completion of imputation were also removed,

since there is little chance of them having statistical use on their own, which we discuss

further later. Transfer students were removed from the data, due to the difficulty in

prediction mentioned previously. Finally, financial variables were transformed to be

in a similar scale be transformed.

Potential outliers needed to be addressed in some way as well, since outliers have

the potential to affect the final model. While outlier detection in general is a very

nontrivial task, a simple approach consists of examining normalized values of variables

and labeling the instances with values farther than 2 or 3 standard deviations as

outliers. In some situations, one may simply remove the outliers from the data set,

but in our data, if we were to remove instances with an outlier on any of the variables,

we would end up removing approximately 30% of the data. Instead, we will replace

the outlier value with the maximum or minimum value of the remaining instances to

retain as much of the data as possible.

After this stage, we were left with 124 variables and 41,238 instances.
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2.4.2 Visualization

Before imputation, it is helpful to inspect the data in some way to see the underlying

behavior of the missing data. Identifying the missing patterns in the data set is

helpful in determining if there is a pattern to the missingness as well.

The R package MI has visualization functions with this in mind [17]. Figure 1 is

a graphical representation of the missing data, transforming the data into a matrix

and assigning black to indicate when a value is missing. Variables which are very

sparse can be seen by examining the columns, for example, the ACT variables consist

of the very black columns on the very right. The data has been sorted by the missing

pattern of each observation, with observations of the same missing patterns grouped

together. There are 81 total missing data patterns present, though some patterns

only have a handful of observations. When looking at the graph, we want to see if

there are any distinct horizontal bands created by grouping by missingness pattern.

If there are, it leads credence to the possibility of MNAR. While there is a slight

difference in the horizontal strip in the middle, overall there is not a strong visual

difference.
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Figure 1: Missing Data Visualization

2.4.3 MTSU Data - Mean Substitution

Employing Mean Substitution for our data set is straightforward enough; we simply

calculate the mean or mode for each variable and replace the missing values with the

calculated one. Given that we desire to explore issues with certain student groups,

different values must be calculated for each variable depending on the data set.

To begin, the data was first separated into specific target groups: African Ameri-

can, Disabled, First Generation, Hispanic, and All students. Then Mean Substitution

for each variable was performed for each target group. Table 5 below lists the mean

values calculated for each missing variable.

It is interesting to note that while some variables exhibited the same value per
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group, suggesting no real correlation to the student demographic, others had markedly

different values. For instance, the Marital Status is always substituted as 1, which

makes sense since almost all students are single, regardless of their demographic.

However, we can see very different values in continuous variables, especially financial

ones. Looking at the values for Parent Total Income, for example, we see a very large

difference for substituted values for the groups. Hispanic students are imputed with a

value of $43692.09 which is very different from the Disabled students, having a value

of $75473.19. However, if we just impute the same value for all students instead, they

are both imputed with a value of $60961.85. Thus we can see that filling in financial

values based on which group we are imputing can yield markedly different numbers

for the same student depending on how we classify them. In this situation it may be

hard to tell what the true imputation value should be.
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Table 5: Mean Imputation Values By Variable
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2.4.4 MTSU Data - Multiple Imputation (MI)

To implement MI, we again separated the data into the specific target groups: African

American, Disabled, First Generation, Hispanic, and All before passing on to the mi

function. Each table was then converted into a missing data frame object, with

variable types being specified according to the type of data it described. While the

object provides estimates for variable types, manually specifying each variable ensures

the proper function is employed during each cycle of the algorithm. The main mi

function was then called, creating 5 separate data sets for each target group. While

the mi package has some analysis options as well, for our purposes, the completed

data sets were extracted at this point and pooled together to create one complete

data set for each group.

In the initial implementation of MI, some difficulties were found. Firstly, there

does seem to be a point where the rate of missingness is simply too high for even MI to

overcome. What that threshold is varies from variable to variable, but some variables

were not able to be filled in. For the Mother and Father Education level, having a

75% missingness rate in the African American students was too high for MI to run

to completion. It is interesting to note that MI was able to finish with the Disabled

students, even though the missing rate was higher at 78%, which might be attributed

to the smaller group size, thus a smaller computational expense. Considering that

the overall student missingness rate is 91%, it is questionable if the imputed values

found are even usable. Due to this difficulty, some variables had to be removed from

the variable set in order to complete MI.

Having completed MI, we can employ the same visual inspection we did previously

to see how the imputed values appear in the final model. The image below shows

the normalized values for each variable for all students with problematic variables

removed. The top graph shows the missing data and the bottom graph shows the

corresponding computed data. If there was any distinguishable difference with the

sections of black data and the rest of the columns, it would suggest MI may not have
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properly imputed the values, or the data is MNAR. For the most part the completed

data shows no significant difference. The only noticeable variation may be seen in

the ACT variables, having slightly less dark red overall, and in the Veteran status

variable, with more color variation in the imputed area overall.

Figure 2: Comparison of Missing Data and Completed Data in MI

Along with a visual inspection, we can also look at the mean imputed values and

standard deviation for each missing variable over all of the data sets. Table 6 below



26

lists the statistics per variable for all imputed values. With this we can see how

close the mean values are to the mean substitution value, but also view the spread

of the values around that mean. The smaller the standard deviation is, the more

consistently MI was able to impute the same value in each data set.

Table 6: Multiple Imputation Mean Values By Variable

We can see from the table that for a lot of the categorical data, the procedure

found no difference between the 5 data sets, yielding a standard deviation of 0. For

the ones that had a standard deviation greater than 0, it was still small, suggesting
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that the values were mostly the same. If we look at the values for the categorical

data between MI and mean imputation, the mean values are the same, suggesting no

impact on the imputation for those values.

After looking at each model separately, we can also compare the values imputed

with each method to see how they compare. For the most part the mean imputation

values are very close to the MI mean values. Most categorical variables are found

to be the same, and most continuous variables are within the range of the standard

deviation. Other variables are a bit off from the mean counterparts, most noticeably

in the Disabled students, having a Family Total Income of $75,473 in mean imputation

and $103,162 in MI. It is in these discrepancies that the effects of imputation might be

seen in the predictive model. While overall both methods seem to be comparable for

this data set, the variables with larger standard deviations might bring more variation

into the final model.
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CHAPTER 3

VARIABLE SELECTION AND PREDICTION

We will now discuss variable selection techniques and prediction methods aimed to-

wards classification. Variable selection is an important step in this process, since the

size of our data set is too large for us to feasibly understand the relationships between

all the variables. If we can reduce the size of the variable set but still maintain as

much information within the data set as possible, no essential information will be lost,

but the overall accuracy within the subsequent prediction will still be maintained.

3.1 Variable Selection

The goal of this thesis is not only to predict student retention, but also to understand

the issues involving retention to improve student success. Recall that the student

data set is quite large, having 138 variables. We discussed previously that before

analysis was performed, data preparation and cleaning was employed, reducing the

variable set to 124. While smaller, this is still significantly large.

In order to better understand the problem, variable selection must be performed

in order to more feasibly see how the variables relate to the target variable. Not only

does variable reduction help with interpretation, but including additional variables in

the model may only provide noise, reducing the overall accuracy. The aim of variable

selection is to reduce the data set down to the most significant 30 or so variables,

though how to measure the variable significance can vary. It is also not clear if the

imputation process will affect the significance measure.

Some progress in this regard has already been achieved in previous research by

MTSU faculty [20], which we will examine first before discussing other approaches.
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3.1.1 Statistical Bootstrapping

The first approach taken previously was statistical in nature using a bootstrapped

t-test method [20]. To ensure that data is well sampled and balanced, a bootstrapping

procedure is applied where multiple runs of t-tests were performed on a subset of data

extracted randomly from the original data. During each run, 500 data points were

used. The t-test significance values over different runs are then averaged to produce

the final ranking of the features. The set of features deemed significant against the

target variable using this approach is listed in Table A.1 in Appendix A.

3.1.2 Data Mining

The other approach previously taken was to rank order the variables/features in terms

of their importance in prediction [20]. The approach aimed to identify individual

feature ranking and selection, treating all variables as independent features. Feature

predictiveness is computed between the single feature and the target variable. Four

feature ranking methods have been applied:

1. Info Gain - Evaluates the worth of a feature by measuring the information gain

with respect to the target variable;

2. Gain Ratio - Evaluates the worth of a feature by measuring the gain ratio with

respect to the target variable;

3. Chi Squared - Evaluates the worth of a feature by computing the value of the

chi-squared statistic with respect to the target variable;

4. Correlation - Evaluates the worth of a feature by measuring the Pearson’s cor-

relation between it and the target variable.

The feature rankings from each of the four methods were combined through a weighted

sum for a final ranking, and the top variables were selected for each group as a final

variable set. The final variable sets can be seen in Table A.2 Appendix A.
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3.1.3 Model Dependent Methods

For other variable selection methods explored in this thesis, the approach will be

implemented within the given model itself. Since the prediction methods we will

discuss below are very popular choices, modifications in the general approach have

been created in order to incorporate variable selection into the model. We will discuss

below the details of the variable selection process below.

3.2 Prediction Methods

Once the initial variable selection has been performed, we can move on to the main

goal of this thesis, predicting student retention with a given data set. For comparison

of variable sets, each model was run on each variable subset listed above as well as

the whole data set to see if any improvements can be made. In addition, each model

was run on each student subset and each imputation method, resulting in 52 different

models, giving a good selection of models to compare. In taking this approach,

differences between variable sets and imputation methods may be discerned.

3.2.1 Notation

To understand the details of the algorithms below, let us define some notation. Un-

less otherwise specified, a capital letter represents a variable and a lowercase letter

represents an instance of the variable.

Let D denote the completed realization of the dataset defined above, where D =

{A1,A2, . . .Ar} with n instances. For prediction, we must divide the r variables into

two sets, the target variable and predictor variables. Thus for some j ∈ 1, 2, . . . , r,

let Y = Aj be the target variable. Then for all i ∈ 1, 2, . . . r, i 6= j, let Xi = Ai be a

predictor variable and X = {Xi, i ∈ 1, 2, . . . r, i 6= j} .
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3.2.2 Random Forests (RF)

The first prediction model implemented follows a non parametric approach based

on the concept of a tree. Tree based methods are populars choices for prediction

based on their simplicity and ease of interpretation; no assumptions about the data

need to be made, and its easily adapted to suit a variety of fields. The most basic

method, the Decision Tree, consists of making splits in the data on different variables,

resulting in leaves, or subgroups. After enough splits are performed, classification can

be performed by simply labeling each student depending on what leaf they fall into

on the tree [21]. We predict that the student falling into each leaf belongs to the most

commonly occurring class in the leaf. In other words, if a student falls into a leaf

with 5 dropped observations and 9 stayed observations, then we predict that student

will stay.

To build a Decision Tree, a recursive binary splitting scheme is implemented de-

pending on a measure of variance. While RSS is a common metric in regression

Decision Trees, for classification problems like the one we face, the Gini Index is

often used, being defined as:

G =
K∑
k=1

p̂mk(1− p̂mk)

where p̂mk represents the proportion of training observations in the mth region from

the kth class.

We can see that the Gini Index is a measure of node purity, since it takes on a

small value if all the p̂mk are close to 0 or 1.

To begin the algorithm, we calculate the Gini Index for each variable using the

set of all predictors X, then split the data into two leaves on the Xi for which the

Gini Index is the lowest. We then recursively split on each leaf in the same manner

until no improvements in the Gini Index can be made or a minimum threshold in the
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number of observations in the leaf is reached. The final result is one tree which can

be used to predict future observations.

While it is a good starting point, Decision Trees suffer from one weakness: a

split early on can greatly affect the shape of the tree down the road, thus potentially

leading to very different predictions depending on the splits made. Random Forests

have been proposed as a way reduce these effects and decorrelate the tree [10].

To implement Random Forests, we bootstrap B new data sets from our training

data sets, usually 300-500, and create a Decision Tree with each bootstrapped set.

Then for each observation, the average of the predictions over all the trees is calculated

to get our final prediction ŷi for each observation. But, instead of splitting on the

variable that has the lowest Gini Index every time, we restrict our choices by only

considering m ≈
√
r possible variables at each split, thus using a subset of X for each

split. The m variables are chosen randomly at each split, and thus are uncorrelated

with previous splits. In proceeding in this way, the algorithm is not even allowed to

consider a large number of the available predictors in each step.

The efficacy of only considering m predictors stems from the idea that if there

exists one very strong predictor in the data set, as well as several moderately strong

predictors, we want to ensure the moderately strong predictors have a fair chance of

being used. If we consider all possible variables at every split, then a large proportion

of our bootstrapped trees will all have the strong predictor at the top split, and

generally will look quite similar to each other and the predictions per tree will be

highly correlated. If instead we restrict our options to only m predictors, we give the

moderately strong predictors a chance to appear earlier on, and when averaging the

results to get our final prediction, we have a less variable result [10].

3.2.3 RF Variable Selection

The Gini Index, which helps to determine on which variable to split, is also useful for

variable selection [10]. While interpreting a single Decision Tree is relatively straight-
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forward, aggregating the trees together might yield an improvement in accuracy, but

results in added difficulty in interpretation, since we cannot easily see how one vari-

able performs in several hundred trees together. However, we can still get a measure

of variable importance by looking at the Gini Index on each split. If we add up the

total amount that the Gini Index is decreased by splits on a given predictor, then

average that sum over all the trees, we can calculate a general measure of variable

importance within the model. In mathematical notation [10],

I =
1

B

B∑
k=1

Gk

In this way, we can identify variables that have a high variable importance value as

another potential variable subset. Note that we cannot tell the effects of this variable,

whether it is positively or negatively correlated or the magnitude of the effect, only

that the variable does have some effect.

The final model of a Random Forest results in the incorporation of all variables

in the original data set and provides a way to rank the variables to identify weak

predictors. It is sometimes preferred to implement Random Forests once to identify

the significant variables, then use only the variables with I ≥ ε for some specified ε

in a final model to serve as a variable selection process.

3.2.4 RF Cross Validation

The key component of Random Forests is the number of variables to consider at each

split. While m ≈
√
r, the approximation leaves some room for flexibility. In order to

select the optimal m to maximize accuracy, cross validation can be employed.

The idea behind cross validation is to use resampling to estimate the accuracy

of the model. In cross validation, one begins by splitting the training data into two

parts, a training set and a validation set. The model is fit on the training set and
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used to predict the responses for the validation set. The resulting validation set error

rate provides an estimate of the test error rate.

Typical use of cross validation involves splitting the data into k folds, called k-

fold cross validation. In this approach, we divide the observations into k equally

sized folds. The first fold is treated as the validation set, and the method is fit on the

remaining k-1 folds and an error rate calculated. This procedure is repeated on each

fold in turn, until we have k error rates. Our final estimate for the error is computed

by averaging the k values. Values of 5 or 10 are most common, having been shown

to be sufficiently accurate for most purposes.

In our situation, we are not only trying to estimate the test error rate, but also

identify the value of m that yields the lowest error. To find m, we must employ a

nested cross validation approach. To begin, we execute random forests with all the

predictors and use cross validation to estimate the error. Then, we reduce a fixed

proportion of variables from the model and run cross validation to estimate the error

again. We proceed in this manner until all variables have been removed, then we can

look at the range of estimates to find what the optimal m is. While m ≈
√
r, we may

find that in some data sets m is slightly above, and others where m is slightly below.

Once the optimal m is found, we can build a final model with the m selected, and

employ the variable importance measure to isolate the most important variables.

3.2.5 Logistic Regression (LR)

While trees provide an ease of interpretation, they lack the statistical properties

provided by a parametric approach. A popular parametric method is regression, which

can easily be adapted for the classification setting by utilizing the logit function.

For Logistic Regression, consider that each observation yi|xi has an outcome of ei-

ther stayed or dropped, or rather 0 or 1. Being a binary outcome, we can consider yi|xi
as following a Bernoulli distribution with probability pi. The distribution function is

then f(yi|xi) = pyii (1− pi)1−yi , where pi is a yet to be determined probability.
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To apply regression, we need a linear function. While it is tempting to model

pi = θTxi, where θTxi =
∑r

j=1 θjxij, this will not work, since we need pi to be a

probability between 0 and 1, and a general linear function can yield probabilities

outside this range.

Instead, consider the logit function, ln( pi
1−pi ) = θTxi. Notice that in solving for pi,

we find

ln

(
pi

1− pi

)
= θTxi

pi
1− pi

= exp (θTxi)

pi = (1− pi) exp (θTxi)

pi =
1

1 + exp (θTxi)

Which is clearly a positive value bounded between 0 and 1. Similarly, we can see

that 1− pi also fits the requirements, since

1− pi =
exp (θTxi)

1 + exp (θTxi)

Now that pi can be expressed, the goal of regression is to maximize this function

with respect to the parameters θ in order to develop a prediction model utilizing

the function. This is achieved through maximum likelihood estimation, wherein we

maximize the likelihood function.

L(θ) =
N∏
i=1

f(yi|xi)f(xi)

l(θ) ∝
N∑
i=1

ln f(yi|xi)
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Where l(θ) is the log-likelihood function. In simplifying, we see that the function

to maximize is

l(θ) ∝
N∑
i=1

ln f(yi|xi)

=
N∑
i=1

ln(pyii (1− pi)1−yi)

=
∑
yi=0

ln(1− pi) +
∑
yi=1

ln(pi)

=
∑
yi=0

ln

(
exp (θTxi)

1 + exp (θTxi)

)
+
∑
yi=1

ln

(
1

1 + exp (θTxi)

)

=
∑
yi=0

θTxi −
∑
yi=0

ln(1 + exp (θTxi))−
∑
yi=1

ln(1 + exp (θTxi))

=
∑
yi=0

θTxi −
N∑
i=1

ln(1 + exp (θTxi))

(1)

Thus logistic regression consists of maximizing above function to find the param-

eter θ̂ and setting our prediction function to

pi =
1

1 + exp(θ̂Txi)

Then for new observations, we classify yi as 1 if pi > 0.5 and 0 otherwise.

3.2.6 LR Variable Selection

In the traditional approach, logistic regression includes all variables in the model,

thus calculating a regression coefficient for every variable. As described previously,

this is not always desirable, since added variables may provide added noise and reduce

accuracy.
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The lasso approach was developed with the aim of filtering out variables uncor-

related with Y. The lasso consists of adding an l1 penalty term to equation (1),

maximizing the new function

l(θ) =
∑
yi=0

θTxi −
N∑
i=1

ln(1 + exp (θTxi))− λ
p∑
j=1

|θj|

By adding the λ penalty term, the lasso shrinks the coefficient estimates towards

zero, and in addition forces some of the estimates to be exactly equal to zero when the

tuning parameter λ is large enough [10]. Thus, the lasso yields a sparser model than

regular logistic regression, giving more interpretable results with a smaller variable

set.

In implementing the lasso, setting λ = 0 yields the traditional logistic regres-

sion. Setting λ high enough, however, forces all the coefficients to be zero, yielding

no model. The key component in implementing the lasso is setting λ to some in-

termediate value that maximizes the accuracy, which can be achieved through cross

validation.

3.2.7 LR Cross Validation

As in Random Forests, the key component of employing lasso is the tuning parameter

λ. Cross validation can be employed in the same manner we saw in Random Forests

to find the optimal λ value [10]. But in this case we do not just need the optimal λ,

but the specific subset of variables to accompany it.

In designating a training and testing set, some variation may occur between models

due to differences in the training data. To remedy this, a nested cross validation

approach can be implemented to get a better estimate. To begin, we divide the

data into a training and testing set, then perform regular k-fold cross validation on

the training set with lasso applied, determining the error rate at successively larger
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values of λ. We then choose the λ that yields the smallest error rate, and retain those

variables included in the model. We then repeat this process, again dividing the data

into a new training and testing set and finding a new variable set corresponding to

the λ yielding the smallest error. After a sufficient number of iterations, we select the

variables that are present in a high enough percentage of instances for the variables to

include in the final model. The last step is then to run a single k-fold cross validation

on the final variable set to determine the optimal λ for the final model.
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CHAPTER 4

MODEL ANALYSIS AND DISCUSSION

This chapter will discuss the results of our analysis, both in terms of imputation and

prediction with regards to target groups. The results of the models discussed can be

found in Appendix B, with tables ordered by student group.

4.1 Missing Value and Model Analysis

4.1.1 Missing Value Imputation

In the initial implementation of MI, some difficulties were found. Firstly, there is a

point where the rate of missingess is simply too high for even MI to overcome. What

that threshold is varies from variable to variable, but some variables were not able

to be filled in. The rate of missingness varied between the student groups, so while

some variables were fine with certain groups, in other groups MI was not able to run

to completion. Due to this difficulty, these variables had to be removed from the

variable set for certain groups in order to complete MI. This is a disadvantage over

mean imputation which could always find a value for all values. However, it also calls

to question the validity of the imputed value for mean imputation, and MI might do

a better job in identifying that the variable had little statistical insight.

Once the imputation process was complete, some counter intuitive results were

found in subsequent analysis for both imputation methods; in performing logistic

regression, a positive weight was found for each ACT score variable for both the MI

and Mean data sets. MI performed slightly better than Mean imputation in the sense

that a smaller positive weight was found for each variable, but even MI was not able to

completely eliminate the positive trend. In general, one would assume that a higher

ACT score corresponds to a more academically prepared student, and so a higher

probability of the student completing their degree. For other GPA related variables,
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a negative weight was found, supporting the idea that a higher GPA increases their

chances of staying, so a further examination of the ACT variables is required.

There are two possible issues to explain this: either the data are not MAR, im-

plying that the methods used are not appropriate, or the rate of missingness is too

high for the methods to feasibly impute the values correctly. Considering that the

variables have a missingness rate of 25 percent, either or both issues are quite likely,

but considering that the visual inspection of the imputed data sets for MI showed

a distinguishable pattern in the imputed area, it is likely to be MNAR. With these

considerations in mind, little insight may be gained from them that is not already

present in other GPA variables.

Indeed, if we just consider Mean imputation, when imputing values for all stu-

dents, we assign an ACT Composite Score of 21.93. Considering that the 2015 ACT

national average score is 21.0 [2], we are artificially assuming the average MTSU

student has a higher average than the national average, and the differences become

even larger in the subject scores and student groups. MI does a better job preventing

this misrepresentation, but cannot completely overcome it. In this instance we must

wonder what is the appropriate mean to impute. If the national average is already

known, this might be a better value to impute than just using the estimates found

within the data set. However, even if this change was made, it still may not overcome

the amount of missingness, which warrants removing the variable from the model.

While issues with the ACT variables were apparent within the model, other con-

tradictions were not as clear. Considering that there were other variables with miss-

ingness higher than the ACT variables, it is possible that those variables are also too

sparse to be recovered. However, the only other variable with a missing percentage

higher than 25% that showed up in the final models was the Ethnic Descent, and

since that variable was already used in creating the target groups, the other variables

with missing data do not present as great an issue, since the prediction model seems

to be able to filter them out on its own.
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While it does seem that in general both methods are comparable, at least on

our data set, the fact that MI was able to find a smaller coefficient with the ACT

variables points to the possibility of more accurate results for the remaining variables.

Especially as the rate of missingness increases, MI’s ability to spread the data better

throughout the variable’s distribution yields a better chance of representing the true

distribution instead of creating an exaggerated peak around the mean.

In examining the effects of imputation on the models themselves, there does not

seem to be a significant difference. In both Random Forests and Logistic Regression,

the relationships between the variables seem similar. There is slight variation in the

smaller groups, given that LR found some coefficients to be zero with one imputation

method and nonzero for the other, but given the size of the smaller groups, this is to

be expected.

Although MI does require considerably more computational expense, especially

as the percentage of missingness increases, the ability to represent the true variable

distribution is essential for proper model implementation. Thus, for our final model

selection, we will implement MI with the ACT variables removed to ensure the most

accurate results.

4.1.2 Variable Selection

In comparing the accuracy of the models with respect to the variable subset, there

is a slight difference present in both models. In every target group, we see that

the machine learning variable subset was less accurate, sometimes by a considerable

amount, whereas the bootstrapping variables and the entire dataset were pretty con-

sistent with each other. It may be that the statistical approach taken for subset

selection did a better job at removing the noise in extraneous variables. Although

the subsets themselves already reduced the data set, even on the subsets of variables,

both methods employed were able to reduce the variable subset further through built

in variable selection in the model, removing extra potential noise.
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This further reduction may be attributed to the nature of the student groups

themselves. Especially when the student group is small, there may be too many

variables to find more results. Considering that the Disabled group had 391 students,

when looking at all variables, the number of observations may not be big enough to

require over 100 variables to explain the relationship to retention. It may be sufficient

to use only a handful of variables when only considering a handful of students, since

the characteristics that define that group may be less diverse.

While there is some variation in the variables present between student groups,

there are a few common variables present in most models. In looking at the Random

Forests tables, in general the same variables appear at the top of the list every time.

While the degree of importance varies, at least one if not all of the GPA and financial

related variables are always ranked high, followed by class percentage variables and

aid variables. While the Logistic Regression models found fewer variables overall,

there are still a few common variables, which suggests that while the student groups

are different, the main factors affecting them may be very much the same. It may

be worth considering the few variables that make them unique instead of the many

variables that they share to better characterize each group and identify opportunities

for intervention.

4.1.3 Prediction Models

In general there was no distinguishable difference between both models in terms of ac-

curacy. Comparisons of the accuracy for both models on each different student group

and variable subset yielded approximately the same values, with minor differences

which can be contributed to the variation in the model building process itself.

The real difference between the models comes not from accuracy, but interpretabil-

ity of the results. To understand which model is better, we have to consider what the

final goal is; both are useful, but for different purposes. On the one hand, Random

Forests provide a way of measuring the overall importance of a variable, whereas Lo-
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gistic Regression gives us a measure of the actual effect. Random Forests gives us a

better measure of how the variable affect the whole student body, but does not tell

us what the effect actually is. Logistic Regression may find variables that have large

weights and strong correlations, but whose values may apply to only a handful of stu-

dents. Also, Random Forests only consider a variable at a time when being shaped,

so it cannot incorporate correlations between variables, whereas Logistic Regression

may filter out variables correlated to each other.

For example, in looking at table B.9, the Random Forests results for all students,

we see that the Total Family Income variable finds a variable importance of 475.29

on the MI data set, one of the largest values in the set. We can tell it is important,

but we don’t know how. If we look at the Logistic Regression model in table B.10,

however, we find that it does not even appear on the list. This seems rather odd, but

if we consider that the variable may be correlated with other variables in the data set,

only using a handful of financial variables is required. Thus it may be that looking at

other variables in the model, possibly the dollar amounts of various scholarships and

demographic variables, we can already account for whatever information the Total

Family Income provides. Random Forests is able to determine that it is important,

but by incorporating it into a parametric model, Logistic Regression recognized the

correlation with other variables as well.

4.2 Final Model - Ensemble Method

To conclude the analysis, a final model was created to incorporate the benefits found

in both models. MI imputation method was used, and our final variable set was

pulled from Random Forests using an importance threshold for each group to use

only the 30 or so most important variables in the model. To better understand the

relationship with the target variable, Logistic Regression was then employed, resulting

in the final coefficients in Table B.11. The table is sorted by Variable Importance

For All Students, with the corresponding values for the other groups listed alongside.
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In general, the target groups have similar variable importance, and while there are

slight variations in rankings for other groups, the degree of the differences between

are very small, implying that in general the variables have the same effect overall for

the student population. It is also worth noting that the most significant variables

were found to be significant for all groups, and only farther down the list does some

variation occur. Considering the Disabled and Hispanic groups are also the smallest

groups, the fact that they did not find some variable important, like the Financial

Probation, might be attributed to the smaller group size.

While it is still a complex model, intervention may be most successful by consid-

ering two different goals. For intervention at the individual student level, the weights

of each variable can be considered in the advising process. Variables with positive

weights can be seen as potential risks, and the larger the weight is on the variable, the

stronger the effect towards increasing the probability of dropping out. If a student

has a high value for one of those variables, care should be taken to ensure the student

has proper support to be successful. For example, the largest positive weight seen

for all students is 1.107 for Financial Probation. If a student falls in this category,

we can assume that their probability of dropping out is increased a lot more by that

variable than their Percentage of Large Courses, which only has a weight of 0.001.

Advising for this student should take this into consideration to help them prioritize

getting off Financial Probation.

If however, we want to identify factors overall that affect all students, we can

instead focus on the variables with higher Variable Importance. We can use those to

try to improve retention for students overall. For example, we can infer that the GPA

variables, being first in the list, affect the entire student body the most, so promoting

ways to increase their GPA will go a long way towards increasing retention for the

entire student body.

To further explore factors affecting all students, let us look closer at a few inter-

esting variables.
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4.2.1 Financial Variables

One adjustment that was made with the variable selection found from the Random

Forests results was the removal of the Family Total Income and Gross Family Income

variables. As noted previously, while deemed to be important by Random Forests,

including these variables into the model led to unusual behavior within the student

groups. Both positive and negative weights were found depending on the student

group, and even the two variables themselves had both positive and negative weights

within one group, even though they would seem to be measuring a similar thing. If

we consider that the actual weights found for these variables were rather small, their

role in the model is small in comparison to other variables. In fact, in removing these

variables, no accuracy in the model was lost, which points to the variables already

being explained by other variables in the group. Indeed, since student funding might

require this information when determining which students qualify for what aid, the

information within these variables are already seen in the data.

Part of the difficulty in these variables is interpreting exactly what they represent.

When talking about the income for the whole family, this may or may not include

extra sources of income from other members in the family, including the student.

Breaking apart the variable into specific sources may lead to a more insightful variable,

since it would be easier to see exactly how the income is defined for each student,

but just looking at the aggregate level does not give a clear picture across the whole

student body. Attempting to piece apart the variables by using the difference between

Parent Income and Total Income as a measure for the student’s income did not make

the distinction any more clear.

From this we can see that a student’s financial situation does not strongly affect

their chances of academic success. Having a large income does not automatically

increase their chances of graduating, nor does having a small income increase the

chances of dropping. There is already a lot of support that goes into the aid granting

process, so much so that the students needing support are able to find it. At this
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time, we are not able to incorporate the knowledge behind the aid granting process,

so the models suffer from that weakness. Looking at the picture from the aggregate

level as we are, we cannot clearly see the trend. In fact, only including the Parent

Total Income still achieved the same accuracy with a clearer picture as to how the

variable effects retention; when strictly looking at the parents and not the family as

whole, we can conclude that generally the more income the parents make, the more

likely the student is to complete their degree.

4.2.2 Scholarship Variables

The same issues seen with the income variables are also seen with the various schol-

arship variables for similar reasons. In looking at the different types of aid, there

does not seem to be a very clear picture as to how these variables affect retention.

With positive weights for some students and negative weights for others, it may be

that the factors that go into determining which students qualify for different funding

is too complicated to explain with an aggregate picture such as this. To gain more

insight and predictive power from these variables, further variables may be required

to incorporate the insight that went into assigning funding to the student.

Some of the difficulty in understanding these variables can be seen by examining

the box plots by target group. For most variables in the study, the box plots had the

same general shape over all student groups, which points to a similar distribution for

each variable among the different groups. The only variables with markedly different

shapes for one or more target groups are the Dollar Amount of Loans and Dollar

Amount of Scholarships.
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Figure 3: Loan Distribution By Target Group

In looking at Figure 3 above depicting student loans, it is very clear that African

American students are more likely to have loans than the other groups. With the

median falling at about $2500 and the box representing the middle 50 percent being

above the axis, we can see that a large percentage of the group have student loans.

When considering that the lower whisker of the plot extends to 0, while it does imply

that some students do not have loans, it does mean that the majority do, with only

a few being at the tail end of the distribution. In looking at the other groups, while

the First Generation and Hispanic students have a similar mean value, both of their

boxes spread to 0, and for the other groups, the median value is 0, which tells us
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that the middle 50 percent of the other groups do not have any student loans. If

we recall that this study is only focusing on freshman students, the fact that African

American students are more likely to have student loans from the beginning of their

college career is a very insightful observation.

Figure 4: Scholarship Distribution By Target Group

Figure 4 above depicts the box plots for scholarships by student group, and here

we see that the First Generation group is very different from the remaining groups.

If we notice that the median value for all minority groups is around $2500, while

the value for the non target group students is close to 0, we can see that in general

minority students are more likely to have a scholarship. The spread around that
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median value, though, is very distinct for the First Generation students. In fact, the

box and whiskers are even more narrow than in the previous box plot, suggesting

that almost all First Generation students have a scholarship in the range, and even

the outlier values are for the most part higher in value than the other groups.

While it is neither good nor bad that these differences in aid exist, it is worth

noting because it paints a very different situation for those students. Especially with

regard to loans, there is more at risk for the student to take out a loan, since they are

investing in their education with the expectation of a career in the future to facilitate

paying back the loan. If the student drops out of school, they have a financial burden

without the anticipated reward, thereby putting themselves in financial strain with

no clear solution as to paying it back. The that fact African American students

are more likely to have loans gives a different understanding to the effect of that

variable in the model, since these students might view loans differently than other

groups. They might be more grateful for the loans than other students, so we have to

keep in mind that the context by which the aid was received. The fact that African

American students have a negative coefficient for the dollar amount of loans tells us

that in general, having loans increases their chances of staying. It may be that these

students are motivated to pay back those loans, thereby increasing their likelihood of

success.

In examining these variables within the model, we have to keep in mind that the

process by which aid is determined for each student is very complicated, and at this

time we can only incorporate the aggregate picture into the model. More accurate

prediction may be achievable with further exploration of the relationships behind

these variables.

4.2.3 Age Variable

In general, we tend to assume that the older a person is, the more prepared they are to

handle the demands college brings. The older, nontraditional students generally have
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more responsibilities, having their own families and jobs, so there is a different intent

to pursuing their degree. The Logistic Regression weight for all students reflects this

assumption, however, in the target groups, the same behavior is not seen.

Figure 5: Age Distribution of Students By Target Group

If we look at Figure 5, the extreme values may show some insight into this behav-

ior. In looking at the median value, we can see that the different groups generally

have the same age, with the First Generation being slightly younger. However, the

spread of values is much narrower in the target groups. Especially for the Disabled

and First Generation students, the box representing the middle 50 percent is very

narrow, and the upper and lower whiskers are also quite small. The remaining dots
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representing the outliers, even after being adjusted as mentioned in Chapter 2, show

a very far spread from the rest of the group. Even though the Hispanic group is clos-

est to representing the remaining students, the Hispanic group is also significantly

smaller. It may be that these outliers are affecting the overall model, and removing

them completely may reverse the effect. Whether or not they should be removed is

something to consider, but at least in general, we can feel pretty confident that for

most students, age has a positive effect towards finishing their degree.

4.2.4 Housing Variables

One surprising result from this model is that there is no clear gain from the student’s

living status. As mentioned in previous research in Chapter 1 [9], research done at

other universities found a positive correlation between living on campus and finishing

the degree, and indeed some universities require out of town freshman to live on

campus their first year. This effect was not found with the MTSU student body,

which may point to a different campus culture at MTSU than other universities.

While a positive effect was found for all students living with parents, it was also

found for living on campus. The weight for living on campus was smaller, but still

positive. Living on campus actually had the opposite effect for First Generation

students, but it did not even appear in the other target groups.

If we look at the initial models, we do see a negative weight for the target groups

when Living On Campus appears in the model, thus it is possible that living on cam-

pus for the target groups does improve retention; however for the general student the

effect does not seem to help significantly with retention. If MTSU were to implement

this change to improve retention, the same results as other universities may not be

seen, or at least not to the same degree of success. This may be contributed to the

location of the university; it is possible that universities in bigger urban areas have

different effects and strains on students, so the typical student living off campus at

other universities may have other factors to consider.
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4.2.5 Compass Variables

Looking at the Compass Variables, English has a consistent negative weight across

the groups, suggesting that the Compass test is going a good job for successful class

placement. The Math score, however, has variation within the groups. While it is

negative for most, the African American students have a positive weight. Considering

that this test figures in to class placement, this might explain why the Lasso results

in the previous models identified math courses for these students and not the others.

In fact, this may be why Math 1710 is present for African American students in the

final model, and why it had a positive weight.

If we keep in mind that Random Forests assigns a variable importance for every

variable, although we only selected the 30 or so most important variables for each

group, had we adjusted the cut off threshold, the Compass Variables may appear for

the other groups, though they are slightly more significant for the groups currently

found. Including these variables in the model yielded negative weights for all groups

with Compass English, but positive weights for Compass Math with the African

American and Disabled students. If we examine it further and include Math 1710 in

the model for all students, we see a positive weight for every student group, which

was the only course to get consistent behavior across demographics.

Interpreting these results is difficult, but especially in regards to Math 1710, while

we cannot say that the course is causing students to drop out of school, there is a

positive effect between the variable and retention. What this relationship is exactly is

not easy to determine; it could be a form of selection bias, where students in certain

majors are more likely to take the course, or students less comfortable in math may

choose to take the course over other courses, or perhaps students just need a stronger

foundation before being ready for the material in the course. It may also be that the

Compass test could use further refinement to better measure a student’s preparedness

for Math 1710. Whatever the case may be, further investigation of the course and

course placement may help improve student success.
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Another factor that may be considered in the effects of the math courses is the

material itself. While the other math courses do not show up as often in the models,

when they appear, we also see positive weights for 1010 and negative weights for 1530.

Math 1710 covers College Algebra, 1010 covers Math for General Studies, and 1530

covers Applied Statistics. Since 1530 has a different effect than the other courses,

it could be that the course material attracts certain students to take it, or during

the advising process, the students that would find it useful are being encouraged

to take it. Considering that 1710 covers material they have seen in high school, the

material in 1530 is new to many students, which may make the class more stimulating.

Examining the effects of advising and course selection may lead more insight as to

why students are taking one course over another.

4.3 Concluding Remarks

The goal of this thesis is to develop a better understanding of student retention in the

hopes of identifying factors contributing to dropping out of school. By exploring var-

ious predictive models and variable selection, we now have a better understanding of

variables related to student retention. Both Logistic Regression and Random Forests

resulted in models with similar accuracy, but both models had different benefits in

regards to understanding. The final model incorporated the benefits from both mod-

els to create the most insightful results. The impact of missing values were taken into

consideration, and MI imputation was found to be better in recovering the missing

data.

While in general it is a very complex problem, by analyzing these models, a few

variables point to areas that may help improve retention for students. By analyzing

variables with large Variable Importance, we can identify factors affecting a large por-

tion of students. By analyzing variables with large coefficients, we can identify factors

affecting a particular student. Further exploration of the variables mentioned above

may lead to the most impaction program for imploring MTSU student retention.
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APPENDIX A

VARIABLE SUBSETS

The following tables contain information found in the previous research [20]. Table

A.1 and A.2 list the variable subsets found, as mentioned in chapter 3. Table A.1

shows the variable subsets found from a bootstrapped approach, performing multiple

runs of t-tests on a subset of data extracted randomly from the original data. Table

A.2 shows the results from a ranking approach, aiming to identify individual feature

ranking and selection, treating all the features as independent features. Feature

predictiveness is computed between the single feature and the target variable based

on several different ranking methods.

Variables are ranked in order of importance within the group. These subsets are

used in subsequent analysis, as outlined in chapter 3.
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Table A.1: Statistical Bootstrapping Variable Selection
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Table A.2: Data Mining Variable Selection
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APPENDIX B

MODEL RESULTS

The following tables list the results from each model. The tables are grouped

by student type, then broken down into variable subset and imputation type. For

the Random Forests tables, variables are listed in order of variable importance above

a certain threshold which varied by student group. The variables listed are large

enough in value to be noticeably different from the remaining variables. The Logistic

Regression variables are listed in no specific order.

Table B.11 lists the results of the final model. For this model, MI imputation

was used for missing values and Random Forests was used for variable selection to

find the 30-35 most important variables per group. The model used for prediction

was Logistic Regression. The table is sorted by variable importance according to All

Students, with the corresponding values for the other groups listed alongside.

Table B.12 groups the Logistic Regression weights in the final model by their size

and effect. Variables with weights larger than 0.1 were labeled strong, between 0.01

and 0.1 as moderate, and less than 0.01 as weak.
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Table B.1: Random Forest Variable Importance For

African American Students
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Table B.2: Logistic Regression Coefficients For African

American Students
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Table B.3: Random Forest Variable Importance For Dis-

abled Students
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Table B.4: Logistic Regression Coefficients For Disabled

Students
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Table B.5: Random Forest Variable Importance For First

Generation Students
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Table B.6: Logistic Regression Coefficients For First

Generation Students



68

Table B.7: Random Forest Variable Importance For His-

panic Students
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Table B.8: Logistic Regression Coefficients For Hispanic

Students
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Table B.9: Random Forest Variable Importance For All

Students
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Table B.10: Logistic Regression Coefficients For All Stu-

dents
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Table B.11: Final Model - Logistic Regression With Ran-

dom Forest Selection
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Table B.12: Final Model - Variable Effects Sorted By

Weights


