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ABSTRACT

Protein folding plays a crucial role in human biochemistry. Proteins are the building

blocks for most of our tissues, help to transfer signals through the bloodstream and other

�uids, and help to cure diseases. On the opposite side, pathogens and viruses also consist

of proteins, which make our understanding of protein function a top priority to save

and prolong human life. Even small changes in folding patterns may lead to serious

diseases like Alzheimer’s or Parkinson’s where proteins are folded either too quickly or

too slowly.

The protein folding problem has been studied in the �eld of molecular biophysics for

many years (Maximova et al., 2016; Scheraga et al., 2007), however many questions are

still unanswered. Mainly they are: "what is the �nal conformation (3-dimensional shape

or structure) given the primary sequence of amino acids? ", "how does the conformation

change over time?", and "how does a protein’s secondary and tertiary conformation

a�ect its functions?". Molecular dynamics (MD) is one of the tools used to understand

how proteins fold into native conformations (Chen et al., 2008). It uses computational

techniques to calculate the interactions of molecules. While it captures sequences of

conformations that lead over time to the folded state, limitations in simulation timescales

remain problematic (Klepeis et al., 2009). One of the limitations is the notion of "energy

wells" (Liu et al., 2012) - conformations with low potential energy which reduce the

probability to form other conformations and �nally fold (reach the global minimum

of the potential energy) within a computationally feasible timescale. The complete

set of energies for all possible conformations is called the energy landscape (Liu et al.,

2012; Wales, 2003). Although many approaches have been suggested to speed-up

the simulation process using rapid changes in temperature or pressure, we propose a

rational approach, Greedy-proximal A* (GPA*), derived from path �nding algorithms

to explore the supposed shortest-path folding pathway. Such an algorithm should not



v

only reduce the computational time needed to obtain the folded conformation without

adding arti�cial energy bias, but also make it possible to generate trajectories which

contain minimal motions needed for the folding transition. We introduce several new

protein structure comparison metrics based on the contact map distance to help mitigate

the challenges faced by "standard" metrics. We test our approach on proteins which

represent the two main types of secondary structure: a) the Trp-Cage Miniprotein

Construct TC5b (1L2Y) (Neidigh et al., 2002) which is a short, fast-folding protein

that represents alpha-helical secondary structure formed because of a locked tripto-

phan in the middle, b) the immunoglobulin binding domain of streptococcal protein G

(1GB1) (Gronenborn et al., 1991), containing an alpha-helix and several beta-sheets

and c) the chicken villin subdomain HP-35, N68H protein (1YRF) (Chiu et al., 2005) -

one of the fastest folding proteins which forms three alpha-helices. We compare our

algorithm to Replica-Exchange Molecular Dynamics (REMD) and Steered Molecular

Dynamics (SMD) methods which represent the main algorithms used for accelerating

folding proteins with MD.

Another common application ofMD simulations is for future experimental validation

and energy landscape exploration for studying metastable conformations and the transi-

tions between them (Phillips, 2012; Bowman and Pande, 2010). While the problem of

capturing metastable states may often be successfully resolved within the timescale of

the simulation, �nding those states is often performed with automated techniques such

as clustering (Bhowmik and Ramanathan, 2018; Sittel and Stock, 2016). Although there

are many clustering algorithms available, not all of them can be successfully applied

to high-dimensional data such as MD simulations (Steinbach et al., 2004). In particu-

lar, recent work from the clustering literature (Sakuraba et al., 2010) shows that many

high-dimensional data sets explore a mixture of independent subspaces and previous

clustering studies of MD data have ignored such e�ects. In this study we explore the
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application of subspace clustering techniques to MD simulation data and compare their

performance with traditional Spectral clustering (SPC) algorithms (Ng et al., 2002) and

demonstrate when and why such approaches may be superior to traditional techniques.
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CHAPTER I.

INTRODUCTION

Molecular modeling and simulation are modern techniques to study proteins. Re-

searchers have many questions about each protein; it’s movement, folding, interactions

with other proteins, etc. However, answering them takes too much time and resources

experimentally. Molecular dynamics (MD) (Scheraga et al., 2007) helps to obtain the

answers faster by using computational techniques to perform computer simulations of

the studied proteins. While increased computational power leads to decreased time

needed to perform each simulation, scalability is still a problem (Balasubramanian et al.,

2016). Additionally, postprocessing of the simulation may take the same or even more

time than the simulation itself. Furthermore, faster algorithms allow more simulations

to be performed on the same hardware. Here we propose an enhanced sampling tech-

nique which takes inspiration from the arti�cial intelligence �eld and helps to perform

more e�cient MD simulations which use a) less computational resources and b) result

in trajectories which are easier to understand. While there are algorithms that try to

reduce the time needed to obtain solutions, usually they introduce an unnatural bias in

the simulation. Biasing the computational experiment may lead to biased results and

wrong conclusions.
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As mentioned above, postprocessing plays an important role in the analysis of the

simulation. The ability to separate trajectories into groups helps to �nd common qualities

and often avoid typical problems. Additionally, �nding parts of di�erent trajectories

tightly related to each other may unveil patterns which are easy to miss by visual analysis

of the trajectories. However, separation of the trajectories is not an easy process, since

they often lie in a multidimensional nonlinear space due to the possible motions of

the protein. While there exists many clustering algorithms, they either a) can cluster

nonlinear data or b) can cluster data that lies in the multiple subspaces. Therefore, here

we also propose a clustering algorithm that takes inspiration from the Machine Learning

�eld and helps to improve the quality of the trajectory analysis.
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CHAPTER II.

FOLDING

INTRODUCTION

The protein folding problem has been studied in the �eld of molecular biophysics

for many years (Maximova et al., 2016; Scheraga et al., 2007), however many questions

are still unanswered. Some examples are: "what determines the �nal conformation

(3-dimensional shape or structure) given the primary sequence of amino acids? (Dill and

MacCallum, 2012) ", "how does the conformation change over time?", and "how does a

protein’s secondary and tertiary conformation a�ect its functions?".

Information about the protein folding pathway lies at the root of basic protein sci-

ence and many modern technologies like disease prevention and treatment (Selkoe,

2003), manipulation of plants and animals (Yon, 2001), bio-fuels discovery and im-

provement (Sticklen, 2008), generation and study of new proteins and their interac-

tions (Gidalevitz et al., 2006). Molecular dynamics (MD) simulation complements

experimental studies in these domains by providing in silico hypothesis testing and mech-

anistic explanations (Karplus and Kuriyan, 2005). It is also one of the most prominent

tools used to understand how proteins fold into native conformations (Chen et al., 2008).

MD uses computational techniques to compute the interactions of molecules that can be

subsequently validated through lab experiments (van Gunsteren et al., 2018; Bottaro
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et al., 2018). In particular, MD captures sequences of conformations that lead over time

to the folded state, but limitations in simulation timescales remain problematic (Klepeis

et al., 2009). One of the limitations is the notion of "energy wells" (Liu et al., 2012) -

conformations with low potential energy which reduce the probability to form other con-

formations and �nally fold (reach the global minimum of the potential energy) within an

expected timescale. The complete set of potential energies of all possible conformations

is called the energy landscape (Liu et al., 2012; Wales, 2003).

Although many approaches have been suggested to speed-up the simulation process,

for example, by using rapid changes in temperature or pressure or attaching a virtual

spring which forces the unfolded protein to it’s folded conformation, all of them add

arti�cial energy bias which a�ects the shape of the energy landscape thus distorting

the natural folding sequence of conformations. Having a method which speeds up the

process without such bias would be bene�cial.

Additionally, having the shortest possible sequence of events would greatly help scien-

tists to understand how particular mutations change the folding sequence. We also think

that the shortest pathway for the folding protein can potentially be the most probable

way of folding. A potential application of this approach would be for example, �nding

mutants that can be used in biofuel production to speed up the cellulose degradation

process. Furthermore, information about folding may help to study the misfolding

behavior which is at the root of diseases like Alzheimer’s, Parkinson’s, Huntington’s,

and many more. Finally, general improvement in the performance of folding trajectory

generation along with e�cient usage of modern computer hardware would reduce the

time and resources spent for research.
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BACKGROUND

Molecular Dynamics

Molecular dynamics (MD) is a computer simulation that computes the physical

motions of atoms and molecules based on a numerical solution of Newton’s equation of

motion where forces between particles are usually computed with molecular mechanics

force �elds (Rappé et al., 1992; Maple et al., 1988). It is a complex process that

depends on both experimental setup (salinity, concentration, temperature, pressure,

initial conformation, etc.) and on simulation rules (force �elds, water models, thermostat

or barostat models, initial velocities, atomic charges, etc.). But even having all of them

set perfectly under ideal conditions, the folding process is not guaranteed to complete in

any �nite time (i.e. within the timescale accessible to MD simulation) since the protein

may fall into a local minimum energy well and keep it’s nonnative conformation (Stefani,

2008; Daidone et al., 2003; Bernardi et al., 2015). While the mathematical equations

are not very complex, every iteration step requires the computation of forces on each

particle which may result in long computational time since typical simulation consists of

billions of steps or/and protein size may reach thousands of amino acids. Since timesteps

are at most femtoseconds long (due to the hydrogen bond vibration frequency (Kühn and

Wöste, 2007)), overall simulation length is typically bound to the millisecond timescale

on even the largest computing clusters (Klepeis et al., 2009). As mentioned above one

of the attributes of the MD approach is the notion of force �elds which model the forces

between atoms. While force �elds are parameterized to aim for the best representation

of speci�c molecular interactions, interactions which were not taken into account may be

represented di�erently, which introduces an arti�cial bias in the folding conformation

sequence (Freddolino et al., 2009). Due to these di�culties, there are many modi�ed

MD protocols/algorithms that are designed to reduce time spent on computing the
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folding trajectories. Popular approaches are Replica-Exchange Molecular Dynamics

(REMD) (Sugita and Okamoto, 1999), Targeted MD (Izrailev et al., 1999), and pressure

jump (P-jump) MD (Liu et al., 2014; Wirth et al., 2015).

We also have tomention theMonte Carlomethod (MC) simulation technique (Metropo-

lis and Ulam, 1949) which uses MC sampling approach to guess native conforma-

tions (Carnevali et al., 2003), sequences of conformations (Kolinski and Skolnick, 1994;

Ho�mann and Knapp, 1996) that can be viewed as a trajectory, or even protein-protein

interactions (Kawai et al., 1989). The MC method generates a large number of states

much faster than the MD method (Ulmschneider et al., 2006) since energy can be

computed directly from the force �eld’s equations (Ulmschneider et al., 2006). However

its main drawback lies in the simpli�cations that the MC approach usually includes:

usage of implicit solvent (Ulmschneider et al., 2006), limiting motion of the protein’s

backbone only (Ulmschneider et al., 2006), criterion of the acceptance/rejection of the

move (Metropolis and Ulam, 1949). There are also successful attempts (Peter and Shea,

2017) to combine MD and kinetic MC methods by using distance-dependent �uctua-

tions derived from dissipative particle dynamics (Groot and Warren, 1997; Espanol and

Warren, 1995) as a part of the random walk process (Peter and Shea, 2017).

Protein Secondary structure

One of the main aspects of the protein folding problem is a prediction of the three-

dimensional conformation of the protein based on its amino acid sequence and discovery

of a set of conformations that lead to the native conformation from the initial unfolded

conformation (Dill and MacCallum, 2012).

All proteins are essentially poly-peptides and consist of one or more chains where

the main building blocks are amino acids. Each amino acid consists of an amino group

and a carboxyl group held together by a carbon (alpha-carbon). There are roughly 20
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amino acids use by most organisms to construct proteins. The only di�erence between

all amino acids is the side chain (R-group) which is connected to the alpha-carbon.

The simplest example of an amino acid can be found in Figure 1. The sequence of

connected amino acids that make up a protein is called the primary structure. The

Glycine

Next

Amino

Acid
Previou

Amin

Aci

Figure 1: Glycine, the simplest amino acid, drawn as a part of a polypeptide.

backbone of the peptide corresponds to the chain of N −Cα −C atoms formed along by

the primary structure. Di�erent properties (hydrophilicity, charges, etc.) of the R-group

dictate interactions between the amino acids which often result in common patterns in

the shape of the backbone, called a secondary structure. The most typical secondary

structures are alpha-helices, beta-pleated sheets, and coils (absence of regular secondary

structure) (Kabsch and Sander, 1983). However, there other structures like 310 helix, π

helix, beta-bends, polyproline helix, alpha-sheet, etc (Kabsch and Sander, 1983). All of

the interactions are based on hydrogen bonds, which can be formed and/or dismissed

before the �nal folded conformation is achieved. Figure 2 demonstrates an example of

alpha-helical structure (colored region). It is common to use a cartoon representation

of the alpha-helical structures (as shown in Figure 2) which are stabilized by hydrogen

bonds formed between every fourth amino acid along the helix. Beta-pleated sheets are

often represented as sheet-like structure (as shown in Figure 3) which is stabilized by

hydrogen bonds formed between carbonyl and amino groups of backbone. Figure 3

demonstrates a beta-pleated sheet structure (parallel and anti-parallel).
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Besides the backbone interactions, polypeptide chains also experience hydrophilic/hy-

drophobic interactions between R groups, which help to stabilize the structure. Secondary

structures often come together (for example, alpha-helix is positioned near the particular

beta-sheet) due to these interactions to form tertiary structure. The protein shown in

Figures 2 and Figures 3 is a good example of tertiary structure where an alpha-helix

and two beta-sheets form the protein’s particular conformation - the R groups of the

amino acids, which usually point outward from the alpha helix, interact with beta-pleated

sheets.

Quaternary structure, also known as protein-protein docking, is essentially a tertiary

structure but formed between two or more di�erent polypeptide chains.

Protein structure prediction can be divided into the following sub-problems: sec-

ondary structure prediction, tertiary structure prediction, and quaternary structure

prediction (Huang and Zou, 2010). Structure prediction given only a primary se-

quence, referred as ‘ab initio’ protein structure prediction, is typically solved in two

ways: 1) "template-based-modeling" (Šali and Blundell, 1993; Karplus et al., 1998; Yang

et al., 2011), when similar ‘solved’ protein used as a template, or 2) ‘ab initio’ model-

ing (Klepeis et al., 2005), de novo modeling (Bradley et al., 2005a,b), physics-based

modeling (Ołdziej et al., 2005), or free modeling (Jauch et al., 2007) in which the main

idea is either a coarse generation of conformations and testing them, or application of

MD-like approaches. While MD is not the main tool for structure prediction, it can be

used to generate a sequence of conformations which lead to the predicted structure, thus

providing mechanistic details on the folding process as well.
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Figure 2: Example of the alpha-helical protein secondary structure. Backbone chain is connected with hydrogen bonds to
itself. R - side chain (R group), speci�c to each amino acid, but does not matter in the secondary structure representation. A -
stereochemical representation, B - visualization representation.
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(A)

(B)

(C)

Figure 3: Example of the reverse beta-sheet protein secondary structure. Two backbone chains connected with hydrogen bonds
(red lines). R - side chain (R group), speci�c to each amino acid, but does not matter in the secondary structure representation.
A, B - stereochemical representation of straight and reversed beta-sheet, C - visualization representation.
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Transition states

Assuming we introduce reasonable force �elds, water models and other parameter val-

ues, the next problem that a typical MD application encounters is energy barriers (Wales,

2003). That is, the motion of the protein is de�ned by the interaction of all molecules in

a simulated volume, and only certain degrees of freedom (DOF) are available due to

attraction/repulsion forces de�ned by the state of the system. Such a limitation in DOF

dictates that there can be no straight path from the unfolded to the folded state. Instead

the protein has to change gradually exploring available DOF. Bottleneck conformations

(dictated by energy barriers and thus limited DOF) needed to pass from one low-energy

state to another state in the folding process are called transition states.

The folding process is often associated with changes in potential energy and the

Gibbs free energy. The folded state is often associated with the minimum of the energy

landscape which is based on changes of the potential energy. The Gibbs free energy ∆G

described by the following equation:

∆G = ∆H −T∆S (1)

where ∆H - is the change in enthalpy, ∆S - is the change in entropy, and T is the

temperature (Steinberg and Scheraga, 1963; Karplus et al., 1987). The folded state

typically has the lowest potential energy and low number of DOF.

Figure 4 demonstrates an example of protein folding. Note that to get from the

initial state (red circle) to the folded state (green circle) the protein has to increase it’s

free energy to pass the energy barriers. Additionally, high enough kinetic energy may

help protein to avoid becoming trapped in some of the energy wells, it also can increase

its chances to jump back to a more unfolded conformation. An example of such an event

is described in Figure 5 and Figure 7 on page 16. Figure 5 shows an example where the

probability (p2) of passing the energy barrier 2 is lower than probability p1 of passing
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the barrier 1. However, in Figure 5 we also see that once the protein jumps over the

higher energy barrier, the probability of jumping back would be very small in contrast to

Figure 7 which shows an altered energy landscape due to higher temperature and thus

higher kinetic energy.

In practice, MD is signi�cantly simpler when compared to quantum mechanical

calculations for atoms and molecules. While force �elds are partially derived from

quantummechanics, the general approximation of the MD approach may create arti�cial

barriers and/or decrease in�uence of the natural barriers.

Increase of kinetic energy and access to more DOF approaches lie in the roots of

many methods that bias (arti�cially warp the energy landscape) the energetics of the

system which statistically increases the chances of quickly passing through such regions

on the energy surface (Wales, 2003).
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Figure 4: Representation of the folding process from the energy landscape viewpoint.
Red circle represents unfolded conformation with higher potential energy, green circle
represents folded conformation with lower potential energy and entropy.

Enhanced Sampling Approaches

In this section we will widely use the term ’sampling’. In MD, sampling means

obtaining a collection of protein structures. MD samples new conformation as the
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Figure 5: Representation of the energy barrier. Blue circle represents protein conforma-
tion at particular state, p1 and p2 - represent probabilities of passing barriers 1 and 2
respectfully, under the constant room temperature and pressure.

simulation proceeds. Enhanced sampling includes e�orts to speed up the sampling rate

of these new conformations.

Multi-replicate Molecular Dynamics

This is the simplest sampling approach based on the notion that given enough inde-

pendent trajectories, with di�erent initial velocities, but constant in all other parameters,

the union of these trajectories will cover most of the energy landscape and allow a certain

number of trajectories to avoid energy barriers. A validation of such an approach was

proposed by Duan and coworkers (Chowdhury et al., 2004). The main motivation for

this method is that multiple independent trajectories improve the chances of sampling

the protein folding event. Since trajectories do not depend on each other, they can

be run in parallel, thus, with su�cient computing power, reducing simulation time to

only the length of a single folding trajectory. However, the folding time of even simple
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proteins may still take a very long time, even on a modern computer hardware, since the

fastest folding trajectories are rarely found.

Simulated annealing

Other approaches introduce bias in the energy landscape to enhance sampling. One

of the simplest examples of such an approach is simulated annealing, extensively studied

by Car et al. (Car and Parrinello, 1985). It follows a temperature pro�le during the

simulation guided by the notion that higher temperatures increase the likelihood to

overcome energy barriers. This notion was validated (Callender and Dyer, 2002) by

using a laser as a source of rapid temperature change. There are two main approaches

to design the temperature pro�le (sequence of temperature changes) : the �rst one is to

follow possible natural temperature changes, and the second one, more typical, is to have

several rapid heating and slow cooling events, additionally guided by the application

of stochastic methods. The �rst type of temperature schedule has the advantage of not

adding arti�cial energy bias, but may not help with energy barriers caused by arti�cial

sources. The second type of a temperature schedule, when designed perfectly, would

result in a quick folding process, but it would also introduce arti�cial bias which cannot

happen inside a natural environment. Additionally, imperfections in the temperature

schedule may result in unfolding of the protein when the temperature is too high, or

almost no movement when the protein falls into a low-energy well and the temperature

is too low to overcome it.

P-jump

Wirth et al. (Wirth et al., 2015) suggested an interesting approach, called P-jump,

which consists in rapid increase of the pressure, which denatures the protein, followed

by returning pressure to the initial values. While it showed agreement between physical

and MD approaches, natural processes rarely have such drastic pressure changes, thus
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the introduced bias cannot be natural. Figure 6 demonstrates change of the pressure

inside the simulation box which allows protein to fold faster.

F1 F1

F1

F1

F2 F2

F2

F2

F1 F2>

P1 P2>
P1 P2

Figure 6: Representation of the P-jump process. Left square represents a simulation
volume with regular pressure P1. Right square represents a simulation volume with
reduced pressure P2 which allows protein to take a favorable conformation.

Replica-Exchange Molecular Dynamics

REMD is currently the most commonly used tool to study protein folding landscapes

because of its ability to overcome energy barriers, and it is also highly parallelizable (Eleft-

heriou et al., 2006). It combines simulated annealing and multi-replicate MD and

consists of running multiple MD simulations at di�erent temperatures for a short time

(de�ned prior to the simulation). Once the simulations are complete, temperatures are

exchanged between simulations and another stage of simulation is performed. Exchange

itself happens such that trajectories with higher potential energy of the protein are moved

to the simulation setup with higher temperature (kinetic energy) in hopes to more easily

overcome the energy barrier while trajectories with lower potential energy of the protein

are moved to the simulation setup with lower temperature in order reduce the proba-

bility of jumping back to a previously found low-energy state. Such a behavior is very
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similar to the Metropolis criterion (Gustafson, 1998), however, there is no probability

to perform the exchange in the opposite order in REMD, when Elow > Ehigh as in the

original implementation of the Metropolis criterion (Gustafson, 1998).

An example of the REMD energy landscape can be found on Figure 7. Note changes

in the landscape’s shape - because of the higher temperature (or lower pressure), barriers

do not seem to be as high as in Figure 5 thus rising the probability of successfully passing

over them. However, during the same simulation setup, the probability to jump back to

the less folded conformation is also higher.

Replica Exchange MD

T = 370K
P = 1 atm

T = 300K
P = 0.1 atm
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Figure 7: Representation of the energy landscape with lower (compared to the Figure 5
on page 13) energy barriers caused either by higher temperature or lower pressure.

Steered Molecular Dynamics

Steered Molecular Dynamics (SMD) (Izrailev et al., 1999), uses an arti�cial force that

a�ects the protein’s trajectory by pulling it along one or more directions to accelerate

typical MD applications (Izrailev et al., 1999), overcoming energy barriers. To achieve

such an e�ect, the protein’s movement is constrained by a harmonic potential which pulls

the protein into the folded state (or other target conformation). The force’s magnitude

may be either constant or variable which will result in constant or variable bias in the

protein’s movement speed. Example of SMD is shown on Figure 8.
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Figure 8: Representation of SMD. Blue circle represents protein conformation. Brown
arrow represents harmonic potential that drags protein into the desired conformation.

High-Temperature Unfolding Simulations of Proteins

This method (Daggett and Levitt, 1993), is based on the principle of reversibility of

the folding process and implies that unfolding is just the reverse process of folding. Unlike

REMD and P-jump, it does not change temperature or pressure during the simulation,

but keeps temperature constant and high enough for the protein to unfold. Several

studies of various proteins (Daggett and Levitt, 1993; Mayor et al., 2000; Settanni and

Fersht, 2008) show that the unfolding trajectory may be very close to the reversed folding

trajectory. However, it was proved (Dinner and Karplus, 1999), that the energy landscape

is temperature dependent, thus, the unfolding behavior at higher temperatures may well

be very di�erent. Finkelstein (Finkelstein, 1997) appeals to the principle of detailed

balance, which states that the folding process must proceed via the same trajectories as

the unfolding process when both of them are held at the same conditions, but processes

held under di�erent temperatures are not obligated to follow the same trajectory so one
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cannot claim that the resulting trajectories (folding and unfolding) are necessarily the

same.

Metadynamics

Dama et. al. propose a method that relies on modifying the energy landscape to

o�set free energy barriers (Dama et al., 2014). It adds bias to all previously sampled

points which increases the probability of successful escape from the energy well and

reduces the chances of becoming trapped in it again. That is, the more time the protein

spends in roughly the same area, the more ‘hills’ are added to this area, making the

transition event inevitable and signi�cantly reducing the time needed to reach the folded

conformation.

FRODAN

FRODAN is a geometric targeting method which uses idea that protein folding

can be determined by geometric relationships between atoms (Farrell et al., 2010).

While this method cannot generate optimal folding trajectories, since it does not account

energy barriers caused by forces between atoms, it results in stereochemically plausible

paths which can give an insight into the motions needed to perform changes in the

conformations. This method takes into account covalent bond geometry, possible

overlap of atoms, torsion angles, hydrogen bonds, and hydrophobic contacts. This

method also demonstrates very high performance (up to 1000 times faster than regular

or even SMD) of pathways generation which allows it to be applied to even very large

proteins and protein complexes.

Problems With Enhanced Sampling Approaches

Note that REMD, SMD, high temperature unfolding, simulated annealing, and

metadynamics are all biasing the energy landscape to achieve more e�cient sampling.
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Multi-replicate MD, while unbiased, is not too e�cient since it does not guide the protein

into the folded conformation but only relies on the time and nonzero probability that

protein will fold in a �nite time.

In contrast to methods mentioned above, an ideal approach to enhanced sampling of

protein folding should be able to both reduce the simulation time without introducing

arti�cial bias in the simulation. To our knowledge, no such method has been proposed

in the literature so far.

Path-�nding algorithms

Most of the methods described above use the notion of sampling to speed-up the

simulation process and extract the main transitions that lead the protein to change

it’s conformation. We found that this problem is closely related to the shortest path

problem (Yu and Yang, 1998) which consists of �nding the shortest possible path between

two nodes (points with nonzero distance, treated as independent entities), within an

interconnected graph structure, preferably with as little computation as possible. With

such an approach we hope to reduce simulation time and extract the shortest path which

is complete enough to reconstruct the order of events that happened during the folding

process without introducing energy bias. Shortest path algorithms are typically facilitated

by the graph data structures (Madkour et al., 2017), however our problem has special

properties, such as the inability to select the direction of the motion, the inability to

check whether two nodes are neighbors, and other protein-speci�c issues described in

detail below. We will therefore use trees (undirected; acyclic graphs) for the de�nition of

the algorithms since trees better represent our problem domain because of the protein

speci�c properties discussed in later sections. The most commonly used algorithms are

the Breadth First Search (Kurant et al., 2010), the Uniform Cost Search (Felner, 2011),

and the A* shortest path algorithm (Hart et al., 1968; Soltani et al., 2002). All of them
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use an ordered queue of prospective nodes which are sorted by an estimated distance

to the goal. The notion of the wall is typically de�ned as a barrier that prevents further

movement in particular direction, while the notion of distance is de�ned di�erently

within each algorithm.

A* search algorithm

The A* shortest path algorithm (Hart et al., 1968) uses information about the length

of the total path traveled prior reaching the current node g(x) where x de�nes current

node, and the notion of a heuristic function that tries to predict the length of the path

to the goal, h(x). Absence of connection between the two nodes is called a wall. This

algorithm also relies on a sorted queue. The sorted queue is a data structure which stores

entries in sorted order de�ned by a sorting function. The sequence of steps involved in

this algorithms is de�ned as follows:

1. Put starting node into the open queue: the sorting function is de�ned as f (s) =

g(s)+h(s)

2. Take the �rst node from the open queue

3. Explore all nodes adjacent to the current node and put them into the open queue,

ordered by the sorting function

4. Mark the current node as visited by putting it into the visited queue

5. If the goal is reached, reconstruct and report the full path, if open queue is empty,

report that the goal is unreachable, otherwise go back to step 2

Such an approach tries to visit only the most promising nodes and assumes that the goal

will be reached before exploring most of the nodes from the open queue. The attempt to

do so depends on the computation of the heuristic function h(x), and the best results

can be obtained when it represents the exact distance to the goal. Underestimation or
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overestimation of this distance may a�ect either the search time or optimality of the

result, respectively. Special cases of using only g(x) or only h(x) lead to two di�erent

algorithms: Greedy Best-First Search (Doran and Michie, 1966) and Uniform Cost

Search algorithm (Russell andNorvig, 2016; Nau, 1983). Figure 9 represents an example

of the A* algorithm execution. Every circle represents a node and squares represent

‘walls’. Line that connects start node with the goal node represents the path between

these two nodes. Note how shorter, compared to Figure 10, the shortest path is.

Uniform Cost Search

This algorithm uses the same steps as A* with the sorting function de�ned as f (x) =

g(x). That is, it uses only information about traveled path to the node x. Such an

approach guarantees the shortest path solution, but explores more nodes in the open

queue as compared to the A*.

Greedy Best-First Search algorithm

This algorithm uses the same steps as A* with the sorting function de�ned as f (x) =

h(x). That is, it uses only heuristic information about the distance from node x to the goal.

Such an approach depends heavily on the quality of the heuristic function. In the case of

a perfect distance computation, this algorithm results in the shortest path solution with

minimum of nodes visited from the open queue same as A* with perfect h(x). However,

the perfect heuristic distance function is not feasible in almost all practical cases, which

may lead to a longer (suboptimal) paths. Figure 10 represents an example of the greedy

search algorithm. Note suboptimal path to the goal caused by the backtracking.

Protein distance

All shortest path algorithms described above operate under notion of the distance

between two nodes. Below we will review the most common approaches to measure the
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Figure 9: The A* algorithm progress map. Circles represent potential moves, squares
represent a ‘wall’. Green line shows �nal route to the goal. Circles’ color gradient (green-
red-blue) represents order of unvisited nodes exploration. Green circle represents initial
point, red circle represents goal.
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Figure 10: Greedy algorithm progress map. Circles represent potential moves, squares
represent a ‘wall’. Green line shows �nal route to the goal. Circles’ color gradient
represents order of unvisited nodes exploration. Green circle represents initial point,
red circle represents goal.
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distance between two conformations since these may be used to formulate g(x) and h(x)

in the shortest path algorithms.

RMSD

Root-mean-squared deviation (RMSD) is a commonly used measure for comparing

protein conformations (Kufareva and Abagyan, 2011; Carugo, 2007). It is de�ned by

the equation:

RMSD =

√√
1
n

n∑
i=1

|ri − r̆i |2 , (2)

where |ri − r̆i |2 =
(
ri ,x − r̆i ,x

)2
+

(
ri ,y − r̆i ,y

)2
+

(
ri ,z − r̆i ,z

)2, is the square distance between

superimposed molecules, where r and r̆ are the coordinates of the common atoms from

two respective conformations, n - total number of atoms. Before computing this metric,

the two protein conformations are aligned to minimize the distance between them.

There are two common ways to measure RMSD: backbone RMSD (BBRMSD) and all

atom RMSD (AARMSD). The �rst way is more sensitive to the secondary structure and

ignores sidechain groups, while the second way takes into account additional details in

the tertiary structure. An example of this metric can be viewed on Figure 11. As one

may see, the two conformations are aligned �rst and only then the shortest distance is

being computed. However, RMSD is sensitive to outliers and bends in �exible regions of

proteins, which can result in a signi�cant increase in RMSD even when two structures are

nearly identical. An example of such behavior is shown in Figure 12 which shows how

one angle change (C’) in the conformation can drastically change the average distance

between the compared atoms.

Dihedral angles

A dihedral (torsion) angle is the angle formed by two intersecting plains, each de�ned

by a group of three atoms. In molecular biology such angles are used to de�ne the
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Figure 11: Example of RMSD metric. C - original conformation. C’ - slightly di�erent
conformation. Aligned - two proteins aligned to each other. Red arrows represent
distance between corresponding elements.

angle between two sets of three atoms. Originally introduced in 1963 (Ramachandran,

1963), the protein dihedral angles are called φ, ψ , and ω formed by following the chain

of backbone atoms. That is, each amino acid forms three such dihedral angles along

the backbone of the protein. φ represents the angle between the backbone nitrogen

and alpha-carbon, ψ - between the alpha-carbon and carboxyl carbon, ω - between

the carboxyl carbon and backbone nitrogen. ω is commonly omitted since it �uctuates

tightly around ± 180° (trans) for all amino acids except cis conformations which have

90°. An illustration of dihedral angle positions is shown in Figure 13.

Additionally, measuring pure angular distance can lead to undesired behavior when

the angle values are 1°and 359°. While the real angle is just 2°, pure subtraction would

result in |358°|. To address this speci�c behavior angles are translated using a sin/cos

projection (Rajan et al., 2010). A distance metric for two conformation of the same
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Figure 12: Example of how one bent can increase RMSD metric.
C - original conformation. C’ - slightly di�erent conformation.
Real di�erence - shows how protein was changed. Aligned - two proteins aligned to each
other.
Red arrows represent distance between corresponding elements.

Figure 13: Dihedral angles’ positions on an amino acid.

protein can therefore be de�ned as:

A∑
i

(|sin(ai)− sin(ăi)|+ |cos(ai)− cos(ăi)|) , (3)

where A - number of amino acids in the protein, ai - ith dihedral angle of the �rst

conformation and ăi - ith dihedral angle of the second conformation. Such a metric is

more stable to bends of protein’s �exible regions as compared to RMSD.
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Contact map

A protein’s contact map is constructed by �rst computing a symmetric, square matrix

of pairwise, inter-residue contacts (Kufareva and Abagyan, 2011): σ(ai , a j) =
��ri − r j ��,

where ri represents the coordinates between two elements which can be alpha-carbons,

hydrogens, or all atoms. A contact matrix can then be described as a boolean matrix

where ‘True’ value is assigned when distance between two residues is less than ξ . A typical

ξ value is taken as 2.7 Å- approximate size of the water molecule (Huang et al., 2013).

That is, if a water molecule cannot �t between two elements - we call it a contact. Such

a map can be used to represent secondary or tertiary structure, but may lack precision

with ξ values which are either too high (there is always a contact) or too low (not possible

to achieve such distance).
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METHODOLOGY

Folding methodology

As discussed in the ‘Path-�nding algorithms’ subsection (page 19) there is a need

for an algorithm capable of speeding up the folding process without introduction of

an unnatural bias. We suggest that a combination of the shortest path problem and a

sequence of short molecular dynamics simulations may result in a compact reproduction

of the folding process.

Protein speci�c properties

Before we continue with merging the shortest path �nding algorithms with Molecular

dynamics (MD), it is necessary to review speci�c behaviors of proteins:

• An initial state in our case is an unfolded (denaturated) conformation of the protein.

However, any conformation can be viewed as the initial conformation.

• A goal is the conformation that we want to reach. While it can be any conformation

of the same protein, we view the goal as a folded conformation obtained from

nuclear magnetic resonance (NMR) spectroscopy.

• Proteins in general have atmost 3N−6, whereN is the number of atoms, degrees of

freedom (DOF) available for the movement, but we cannot explicitly choose which

DOF to use as a direction of the movement due to coupled atomic interactions in

the force equations.

• In practice, proteins have a limited number of DOF (less than 3N −6) available

for movement. These are complex nonlinear motions which we model using MD

methods.
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• Walls, de�ned in shortest path algorithms as an absence of the connection between

the two nodes, are energy barriers which have nonzero probability of passing over

them.

• A goal may not be achievable in any �nite time, because of the imperfections in

the force �eld and/or MD in general which cause force �eld/MD-speci�c energy

barriers which do not exist in the natural environment.

• There are many metrics to measure the distance between the conformations, but

they do not always agree, and sometimes contradict each other.

• While a speci�c metric can claim small di�erences between two conformations,

the real di�erence between them may be much larger, because of energy barriers

(when close to the goal) and vice versa: large distance can be covered very quickly

(initial folding steps).

• Two conformations with a small distance, may have opposite directions of move-

ment and velocities, which may prevent transitions between the conformations

(Figure 14).

• While generally proteins move towards the folded conformation, particular parts

of the trajectory may not be strictly necessary. With some probability, a protein

can move in the opposite direction as well.

Sorting function

In the Background section on page 20 we showed that Dijkstra and Greedy ap-

proach (Reddy, 2013) are special cases of the A* algorithm. From Figures 10 and 9 we

can see that a more greedy approach results in a reduced number of nodes visited, but a

less optimal path. We propose the usage of an additional tuning parameter 0 < α ≤ 1

during the sorting process since MD steps are not guaranteed to always make progress
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Figure 14: Example where points with a small distance may not be called neighbors.
Red color represents future steps in the trajectory.

to the goal (folded or target conformation): f (x) = αg(x)+h(x). The initial value of α is

set to 1, and after a de�ned number of failures to make a step closer to the goal, it’s value

is decreased, thus making the algorithm increasingly greedy and reducing exploration of

nodes with lower probability of becoming closer to the goal during the very next step.

All shortest path algorithms are based on the notions of starting node, goal node,

distance metric that exists between any two nodes, and the amount of distance that

can be covered per one time unit. Re�ections of these properties can be found in the

molecular dynamics simulation of proteins as follows: the starting position is the unfolded

conformation, and the goal position is the folded (target) conformation. The distance

between the current and target conformations can be taken as the Root-mean-squared

deviation (RMSD), the sum of the φ−ψ amino acid angles, or the di�erence in formed

contacts. We also use a �xed simulation time to sample protein motion using MD which

we will call a step.

A general, e�cient approximate shortest path algorithm applicable to MD protein

folding may therefore be de�ned as Algorithm 1 on page 32. Cs ,Cg - start and goal nodes,

Cc - current node, Cnew - newly explored nodes (forward neighbors), α - greediness

tuning parameter.
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Figure 15: Shortest path algorithm with variable greedy factor. The circles represent
potential moves, squares represent a ‘wall’. The green line shows �nal route to the goal.
The circles’ color gradient represents the order of exploring unvisited nodes. The green
circle represents the initial point, and the red circle represents the goal.
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Algorithm 1 General greedy proximate A* shortest path �nding algorithm
1: procedure GPA*(Cs, Cg )
2: OpenQueue← SortedQueue.create(sort_func = ” f (c) = αg(c)+ (1−α)h(c)”)
3: Cc← Cs
4: while not OpenQueue.empty() and Cc , Cg do
5: Cnew← Explore_neighbours(Cc)
6: for all Cnew do
7: Cnew[i].to_goal← Dist_compute(Cnew[i],Cg )
8: Cnew[i]. f rom_prev← Dist_compute(Cnew[i],Cc )
9: OpenQueue.put(Cnew[i])

10: end for
11: ClosedQueue.put(Cc)
12: Cc← OpenQueue.pop()
13: α← Adjust_greed_factor() . if needed
14: end while
15: if Cc == Cg then
16: Path_reconstruct(ClosedQueue)
17: else
18: Report_goal_unreachable()
19: end if
20: end procedure

Note that Algorithm 1 is a general algorithm and it is applicable to any path �nding

problem when the shortest path is desired, but not required. However, MD-speci�c

properties de�ned in “Folding methodology” subsection require us to review Algorithm

1 and include some changes:

• The open queue is going to grow very quickly since every iteration will introduce

m−1 new nodes, where m is the number of parallel MD simulations (steps) with

di�erent initial velocities from the current node.

• We do not de�ne the exact metric to use as a distance measurement between two

conformations since each metric has strong and weak points. Instead we introduce

a method for utilizing alternative metrics when progress has stalled.
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Let’s review these problems in more detail.

Queue size

As stated in the previous section, we cannot de�ne the direction of our movement or

check whether a node was visited before, so the size of the open queue will be increased

by m−1 new elements, where m is number of steps from the current node. Since we

are interested in �nding a path to the goal in the �rst place and only wish to have the

shortest path, by the time we meet our primary goal, the open queue size would contain

(m−1) ∗ k nodes, where k is the total number of steps needed to build a path to the goal

(within the termination condition distance from the goal, ε ). Furthermore, some of the

steps will be in the opposite direction, making them practically useless. This property

would cause the algorithm to pick an ine�cient step from the open queue and perform

further simulations (which are computationally expensive). To solve the problems stated

above, we propose an additional check condition before new nodes are inserted into

the open queue: insert only when a new node is closer to the goal than any other nodes

found so far, or when it’s distance change towards the goal is greater than a prede�ned

thresholdT and distance from the previous node is greater than θ . That is, �ltration of

nodes that do not make enough progress either towards the goal or from the previous

node (conformation) should reduce the chances of sampling conformations which are

essentially the same. While the θ value may be varied, we recommendT/2 as a good

balance between queue growing speed and retention of promising nodes.

Proper distance metric

While RMSD is the most commonly used distance metric (Kufareva and Abagyan,

2011; Carugo, 2007), our studies have shown that it may be inaccurate. For example,

Figure 16 shows a folding trajectory of the Trp-Cage Miniprotein Construct TC5b

(1L2Y) described by the RMSD (blue line) and dihedral angle distance (ANGL) (red
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line) metrics. We can see that at the very beginning RMSD rapidly decreases, while the

ANGL metric values increase. Furthermore, Figures 17 and 18 indicate that neither

RMSD nor ANGL have a strong match with the protein’s potential energy, thus we

cannot claim that one metric is more correct than another. In order to overcome this

problem we propose metric switching during the search process. That is, when the

algorithm registers no progress after a particular number of attempts with the current

metric, the algorithm switches metrics from RMSD to ANGL or the contact distance.

Such an approach should not only help to resolve a particular metric’s artifacts (RMSD

favors whole structure collapse, ANGL does not account for the sidechain), but also

opens up new ways of passing energy barriers. Furthermore, we introduce several new

metrics based on the contact map distance.

As was mentioned before, the contact map shows whether the smallest distance

between two atoms is smaller than some particular threshold. We suggest using logical

functions such as XOR and AND to �nd the di�erence between the current and goal

contact map results to obtain a disagreement score (XOR) or an agreement score (AND).

We call thesemetrics contact map distance disagreement (XOR) and contact map distance

agreement (AND). Additionally, we introduce the hydrogen bonds contact map distance

agreement (ANDH) metric which considers only contacts between hydrogen atoms

and other atoms, and should show agreement between current-target hydrogen bonds

which are essential for secondary structure formation. The metric usage order may

play a signi�cant role in the algorithm properties, for example, RMSD favors collapsing

motions, similarly to the Steered Molecular Dynamics (SMD) approach, while ANGL

tries to rotate backbone atoms in the protein. One of the options is a round-robin

selection, another way is to measure the signal to noise ratio (SNR), where signal is the

di�erence between distances to the goal from current and previous nodes, and noise

is the ambient noise measured initially. The choice of the best order needs further
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research. We also introduce the notion of a guiding metric - such a metric from the set of

metrics that, once lower than the lowest distance to the goal, updates all other metrics’

best pointers to the current node.

Figure 16: Discrepancy between the RMSD (blue) and ANGL (red) metrics. Generated
from folding trajectory of 1L2Y with the OPLS force �eld.

Figure 17: Discrepancy between the RMSD (blue) metrics and protein’s potential energy
(red). Generated from folding trajectory of 1L2Y with the OPLS force �eld.
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Figure 18: Discrepancy between the ANGL (blue) metrics and protein’s potential energy
(red). Generated from folding trajectory of 1L2Y with the OPLS force �eld.

Stop condition

It is common in the literature that proteins are considered folded when backbone

RMSD (BBRMSD) between alpha carbons is less than or equal to 3 Å which is an

approximation of the 2.7 Å size of the water molecule (Huang et al., 2013). Since our

algorithm did not have problems with reaching 3 Å not only between alpha carbons, but

between all atoms, as a stop condition we decided to use all atom RMSD (AARMSD) to

the goal equal to or greater than NMR resolution of the goal’s Protein Data Bank (PDB)

structure. However, due to imperfections in the force �elds and the statistical properties

of MD, we cannot guarantee that the goal will be achieved in any �nite time. So, we

stopped calculations when RMSD distance between all atoms was at least 2.7 Å and there

was no observed improvement in the reducing distance to the goal across all metrics.

Note, that there is always a non zero probability that an extra iteration would result in a

smaller RMSD distance.

All extra improvements of the Algorithm 1 are re�ected in Algorithm 2.



37

Algorithm 2 MD speci�c greedy proximate A* shortest path �nding algorithm
1: procedure GPA*(Cs, Cg )
2: OpenQueue← SortedQueue.create(sort_func = ” f (c) = αg(c)+ (1−α)h(c)”)
3: metric← Change_metric(metricsmetricsmetrics)
4: Cc← Cs
5: while not OpenQueue.empty() and Cc , Cg do
6: CnewCnewCnew← Explore_neighbours(Cc)
7: for all CnewCnewCnew do
8: Cnew[i].to_goal← Dist_compute(metric, Cnew[i],Cg )
9: Cnew[i]. f rom_prev← Dist_compute(metric, Cnew[i],Cc )

10: if Cnew[i].to_goal > best_so_ f ar or (Cc .to_goal −Cnew[i].to_goal ≥ T
and Cnew[i]. f rom_prev−Cc . f rom_prev ≥T/2 then

11: OpenQueue.put(Cnew[i])
12: end if
13: end for
14: ClosedQueue.put(Cc)
15: Cc← OpenQueue.pop()
16: if fails_num > threshold then
17: α← Adjust_greed_factor() . decrease, make more greedy
18: metric← Change_metric(metricsmetricsmetrics) . if needed
19: end if
20: if progress then
21: α← Adjust_greed_factor() . increase, make less greedy
22: end if
23: end while
24: if Cc == Cg then
25: Path_reconstruct(ClosedQueue)
26: else
27: Report_goal_unreachable()
28: end if
29: end procedure
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Software implementation

General

Python3 (3.6) (Van Rossum and Drake, 2011) was selected as a programming lan-

guage since it allows rapid development and acceptable performance. Additionally, it

allows for extensions with the C/C++ language to improve the performance of computa-

tionally demanding parts. Our experience indicates that with small and medium size

proteins there was no need in tuning the performance any further since most of the

execution time is spent waiting for the MD simulations to complete.

While our algorithm can work with any MD simulation package, we implemented

wrappers to support GROningenMAchine for Chemical Simulations (GROMACS) (Pall

et al., 2014). We use Bourne again shell (BASH) (Ramey and Fox, 2003) to specify

GROMACS parameters of the execution, while Python script generates con�guration

�les for each simulation.

Detection of ine�cient steps

Initially we take the goal conformation and run several short plain MD simulations.

The number of simulations is determined by the number of parallel steps that algorithm

is going to use during the regular execution. Once simulations are complete, we measure

all metric distances between the two conformations and select the smallest values among

all parallel runs. Finally, these values are multiplied by an empirically chosen value (0.8)

to represent the smallest possible deviation that goal conformation can produce. We call

these values ambient noise and they are used as described in the Methods section, to

�lter steps that did not make any movement from the previous conformation or reduced

distance to the goal conformation less than 50% of the noise value. These values are

computed only once and saved in the text �le. Later, in case of crash or desire to continue
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the search process, noise values are read from the the �le and the regular algorithm

execution continues.

Data storage

One of the MD-speci�c parameters is initial velocities of water molecules, which

depends on, so called, seed value. During each step a set of MD simulations is performed,

each using a di�erent seed value (the user can control the start seed number of the

sequence, the algorithm then decides when to perform the switch to the next seed

number), generating several output �les:

• .gro text �le with the last state of the simulation (in GROMACS), which can be

used as the �rst frame of the new simulation.

• .xtc binary �le with compressed coordinates of the protein only, which is used to

compute all distances to the goal and from the previous step.

• .angl binary �le which contains dihedral angles information, which is used to

compute all distances to the goal and from the previous step.

• .cont.npz archived Numpy (Oliphant, 06 ) list which contains contact information,

which is used to compute all distances to the goal and from the previous step.

Filenames are generated with BLAKE2s-256 (Aumasson et al., 2013) - fast and collision

resistant hash function which generates a 256 bit hash string (64 characters) from the

sequence of seeds visited prior to the current step. A database (SQLite (Team, 10 )

3.28.0) is used only for storage and future analysis of the results and for recovery after

crash. The database entity relationship (ER) diagram can be found in Figure 19.
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Figure 19: ER diagram for entities in the database. Three dots in log table mean that
number of columns is determined during the �rst execution and is equal to the number
of seeds.

Parallelism

There exist several levels of parallelism in our software implementation: parallelism

in the main script, parallelism in the execution of di�erent seeds, and parallelism of the

MD software.

All MD simulation packages are essentially parallel, but optimal settings in most cases

have to be con�gured manually. GROMACS is no exception and accepts the number and

type of threads through program arguments. Greedy-proximal A* (GPA*) has wrappers

for GROMACS which allow it to tune the simulation’s performance. The software itself

also uses separate threads to perform I/O operations and database communication. In
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theory, any other MD simulation package could be used, but this is beyond the scope of

our work.

Fault recovery

Faults may happen at any point since hardware is not perfect. Although our imple-

mentation stores enough information about every step to be able to recompute distances

between points without repeating MD simulation, the process may still take a signi�cant

time bounded by the I/O performance of the hardware. To remove such an inconve-

nience and use the computing resources optimally, we implemented a way to continue

computing in a much less time without the risk of using corrupted data. We store all

local dictionaries in pickled (data serialization protocol) form on the disk. We keep two

copies, current and previous. Once we activate recovery from the previous crash, our

implementation assumes that a previous database exists and no algorithm parameters

were altered. It then �nds common sequences between in-memory data structures and

tables of the database, and copies data from the old database into the current database

in such a way that the very next operation of the algorithm is not included in the new

database even though it may exist in the previous one. That is, after the recovery state

is several steps behind the last run. All steps after the backup common point will be

processed by computing metrics only or reading their values if su�cient �les exists. In

the case of an absent node metric �le, a new �le will be generated. In the case of an

absent .gro or .xtc �le - a full simulation step will be executed.

Such an approach allowed to reduce startup time after the crashes from days to

minutes.

Testing protocol
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GPA* testing protocol

For testing GPA* algorithm performance we selected two proteins that re�ect the

two main classes of secondary structure - alpha-helical structure (1L2Y) and beta-sheet

structure (1GB1). Additionally, we extended our set of proteins with another protein

that represents alpha-helical structure - 1YRF (Chiu et al., 2005), which is known as the

fastest folding protein and is a typical candidate for testing MD approaches (Snow et al.,

2005).

All simulations were performed usingGROMACS 2019.3 (Pall et al., 2014), however,

our algorithm can be used with any other MD simulation packages like NAMD (Phillips

et al., 2005) or AMBER (Case et al., 2018; Lindor�-Larsen et al., 2010). Several force

�elds were used: AMBER�99SB-ILDN force �eld (AMBER) (Lindor�-Larsen et al.,

2010), CHARMM36-nov2018 force �eld (CHARMM) (Huang andMacKerell Jr, 2013),

GROMOS54a7 force �eld (GROMOS) (Oostenbrink et al., 2004), and OPLSaa force

�eld (OPLS) (Jorgensen et al., 1996). With AMBER, CHARMM, and OPLS we used

the TIP3P water model (MacKerell Jr et al., 1998), while with GROMOS we used

SPC/E water model (Berendsen et al., 1984). Water molecules were substituted with

Na+ and Cl− to reach a salt concentration of 1.5 mol/liter. Afterwards, if the total charge

was not zero, additional atoms were added to neutralize the system. We used the velocity

rescale thermostat (NVT) to control the temperature and the LINCS Hess et al. (1997)

algorithm to constrain hydrogen bonds. The default MD simulation temperature was

set to 300 K. The default step duration was set to 20 ps.

As the goal conformation we selected the NMR PDB structures of the 1L2Y (Neidigh

et al., 2002), chicken villin subdomain HP-35, N68H protein (1YRF) (Chiu et al., 2005),

and immunoglobulin binding domain of streptococcal protein G (1GB1) (Gronenborn

et al., 1991). Note, that if the PDB structure contained several conformations, we used

only the �rst one for comparison. It is possible that other structures may result in even
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Table 1: MD simulation box properties

Protein
Box side Number of molecules
length, Å Protein Water Na+ Cl−

GROMOS
1L2Y 44.7 198 2678 80 81
1YRF 42.6 383 2263 70 72
1GB1 49.1 562 3391 111 107

AMBER, CHARMM, OPLS
1L2Y 45.2 304 2730 84 85
1YRF 43.6 582 2350 75 77
1GB1 49.1 855 3364 111 107

better RMSD results. The unfolded conformation was obtained by heating each protein

to 800 K during 2 fs × 500000 = 1000000 fs = 1 ns to completely remove any secondary

structure. Additionally, we used visualization tools to verify the absence of any signs

of secondary structures in the conformation. In order to guarantee the same initial

structure, the unfolded conformation was translated to .pdb (force �eld agnostic) format.

The unfolded conformation was adapted to every force �eld and used as the initial

conformation in the folding process. In our experiments we used a cubic box shape. The

simulation box speci�cations can be found in Table 1.

In order to guarantee the same experimental conditions, we stored the whole prepa-

ration process sequence in a BASH script, which was executed for every protein/force

�eld combination. Finally, we extracted a protein-only structure for future visualization

and analysis.

For distance computation we used metrics in the following order: RMSD, ANGL,

AND, ANDH, XOR. RMSD was our guiding metric.

During each iteration 4 trajectories with di�erent initial conditions are produced.

After testing GROMACS performance, we found that the most optimal execution can be

achieved by running one instance per node. During the research process we successfully



44

ran GPA* on hardware with various computing capabilities (Biosim, MrGreen, Voltron,

Babbage), which typically had 24-64 cores per node, 64-256Gb of RAM and 4-20

nodes. To measure the overhead of our implementation we compared the time required

for one step (4 parallel simulations) during the rebuild process (no MD simulations are

executed) and during the regular simulation process and found that the rebuild step

took only 5-7% of the overall time. However, this time heavily depends on the I/O

performance, and since we randomly read small �les, it can be signi�cantly reduced

when using solid state drives. Additionally, these numbers show that the usage of high

performance programming languages like C/C++ or Fortran would result only in several

percent improvement of the total performance. However, integration of this method

into the MD simulation software may have a signi�cant positive performance impact

due to procedures needed to initiate the simulation process.

We did not know ahead of time how many steps would be required to reach the

folded conformation for each protein, so we launched the algorithm with each force �eld

and tracked the performance. Once an acceptable RMSD was reached for the majority

of the force �elds, we stopped the execution process. The exact simulation times for

each run can be found in the Results section. Since 1L2Y was folding relatively quickly

(one week of real time), we ran the algorithm twice for this protein. We list only the

RMSD metric since it is a common metric used to compare results in the literature.

REMD testing protocol

We used GROMACS 2019.3 to perform Replica-Exchange Molecular Dynamics

(REMD) to match GPA* simulation conditions. In order to reduce the time needed

for simulation we used only the AMBER force �eld. The number of steps for REMD

was selected to approximately match the total number of steps used by GPA*, divided

evenly between the number of replicas. A temperature ladder was selected from 300 K

to 400 K. The number of replicas was selected with a temperature predictor for parallel
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tempering simulations (Patriksson and van der Spoel, 2008) separately for each protein.

All tables can be found in Appendix A, Chapter I Extra Tables. Since we ran GPA*

twice for 1L2Y we decided to have two runs of REMD. VMD 1.9.4a35 (Humphrey

et al., 1996) was used to compute RMSD to the NMR conformation across the whole

trajectory for each replica. Both 1L2Y runs were performed on the Voltron cluster with

GPU acceleration (OpenCL). After the simulation we rebuilt the full trajectories for

further analysis. We list only RMSD metric since it is a common metric to compare the

results.

FRODAN testing protocol

While this approach does not involve MD, we compare its trajectories with the GPA*

�nal trajectories. Since this approach does not use force �elds, we generated three folding

trajectories, one for each protein. VMD 1.9.4a35 (Humphrey et al., 1996) was used to

compute RMSD to the NMR conformation across the whole trajectory.

SMD testing protocol

SMD was selected as a goal oriented method. Similarly to REMD we used only

the AMBER force �eld. Temperature was the same as in GPA* - 300 K. We tried

di�erent magnitudes of harmonic potential force and empirically selected the following

values: 1 kJ/mol, and 10 - 90 kJ/mol with step 10 kJ/mol. Higher values usually lead

to rapid folding in several picoseconds, while lower values were not su�cient to form

the secondary structure. Combinations of di�erent magnitudes would be able to solve

these problems, but even then additional study is required to determine su�cient force

magnitudes. VMD 1.9.4a35 (Humphrey et al., 1996) was used to compute RMSD to

the NMR conformation across the whole trajectory.
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Visualization protocol

Visualizations were done in VMD 1.9.4a35 (Humphrey et al., 1996) compiled with

Tachyon (Stone, 1998) raytracer accelerated by OptiX framework (Parker et al., 2010)

for movie generation and POV-Ray (of Vision , TM) raytracer for static images. For

secondary structure computation we used the STRIDE (Frishman and Argos, 1995)

binary VMD plugin along with a SSCache (, dalke@ks.uiuc.edu) TCL script which was

able to run the secondary structure computation for every frame, thus allowing us to

track secondary structure formation events.

Analysis protocol

GPA* analysis

Shortest trajectory analysis We extracted trajectories that form steps with the smallest

distance value for each metric in every run. Since we ran our algorithm with several

proteins and force �elds, trajectories were extracted for all combinations of proteins/force

�elds.

• For better analysis of the relations between metrics and force �elds, we extracted

the total time spent during the search. Time was expressed in steps, since di�erent

CPUs did not have the same performance.

• To further understand each metric’s speci�c properties we computed the correla-

tion and determination coe�cients between each metric’s best folding trajectory

for each protein and force �eld used during the simulation.

• We extracted the protein’s potential energy from the simulation and computed

the correlation and determination coe�cients between each metric’s best folding

trajectory for each protein and force �eld used during the simulation.
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• We plotted values of all combinations of metrics to visualize similarities and

di�erences between the metrics.

• We added protein’s potential energy values as an independentmetric and compared

it to each metric’s values.

• We plotted relations between distance to the goal and past distance to determine

locations of energy barriers that were encountered during the search process.

• During the visualizations of the trajectories, we found that the �nal conformations

obtained from di�erent metrics are not always the same. Thus, we provided

examples of such behaviors, similar to the previous analysis that was done to all

the force �elds used in our GPA* runs.

• We plotted the �rst and last frames of the folding process for each protein to

display the folded conformation with all secondary structures that we were able to

achieve during the search process.

Analysis of the best achieved conformations To understand the consistency in the

results for GPA* runs across di�erent force �elds, we extracted the smallest RMSD

values achieved during the folding process for each protein and force �eld. Additionally,

we extracted the time at which the best RMSD value was reached. For multiple runs

with the same combination of protein and force �eld, we computed the average results

across all the runs.

Metric analysis In order to perform analysis of the metrics used, we extracted the

number of promotions (events when the current distance is smaller than any encountered

before) while each metric was active.

Since the RMSD metric was prioritized during all runs, we normalized all our results

and compared them. This analysis helped to see what metric was guiding GPA* better
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and to analyze the combinations of metric/force �eld to determine which combination

works the best.

REMD performance compared to the GPA*

As part of the analysis of REMD, we extracted the smallest RMSD to the goal found

in each replica, and visualized the trajectory from the very beginning until the smallest

RMSD was reached. For a complete and fair comparison of REMD and GPA* we used

the following metrics: best achieved RMSD distance to the NMR conformation during

the REMD and GPA* runs, average distance to the NMR conformation during the

REMD and GPA* runs, time when the smallest RMSD was reached during the REMD

simulation, and trajectory lengths of REMD and GPA* and when the smallest RMSD

was met.

SMD and FRODAN performance in comparison to the GPA*

For the SMD analysis, similarly to the REMDcomparison, we used the �nal AARMSD

to the NMR conformation. Additionally, we computed BBRMSD distance between the

initial conformation and the NMR structure, and the �nal conformation and the NMR

conformation. We visualized the folding trajectory and visually compared it to GPA*

to �nd out whether they exhibit a similar sequence of secondary structure formation

during the folding process.
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RESULTS

The performedMolecular dynamics (MD) simulations were able to achieve secondary

structure formation for all proteins we tested. For Trp-Cage Miniprotein Construct

TC5b (1L2Y) and chicken villin subdomain HP-35, N68H protein (1YRF) all force

�eld runs were very similar to the nuclear magnetic resonance (NMR) structure. Figures

20, 21, and 22 show the comparison of the initial and best folded conformations. The

initial conformation (sub�gure A, blue) does not have any secondary structure while the

�nal conformation (sub�gure B, blue) clearly shows a match of the secondary structure

with the NMR conformation (red). From Table 2 we can see that Greedy-proximal A*

(GPA*) was able to achieve very close distance to the NMR structure. Tables 3, 5, and 7

show that trajectories with the conformation closest to the NMR conformation were also

very short. For example, the longest trajectory for 1L2Y was less than 8 ns, while the

longest trajectory for 1YRF was less than 16 ns. All of our lengths of folding trajectories

were much shorter than any published to date. Before we move further, we need to

mention that we used only one NMR structure as a goal, so it is possible that some of

the obtained conformations which did not have a perfect match with the goal were very

close to some other NMR conformations.



50

Table 2: GPA* shortest trajectory lengths along with total sampling lengths. All values
in the table are in nanoseconds.

TRP

RMSD ANGL AND ANDH XOR Total time

AMBER 1 7.58 7.9 7.64 7.64 7.62 1887.04

AMBER 2 7.96 5.88 7.36 7.36 7.36 1992.8

CHARMM 1 5.08 5.6 4.56 4.56 4.46 1675.72

CHARMM 2 4.34 3.94 3.94 4.14 4.02 1497.08

GROMOS 1 3.98 4.54 4.42 4.28 4.48 2022.6

GROMOS 2 4.58 4.5 4.62 4.66 4.52 2031.5

OPLS 1 5.06 3.64 3.14 2.3 2.38 1818.62

OPLS 2 7.02 6.34 6.24 6.06 6.22 1743.78

VIL

RMSD ANGL AND ANDH XOR Total time

AMBER 10.8 7.66 3.12 3.46 3.28 11589

CHARMM 7.56 8.34 2.8 3 2.8 9884.4

GROMOS 1 7.22 5.2 4.58 4.88 4.44 12141.52

GROMOS 2 11.58 11.52 11.66 11.66 11.48 592.24

OPLS 15.82 15.52 15.96 2.82 2.94 11052.94

GB1

RMSD ANGL AND ANDH XOR Total time

AMBER 21.36 5.56 2.4 2.4 2.32 11958.54

CHARMM 14.1 7.74 3.22 2.96 3.2 14229.54

GROMOS 15.22 12.7 12.76 12.76 15.4 12636.5

OPLS 9.56 13.28 13.16 13.18 13.18 10752.9
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GPA* analysis of 1L2Y

All 1L2Y runs were able to achieve a conformation with the proper secondary and

tertiary structure regardless of the force �eld selected. The average all atom RMSD

(AARMSD) was around 1.3 Å across all runs performed, however, mean backbone

Root-mean-squared deviation (RMSD) was much lower - 0.85 Å. The only exception is

the �rst run with the OPLSaa force �eld (OPLS) force �eld which was able to achieve

the RMSD of only 2.569 Å as its smallest all atom RMSD to the NMR conforma-

tion. Figures 23 and 24 show the lowest achieved RMSD during the search process

and illustrate di�erences in behavior across di�erent force �elds. For the RMSD the

trajectory lengths were in the range 3.98 ns - 7.58 ns. Lindor�-Larsen et al. (Lindor�-

Larsen et al., 2011) used the OPLSua (Jorgensen et al., 1996) force �eld with the same

temperature (300 K) which are very similar to our parameters, except for using the

GB/SA (Qiu et al., 1997) implicit solvent. Their results were in the range 1.5-8.7 µs

(Snow et al., 2005), while our longest trajectory with OPLS force �eld was 7.02 ns,

214-1239 times shorter. Furthermore, the speci�ed that their trajectories achieved at

least 2.5-3.0 Å backbone RMSD (BBRMSD), while our �nal conformations reached

0.8 Å AARMSD or 0.38 Å BBRMSD.

GPA* analysis of 1YRF

All 1YRF runs were able to achieve conformations with proper secondary and tertiary

structure regardless of the force �eld selected. The average AARMSD was around

2.1 Å across all runs performed. However, the mean backbone RMSD was much lower -

1.5 Å. The only exception is the �rst run with the GROMOS54a7 force �eld (GROMOS)

force �eld which was able to achieve RMSD of only 3.832 Å as it’s smallest AARMSD to

the NMR conformation. Figure 25 shows the lowest achieved RMSD during the search

process and also illustrates di�erences in behavior across di�erent force �elds. However,
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the second run of GPA* with the GROMOS force �eld was absolutely opposite in e�ect

as compared to the �rst run, and demonstrated the lowest RMSD across all GPA* runs

for the this protein. Furthermore, the second run with the GROMOS force �eld had the

shortest total simulation time 592.24 ns, compared to 11 µs - the average duration of

other runs with this protein reported in the literature. For the RMSD metric, trajectory

lengths were in the range 7.22 ns - 15.82 ns. Ensign et al. (Ensign et al., 2007) reported

752.6 ns as the fastest average length, folded with the AMBER2003 (Wang et al., 2000)

force �eld at 300 K, but they used the 2F4K Protein Data Bank (PDB) structure which

had two extra mutations: K65(NLE) and K70(NLE) to encourage faster folding than our

simulated variant. We did not compare RMSD distance directly since they measured

RMSD for each alpha helix (3 in total). Our trajectories were 47.6-104 times shorter.

GPA* analysis of 1GB1

For the RMSD, the trajectory length was in the range 9.56 ns - 21.36 ns. Lindor�-

Larsen et al. (Lindor�-Larsen et al., 2011) reported folding of the 1MI0 mutant in 65

µs at 350 K with a resulting BBRMSD distance of 1.2 Å. Since higher temperature

allows easier passage over the energy barriers, our algorithm would bene�t from the

higher temperature, but we intentionally did not use such an approach to bring the

experiment closer to natural conditions. We expect that conformation with RMSD

distance of 1.2 Å would require more folding time, thus being longer than our’s (1.75 Å),

but not signi�cantly longer. Our trajectory was 3043-6799 times shorter than the best

reported.
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(A) RMSD: 11.083 Å

(B) RMSD: 0.977 Å

Figure 20: Initial (A) and �nal (B) conformation comparison of 1YRF after folding with
GPA*
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(A) RMSD: 11.083 Å (B) RMSD: 0.977 Å

Figure 21: Initial (A) and �nal (B) conformation comparison of 1L2Y after folding with GPA*

Table 3: Trajectories which contain smallest AARMSD distance to the NMR conformation of 1L2Y folding with the GPA*.
Total time represents the total elapsed time over all simulations.

RMSD, Å
Mean Best

Total time, ns
Best result

RMSD, RMSD, reached at, ns
(run 1) (run 2) Å Å (run 1) (run 2) (run 1) (run 2)

AMBER 1.22 1.27 1.24 1.22 1887 1993 1328 1911
CHARMM 1.33 0.89 1.11 0.89 1676 1497 1535 1260
GROMOS 1.08 1.27 1.17 1.08 2023 2032 1862 560
OPLS 2.57 0.80 1.68 0.80 1819 1744 793 1707



55

(A) RMSD: 13.014Å (B) RMSD: 2.726 Å

Figure 22: Initial (A) and �nal (B) conformation comparison of 1GB1 after folding with GPA*
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Figure 23: Best reached RMSD metric for the 1L2Y �rst run with the AMBER (blue), CHARMM (yellow), GROMOS (green),
and OPLS (red) force �eld.
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Figure 24: Best reached RMSD metric for the 1L2Y second run with the AMBER (blue), CHARMM (yellow), GROMOS
(green), and OPLS (red) force �eld.
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Figure 25: Best reached RMSD metric for the 1YRF �rst run with the AMBER (blue), CHARMM (yellow), GROMOS (green),
and OPLS (red) force �eld.
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Figure 26: Best reached RMSD metric for the 1GB1 �rst run with the AMBER (blue), CHARMM (yellow), GROMOS (green),
and OPLS (red) force �eld.
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Table 4: Trajectories which contain smallest BBRMSD distance to the NMR conformation of 1L2Y folding with the GPA*.
Total time represents the total elapsed time over all simulations.

BBRMSD, Å
Mean Best

Total time, ns
Best result

BBRMSD, BBRMSD, reached at, ns
(run 1) (run 2) Å Å (run 1) (run 2) (run 1) (run 2)

AMBER 0.81 0.72 0.77 0.72 1887 1993 1328 1911
CHARMM 0.77 0.60 0.68 0.60 1676 1497 1535 1260
GROMOS 0.75 0.86 0.80 0.75 2023 2032 1862 560
OPLS 1.90 0.38 1.14 0.38 1819 1744 793 1707

Table 5: Trajectories which contain smallest AARMSD distance to the NMR conformation of 1YRF folding with the GPA*.
Total time represents the total elapsed time over all simulations.

RMSD, Å
Mean Best

Total time, ns
Best result

RMSD, RMSD, reached at, ns
(run 1) (run 2) Å Å (run 1) (run 2) (run 1) (run 2)

AMBER 1.34 n/a 1.34 1.34 11589 n/a 11186 n/a
CHARMM 2.73 n/a 2.73 2.73 9884 n/a 6338 n/a
GROMOS 3.83 0.98 2.41 1.02 12142 592 8305 517
OPLS 1.71 n/a 1.71 1.71 11053 n/a 9358 n/a
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Table 6: Trajectories which contain smallest BBRMSD distance to the NMR conformation of 1YRF folding with the GPA*.
Total time represents the total elapsed time over all simulations.

BBRMSD, Å
Mean Best

Total time, ns
Best result

BBRMSD, BBRMSD, reached at, ns
(run 1) (run 2) Å Å (run 1) (run 2) (run 1) (run 2)

AMBER 0.86 n/a 0.83 1.83 11589 n/a 11186 n/a
CHARMM 2.05 n/a 2.05 2.05 9884 n/a 6337 n/a
GROMOS 3.47 0.39 1.93 0.39 12142 592 8305 517
OPLS 0.89 n/a 0.89 0.89 11053 n/a 9358 n/a

Table 7: Trajectories which contain smallest AARMSD and BBRMSD distance to the NMR conformation of 1GB1 folding with
the GPA*. Total time represents the total elapsed time over all simulations.

AARMSD, Å BBRMSD, Å Total time, ns
Best result

reached at, ns
AMBER 2.73 1.75 12289 11959
CHARMM 4.16 2.80 15427 14230
GROMOS 3.04 1.87 14545 12637
OPLS 3.82 2.66 12085 10753
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The full trajectories comparison

In Figures 27 and 28 we see the dihedral angle distance (ANGL) metric’s version

of the best trajectory for the 1L2Y protein and GROMOS force �eld. In Figures 29

and 30 we see the same protein and force �eld, but the RMSD metric version of the

best trajectory. Figure 28 and 30 show a comparison of each metric and the potential

energy of the protein. Note that �uctuations between RMSD and ANGL are di�erent,

which means that to reduce the RMSD even more, protein needs to increase the ANGL

distance and vice versa. However, when we compare both metrics with the protein’s

potential energy, we see that neither metric is perfect, and, while they have similar

trends, �uctuations in metrics’ values and potential energy are far from matching at

all. Figure 32 shows a comparison between all four force �elds during the second run

of the 1L2Y protein in terms of the RMSD metric. The increase in RMSD at several

steps during execution of the AMBER�99SB-ILDN force �eld (AMBER) and OPLS

trajectories, indicate passing of the energy barrier. Additionally, in Figure 31 we present

several examples of the comparison between the best achieved RMSD and past distance

from the origin. Finally, we generated thousands of plots which compare di�erent

metrics with themselves and potential energy from this analysis and obviously cannot ask

the reader to compare them. In the following subsections we summarize the common

trends.
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Figure 27: ANGL metric’s version of the shortest trajectory during the 1L2Y protein second run with the GROMOS force �eld.
Right axis represents the RMSD values.
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Figure 28: ANGL metric’s version of the shortest trajectory during the 1L2Y protein second run with the GROMOS force �eld.
Right axis represents protein’s potential energy.
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Figure 29: RMSD metric’s version of the shortest trajectory during the 1L2Y protein second run with the GROMOS force �eld.
Right axis represents the ANGL values.



66

Figure 30: RMSD metric’s version of the shortest trajectory during the 1L2Y protein second run with the GROMOS force �eld.
Right axis represents protein’s potential energy.
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Figure 31: RMSD metric’s version of the shortest trajectories during the 1L2Y protein second run as compared to the distance
traveled from the origin (initial unfolded conformation).
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Figure 32: RMSD metric’s version of the shortest trajectories during the 1L2Y protein second run for all four force �elds.
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Comparison of results by protein

General results across all force �elds The analysis show that results vary among di�er-

ent force �elds, as expected. For example, 1L2Y OPLS had the Sworst average RMSD

of 1.766 Å, but the best RMSD among all runs of 0.871 Å at the same time. 1YRF’s

simulation with the GROMOS force �eld during the �rst run gave 3.864 Å which was

the worst result, but during second run GROMOS produced 1.018 Å. Di�erent force

�elds appear to have di�erent strengths (OPLS favors more beta-sheets than other force

�elds) and our results suggest that all force �elds tested can fold proteins quickly using

GPA*.

Results for 1L2Y For both normalized and unnormalized approaches, RMSD and

ANGL performedmuch better than the other metrics as given by the percent promotions

for each metric. The hydrogen bonds contact map distance agreement (ANDH) was

dominating the other metrics in the normalized version. Additionally, the RMSD version

of the best trajectory had a slightly higher correlation with potential energy. contact

map distance agreement (AND) and ANGL were slightly worse than RMSD, but contact

map distance disagreement (XOR) had almost always the worst correlation with the

potential energy. However, ANGL metric had the highest determination coe�cient

with the potential energy, while XOR had the worst determination coe�cient with the

potential energy.

Results for 1YRF For both normalized and unnormalized approaches, RMSD and

ANGL performed much better than the other metrics as given by the promotions during

the particular metric. ANDH was dominating the other metrics in the normalized

version. It is hard to say which metric’s version of the best trajectory had the higher

correlation to the potential energy because of similarly high values, but AND’s version



70

on average had slightly higher correlation while RMSD’s version had slightly lower

correlation. The determination coe�cients with potential energy were higher for AND

and lower for RMSD.

Results for 1GB1 In unnormalized case, RMSD and ANGL were much better than

any other metrics. AND and XOR resulted in the worst perfomance, when combined

with GROMOS and OPLS they did not achieve a single promotion. ANDH was

in the middle for AMBER and CHARMM36-nov2018 force �eld (CHARMM), but

GROMOS and OPLS did not have any outstanding results. In nomalized case, ANGL

was better than RMSD. ANDH was the best when ran with the CHARMM and second

when ran with the AMBER force �elds.

Comparison by force �eld

General results across all proteins AMBER and CHARMM had almost identical

behavior with promotion steps. OPLS was very close to them as well, but sometimes

resulted in a di�erent order of metrics. GROMOS more often had a di�erent order

of metrics. We did not �nd any pattern in potential energy correlation across di�erent

force �elds. Besides being consistent, AMBER was producing conformation with very

low RMSD distance to the NMR conformation which.

General results by metric

We do not provide analysis of the potential energy correlation for immunoglobulin

binding domain of streptococcal protein G (1GB1) since all values were negative with

no visual pattern which indicates that they are too di�erent.

Results for RMSD 1L2Y favored this metric more for both normalized and unnor-

malized number of promotions. Trajectory of 1L2Y with this metric had generally one



71

of the best correlation coe�cients, but determination coe�cients were either the best or

the worst. This metric was the best for 1YRF only in the unnormalized case. The best

trajectory for 1YRF according to current metric had generally one of the worst correla-

tion and determination coe�cients. This metric was the best for 1GB1 in unnormalized

case, but only second in normalized case.

RMSD was doing well with all studied force �elds, except the 1YRF / GROMOS

where it was worse than ANGL. Simulation with the GROMOS force �eld after nor-

malization showed better results of ANGL than RMSD. In most it had either the best or

the worst correlation and determination with potential energy without visible pattern

that depends on the force �eld.

Results for ANGL This metric was typically the second best (after RMSD) in gen-

eration of the promotional steps for both runs of the 1L2Y protein regardless of the

normalization. ANGL’s version of the best trajectory correlation with the potential

energy is slightly worse than RMSD, but the determination coe�cient with the potential

energy was the highest. This metric was the best for 1YRF in the normalized case and

the second best (after RMSD) in the unnormalized case. This metric’s version of the

best trajectory correlation and determination with the potential energy had a very high

variation, so we did not see any pattern. ANGL metric was the second for 1GB1 in

unnormalized case and the �rst in normalized case.

This metric had the second place with all studied force �elds, except the GROMOS

where sometimes (1YRF normalized and unnormalized) it was the �rst. Often it was

either the second or the �rst in correlation and determination without a visible pattern

that depends on the force �eld.

Results for ANDH Current metric was third in generation of the promotional steps

for both runs of the 1L2Y protein regardless of the normalization. ANDH’s version of
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the best trajectory correlation for both runs was slightly worse than ANGL and AND

but the determination coe�cient with the potential energy was much worse than ANGL.

The same situation was with 1YRF protein. This metric’s version of the best trajectory

correlation was second but stable, however determination coe�cient with the potential

energy was third, worse than AND. This metric was the in the middle for 1GB1 for

both normalized and unnormalized cases.

It was the third metric (after ANGL) for all force �eld, except the GROMOS where it

often exchanged the third place with XOR. Often it was either the second or the third in

correlation and determination without a visible pattern that depends on the force �eld.

Results for AND This metric was one of the worst metrics in generation of the pro-

motional steps for 1L2Y regardless of the normalization. AND metric’s version of the

best trajectory for 1L2Y had a slightly better correlation and determination with the

potential energy than ANDH during both runs. Current metric was one of the worst

metrics in generation of the promotional steps for 1YRF regardless of the normalization.

This metric’s version of the best trajectory for 1YRF had one of the highest correlation

and determination coe�cients with the potential energy. AND metric was the one of

the worst for 1GB1 in both normalized and unnormalized cases.

This metric was the worst regardless of the force �eld. Often it was either the second

or the third in correlation and determination without a visible pattern that depends on

the force �eld.

Results for XOR This metric was one of the worst metrics for 1L2Y regardless of

the normalization. XOR metric’s version of the best trajectory for 1L2Y had the worst

correlation and determination coe�cients with the potential energy. For 1YRF it was

slightly better than AND. Current metric’s version of the best trajectory for 1YRF had

too much variation in correlation and determination coe�cients with the potential energy
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to determine any patterns. XOR metric was the worst for 1GB1 in both normalized and

unnormalized cases.

Overall, this metric was fourth out of �ve studied metrics. However, GROMOS

often had it to be the third. Often it was either the second or the third in correlation and

determination without a visible pattern that depends on the force �eld.

Demonstration of the Metric Utility

In the Methods section we mentioned that RMSD is not the only metric used to

measure the distance between the two conformations. Figure 33 includes the closest to

the NMR structure conformations by according to RMSD (A) and ANGL (B). While

the conformation (A) has a smaller RMSD (1.051 Å), visually conformation B is much

better (1.074 Å). AARMSD between the two conformations is 1.730 Å, BBRMSD

between them is 0.763 Å. We have to mention that 1L2Y had several slightly di�erent

NMR conformations and it is very possible that both proteins represent two di�erent

conformations, however, we used only one NMR conformation as a goal. AARMSD

between the NMR conformations was 1.2 - 2.3 Å and BBRMSD between them was

0.33 - 1.4 Å.
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(A) RMSD: 1.051 Å (B) RMSD: 1.436 Å

Figure 33: Example of di�erentmetrics "smallest" distance. Red color is the NMR structure, blue color is the current conformation.
(A) represents the best trajectory according to the RMSD metric. (B) represents the best trajectory according to the ANGL
metric.
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The REMD results and comparison with GPA*

Our key results listed in the Table 8 show that Replica-ExchangeMolecular Dynamics

(REMD) with a similar number of MD steps was not able to achieve lower RMSD

distance to the NMR conformation, and resulted in much longer folding trajectories.

Furthermore, GPA* average results in most of the cases were close to the best REMD

values.

Another interesting fact is that while with GPA* RMSD was going straight down

(Figure 36), REMD resulted in very short bursts of low RMSD (Figure 34 and 35).

Additionally, GPA* by design was able to recreate a compact sequence of frames that

lead from the fully unfolded state to the state with the smallest RMSD or any other

metrics, which is much easier to analyze and amenable to additional calculations such as

umbrella sampling which is needed for calculation of Gibbs free energies (Kumar et al.,

1992).

Table 8: GPA* and REMD comparison of RMSD for the AMBER force �eld. Time
represents total time of all simulations

GPA* REMD
Initial Best Average Time, Best Average Time,

RMSD, Å RMSD, Å RMSD, Å ns RMSD, Å RMSD, Å ns
1L2Y (run 1) 8.97 1.29 3.85 1887 3.46 7.00 1940
1L2Y (run 2) 8.97 1.32 3.21 1993 2.91 6.85 2000
1YRF 10.79 1.39 5.49 11589 2.62 8.67 10000
1GB1 13.01 2.73 6.87 12289 7.14 12.02 18000

1L2Y

Even for the worst of the two GPA* runs, the RMSD result (1.322 Å, Table 3) was

much lower than the best REMD result (2.914 Å, Table 8) with the same force �eld. It

is interesting to mention, that in order to reach 2.914 Å, GPA* needed to perform only

85.86 ns of 1887.04 ns of total time during the �rst run, or 195.02 ns of 1992.8 ns total
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Figure 34: Behavior of the REMD algorithm while folding 1L2Y during the �rst run
with AMBER force �eld.

Figure 35: Behavior of the REMD algorithm while folding 1L2Y during the second run
with AMBER force �eld.
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Figure 36: Behavior of the GPA* algorithm while folding 1L2Y during the second run
with AMBER force �eld. Second run was selected as the one with worse of two runs.
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time during the second run. Therefore, GPA* exhibited 2.4 times smaller AARMSD

while having 6.4 times shorter trajectories than REMD with the same force �eld.

1YRF

The GPA* RMSD result (1.385 Å, Table 5) was much lower than the best REMD

(2.615 Å, Table 8) with the same force �eld. It is interesting to mention, that in order

to reach 2.615 Å, GPA* needed to perform only 8948.6 ns of 11589 ns of total time.

An additional 2237.62 ns were needed to reach the lowest result. Therefore, GPA*

exhibited 1.9 times smaller AARMSD while having 22.4 times shorter trajectories than

REMD with the same force �eld.

1GB1

The GPA* RMSD result (3.935 Å, Table 7) was much lower than the best REMD

(7.139 Å, Table 8) with the same force �eld. It is interesting to mention, that in order to

reach 7.139 Å, GPA* needed to perform only 183.4 ns of 12288.76 ns of total time.

An additional 11775.14 ns steps were needed to reach the lowest result, which matched

our termination criterion in the Methods section. Therefore, GPA* exhibited 2.6 times

smaller AARMSD while having 8.6 times shorter trajectories than REMD with the same

force �eld.

Table 9, 10, and 11 show that GPA* was not only able to generate much shorter

trajectories (17-30 times) compared to REMD, but also spent less total computational

time to achieve the same RMSD to the NMR conformation. There was one exception

though: 1YRF total time needed to achieve the same RMSD result was only 0.8 of the

total REMD computational time. Figure 37 shows that GPA* reached an energy barrier

of 2.7 Å at 200 ns and spent most of the time trying to pass it, which occurred around

8948.6 ns. If not for this barrier, 1YRF would achieve almost the same RMSD distance

to the NMR 38.6 times faster compared to REMD.
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Therefore, GPA* can still exhibit such anomalies even if they are much less likely. This

is expected since our sampling mechanism remains to be the standard MD.

Table 9: Comparison of the shortest AARMSD distances to the NMR structure obtained
with GPA* and REMD. Length represents the length of the folding trajectory

REMD GPA* RMSD Length

Best RMSD, Å Reached by, ns Best RMSD, Å Reached by, ns Ratio Ratio

1L2Y 2.91 48.2 1.22 7.6 2.4 6.4

1YRF 2.62 241.4 1.34 10.8 1.9 22.4

1GB1 7.14 183.4 2.73 21.4 2.6 8.6

Table 10: Comparison of the common smallest AARMSD distances to the NMR struc-
ture reached with GPA* and REMD. Length represents the length of the folding trajec-
tory

REMD GPA*

Common RMSD, Å Reached by, ns Reached by, ns Ratio

1L2Y 2.91 48.2 2.72 17.7

1YRF 2.62 241.4 7.96 30.3

1GB1 7.14 183.4 0.08 2292.5

Table 11: Total simulation time spent before the common smallest AARMSD distances
to the NMR structure were reached.

REMD GPA*

Total replicas Reached at, ns Total time, ns Total time, ns Ratio

1L2Y 30 48.2 1446.6 85.9 16.9

1YRF 32 241.4 7725.4 8948.6 0.9

1GB1 36 183.4 6602.4 60.5 109
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Figure 37: GPA* performance of the RMSD during the 1YRF folding process.

Figures 38 and 39 show the �nal conformations of GPA* (left) and REMD (right).

Red color in both �gures represents the NMR structure. While both methods contain

most secondary structures, GPA* in all cases shows more complete secondary structures.

The complete list of REMD results which contain the best RMSD achieved by each

replica, can be found in Table 33.
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(A) GPA*. RMSD: 1.285 Å (B) REMD. RMSD: 2.914 Å

Figure 38: Best achieved conformations of 1L2Y achieved with GPA* (A) and REMD
(B) obtained with the AMBER force �eld

(A) GPA*. RMSD: 1.342 Å (B) REMD. RMSD: 2.615 Å

Figure 39: Best achieved conformations of 1YRF achieved with GPA* (A) and REMD
(B) obtained with the AMBER force �eld
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(A) GPA*. RMSD: 2.726 Å (B) REMD. RMSD: 7.139 Å

Figure 40: Best achieved conformations of 1GB1 achieved with GPA* (A) and REMD (B) obtained with the AMBER force �eld
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SMD results and comparison with GPA*

For all proteins the smallest RMSD was achieved with 80-90 kJ/mol of pulling force

(Table 12). The lower values were generally not as productive. However, even 10-20

kJ/mol was enough to fold the protein to a reasonable RMSD distance from the NMR

conformation. If the force was too high, proteins got pulled together too quickly without

time to adapt the sidechain orientations and were stuck in an arti�cial energy well, where

the force �eld and harmonic potential were pulling in opposite directions. It might be

desirable to implement an algorithm that can apply a variable force depending on the

protein conformation thus reducing the amount of the arti�cial bias introduced by the

method, but discussion is outside the scope of this work. While we were working with

proteins which have a very simple folding trajectory, sequences of the conformations

during the folding process by Steered Molecular Dynamics (SMD) were not visually

similar to any generated by GPA* trajectories. This indicates that the arti�cial force

signi�cantly modi�es the folding trajectory. Furthermore, Figure 41 and 42 show that

even high force magnitudes may hit arti�cial energy barriers which prevent further

folding. Detailed results about each force used during the simulation may be found in

Table 34.

Table 12: SMD simulation smallest RMSD distance to the NMR conformation for the
1L2Y, 1YRF, and 1GB1 proteins. Simulation duration: 2 ns.

Initial Final Force
AARMSD, Å AARMSD, Å BBRMSD, Å kJ/mol

1L2Y 8.970 1.044 0.572 90
1YRF 10.794 0.629 0.254 80
1GB1 13.014 1.495 0.942 80

Because of the principles behind SMD, we had no doubt that SMD would be able

to generate the folded conformation, especially with higher forces. However, since this

method is typically followed by the umbrella sampling (Kästner, 2011) procedure which

typically takes much longer, it would be more correct to compare the total time of the
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Figure 41: RMSD values during the SMD folding of the 1L2Y with lower force values.

GPA* and SMD with successive umbrella sampling which we plan to perform in future

work.

FRODAN results and comparison with GPA*

Table 13: Frodan RMSD distance to the NMR structure for 1L2Y, 1YRF, and 1GB1
proteins

Initial AARMSD, Å AARMSD, Å BBRMSD, Å
1L2Y 8.970 0.770 0.611
1YRF 10.794 0.898 0.454
1GB1 13.014 2.559 1.660

All three runs were able to achieve very low RMSD values, but not all formed the

secondary structure. With a simple protein like 1L2Y the �nal conformation looked

complete, however, with increase of complexity of the protein, the algorithm gave

less and less correct secondary structure. Furthermore, the folding trajectory was very

di�erent from all the trajectories we saw with GPA*.
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Figure 42: RMSD values during the SMD folding of the 1L2Y with higher force values.

Figure 43 and 44 show that every iteration resulted in RMSD decrease.

While all tested proteins reached very low AARMSD and BBRMSD values, during

the visual inspections we found that some secondary structures were not formed:

1L2Y folding process �nished with conformation which was had only 310 helix formed.

1YRF folding process �nished with assembly one full alpha helix, of almost full second

alpha helix, and no third alpha helix.

1GB1 folding process �nished with assembly almost full alpha-helix, and two out of four

beta sheets were formed partially.
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Figure 43: AARMSD values during the FRODAN folding of the 1L2Y.

Figure 44: BBRMSD values during the FRODAN folding of the 1L2Y.
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DISCUSSION

We proposed a novel approach to perform e�cient and more natural Molecular

dynamics (MD) simulations and demonstrated the folding process on several proteins

with di�erent properties. The results demonstrated that Greedy-proximal A* (GPA*)

was able to perform faster folding than the Replica-Exchange Molecular Dynamics

(REMD) approach. But, what is more important is that such a result was achieved

without adding any arti�cial energy bias. Additionally, our algorithm was not only able

to generate much more compact trajectories with much closer Root-mean-squared

deviation (RMSD) distance to the nuclear magnetic resonance (NMR) structure, but

also spent less computational time. Because of the low computational overhead, our

algorithm can be e�ciently scaled to make use of very large cluster systems by computing

a large number of independent steps in parallel thus folding proteins in much shorter

time compared to REMD or multi-replicate MD.

Our algorithm generates a trajectory that consists only of steps needed to perform

the transitions between the folded and unfolded states. Such a trajectory would allow

biochemists to study bottlenecks in the folding process which is crucial for drug design

which a�ect protein folding. Furthermore, it is very easy to generate many trajectories

that lead to the folded state after one simulation and apply statistical approaches to �nd

the folding patterns. Future experiments with umbrella sampling are planned to identify

any potential bene�ts for calculating ∆G as well.

Code is posted on github.com/fio2003/GPA_star under the MIT license and allows

anyone to use, study, or improve the code quickly and freely. Postprocessing scripts

shipped with the main code allow processing of the data and plotting thousands of

graphs which show speci�c folding patterns or compare distance metric values to various

potential energy values to see how particular metrics work with studied proteins or force

�elds.

github.com/fio2003/GPA_star
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Our algorithm was able to produce trajectories which were 47-6799 times faster than

previously reported. Additionally, we did not have to tune any of the parameters such as

duration of the single simulation, best metric usage only, number of seeds, maximum

duration of one metric, etc. With continued tuning we expect the approach to achieve

even better folding times.

Understanding how the motions of protein transform one structure to another can

help us understand how to engineer or improve the protein to do better in biofuels or to

understand drug design.

drug design: if we have proteins that are involved in the signal processing, which can

prohibit or enhance the signal, examining the motion of the protein in presence of the

drug and without it can give us an idea of how e�cient the drug is. Our algorithm allows

to perform such a study e�ciently by understanding the energy barriers that may appear

or disappear after adding or removing the drug. For example, we can run GPA* protein

with the drug and without the drug, and compare two pathways. Since our algorithm

stores all unsuccessful steps, we can track the probability of transitions between the states.

When we combine a protein with the drug, lower (higher) probability will indicate higher

(lower) energy barrier. Furthermore, we can inspect the folding pathway for presence of

the new energy barriers.
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CHAPTER III.

CLUSTERING

INTRODUCTION

Another common application of Molecular dynamics (MD) simulations is the future

experimental validation and energy landscape exploration for studying metastable con-

formations and the transitions between them (Phillips, 2012; Bowman and Pande, 2010).

While the problem of capturing metastable states may often be successfully resolved

within the timescale of the simulation, �nding those states is often performed with auto-

mated techniques such as clustering (Bhowmik and Ramanathan, 2018; Sittel and Stock,

2016). Although there are many clustering algorithms available, not all of them can be

successfully applied to high-dimensional data such as MD simulations (Steinbach et al.,

2004). In particular, recent work from the clustering literature (Sakuraba et al., 2010)

shows that many high-dimensional data sets explore a mixture of independent subspaces

and previous clustering studies of MD data have ignored such e�ects. In this study we

explore the application of the subspace clustering techniques to MD simulation data and

compare the performance with traditional Spectral clustering (SPC) algorithms (Ng et al.,

2002) and demonstrate when and why such approaches may be superior to traditional

techniques.

BACKGROUND
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Trajectory Clustering

A Molecular dynamics (MD) trajectory can be viewed as a set of frames where each

frame represents a molecular conformation at a particular time. Such conformation is a

set of positions of atoms that form protein which can be viewed as multidimensional

space with 3N −6 degrees of freedom (DOF) - x , y , z for each particle minus 3 for

translation and 3 for rotation of the protein as a whole. In order to simplify the notation

we will simplify notation by treating each atom as a point in the space. Then, the

problem of clustering can be formed as follows: we want to divide a given set of points

X = {xxx j ∈ Rd}Nj=1 into n groups in such a way that each group contains a subset of points

that share similar qualities unique to each particular group. Various approaches to solving

this problem have been developed and applied to molecular dynamics simulations:

1. Best and Hege (Best and Hege, 2002) used intramolecular distances to form a

similarity graph and for two-part partitioning.

2. Karpen et al. (Karpen et al., 1993) used dihedral angles of the backbone and

side-chain groups to cluster MD data of a tri-ribonucleotide and create the "con-

formational states" and transitions between them using a neural network.

3. Huang et al. (Huang et al., 2017) used perron-cluster analysis to study the decahe-

dron to icosahedron transition in Pt nanoparticles

4. Phillips et al. (Phillips et al., 2011) applied Spectral clustering to intrinsically

disordered FG-nucleoporins.

5. Rauscher et al. (Rauscher and Pomès, 2010) followed up with a detailed study of

elastin-like disordered proteins.

Even though clustering has been a common analysis technique for the postprocessing

folding trajectories (Rajan et al., 2010), to our knowledge, recent clustering algorithms
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such as subspace clustering (Elhamifar and Vidal, 2012) have not been applied to molec-

ular dynamics simulation data. Subspace methods assume that a mixture of di�erent

processes may contribute to an overall data set, and multi-replicate simulations common

in the �eld may exhibit such properties.

Spectral Clustering

Concept

Spectral clustering is an algorithm commonly used to cluster data points generated

by non-linear processes (Von Luxburg, 2007). In this approach, X is represented as a

similarity graphG and is partitioned in such a way that points within one group share a

high weight (connectivity), while points in di�erent groups share a very low weight. To

achieve the goal mentioned above, we let graphG = (V , E ,W ) be an undirected graph

with a set of verticesV = {v1 , v2 , . . . , vN }, set of edges E = {e1 , e2 , . . . , eN2}, and weights

W = {wi j}N×N , w ≥ 0 shared by every two vertices. A value of wi j = 0 means that there

is no connection between xxxi and xxx j vectors. Each cluster group mentioned above can

be described as sets of points A inV that preserve these properties: Ai ∪Aj = �, where

i , j and A1∪A2∪ . . .An =V .

In order to clarify the property of similarity within the spectral approach, a brief

review of several of the most popular methods for constructing similarity graphs is given

below:

1. Epsilon neighborhood (Von Luxburg, 2007) - points are treated as similar only if

their pairwise distance is smaller than a cuto� parameter, epsilon, thus creating an

unweighted graph.
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2. k-nearest neighbors (KNN) graph (Von Luxburg, 2007) - for each vertex, vi , k vertices,

v j , are selected with the highest similarity (weight) only if vi is also among the

KNN of v j , resulting in a mutual KNN graph.

3. Fully connected graph (Von Luxburg, 2007) - all vertices inV are connected with a

similarity function that encodes all connections.

The Gaussian similarity function (GSF) is one of the most commonly used functions

for further re�nement of the neighborhood graph (Arya et al., 1998) and is de�ned as

s(xxxi , xxx j) = exp(−||xxxi −xxx j | |2/2σ2), where σ is a user-de�ned parameter which determines

the rate of decrease in similarity for all points. Selecting an appropriate value for σ can

be computationally expensive and time-consuming (Vladymyrov and Carreira-perpinan,

2013). A more advanced method for choosing σ, entropic a�nities, that overcomes

the restriction of picking a �xed σ in the GSF has been developed (Vladymyrov and

Carreira-perpinan, 2013; Hinton and Roweis, 2003).

Construction of Graph Laplacians

Once the GSF has been applied to the neighborhood graph, the graph is transformed

into the Laplacian form (Weisstein, 2014). There exist several ways to de�ne the graph

Laplacians. One of the most common forms used for clustering is the normalized

symmetric graph (Von Luxburg, 2007), which is de�ned as:

L =D−1/2×W ∗×D−1/2 , (1)

whereW ∗ is the similarity matrix formed from the neighborhood graph, with elements

de�ned aswi j = s(xi , xj) andD is a diagonal matrix of sizeN , where di =
∑
jwi j. Properties

and proofs concerning this Laplacian can be found in (Von Luxburg, 2007).



93

Approximate Normalized Cut

The next step after construction the graph Laplacian is an application of singular

value decomposition (SVD) (Golub and Reinsch, 1971) to the graph Laplacian in order

to perform an approximate k-way normalized cut (Shi and Malik, 2000). We save k

rows fromV ′ ∈ Rn×k (unitary matrix that contains right singular vectors as rows) that

correspond to the top k eigenvectors and then construct the matrixY ′ ∈ Rn×k fromV ′

by normalizing the row sums to have norm 1. The matrix Y ′ represents a nonlinear

projection of the data within which the clustering problem may be solved using linear

clustering algorithms like k-means (Arthur and Vassilvitskii, 2007). The complete

procedure for spectral clustering is shown in Algorithm 3.

Algorithm 3 Spectral clustering algorithm
1: procedure Spectral clustering(S , k). Similarity matrix S ∈ IRn×n, number k of

clusters to construct
2: Construct a similarity graph by one of the ways described above (page 91).
3: Compute the normalized Laplacians L using equation 1.
4: Compute the �rst k eigenvectors v1 , . . . , vk of L.
5: LetV ′ ∈ Rn×k be the matrix containing the vectors v1 , . . . , vk as columns. Con-

struct matrixY ′ ∈ Rn×k fromV ′ by normalizing the row sums to have norm 1, that
is yi j = vi j/(

∑
k v2
ik)

1/2.
6: Cluster the points (ui) into clusters F1 , . . . , Fk with k-means algorithm.
7: return Clusters A1 , . . . , Ak with Aj = { j |yyyi ∈ Fj}.
8: end procedure

Data Subspaces

Clustering of the points in X may be challenging since the points may be positioned

among a set of m (a�ne) subspaces {S`}m`=1 in d dimensions.

Figure 45 demonstrates an intersection of two sets of points (purple and green) that

reside in di�erent subspaces, often assumed to have been generated by two distinct latent

(unknown) processes. Clustering data from di�erent subspaces (purple and green) can
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Figure 45: Example of data that resides in two subspaces.

prove challenging for spectral methods to separate into the desired clusters since the

similarity graph will connect points near the region of intersection. Latent processes

may also be nonlinear (green) or a�ne (purple) in nature, but neither the presence of

subspaces nor the (non)linearity is usually known a priori for general data sets. For

example, let’s say that X resides in d dimensions with m a�ne subspaces {S`}m`=1. We

may often need to cluster X according to the subspaces {S`}m`=1 to obtain the desired

results. In the case of d = 1, the problem reduces to the solution of the well-known and

easily solved principal components analysis (PCA) (Bryant and Yarnold, 1995). However,

the problem described above becomes signi�cantly more di�cult with the growth of both

m and d (Elhamifar and Vidal, 2012). Perhaps more importantly, many problems invoke

non-a�ne (nonlinear) subspaces which may limit the applicability of certain clustering

algorithms. In particular, although spectral clustering may solve nonlinear problems,

it unfortunately cannot handle clustering within multiple subspaces (Vidal, 2010). For

example, in Figure 45 the intersection at (0,0) will not be separated and, most likely, will

merge the two data sets in such a way that the normalized cut will not separate the two

processes as desired.
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Entropic A�nities

As was mentioned in "Concept", selecting sigma (σ) for the GSF may be challenging

and time consuming (Von Luxburg, 2007). This is especially true when dealing with

large data sets of nonuniform density (Vladymyrov and Carreira-perpinan, 2013). When

applied to data exhibiting both dense and sparse regions, the chosen sigma may keep too

many points in dense regions and too few in sparse regions. Entropic a�nities promise

to overcome such an inconvenience by selecting sigma values for each point with respect

to a desired perplexity by implicitly de�ning a continuously di�erentiable function in the

bounded input space (Vladymyrov and Carreira-perpinan, 2013; Hinton and Roweis,

2003).

For an a posterior distribution of an isotropic kernel density estimator of width σi

de�ned on X , let’s de�ne a discrete distribution p j(xxxi ;σi) with probabilities for i , j =

1, . . . ,N (Vladymyrov and Carreira-perpinan, 2013):

p j(xi ;σi) =
exp

(
−

������xxxi−xxx jσi

������2)∑N
k=1,k!=i exp

(
−

������xxxi−xxxkσi

������2) (2)

In this case each σi is being set individually for each point, xi , to a value such that the en-

tropy of the distribution, p j(xi ;σi), equals log(K), where K is a user-set parameter called

"perplexity" (Vladymyrov and Carreira-perpinan, 2013). Given both the theoretical and

practical advantages o�ered by entropic a�nities, a comparison of their e�ectiveness for

MD simulation data clustering with the �xed (average) σ approach is warranted.

Subspace Clustering

Another approach for clustering, which assumes the data lie in multiple (a�ne)

subspaces was suggested by Elhamifar and Vidal (Elhamifar and Vidal, 2012). It uses
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the following data property: any point in a union of subspaces can be represented as a

linear combination of several points in the local neighborhood. The coe�cients of this

combination can be used to construct an a�nity matrix due to the local relationships

between points residing in the same a�ne subspace. Thus, X can be viewed as a self-

expressive dictionary in which each point xxxi ∈ ∪m`=1S̀ , where S̀ - subspace, ` = 1 -

relaxation type for e�cient solution of the sparse optimization problem, can be written

as a linear combination of other points

xxxi = Xccci , (3)

where ci
∆
= [ci1 , ci2 , . . . , ciN ]>. In order to remove the trivial solution of describing a

point as a linear combination of itself, an additional constraint cii = 0 is added.

In practice, the number of data points in a subspace S` is often higher than its

dimension, which suggests that the representation of xxxi in the dictionary X is not unique

in general. This assumption leads to the conclusion that each xxxi , and consequently X ,

has a non-trivial null-space, giving rise to in�nitely many representations of each data

point.

The key observation in the proposed algorithm was that among all solutions of

Equation 3, there exists a sparse solution, ccci , whose nonzero entries correspond to data

points from the same subspace as xxxi . Such a solution would be referred as a subspace-

sparse representation (Elhamifar and Vidal, 2012).

A data point xxxi that lies in the d` dimensional subspace S` can be described as a linear

combination of d` other points from S̀ . A sparse representation of a data point gives

the opportunity to �nd points from the same subspace where the number of non-zero

elements relates to the dimension of the underlying subspace. A system of equations

similar to Equation 3may contain an in�nite number of solutions, which can be restricted

by minimization of an appropriate objective function. An example of such a restriction
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with the `q-norm of the solution is shown below in Equation 4:

min‖ccci ‖q s.t. xxxi = Xccci , cii = 0 (4)

Di�erent choices of q give rise to di�erent solutions (Elhamifar and Vidal, 2012).

Usually, by decreasing the value of q from in�nity toward zero, the sparsity of the

solution increases (Elhamifar and Vidal, 2012). The extreme case of q = 0 corresponds

to the general NP-hard problem (Elhamifar and Vidal, 2012; Knuth, 1974) (at least

as hard as problems which can be approximated within every constant in polynomial

time (Amaldi and Kann, 1998)) of �nding the sparsest representation of the given point

and is not being considered since we are interested in the e�cient way to �nd a nontrivial

sparse representation of xxxi in the dictionary X. Minimization of the tightest convex

relaxation of the `1-norm (q=1) is considered as su�cient, which can be solved e�ciently

using convex programming tools (Boyd and Vandenberghe, 2004). Equation 4 can be

rewritten in matrix form for all data points i = 1, . . . ,N as :

min‖CCC ‖1 such that X = XC , diag(C) = 0, (5)

where C ∆= [c1c2 . . . cN ] ∈ IRN×N is the matrix whose ith column corresponds to the sparse

representation of xxxi , ccci , and diag(CCC) ∈ IRN is the vector of the diagonal elements of C.

Ideally, the solution of Equation 5 corresponds to a sparse subspace representations of

the data points, which is used next to derive the clustering of the data.
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Algorithm 4 Sparse Subspace Clustering
1: procedure Subspace clustering(S , k) . A set of points {xxxi}Ni=1 lying in a union

of m linear subspaces {S̀ }m
`=1.

2: Solve the sparse optimization program.

3: Normalize the columns of CCC as ci ←
ci
‖ci ‖∞

.

4: Compute the �rst k eigenvectors v1 , . . . , vk of L.

5: Form a similarity graph with N nodes representing the data points. Set the

weights on the edges between the nodes byW ′W ′W ′ = |CCC |+ |CCC |>.

6: Apply spectral clustering described in Algorithm 3 to the similarity graphW ′W ′W ′.

7: return SpectralClustering(W ′W ′W ′, k). . see Algorithm 3

8: end procedure

To perform clustering, �rst a weighted graph is constructed (Elhamifar and Vidal,

2012) G= (V , E ,W ′W ′W ′), whereW ′W ′W ′ ∈ RN×N is a non-negative symmetric similarity matrix

representing the weights of the edges. The similarity matrixW ′W ′W ′, and thus the similarity

graph G, contains nodes that correspond to the points of the same subspace connected

to each other, and there are no edges between nodes that correspond to the points in

di�erent subspaces. Recall that construction of common graph Laplacians requires a

symmetric a�nity matrix, while the sparse representation from the convex optimization

does not guarantee symmetry. One possible symmetrization isW ′W ′W ′ = |CCC |+ |CCC |>, which

can be described analogously: if node i is connected to node j with weight w, then j

should have a connection to i with the same weight. The complete procedure for the

Subspace Clustering (SSC) is shown in Algorithm 4. A problematic assumption made

using this approach is that the data consists of only a�ne subspaces. We addressed this

limitation in the Methodology section below.
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Normalized Mutual Information

Since we need some tool to quantitatively measure each algorithm’s ability to separate

data into clusters, we utilize the normalized mutual information (NMI) (Estévez et al.,

2009). Mutual information re�ects the dependence of two variables, in our case -

simulation replicate number (R) and cluster number (F ):

NMI(R;F ) =

∑
f ∈F

∑
r∈R p(r , c)log2

(
p(r , f )

p1(r)p2( f )

)
ar gmax (

∑
(p (r) log2p (r) ;

∑
(p (c) log2p ( f ))

, (6)

where p(r , c) is the joint probability distribution of the two random variables R and F ;

p1(r) and p2( f ) are the marginal probability distributions of R and F respectively.

Examples of di�erent NMI values may be found in Figure 46.
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(A) NMI: 0.1575
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(B) NMI: 0.4495

2 4 6 8 10

2
4

6
8

1
0

Replicate

C
lu

s
te

r

0.00

0.02

0.04

0.06

0.08

0.10
p(R, C)

(C) NMI: 0.6360

Figure 46: Three examples of cluster-replicate joint probability distributions for low
(0.1575, A), medium (0.4495, B), and high (0.6360, C) NMI values.

These plots were built with data that can be found in the Results section, but are used

here to illustrate the use of NMI for determining clustering quality for MD simulations.

In Figure 46 the plot A demonstrates the joint probability distribution from the Table 18,

row 9, column 4, the plot B refers to the Table 16, row 3, column 1, and the plot C refers

to the Table 17, row 11, column 3. For the highNMI example (plot C) we may easily say

which data set (replicate simulation) is referred to by a particular cluster, for the medium

NMI example (Figure 46.B) we clearly see the trend but it is not always possible to make

an assumption about cluster-replicate relationships like we did for example with high
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NMI value. Finally, the example of low NMI (Figure 46.B) demonstrate an example

where the simulation data are too similar so that the algorithm cannot distinguish between

the simulations. The critical case of an NMI of 1.0 would exhibit a plot with a �lled

diagonal that re�ects an exact mapping between the input data sets: one per cluster.

However, for NMI close to 0.0 we would see an even distribution among the clusters,

meaning that the particular algorithm sees no di�erence between the input data sets.

NMI therefore is a good summary criterion of the overall e�ectiveness of sampling for

protein ensembles generated using MD.

Kmeans clustering algorithm

Kmeans is a very popular unsupervised clustering algorithm (Lloyd and Stuart, 1982).

Here we will provide an overview of it and encourage to read the original Lloyd and

Stuart paper (Lloyd and Stuart, 1982) or improved version called kmeans++ proposed

by Arthur et al. (Arthur and Vassilvitskii, 2007). In kmeans, k stands for the number

of clusters we want to divide a set of points xxx, where xi is a n-dimensional point. The

algorithm tries to divide xxx into sets AAA, such as the distance (typically the sum of squares

or variation) between all points inside Ai is minimal:

argmin
s

k∑
i=1

∑
x∈Ai

| |x− µi | |2 = argmin
s

k∑
i=1

|Ai |V arAi (7)

, where µi is the mean of points in Ai . In the original kmeans algorithm (Lloyd and

Stuart, 1982) (Lloyd algorithm), the initial cluster centers are selected randomly from

the set xxx. kmeans++ optimizes the initial cluster selection by selecting points that are far

from each other, thus reducing the number of iterations needed for convergence.

An illustration of the algorithm can be viewed on Figure 47. Unfortunately kmeans

algorithm heavily depends on the initial cluster centers and is unable to the nonlinearity

and a�nity.
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Figure 47: Example of the kmeans clustering algorithm. A - represents unlabeled initial
data, B - initial labeling according to the cluster centers (+), C - labeling according to the
recomputed cluster centers, D - �nal clusters.
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METHODOLOGY

Clustering methodology

As follows from the descriptions above, that the connecting link to combination

of both approaches (Spectral clustering (SPC) and Subspace Clustering (SSC)) can be

found at the steps just prior to singular value decomposition (SVD). Among di�erent

approaches, we suggest that the dot product (SDS) and element-wise product (SES)

multiplications of both the a�nity matrices (standard spectral and standard subspace) may

produce normalized mutual information (NMI) increase. In other words, only weighted

connections between points which exist in both the standard similarity graph (nonlinear)

and the subspace-sparse graph (a�ne subspace) should be preserved. Therefore, a

general, e�cient algorithm may be de�ned as follows:

1. Compute optimization coe�cients C.

2. Compute a�nity matrix S.

3. Construct matrixM = SC ·C (SDS) orM = SC ∗C (SES)

4. Construct graph Laplacians.

5. Perform singular vector decomposition.

6. Run k-means algorithm.

Geometric Rationale

The standard Gaussian a�nity graph will connect points within close proximity

to one-another, but exclude those far apart as shown in red (see Figure 48). This

property preserves the relationships between points along nonlinear manifolds. The

yellow area where the blue and green data sets intersect is however problematic since
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Figure 48: Example of a complex manifold with structures considered challenging for
the standard clustering algorithms. Red area shows a region that is di�cult for the
subspace algorithms to separate. Yellow area indicates a region challenging for the
spectral clustering to separate.

the local connectivity blurs the relationship between di�erent manifolds and connects

the manifolds together. The subspace method treats all blue points and part of the

green points (red area) as one subspace since they are observed to lie in the same a�ne

subspace (along the same line in the ambient space). However, the boundary points in the

yellow area are more separated between subspaces than when using the Gaussian a�nity

function. This geometric interpretation suggests that a combination of the Gaussian

a�nities and subspace algorithm coe�cients may result in a better separation of points

in both the red and yellow areas. In both approaches, we express all points as vectors of

n weights. When both methods "agree" (both result in the same connections) to connect

certain points, such connections result in higher weights in the �nal connectivity matrix.

When they disagree, the connectivity coe�cients will be lower and result in breaking

unreliable links (spurious connectivity relations created by either the standard spectral

or subspace algorithms, independently).
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Clustering implementation

We chose Python3 (Van Rossum and Drake, 2011) as the main implementation

programming language for the algorithm. For solution of the sparse convex problem we

tested di�erent solvers, but only ECOS (Domahidi et al., 2013) was able to work with

arrays of requested size and produced correct results consistently. Since parameter tuning

requires multiple executions of the algorithm, we developed a strategy of spreading the

load among the nodes on a cluster. We selected the client-server model, where the

client is the clustering software and the server is a dispatcher that tracks which tasks are

executed at the moment. Since our clustering algorithm consists of two separate parts,

we can reuse the previous computations to speed up the overall process.

Figure 49 and Algorithm 5 describe the client-server interaction.

TCP/IP HN

Figure 49: Pyssc architecture. HN - head node, WN - work nodes

Client-server communications are performed through TCP/IP (Forouzan, 2010)

communications with the assumption that the client knows the exact IP address of the

server. The server is implemented in C++ and uses the system call, epoll, to track multiple

�le descriptions within O(1) time. Example of messages sent between client and server
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Algorithm 5 Client-server communications
1: client A is executed with speci�c clustering parameters (method, solver, KNN num-

ber, etc)
2: client A generates the digest of input parameters with the MD5 (Rivest, 1992)

algorithm
3: client A searches the �le which contains result values obtained during prior runs

with the digest as name
4:
5: if the �le with such a name exists then
6: client A asks the server to read it
7: else
8: client A asks the server to create it
9: end if

10: server checks whether there is another client B which is generating such a �le:
11: if the �le is being generated by the client B then
12: client A is advised to not create the �le, but wait until signaled and read it
13: client B performs the computation, stores the �le, and signals the server that the

�le was generated
14: else
15: client A is advised to perform the computation and store partial results in the �le
16: end if
17: server informs all other clients who was waiting to read the �le, that the �le is ready

to be read
18: client A stores results of clustering in the database

are described in Figure 50. We used SQLite (Team, 10 ) as a database for the results

storage and further analysis.

Additional version information about libraries used in the experiment:

1. Numpy (Oliphant, 06 ): 1.13.1

2. Scipy (Jones et al., 01 ): 0.19.1

3. sparsesvd (KARDOŠ, 2010): 0.2.2

4. CVXPY (Diamond and Boyd, 2016): 0.4.10 with solver ECOS



106

MSG_LEN#PID#OPERATION#FILENAME

28#846#WRIT#5FDD12F4FC1C9846A31

28#641#WRIT#5FDD12F4FC1C9846A31
WRIT
WAIT

29#1645#READ#5FDD12F4FC1C9846A31
WAIT

READ
READ

28#846#DONE#5FDD12F4FC1C9846A31

Figure 50: Example of message passing between client and server. # - delimiter between
parts of the message. First part is total message length.

5. Pandas (McKinney, 2010): 0.20.3

6. Matplotlib (Hunter, 2007): 2.0.2

Data Preparation

We studied two general types of proteins: natively folded proteins (NFP) and in-

trinsically disordered proteins (IDP). NFP fold into stable conformers thus utilizing

fewer available degrees of freedom and limiting variation in conformation over time.

Proteins for the NFP group were picked in such a way that we have representation

of two major structural classes: alpha-helical (Trp-Cage Miniprotein Construct TC5b

(1L2Y) (Neidigh et al., 2002)) and beta-sheet (immunoglobulin binding domain of

streptococcal protein G (1GB1) hairpin (Gronenborn et al., 1991)). 1L2Y and 1GB1 are

well-known and widely used in Molecular dynamics (MD) simulations to demonstrate

secondary and tertiary structures as well as fast folding. IDP do not tend to converge to

some particular conformer, thus their simulations result in a broad variety of trajectories.

Another signi�cant di�erence compared to NFP is that despite both types demonstrating

a high dimensional motion at higher temperatures, at physiological temperatures NFP

tend to reduce dimensionality proportionally to folding progress, while IDP lack such

behavior.
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On the IDP side, NSP1 protein, tRNA m1A58 methyltransferase (5EQJ) (Go�eau

et al., 1996) was selected as an example of a relaxed-coil structure which exhibits few

meta-stable conformations and nucleoporin NUP116p protein (YJM1418) (Go�eau

et al., 1996) as an example of a compact collapsed-coil structure with many meta-stable

conformations (Yamada et al., 2010).

All simulation trajectories were obtained using GROningen MAchine for Chemical

Simulations (GROMACS) 4.5.4 (Pall et al., 2014) with the AMBER�99SB-ILDN

force �eld (AMBER) (Lindor�-Larsen et al., 2010; Case et al., 2018) force �eld and

the TIP3P (MacKerell Jr et al., 1998) water model with 150 mMol Na+Cl− added to

neutralize the system. A better force �eld can be examined in the future, although we

believe that this will not a�ect our results in a general way. We will evaluate overall

clustering quality, which does not depend on the particular force �eld. For each protein

we created 10 independent simulations with a duration of 350 ns each, but with di�erent

initial velocities. The temperature pro�le is speci�ed in supplementary materials in

section ‘Temperature pro�le’, and re�ects heating each protein into a highly disordered

shape and then monitoring its return to the native stable state.

1. 0−20 ns : 300 K to 600 K

2. 20−80 ns : 600 K

3. 80−100 ns : 600 K to 300 K

4. 100−350 ns : 300 K

which re�ects heating each protein into a highly disordered shape and then monitoring

its return to the native stable state. The integration time step was chosen as 2 fs. The �rst

100 ns (steps 1-3) were discarded as the equilibration phase (a special phase which allows

to distribute the kinetic energy, introduced during initial heating, among all degrees

of freedom (DOF)). After simulation we extracted the backbone structure from each
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simulation frame. Prior to clustering, the set of coordinate frames was translated into the

dihedral angle space and sin-cos embedding of the dihedral angles with the Molecular

Dynamics Spectral Clustering Toolkit (MDSCTK) (Phillips et al., 2008).

We created three data sets in order to test how the data density would a�ect the

�nal result: Dense (DN) - frames were taken every 10 ps resulting in 2501 points per

simulation, then 10 simulations were concatenated to form a complete data set with

the size of 25010 points, Sparse (SP) - frames were taken every 100 ps resulting in

251 points per simulation, then 10 simulations were concatenated to form a complete

data set with size of 2510 points, and Super-sparse (SS) - frames were taken every

1000 ps resulting in 25 points per simulation, then 10 simulations were concatenated to

form a complete data set with the size of 250 points.

Clustering Setup

k-nearest neighbors (KNN) were precomputed with MDSCTK and stored for future

use. For experiments with plain Gaussian similarity function (GSF), sigma values were

hand selected to achieve the top performance among di�erent proteins, but all results

were saved for future analysis. The sigma/perplexity selection strategy used was as

follows: the range of values was ‘scanned’ for the best NMI values and then selected for

a �ner ‘neighborhood’ search. Note that not all sigma/perplexity values may be present

in all experiments since for each protein di�erent sigma/perplexity values resulted in

high NMI. We applied a similar strategy for selecting KNN.

For the �nal clustering we ran the k-means++ (Arthur and Vassilvitskii, 2007) algo-

rithm 80 times (due to its stochastic nature, discussed in subsection "Kmeans clustering

algorithm"). Our experience suggests that this was more than enough since the maximum

deviation was only 0.042 NMI and the average deviation was only 0.005 NMI. Other

implementations of the k-means algorithm may require di�erent number of executions

to improve the stability or decrease overall computation time. NMI was computed and
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stored after every iteration in order to derive the maximum, minimum, average, and

median values for the particular test set. We used only the median data for the analysis

in order to provide a fair analysis which does not depend on spikes of very high NMI

which observed during the review of results of the hybrid approach. Additional results

may be found online at: https://github.com/fio2003/PYSSC/tree/master/pyssc_

usage_and_raw_results/results_database/results.7z. All code implementation

along with more detailed results can be found at: https://github.com/fio2003/PYSSC.

Our parallel scheduler which we used for running the analysis can be found at https:

//github.com/fio2003/PYSSC_scheduler.

The bare k-means clustering test was not included since this algorithm does not

support any kind of nonlinearity in data.

Statistical Analysis

Analysis of the clustering results for the above experiments was performed as follows.

Overall performance analysis: We selected the highest NMI values among each group

of algorithms, protein types, a�nity types, and data densities (categories) and created

the three tables ( 16, 17, and 18) which represent how the clustering quality depends on

algorithms and proteins.

Graph segmentation analysis: We plotted the relationship between NMI values and

perplexity, sigma and KNN for each category to analyze the unique properties. Each

graph was divided into three segments. Each segment was later classi�ed according

nomenclature given in Tables 14 and 15. The two examples of such a classi�cation as

shown in Figures 51 and 52.

Segmented graph analysis: We used the previous classi�cation to plot the relationship

between the physical width of graphs described in the previous paragraph and NMI

https://github.com/fio2003/PYSSC/tree/master/pyssc_usage_and_raw_results/results_database/results.7z
https://github.com/fio2003/PYSSC/tree/master/pyssc_usage_and_raw_results/results_database/results.7z
https://github.com/fio2003/PYSSC
https://github.com/fio2003/PYSSC_scheduler
https://github.com/fio2003/PYSSC_scheduler
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values. Each graph was divided into 3×3 sectors: three for the NMI classi�cation and

three for the thickness classi�cation. For each sector we counted the number of segments

that fall into the sectors to show the relationship between the NMI values and variance

for each category.

Boxplox analysis: Finally, we used violin plots and boxplots to better describe the

distribution of NMI values inside each combination of categories.

All percentages shown are calculated as follows: the sum of elements classi�ed as W,

M, N is equal 100% and the sum of elements classi�ed as "/", "-", "\" is also equal 100%.

All others (CT, CS, S, de�ned in Tables 14 and 15) show percent of the maximum

possible value.

Table 14: Graph width nomenclature used for analysis.

Graph thickness
W width more than 0.1 NMI.
M width between 0.05 - 0.1 NMI.
N width less than 0.05 NMI.

CT
�ags that two adjacent segments

were classi�ed di�erently.

Table 15: Graph shape nomenclature used for analysis

Graph shape behavior
/ grows more than 0.05 NMI per segment.
- does not grow/fall more than 0.05 NMI.
\ falls/decreases more than 0.05 per segment.
S signi�cantly - more than 0.1 NMI per segment.
CS changes live /\or \/, also called A and V shapes.

Additionally we will explain the meaning of the parameters de�ned in Tables 14 and

15.

As for the graph width - it is desirable to see more narrow parts of the graph since

those indicate that the behavior depends mostly on the studied parameter. Wide graph
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indicates that studied parameter may have a small impact on the resulting NMI, and

lack consistency of the result. CT indicates that some other parameter’s (which is not

reviewed at the moment) impact depends on the studied parameter’s value, which indi-

cates that compared parameters have nonlinear relationship.

A growing or a falling behavior of the trend line can be treated as suggestion in param-

eter’s values needed to obtain the best possible clustering results. S indicates that the

studied parameter has high impact on the �nal result. CS is a saddle point indication

which is either the best or the worst studied parameter’s value. NMI value qualitative

assessment:

high NMI : indicates that algorithm is able correctly classify the data, however, it can also

indicate that the data was not uniform, so it was easy divide it into clusters.

low NMI : indicates that algorithm was not able to correctly classify the data or the data

points formed close to the uniform distribution.
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Figure 51: Example of a medium thickness, straight graph derived from the NMI/KNN results for the SPC algorithm with
entropic a�nities for super sparse data of the 1L2Y protein.
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Figure 52: Example of a thickness that changes from medium to wide and has a growing trend; derived from the NMI/KNN
results for the SES algorithm with the plain a�nity for sparse data of the 5EQJ protein.
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RESULTS

Clustering

All tables below contain the median normalized mutual information (NMI) results

for the corresponding experiments. A brief description of meaning of the NMI values

can be found in section "Statistical Analysis".

Overall Performance (Detailed)

For the dense data we used only the entropic a�nities due to the prohibitive compu-

tational cost of exploring the parameter space for �xed sigma.

The Entropic A�nities Analysis for dense data (Table 16)

Discussion below is in reference to Table 16. Algorithms: For all cases the Spectral

Table 16: The best NMI values for each protein obtained with all algorithms using
entropic a�nities and the dense data set.

NFP IDP
1L2Y 1GB1 YJM1418 5EQJ
0.4495 0.5053 0.7447 0.5114 SPC
0.2848 0.2772 0.4157 0.3128 SSC
0.3892 0.3991 0.5869 0.4148 SDS
0.3752 0.4695 0.5794 0.5052 SES

clustering (SPC) algorithm showed the highest NMI values while the Subspace Clustering

(SSC) algorithm showed the lowest results.

Proteins: natively folded proteins (NFP) (0.4495 for Trp-Cage Miniprotein Con-

struct TC5b (1L2Y) and 0.5053 for immunoglobulin binding domain of streptococcal

protein G (1GB1)) and NSP1 protein, tRNA m1A58 methyltransferase (5EQJ) (0.5114)

demonstrated similar results while nucleoporin NUP116p protein (YJM1418) demon-

strated a signi�cantly higher NMI value (0.7447).
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The Entropic A�nities Analysis for sparse data (Table 17)

Discussion below is in reference to Table 17. Algorithms: element-wise product

Table 17: The best NMI values for each protein obtained with all algorithms for the
sparse data set.

Entropic a�nity
NFP IDP

1L2Y 1GB1 YJM1418 5EQJ
0.4593 0.5048 0.7311 0.5545 SPC
0.4740 0.3665 0.6345 0.5182 SSC
0.4924 0.4662 0.7169 0.5432 SDS
0.5018 0.4901 0.7214 0.5890 SES

Plain a�nity
NFP IDP

1L2Y 1GB1 YJM1418 5EQJ
0.3100 0.2485 0.2864 0.3037 SPC
0.4740 0.3665 0.6345 0.5182 SSC
0.4881 0.4319 0.6360 0.5350 SDS
0.2685 0.3047 0.3395 0.3269 SES

(SES) demonstrated high NMI values for all proteins, but SPC was slightly better for

1GB1 and YJM1418. SSC performed the worst among algorithms for intrinsically

disordered proteins (IDP) and 1GB1.

Proteins: 1L2Y and 1GB1 had almost identical NMI values - 0.518 for 1L2Y and

0.5048 for 1GB1. 5EQJ had slightly higher NMI - 0.589 than both NFP. YJM1418

had the highest NMI among all proteins - 0.7311.

Plain A�nities Analysis for sparse data (Table 17)

Discussion below is in reference to Table 17 on page 115. Algorithms: dot product

(SDS) showed the highest NMI among algorithms for all proteins while SPC had the

lowest NMI values for 1GB1 and IDP. SES showed the lowest NMI value for 1L2Y.

Proteins: NFP had lower NMI values, while IDP had higher NMI values.
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Entropic A�nities Analysis for super-sparse data (Table 18)

Discussion below is in reference to Table 18 on page 116.

Table 18: Best NMI values for each protein obtained with all algorithms for the super-
sparse data set.

Entropic a�nity
NFP IDP

1L2Y 1GB1 YJM1418 5EQJ
0.4508 0.4592 0.5941 0.4797 SPC
0.4150 0.3861 0.6586 0.4685 SSC
0.4170 0.4017 0.6727 0.4624 SDS
0.4224 0.4095 0.6509 0.5128 SES

Plain a�nity
NFP IDP

1L2Y 1GB1 YJM1418 5EQJ
0.3496 0.3181 0.2989 0.1575 SPC
0.4150 0.3861 0.6586 0.4685 SSC
0.4273 0.4159 0.6759 0.4685 SDS
0.3487 0.3490 0.3210 0.3016 SES

Algorithms: SPC performed the best for NFP group with NMI values of 0.4508

and 0.4592 for 1L2Y and 1GB1 respectively, but demonstrated the worst NMI value of

0.5941 for YJM1418. SSC demonstrated the lowest NMI values for the NFP group

resulting in 0.4150 and 0.3861 for 1L2Y and 1GB1 respectively. SDS demonstrated

the highest NMI value for YJM1418 - 0.6727, but the lowest NMI value for 5EQJ. SES

demonstrated the highest value for 5EQJ - 0.5128. Proteins: Both NFP showed similar

values and within the IDP group, YJM1418 had the highest NMI value - 0.6727.

Plain A�nities Analysis for super-sparse data (Table 18)

Discussion below is in reference to Table 18. Algorithms: SPC demonstrated the

worst NMI results for the IDP and 1GB1. SDS demonstrated the highest NMI values

for all proteins. Subspace demonstrated the same (highest) NMI value for 5EQJ. SES

demonstrated the worst NMI values for 1L2Y protein. Proteins: Like in the Sparse (SP)
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data case, the NFP group demonstrated similar results and in the IDP group, YJM1418

had the highest value - 0.6759.

Overall Performance (General)

The analysis of results described above shows that SES depends more on SPC while

SDS dependsmore on SSC. Entropic a�nities generally demonstrated better NMI values

for all algorithms with one exception: the NMI value obtained for YJM1418 in the

super-sparse data with SDS and plain a�nities was not signi�cantly higher (0.6759) than

the same combination with entropic a�nities (0.6727). SPC combined with entropic

a�nities is the best for all proteins in the dense data, 1GB1 and YJM1418 for the sparse

data, and the NFP group for the super-sparse data. SES demonstrated the best results

for 1L2Y and for the sparse data and 5EQJ for the sparse and super-sparse data sets. For

plain a�nities SDS with sparse and super-sparse data showed the best results among all

algorithms for all proteins. In general also, SPC was almost always the worst algorithm

to use with plain a�nities.

General Graph Segmentation Results

Before we start searching relations between di�erent execution parameters, we urge

the reader to check subsection "Statistical Analysis".

Sparsity

Graph thickness: For KNN, the sparser the data, the more narrow graphs are pro-

duced. For perplexity/sigma we see the opposite trend. Both show more CT with denser

data. Graph shape: For KNN, all results were pretty much identical, but the denser data

contained more CS. Angles were also smaller. For perplexity/sigma, denser data contained

slightly fewer straight parts.
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Algorithms

Graph thickness: For KNN, SDS and SES showed thinner shapes than SPC. For

perplexity/sigma SPC showed thinner shapes, SDS second, and SES was the last in this re-

gard, but SES thickness variation was less (30% for SES and 45% for SPC). Graph shape:

For KNN, SPC had the most (83%) straight lines, while SES had the least number (43%).

There was the opposite situation with the curvature, where SPC had a small curvature

and SES had a sharp curvature. For perplexity/sigma, there were no signi�cant di�erences

except that SPC had the highest number of CS, but SES had the smallest.

A�nity

Graph thickness: For KNN, entropic a�nities exhibited twice as many narrow parts

compared to plain a�nities, and a very similar situation with regard to changes, so the

entropic a�nities were more stable. For perplexity/sigma the situation was the same,

68% vs 7% narrow parts for the entropic and plain a�nities, but 56% vs 17% for the

changes. The situation with changes can be explained since often there was just an even

distribution of points that did not give any information, but was not treated as a thickness

change. Graph shape: For KNN, the entropic a�nities produced more straight lines,

less CS and signi�cantly less curvature than the plain a�nities. For perplexity/sigma the

entropic a�nities contained slightly fewer straight regions.

Protein type

Graph thickness: For KNN, both were similar, but NFP producedmore narrow pieces

and signi�cantly less changes. For perplexity/sigma, big di�erence was only with changes

33% vs 50% for for NFP and IDP. NFP had a slightly more narrow parts. Graph shape:

For KNN, NFP contained more straight regions and less CS. For perplexity/sigma NFP

still contained a little more straight regions and less A and V shapes. A more detailed

analysis of graph segmentation can be found in the supplementary materials.
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Figure 53: Relationship between the NMI values and variation for the SPC (left), SDS
(middle), and SES (right) algorithms for the k-nearest neighbors (KNN) batch. Numbers
in the graphs indicate the number of points in that sector.

Figure 54: Relationship between the NMI values and variation for the SPC (left), SDS
(middle), and SES (right) algorithms for the perplexity/sigma batch. Numbers in the
graphs indicate the number of points in that sector.
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Figure 55: Relationship between the NMI values and variation for the Dense (left),
Sparse (middle), and Super-sparse (right) data sets. Numbers in the graphs indicate the
number of points in that sector.

Figure 56: Relationship between the NMI values and variation for Entropic (left) and
Plain (right) a�nities. Numbers in the graphs indicate the number of points in that
sector.
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Figure 57: Relationship between the NMI values and variation for the studied proteins.
Numbers in the graphs indicate the number of points in that sector.
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Segmented Graph Analysis

Graphs displayed in Figures 53, 54, 55, 56, 57 on pages 119-121 have only cate-

gorical meaning. The points inside sectors were slightly (randomly) displaced along the

x-axis to provide perspective concerning the number of points with similar NMI values.

Algorithm

We found that despite di�erences in behavior between the KNN and perplexity/sigma

batches, we still can see a clear di�erence between algorithms inside each group. In the

KNN case (Figure 53) SDS produced generally higher NMI values than SPC and SES

produced more consistent results, most of which were described as ‘narrow’ (de�ned

in Table 14). In the perplexity/sigma batch we may observe that both SDS and SES

demonstrate generally higher NMI than SPC, but also have more variation which can

be observed in Figure 54.

Density

Both sparse and super-sparse plots showed similar behavior for both KNN and

perplexity/sigma. Denser data produced slightly higher NMI, which can be seen in

Figure 55.

A�nity

We found that there is a clear di�erence between plain and entropic a�nities. En-

tropic a�nities demonstrate more narrow variation and higher NMI values than plain

a�nities (Figure 56). Graphs for perplexity/sigma (data not reported here, but can

be found inside the git repository mentioned above) showed even stronger di�erence,

describing most points with plain a�nities as wide and most points with entropic a�nities

as narrow.
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Proteins

Results for the KNN and perplexity/sigma batches were consistent and showed clear

di�erences between IDP and NFP groups. The NFP group contained moderate NMI

values while the IDP group contained higher NMI values. Inside the NFP group both

proteins show similar behavior, while inside the IDP group YJM1418 demonstrated

signi�cantly higher NMI values than 5EQJ which can be seen in Figure 57. Consistency

inside the NFP group was expected since they have very similar structure and tend to

fold fast, producing similar trajectories during each simulation. Inconsistency inside the

IDP group can also be explained upon a closer look at their known physical properties:

YJM1418 tends to have many semi-folded shapes resulting in di�erent trajectories that

are easier to separate. On the other hand, 5EQJ tends to have many large-amplitude

movements, and no particular semi-folded shapes which results in producing more

chaotic trajectories that are harder to separate.

Boxplot Analysis

Dense

It is clear that SPC is a winner for this data set, having general performance much

higher than SDS and SES (see Figure 58 on page 124). We may see that the variation

among NFPs and 5EQJ is about the same, while YJM1418 has almost twice the variation.

It is also clear that the NFPs hadmuch lower NMI results than IDPs, especially YJM1418,

as shown in Figure 59.

Sparse

For the entropic a�nities, all three algorithms demonstrate a similar variance, but

SES generally had higher NMI values. For plain a�nities SPC had the smallest variance

but also the smallest NMI values, while SDS had the highest NMI values, but also the
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Figure 58: Relationship between the NMI values and variation for the SPC (left), SDS
(middle), and SES (right) algorithms for the perplexity/sigma batch and dense data set.

highest variance. For the plain a�nities SPC showed the worst NMI values, but the

smallest variation. SDS and SES showed a similar variation, but SDS had a much higher

NMI values (Figure 60). For sparse data and entropic a�nities all proteins demonstrated

small variance. NFP had similar NMI values, while 5EQJ had a slightly higher NMI

value but the highest variation among all proteins and �nally YJM1418 had the highest

NMI values while keeping the average variance. For the plain a�nities all proteins had

a very high variance. It is interesting that 1L2Y had a much higher (median/average)

NMI value than others (Figure 61).

Super-sparse

For the entropic a�nities all three algorithms had a similar performance, but SPC

had a slightly lower NMI values and SES had a slightly higher NMI values. For the
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Figure 59: Relationship between the NMI values and variation for IDPs: 5EQJ,
YJM1418 (left) and NFPs: 1GB1, 1L2Y (right) for the dense data set.

plain a�nities while SPC had the smallest variation it also had the smallest NMI values.

SDS had medium variation but signi�cantly higher NMI values (see Figure 62). For

the entropic a�nities the NFP group demonstrated very similar results - low variance

and lower NMI values. 5EQJ had a higher NMI value, but twice the variance, while

YJM1418 had the highest NMI values and variance. For plain a�nities all proteins

demonstrated a very high variance, but 1L2Y had a slightly higher NMI value (see

Figure 63).
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Figure 60: Relationship between the NMI values and variation for the SPC (left), SDS
(middle), and SES (right) algorithms for the perplexity/sigma batch and the sparse data
set.

Figure 61: Relationship between the NMI values and variation for IDPs: 5EQJ,
YJM1418 (left) and NFPs: 1GB1, 1L2Y (right) for the sparse data set.
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Figure 62: Relationship between the NMI values and variation for the SPC (left), SDS
(middle), and SES (right) algorithms for the perplexity/sigma batch and the super-sparse
data set.

Figure 63: Relationship between the NMI values and variation for IDPs: 5EQJ,
YJM1418 (left) and NFPs: 1GB1, 1L2Y (right) for the super-sparse data set.
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DISCUSSION

We have performed a thorough analysis of the clustering results produced by Spec-

tral clustering (SPC), Subspace Clustering (SSC), element-wise product (SES), and dot

product (SDS) and their entropic a�nities improvements on variable-density Molecular

dynamics (MD) simulation data. The results section shows that entropic a�nities sig-

ni�cantly improve clustering quality and should be used instead of plain a�nities for

all algorithms. Hybrid solutions such as SES and SDS in most cases either improve

clustering accuracy or stability of the clustering results.

We found that increasing data density signi�cantly increases clustering time, but did

not always produce better clustering accuracy. Since the entropic a�nities approach is not

necessarily the standard approach used in the �eld, our results indicate that the subspace

clustering algorithm and both SDS and SES produced higher (55% more) normalized

mutual information (NMI) values than SPC. Therefore, our approach of reusing results

of the convex optimization solution is a geometrically well-motivated method for dealing

with data displaying both subspace and nonlinear components. However, the entropic

a�nities results attest to the fact that much of the issue with clustering MD simulation

data is due to nonuniform sampling. Additionally, it was clear that intrinsically disordered

proteins (IDP) were easier to cluster than natively folded proteins (NFP) which was not

surprising due to lack of simulation convergence. This result only bolsters the need for

better clustering approaches such as SDS and SES. Although we concentrated on MD

simulations, SDS and SES improvements should be similar for other data with similar

properties. This can lead to better clustering results in areas that intensively use clustering

techniques, such as text recognition, image processing, data science, etc. Although higher

k generally resulted in higher NMI values, it also required more computational time.

Analysis of minimum NMI results may be of interest since algorithmic stability may be

more important for computationally demanding data sets.
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CHAPTER IV.

SUMMARY OF CONTRIBUTIONS

In Chapter II we were able to create very fast folding trajectories for the three proteins

(1L2Y, 1YRF, and 1GB1) using several di�erent force �elds (AMBER, CHARMM,

GROMOS, and OPLS) and analyze their performance. We ran Replica-Exchange

Molecular Dynamics (REMD) to compare with our algorithm and found that the Greedy-

proximal A* (GPA*) technique not only resulted in shorter trajectories, smaller Root-

mean-squared deviation (RMSD) distance to the nuclear magnetic resonance (NMR)

structure without introductions of the arti�cial bias, but also used less computational

time. We compared our trajectories to the most recently published results and found

that trajectories generated with GPA* were 200-3000 times shorter.

Thus an e�cient combination of the path-�nding algorithms with standard Molecular

dynamics (MD) indicates a possible application to other MD-related approaches like the

stereochemical approach to allow e�cient simulations of very large protein complexes

which are not feasible to study with the regular MD because of the limited computational

power of modern systems. Additionally, we discussed the problems of using only one

metric to compare two conformations and proposed several new metrics to help mitigate

this problem.
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Such short trajectories, that were achieved without application of external force,

in our opinion, are potentially the most probable in the natural environment. We are

planning to apply the umbrella sampling approach in future studies to determine whether

our method can also result in less total computational time and better approximation

of experimental results. We hope that our approach will provide a more e�cient way

for scienti�c community will use our approach to study folding pathway events more

productively.

Additionally, we plan to tune parameters such as the revised distance metrics set,

duration of single simulations, number of seeds, metric usage order, maximum duration

of one metric, determination of the energy barrier and trying avoidance strategies, etc.

While e�ciency was improved using the parameters explored above, the further

development of our approach may improve e�ciency in various areas of research related

to the study of proteins’ conformation changes.

Adoption of the presented algorithm allows to perform eithermore simulations within

the same time or simulate folding of larger proteins. While more trajectories allow catch

sample rare events, larger proteins study would help generate folding pathways with

respect to interactions absent in coarser methods.

In Chapter III we showed that the protein trajectory data has nonlinear and subspace

properties which our approach could use to divide data into clusters with higher preci-

sion. We conclude that the protein trajectory data can be clustered more precisely thus

improving the quality of the analysis.

Analysis of the results clearly showed that with the standard Gaussian a�nities

our hybrid approach outperformed past clustering algorithms for all tested proteins.

Additionally, it cat improve the clustering results even with "preprocessed" entropic

a�nities. We hope that adoption of our algorithm by other scientists would result in less

analysis error due to poor clustering algorithm performance.
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Because of the client-server architecture implemented with the asynchronous execu-

tion, the best parameter search can be scaled without any signi�cant overhead which will

allow scientists to study best clustering parameters of known processes and apply these

parameters to similar problems.

One potential future application could be to help in the search for local minima by

GPA* by the determination of the cluster of nodes that are similar but have a common

problem - inability to reduce distance metric to the NMR conformation. Such infor-

mation may help reduce the chances of selecting nodes from such a cluster for future

simulations, and selection of more promising nodes that are further from the energy

well.
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APPENDIXA

Extra Tables for Chapter II

Table 19: Con�guration properties of the GPA* experiment for all proteins MD simula-
tion with all force �elds.

Protein Naa Natoms Nwat Na+ Cl− Force �eld Water model
1L2Y 20 304 2730 84 85 AMBER TIP3P
1L2Y 20 304 2730 84 85 CHARMM TIP3P
1L2Y 20 304 2730 84 85 OPLS TIP3P
1L2Y 20 198 2678 80 81 GROMOS SPCE
1GB1 56 855 3364 111 107 AMBER TIP3P
1GB1 56 855 3364 111 107 CHARMM TIP3P
1GB1 56 855 3364 111 107 OPLS TIP3P
1GB1 56 562 3391 111 107 GROMOS SPCE
1YRF 76 582 2350 75 77 AMBER TIP3P
1YRF 76 582 2350 75 77 CHARMM TIP3P
1YRF 76 582 2350 75 77 OPLS TIP3P
1YRF 76 383 2263 70 72 GROMOS SPCE
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Table 20: Temperature distribution for REMD experiment of 1L2Y folding with AM-
BER, CHARMM, and OPLS force �elds.

Temperature, µ, σ , µ12, σ12, P12K kJ/mol kJ/mol kJ/mol kJ/mol
1 300.00 -105568 326.95
2 302.87 -104964 328.31 603.6 463.34 0.2500
3 305.77 -104356 329.68 608.3 465.27 0.2500
4 308.69 -103743 331.05 613.0 467.21 0.2500
5 311.63 -103125 332.44 617.7 469.16 0.2501
6 314.59 -102502 333.84 622.6 471.13 0.2499
7 317.57 -101875 335.25 627.4 473.12 0.2501
8 320.58 -101242 336.67 632.3 475.12 0.2500
9 323.62 -100605 338.10 637.2 477.14 0.2500

10 326.67 -99963 339.55 642.1 479.17 0.2500
11 329.75 -99316 341.00 647.3 481.22 0.2499
12 332.86 -98663 342.47 652.2 483.29 0.2500
13 335.98 -98006 343.94 657.3 485.37 0.2500
14 339.13 -97344 345.43 662.5 487.46 0.2500
15 342.31 -96676 346.93 667.6 489.58 0.2500
16 345.51 -96003 348.44 672.7 491.71 0.2501
17 348.74 -95326 349.97 678.1 493.85 0.2500
18 351.99 -94643 351.50 683.4 496.01 0.2499
19 355.26 -93955 353.05 688.7 498.19 0.2499
20 358.56 -93261 354.61 694.1 500.39 0.2500
21 361.90 -92560 356.18 699.4 502.60 0.2500
22 365.25 -91855 357.77 704.9 504.84 0.2500
23 368.63 -91145 359.36 710.5 507.09 0.2500
24 372.04 -90429 360.97 716.0 509.35 0.2500
25 375.48 -89707 362.59 721.6 511.64 0.2500
26 378.93 -88980 364.23 727.3 513.94 0.2499
27 382.42 -88247 365.87 732.8 516.26 0.2500
28 385.94 -87509 367.53 738.6 518.60 0.2500
29 389.48 -86764 369.21 744.3 520.95 0.2500
30 393.05 -86015 370.89 750.3 523.33 0.2499
31 396.65 -85258 372.59 756.0 525.72 0.2500
32 400.00 -84553 374.17 705.0 528.04 0.2947
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Table 21: Con�guration properties of the REMD experiment for 1L2Y protein MD
simulation with AMBER, CHARMM, OPLS force �elds.

Variable Value
Pdes 0.25
Temperature range, K 300 - 400
Number of water molecules 2730
Number of protein atoms 304
Number of hydrogens in protein ~156
Number of constraints ~304
Number of vsites ~0
Number of DOF ~25178
Energy loss due to constraints 1.26 (kJ/mol K)

Table 22: Con�guration properties of the REMD experiment for 1L2Y protein MD
simulation with GROMOS force �eld.

Variable Value
Pdes 0.25
Temperature range, K 300 - 400
Number of water molecules 2678
Number of protein atoms 198
Number of hydrogens in protein ~102
Number of constraints ~198
Number of vsites ~0
Number of DOF ~24498
Energy loss due to constraints 0.82 (kJ/mol K)
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Table 23: Temperature distribution for REMD experiment of 1L2Y folding with GRO-
MOS force �eld.

Temperature, µ, σ , µ12, σ12, P12K kJ/mol kJ/mol kJ/mol kJ/mol
1 300.00 -101548 322.51
2 302.90 -100952 323.86 596.2 457.05 0.2499
3 305.83 -100351 325.22 600.8 458.97 0.2500
4 308.78 -99746 326.60 605.6 460.91 0.2499
5 311.76 -99136 327.98 610.2 462.86 0.2501
6 314.76 -98520 329.38 615.0 464.83 0.2501
7 317.78 -97901 330.79 620.0 466.81 0.2499
8 320.82 -97276 332.20 624.9 468.81 0.2500
9 323.89 -96646 333.63 629.7 470.82 0.2501

10 326.98 -96011 335.07 634.7 472.85 0.2500
11 330.10 -95371 336.53 639.7 474.89 0.2500
12 333.25 -94726 337.99 644.7 476.96 0.2500
13 336.41 -94076 339.47 649.9 479.04 0.2499
14 339.61 -93421 340.95 654.9 481.13 0.2500
15 342.82 -92761 342.45 660.1 483.24 0.2500
16 346.07 -92094 343.97 665.3 485.37 0.2500
17 349.34 -91424 345.49 670.5 487.52 0.2500
18 352.63 -90748 347.02 676.0 489.68 0.2499
19 355.95 -90067 348.57 681.2 491.86 0.2500
20 359.30 -89380 350.13 686.6 494.05 0.2500
21 362.67 -88688 351.70 692.0 496.27 0.2500
22 366.07 -87990 353.28 697.4 498.50 0.2501
23 369.50 -87287 354.88 703.0 500.75 0.2500
24 372.94 -86580 356.48 708.6 503.01 0.2500
25 376.42 -85866 358.10 714.2 505.29 0.2499
26 379.92 -85147 359.73 719.8 507.59 0.2500
27 383.46 -84421 361.38 725.5 509.91 0.2500
28 387.02 -83690 363.04 731.3 512.25 0.2500
29 390.62 -82953 364.71 737.1 514.60 0.2499
30 394.23 -82210 366.40 742.9 516.98 0.2500
31 397.89 -81461 368.10 748.7 519.37 0.2500
32 400.00 -81027 369.09 433.6 521.27 0.5564
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Table 24: Temperature distribution for REMD experiment of 1YRF folding with GRO-
MOS force �eld.

Temperature, µ, σ , µ12, σ12, P12K kJ/mol kJ/mol kJ/mol kJ/mol
1 300.00 -90135 299.54
2 303.15 -89583 300.90 552.1 424.58 0.2501
3 306.32 -89026 302.27 556.9 426.51 0.2500
4 309.52 -88465 303.66 561.5 428.46 0.2501
5 312.75 -87898 305.06 566.3 430.43 0.2501
6 316.01 -87327 306.47 571.1 432.41 0.2501
7 319.29 -86751 307.89 576.1 434.41 0.2500
8 322.58 -86175 309.31 581.1 436.43 0.2499
9 325.92 -85589 310.75 585.9 438.45 0.2500

10 329.29 -84998 312.21 591.0 440.50 0.2499
11 332.68 -84402 313.68 596.0 442.57 0.2500
12 336.11 -83801 315.16 600.9 444.66 0.2501
13 339.57 -83195 316.66 606.1 446.76 0.2501
14 343.05 -82583 318.16 611.4 448.89 0.2499
15 346.57 -81967 319.68 616.5 451.03 0.2500
16 350.11 -81345 321.22 621.8 453.19 0.2500
17 353.69 -80718 322.76 627.2 455.37 0.2500
18 357.29 -80085 324.33 632.5 457.56 0.2500
19 360.93 -79448 325.90 637.9 459.78 0.2500
20 364.59 -78804 327.48 643.4 462.01 0.2499
21 368.29 -78156 329.08 648.9 464.26 0.2500
22 372.02 -77501 330.70 654.4 466.54 0.2500
23 375.79 -76841 332.33 660.0 468.83 0.2500
24 379.58 -76176 333.97 665.7 471.14 0.2500
25 383.41 -75504 335.62 671.4 473.47 0.2500
26 387.27 -74826 337.30 677.0 475.82 0.2501
27 391.17 -74143 338.98 682.8 478.20 0.2501
28 395.10 -73454 340.68 688.7 480.59 0.2501
29 399.06 -72759 342.39 694.7 483.01 0.2500
30 400.00 -72593 342.80 165.7 484.51 0.8368
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Table 25: Con�guration properties of the REMD experiment for 1YRF protein MD
simulation with GROMOS force �eld.

Variable Value
Pdes 0.25
Temperature range, K 300 - 400
Number of water molecules 2263
Number of protein atoms 383
Number of hydrogens in protein ~197
Number of constraints ~383
Number of vsites ~0
Number of DOF ~21133
Energy loss due to constraints 1.59 (kJ/mol K)

Table 26: Con�guration properties of the REMD experiment for 1YRF protein MD
simulation with AMBER, CHARMM, OPLS force �elds.

Variable Value
Pdes 0.25
Temperature range, K 300 - 400
Number of water molecules 2350
Number of protein atoms 585
Number of hydrogens in protein ~300
Number of constraints ~585
Number of vsites ~0
Number of DOF ~22320
Energy loss due to constraints 2.43 (kJ/mol K)
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Table 27: Temperature distribution for REMD experiment of 1YRF folding with AM-
BER, CHARMM, and OPLS force �elds.

Temperature, µ, σ , µ12, σ12, P12K kJ/mol kJ/mol kJ/mol kJ/mol
1 300.00 -97355 307.84
2 303.07 -96790 309.20 566.1 436.31 0.2499
3 306.17 -96219 310.58 570.8 438.25 0.2500
4 309.30 -95644 311.97 575.4 440.21 0.2500
5 312.46 -95063 313.38 580.3 442.19 0.2500
6 315.64 -94478 314.79 585.1 444.18 0.2500
7 318.85 -93889 316.22 590.0 446.19 0.2500
8 322.09 -93292 317.66 594.8 448.21 0.2500
9 325.35 -92693 319.11 599.9 450.26 0.2500

10 328.63 -92089 320.57 604.9 452.32 0.2499
11 331.95 -91479 322.04 609.9 454.39 0.2500
12 335.28 -90867 323.52 614.9 456.49 0.2500
13 338.65 -90247 325.02 620.0 458.59 0.2501
14 342.05 -89621 326.53 625.2 460.72 0.2500
15 345.48 -88991 328.06 630.4 462.86 0.2500
16 348.93 -88355 329.59 635.8 465.03 0.2499
17 352.42 -87714 331.14 641.0 467.21 0.2500
18 355.93 -87068 332.70 646.4 469.41 0.2500
19 359.48 -86416 334.28 651.8 471.63 0.2500
20 363.05 -85759 335.87 657.1 473.87 0.2500
21 366.65 -85097 337.47 662.7 476.12 0.2500
22 370.29 -84428 339.09 668.1 478.40 0.2501
23 373.95 -83755 340.72 673.8 480.70 0.2500
24 377.64 -83075 342.36 679.4 483.01 0.2500
25 381.37 -82390 344.01 685.2 485.34 0.2500
26 385.13 -81699 345.68 690.7 487.69 0.2501
27 388.91 -81003 347.37 696.7 490.06 0.2500
28 392.73 -80301 349.07 702.6 492.46 0.2499
29 396.59 -79592 350.78 708.3 494.87 0.2500
30 400.00 -78964 352.30 627.9 497.15 0.3243
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Table 28: Temperature distribution for REMD experiment of 1GB1 folding with
AMBER, CHARMM, and OPLS force �elds.

Temperature, µ, σ , µ12, σ12, P12K kJ/mol kJ/mol kJ/mol kJ/mol
1 300.00 -139714 368.51
2 302.57 -139038 369.88 677.1 522.12 0.2500
3 305.16 -138356 371.26 681.7 524.06 0.2500
4 307.76 -137670 372.64 686.3 526.02 0.2501
5 310.39 -136978 374.04 691.2 527.99 0.2500
6 313.03 -136283 375.45 696.1 529.97 0.2499
7 315.69 -135581 376.86 700.8 531.96 0.2501
8 318.37 -134876 378.29 705.6 533.97 0.2501
9 321.07 -134165 379.73 710.5 536.00 0.2501

10 323.78 -133449 381.17 715.7 538.04 0.2499
11 326.52 -132729 382.63 720.6 540.09 0.2500
12 329.27 -132003 384.09 725.4 542.15 0.2501
13 332.05 -131271 385.57 730.6 544.24 0.2500
14 334.84 -130536 387.06 735.7 546.33 0.2500
15 337.62 -129804 388.54 740.9 548.44 0.2500
16 340.45 -129058 390.04 746.0 550.54 0.2499
17 343.30 -128308 391.56 751.2 552.68 0.2500
18 346.17 -127551 393.09 756.3 554.83 0.2500
19 349.07 -126789 394.63 761.7 557.00 0.2499
20 351.98 -126022 396.18 766.9 559.18 0.2500
21 354.91 -125250 397.74 772.3 561.38 0.2500
22 357.86 -124472 399.31 777.7 563.60 0.2500
23 360.84 -123689 400.89 783.1 565.83 0.2500
24 363.83 -122900 402.49 788.5 568.08 0.2501
25 366.84 -122106 404.09 794.1 570.34 0.2499
26 369.88 -121306 405.71 799.5 572.61 0.2500
27 372.94 -120501 407.33 805.2 574.91 0.2500
28 376.01 -119692 408.97 810.9 577.22 0.2500
29 379.11 -118876 410.62 816.5 579.53 0.2500
30 382.22 -118054 412.28 822.2 581.88 0.2500
31 385.37 -117226 413.95 827.8 584.23 0.2500
32 388.53 -116393 415.63 833.7 586.61 0.2499
33 391.72 -115553 417.33 839.4 589.00 0.2501
34 394.93 -114708 419.04 845.3 591.40 0.2500
35 398.16 -113856 420.76 851.2 593.83 0.2500
36 400.00 -113372 421.74 484.3 595.74 0.5634
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Table 29: Con�guration properties of the REMD experiment for 1GB1 protein MD
simulation with AMBER, CHARMM, OPLS force �elds.

Variable Value
Pdes 0.25
Temperature range, K 300 - 400
Number of water molecules 3364
Number of protein atoms 855
Number of hydrogens in protein ~439
Number of constraints ~855
Number of vsites ~0
Number of DOF ~31986
Energy loss due to constraints 3.55 (kJ/mol K)

Table 30: Con�guration properties of the REMD experiment for 1GB1 protein MD
simulation with GROMOS force �eld.

Variable Value
Pdes 0.25
Temperature range, K 300 - 400
Number of water molecules 3391
Number of protein atoms 562
Number of hydrogens in protein ~289
Number of constraints ~562
Number of vsites ~0
Number of DOF ~31643
Energy loss due to constraints 2.34 (kJ/mol K)
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Table 31: Temperature distribution for REMD experiment of 1GB1 folding with
GROMOS force �eld.

Temperature, µ, σ , µ12, σ12, P12K kJ/mol kJ/mol kJ/mol kJ/mol
1 300.00 -134825 366.53
2 302.57 -134151 367.89 675.3 519.32 0.2499
3 305.15 -133471 369.26 680.0 521.24 0.2500
4 307.76 -132786 370.64 684.6 523.19 0.2500
5 310.38 -132096 372.03 689.5 525.15 0.2500
6 313.03 -131402 373.43 694.1 527.12 0.2501
7 315.69 -130703 374.84 698.9 529.10 0.2501
8 318.37 -129999 376.26 703.8 531.10 0.2500
9 321.07 -129290 377.68 708.7 533.12 0.2501

10 323.78 -128576 379.12 713.8 535.14 0.2499
11 326.52 -127858 380.57 718.7 537.18 0.2500
12 329.27 -127134 382.03 723.6 539.24 0.2501
13 332.05 -126404 383.50 728.7 541.31 0.2500
14 334.84 -125671 384.98 733.8 543.40 0.2500
15 337.62 -124940 386.45 739.0 545.49 0.2500
16 340.45 -124196 387.95 744.1 547.58 0.2499
17 343.30 -123448 389.45 749.2 549.71 0.2500
18 346.17 -122693 390.97 754.4 551.85 0.2500
19 349.06 -121934 392.51 759.8 554.01 0.2499
20 351.98 -121169 394.05 764.9 556.18 0.2501
21 354.91 -120398 395.60 770.3 558.36 0.2500
22 357.86 -119622 397.16 775.7 560.57 0.2500
23 360.84 -118841 398.74 781.1 562.79 0.2500
24 363.83 -118054 400.32 786.4 565.02 0.2501
25 366.84 -117262 401.92 792.1 567.27 0.2500
26 369.88 -116464 403.53 797.5 569.53 0.2501
27 372.94 -115661 405.14 803.1 571.82 0.2500
28 376.01 -114854 406.77 808.8 574.11 0.2500
29 379.11 -114040 408.41 814.4 576.42 0.2500
30 382.23 -113219 410.06 820.1 578.75 0.2500
31 385.37 -112393 411.73 825.7 581.09 0.2501
32 388.54 -111562 413.40 831.6 583.46 0.2500
33 391.70 -110732 415.07 837.5 585.83 0.2499
34 394.91 -109889 416.77 843.1 588.21 0.2500
35 398.14 -109040 418.48 849.1 590.62 0.2500
36 400.00 -108550 419.47 489.4 592.52 0.5577
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Table 32: Ambient noise values computed during the GPA* start

RMSD,
ANGL

AND, ANDH, XOR,
Å contancts contancts contacts

1L2Y run 1
AMBER 0.65 7.763 44 304 576
CHARMM 0.902 9.042 32 339.2 584
GROMOS 0.908 10.088 3.2 84.8 163.2
OPLS 0.913 9.603 21.6 324.8 555.2
GROMOS 0.908 10.088 3.2 84.8 163.2

1L2Y run 2
AMBER 0.65 7.763 44.0 304 576
CHARMM 0.902 9.041 32.0 339.2 584
GROMOS 0.908 10.082 3.2 84.8 163.2
OPLS 0.913 9.603 21.6 324.8 555.2

1YRF
AMBER 0.721 11.293 41.6 608 998.4
CHARMM 0.578 7.414 52 643.2 1056
GROMOS 0.728 13.251 1.6 185.6 284.8
OPLS 0.65 12.108 40 660.8 1056
GROMOS 0.728 13.13 1.6 192 304

1GB1
AMBER 0.787 20.617 120.8 1380.8 2204.8
CHARMM 0.897 21.429 72.8 1331.2 2072
GROMOS 0.841 26.325 4.4 464 710
OPLS 0.926 27.924 146.4 1542.4 2534.4
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Table 33: REMD results for 1L2Y, 1YRF, and 1GB1. Time column shows at what time
in replica the lowest RMSD was spotted.

1L2Y, run 1 1L2Y, run 2 1YRF 1GB1
Replica RMSD, Å Time, ps RMSD, Å Time, ps RMSD, Å Time, ps RMSD, Å Time, ps

1 4.480 42160 3.969 40880 3.474 327620 7.897 291180
2 5.035 21780 4.533 5520 2.932 241340 7.789 222800
3 4.288 23100 4.931 42240 3.884 301380 7.863 263260
4 5.950 23460 4.120 14200 4.484 120840 7.765 167380
5 5.485 27840 3.228 30940 4.156 120920 7.770 177840
6 5.113 30020 2.914 48220 4.490 121280 7.757 177340
7 5.630 53280 4.609 52060 3.097 245500 7.794 198860
8 3.559 11580 4.688 27300 4.194 120960 7.678 178360
9 3.632 43160 4.803 44960 4.620 120640 7.788 163220

10 4.559 12120 5.855 53580 4.777 286460 7.847 177660
11 4.365 11680 5.453 2480 2.754 241400 7.742 177460
12 4.427 10640 4.201 24060 2.884 245340 7.978 175640
13 4.917 10120 4.849 46860 3.064 241000 7.737 177540
14 4.945 57020 4.882 22360 4.518 120540 7.926 454400
15 4.853 56280 4.691 2760 3.126 244960 7.653 177920
16 5.058 44860 4.154 57580 2.615 241420 7.767 202060
17 5.032 51400 5.384 36560 3.707 330500 7.813 263620
18 4.827 45260 5.275 36160 3.499 332320 7.712 263760
19 4.731 25580 4.521 60560 3.040 244940 7.630 263720
20 5.058 60560 4.685 41560 3.342 241220 7.139 18340
21 4.572 17000 5.352 32300 4.655 120580 7.674 177420
22 4.694 22280 3.829 56880 2.989 245040 7.748 178380
23 5.123 55620 4.960 22160 2.883 245240 7.949 262720
24 5.222 34140 5.228 60600 3.595 195540 7.538 202080
25 4.973 60600 5.257 1100 3.684 239980 7.840 202280
26 5.301 59140 3.380 37860 2.961 241320 7.847 167180
27 4.357 38440 5.535 62420 2.998 245160 7.767 263780
28 4.634 37760 3.724 37880 4.318 120940 7.666 177400
29 3.455 57260 4.750 4180 2.850 241360 7.769 263800
30 4.766 16080 4.170 40720 2.953 245740 8.188 223240
31 5.563 39460 5.243 15900 - - 7.829 263840
32 5.420 3300 3.886 44140 - - 7.828 263140
33 - - - - - - 7.944 296840
34 - - - - - - 7.746 178400
35 - - - - - - 7.604 263820
36 - - - - - - 7.794 202040
Min 3.455 57260 2.914 48220 2.615 241420 7.139 18340
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Table 34: SMD full results, all simulations had the same duration 2 ns.

Force 1L2Y 1YRF 1GB1
KJ/mol AARMSD BBRMSD AARMSD BBRMSD AARMSD BBRMSD

1 5.931 3.923 7.659 6.914 7.694 6.167
10 2.235 1.650 2.994 1.946 5.033 3.564
20 2.648 1.842 3.212 2.708 3.855 2.240
30 4.556 4.274 3.350 2.720 2.271 1.454
40 1.089 0.606 1.425 0.961 2.005 1.186
50 4.647 4.430 0.819 0.505 1.680 1.156
60 4.754 4.380 1.507 1.217 1.669 1.034
70 1.254 0.760 1.123 0.652 1.710 0.802
80 4.394 4.094 0.629 0.254 1.495 0.942
90 1.044 0.572 0.808 0.396 1.591 0.761
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Table 35: GPA* runtime analysis of the metrics’ progress. 1L2Y with AMBER force �eld. 1st run

Allowed Percent Metric Percent Promotions Percent of Promotions
Metric fails allowed total steps steps per metric promotions per 1000 steps
RMSD 20 40 % 15591 45.52 % 110 66.67 % 7.06
ANGL 10 20 % 7871 22.98 % 51 30.91 % 6.48
ANDH 5 10 % 2817 8.22 % 3 1.82 % 1.06
AND 5 10 % 2760 8.06 % 0 0.00 % 0.00
XOR 10 20 % 5213 15.22 % 1 0.61 % 0.19
Total 50 100 % 34252 100.00 % 165 100.00 % 4.82 × 5

Table 36: GPA* runtime analysis of the metrics’ progress. 1L2Y with AMBER force �eld. 2nd run

Allowed Percent Metric Percent Promotions Percent of Promotions
Metric fails allowed total steps steps per metric promotions per 1000 steps
RMSD 20 40 % 15116 44.26 % 98 60.12 % 6.48
ANGL 10 20 % 8559 25.06 % 61 37.42 % 7.13
ANDH 5 10 % 2685 7.86 % 2 1.23 % 0.74
AND 5 10 % 2640 7.73 % 0 0.00 % 0.00
XOR 10 20 % 5153 15.09 % 2 1.23 % 0.39
Total 50 100 % 34153 100.00 % 163 100.00 % 4.77 × 5
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Table 37: GPA* runtime analysis of the metrics’ progress. Summary of 1L2Y with AMBER force �eld 1st run and 2nd run.

Allowed Percent Metric Percent Promotions Percent of Promotions
Metric fails allowed total steps steps per metric promotions per 1000 steps
RMSD 20 40 % 30707 44.89 % 208 63.41 % 6.77
ANGL 10 20 % 16430 24.02 % 112 34.15 % 6.82
ANDH 5 10 % 5502 8.04 % 5 1.52 % 0.91
AND 5 10 % 5400 7.89 % 0 0.00 % 0.00
XOR 10 20 % 10366 15.15 % 3 0.91 % 0.29
Total 50 100 % 68405 100.00 % 328 100.00 % 4.79 × 5

Table 38: GPA* runtime analysis of the metrics’ progress. 1L2Y with CHARMM force �eld. 1st run

Allowed Percent Metric Percent Promotions Percent of Promotions
Metric fails allowed total steps steps per metric promotions per 1000 steps
RMSD 20 40 % 13352 39.73 % 100 57.47 % 7.49
ANGL 10 20 % 7985 23.76 % 52 29.89 % 6.51
ANDH 5 10 % 3325 9.89 % 11 6.32 % 3.31
AND 5 10 % 3177 9.45 % 3 1.72 % 0.94
XOR 10 20 % 5772 17.17 % 8 4.60 % 1.39
Total 50 100 % 33611 100.00 % 174 100.00 % 5.18 × 5
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Table 39: GPA* runtime analysis of the metrics’ progress. 1L2Y with CHARMM force �eld. 2nd run

Allowed Percent Metric Percent Promotions Percent of Promotions
Metric fails allowed total steps steps per metric promotions per 1000 steps
RMSD 20 40 % 12484 41.23 % 94 78.99 % 7.53
ANGL 10 20 % 6175 20.39 % 15 12.61 % 2.43
ANDH 5 10 % 3082 10.18 % 4 3.36 % 1.30
AND 5 10 % 3016 9.96 % 3 2.52 % 0.99
XOR 10 20 % 5521 18.23 % 3 2.52 % 0.54
Total 50 100 % 30278 100.00 % 119 100.00 % 3.93 × 5

Table 40: GPA* runtime analysis of the metrics’ progress. Summary of 1L2Y with CHARMM force �eld 1st run and 2nd run

Allowed Percent Metric Percent Promotions Percent of Promotions
Metric fails allowed total steps steps per metric promotions per 1000 steps
RMSD 20 40 % 25836 40.44 % 194 66.21 % 7.51
ANGL 10 20 % 14160 22.16 % 67 22.87 % 4.73
ANDH 5 10 % 6407 10.03 % 15 5.12 % 2.34
AND 5 10 % 6193 9.69 % 6 2.05 % 0.97
XOR 10 20 % 11293 17.68 % 11 3.75 % 0.97
Total 50 100 % 63889 100.00 % 293 100.00 % 4.59 × 5
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Table 41: GPA* runtime analysis of the metrics’ progress. 1L2Y with GROMOS force �eld. 1st run

Allowed Percent Metric Percent Promotions Percent of Promotions
Metric fails allowed total steps steps per metric promotions per 1000 steps
RMSD 20 40 % 14189 42.25 % 82 57.34 % 5.78
ANGL 10 20 % 7711 22.96 % 47 32.87 % 6.10
ANDH 5 10 % 2907 8.66 % 4 2.80 % 1.38
AND 5 10 % 2957 8.81 % 4 2.80 % 1.35
XOR 10 20 % 5819 17.33 % 6 4.20 % 1.03
Total 50 100 % 33583 100.00 % 143 100.00 % 4.26 × 5

Table 42: GPA* runtime analysis of the metrics’ progress. 1L2Y with GROMOS force �eld. 2nd run

Allowed Percent Metric Percent Promotions Percent of Promotions
Metric fails allowed total steps steps per metric promotions per 1000 steps
RMSD 20 40 % 14810 43.56 % 115 75.66 % 7.77
ANGL 10 20 % 7163 21.07 % 29 19.08 % 4.05
ANDH 5 10 % 3164 9.31 % 3 1.97 % 0.95
AND 5 10 % 3030 8.91 % 1 0.66 % 0.33
XOR 10 20 % 5834 17.16 % 4 2.63 % 0.69
Total 50 100 % 34001 100.00 % 152 100.00 % 4.47 × 5
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Table 43: GPA* runtime analysis of the metrics’ progress. Summary of 1L2Y with GROMOS force �eld 1st run and 2nd run

Allowed Percent Metric Percent Promotions Percent of Promotions
Metric fails allowed total steps steps per metric promotions per 1000 steps
RMSD 20 40 % 28999 42.91 % 197 66.78 % 6.79
ANGL 10 20 % 14874 22.01 % 76 25.76 % 5.11
ANDH 5 10 % 6071 8.98 % 7 2.37 % 1.15
AND 5 10 % 5987 8.86 % 5 1.69 % 0.84
XOR 10 20 % 11653 17.24 % 10 3.39 % 0.86
Total 50 100 % 67584 100.00 % 295 100.00 % 4.36 × 5

Table 44: GPA* runtime analysis of the metrics’ progress. 1L2Y with OPLS force �eld. 1st run

Allowed Percent Metric Percent Promotions Percent of Promotions
Metric fails allowed total steps steps per metric promotions per 1000 steps
RMSD 20 40 % 13372 40.02 % 95 52.78 % 7.10
ANGL 10 20 % 7988 23.91 % 50 27.78 % 6.26
ANDH 5 10 % 3418 10.23 % 19 10.56 % 5.56
AND 5 10 % 2787 8.34 % 2 1.11 % 0.72
XOR 10 20 % 5847 17.50 % 14 7.78 % 2.39
Total 50 100 % 33412 100.00 % 180 100.00 % 5.39 × 5
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Table 45: GPA* runtime analysis of the metrics’ progress. 1L2Y with OPLS force �eld. 2nd run

Allowed Percent Metric Percent Promotions Percent of Promotions
Metric fails allowed total steps steps per metric promotions per 1000 steps
RMSD 20 40 % 14074 40.88 % 123 62.76 % 8.74
ANGL 10 20 % 8386 24.36 % 52 26.53 % 6.20
ANDH 5 10 % 3153 9.16 % 6 3.06 % 1.90
AND 5 10 % 3324 9.65 % 8 4.08 % 2.41
XOR 10 20 % 5494 15.96 % 7 3.57 % 1.27
Total 50 100 % 34431 100.00 % 196 100.00 % 5.69 × 5

Table 46: GPA* runtime analysis of the metrics’ progress. Summary of 1L2Y with OPLS force �eld 1st run and 2nd run

Allowed Percent Metric Percent Promotions Percent of Promotions
Metric fails allowed total steps steps per metric promotions per 1000 steps
RMSD 20 40 % 27446 40.46 % 218 57.98 % 7.94
ANGL 10 20 % 16374 24.14 % 102 27.13 % 6.23
ANDH 5 10 % 6571 9.69 % 25 6.65 % 3.80
AND 5 10 % 6111 9.01 % 10 2.66 % 1.64
XOR 10 20 % 11341 16.72 % 21 5.59 % 1.85
Total 50 100 % 67843 100.00 % 376 100.00 % 5.54 × 5
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Table 47: GPA* runtime analysis of the metrics’ progress. Summary of 1L2Y with AMBER (1st run), CHARMM (1st run),
GROMOS (1st run), and OPLS (1st run) force �elds.

Allowed Percent Metric Percent Promotions Percent of Promotions
Metric fails allowed total steps steps per metric promotions per 1000 steps
RMSD 20 40 % 56504 41.90 % 387 58.46 % 6.85
ANGL 10 20 % 31555 23.40 % 200 30.21 % 6.34
ANDH 5 10 % 12467 9.24 % 37 5.59 % 2.97
AND 5 10 % 11681 8.66 % 9 1.36 % 0.77
XOR 10 20 % 22651 16.80 % 29 4.38 % 1.28
Total 50 100 % 134858 100.00 % 662 100.00 % 4.91 × 5

Table 48: GPA* runtime analysis of the metrics’ progress. Summary of 1L2Y with AMBER (2nd run), CHARMM (2nd run),
GROMOS (2nd run), and OPLS (2nd run) force �elds.

Allowed Percent Metric Percent Promotions Percent of Promotions
Metric fails allowed total steps steps per metric promotions per 1000 steps
RMSD 20 40 % 56484 42.51 % 430 68.25 % 7.61
ANGL 10 20 % 30283 22.79 % 157 24.92 % 5.18
ANDH 5 10 % 12084 9.10 % 15 2.38 % 1.24
AND 5 10 % 12010 9.04 % 12 1.90 % 1.00
XOR 10 20 % 22002 16.56 % 16 2.54 % 0.73
Total 50 100 % 132863 100.00 % 630 100.00 % 4.74 × 5
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Table 49: GPA* runtime analysis of the metrics’ progress. Summary of 1L2Y with AMBER (1st and 2nd run), CHARMM (1st
and 2nd run), GROMOS (1st and 2nd run), and OPLS (1st and 2nd run) force �elds.

Allowed Percent Metric Percent Promotions Percent of Promotions
Metric fails allowed total steps steps per metric promotions per 1000 steps
RMSD 20 40 % 112988 42.20 % 817 63.24 % 7.23
ANGL 10 20 % 61838 23.10 % 357 27.63 % 5.77
ANDH 5 10 % 24551 9.17 % 52 4.02 % 2.12
AND 5 10 % 23691 8.85 % 21 1.63 % 0.89
XOR 10 20 % 44653 16.68 % 45 3.48 % 1.01
Total 50 100 % 267721 100.00 % 1292 100.00 % 4.83 × 5

Table 50: GPA* runtime analysis of the metrics’ progress. 1L2Y with AMBER force �eld. 1st run. Normalized.

Allowed Percent Metric Percent Promotions Percent of Promotions
Metric fails allowed total steps steps per metric promotions per 1000 steps
RMSD 5 20 % 3898 24.34 % 27.5 48.67 % 7.06
ANGL 5 20 % 3936 24.57 % 25.5 45.13 % 6.48
ANDH 5 20 % 2817 17.59 % 3.0 5.31 % 1.06
AND 5 20 % 2760 17.23 % 0.0 0.00 % 0.00
XOR 5 20 % 2606 16.27 % 0.5 0.88 % 0.19
Total 25 100 % 16017 100.00 % 56.5 100.00 % 3.53 × 5
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Table 51: GPA* runtime analysis of the metrics’ progress. 1L2Y with AMBER force �eld. 2nd run. Normalized.

Allowed Percent Metric Percent Promotions Percent of Promotions
Metric fails allowed total steps steps per metric promotions per 1000 steps
RMSD 5 20 % 3779 23.68 % 24.5 42.24 % 6.48
ANGL 5 20 % 4280 26.81 % 30.5 52.59 % 7.13
ANDH 5 20 % 2685 16.82 % 2.0 3.45 % 0.74
AND 5 20 % 2640 16.54 % 0.0 0.00 % 0.00
XOR 5 20 % 2576 16.14 % 1.0 1.72 % 0.39
Total 25 100 % 15960 100.00 % 58.0 100.00 % 3.63 × 5

Table 52: GPA* runtime analysis of the metrics’ progress. Summary of 1L2Y with AMBER force �eld 1st run and 2nd run.
Normalized.

Allowed Percent Metric Percent Promotions Percent of Promotions
Metric fails allowed total steps steps per metric promotions per 1000 steps
RMSD 5 20 % 7677 24.01 % 52.0 45.41 % 6.77
ANGL 5 20 % 8215 25.69 % 56.0 48.91 % 6.82
ANDH 5 20 % 5502 17.21 % 5.0 4.37 % 0.91
AND 5 20 % 5400 16.89 % 0.0 0.00 % 0.00
XOR 5 20 % 5183 16.21 % 1.5 1.31 % 0.29
Total 25 100 % 31977 100.00 % 114.5 100.00 % 3.58 × 5
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Table 53: GPA* runtime analysis of the metrics’ progress. 1L2Y with CHARMM force �eld. 1st run. Normalized.

Allowed Percent Metric Percent Promotions Percent of Promotions
Metric fails allowed total steps steps per metric promotions per 1000 steps
RMSD 5 20 % 3338 19.97 % 25.0 36.23 % 7.49
ANGL 5 20 % 3992 23.88 % 26.0 37.68 % 6.51
ANDH 5 20 % 3325 19.89 % 11.0 15.94 % 3.31
AND 5 20 % 3177 19.00 % 3.0 4.35 % 0.94
XOR 5 20 % 2886 17.26 % 4.0 5.80 % 1.39
Total 25 100 % 16718 100.00 % 69.0 100.00 % 4.13 × 5

Table 54: GPA* runtime analysis of the metrics’ progress. 1L2Y with CHARMM force �eld. 2nd run. Normalized.

Allowed Percent Metric Percent Promotions Percent of Promotions
Metric fails allowed total steps steps per metric promotions per 1000 steps
RMSD 5 20 % 3121 20.71 % 23.5 59.49 % 7.53
ANGL 5 20 % 3088 20.49 % 7.5 18.99 % 2.43
ANDH 5 20 % 3082 20.46 % 4.0 10.13 % 1.30
AND 5 20 % 3016 20.02 % 3.0 7.59 % 0.99
XOR 5 20 % 2760 18.32 % 1.5 3.80 % 0.54
Total 25 100 % 15067 100.00 % 39.5 100.00 % 2.62 × 5
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Table 55: GPA* runtime analysis of the metrics’ progress. Summary of 1L2Y with CHARMM force �eld 1st run and 2nd run.
Normalized.

Allowed Percent Metric Percent Promotions Percent of Promotions
Metric fails allowed total steps steps per metric promotions per 1000 steps
RMSD 5 20 % 6459 20.32 % 48.5 44.70 % 7.51
ANGL 5 20 % 7080 22.27 % 33.5 30.88 % 4.73
ANDH 5 20 % 6407 20.16 % 15.0 13.82 % 2.34
AND 5 20 % 6193 19.48 % 6.0 5.53 % 0.97
XOR 5 20 % 5646 17.76 % 5.5 5.07 % 0.97
Total 25 100 % 31786 100.00 % 108.5 100.00 % 3.41 × 5

Table 56: GPA* runtime analysis of the metrics’ progress. 1L2Y with GROMOS force �eld. 1st run. Normalized.

Allowed Percent Metric Percent Promotions Percent of Promotions
Metric fails allowed total steps steps per metric promotions per 1000 steps
RMSD 5 20 % 3547 21.93 % 20.5 37.27 % 5.78
ANGL 5 20 % 3856 23.83 % 23.5 42.73 % 6.10
ANDH 5 20 % 2907 17.97 % 4.0 7.27 % 1.38
AND 5 20 % 2957 18.28 % 4.0 7.27 % 1.35
XOR 5 20 % 2910 17.99 % 3.0 5.45 % 1.03
Total 25 100 % 16176 100.00 % 55.0 100.00 % 3.40 × 5
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Table 57: GPA* runtime analysis of the metrics’ progress. 1L2Y with GROMOS force �eld. 2nd run. Normalized.

Allowed Percent Metric Percent Promotions Percent of Promotions
Metric fails allowed total steps steps per metric promotions per 1000 steps
RMSD 5 20 % 3702 22.58 % 28.75 58.38 % 7.77
ANGL 5 20 % 3582 21.85 % 14.5 29.44 % 4.05
ANDH 5 20 % 3164 19.30 % 3.0 6.09 % 0.95
AND 5 20 % 3030 18.48 % 1.0 2.03 % 0.33
XOR 5 20 % 2917 17.79 % 2.0 4.06 % 0.69
Total 25 100 % 16395 100.00 % 49.25 100.00 % 3.00 × 5

Table 58: GPA* runtime analysis of the metrics’ progress. Summary of 1L2Y with GROMOS force �eld 1st run and 2nd run.
Normalized.

Allowed Percent Metric Percent Promotions Percent of Promotions
Metric fails allowed total steps steps per metric promotions per 1000 steps
RMSD 5 20 % 7250 22.26 % 49.25 47.24 % 6.79
ANGL 5 20 % 7437 22.83 % 38.0 36.45 % 5.11
ANDH 5 20 % 6071 18.64 % 7.0 6.71 % 1.15
AND 5 20 % 5987 18.38 % 5.0 4.80 % 0.84
XOR 5 20 % 5826 17.89 % 5.0 4.80 % 0.86
Total 25 100 % 32571 100.00 % 104.25 100.00 % 3.20 × 5
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Table 59: GPA* runtime analysis of the metrics’ progress. 1L2Y with OPLS force �eld. 1st run. Normalized.

Allowed Percent Metric Percent Promotions Percent of Promotions
Metric fails allowed total steps steps per metric promotions per 1000 steps
RMSD 5 20 % 3343 20.30 % 23.75 30.94 % 7.10
ANGL 5 20 % 3994 24.26 % 25.0 32.57 % 6.26
ANDH 5 20 % 3418 20.76 % 19.0 24.76 % 5.56
AND 5 20 % 2787 16.93 % 2.0 2.61 % 0.72
XOR 5 20 % 2924 17.76 % 7.0 9.12 % 2.39
Total 25 100 % 16466 100.00 % 76.75 100.00 % 4.66 × 5

Table 60: GPA* runtime analysis of the metrics’ progress. 1L2Y with OPLS force �eld. 2nd run. Normalized.

Allowed Percent Metric Percent Promotions Percent of Promotions
Metric fails allowed total steps steps per metric promotions per 1000 steps
RMSD 5 20 % 3518 20.78 % 30.75 41.41 % 8.74
ANGL 5 20 % 4193 24.76 % 26.0 35.02 % 6.20
ANDH 5 20 % 3153 18.62 % 6.0 8.08 % 1.90
AND 5 20 % 3324 19.63 % 8.0 10.77 % 2.41
XOR 5 20 % 2747 16.22 % 3.5 4.71 % 1.27
Total 25 100 % 16936 100 % 74.25 100.00 % 4.38 × 5
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Table 61: GPA* runtime analysis of the metrics’ progress. Summary of 1L2Y with OPLS force �eld 1st run and 2nd run.
Normalized.

Allowed Percent Metric Percent Promotions Percent of Promotions
Metric fails allowed total steps steps per metric promotions per 1000 steps
RMSD 5 20 % 6862 20.54 % 54.5 36.09 % 7.94
ANGL 5 20 % 8187 24.51 % 51.0 33.77 % 6.23
ANDH 5 20 % 6571 19.67 % 25.0 16.56 % 3.80
AND 5 20 % 6111 18.30 % 10.0 6.62 % 1.64
XOR 5 20 % 5670 16.98 % 10.5 6.95 % 1.85
Total 25 100 % 33401 100.00 % 151.0 100.00 % 4.52 × 5

Table 62: GPA* runtime analysis of the metrics’ progress. Summary of 1L2Y with AMBER (1st run), CHARMM (1st run),
GROMOS (1st run), and OPLS (1st run) force �elds. Normalized.

Allowed Percent Metric Percent Promotions Percent of Promotions
Metric fails allowed total steps steps per metric promotions per 1000 steps
RMSD 5 20 % 14126 21.61 % 96.75 37.61 % 6.85
ANGL 5 20 % 15778 24.13 % 100.0 38.87 % 6.34
ANDH 5 20 % 12467 19.07 % 37.0 14.38 % 2.97
AND 5 20 % 11681 17.87 % 9.0 3.50 % 0.77
XOR 5 20 % 11326 17.32 % 14.5 5.64 % 1.28
Total 25 100 % 65377 100.00 % 257.25 100.00 % 3.93 × 5
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Table 63: GPA* runtime analysis of the metrics’ progress. Summary of 1L2Y with AMBER (2nd run), CHARMM (2nd run),
GROMOS (2nd run), and OPLS (2nd run) force �elds. Normalized.

Allowed Percent Metric Percent Promotions Percent of Promotions
Metric fails allowed total steps steps per metric promotions per 1000 steps
RMSD 5 20 % 14121 21.94 % 107.5 48.64 % 7.61
ANGL 5 20 % 15142 23.53 % 78.5 35.52 % 5.18
ANDH 5 20 % 12084 18.78 % 15.0 6.79 % 1.24
AND 5 20 % 12010 18.66 % 12.0 5.43 % 1.00
XOR 5 20 % 11001 17.09 % 8.0 3.62 % 0.73
Total 25 100 % 64358 100.00 % 221.0 100.00 % 3.43 × 5

Table 64: GPA* runtime analysis of the metrics’ progress. Summary of 1L2Y with AMBER (1st and 2nd run), CHARMM (1st
and 2nd run), GROMOS (1st and 2nd run), and OPLS (1st and 2nd run) force �elds. Normalized.

Allowed Percent Metric Percent Promotions Percent of Promotions
Metric fails allowed total steps steps per metric promotions per 1000 steps
RMSD 5 20 % 28247 21.77 % 204.25 42.71 % 7.23
ANGL 5 20 % 30919 23.83 % 178.5 37.32 % 5.77
ANDH 5 20 % 24551 18.92 % 52.0 10.87 % 2.12
AND 5 20 % 23691 18.26 % 21.0 4.39 % 0.89
XOR 5 20 % 22326 17.21 % 22.5 4.70 % 1.01
Total 25 100 % 129734 100.00 % 478.25 100.00 % 3.69 × 5
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Table 65: GPA* runtime analysis of the metrics’ progress. 1YRF with AMBER force �eld.

Allowed Percent Metric Percent Promotions Percent of Promotions
metric fails allowed total steps steps per metric promotions per 1000 steps
RMSD 20 40 % 65479 38.39 % 173 39.59 % 2.64
ANGL 10 20 % 36191 21.22 % 144 32.95 % 3.98
ANDH 5 10 % 17951 10.53 % 60 13.73 % 3.34
AND 5 10 % 17492 10.26 % 23 5.26 % 1.31
XOR 10 20 % 33440 19.61 % 37 8.47 % 1.11
Total 50 100 % 170553 100.00 % 437 100.00 % 2.56 × 5

Table 66: GPA* runtime analysis of the metrics’ progress. 1YRF with CHARMM force �eld.

Allowed Percent Metric Percent Promotions Percent of Promotions
metric fails allowed total steps steps per metric promotions per 1000 steps
RMSD 20 40 % 53902 37.79 % 129 40.82 % 2.39
ANGL 10 20 % 31053 21.77 % 119 37.66 % 3.83
ANDH 5 10 % 15217 10.67 % 34 10.76 % 2.23
AND 5 10 % 14774 10.36 % 13 4.11 % 0.88
XOR 10 20 % 27677 19.41 % 21 6.65 % 0.76
Total 50 100 % 142623 100.00 % 316 100.00 % 2.22 × 5
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Table 67: GPA* runtime analysis of the metrics’ progress. 1YRF with GROMOS force �eld.

Allowed Percent Metric Percent Promotions Percent of Promotions
metric fails allowed total steps steps per metric promotions per 1000 steps
RMSD 20 40 % 66346 38.19 % 120 40.96 % 1.81
ANGL 10 20 % 37786 21.75 % 139 47.44 % 3.68
ANDH 5 10 % 17469 10.06 % 2 0.68 % 0.11
AND 5 10 % 17747 10.22 % 6 2.05 % 0.34
XOR 10 20 % 34371 19.79 % 26 8.87 % 0.76
Total 50 100 % 173719 100.00 % 293 100.00 % 1.69 × 5

Table 68: GPA* runtime analysis of the metrics’ progress. 1YRF with OPLS force �eld.

Allowed Percent Metric Percent Promotions Percent of Promotions
metric fails allowed total steps steps per metric promotions per 1000 steps
RMSD 20 40 % 68343 41.13 % 230 55.69 % 3.37
ANGL 10 20 % 33303 20.04 % 95 23.00 % 2.85
ANDH 5 10 % 17174 10.34 % 38 9.20 % 2.21
AND 5 10 % 15866 9.55 % 9 2.18 % 0.57
XOR 10 20 % 31460 18.94 % 41 9.93 % 1.30
Total 50 100 % 166146 100.00 % 413 100.00 % 2.49 × 5
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Table 69: GPA* runtime analysis of the metrics’ progress. Summary of 1YRF with AMBER, CHARMM, GROMOS, and
OPLS force �elds.

Allowed Percent Metric Percent Promotions Percent of Promotions
metric fails allowed total steps steps per metric promotions per 1000 steps
RMSD 20 40 % 254070 38.91 % 652 44.69 % 2.57
ANGL 10 20 % 138333 21.18 % 497 34.06 % 3.59
ANDH 5 10 % 67811 10.38 % 134 9.18 % 1.98
AND 5 10 % 65879 10.09 % 51 3.50 % 0.77
XOR 10 20 % 126948 19.44 % 125 8.57 % 0.98
Total 50 100 % 653041 100.00 % 1459 100.00 % 2.23 × 5

Table 70: GPA* runtime analysis of the metrics’ progress. 1YRF with AMBER force �eld. Normalized.

Allowed Percent Metric Percent Promotions Percent of Promotions
metric fails allowed total steps steps per metric promotions per 1000 steps
RMSD 5 20 % 16370 18.90 % 43.25 19.95 % 2.64
ANGL 5 20 % 18096 20.89 % 72.0 33.22 % 3.98
ANDH 5 20 % 17951 20.72 % 60.0 27.68 % 3.34
AND 5 20 % 17492 20.19 % 23.0 10.61 % 1.31
XOR 5 20 % 16720 19.30 % 18.5 8.54 % 1.11
Total 25 100 % 86628 100.00 % 216.75 100.00 % 2.50 × 5
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Table 71: GPA* runtime analysis of the metrics’ progress. 1YRF with CHARMM force �eld. Normalized.

Allowed Percent Metric Percent Promotions Percent of Promotions
metric fails allowed total steps steps per metric promotions per 1000 steps
RMSD 5 20 % 13476 18.50 % 32.25 21.61 % 2.39
ANGL 5 20 % 15526 21.32 % 59.5 39.87 % 3.83
ANDH 5 20 % 15217 20.89 % 34.0 22.78 % 2.23
AND 5 20 % 14774 20.29 % 13.0 8.71 % 0.88
XOR 5 20 % 13838 19.00 % 10.5 7.04 % 0.76
Total 25 100 % 72832 100.00 % 149.25 100.00 % 2.05 × 5

Table 72: GPA* runtime analysis of the metrics’ progress. 1YRF with GROMOS force �eld. Normalized.

Allowed Percent Metric Percent Promotions Percent of Promotions
metric fails allowed total steps steps per metric promotions per 1000 steps
RMSD 5 20 % 16586 18.87 % 30.0 24.90 % 1.81
ANGL 5 20 % 18893 21.50 % 69.5 57.68 % 3.68
ANDH 5 20 % 17469 19.88 % 2.0 1.66 % 0.11
AND 5 20 % 17747 20.19 % 6.0 4.98 % 0.34
XOR 5 20 % 17186 19.56 % 13.0 10.79 % 0.76
Total 25 100 % 87881 100.00 % 120.5 100.00 % 1.37 × 5
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Table 73: GPA* runtime analysis of the metrics’ progress. 1YRF with OPLS force �eld. Normalized.

Allowed Percent Metric Percent Promotions Percent of Promotions
metric fails allowed total steps steps per metric promotions per 1000 steps
RMSD 5 20 % 17086 20.71 % 57.5 33.33 % 3.37
ANGL 5 20 % 16652 20.18 % 47.5 27.54 % 2.85
ANDH 5 20 % 17174 20.82 % 38.0 22.03 % 2.21
AND 5 20 % 15866 19.23 % 9.0 5.22 % 0.57
XOR 5 20 % 15730 19.06 % 20.5 11.88 % 1.30
Total 25 100 % 82507 100.00 % 172.5 100.00 % 2.09 × 5

Table 74: GPA* runtime analysis of the metrics’ progress. Summary of 1YRF with AMBER, CHARMM, GROMOS, and
OPLS force �elds. Normalized.

Allowed Percent Metric Percent Promotions Percent of Promotions
metric fails allowed total steps steps per metric promotions per 1000 steps
RMSD 5 20 % 63518 19.26 % 163.0 24.73 % 2.57
ANGL 5 20 % 69166 20.97 % 248.5 37.71 % 3.59
ANDH 5 20 % 67811 20.56 % 134.0 20.33 % 1.98
AND 5 20 % 65879 19.97 % 51.0 7.74 % 0.77
XOR 5 20 % 63474 19.24 % 62.5 9.48 % 0.98
Total 25 100 % 329848 100.00 % 659.0 100.00 % 2.00 × 5
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Table 75: GPA* runtime analysis of the metrics’ progress. 1GB1 with AMBER force �eld.

Allowed Percent Metric Percent Promotions Percent of Promotions
metric fails allowed total steps steps per metric promotions per 1000 steps
RMSD 20 40 % 79182 39.80 % 296 35.75 % 3.74
ANGL 10 20 % 44115 22.17 % 291 35.14 % 6.60
ANDH 5 10 % 21099 10.60 % 137 16.55 % 6.49
AND 5 10 % 19319 9.71 % 48 5.80 % 2.48
XOR 10 20 % 35251 17.72 % 56 6.76 % 1.59
Total 50 100 % 198966 100.00 % 828 100.00 % 4.16

Table 76: GPA* runtime analysis of the metrics’ progress. 1GB1 with CHARMM force �eld.

Allowed Percent Metric Percent Promotions Percent of Promotions
metric fails allowed total steps steps per metric promotions per 1000 steps
RMSD 20 40 % 115520 38.58 % 222 28.14 % 1.92
ANGL 10 20 % 65134 21.75 % 292 37.01 % 4.48
ANDH 5 10 % 32953 11.00 % 178 22.56 % 5.40
AND 5 10 % 30522 10.19 % 47 5.96 % 1.54
XOR 10 20 % 55318 18.47 % 50 6.34 % 0.90
Total 50 100 % 299447 100.00 % 789 100.00 % 2.63
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Table 77: GPA* runtime analysis of the metrics’ progress. 1GB1 with GROMOS force �eld.

Allowed Percent Metric Percent Promotions Percent of Promotions
metric fails allowed total steps steps per metric promotions per 1000 steps
RMSD 20 40 % 99730 39.69 % 238 57.35 % 2.39
ANGL 10 20 % 55377 22.04 % 177 42.65 % 3.20
ANDH 5 10 % 25080 9.98 % 0 0.00 % 0.00
AND 5 10 % 25080 9.98 % 0 0.00 % 0.00
XOR 10 20 % 45980 18.30 % 0 0.00 % 0.00
Total 50 100 % 251247 100.00 % 415 100.00 % 1.65

Table 78: GPA* runtime analysis of the metrics’ progress. 1GB1 with OPLS force �eld.

Allowed Percent Metric Percent Promotions Percent of Promotions
metric fails allowed total steps steps per metric promotions per 1000 steps
RMSD 20 40 % 83992 39.95 % 176 51.01 % 2.10
ANGL 10 20 % 45220 21.51 % 161 46.67 % 3.56
ANDH 5 10 % 21269 10.12 % 5 1.45 % 0.24
AND 5 10 % 21000 9.99 % 0 0.00 % 0.00
XOR 10 20 % 38773 18.44 % 3 0.87 % 0.08
Total 50 100 % 210254 100.00 % 345 100.00 % 1.64
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Table 79: GPA* runtime analysis of the metrics’ progress. Summary of 1GB1 with AMBER, CHARMM, GROMOS, and
OPLS force �elds.

Allowed Percent Metric Percent Promotions Percent of Promotions
metric fails allowed total steps steps per metric promotions per 1000 steps
RMSD 20 40 % 378424 39.42 % 932 39.21 % 2.46
ANGL 10 20 % 209846 21.86 % 921 38.75 % 4.39
ANDH 5 10 % 100401 10.46 % 320 13.46 % 3.19
AND 5 10 % 95921 9.99 % 95 4.00 % 0.99
XOR 10 20 % 175322 18.26 % 109 4.59 % 0.62
Total 50 100 % 959914 100.00 % 2377 100.00 % 2.48

Table 80: GPA* runtime analysis of the metrics’ progress. 1GB1 with AMBER force �eld. Normalized.

Allowed Percent Metric Percent Promotions Percent of Promotions
metric fails allowed total steps steps per metric promotions per 1000 steps
RMSD 5 20 % 19796 19.82 % 74.0 17.11 % 3.74
ANGL 5 20 % 22058 22.08 % 145.5 33.64 % 6.60
ANDH 5 20 % 21099 21.12 % 137.0 31.68 % 6.49
AND 5 20 % 19319 19.34 % 48.0 11.10 % 2.48
XOR 5 20 % 17626 17.64 % 28.0 6.47 % 1.59
Total 25 100 % 99896 100 % 432.5 100 % 4.33
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Table 81: GPA* runtime analysis of the metrics’ progress. 1GB1 with CHARMM force �eld. Normalized.

Allowed Percent Metric Percent Promotions Percent of Promotions
metric fails allowed total steps steps per metric promotions per 1000 steps
RMSD 5 20 % 28880 18.93 % 55.5 12.29 % 1.92
ANGL 5 20 % 32567 21.34 % 146.0 32.34 % 4.48
ANDH 5 20 % 32953 21.60 % 178.0 39.42 % 5.40
AND 5 20 % 30522 20.00 % 47.0 10.41 % 1.54
XOR 5 20 % 27659 18.13 % 25.0 5.54 % 0.90
Total 25 100 % 152581 100 % 451.5 100 % 2.96

Table 82: GPA* runtime analysis of the metrics’ progress. 1GB1 with GROMOS force �eld. Normalized.

Allowed Percent Metric Percent Promotions Percent of Promotions
metric fails allowed total steps steps per metric promotions per 1000 steps
RMSD 5 20 % 24932 19.82 % 59.5 40.20 % 2.39
ANGL 5 20 % 27688 22.02 % 88.5 59.80 % 3.20
ANDH 5 20 % 25080 19.94 % 0.0 0.00 % 0.00
AND 5 20 % 25080 19.94 % 0.0 0.00 % 0.00
XOR 5 20 % 22990 18.28 % 0.0 0.00 % 0.00
Total 25 100 % 125771 100 % 148.0 100 % 1.18
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Table 83: GPA* runtime analysis of the metrics’ progress. 1GB1 with OPLS force �eld. Normalized.

Allowed Percent Metric Percent Promotions Percent of Promotions
metric fails allowed total steps steps per metric promotions per 1000 steps
RMSD 5 20 % 20998 19.95 % 44.0 33.59 % 2.10
ANGL 5 20 % 22610 21.48 % 80.5 61.45 % 3.56
ANDH 5 20 % 21269 20.21 % 5.0 3.82 % 0.24
AND 5 20 % 21000 19.95 % 0.0 0.00 % 0.00
XOR 5 20 % 19386 18.42 % 1.5 1.15 % 0.08
Total 25 100 % 105264 100 % 131.0 100 % 1.24

Table 84: GPA* runtime analysis of the metrics’ progress. Summary of 1GB1 with AMBER, CHARMM, GROMOS, and
OPLS force �elds. Normalized.

Allowed Percent Metric Percent Promotions Percent of Promotions
metric fails allowed total steps steps per metric promotions per 1000 steps
RMSD 5 20 % 94606 19.57 % 233.0 20.03 % 2.46
ANGL 5 20 % 104923 21.70 % 460.5 39.60 % 4.39
ANDH 5 20 % 100401 20.76 % 320.0 27.52 % 3.19
AND 5 20 % 95921 19.84 % 95.0 8.17 % 0.99
XOR 5 20 % 87661 18.13 % 54.5 4.69 % 0.62
Total 25 100 % 483512 100 % 1163.0 100 % 2.41
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Table 85: Correlation coe�cients among metrics and potential energy for the �rst
simulation of 1L2Y protein with AMBER force �eld. Rows simultaneously represent
the best trajectory according to the listed metric and correlation between this metric and
other metrics and potential energy.

RMSD ANGL ANDH AND XOR Potential energy
RMSD 1.00 0.81 0.79 0.80 0.70 0.70
ANGL 0.79 1.00 0.87 0.90 0.84 0.72
ANDH 0.78 0.86 1.00 0.99 0.94 0.67
AND 0.79 0.89 0.99 1.00 0.95 0.69
XOR 0.70 0.82 0.94 0.95 1.00 0.55

Table 86: Correlation coe�cients among metrics and potential energy for the second
simulation of 1L2Y protein with AMBER force �eld. Rows simultaneously represent
the best trajectory according to the listed metric and correlation between this metric and
other metrics and potential energy.

RMSD ANGL ANDH AND XOR Potential energy
RMSD 1.00 0.79 0.78 0.80 0.74 0.74
ANGL 0.75 1.00 0.91 0.93 0.88 0.60
ANDH 0.75 0.87 1.00 0.99 0.96 0.65
AND 0.77 0.90 0.99 1.00 0.97 0.68
XOR 0.72 0.86 0.96 0.97 1.00 0.60

Table 87: Correlation coe�cients among metrics and potential energy for the �rst
simulation of 1L2Y protein with CHARMM force �eld. Rows simultaneously represent
the best trajectory according to the listed metric and correlation between this metric and
other metrics and potential energy.

RMSD ANGL ANDH AND XOR Potential energy
RMSD 1.00 0.55 0.50 0.52 0.38 0.61
ANGL 0.49 1.00 0.91 0.94 0.88 0.82
ANDH 0.19 0.90 1.00 1.00 0.98 0.69
AND 0.20 0.92 1.00 1.00 0.98 0.71
XOR 0.15 0.91 0.98 0.98 1.00 0.66
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Table 88: Correlation coe�cients among metrics and potential energy for the second
simulation of 1L2Y protein with CHARMM force �eld. Rows simultaneously represent
the best trajectory according to the listed metric and correlation between this metric and
other metrics and potential energy.

RMSD ANGL ANDH AND XOR Potential energy
RMSD 1.00 0.85 0.78 0.79 0.75 0.77
ANGL 0.78 1.00 0.92 0.93 0.90 0.92
ANDH 0.70 0.92 1.00 1.00 0.98 0.85
AND 0.71 0.93 1.00 1.00 0.98 0.86
XOR 0.67 0.90 0.98 0.98 1.00 0.79

Table 89: Correlation coe�cients among metrics and potential energy for the �rst
simulation of 1L2Y protein with GROMOS force �eld. Rows simultaneously represent
the best trajectory according to the listed metric and correlation between this metric and
other metrics and potential energy.

RMSD ANGL ANDH AND XOR Potential energy
RMSD 1.00 0.78 0.69 0.74 0.66 0.66
ANGL 0.74 1.00 0.91 0.93 0.89 0.52
ANDH 0.66 0.89 1.00 0.97 0.89 0.63
AND 0.70 0.93 0.97 1.00 0.94 0.60
XOR 0.66 0.89 0.91 0.94 1.00 0.45

Table 90: Correlation coe�cients among metrics and potential energy for the second
simulation of 1L2Y protein with GROMOS force �eld. Rows simultaneously represent
the best trajectory according to the listed metric and correlation between this metric and
other metrics and potential energy.

RMSD ANGL ANDH AND XOR Potential energy
RMSD 1.00 0.85 0.80 0.80 0.65 0.69
ANGL 0.77 1.00 0.93 0.94 0.85 0.73
ANDH 0.73 0.92 1.00 0.98 0.89 0.69
AND 0.72 0.93 0.98 1.00 0.91 0.76
XOR 0.61 0.83 0.88 0.90 1.00 0.54
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Table 91: Correlation coe�cients among metrics and potential energy for the �rst
simulation of 1L2Y protein with OPLS force �eld. Rows simultaneously represent the
best trajectory according to the listed metric and correlation between this metric and
other metrics and potential energy.

RMSD ANGL ANDH AND XOR Potential energy
RMSD 1.00 0.49 0.18 0.18 −0.27 0.57
ANGL −0.06 1.00 0.29 0.47 0.24 0.42
ANDH 0.26 0.58 1.00 0.98 0.90 0.39
AND 0.14 0.62 0.98 1.00 0.89 0.37
XOR 0.20 0.55 0.90 0.90 1.00 0.22

Table 92: Correlation coe�cients among metrics and potential energy for the second
simulation of 1L2Y protein with OPLS force �eld. Rows simultaneously represent the
best trajectory according to the listed metric and correlation between this metric and
other metrics and potential energy.

RMSD ANGL ANDH AND XOR Potential energy
RMSD 1.00 0.87 0.82 0.84 0.80 0.64
ANGL 0.84 1.00 0.93 0.95 0.92 0.41
ANDH 0.80 0.93 1.00 1.00 0.98 0.37
AND 0.82 0.95 1.00 1.00 0.98 0.39
XOR 0.76 0.92 0.98 0.98 1.00 0.28

Table 93: Correlation coe�cients among metrics and potential energy for simulation
of 1YRF protein with AMBER force �eld. Rows simultaneously represent the best
trajectory according to the listed metric and correlation between this metric and other
metrics and potential energy.

RMSD ANGL ANDH AND XOR Potential energy
RMSD 1.00 0.94 0.89 0.90 0.85 0.80
ANGL 0.57 1.00 0.66 0.72 0.60 0.81
ANDH 0.01 0.95 1.00 1.00 0.99 0.82
AND 0.01 0.95 1.00 1.00 0.99 0.88
XOR 0.04 0.94 0.99 0.99 1.00 0.82
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Table 94: Correlation coe�cients among metrics and potential energy for simulation
of 1YRF protein with CHARMM force �eld. Rows simultaneously represent the best
trajectory according to the listed metric and correlation between this metric and other
metrics and potential energy.

RMSD ANGL ANDH AND XOR Potential energy
RMSD 1.00 0.84 0.83 0.84 0.74 0.83
ANGL 0.10 1.00 0.89 0.92 0.90 0.71
ANDH 0.29 0.93 1.00 1.00 0.97 0.86
AND 0.27 0.94 1.00 1.00 0.98 0.86
XOR 0.34 0.93 0.97 0.98 1.00 0.82

Table 95: Correlation coe�cients among metrics and potential energy for simulation
of 1YRF protein with GROMOS force �eld. Rows simultaneously represent the best
trajectory according to the listed metric and correlation between this metric and other
metrics and potential energy.

RMSD ANGL ANDH AND XOR Potential energy
RMSD 1.00 0.40 0.35 0.49 0.04 0.56
ANGL 0.68 1.00 0.87 0.89 0.84 0.82
ANDH 0.75 0.86 1.00 0.97 0.90 0.75
AND 0.79 0.88 0.98 1.00 0.93 0.75
XOR 0.62 0.81 0.90 0.93 1.00 0.56

Table 96: Correlation coe�cients among metrics and potential energy for simulation of
1YRF protein with OPLS force �eld. Rows simultaneously represent the best trajectory
according to the listed metric and correlation between this metric and other metrics and
potential energy.

RMSD ANGL ANDH AND XOR Potential energy
RMSD 1.00 0.86 0.85 0.86 0.82 0.70
ANGL 0.85 1.00 0.95 0.96 0.95 0.66
ANDH −0.35 0.93 1.00 1.00 0.98 0.79
AND 0.86 0.96 1.00 1.00 0.98 0.68
XOR −0.54 0.94 0.99 0.99 1.00 0.71
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Table 97: Correlation coe�cients among metrics and potential energy for simulation
of 1GB1 protein with AMBER force �eld. Rows simultaneously represent the best
trajectory according to the listed metric and correlation between this metric and other
metrics and potential energy.

RMSD ANGL ANDH AND XOR Potential energy
RMSD 1.00 0.68 0.42 0.53 −0.16 0.75
ANGL 0.37 1.00 0.88 0.91 0.73 0.76
ANDH 0.50 0.69 1.00 1.00 0.98 0.77
AND 0.53 0.72 1.00 1.00 0.98 0.79
XOR 0.43 0.66 0.98 0.97 1.00 0.72

Table 98: Correlation coe�cients among metrics and potential energy for simulation
of 1GB1 protein with CHARMM force �eld. Rows simultaneously represent the best
trajectory according to the listed metric and correlation between this metric and other
metrics and potential energy.

RMSD ANGL ANDH AND XOR Potential energy
RMSD 1.00 0.37 0.12 0.17 −0.52 0.66
ANGL −0.27 1.00 0.80 0.87 0.80 0.42
ANDH 0.26 0.67 1.00 0.99 0.96 0.50
AND 0.14 0.71 0.99 1.00 0.97 0.63
XOR 0.15 0.70 0.96 0.97 1.00 0.54

Table 99: Correlation coe�cients among metrics and potential energy for simulation
of 1GB1 protein with GROMOS force �eld. Rows simultaneously represent the best
trajectory according to the listed metric and correlation between this metric and other
metrics and potential energy.

RMSD ANGL ANDH AND XOR Potential energy
RMSD 1.00 0.83 0.77 0.77 0.54 −0.22
ANGL 0.33 1.00 0.94 0.94 0.86 −0.62
ANDH 0.30 0.94 1.00 0.97 0.86 −0.53
AND 0.34 0.94 0.97 1.00 0.87 −0.53
XOR 0.55 0.77 0.83 0.83 1.00 0.12
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Table 100: Correlation coe�cients among metrics and potential energy for simulation of
1GB1 protein with OPLS force �eld. Rows simultaneously represent the best trajectory
according to the listed metric and correlation between this metric and other metrics and
potential energy.

RMSD ANGL ANDH AND XOR Potential energy
RMSD 1.00 0.75 0.72 0.77 0.12 0.77
ANGL −0.16 1.00 0.91 0.94 0.92 0.43
ANDH 0.01 0.90 1.00 0.99 0.92 0.50
AND −0.01 0.94 0.99 1.00 0.93 0.51
XOR −0.21 0.91 0.92 0.94 1.00 0.29
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Table 101: Determination coe�cients among metrics and potential energy for the �rst simulation of 1L2Y protein with AMBER
force �eld. Rows simultaneously represent the best trajectory according to the listed metric and determination between this
metric and other metrics and potential energy.

RMSD ANGL ANDH AND XOR Potential energy
r2
xy r2

yx r2
xy r2

yx r2
xy r2

yx r2
xy r2

yx r2
xy r2

yx r2
xy r2

yx
RMSD 1.00 1.00 −2.40 −0.51 −2.97 −1.14 −2.85 −0.89 −4.41 −2.34 −0.63 −1.46
ANGL −0.82 −3.14 1.00 1.00 0.74 0.66 0.79 0.75 0.68 0.60 0.12 0.43
ANDH −4.04 −5.18 −0.02 0.45 1.00 1.00 0.98 0.98 0.88 0.89 −0.41 −0.73
AND −3.44 −4.97 0.22 0.54 0.98 0.98 1.00 1.00 0.89 0.89 −0.31 −0.46
XOR −5.90 −6.61 −0.69 0.18 0.75 0.80 0.67 0.76 1.00 1.00 −0.99 −1.72

Table 102: Determination coe�cients among metrics and potential energy for the second simulation of 1L2Y protein with
AMBER force �eld. Rows simultaneously represent the best trajectory according to the listed metric and determination between
this metric and other metrics and potential energy.

RMSD ANGL ANDH AND XOR Potential energy
r2
xy r2

yx r2
xy r2

yx r2
xy r2

yx r2
xy r2

yx r2
xy r2

yx r2
xy r2

yx
RMSD 1.00 1.00 −1.51 0.25 −3.16 −1.16 −2.92 −0.75 −3.62 −1.19 −0.29 −1.13
ANGL −0.12 −3.44 1.00 1.00 0.75 0.55 0.77 0.63 0.65 0.39 −0.41 0.34
ANDH −2.98 −5.00 −0.68 0.28 1.00 1.00 0.98 0.98 0.92 0.93 −0.36 −0.53
AND −2.64 −5.00 −0.44 0.33 0.98 0.98 1.00 1.00 0.93 0.93 −0.34 −0.37
XOR −2.81 −5.36 −0.59 0.25 0.93 0.92 0.93 0.93 1.00 1.00 −0.57 −0.59
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Table 103: Determination coe�cients among metrics and potential energy for the �rst simulation of 1L2Y protein with
CHARMM force �eld. Rows simultaneously represent the best trajectory according to the listed metric and determination
between this metric and other metrics and potential energy.

RMSD ANGL ANDH AND XOR Potential energy
r2
xy r2

yx r2
xy r2

yx r2
xy r2

yx r2
xy r2

yx r2
xy r2

yx r2
xy r2

yx
RMSD 1.00 1.00 −2.57 −0.14 −3.36 −1.63 −3.15 −0.87 −3.48 −1.03 −1.41 −2.81
ANGL −0.39 −4.19 1.00 1.00 0.75 0.56 0.80 0.69 0.67 0.45 0.24 0.65
ANDH −1.93 −6.17 0.57 0.65 1.00 1.00 0.99 0.99 0.94 0.94 −0.13 0.34
AND −1.73 −6.27 0.66 0.70 0.99 0.99 1.00 1.00 0.96 0.96 −0.14 0.39
XOR −1.67 −6.09 0.56 0.64 0.95 0.95 0.95 0.96 1.00 1.00 −0.34 0.17

Table 104: Determination coe�cients among metrics and potential energy for the second simulation of 1L2Y protein with
CHARMM force �eld. Rows simultaneously represent the best trajectory according to the listed metric and determination
between this metric and other metrics and potential energy.

RMSD ANGL ANDH AND XOR Potential energy
r2
xy r2

yx r2
xy r2

yx r2
xy r2

yx r2
xy r2

yx r2
xy r2

yx r2
xy r2

yx
RMSD 1.00 1.00 −1.60 0.08 −2.34 −1.72 −2.53 −1.61 −2.21 −1.99 −1.15 −2.08
ANGL −0.74 −3.10 1.00 1.00 0.83 0.72 0.85 0.79 0.79 0.63 0.74 0.81
ANDH −1.84 −3.35 0.60 0.78 1.00 1.00 0.99 0.99 0.95 0.94 0.61 0.55
AND −2.23 −3.74 0.61 0.78 0.99 0.99 1.00 1.00 0.92 0.91 0.60 0.52
XOR −2.03 −3.03 0.50 0.75 0.95 0.96 0.93 0.95 1.00 1.00 0.57 0.44
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Table 105: Determination coe�cients among metrics and potential energy for the �rst simulation of 1L2Y protein with
GROMOS force �eld. Rows simultaneously represent the best trajectory according to the listed metric and determination
between this metric and other metrics and potential energy.

RMSD ANGL ANDH AND XOR Potential energy
r2
xy r2

yx r2
xy r2

yx r2
xy r2

yx r2
xy r2

yx r2
xy r2

yx r2
xy r2

yx
RMSD 1.00 1.00 −0.36 −0.18 −2.34 −2.36 −2.30 −2.02 −1.81 −1.56 −2.47 −1.81
ANGL −1.27 −1.70 1.00 1.00 0.76 0.81 0.79 0.85 0.67 0.64 −0.23 0.14
ANDH −4.97 −4.16 −0.21 0.16 1.00 1.00 0.85 0.89 0.13 0.43 −0.17 −0.24
AND −2.63 −3.39 0.43 0.47 0.94 0.93 1.00 1.00 0.84 0.83 −0.18 0.19
XOR −3.10 −3.21 0.45 0.55 0.81 0.81 0.85 0.88 1.00 1.00 −0.34 −0.08

Table 106: Determination coe�cients among metrics and potential energy for the second simulation of 1L2Y protein with
GROMOS force �eld. Rows simultaneously represent the best trajectory according to the listed metric and determination
between this metric and other metrics and potential energy.

RMSD ANGL ANDH AND XOR Potential energy
r2
xy r2

yx r2
xy r2

yx r2
xy r2

yx r2
xy r2

yx r2
xy r2

yx r2
xy r2

yx
RMSD 1.00 1.00 −1.63 −0.66 −2.44 −1.88 −2.49 −2.04 −1.06 −1.37 −2.24 −2.63
ANGL −1.52 −2.83 1.00 1.00 0.86 0.84 0.85 0.84 0.61 0.31 0.34 0.35
ANDH −4.53 −4.42 0.29 0.62 1.00 1.00 0.89 0.91 0.16 0.12 0.01 −0.49
AND −4.34 −4.32 0.26 0.61 0.95 0.95 1.00 1.00 0.20 0.11 0.32 0.10
XOR −6.57 −3.38 −0.23 0.54 0.56 0.71 0.64 0.79 1.00 1.00 0.20 −0.62
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Table 107: Determination coe�cients among metrics and potential energy for the �rst simulation of 1L2Y protein with OPLS
force �eld. Rows simultaneously represent the best trajectory according to the listed metric and determination between this
metric and other metrics and potential energy.

RMSD ANGL ANDH AND XOR Potential energy
r2
xy r2

yx r2
xy r2

yx r2
xy r2

yx r2
xy r2

yx r2
xy r2

yx r2
xy r2

yx
RMSD 1.00 1.00 −6.02 −3.04 −8.25 −6.29 −7.80 −4.99 −7.54 −4.07 −4.10 −8.38
ANGL −0.53 −2.58 1.00 1.00 −0.36 −1.18 0.05 −0.78 −0.40 −1.37 −1.45 −0.68
ANDH −0.90 −1.28 −0.48 −0.11 1.00 1.00 0.95 0.95 0.81 0.79 −0.19 −0.31
AND −0.80 −1.05 −0.55 0.18 0.94 0.95 1.00 1.00 0.68 0.74 −0.06 −0.63
XOR −1.58 −1.43 −1.49 −0.43 0.25 0.53 0.30 0.49 1.00 1.00 −0.45 −0.97

Table 108: Determination coe�cients among metrics and potential energy for the second simulation of 1L2Y protein with
OPLS force �eld. Rows simultaneously represent the best trajectory according to the listed metric and determination between
this metric and other metrics and potential energy.

RMSD ANGL ANDH AND XOR Potential energy
r2
xy r2

yx r2
xy r2

yx r2
xy r2

yx r2
xy r2

yx r2
xy r2

yx r2
xy r2

yx
RMSD 1.00 1.00 −2.01 −0.11 −4.83 −1.65 −3.91 −1.23 −3.84 −1.19 −0.43 −1.40
ANGL −1.11 −3.42 1.00 1.00 0.82 0.84 0.88 0.89 0.83 0.84 −0.65 −0.32
ANDH −2.87 −5.86 0.47 0.60 1.00 1.00 0.97 0.97 0.87 0.89 −1.31 −1.24
AND −2.01 −4.77 0.68 0.75 0.98 0.99 1.00 1.00 0.96 0.95 −1.00 −0.75
XOR −2.38 −5.10 0.57 0.68 0.94 0.95 0.93 0.94 1.00 1.00 −1.24 −1.09



198

Table 109: Determination coe�cients among metrics and potential energy for simulation of 1YRF protein with AMBER force
�eld. Rows simultaneously represent the best trajectory according to the listed metric and determination between this metric and
other metrics and potential energy.

RMSD ANGL ANDH AND XOR Potential energy
r2
xy r2

yx r2
xy r2

yx r2
xy r2

yx r2
xy r2

yx r2
xy r2

yx r2
xy r2

yx
RMSD 1.00 1.00 −0.12 0.49 −1.21 −0.03 −1.11 0.08 −1.65 −0.32 0.07 0.09
ANGL 0.11 0.02 1.00 1.00 0.34 −0.31 0.47 0.05 0.26 −0.29 0.34 0.48
ANDH −1.10 −1.15 0.80 0.81 1.00 1.00 0.99 0.99 0.97 0.98 0.51 0.65
AND −1.10 −0.99 0.81 0.81 0.99 0.99 1.00 1.00 0.97 0.97 0.71 0.77
XOR −1.02 −0.87 0.67 0.70 0.89 0.91 0.92 0.93 1.00 1.00 0.58 0.65

Table 110: Determination coe�cients among metrics and potential energy for simulation of 1YRF protein with CHARMM
force �eld. Rows simultaneously represent the best trajectory according to the listed metric and determination between this
metric and other metrics and potential energy.

RMSD ANGL ANDH AND XOR Potential energy
r2
xy r2

yx r2
xy r2

yx r2
xy r2

yx r2
xy r2

yx r2
xy r2

yx r2
xy r2

yx
RMSD 1.00 1.00 −1.00 0.05 −2.26 −1.12 −2.29 −0.98 −1.31 −0.80 −0.49 −2.15
ANGL −0.78 −4.39 1.00 1.00 0.79 0.69 0.85 0.81 0.80 0.69 −0.12 0.39
ANDH −0.47 −2.12 0.86 0.84 1.00 1.00 0.99 0.99 0.95 0.94 0.72 0.65
AND −0.66 −2.26 0.82 0.80 0.98 0.98 1.00 1.00 0.95 0.93 0.74 0.66
XOR −0.82 −1.89 0.77 0.79 0.89 0.92 0.93 0.95 1.00 1.00 0.66 0.46
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Table 111: Determination coe�cients among metrics and potential energy for simulation of 1YRF protein with GROMOS
force �eld. Rows simultaneously represent the best trajectory according to the listed metric and determination between this
metric and other metrics and potential energy.

RMSD ANGL ANDH AND XOR Potential energy
r2
xy r2

yx r2
xy r2

yx r2
xy r2

yx r2
xy r2

yx r2
xy r2

yx r2
xy r2

yx
RMSD 1.00 1.00 −2.18 −1.65 −3.68 −3.11 −2.14 −1.93 −4.12 −3.70 −1.05 −0.71
ANGL 0.43 −0.08 1.00 1.00 0.52 0.61 0.49 0.60 0.33 0.37 0.35 0.35
ANDH −1.04 −2.00 −0.67 −0.35 1.00 1.00 0.83 0.88 0.62 0.72 0.31 0.14
AND −0.32 −1.41 −0.04 −0.04 0.75 0.79 1.00 1.00 0.84 0.84 0.38 0.39
XOR −1.27 −2.86 −0.71 −0.54 0.46 0.59 0.72 0.79 1.00 1.00 −0.06 −0.18

Table 112: Determination coe�cients among metrics and potential energy for simulation of 1YRF protein with OPLS force
�eld. Rows simultaneously represent the best trajectory according to the listed metric and determination between this metric and
other metrics and potential energy.

RMSD ANGL ANDH AND XOR Potential energy
r2
xy r2

yx r2
xy r2

yx r2
xy r2

yx r2
xy r2

yx r2
xy r2

yx r2
xy r2

yx
RMSD 1.00 1.00 −3.17 −0.11 −1.38 0.04 −1.40 0.07 −2.94 −0.56 −0.11 −0.33
ANGL −0.54 −3.91 1.00 1.00 0.77 0.71 0.82 0.77 0.89 0.86 −1.48 0.05
ANDH −1.27 −2.72 0.71 0.83 1.00 1.00 0.99 0.99 0.96 0.96 0.35 0.58
AND −1.14 −2.82 0.67 0.84 0.99 0.99 1.00 1.00 0.93 0.94 −0.68 −0.11
XOR −1.98 −2.77 0.76 0.86 0.93 0.93 0.92 0.93 1.00 1.00 0.24 0.50
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Table 113: Determination coe�cients among metrics and potential energy for simulation of 1GB1 protein with AMBER force
�eld. Rows simultaneously represent the best trajectory according to the listed metric and determination between this metric and
other metrics and potential energy.

RMSD ANGL ANDH AND XOR Potential energy
r2
xy r2

yx r2
xy r2

yx r2
xy r2

yx r2
xy r2

yx r2
xy r2

yx r2
xy r2

yx
RMSD 1.00 1.00 −2.86 −1.82 −4.57 −4.19 −3.15 −2.80 −3.65 −3.40 −0.04 0.10
ANGL −0.57 −2.14 1.00 1.00 0.65 0.62 0.71 0.64 −0.28 −0.68 0.25 0.34
ANDH −1.30 −3.00 0.02 −0.49 1.00 1.00 0.97 0.97 0.96 0.95 0.51 0.56
AND −0.92 −2.42 0.24 −0.19 0.97 0.97 1.00 1.00 0.94 0.94 0.55 0.60
XOR −2.01 −3.41 −0.32 −0.67 0.90 0.92 0.86 0.88 1.00 1.00 0.42 0.39

Table 114: Determination coe�cients among metrics and potential energy for simulation of 1GB1 protein with CHARMM
force �eld. Rows simultaneously represent the best trajectory according to the listed metric and determination between this
metric and other metrics and potential energy.

RMSD ANGL ANDH AND XOR Potential energy
r2
xy r2

yx r2
xy r2

yx r2
xy r2

yx r2
xy r2

yx r2
xy r2

yx r2
xy r2

yx
RMSD 1.00 1.00 −3.34 −3.20 −5.53 −4.96 −5.14 −4.26 −9.95 −6.55 −1.06 −2.44
ANGL −5.84 −2.85 1.00 1.00 −0.03 0.29 0.13 0.45 0.38 0.56 −1.85 −2.36
ANDH −0.96 −0.21 0.31 −0.58 1.00 1.00 0.96 0.97 0.87 0.88 −0.16 0.10
AND −1.05 −0.50 0.41 −0.13 0.99 0.99 1.00 1.00 0.87 0.86 0.12 0.26
XOR −1.11 −0.46 0.13 −0.55 0.84 0.85 0.86 0.87 1.00 1.00 0.02 0.12
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Table 115: Determination coe�cients among metrics and potential energy for simulation of 1GB1 protein with GROMOS
force �eld. Rows simultaneously represent the best trajectory according to the listed metric and determination between this
metric and other metrics and potential energy.

RMSD ANGL ANDH AND XOR Potential energy
r2
xy r2

yx r2
xy r2

yx r2
xy r2

yx r2
xy r2

yx r2
xy r2

yx r2
xy r2

yx
RMSD 1.00 1.00 −1.39 −0.62 −1.92 −1.31 −2.27 −1.68 −2.53 −2.52 −2.75 −2.95
ANGL −1.08 −8.59 1.00 1.00 0.86 0.80 0.84 0.73 0.72 0.54 −4.44 −1.20
ANDH −3.80 −10 0.47 0.73 1.00 1.00 0.95 0.95 0.61 0.62 −2.61 −1.88
AND −3.85 −9.92 0.45 0.73 0.95 0.95 1.00 1.00 0.62 0.65 −2.53 −1.95
XOR −4.67 −3.46 −0.16 0.39 0.30 0.57 0.42 0.63 1.00 1.00 −1.04 −1.69

Table 116: Determination coe�cients among metrics and potential energy for simulation of 1GB1 protein with OPLS force
�eld. Rows simultaneously represent the best trajectory according to the listed metric and determination between this metric and
other metrics and potential energy.

RMSD ANGL ANDH AND XOR Potential energy
r2
xy r2

yx r2
xy r2

yx r2
xy r2

yx r2
xy r2

yx r2
xy r2

yx r2
xy r2

yx
RMSD 1.00 1.00 −2.98 −1.24 −3.20 −1.71 −2.70 −1.30 −4.62 −3.74 −0.95 −1.20
ANGL −1.30 −8.81 1.00 1.00 0.80 0.66 0.86 0.79 0.82 0.73 −2.38 −0.02
ANDH −4.18 −8.47 0.19 0.66 1.00 1.00 0.97 0.97 0.81 0.80 −1.89 −1.00
AND −3.36 −8.24 0.51 0.76 0.97 0.97 1.00 1.00 0.83 0.81 −1.76 −0.65
XOR −5.65 −10 −0.13 0.55 0.80 0.81 0.75 0.80 1.00 1.00 −3.03 −1.96
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APPENDIXB

Extra Tables for Chapter III
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Table 117: A1. Relationship between protein types and a�nities types. Graph width
analysis. Raw values.

NFP IDP Total
N M W C N M W C N M W C

E
nt
ro
pi
c

DN
KNN 6 5 7 3 6 4 8 5 12 9 15 8 5
Perp 10 5 3 3 9 5 4 5 19 10 7 8 6

SP
KNN 16 2 0 1 9 6 3 2 25 8 3 3 7
Perp 13 5 0 3 13 5 0 3 26 10 0 6 8

SS
KNN 13 2 3 0 9 1 8 3 22 3 11 3 9
Perp 15 3 0 2 13 4 1 4 28 7 1 6 10

P
la
in

DN
KNN 0 0 0 0 0 0 0 0 0 0 0 0 11
Perp 0 0 0 0 0 0 0 0 0 0 0 0 12

SP
KNN 3 2 13 3 3 0 15 4 6 2 28 7 13
Perp 5 4 9 1 0 4 14 2 5 8 23 3 14

SS
KNN 10 4 4 3 5 4 9 6 15 8 13 9 15
Perp 0 3 15 0 0 0 18 1 0 3 33 1 16

T
ot
al

DN
KNN 6 5 7 3 6 4 8 5 12 9 15 8 17
Perp 10 5 3 3 9 5 4 5 19 10 7 8 18

SP
KNN 19 4 13 4 12 6 18 6 31 10 31 1 0 19
Perp 18 9 9 4 13 9 14 5 31 18 23 9 20

SS
KNN 23 6 7 3 14 5 17 9 37 11 24 12 21
Perp 15 6 15 2 13 4 19 5 28 10 34 7 22

T
ot
al En

KNN 35 9 10 4 24 11 19 10 59 20 29 14 23
Perp 38 13 3 8 35 14 5 12 73 27 8 2 0 24

Pl
KNN 13 6 17 6 8 4 24 10 21 10 41 16 25
Perp 5 7 24 1 0 4 32 3 5 11 56 4 26

Total
KNN 48 15 27 10 32 15 43 20 80 30 70 3 0 27
Perp 43 20 27 9 35 18 37 15 78 38 64 24 28

E F G H I J K L M N O P
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Table 118: A2. Relationship the data sparsity and graphs’ width. Clustering algorithms analysis. Raw values.

N M W C Total
SPC SDS SES SPC SDS SES SPC SDS SES SPC SDS SES N M W C

E
nt
ro
pi
c

DN
KNN 1 7 4 6 3 0 5 2 8 2 2 4 12 9 15 8 33
Perp 11 6 2 1 5 4 0 1 6 1 3 4 19 10 7 8 34

SP
KNN 5 12 8 4 0 4 3 0 0 2 0 1 25 8 3 3 35
Perp 10 9 7 2 3 5 0 0 0 2 3 1 26 10 0 6 36

SS
KNN 1 10 11 2 1 0 9 1 1 1 1 1 22 3 11 3 37
Perp 8 9 11 4 2 1 0 1 0 3 2 1 28 7 1 6 38

P
la
in

DN
KNN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 39
Perp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40

SP
KNN 2 0 4 0 2 0 10 10 8 3 1 3 6 2 28 7 41
Perp 2 0 3 5 3 0 5 9 9 2 1 0 5 8 23 3 42

SS
KNN 5 2 8 3 3 2 4 7 2 4 3 2 15 8 13 9 43
Perp 0 0 0 0 3 0 12 9 12 1 0 0 0 3 33 1 44

T
ot
al

DN
KNN 1 7 4 6 3 0 5 2 8 2 2 4 12 9 15 8 45
Perp 11 6 2 1 5 4 0 1 6 1 3 4 19 10 7 8 46

SP
KNN 7 12 12 4 2 4 13 10 8 5 1 4 31 10 31 10 47
Perp 12 9 10 7 6 5 5 9 9 4 4 1 31 18 23 9 48

SS
KNN 6 12 19 5 4 2 13 8 3 5 4 3 37 11 24 12 49
Perp 8 9 11 4 5 1 12 10 12 4 2 1 28 10 34 7 50

T
ot
al En

KNN 7 29 23 12 4 4 17 3 9 5 3 6 59 20 29 14 51
Perp 29 24 20 7 10 10 0 2 6 6 8 6 73 27 8 20 52

Pl
KNN 7 2 12 3 5 2 14 17 10 7 4 5 21 10 41 16 53
Perp 2 0 3 5 6 0 17 18 21 3 1 0 5 11 56 4 54

E F G H I J K L M N O P Q R S T
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Table 119: A3. Relationship between graphs’ width and protein types. Clustering algorithms analysis. Raw values.

N M W C Total
SPC SDS SES SPC SDS SES SPC SDS SES SPC SDS SES N M W C

N
F
P

DN
KNN 0 4 2 3 2 0 3 0 4 0 1 2 6 5 7 3 59
Perp 6 2 2 0 4 1 0 0 3 0 1 2 10 5 3 3 60

SP
KNN 5 6 8 1 2 1 6 4 3 1 1 2 19 4 13 4 61
Perp 8 5 5 1 4 4 3 3 3 1 2 1 18 9 9 4 62

SS
KNN 3 8 12 4 2 0 5 2 0 2 1 0 23 6 7 3 63
Perp 4 5 6 2 4 0 6 3 6 1 1 0 15 6 15 2 64

ID
P

DN
KNN 1 3 2 3 1 0 2 2 4 2 1 2 6 4 8 5 65
Perp 5 4 0 1 1 3 0 1 3 1 2 2 9 5 4 5 66

SP
KNN 2 6 4 3 0 3 7 6 5 4 0 2 12 6 18 6 67
Perp 4 4 5 6 2 1 2 6 6 3 2 0 13 9 14 5 68

SS
KNN 3 4 7 1 2 2 8 6 3 3 3 3 14 5 17 9 69
Perp 4 4 5 2 1 1 6 7 6 3 1 1 13 4 19 5 70

T
ot
al

DN
KNN 1 7 4 6 3 0 5 2 8 2 2 4 12 9 15 8 71
Perp 11 6 2 1 5 4 0 1 6 1 3 4 19 10 7 8 72

SP
KNN 7 12 12 4 2 4 13 10 8 5 1 4 31 10 31 10 73
Perp 12 9 10 7 6 5 5 9 9 4 4 1 31 18 23 9 74

SS
KNN 6 12 19 5 4 2 13 8 3 5 4 3 37 11 24 12 75
Perp 8 9 11 4 5 1 12 10 12 4 2 1 28 10 34 7 76

T
ot
al NFP

KNN 8 18 22 8 6 1 14 6 7 3 3 4 48 15 27 10 77
Perp 18 12 13 3 12 5 9 6 12 2 4 3 43 20 27 9 78

IDP
KNN 6 13 13 7 3 5 17 14 12 9 4 7 32 15 43 20 79
Perp 13 12 10 9 4 5 8 14 15 7 5 3 35 18 37 15 80

Total
KNN 14 31 35 15 9 6 31 20 19 12 7 11 80 30 70 30 81
Perp 31 24 23 12 16 10 17 20 27 9 9 6 78 38 64 24 82

E F G H I J K L M N O P Q R S T
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Table 120: A4. Relationship between a�nity types and protein types. Graph width
analysis. Raw values.

Entropic Plain Total
N M W C N M W C N M W C

N
F
P

SPC
KNN 6 6 6 0 2 2 8 3 8 8 14 3 87
Perp 16 2 0 1 2 1 9 1 18 3 9 2 88

SDS
KNN 16 2 0 1 2 4 6 2 18 6 6 3 89
Perp 12 6 0 4 0 6 6 0 12 12 6 4 90

SES
KNN 13 1 4 3 9 0 3 1 22 1 7 4 91
Perp 10 5 3 3 3 0 9 0 13 5 12 3 92

ID
P

SPC
KNN 1 6 11 5 5 1 6 4 6 7 17 9 93
Perp 13 5 0 5 0 4 8 2 13 9 8 7 94

SDS
KNN 13 2 3 2 0 1 11 2 13 3 14 4 95
Perp 12 4 2 4 0 0 12 1 12 4 14 5 96

SES
KNN 10 3 5 3 3 2 7 4 13 5 12 7 97
Perp 10 5 3 3 0 0 12 0 10 5 15 3 98

T
ot
al

SPC
KNN 7 12 17 5 7 3 14 7 14 15 31 12 99
Perp 29 7 0 6 2 5 17 3 31 12 17 9 100

SDS
KNN 29 4 3 3 2 5 17 4 31 9 20 7 101
Perp 24 10 2 8 0 6 18 1 24 16 20 9 102

SES
KNN 23 4 9 6 12 2 10 5 35 6 19 11 103
Perp 20 10 6 6 3 0 21 0 23 10 27 6 104

T
ot
al NFP

KNN 35 9 10 4 13 6 17 6 48 15 27 10 105
Perp 38 13 3 8 5 7 24 1 43 20 27 9 106

IDP
KNN 24 11 19 10 8 4 24 10 32 15 43 20 107
Perp 35 14 5 12 0 4 32 3 35 18 37 15 108

Total
KNN 59 20 29 14 21 10 41 16 80 30 70 30 109
Perp 73 27 8 20 5 11 56 4 78 38 64 24 110

E F G H I J K L M N O P
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Table 121: A4.1. Relationship between the data sparsity and protein types. Graph width analysis. Raw values.

DN SP SS Total
N M W C N M W C N M W C N M W C

N
F
P

SPC
KNN 0 3 3 0 5 1 6 1 3 4 5 2 8 8 14 3 115
Perp 6 0 0 0 8 1 3 1 4 2 6 1 18 3 9 2 116

SDS
KNN 4 2 0 1 6 2 4 1 8 2 2 1 18 6 6 3 117
Perp 2 4 0 1 5 4 3 2 5 4 3 1 12 12 6 4 118

SES
KNN 2 0 4 2 8 1 3 2 12 0 0 0 22 1 7 4 119
Perp 2 1 3 2 5 4 3 1 6 0 6 0 13 5 12 3 120

ID
P

SPC
KNN 1 3 2 2 2 3 7 4 3 1 8 3 6 7 17 9 121
Perp 5 1 0 1 4 6 2 3 4 2 6 3 13 9 8 7 122

SDS
KNN 3 1 2 1 6 0 6 0 4 2 6 3 13 3 14 4 123
Perp 4 1 1 2 4 2 6 2 4 1 7 1 12 4 14 5 124

SES
KNN 2 0 4 2 4 3 5 2 7 2 3 3 13 5 12 7 125
Perp 0 3 3 2 5 1 6 0 5 1 6 1 10 5 15 3 126

T
ot
al

SPC
KNN 1 6 5 2 7 4 13 5 8 10 18 7 15 14 31 12 127
Perp 11 1 0 1 12 7 5 4 23 8 5 5 35 15 10 9 128

SDS
KNN 7 3 2 2 12 2 10 1 19 5 12 3 31 7 22 4 129
Perp 6 5 1 3 9 6 9 4 15 11 10 7 24 17 19 11 130

SES
KNN 4 0 8 4 12 4 8 4 16 4 16 8 28 8 24 12 131
Perp 2 4 6 4 10 5 9 1 12 9 15 5 22 14 24 6 132

T
ot
al

NFP
KNN 6 5 7 3 19 4 13 4 25 9 20 7 44 13 33 11 133
Perp 10 5 3 3 18 9 9 4 28 14 12 7 46 23 21 11 134

IDP
KNN 6 4 8 5 12 6 18 6 18 10 26 11 30 16 44 17 135
Perp 9 5 4 5 13 9 14 5 22 14 18 10 35 23 32 15 136

Total
KNN 12 9 15 8 31 10 31 10 43 19 46 18 74 29 77 28 137
Perp 19 10 7 8 31 18 23 9 50 28 30 17 81 46 53 26 138

E F G H I J K L M N O P Q R S T
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Table 122: A5. Relationship between protein types and a�nity types. Trend line direction analysis. Raw values.

NFP IDP Total
/ - \ C S / - \ C S / - \ C S

E
nt
ro
pi
c

DN
KNN 5 10 3 3 1 4 12 2 3 2 9 22 5 6 3 145
Perp 2 13 3 1 0 2 7 9 1 2 4 20 12 2 2 146

SP
KNN 2 16 0 0 0 3 12 3 2 0 5 28 3 2 0 147
Perp 2 13 3 2 0 1 14 3 1 1 3 27 6 3 1 148

SS
KNN 0 18 0 0 0 2 15 1 0 1 2 33 1 0 1 149
Perp 1 17 0 1 0 4 12 2 2 0 5 29 2 3 0 150

P
la
in

DN
KNN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 151
Perp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 152

SP
KNN 4 11 3 3 2 5 9 4 5 2 9 20 7 8 4 153
Perp 0 17 1 0 1 0 16 2 2 2 0 33 3 2 3 154

SS
KNN 7 8 3 3 5 7 6 5 5 4 14 14 8 8 9 155
Perp 0 17 1 0 0 0 16 2 2 2 0 33 3 2 2 156

T
ot
al

DN
KNN 5 10 3 3 1 4 12 2 3 2 9 22 5 6 3 157
Perp 2 13 3 1 0 2 7 9 1 2 4 20 12 2 2 158

SP
KNN 6 27 3 3 2 8 21 7 7 2 14 48 10 10 4 159
Perp 2 30 4 2 1 1 30 5 3 3 3 60 9 5 4 160

SS
KNN 7 26 3 3 5 9 21 6 5 5 16 47 9 8 10 161
Perp 1 34 1 1 0 4 28 4 4 2 5 62 5 5 2 162

T
ot
al

En
KNN 7 44 3 3 1 9 39 6 5 3 16 83 9 8 4 163
Perp 5 43 6 4 0 7 33 14 4 3 12 76 20 8 3 164

Pl
KNN 11 19 6 6 7 12 15 9 10 6 23 34 15 16 13 165
Perp 0 34 2 0 1 0 32 4 4 4 0 66 6 4 5 166

E F G H I J K L M N O P Q R S
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Table 123: A6. Relationship between graph trend direction and a�nity types. Clustering algorithms analysis. Raw values.

/ - \ - S Total
SPC SDS SES SPC SDS SES SPC SDS SES SPC SDS SES SPC SDS SES / - \ C S

E
nt
ro
pi
c

DN
KNN 1 2 6 10 9 3 1 1 3 0 2 4 0 0 3 9 22 5 6 3 171
Perp 1 2 1 6 9 5 5 1 6 0 1 1 1 0 1 4 20 12 2 2 172

SP
KNN 0 1 4 11 10 7 1 1 1 1 1 0 0 0 0 5 28 3 2 0 173
Perp 0 1 2 8 10 9 4 1 1 1 1 1 1 0 0 3 27 6 3 1 174

SS
KNN 0 0 2 12 11 10 0 1 0 0 0 0 0 1 0 2 33 1 0 1 175
Perp 3 0 2 8 11 10 1 1 0 3 0 0 0 0 0 5 29 2 3 0 176

P
la
in

DN
KNN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 177
Perp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 178

SP
KNN 1 1 7 10 5 5 1 6 0 3 4 1 0 2 2 9 20 7 8 4 179
Perp 0 0 0 12 9 12 0 3 0 1 1 0 0 3 0 0 33 3 2 3 180

SS
KNN 3 0 11 7 6 1 2 6 0 4 3 1 2 3 4 14 14 8 8 9 181
Perp 0 0 0 12 9 12 0 3 0 1 1 0 0 2 0 0 33 3 2 2 182

T
ot
al

DN
KNN 1 2 6 10 9 3 1 1 3 0 2 4 0 0 3 9 22 5 6 3 183
Perp 1 2 1 6 9 5 5 1 6 0 1 1 1 0 1 4 20 12 2 2 184

SP
KNN 1 2 11 21 15 12 2 7 1 4 5 1 0 2 2 14 48 10 10 4 185
Perp 0 1 2 20 19 21 4 4 1 2 2 1 1 3 0 3 60 9 5 4 186

SS
KNN 3 0 13 19 17 11 2 7 0 4 3 1 2 4 4 16 47 9 8 10 187
Perp 3 0 2 20 20 22 1 4 0 4 1 0 0 2 0 5 62 5 5 2 188

T
ot
al En

KNN 1 3 12 33 30 20 2 3 4 1 3 4 0 1 3 16 83 9 8 4 189
Perp 4 3 5 22 30 24 10 3 7 4 2 2 2 0 1 12 76 20 8 3 190

Pl
KNN 4 1 18 17 11 6 3 12 0 7 7 2 2 5 6 23 34 15 16 13 191
Perp 0 0 0 24 18 24 0 6 0 2 2 0 0 5 0 0 66 6 4 5 192

E F G H I J K L M N O P Q R S T U V W X
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Table 124: A7. Relationship between graph trend direction and protein types. Clustering algorithms analysis. Raw values.

/ - \ C S Total
SPC SDS SES SPC SDS SES SPC SDS SES SPC SDS SES SPC SDS SES / - \ C S

N
F
P

DN
KNN 1 1 3 5 4 1 0 1 2 0 1 2 0 0 1 5 10 3 3 1 197
Perp 1 0 1 4 6 3 1 0 2 0 0 1 0 0 0 2 13 3 1 0 198

SP
KNN 0 1 5 12 8 7 0 3 0 1 2 0 0 1 1 6 27 3 3 2 199
Perp 0 1 1 11 9 10 1 2 1 0 1 1 0 1 0 2 30 4 2 1 200

SS
KNN 2 0 5 9 10 7 1 2 0 2 1 0 2 1 2 7 26 3 3 5 201
Perp 1 0 0 11 11 12 0 1 0 1 0 0 0 0 0 1 34 1 1 0 202

ID
P

DN
KNN 0 1 3 5 5 2 1 0 1 0 1 2 0 0 2 4 12 2 3 2 203
Perp 0 2 0 2 3 2 4 1 4 0 1 0 1 0 1 2 7 9 1 2 204

SP
KNN 1 1 6 9 7 5 2 4 1 3 3 1 0 1 1 8 21 7 7 2 205
Perp 0 0 1 9 10 11 3 2 0 2 1 0 1 2 0 1 30 5 3 3 206

SS
KNN 1 0 8 10 7 4 1 5 0 2 2 1 0 3 2 9 21 6 5 5 207
Perp 2 0 2 9 9 10 1 3 0 3 1 0 0 2 0 4 28 4 4 2 208

T
ot
al

DN
KNN 1 2 6 10 9 3 1 1 3 0 2 4 0 0 3 9 22 5 6 3 209
Perp 1 2 1 6 9 5 5 1 6 0 1 1 1 0 1 4 20 12 2 2 210

SP
KNN 1 2 11 21 15 12 2 7 1 4 5 1 0 2 2 14 48 10 10 4 211
Perp 0 1 2 20 19 21 4 4 1 2 2 1 1 3 0 3 60 9 5 4 212

SS
KNN 3 0 13 19 17 11 2 7 0 4 3 1 2 4 4 16 47 9 8 10 213
Perp 3 0 2 20 20 22 1 4 0 4 1 0 0 2 0 5 62 5 5 2 214

T
ot
al NFP

KNN 3 2 13 26 22 15 1 6 2 3 4 2 2 2 4 18 63 9 9 8 215
Perp 2 1 2 26 26 25 2 3 3 1 1 2 0 1 0 5 77 8 4 1 216

IDP
KNN 2 2 17 24 19 11 4 9 2 5 6 4 0 4 5 21 54 15 15 9 217
Perp 2 2 3 20 22 23 8 6 4 5 3 0 2 4 1 7 65 18 8 7 218

E F G H I J K L M N O P Q R S T U V W X
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Table 125: A8. Relationship between clustering algorithms and protein types. Trend line direction analysis. Raw values.

SPC SDS SES Total
/ - \ C S / - \ C S / - \ C S / - \ C S

N
F
P

DN
KNN 1 5 0 0 0 1 4 1 1 0 3 1 2 2 1 5 10 3 3 1
Perp 1 4 1 0 0 0 6 0 0 0 1 3 2 1 0 2 13 3 1 0

SP
KNN 0 12 0 1 0 1 8 3 2 1 5 7 0 0 1 6 27 3 3 2
Perp 0 11 1 0 0 1 9 2 1 1 1 10 1 1 0 2 30 4 2 1

SS
KNN 2 9 1 2 2 0 10 2 1 1 5 7 0 0 2 7 26 3 3 5
Perp 1 11 0 1 0 0 11 1 0 0 0 12 0 0 0 1 34 1 1 0

ID
P

DN
KNN 0 5 1 0 0 1 5 0 1 0 3 2 1 2 2 4 12 2 3 2
Perp 0 2 4 0 1 2 3 1 1 0 0 2 4 0 1 2 7 9 1 2

SP
KNN 1 9 2 3 0 1 7 4 3 1 6 5 1 1 1 8 21 7 7 2
Perp 0 9 3 2 1 0 10 2 1 2 1 11 0 0 0 1 30 5 3 3

SS
KNN 1 10 1 2 0 0 7 5 2 3 8 4 0 1 2 9 21 6 5 5
Perp 2 9 1 3 0 0 9 3 1 2 2 10 0 0 0 4 28 4 4 2

T
ot
al

DN
KNN 1 10 1 0 0 2 9 1 2 0 6 3 3 4 3 9 22 5 6 3
Perp 1 6 5 0 1 2 9 1 1 0 1 5 6 1 1 4 20 12 2 2

SP
KNN 1 21 2 4 0 2 15 7 5 2 11 12 1 1 2 14 48 10 10 4
Perp 0 20 4 2 1 1 19 4 2 3 2 21 1 1 0 3 60 9 5 4

SS
KNN 3 19 2 4 2 0 17 7 3 4 13 11 0 1 4 16 47 9 8 10
Perp 3 20 1 4 0 0 20 4 1 2 2 22 0 0 0 5 62 5 5 2

T
ot
al NFP

KNN 3 26 1 3 2 2 22 6 4 2 13 15 2 2 4 18 63 9 9 8
Perp 2 26 2 1 0 1 26 3 1 1 2 25 3 2 0 5 77 8 4 1

IDP
KNN 2 24 4 5 0 2 19 9 6 4 17 11 2 4 5 21 54 15 15 9
Perp 2 20 8 5 2 2 22 6 3 4 3 23 4 0 1 7 65 18 8 7

AC AD AE AF AG AH AI AJ AK AL AM AN AO AP AQ AR AS AT AU AV
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Table 126: A9. Relationship between a�nity types and protein types. Trend line direction analysis. Raw values.

Entropic Plain Total
/ - \ C S / - \ C S / - \ C S

N
F
P

SPC
KNN 1 17 0 0 0 2 9 1 3 2 3 26 1 3 2
Perp 2 14 2 1 0 0 12 0 0 0 2 26 2 1 0

SDS
KNN 1 16 1 1 0 1 6 5 3 2 2 22 6 4 2
Perp 1 16 1 1 0 0 10 2 0 1 1 26 3 1 1

SES
KNN 5 11 2 2 1 8 4 0 0 3 13 15 2 2 4
Perp 2 13 3 2 0 0 12 0 0 0 2 25 3 2 0

ID
P

SPC
KNN 0 16 2 1 0 2 8 2 4 0 2 24 4 5 0
Perp 2 8 8 3 2 0 12 0 2 0 2 20 8 5 2

SDS
KNN 2 14 2 2 1 0 5 7 4 3 2 19 9 6 4
Perp 2 14 2 1 0 0 8 4 2 4 2 22 6 3 4

SES
KNN 7 9 2 2 2 10 2 0 2 3 17 11 2 4 5
Perp 3 11 4 0 1 0 12 0 0 0 3 23 4 0 1

T
ot
al

SPC
KNN 1 33 2 1 0 4 17 3 7 2 5 50 5 8 2
Perp 4 22 10 4 2 0 24 0 2 0 4 46 10 6 2

SDS
KNN 3 30 3 3 1 1 11 12 7 5 4 41 15 10 6
Perp 3 30 3 2 0 0 18 6 2 5 3 48 9 4 5

SES
KNN 12 20 4 4 3 18 6 0 2 6 30 26 4 6 9
Perp 5 24 7 2 1 0 24 0 0 0 5 48 7 2 1

T
ot
al

NFP
KNN 7 44 3 3 1 11 19 6 6 7 18 63 9 9 8
Perp 5 43 6 4 0 0 34 2 0 1 5 77 8 4 1

IDP
KNN 9 39 6 5 3 12 15 9 10 6 21 54 15 15 9
Perp 7 33 14 4 3 0 32 4 4 4 7 65 18 8 7

Total
KNN 16 83 9 8 4 23 34 15 16 13 39 117 24 24 17
Perp 12 76 20 8 3 0 66 6 4 5 12 142 26 12 8

AC AD AE AF AG AH AI AJ AK AL AM AN AO AP AQ
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Table 127: A10. Relationship between data sparsity and protein types. Trend line direction analysis. Raw values.

DN SP SS Total
/ - \ C S / - \ C S / - \ C S / - \ C S

N
F
P

SPC
KNN 1 5 0 0 0 0 12 0 1 0 2 9 1 2 2 3 26 1 3 2
Perp 1 4 1 0 0 0 11 1 0 0 1 11 0 1 0 2 26 2 1 0

SDS
KNN 1 4 1 1 0 1 8 3 2 1 0 10 2 1 1 2 22 6 4 2
Perp 0 6 0 0 0 1 9 2 1 1 0 11 1 0 0 1 26 3 1 1

SES
KNN 3 1 2 2 1 5 7 0 0 1 5 7 0 0 2 13 15 2 2 4
Perp 1 3 2 1 0 1 10 1 1 0 0 12 0 0 0 2 25 3 2 0

ID
P

SPC
KNN 0 5 1 0 0 1 9 2 3 0 1 10 1 2 0 2 24 4 5 0
Perp 0 2 4 0 1 0 9 3 2 1 2 9 1 3 0 2 20 8 5 2

SDS
KNN 1 5 0 1 0 1 7 4 3 1 0 7 5 2 3 2 19 9 6 4
Perp 2 3 1 1 0 0 10 2 1 2 0 9 3 1 2 2 22 6 3 4

SES
KNN 3 2 1 2 2 6 5 1 1 1 8 4 0 1 2 17 11 2 4 5
Perp 0 2 4 0 1 1 11 0 0 0 2 10 0 0 0 3 23 4 0 1

T
ot
al

SPC
KNN 1 10 1 0 0 1 21 2 4 0 3 19 2 4 2 5 50 5 8 2
Perp 1 6 5 0 1 0 20 4 2 1 3 20 1 4 0 4 46 10 6 2

SDS
KNN 2 9 1 2 0 2 15 7 5 2 0 17 7 3 4 4 41 15 10 6
Perp 2 9 1 1 0 1 19 4 2 3 0 20 4 1 2 3 48 9 4 5

SES
KNN 6 3 3 4 3 11 12 1 1 2 13 11 0 1 4 30 26 4 6 9
Perp 1 5 6 1 1 2 21 1 1 0 2 22 0 0 0 5 48 7 2 1

T
ot
al NFP

KNN 5 10 3 3 1 6 27 3 3 2 7 26 3 3 5 18 63 9 9 8
Perp 2 13 3 1 0 2 30 4 2 1 1 34 1 1 0 5 77 8 4 1

IDP
KNN 4 12 2 3 2 8 21 7 7 2 9 21 6 5 5 21 54 15 15 9
Perp 2 7 9 1 2 1 30 5 3 3 4 28 4 4 2 7 65 18 8 7

Total
KNN 9 22 5 6 3 14 48 10 10 4 16 47 9 8 10 39 117 24 24 17
Perp 4 20 12 2 2 3 60 9 5 4 5 62 5 5 2 12 142 26 12 8

AC AD AE AF AG AH AI AJ AK AL AM AN AO AP AQ AR AS AT AU AV
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Table 128: B1. Relationship between protein types and a�nities types. Graph width analysis. Percentage.

NFP IDP Total
N M W C N M W C N M W C

E
nt
ro
pi
c

DN
KNN 33% 28% 39% 50% 33% 22% 44% 83% 33% 25% 42% 67% 5
Perp 56% 28% 17% 50% 50% 28% 22% 83% 53% 28% 19% 67% 6

SP
KNN 89% 11% 0% 17% 50% 33% 17% 33% 69% 22% 8% 25% 7
Perp 72% 28% 0% 50% 72% 28% 0% 50% 72% 28% 0% 50% 8

SS
KNN 72% 11% 17% 0% 50% 6% 44% 50% 61% 8% 31% 25% 9
Perp 83% 17% 0% 33% 72% 22% 6% 67% 78% 19% 3% 50% 10

P
la
in

DN
KNN 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 11
Perp 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 12

SP
KNN 17% 11% 72% 50% 17% 0% 83% 67% 17% 6% 78% 58% 13
Perp 28% 22% 50% 17% 0% 22% 78% 33% 14% 22% 64% 25% 14

SS
KNN 56% 22% 22% 50% 28% 22% 50% 100% 42% 22% 36% 75% 15
Perp 0% 17% 83% 0% 0% 0% 100% 17% 0% 8% 92% 8% 16

T
ot
al

DN
KNN 33% 28% 39% 50% 33% 22% 44% 83% 33% 25% 42% 67% 17
Perp 56% 28% 17% 50% 50% 28% 22% 83% 53% 28% 19% 67% 18

SP
KNN 53% 11% 36% 33% 33% 17% 50% 50% 43% 14% 43% 42% 19
Perp 50% 25% 25% 33% 36% 25% 39% 42% 43% 25% 32% 38% 20

SS
KNN 64% 17% 19% 25% 39% 14% 47% 75% 51% 15% 33% 50% 21
Perp 42% 17% 42% 17% 36% 11% 53% 42% 39% 14% 47% 29% 22

T
ot
al

En
KNN 65% 17% 19% 22% 44% 20% 35% 56% 55% 19% 27% 39% 23
Perp 70% 24% 6% 44% 65% 26% 9% 67% 68% 25% 7% 56% 24

Pl
KNN 36% 17% 47% 50% 22% 11% 67% 83% 29% 14% 57% 67% 25
Perp 14% 19% 67% 8% 0% 11% 89% 25% 7% 15% 78% 17% 26

Total
KNN 53% 17% 30% 33% 36% 17% 48% 67% 44% 17% 39% 50% 27
Perp 48% 22% 30% 30% 39% 20% 41% 50% 43% 21% 36% 40% 28

AC AD AE AF AG AH AI AJ AK AL AM AN
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Table 129: B2. Relationship the data sparsity and graphs’ width. Clustering algorithms analysis. Percentage.

N M W C Total
SPC SDS SES SPC SDS SES SPC SDS SES SPC SDS SES N M W C

E
nt
ro
pi
c

DN
KNN 8% 58% 33% 50% 25% 0% 42% 17% 67% 50% 50% 100% 33% 25% 42% 67% 33
Perp 92% 50% 17% 8% 42% 33% 0% 8% 50% 25% 75% 100% 53% 28% 19% 67% 34

SP
KNN 42% 100% 67% 33% 0% 33% 25% 0% 0% 50% 0% 25% 69% 22% 8% 25% 35
Perp 83% 75% 58% 17% 25% 42% 0% 0% 0% 50% 75% 25% 72% 28% 0% 50% 36

SS
KNN 8% 83% 92% 17% 8% 0% 75% 8% 8% 25% 25% 25% 61% 8% 31% 25% 37
Perp 67% 75% 92% 33% 17% 8% 0% 8% 0% 75% 50% 25% 78% 19% 3% 50% 38

P
la
in

DN
KNN 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 39
Perp 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 40

SP
KNN 17% 0% 33% 0% 17% 0% 83% 83% 67% 75% 25% 75% 17% 6% 78% 58% 41
Perp 17% 0% 25% 42% 25% 0% 42% 75% 75% 50% 25% 0% 14% 22% 64% 25% 42

SS
KNN 42% 17% 67% 25% 25% 17% 33% 58% 17% 100% 75% 50% 42% 22% 36% 75% 43
Perp 0% 0% 0% 0% 25% 0% 100% 75% 100% 25% 0% 0% 0% 8% 92% 8% 44

T
ot
al

DN
KNN 8% 58% 33% 50% 25% 0% 42% 17% 67% 50% 50% 100% 33% 25% 42% 67% 45
Perp 92% 50% 17% 8% 42% 33% 0% 8% 50% 25% 75% 100% 53% 28% 19% 67% 46

SP
KNN 29% 50% 50% 17% 8% 17% 54% 42% 33% 63% 13% 50% 43% 14% 43% 42% 47
Perp 50% 38% 42% 29% 25% 21% 21% 38% 38% 50% 50% 13% 43% 25% 32% 38% 48

SS
KNN 25% 50% 79% 21% 17% 8% 54% 33% 13% 63% 50% 38% 51% 15% 33% 50% 49
Perp 33% 38% 46% 17% 21% 4% 50% 42% 50% 50% 25% 13% 39% 14% 47% 29% 50

T
ot
al En

KNN 19% 81% 64% 33% 11% 11% 47% 8% 25% 42% 25% 50% 55% 19% 27% 39% 51
Perp 81% 67% 56% 19% 28% 28% 0% 6% 17% 50% 67% 50% 68% 25% 7% 56% 52

Pl
KNN 29% 8% 50% 13% 21% 8% 58% 71% 42% 88% 50% 63% 29% 14% 57% 67% 53
Perp 8% 0% 13% 21% 25% 0% 71% 75% 88% 38% 13% 0% 7% 15% 78% 17% 54

AC AD AE AF AG AH AI AJ AK AL AM AN AO AP AQ AR



216

Table 130: B3. Relationship between graphs’ width and protein types. Clustering algorithms analysis. Percentage.

N M W C Total
SPC SDS SES SPC SDS SES SPC SDS SES SPC SDS SES N M W C

N
F
P

DN
KNN 0% 67% 33% 50% 33% 0% 50% 0% 67% 0% 50% 100% 33% 28% 39% 50% 59
Perp 100% 33% 33% 0% 67% 17% 0% 0% 50% 0% 50% 100% 56% 28% 17% 50% 60

SP
KNN 42% 50% 67% 8% 17% 8% 50% 33% 25% 25% 25% 50% 53% 11% 36% 33% 61
Perp 67% 42% 42% 8% 33% 33% 25% 25% 25% 25% 50% 25% 50% 25% 25% 33% 62

SS
KNN 25% 67% 100% 33% 17% 0% 42% 17% 0% 50% 25% 0% 64% 17% 19% 25% 63
Perp 33% 42% 50% 17% 33% 0% 50% 25% 50% 25% 25% 0% 42% 17% 42% 17% 64

ID
P

DN
KNN 17% 50% 33% 50% 17% 0% 33% 33% 67% 100% 50% 100% 33% 22% 44% 83% 65
Perp 83% 67% 0% 17% 17% 50% 0% 17% 50% 50% 100% 100% 50% 28% 22% 83% 66

SP
KNN 17% 50% 33% 25% 0% 25% 58% 50% 42% 100% 0% 50% 33% 17% 50% 50% 67
Perp 33% 33% 42% 50% 17% 8% 17% 50% 50% 75% 50% 0% 36% 25% 39% 42% 68

SS
KNN 25% 33% 58% 8% 17% 17% 67% 50% 25% 75% 75% 75% 39% 14% 47% 75% 69
Perp 33% 33% 42% 17% 8% 8% 50% 58% 50% 75% 25% 25% 36% 11% 53% 42% 70

T
ot
al

DN
KNN 8% 58% 33% 50% 25% 0% 42% 17% 67% 50% 50% 100% 33% 25% 42% 67% 71
Perp 92% 50% 17% 8% 42% 33% 0% 8% 50% 25% 75% 100% 53% 28% 19% 67% 72

SP
KNN 29% 50% 50% 17% 8% 17% 54% 42% 33% 63% 13% 50% 43% 14% 43% 42% 73
Perp 50% 38% 42% 29% 25% 21% 21% 38% 38% 50% 50% 13% 43% 25% 32% 38% 74

SS
KNN 25% 50% 79% 21% 17% 8% 54% 33% 13% 63% 50% 38% 51% 15% 33% 50% 75
Perp 33% 38% 46% 17% 21% 4% 50% 42% 50% 50% 25% 13% 39% 14% 47% 29% 76

T
ot
al NFP

KNN 27% 60% 73% 27% 20% 3% 47% 20% 23% 30% 30% 40% 53% 17% 30% 33% 77
Perp 60% 40% 43% 10% 40% 17% 30% 20% 40% 20% 40% 30% 48% 22% 30% 30% 78

IDP
KNN 20% 43% 43% 23% 10% 17% 57% 47% 40% 90% 40% 70% 36% 17% 48% 67% 79
Perp 43% 40% 33% 30% 13% 17% 27% 47% 50% 70% 50% 30% 39% 20% 41% 50% 80

Total
KNN 23% 52% 58% 25% 15% 10% 52% 33% 32% 60% 35% 55% 44% 17% 39% 50% 81
Perp 52% 40% 38% 20% 27% 17% 28% 33% 45% 45% 45% 30% 43% 21% 36% 40% 82

AC AD AE AF AG AH AI AJ AK AL AM AN AO AP AQ AR
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Table 131: B4. Relationship between a�nity types and protein types. Graph width analysis. Percentage.

Entropic Plain Total
N M W C N M W C N M W C

N
F
P

SPC
KNN 33% 33% 33% 0% 17% 17% 67% 75% 27% 27% 47% 30% 87
Perp 89% 11% 0% 17% 17% 8% 75% 25% 60% 10% 30% 20% 88

SDS
KNN 89% 11% 0% 17% 17% 33% 50% 50% 60% 20% 20% 30% 89
Perp 67% 33% 0% 67% 0% 50% 50% 0% 40% 40% 20% 40% 90

SES
KNN 72% 6% 22% 50% 75% 0% 25% 25% 73% 3% 23% 40% 91
Perp 56% 28% 17% 50% 25% 0% 75% 0% 43% 17% 40% 30% 92

ID
P

SPC
KNN 6% 33% 61% 83% 42% 8% 50% 100% 20% 23% 57% 90% 93
Perp 72% 28% 0% 83% 0% 33% 67% 50% 43% 30% 27% 70% 94

SDS
KNN 72% 11% 17% 33% 0% 8% 92% 50% 43% 10% 47% 40% 95
Perp 67% 22% 11% 67% 0% 0% 100% 25% 40% 13% 47% 50% 96

SES
KNN 56% 17% 28% 50% 25% 17% 58% 100% 43% 17% 40% 70% 97
Perp 56% 28% 17% 50% 0% 0% 100% 0% 33% 17% 50% 30% 98

T
ot
al

SPC
KNN 19% 33% 47% 42% 29% 13% 58% 88% 23% 25% 52% 60% 99
Perp 81% 19% 0% 50% 8% 21% 71% 38% 52% 20% 28% 45% 100

SDS
KNN 81% 11% 8% 25% 8% 21% 71% 50% 52% 15% 33% 35% 101
Perp 67% 28% 6% 67% 0% 25% 75% 13% 40% 27% 33% 45% 102

SES
KNN 64% 11% 25% 50% 50% 8% 42% 63% 58% 10% 32% 55% 103
Perp 56% 28% 17% 50% 13% 0% 88% 0% 38% 17% 45% 30% 104

T
ot
al

NFP
KNN 65% 17% 19% 22% 36% 17% 47% 50% 53% 17% 30% 33% 105
Perp 70% 24% 6% 44% 14% 19% 67% 8% 48% 22% 30% 30% 106

IDP
KNN 44% 20% 35% 56% 22% 11% 67% 83% 36% 17% 48% 67% 107
Perp 65% 26% 9% 67% 0% 11% 89% 25% 39% 20% 41% 50% 108

Total
KNN 55% 19% 27% 39% 29% 14% 57% 67% 44% 17% 39% 50% 109
Perp 68% 25% 7% 56% 7% 15% 78% 17% 43% 21% 36% 40% 110
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Table 132: B4.1. Relationship between the data sparsity and protein types. Graph width analysis. Percentage.

DN SP SS Total
N M W C N M W C N M W C N M W C

N
F
P

SPC
KNN 0% 50% 50% 0% 42% 8% 50% 25% 25% 33% 42% 50% 27% 27% 47% 30% 115
Perp 100% 0% 0% 0% 67% 8% 25% 25% 33% 17% 50% 25% 60% 10% 30% 20% 116

SDS
KNN 67% 33% 0% 50% 50% 17% 33% 25% 67% 17% 17% 25% 60% 20% 20% 30% 117
Perp 33% 67% 0% 50% 42% 33% 25% 50% 42% 33% 25% 25% 40% 40% 20% 40% 118

SES
KNN 33% 0% 67% 100% 67% 8% 25% 50% 100% 0% 0% 0% 73% 3% 23% 40% 119
Perp 33% 17% 50% 100% 42% 33% 25% 25% 50% 0% 50% 0% 43% 17% 40% 30% 120

ID
P

SPC
KNN 17% 50% 33% 100% 17% 25% 58% 100% 25% 8% 67% 75% 20% 23% 57% 90% 121
Perp 83% 17% 0% 50% 33% 50% 17% 75% 33% 17% 50% 75% 43% 30% 27% 70% 122

SDS
KNN 50% 17% 33% 50% 50% 0% 50% 0% 33% 17% 50% 75% 43% 10% 47% 40% 123
Perp 67% 17% 17% 100% 33% 17% 50% 50% 33% 8% 58% 25% 40% 13% 47% 50% 124

SES
KNN 33% 0% 67% 100% 33% 25% 42% 50% 58% 17% 25% 75% 43% 17% 40% 70% 125
Perp 0% 50% 50% 100% 42% 8% 50% 0% 42% 8% 50% 25% 33% 17% 50% 30% 126

T
ot
al

SPC
KNN 8% 50% 42% 50% 29% 17% 54% 63% 22% 28% 50% 58% 25% 23% 52% 60% 127
Perp 92% 8% 0% 25% 50% 29% 21% 50% 64% 22% 14% 42% 58% 25% 17% 45% 128

SDS
KNN 58% 25% 17% 50% 50% 8% 42% 13% 53% 14% 33% 25% 52% 12% 37% 20% 129
Perp 50% 42% 8% 75% 38% 25% 38% 50% 42% 31% 28% 58% 40% 28% 32% 55% 130

SES
KNN 33% 0% 67% 100% 50% 17% 33% 50% 44% 11% 44% 67% 47% 13% 40% 60% 131
Perp 17% 33% 50% 100% 42% 21% 38% 13% 33% 25% 42% 42% 37% 23% 40% 30% 132

T
ot
al NFP

KNN 33% 28% 39% 50% 53% 11% 36% 33% 46% 17% 37% 39% 49% 14% 37% 37% 133
Perp 56% 28% 17% 50% 50% 25% 25% 33% 52% 26% 22% 39% 51% 26% 23% 37% 134

IDP
KNN 33% 22% 44% 83% 33% 17% 50% 50% 33% 19% 48% 61% 33% 18% 49% 57% 135
Perp 50% 28% 22% 83% 36% 25% 39% 42% 41% 26% 33% 56% 39% 26% 36% 50% 136

Total
KNN 33% 25% 42% 67% 43% 14% 43% 42% 40% 18% 43% 50% 41% 16% 43% 47% 137
Perp 53% 28% 19% 67% 43% 25% 32% 38% 46% 26% 28% 47% 45% 26% 29% 43% 138
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Table 133: B5. Relationship between protein types and a�nity types. Trend line direction analysis. Percentage.

NFP IDP Total
/ - \ C S / - \ C S / - \ C S

E
nt
ro
pi
c

DN
KNN 28% 56% 17% 50% 17% 22% 67% 11% 50% 33% 25% 61% 14% 50% 25% 145
Perp 11% 72% 17% 17% 0% 11% 39% 50% 17% 33% 11% 56% 33% 17% 17% 146

SP
KNN 11% 89% 0% 0% 0% 17% 67% 17% 33% 0% 14% 78% 8% 17% 0% 147
Perp 11% 72% 17% 33% 0% 6% 78% 17% 17% 17% 8% 75% 17% 25% 8% 148

SS
KNN 0% 100% 0% 0% 0% 11% 83% 6% 0% 17% 6% 92% 3% 0% 8% 149
Perp 6% 94% 0% 17% 0% 22% 67% 11% 33% 0% 14% 81% 6% 25% 0% 150

P
la
in

DN
KNN 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 151
Perp 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 152

SP
KNN 22% 61% 17% 50% 33% 28% 50% 22% 83% 33% 25% 56% 19% 67% 33% 153
Perp 0% 94% 6% 0% 17% 0% 89% 11% 33% 33% 0% 92% 8% 17% 25% 154

SS
KNN 39% 44% 17% 50% 83% 39% 33% 28% 83% 67% 39% 39% 22% 67% 75% 155
Perp 0% 94% 6% 0% 0% 0% 89% 11% 33% 33% 0% 92% 8% 17% 17% 156

T
ot
al

DN
KNN 28% 56% 17% 50% 17% 22% 67% 11% 50% 33% 25% 61% 14% 50% 25% 157
Perp 11% 72% 17% 17% 0% 11% 39% 50% 17% 33% 11% 56% 33% 17% 17% 158

SP
KNN 17% 75% 8% 25% 17% 22% 58% 19% 58% 17% 19% 67% 14% 42% 17% 159
Perp 6% 83% 11% 17% 8% 3% 83% 14% 25% 25% 4% 83% 13% 21% 17% 160

SS
KNN 19% 72% 8% 25% 42% 25% 58% 17% 42% 42% 22% 65% 13% 33% 42% 161
Perp 3% 94% 3% 8% 0% 11% 78% 11% 33% 17% 7% 86% 7% 21% 8% 162

T
ot
al En

KNN 13% 81% 6% 17% 6% 17% 72% 11% 28% 17% 15% 77% 8% 22% 11% 163
Perp 9% 80% 11% 22% 0% 13% 61% 26% 22% 17% 11% 70% 19% 22% 8% 164

Pl
KNN 31% 53% 17% 50% 58% 33% 42% 25% 83% 50% 32% 47% 21% 67% 54% 165
Perp 0% 94% 6% 0% 8% 0% 89% 11% 33% 33% 0% 92% 8% 17% 21% 166
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Table 134: B6. Relationship between graph trend direction and a�nity types. Clustering algorithms analysis. Percentage.

/ - \ C S Toal
SPC SDS SES SPC SDS SES SPC SDS SES SPC SDS SES SPC SDS SES / - \ C S

E
nt
ro
pi
c

DN
KNN 8% 17% 50% 83% 75% 25% 8% 8% 25% 0% 50% 100% 0% 0% 75% 25% 61% 14% 50% 25% 171
Perp 8% 17% 8% 50% 75% 42% 42% 8% 50% 0% 25% 25% 25% 0% 25% 11% 56% 33% 17% 17% 172

SP
KNN 0% 8% 33% 92% 83% 58% 8% 8% 8% 25% 25% 0% 0% 0% 0% 14% 78% 8% 17% 0% 173
Perp 0% 8% 17% 67% 83% 75% 33% 8% 8% 25% 25% 25% 25% 0% 0% 8% 75% 17% 25% 8% 174

SS
KNN 0% 0% 17% 100% 92% 83% 0% 8% 0% 0% 0% 0% 0% 25% 0% 6% 92% 3% 0% 8% 175
Perp 25% 0% 17% 67% 92% 83% 8% 8% 0% 75% 0% 0% 0% 0% 0% 14% 81% 6% 25% 0% 176

P
la
in

DN
KNN 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 177
Perp 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 178

SP
KNN 8% 8% 58% 83% 42% 42% 8% 50% 0% 75% 100% 25% 0% 50% 50% 25% 56% 19% 67% 33% 179
Perp 0% 0% 0% 100% 75% 100% 0% 25% 0% 25% 25% 0% 0% 75% 0% 0% 92% 8% 17% 25% 180

SS
KNN 25% 0% 92% 58% 50% 8% 17% 50% 0% 100% 75% 25% 50% 75% 100% 39% 39% 22% 67% 75% 181
Perp 0% 0% 0% 100% 75% 100% 0% 25% 0% 25% 25% 0% 0% 50% 0% 0% 92% 8% 17% 17% 182

T
ot
al

DN
KNN 8% 17% 50% 83% 75% 25% 8% 8% 25% 0% 50% 100% 0% 0% 75% 25% 61% 14% 50% 25% 183
Perp 8% 17% 8% 50% 75% 42% 42% 8% 50% 0% 25% 25% 25% 0% 25% 11% 56% 33% 17% 17% 184

SP
KNN 4% 8% 46% 88% 63% 50% 8% 29% 4% 50% 63% 13% 0% 25% 25% 19% 67% 14% 42% 17% 185
Perp 0% 4% 8% 83% 79% 88% 17% 17% 4% 25% 25% 13% 13% 38% 0% 4% 83% 13% 21% 17% 186

SS
KNN 13% 0% 54% 79% 71% 46% 8% 29% 0% 50% 38% 13% 25% 50% 50% 22% 65% 13% 33% 42% 187
Perp 13% 0% 8% 83% 83% 92% 4% 17% 0% 50% 13% 0% 0% 25% 0% 7% 86% 7% 21% 8% 188

T
ot
al En

KNN 3% 8% 33% 92% 83% 56% 6% 8% 11% 8% 25% 33% 0% 8% 25% 15% 77% 8% 22% 11% 189
Perp 11% 8% 14% 61% 83% 67% 28% 8% 19% 33% 17% 17% 17% 0% 8% 11% 70% 19% 22% 8% 190

Pl
KNN 17% 4% 75% 71% 46% 25% 13% 50% 0% 88% 88% 25% 25% 63% 75% 32% 47% 21% 67% 54% 191
Perp 0% 0% 0% 100% 75% 100% 0% 25% 0% 25% 25% 0% 0% 63% 0% 0% 92% 8% 17% 21% 192
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Table 135: B7. Relationship between graph trend direction and protein types. Clustering algorithms analysis. Percentage.

/ - \ C S Total
SPC SDS SES SPC SDS SES SPC SDS SES SPC SDS SES SPC SDS SES / - \ C S

N
F
P

DN
KNN 17% 17% 50% 83% 67% 17% 0% 17% 33% 0% 50% 100% 0% 0% 50% 28% 56% 17% 50% 17% 197
Perp 17% 0% 17% 67% 100% 50% 17% 0% 33% 0% 0% 50% 0% 0% 0% 11% 72% 17% 17% 0% 198

SP
KNN 0% 8% 42% 100% 67% 58% 0% 25% 0% 25% 50% 0% 0% 25% 25% 17% 75% 8% 25% 17% 199
Perp 0% 8% 8% 92% 75% 83% 8% 17% 8% 0% 25% 25% 0% 25% 0% 6% 83% 11% 17% 8% 200

SS
KNN 17% 0% 42% 75% 83% 58% 8% 17% 0% 50% 25% 0% 50% 25% 50% 19% 72% 8% 25% 42% 201
Perp 8% 0% 0% 92% 92% 100% 0% 8% 0% 25% 0% 0% 0% 0% 0% 3% 94% 3% 8% 0% 202

ID
P

DN
KNN 0% 17% 50% 83% 83% 33% 17% 0% 17% 0% 50% 100% 0% 0% 100% 22% 67% 11% 50% 33% 203
Perp 0% 33% 0% 33% 50% 33% 67% 17% 67% 0% 50% 0% 50% 0% 50% 11% 39% 50% 17% 33% 204

SP
KNN 8% 8% 50% 75% 58% 42% 17% 33% 8% 75% 75% 25% 0% 25% 25% 22% 58% 19% 58% 17% 205
Perp 0% 0% 8% 75% 83% 92% 25% 17% 0% 50% 25% 0% 25% 50% 0% 3% 83% 14% 25% 25% 206

SS
KNN 8% 0% 67% 83% 58% 33% 8% 42% 0% 50% 50% 25% 0% 75% 50% 25% 58% 17% 42% 42% 207
Perp 17% 0% 17% 75% 75% 83% 8% 25% 0% 75% 25% 0% 0% 50% 0% 11% 78% 11% 33% 17% 208

T
ot
al

DN
KNN 8% 17% 50% 83% 75% 25% 8% 8% 25% 0% 50% 100% 0% 0% 75% 25% 61% 14% 50% 25% 209
Perp 8% 17% 8% 50% 75% 42% 42% 8% 50% 0% 25% 25% 25% 0% 25% 11% 56% 33% 17% 17% 210

SP
KNN 4% 8% 46% 88% 63% 50% 8% 29% 4% 50% 63% 13% 0% 25% 25% 19% 67% 14% 42% 17% 211
Perp 0% 4% 8% 83% 79% 88% 17% 17% 4% 25% 25% 13% 13% 38% 0% 4% 83% 13% 21% 17% 212

SS
KNN 13% 0% 54% 79% 71% 46% 8% 29% 0% 50% 38% 13% 25% 50% 50% 22% 65% 13% 33% 42% 213
Perp 13% 0% 8% 83% 83% 92% 4% 17% 0% 50% 13% 0% 0% 25% 0% 7% 86% 7% 21% 8% 214

T
ot
al NFP

KNN 10% 7% 43% 87% 73% 50% 3% 20% 7% 30% 40% 20% 20% 20% 40% 20% 70% 10% 30% 27% 215
Perp 7% 3% 7% 87% 87% 83% 7% 10% 10% 10% 10% 20% 0% 10% 0% 6% 86% 9% 13% 3% 216

IDP
KNN 7% 7% 57% 80% 63% 37% 13% 30% 7% 50% 60% 40% 0% 40% 50% 23% 60% 17% 50% 30% 217
Perp 7% 7% 10% 67% 73% 77% 27% 20% 13% 50% 30% 0% 20% 40% 10% 8% 72% 20% 27% 23% 218
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Table 136: B8. Relationship between clustering algorithms and protein types. Trend line direction analysis. Percentage.

SPC SDS SES Total
/ - \ C S / - \ C S / - \ C S / - \ C S

N
F
P

DN
KNN 17% 83% 0% 0% 0% 17% 67% 17% 50% 0% 50% 17% 33% 100% 50% 28% 56% 17% 50% 17% 223
Perp 17% 67% 17% 0% 0% 0% 100% 0% 0% 0% 17% 50% 33% 50% 0% 11% 72% 17% 17% 0% 224

SP
KNN 0% 100% 0% 25% 0% 8% 67% 25% 50% 25% 42% 58% 0% 0% 25% 17% 75% 8% 25% 17% 225
Perp 0% 92% 8% 0% 0% 8% 75% 17% 25% 25% 8% 83% 8% 25% 0% 6% 83% 11% 17% 8% 226

SS
KNN 17% 75% 8% 50% 50% 0% 83% 17% 25% 25% 42% 58% 0% 0% 50% 19% 72% 8% 25% 42% 227
Perp 8% 92% 0% 25% 0% 0% 92% 8% 0% 0% 0% 100% 0% 0% 0% 3% 94% 3% 8% 0% 228

ID
P

DN
KNN 0% 83% 17% 0% 0% 17% 83% 0% 50% 0% 50% 33% 17% 100% 100% 22% 67% 11% 50% 33% 229
Perp 0% 33% 67% 0% 50% 33% 50% 17% 50% 0% 0% 33% 67% 0% 50% 11% 39% 50% 17% 33% 230

SP
KNN 8% 75% 17% 75% 0% 8% 58% 33% 75% 25% 50% 42% 8% 25% 25% 22% 58% 19% 58% 17% 231
Perp 0% 75% 25% 50% 25% 0% 83% 17% 25% 50% 8% 92% 0% 0% 0% 3% 83% 14% 25% 25% 232

SS
KNN 8% 83% 8% 50% 0% 0% 58% 42% 50% 75% 67% 33% 0% 25% 50% 25% 58% 17% 42% 42% 233
Perp 17% 75% 8% 75% 0% 0% 75% 25% 25% 50% 17% 83% 0% 0% 0% 11% 78% 11% 33% 17% 234

T
ot
al

DN
KNN 8% 83% 8% 0% 0% 17% 75% 8% 50% 0% 50% 25% 25% 100% 75% 25% 61% 14% 50% 25% 235
Perp 8% 50% 42% 0% 25% 17% 75% 8% 25% 0% 8% 42% 50% 25% 25% 11% 56% 33% 17% 17% 236

SP
KNN 4% 88% 8% 50% 0% 8% 63% 29% 63% 25% 46% 50% 4% 13% 25% 19% 67% 14% 42% 17% 237
Perp 0% 83% 17% 25% 13% 4% 79% 17% 25% 38% 8% 88% 4% 13% 0% 4% 83% 13% 21% 17% 238

SS
KNN 13% 79% 8% 50% 25% 0% 71% 29% 38% 50% 54% 46% 0% 13% 50% 22% 65% 13% 33% 42% 239
Perp 13% 83% 4% 50% 0% 0% 83% 17% 13% 25% 8% 92% 0% 0% 0% 7% 86% 7% 21% 8% 240

T
ot
al NFP

KNN 10% 87% 3% 30% 20% 7% 73% 20% 40% 20% 43% 50% 7% 20% 40% 20% 70% 10% 30% 27% 241
Perp 7% 87% 7% 10% 0% 3% 87% 10% 10% 10% 7% 83% 10% 20% 0% 6% 86% 9% 13% 3% 242

IDP
KNN 7% 80% 13% 50% 0% 7% 63% 30% 60% 40% 57% 37% 7% 40% 50% 23% 60% 17% 50% 30% 243
Perp 7% 67% 27% 50% 20% 7% 73% 20% 30% 40% 10% 77% 13% 0% 10% 8% 72% 20% 27% 23% 244
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Table 137: B9. Relationship between a�nity types and protein types. Trend line direction analysis. Percentage.

Entropic Plain Total
/ - \ C S / - \ C S / - \ C S

N
F
P

SPC
KNN 6% 94% 0% 0% 0% 17% 75% 8% 75% 50% 10% 87% 3% 30% 20% 249
Perp 11% 78% 11% 17% 0% 0% 100% 0% 0% 0% 7% 87% 7% 10% 0% 250

SDS
KNN 6% 89% 6% 17% 0% 8% 50% 42% 75% 50% 7% 73% 20% 40% 20% 251
Perp 6% 89% 6% 17% 0% 0% 83% 17% 0% 25% 3% 87% 10% 10% 10% 252

SES
KNN 28% 61% 11% 33% 17% 67% 33% 0% 0% 75% 43% 50% 7% 20% 40% 253
Perp 11% 72% 17% 33% 0% 0% 100% 0% 0% 0% 7% 83% 10% 20% 0% 254

ID
P

SPC
KNN 0% 89% 11% 17% 0% 17% 67% 17% 100% 0% 7% 80% 13% 50% 0% 255
Perp 11% 44% 44% 50% 33% 0% 100% 0% 50% 0% 7% 67% 27% 50% 20% 256

SDS
KNN 11% 78% 11% 33% 17% 0% 42% 58% 100% 75% 7% 63% 30% 60% 40% 257
Perp 11% 78% 11% 17% 0% 0% 67% 33% 50% 100% 7% 73% 20% 30% 40% 258

SES
KNN 39% 50% 11% 33% 33% 83% 17% 0% 50% 75% 57% 37% 7% 40% 50% 259
Perp 17% 61% 22% 0% 17% 0% 100% 0% 0% 0% 10% 77% 13% 0% 10% 260

T
ot
al

SPC
KNN 3% 92% 6% 8% 0% 17% 71% 13% 88% 25% 8% 83% 8% 40% 10% 261
Perp 11% 61% 28% 33% 17% 0% 100% 0% 25% 0% 7% 77% 17% 30% 10% 262

SDS
KNN 8% 83% 8% 25% 8% 4% 46% 50% 88% 63% 7% 68% 25% 50% 30% 263
Perp 8% 83% 8% 17% 0% 0% 75% 25% 25% 63% 5% 80% 15% 20% 25% 264

SES
KNN 33% 56% 11% 33% 25% 75% 25% 0% 25% 75% 50% 43% 7% 30% 45% 265
Perp 14% 67% 19% 17% 8% 0% 100% 0% 0% 0% 8% 80% 12% 10% 5% 266

T
ot
al NFP

KNN 13% 81% 6% 17% 6% 31% 53% 17% 50% 58% 20% 70% 10% 30% 27% 267
Perp 9% 80% 11% 22% 0% 0% 94% 6% 0% 8% 6% 86% 9% 13% 3% 268

IDP
KNN 17% 72% 11% 28% 17% 33% 42% 25% 83% 50% 23% 60% 17% 50% 30% 269
Perp 13% 61% 26% 22% 17% 0% 89% 11% 33% 33% 8% 72% 20% 27% 23% 270

Total
KNN 15% 77% 8% 22% 11% 32% 47% 21% 67% 54% 22% 65% 13% 40% 28% 271
Perp 11% 70% 19% 22% 8% 0% 92% 8% 17% 21% 7% 79% 14% 20% 13% 272
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Table 138: B10. Relationship between data sparsity and protein types. Trend line direction analysis. Percentage.

DN SP SS Total
/ - \ C S / - \ C S / - \ C S / - \ C S

N
F
P

SPC
KNN 17% 83% 0% 0% 0% 0% 100% 0% 25% 0% 17% 75% 8% 50% 50% 10% 87% 3% 30% 20% 277
Perp 17% 67% 17% 0% 0% 0% 92% 8% 0% 0% 8% 92% 0% 25% 0% 7% 87% 7% 10% 0% 278

SDS
KNN 17% 67% 17% 50% 0% 8% 67% 25% 50% 25% 0% 83% 17% 25% 25% 7% 73% 20% 40% 20% 279
Perp 0% 100% 0% 0% 0% 8% 75% 17% 25% 25% 0% 92% 8% 0% 0% 3% 87% 10% 10% 10% 280

SES
KNN 50% 17% 33% 100% 50% 42% 58% 0% 0% 25% 42% 58% 0% 0% 50% 43% 50% 7% 20% 40% 281
Perp 17% 50% 33% 50% 0% 8% 83% 8% 25% 0% 0% 100% 0% 0% 0% 7% 83% 10% 20% 0% 282

ID
P

SPC
KNN 0% 83% 17% 0% 0% 8% 75% 17% 75% 0% 8% 83% 8% 50% 0% 7% 80% 13% 50% 0% 283
Perp 0% 33% 67% 0% 50% 0% 75% 25% 50% 25% 17% 75% 8% 75% 0% 7% 67% 27% 50% 20% 284

SDS
KNN 17% 83% 0% 50% 0% 8% 58% 33% 75% 25% 0% 58% 42% 50% 75% 7% 63% 30% 60% 40% 285
Perp 33% 50% 17% 50% 0% 0% 83% 17% 25% 50% 0% 75% 25% 25% 50% 7% 73% 20% 30% 40% 286

SES
KNN 50% 33% 17% 100% 100% 50% 42% 8% 25% 25% 67% 33% 0% 25% 50% 57% 37% 7% 40% 50% 287
Perp 0% 33% 67% 0% 50% 8% 92% 0% 0% 0% 17% 83% 0% 0% 0% 10% 77% 13% 0% 10% 288

T
ot
al

SPC
KNN 8% 83% 8% 0% 0% 4% 88% 8% 50% 0% 13% 79% 8% 50% 25% 8% 83% 8% 40% 10% 289
Perp 8% 50% 42% 0% 25% 0% 83% 17% 25% 13% 13% 83% 4% 50% 0% 7% 77% 17% 30% 10% 290

SDS
KNN 17% 75% 8% 50% 0% 8% 63% 29% 63% 25% 0% 71% 29% 38% 50% 7% 68% 25% 50% 30% 291
Perp 17% 75% 8% 25% 0% 4% 79% 17% 25% 38% 0% 83% 17% 13% 25% 5% 80% 15% 20% 25% 292

SES
KNN 50% 25% 25% 100% 75% 46% 50% 4% 13% 25% 54% 46% 0% 13% 50% 50% 43% 7% 30% 45% 293
Perp 8% 42% 50% 25% 25% 8% 88% 4% 13% 0% 8% 92% 0% 0% 0% 8% 80% 12% 10% 5% 294

T
ot
al NFP

KNN 28% 56% 17% 50% 17% 17% 75% 8% 25% 17% 19% 72% 8% 25% 42% 20% 70% 10% 30% 27% 295
Perp 11% 72% 17% 17% 0% 6% 83% 11% 17% 8% 3% 94% 3% 8% 0% 6% 86% 9% 13% 3% 296

IDP
KNN 22% 67% 11% 50% 33% 22% 58% 19% 58% 17% 25% 58% 17% 42% 42% 23% 60% 17% 50% 30% 297
Perp 11% 39% 50% 17% 33% 3% 83% 14% 25% 25% 11% 78% 11% 33% 17% 8% 72% 20% 27% 23% 298

Total
KNN 25% 61% 14% 50% 25% 19% 67% 14% 42% 17% 22% 65% 13% 33% 42% 22% 65% 13% 40% 28% 299
Perp 11% 56% 33% 17% 17% 4% 83% 13% 21% 17% 7% 86% 7% 21% 8% 7% 79% 14% 20% 13% 300
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APPENDIXC

Detailed Results for Chapter III

C.I Protein type

A�nities

Width

EN

For KNN NFP showed 65% [AC23] of narrow shapes, 19% [AE23] of wide shapes,

and 22% [AF23] of changes. IDP showed 44% [AG23] of narrow shapes, 35% [AI23] of

wide shapes, and 56% [AJ23] of changes.

For pp NFP showed 70% [AC24] of narrow shapes, 6% [AE24] of wide shapes, and

44% [AF24] of changes. IDP showed 65% [AG24] of narrow shapes, 9% [AI24] of wide

shapes, and 67% [AJ24] of changes.

PL

For KNN NFP showed 36% [AC25] of narrow shapes, 47% [AE25] of wide shapes,

and 50% [AF25] of changes. IDP showed 22% [AG25] of narrow shapes, 67% [AI25] of
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wide shapes, and 83% [AJ25] of changes.

For sigma NFP showed 14% [AC26] of narrow shapes, 67% [AE26] of wide shapes,

and 8% [AF26] of changes. IDP showed 0% [AG26] of narrow shapes, 89% [AI26] of

wide shapes, and 25% [AJ26] of changes.

Total

For KNN NFP showed 53% [AC27] of narrow shapes, 30% [AE27] of wide shapes,

and 33% [AF27] of changes. IDP showed 36% [AG27] of narrow shapes, 48% [AI27] of

wide shapes, and 67% [AJ27] of changes.

For pp/sigma NFP showed 48% [AC28] of narrow shapes, 30% [AE28] of wide

shapes, and 30% [AF28] of changes. IDP showed 39% [AG28] of narrow shapes, 41%

[AI28] of wide shapes, and 50% [AJ28] of changes.

Shape

EN

For KNN NFP showed 13% [AC163] of rising parts, 6% [AE163] of falling parts,

6% [AG163]of them were strong, and 17% [AF163] of V and A shapes. IDP showed

17% [AC163] of rising parts, 11% [AE163] of falling parts, 17% [AG163]of them were

strong, and 28% [AF163] of V and A shapes.
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For pp NFP showed 9% [AC164] of rising parts, 11% [AE164] of falling parts, 0%

[AG164]of them were strong, and 22% [AF164] of V and A shapes. IDP showed 13%

[AC164] of rising parts, 26% [AE164] of falling parts, 17% [AG164]of them were strong,

and 22% [AF164] of V and A shapes.

PL

For KNN NFP showed 31% [AC163] of rising parts, 17% [AE163] of falling parts,

58% [AG163]of them were strong, and 50% [AF163] of V and A shapes. IDP showed

33% [AC163] of rising parts, 25% [AE163] of falling parts, 50% [AG163]of them were

strong, and 83% [AF163] of V and A shapes.

For sigma NFP showed 0% [AC164] of rising parts, 6% [AE164] of falling parts,

8% [AG164]of them were strong, and 0% [AF164] of V and A shapes. IDP showed 0%

[AC164] of rising parts, 11% [AE164] of falling parts, 33% [AG164]of them were strong,

and 33% [AF164] of V and A shapes.

Total

For KNN NFP showed 31% [AC163] of rising parts, 17% [AE163] of falling parts,

58% [AG163]of them were strong, and 50% [AF163] of V and A shapes. IDP showed

33% [AC163] of rising parts, 25% [AE163] of falling parts, 50% [AG163]of them were

strong, and 83% [AF163] of V and A shapes.

For pp/sigma NFP showed 0% [AC164] of rising parts, 6% [AE164] of falling parts,

8% [AG164]of them were strong, and 0% [AF164] of V and A shapes. IDP showed 0%
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[AC164] of rising parts, 11% [AE164] of falling parts, 33% [AG164]of them were strong,

and 33% [AF164] of V and A shapes.

Algorithms

Width

SPC

For KNN NFP showed 27% [AK87] of narrow shapes, 47% [AM87] of wide shapes,

and 30% [AF91] of changes. IDP showed 20% [AK93] of narrow shapes, 57% [AM93]

of wide shapes, and 90% [AN93] of changes.

For pp/sigma NFP showed 60% [AK88] of narrow shapes, 30% [AM88] of wide

shapes, and 20% [AN88] of changes. IDP showed 43% [AK94] of narrow shapes, 27%

[AM94] of wide shapes, and 70% [AN94] of changes.

SDS

For KNN NFP showed 60% [AK89] of narrow shapes, 20% [AK89] of wide shapes,

and 30% [AN89] of changes. IDP showed 43% [AC95] of narrow shapes, 47% [AM95]

of wide shapes, and 40% [AN95] of changes.

For pp/sigma NFP showed 40% [AK90] of narrow shapes, 20% [AM90] of wide

shapes, and 40% [AN90] of changes. IDP showed 40% [AK96] of narrow shapes, 47%

[AM96] of wide shapes, and 50% [AN96] of changes.
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SES

For KNN NFP showed 73% [AK91] of narrow shapes, 23% [AM91] of wide shapes,

and 40% [AN91] of changes. IDP showed 43% [AK97] of narrow shapes, 40% [AM97]

of wide shapes, and 70% [AN97] of changes.

For pp/sigma NFP showed 43% [AK92] of narrow shapes, 40% [AM92] of wide

shapes, and 30% [AN92] of changes. IDP showed 33% [AK98] of narrow shapes, 50%

[AM98] of wide shapes, and 30% [AN98] of changes.

Total

For KNN NFP showed 53% [AK105] of narrow shapes, 30% [AM105] of wide

shapes, and 33% [AN105] of changes. IDP showed 36% [AK107] of narrow shapes, 48%

[AM107] of wide shapes, and 67% [AN107] of changes.

For pp/sigma NFP showed 48% [AK106] of narrow shapes, 30% [AM106] of wide

shapes, and 30% [AN106] of changes. IDP showed 39% [AK108] of narrow shapes, 41%

[AM108] of wide shapes, and 50% [AN108] of changes.

Shape

SPC

For KNN NFP showed 10% [AC241] of rising parts, 3% [AE241] of falling parts,

20% [AG241]of them were strong, and 30% [AF241] of V and A shapes. IDP showed 7%

[AC243] of rising parts, 13% [AE243] of falling parts, 0% [AG243]of them were strong,
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and 50% [AF243] of V and A shapes.

For pp/sigma NFP showed 7% [AC242] of rising parts, 7% [AE242] of falling parts,

0% [AG242]of them were strong, and 10% [AF242] of V and A shapes. IDP showed

7% [AC244] of rising parts, 27% [AE244] of falling parts, 20% [AG244]of them were

strong, and 50% [AF244] of V and A shapes.

SDS

For KNN NFP showed 7% [AH241] of rising parts, 20% [AJ241] of falling parts,

20% [AL241]of them were strong, and 40% [AK241] of V and A shapes. IDP showed

7% [AH243] of rising parts, 30% [AJ243] of falling parts, 40% [AL243]of them were

strong, and 60% [AK243] of V and A shapes.

For pp/sigma NFP showed 3% [AH242] of rising parts, 10% [AJ242] of falling

parts, 10% [AL242]of them were strong, and 10% [AK242] of V and A shapes. IDP

showed 7% [AH244] of rising parts, 20% [AJ244] of falling parts, 40% [AL244]of them

were strong, and 30% [AK244] of V and A shapes.

SES

For KNN NFP showed 43% [AM241] of rising parts, 7% [AO241] of falling parts,

40% [AQ241]of them were strong, and 20% [AP241] of V and A shapes. IDP showed

57% [AM243] of rising parts, 7% [AO243] of falling parts, 50% [AQ243]of them were

strong, and 40% [AP243] of V and A shapes.
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For pp/sigma NFP showed 7% [AM242] of rising parts, 10% [AO242] of falling

parts, 0% [AQ242]of them were strong, and 20% [AP242] of V and A shapes. IDP

showed 10% [AM244] of rising parts, 13% [AO244] of falling parts, 10% [AQ244]of

them were strong, and 0% [AP244] of V and A shapes.

Total

For KNN NFP showed 20% [AR241] of rising parts, 10% [AT241] of falling parts,

27% [AV241]of them were strong, and 30% [AU241] of V and A shapes. IDP showed

57% [AR243] of rising parts, 7% [AT243] of falling parts, 50% [AV243]of them were

strong, and 40% [AU243] of V and A shapes.

For pp/sigma NFP showed 6% [AR242] of rising parts, 9% [AT242] of falling parts,

3% [AV242]of them were strong, and 13% [AU242] of V and A shapes. IDP showed 8%

[AR244] of rising parts, 20% [AT244] of falling parts, 23% [AV244]of them were strong,

and 27% [AU244] of V and A shapes.

Sparsity

Width

DN

For KNN NFP showed 33% [AO59] of narrow shapes, 39% [AQ59] of wide shapes,

and 50% [AR59] of changes. IDP showed 33% [AO65] of narrow shapes, 44% [AQ65]

of wide shapes, and 83% [AR65] of changes.
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For pp NFP showed 56% [AO60] of narrow shapes, 17% [AQ60] of wide shapes,

and 50% [AR60] of changes. IDP showed 50% [AO66] of narrow shapes, 22% [AQ66]

of wide shapes, and 83% [AR66] of changes.

SP

For KNN NFP showed 53% [AO61] of narrow shapes, 36% [AQ61] of wide shapes,

and 33% [AR61] of changes. IDP showed 33% [AO67] of narrow shapes, 50% [AQ67]

of wide shapes, and 50% [AR67] of changes.

For pp/sigma NFP showed 50% [AO62] of narrow shapes, 25% [AQ62] of wide

shapes, and 33% [AR62] of changes. IDP showed 36% [AO68] of narrow shapes, 39%

[AQ68] of wide shapes, and 42% [AR68] of changes.

SS

For KNN NFP showed 64% [AO63] of narrow shapes, 19% [AQ63] of wide shapes,

and 25% [AR63] of changes. IDP showed 39% [AO69] of narrow shapes, 47% [AQ69]

of wide shapes, and 75% [AR69] of changes.

For pp/sigma NFP showed 42% [AO64] of narrow shapes, 42% [AQ64] of wide

shapes, and 17% [AR64] of changes. IDP showed 36% [AO70] of narrow shapes, 53%

[AQ70] of wide shapes, and 42% [AR70] of changes.

Total
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For KNN NFP showed 53% [AO77] of narrow shapes, 30% [AQ77] of wide shapes,

and 33% [AR77] of changes. IDP showed 36% [AO79] of narrow shapes, 48% [AQ79]

of wide shapes, and 67% [AR79] of changes.

For pp/sigma NFP showed 48% [AO78] of narrow shapes, 30% [AQ78] of wide

shapes, and 30% [AR78] of changes. IDP showed 39% [AO80] of narrow shapes, 41%

[AQ80] of wide shapes, and 50% [AR80] of changes.

Shape

DN

For KNN NFP showed 28% [AR223] of rising parts, 17% [AT223] of falling parts,

17% [AV223]of them were strong, and 50% [AU223] of V and A shapes. IDP showed

22% [AR229] of rising parts, 11% [AT229] of falling parts, 33% [AV229]of them were

strong, and 50% [AU229] of V and A shapes.

For pp NFP showed 11% [AR224] of rising parts, 17% [AT224] of falling parts,

0% [AV224]of them were strong, and 17% [AU224] of V and A shapes. IDP showed

11% [AR230] of rising parts, 50% [AT230] of falling parts, 33% [AV230]of them were

strong, and 17% [AU230] of V and A shapes.

SP

For KNN NFP showed 17% [AR225] of rising parts, 8% [AT225] of falling parts,

17% [AV225]of them were strong, and 25% [AU225] of V and A shapes. IDP showed

22% [AR231] of rising parts, 19% [AT231] of falling parts, 17% [AV231]of them were
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strong, and 58% [AU231] of V and A shapes.

For pp/sigma NFP showed 6% [AR226] of rising parts, 11% [AT226] of falling

parts, 17% [AV226]of them were strong, and 17% [AU226] of V and A shapes. IDP

showed 3% [AR232] of rising parts, 14% [AT232] of falling parts, 25% [AV232]of them

were strong, and 25% [AU232] of V and A shapes.

SS

For KNN NFP showed 19% [AR227] of rising parts, 8% [AT227] of falling parts,

42% [AV227]of them were strong, and 25% [AU227] of V and A shapes. IDP showed

25% [AR233] of rising parts, 17% [AT233] of falling parts, 42% [AV233]of them were

strong, and 42% [AU233] of V and A shapes.

For pp/sigma NFP showed 3% [AR228] of rising parts, 3% [AT228] of falling parts,

0% [AV228]of them were strong, and 8% [AU228] of V and A shapes. IDP showed 11%

[AR234] of rising parts, 11% [AT234] of falling parts, 17% [AV234]of them were strong,

and 33% [AU234] of V and A shapes.

Total

For KNN NFP showed 20% [AR241] of rising parts, 10% [AT241] of falling parts,

27% [AV241]of them were strong, and 30% [AU241] of V and A shapes. IDP showed

23% [AR243] of rising parts, 17% [AT243] of falling parts, 30% [AV243]of them were

strong, and 50% [AU243] of V and A shapes.
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For pp/sigma NFP showed 6% [AR242] of rising parts, 9% [AT242] of falling parts,

3% [AV242]of them were strong, and 13% [AU242] of V and A shapes. IDP showed 8%

[AR244] of rising parts, 20% [AT244] of falling parts, 23% [AV244]of them were strong,

and 27% [AU244] of V and A shapes.

C.II A�nity type

Protein type

Width

NFP

For KNN Entropic a�nities showed 65% [AC23] of narrow shapes, 19% [AE23] of

wide shapes, and 22% [AF23] of changes. Plain a�nities showed 36% [AC25] of narrow

shapes, 47% [AE25] of wide shapes, and 50% [AF25] of changes.

For pp/sigma Entropic a�nities showed 70% [AC24] of narrow shapes, 6% [AE24]

of wide shapes, and 44% [AF24] of changes. Plain a�nities showed 14% [AC26] of

narrow shapes, 67% [AE26] of wide shapes, and 8% [AF26] of changes.

IDP

For KNN Entropic a�nities showed 44% [AG23] of narrow shapes, 35% [AI23] of

wide shapes, and 56% [AJ23] of changes. Plain a�nities showed 22% [AG25] of narrow

shapes, 67% [AI25] of wide shapes, and 83% [AJ25] of changes.
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For pp/sigma Entropic a�nities showed 65% [AG24] of narrow shapes, 9% [AI24]

of wide shapes, and 67% [AJ24] of changes. Plain a�nities showed 0% [AG26] of narrow

shapes, 89% [AI26] of wide shapes, and 25% [AJ26] of changes.

Total

For KNN Entropic a�nities showed 55% [AK23] of narrow shapes, 27% [AM23]

of wide shapes, and 39% [AN23] of changes. Plain a�nities showed 29% [AK25] of

narrow shapes, 57% [AM25] of wide shapes, and 67% [AN25] of changes.

For pp/sigma Entropic a�nities showed 68% [AK24] of narrow shapes, 7% [AM24]

of wide shapes, and 56% [AN24] of changes. Plain a�nities showed 7% [AK26] of narrow

shapes, 78% [AM26] of wide shapes, and 17% [AN26] of changes.

Shape

NFP

For KNN Entropic a�nities showed 13% [AC267] of rising parts, 6% [AE267] of

falling parts, 6% [AG267]of them were strong, and 17% [AF267] of V and A shapes.

Plain a�nities showed 31% [AH267] of rising parts, 17% [AJ267] of falling parts, 58%

[AL267]of them were strong, and 50% [AK267] of V and A shapes.

For pp/sigma Entropic a�nities showed 9% [AC268] of rising parts, 11% [AE268]

of falling parts, 0% [AG268]of them were strong, and 22% [AF268] of V and A shapes.

Plain a�nities showed 0% [AH268] of rising parts, 6% [AJ268] of falling parts, 8%

[AL268]of them were strong, and 0% [AK268] of V and A shapes.
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IDP

For KNN Entropic a�nities showed 17% [AC269] of rising parts, 11% [AE269] of

falling parts, 17% [AG269]of them were strong, and 28% [AF269] of V and A shapes.

Plain a�nities showed 33% [AH269] of rising parts, 25% [AJ269] of falling parts, 50%

[AL269]of them were strong, and 83% [AK269] of V and A shapes.

For pp/sigma Entropic a�nities showed 13% [AC270] of rising parts, 26% [AE270]

of falling parts, 17% [AG270]of them were strong, and 22% [AF270] of V and A shapes.

Plain a�nities showed 0% [AH270] of rising parts, 11% [AJ270] of falling parts, 33%

[AL270]of them were strong, and 33% [AK270] of V and A shapes.

Total

For KNN Entropic a�nities showed 15% [AC271] of rising parts, 8% [AE271] of

falling parts, 11% [AG271]of them were strong, and 22% [AF271] of V and A shapes.

Plain a�nities showed 32% [AH271] of rising parts, 21% [AJ271] of falling parts, 54%

[AL271]of them were strong, and 67% [AK271] of V and A shapes.

For pp/sigma Entropic a�nities showed 11% [AC272] of rising parts, 19% [AE272]

of falling parts, 8% [AG272]of them were strong, and 22% [AF272] of V and A shapes.

Plain a�nities showed 0% [AH272] of rising parts, 8% [AJ272] of falling parts, 21%

[AL272]of them were strong, and 17% [AK272] of V and A shapes.

Algorithms
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Width

SPC

For KNN Entropic a�nities showed 19% [AC99] of narrow shapes, 47% [AE99] of

wide shapes, and 42% [AF99] of changes. Plain a�nities showed 29% [AF99] of narrow

shapes, 58% [AI99] of wide shapes, and 88% [AJ99] of changes.

For pp/sigma Entropic a�nities showed 81% [AC100] of narrow shapes, 0% [AE100]

of wide shapes, and 50% [AF100] of changes. Plain a�nities showed 8% [AG100] of

narrow shapes, 71% [AI100] of wide shapes, and 38% [AJ100] of changes.

SDS

For KNN Entropic a�nities showed 81% [AC101] of narrow shapes, 8% [AE101]

of wide shapes, and 25% [AF101] of changes. Plain a�nities showed 8% [AF101] of

narrow shapes, 71% [AI101] of wide shapes, and 50% [AJ101] of changes.

For pp/sigma Entropic a�nities showed 67% [AC102] of narrow shapes, 6% [AE101]

of wide shapes, and 67% [AF102] of changes. Plain a�nities showed 0% [AG102] of

narrow shapes, 75% [AI102] of wide shapes, and 13% [AJ102] of changes.

SES

For KNN Entropic a�nities showed 64% [AC103] of narrow shapes, 25% [AE103]

of wide shapes, and 50% [AF103] of changes. Plain a�nities showed 50% [AF103] of
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narrow shapes, 42% [AI103] of wide shapes, and 63% [AJ103] of changes.

For pp/sigma Entropic a�nities showed 56% [AC104] of narrow shapes, 17%

[AE104] of wide shapes, and 50% [AF104] of changes. Plain a�nities showed 12.5%

[AG104] of narrow shapes, 87.5% [AI100] of wide shapes, and 0% [AJ100] of changes.

Total

For KNN Entropic a�nities showed 55% [AC109] of narrow shapes, 27% [AE109]

of wide shapes, and 39% [AF109] of changes. Plain a�nities showed 29% [AF109] of

narrow shapes, 57% [AI109] of wide shapes, and 67% [AJ109] of changes.

For pp/sigma Entropic a�nities showed 68% [AC109] of narrow shapes, 7% [AE109]

of wide shapes, and 56% [AF109] of changes. Plain a�nities showed 7% [AG109] of

narrow shapes, 78% [AI109] of wide shapes, and 17% [AJ109] of changes.

Shape

SPC

For KNN Entropic a�nities showed 3% [AC261] of rising parts, 6% [AE261] of

falling parts, 0% [AG261]of them were strong, and 8% [AF261] of V and A shapes.

Plain a�nities showed 17% [AH261] of rising parts, 13% [AJ261] of falling parts, 25%

[AL261]of them were strong, and 88% [AK261] of V and A shapes.
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For pp/sigma Entropic a�nities showed 11% [AC262] of rising parts, 28% [AE262]

of falling parts, 17% [AG262]of them were strong, and 33% [AF262] of V and A shapes.

Plain a�nities showed 0% [AH262] of rising parts, 0% [AJ262] of falling parts, 0%

[AL262]of them were strong, and 25% [AK262] of V and A shapes.

SDS

For KNN Entropic a�nities showed 8% [AC263] of rising parts, 8% [AE263] of

falling parts, 8% [AG263]of them were strong, and 25% [AF263] of V and A shapes.

Plain a�nities showed 4% [AH263] of rising parts, 50% [AJ263] of falling parts, 63%

[AL263]of them were strong, and 88% [AK263] of V and A shapes.

For pp/sigma Entropic a�nities showed 8% [AC264] of rising parts, 8% [AE264]

of falling parts, 0% [AG264]of them were strong, and 17% [AF264] of V and A shapes.

Plain a�nities showed 0% [AH264] of rising parts, 25% [AJ264] of falling parts, 63%

[AL264]of them were strong, and 25% [AK264] of V and A shapes.

SES

For KNN Entropic a�nities showed 33% [AC265] of rising parts, 11% [AE265] of

falling parts, 25% [AG265]of them were strong, and 33% [AF265] of V and A shapes.

Plain a�nities showed 75% [AH265] of rising parts, 0% [AJ265] of falling parts, 75%

[AL265]of them were strong, and 25% [AK265] of V and A shapes.

For pp/sigma Entropic a�nities showed 14% [AC266] of rising parts, 19% [AE266]

of falling parts, 8% [AG266]of them were strong, and 17% [AF266] of V and A shapes.
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Plain a�nities showed 0% [AH266] of rising parts, 0% [AJ266] of falling parts, 0%

[AL266]of them were strong, and 0% [AK266] of V and A shapes.

Total

For KNN Entropic a�nities showed 15% [AC271] of rising parts, 8% [AE271] of

falling parts, 11% [AG271]of them were strong, and 22% [AF271] of V and A shapes.

Plain a�nities showed 32% [AH271] of rising parts, 21% [AJ271] of falling parts, 54%

[AL271]of them were strong, and 67% [AK271] of V and A shapes.

For pp/sigma Entropic a�nities showed 11% [AC272] of rising parts, 19% [AE272]

of falling parts, 8% [AG272]of them were strong, and 22% [AF272] of V and A shapes.

Plain a�nities showed 0% [AH272] of rising parts, 8% [AJ272] of falling parts, 21%

[AL272]of them were strong, and 17% [AK272] of V and A shapes.

Data sparsity

Width

DN

For KNN Entropic a�nities showed 33% [AK5] of narrow shapes, 42% [AM5] of

wide shapes, and 67% [AN5] of changes.

For pp Entropic a�nities showed 53% [AK6] of narrow shapes, 19% [AM6] of wide

shapes, and 67% [AN6] of changes.
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SP

For KNN Entropic a�nities showed 69% [AK7] of narrow shapes, 8% [AM7] of

wide shapes, and 25% [AN7] of changes. Plain a�nities showed 17% [AK13] of narrow

shapes, 78% [AM13] of wide shapes, and 58% [AN13] of changes.

For pp/sigma Entropic a�nities showed 72% [AK8] of narrow shapes, 0% [AM8]

of wide shapes, and 50% [AN8] of changes. Plain a�nities showed 14% [AK14] of narrow

shapes, 64% [AM14] of wide shapes, and 25% [AN14] of changes.

SS

For KNN Entropic a�nities showed 61% [AK9] of narrow shapes, 31% [AM9] of

wide shapes, and 25% [AN9] of changes. Plain a�nities showed 42% [AK15] of narrow

shapes, 36% [AM15] of wide shapes, and 75% [AN15] of changes.

For pp/sigma Entropic a�nities showed 78% [AK10] of narrow shapes, 3% [AM10]

of wide shapes, and 50% [AN10] of changes. Plain a�nities showed 0% [AK16] of narrow

shapes, 92% [AM16] of wide shapes, and 8% [AN16] of changes.

Total

For KNN Entropic a�nities showed 55% [AK23] of narrow shapes, 27% [AM23]

of wide shapes, and 39% [AN23] of changes. Plain a�nities showed 29% [AK25] of

narrow shapes, 57% [AM25] of wide shapes, and 67% [AN25] of changes.
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For pp/sigma Entropic a�nities showed 68% [AK24] of narrow shapes, 7% [AM24]

of wide shapes, and 56% [AN24] of changes. Plain a�nities showed 7% [AK26] of narrow

shapes, 78% [AM26] of wide shapes, and 17% [AN26] of changes.

Shape

DN

For KNN Entropic a�nities showed 25% [AM145] of rising parts, 14% [AO145]

of falling parts, 25% [AQ145]of them were strong, and 50% [AP145] of V and A shapes.

For pp Entropic a�nities showed 11% [AM146] of rising parts, 33% [AO146] of

falling parts, 17% [AQ146]of them were strong, and 17% [AP146] of V and A shapes.

SP

For KNN Entropic a�nities showed 14% [AM147] of rising parts, 8% [AO147]

of falling parts, 0% [AQ147]of them were strong, and 17% [AP147] of V and A shapes.

Plain a�nities showed 25% [AM153] of rising parts, 19% [AO153] of falling parts, 33%

[AQ153]of them were strong, and 67% [AP153] of V and A shapes.

For pp/sigma Entropic a�nities showed 8% [AM148] of rising parts, 17% [AO148]

of falling parts, 8% [AQ148]of them were strong, and 25% [AP148] of V and A shapes.

Plain a�nities showed 0% [AM154] of rising parts, 8% [AO154] of falling parts, 25%

[AQ154]of them were strong, and 17% [AP154] of V and A shapes.

SS
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For KNN Entropic a�nities showed 6% [AM149] of rising parts, 3% [AO149] of

falling parts, 8% [AQ149]of them were strong, and 0% [AP149] of V and A shapes.

Plain a�nities showed 39% [AM155] of rising parts, 22% [AO155] of falling parts, 75%

[AQ155]of them were strong, and 67% [AP155] of V and A shapes.

For pp/sigma Entropic a�nities showed 14% [AM150] of rising parts, 6% [AO150]

of falling parts, 0% [AQ150]of them were strong, and 25% [AP150] of V and A shapes.

Plain a�nities showed 0% [AM156] of rising parts, 8% [AO156] of falling parts, 17%

[AQ156]of them were strong, and 17% [AP156] of V and A shapes.

Total

For KNN Entropic a�nities showed 15% [AM149] of rising parts, 8% [AO149] of

falling parts, 11% [AQ149]of them were strong, and 22% [AP149] of V and A shapes.

Plain a�nities showed 32% [AM155] of rising parts, 21% [AO155] of falling parts, 54%

[AQ155]of them were strong, and 67% [AP155] of V and A shapes.

For pp/sigma Entropic a�nities showed 11% [AM150] of rising parts, 19% [AO150]

of falling parts, 8% [AQ150]of them were strong, and 22% [AP150] of V and A shapes.

Plain a�nities showed 0% [AM156] of rising parts, 8% [AO156] of falling parts, 21%

[AQ156]of them were strong, and 17% [AP156] of V and A shapes.

C.III Algorithm type

For KNN SDS and SES algorithms behave similarly having 50% of graphs with

narrow shape. SPC algorithm has 52% of graphs described as wide and 22% of graphs
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described as medium or narrow.

For pp/sigma we can observe di�erent behaviour. For SPC algorithm 50% of

graphs are described as narrow, while 20% and 26% of graphs are medium and wide.

Protein

Width

NFP

For KNN SPC algorithm showed 27% [AK87] of narrow shapes, 47% [AM87]

of wide shapes, and 30% [AN87] of changes. SDS algorithm showed 60% [AK89] of

narrow shapes, 20% [AM89] of wide shapes, and 30% [AN89] of changes. SES algorithm

showed 73% [AK91] of narrow shapes, 23% [AM91] of wide shapes, and 40% [AN91] of

changes.

For pp/sigma SPC algorithm showed 60% [AK88] of narrow shapes, 30% [AM88]

of wide shapes, and 20% [AN88] of changes.

SDS algorithm showed 40% [AK90] of narrow shapes, 20% [AM90] of wide shapes, and

40% [AN90] of changes. SES algorithm showed 43% [AK92] of narrow shapes, 40%

[AM92] of wide shapes, and 30% [AN92] of changes.

IDP

For KNN SPC algorithm showed 20% [AK93] of narrow shapes, 57% [AM93]

of wide shapes, and 90% [AN93] of changes. SDS algorithm showed 43% [AK95] of

narrow shapes, 47% [AM95] of wide shapes, and 40% [AN95] of changes. SES algorithm
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showed 43% [AK97] of narrow shapes, 40% [AM97] of wide shapes, and 70% [AN97] of

changes.

For pp/sigma SPC algorithm showed 43% [AK94] of narrow shapes, 27% [AM94]

of wide shapes, and 70% [AN94] of changes. SDS algorithm showed 40% [AK96] of

narrow shapes, 47% [AM96] of wide shapes, and 50% [AN96] of changes. SES algorithm

showed 33% [AK98] of narrow shapes, 50% [AM98] of wide shapes, and 30% [AN98] of

changes.

Total

For KNN SPC algorithm showed 23% [AK99] of narrow shapes, 52% [AM99]

of wide shapes, and 60% [AN99] of changes. SDS algorithm showed 52% [AK101]

of narrow shapes, 33% [AM101] of wide shapes, and 35% [AN101] of changes. SES

algorithm showed 58% [AK103] of narrow shapes, 32% [AM103] of wide shapes, and

55% [AN103] of changes.

For pp/sigma SPC algorithm showed 52% [AK100] of narrow shapes, 28% [AM100]

of wide shapes, and 45% [AN100] of changes. SDS algorithm showed 40% [AK102]

of narrow shapes, 33% [AM102] of wide shapes, and 45% [AN102] of changes. SES

algorithm showed 38% [AK104] of narrow shapes, 45% [AM104] of wide shapes, and

30% [AN104] of changes.

Shape

NFP
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For KNN SPC algorithm showed 17% [AH249] of rising parts, 8% [AJ249] of

falling parts, 50% [AL249] of them were strong, and 75% [AK249] of V and A shapes.

SDS algorithm showed 8% [AH251] of rising parts, 42% [AJ251] of falling parts, 50%

[AL251] of them were strong, and 75% [AK251] of V and A shapes. SES algorithm

showed 67% [AH253] of rising parts, 0% [AJ253] of falling parts, 75% [AL253] of them

were strong, and 0% [AK253] of V and A shapes.

For pp/sigma SPC algorithm showed 0% [AH250] of rising parts, 0% [AJ250] of

falling parts, 0% [AL250] of them were strong, and 0% [AK250] of V and A shapes. SDS

algorithm showed 0% [AH252] of rising parts, 17% [AJ252] of falling parts, 25% [AL252]

of them were strong, and 0% [AK252] of V and A shapes. SES algorithm showed 0%

[AH254] of rising parts, 0% [AJ254] of falling parts, 0% [AL254] of them were strong,

and 0% [AK254] of V and A shapes.

IDP

For KNN SPC algorithm showed 17% [AH255] of rising parts, 17% [AJ255] of

falling parts, 0% [AL255] of them were strong, and 100% [AK255] of V and A shapes.

SDS algorithm showed 0% [AH257] of rising parts, 58% [AJ257] of falling parts, 75%

[AL257] of them were strong, and 100% [AK257] of V and A shapes. SES algorithm

showed 83% [AH259] of rising parts, 0% [AJ259] of falling parts, 75% [AL259] of them

were strong, and 50% [AK259] of V and A shapes.

For pp/sigma SPC algorithm showed 0% [AH256] of rising parts, 0% [AJ256] of

falling parts, 0% [AL256] of them were strong, and 50% [AK256] of V and A shapes.

SDS algorithm showed 0% [AH258] of rising parts, 33% [AJ258] of falling parts, 100%
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[AL258]of them were strong, and 50% [AK258] of V and A shapes. SES algorithm

showed 0% [AH260] of rising parts, 0% [AJ260] of falling parts, 0% [AL260] of them

were strong, and 0% [AK260] of V and A shapes.

Total

For KNN SPC algorithm showed 17% [AH261] of rising parts, 13% [AJ261] of

falling parts, 25% [AL261] of them were strong, and 88% [AK261] of V and A shapes.

SDS algorithm showed 4% [AH263] of rising parts, 50% [AJ263] of falling parts, 63%

[AL263] of them were strong, and 88% [AK263] of V and A shapes. SES algorithm

showed 75% [AH265] of rising parts, 0% [AJ265] of falling parts, 75% [AL265] of them

were strong, and 25% [AK265] of V and A shapes.

For pp/sigma SPC algorithm showed 0% [AH262] of rising parts, 0% [AJ262] of

falling parts, 0% [AL262] of them were strong, and 25% [AK262] of V and A shapes.

SDS algorithm showed 0% [AH264] of rising parts, 25% [AJ264] of falling parts, 63%

[AL264] of them were strong, and 25% [AK264] of V and A shapes. SES algorithm

showed 0% [AH266] of rising parts, 0% [AJ266] of falling parts, 0% [AL266] of them

were strong, and 0% [AK266] of V and A shapes.

A�nity

Width

EN
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For KNN SPC algorithm showed 19% [AC99] of narrow shapes, 47% [AE99] of

wide shapes, and 42% [AF99] of changes. SDS algorithm showed 81% [AC101] of

narrow shapes, 8% [AE101] of wide shapes, and 25% [AF101] of changes. SES algorithm

showed 64% [AC103] of narrow shapes, 25% [AE103] of wide shapes, and 50% [AF103]

of changes.

For pp SPC algorithm showed 81% [AC100] of narrow shapes, 0% [AE100] of

wide shapes, and 50% [AF100] of changes. SDS algorithm showed 67% [AC102] of

narrow shapes, 6% [AE102] of wide shapes, and 67% [AF102] of changes. SES algorithm

showed 56% [AC104] of narrow shapes, 17% [AE104] of wide shapes, and 50% [AF104]

of changes.

PL

For KNN SPC algorithm showed 29% [AG99] of narrow shapes, 58% [AI99] of

wide shapes, and 88% [AJ99] of changes. SDS algorithm showed 8% [AG101] of nar-

row shapes, 71% [AI101] of wide shapes, and 50% [AJ101] of changes. SES algorithm

showed 50% [AG103] of narrow shapes, 42% [AI103] of wide shapes, and 63% [AJ103]

of changes.

For sigma SPC algorithm showed 8% [AG100] of narrow shapes, 71% [AI100] of

wide shapes, and 38% [AJ100] of changes. SDS algorithm showed 0% [AG102] of narrow

shapes, 75% [AI102] of wide shapes, and 13% [AJ102] of changes. SES algorithm showed

12.5% [AG104] of narrow shapes, 87.5% [AI104] of wide shapes, and 0% [AJ104] of

changes.
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Total

For KNN SPC algorithm showed 23% [AK99] of narrow shapes, 52% [AM99]

of wide shapes, and 60% [AN99] of changes. SDS algorithm showed 52% [AK101]

of narrow shapes, 33% [AM101] of wide shapes, and 35% [AN101] of changes. SES

algorithm showed 58% [AK103] of narrow shapes, 32% [AM103] of wide shapes, and

55% [AN103] of changes.

For pp/sigma SPC algorithm showed 52% [AK100] of narrow shapes, 28% [AM100]

of wide shapes, and 45% [AN100] of changes. SDS algorithm showed 40% [AK102]

of narrow shapes, 33% [AM102] of wide shapes, and 45% [AN102] of changes. SES

algorithm showed 38% [AK104] of narrow shapes, 45% [AM104] of wide shapes, and

30% [AN104] of changes.

Shape

EN

For KNN SPC algorithm showed 3% [AC261] of rising parts, 6% [AE261] of falling

parts, 0% [AG261] of them were strong, and 8% [AF261] of V and A shapes. SDS algo-

rithm showed 8% [AC263] of rising parts, 8% [AE263] of falling parts, 8% [AG263] of

them were strong, and 25% [AF263] of V and A shapes. SES algorithm showed 33%

[AC265] of rising parts, 11% [AE265] of falling parts, 25% [AG265] of them were strong,

and 33% [AF265] of V and A shapes.
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For pp SPC algorithm showed 11% [AC262] of rising parts, 28% [AE262] of falling

parts, 17% [AG262] of them were strong, and 33% [AF262] of V and A shapes. SDS

algorithm showed 8% [AC264] of rising parts, 8% [AE264] of falling parts, 0% [AG264]

of them were strong, and 17% [AF264] of V and A shapes. SES algorithm showed 14%

[AC266] of rising parts, 19% [AE266] of falling parts, 8% [AG266] of them were strong,

and 17% [AF266] of V and A shapes.

PL

For KNN SPC algorithm showed 17% [AH261] of rising parts, 13% [AJ261] of

falling parts, 25% [AL261] of them were strong, and 88% [AK261] of V and A shapes.

SDS algorithm showed 4% [AH263] of rising parts, 50% [AJ263] of falling parts, 63%

[AL263] of them were strong, and 88% [AK263] of V and A shapes. SES algorithm

showed 75% [AH265] of rising parts, 0% [AJ265] of falling parts, 75% [AL265] of them

were strong, and 25% [AK265] of V and A shapes.

For sigma SPC algorithm showed 0% [AH262] of rising parts, 0% [AJ262] of falling

parts, 0% [AL262] of them were strong, and 25% [AK262] of V and A shapes. SDS

algorithm showed 0% [AH264] of rising parts, 25% [AJ264] of falling parts, 63% [AL264]

of them were strong, and 25% [AK264] of V and A shapes. SES algorithm showed 0%

[AH266] of rising parts, 0% [AJ266] of falling parts, 0% [AL266] of them were strong,

and 0% [AK266] of V and A

Total

For KNN SPC algorithm showed 8% [AM261] of rising parts, 8% [AO261] of

falling parts, 10% [AQ261] of them were strong, and 40% [AP261] of V and A shapes.



252

SDS algorithm showed 7% [AM263] of rising parts, 25% [AO263] of falling parts, 30%

[AQ263] of them were strong, and 50% [AP263] of V and A shapes. SES algorithm

showed 50% [AM265] of rising parts, 7% [AO265] of falling parts, 45% [AQ265] of

them were strong, and 30% [AP265] of V and A shapes.

For pp/sigma SPC algorithm showed 7% [AM262] of rising parts, 17% [AO262]

of falling parts, 10% [AQ262] of them were strong, and 30% [AP262] of V and A shapes.

SDS algorithm showed 5% [AM264] of rising parts, 15% [AO264] of falling parts, 25%

[AQ264] of them were strong, and 20% [AP264] of V and A shapes. SES algorithm

showed 8% [AM266] of rising parts, 12% [AO266] of falling parts, 5% [AQ266] of them

were strong, and 10% [AP266] of V and A

Sparsity

Width

DN

For KNN SPC algorithm showed 8% [AC127] of narrow shapes, 42% [AE127]

of wide shapes, and 50% [AF127] of changes. SDS algorithm showed 58% [AC129]

of narrow shapes, 17% [AE129] of wide shapes, and 50% [AF129] of changes. SES

algorithm showed 33% [AC131] of narrow shapes, 67% [AE131] of wide shapes, and

100% [AF131] of changes.

For pp SPC algorithm showed 92% [AC128] of narrow shapes, 0% [AE128] of

wide shapes, and 25% [AF128] of changes. SDS algorithm showed 50% [AC130] of
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narrow shapes, 8% [AE130] of wide shapes, and 75% [AF130] of changes. SES algorithm

showed 17% [AC132] of narrow shapes, 50% [AE132] of wide shapes, and 100% [AF132]

of changes.

SP

For KNN SPC algorithm showed 29% [AG127] of narrow shapes, 54% [AI127]

of wide shapes, and 63% [AJ127] of changes. SDS algorithm showed 50% [AG129] of

narrow shapes, 42% [AI129] of wide shapes, and 13% [AJ129] of changes. SES algorithm

showed 50% [AG131] of narrow shapes, 33% [AI131] of wide shapes, and 50% [AJ131]

of changes.

For pp/sigma SPC algorithm showed 50% [AG128] of narrow shapes, 21% [AI128]

of wide shapes, and 50% [AJ128] of changes. SDS algorithm showed 38% [AG130] of

narrow shapes, 38% [AI129] of wide shapes, and 50% [AJ130] of changes. SES algorithm

showed 42% [AG132] of narrow shapes, 38% [AI132] of wide shapes, and 13% [AJ132]

of changes.

SS

For KNN SPC algorithm showed 22% [AK127] of narrow shapes, 50% [AM127]

of wide shapes, and 58% [AN127] of changes. SDS algorithm showed 53% [AK129]

of narrow shapes, 33% [AM129] of wide shapes, and 42% [AN129] of changes. SES

algorithm showed 44% [AK131] of narrow shapes, 44% [AM131] of wide shapes, and

67% [AN131] of changes.
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For pp/sigma SPC algorithm showed 64% [AK128] of narrow shapes, 14% [AM128]

of wide shapes, and 42% [AN128] of changes. SDS algorithm showed 42% [AK130]

of narrow shapes, 28% [AM129] of wide shapes, and 67% [AN130] of changes. SES

algorithm showed 33% [AK132] of narrow shapes, 42% [AM132] of wide shapes, and

42% [AN132] of changes.

Total

For KNN SPC algorithm showed 25% [AO127] of narrow shapes, 52% [AQ127]

of wide shapes, and 60% [AR127] of changes. SDS algorithm showed 52% [AO129]

of narrow shapes, 37% [AQ129] of wide shapes, and 30% [AR129] of changes. SES

algorithm showed 47% [AO131] of narrow shapes, 40% [AQ131] of wide shapes, and

60% [AR131] of changes.

For pp/sigma SPC algorithm showed 58% [AO128] of narrow shapes, 17% [AQ128]

of wide shapes, and 45% [AR128] of changes. SDS algorithm showed 40% [AO130]

of narrow shapes, 32% [AQ129] of wide shapes, and 60% [AR130] of changes. SES

algorithm showed 37% [AO132] of narrow shapes, 40% [AQ132] of wide shapes, and

30% [AR132] of changes.

Shape

DN

For KNN SPC algorithm showed 8% [AC289] of rising parts, 8% [AE289] of

falling parts, 0% [AG289] of them were strong, and 0% [AF289] of V and A shapes.

SDS algorithm showed 17% [AC291] of rising parts, 8% [AE291] of falling parts, 0%
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[AG291] of them were strong, and 50% [AF291] of V and A shapes. SES algorithm

showed 50% [AC293] of rising parts, 25% [AE293] of falling parts, 75% [AG293] of

them were strong, and 100% [AF293] of V and A shapes.

For pp SPC algorithm showed 8% [AC290] of rising parts, 42% [AE290] of falling

parts, 25% [AG290] of them were strong, and 0% [AF290] of V and A shapes. SDS

algorithm showed 17% [AC292] of rising parts, 8% [AE292] of falling parts, 0% [AG292]

of them were strong, and 25% [AF292] of V and A shapes. SES algorithm showed 8%

[AC294] of rising parts, 50% [AE294] of falling parts, 25% [AG294] of them were strong,

and 25% [AF294] of V and A shapes.

SP

For KNN SPC algorithm showed 4% [AH289] of rising parts, 8% [AJ289] of falling

parts, 0% [AL289] of them were strong, and 50% [AK289] of V and A shapes. SDS

algorithm showed 8% [AH291] of rising parts, 29% [AJ291] of falling parts, 25% [AL291]

of them were strong, and 63% [AK291] of V and A shapes. SES algorithm showed 46%

[AH293] of rising parts, 4% [AJ293] of falling parts, 25% [AL293] of them were strong,

and 13% [AK293] of V and A shapes.

For pp/sigma SPC algorithm showed 0% [AH290] of rising parts, 17% [AJ290] of

falling parts, 13% [AL290] of them were strong, and 25% [AK290] of V and A shapes.

SDS algorithm showed 4% [AH292] of rising parts, 17% [AJ292] of falling parts, 38%

[AL292] of them were strong, and 25% [AK292] of V and A shapes. SES algorithm

showed 8% [AH294] of rising parts, 4% [AJ294] of falling parts, 0% [AL294] of them

were strong, and 13% [AK294] of V and A shapes.
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SS

For KNN SPC algorithm showed 13% [AM289] of rising parts, 8% [AO289] of

falling parts, 25% [AQ289] of them were strong, and 50% [AP289] of V and A shapes.

SDS algorithm showed 0% [AM291] of rising parts, 29% [AO291] of falling parts, 50%

[AQ291] of them were strong, and 38% [AP291] of V and A shapes. SES algorithm

showed 54% [AM293] of rising parts, 0% [AO293] of falling parts, 50% [AQ293] of

them were strong, and 13% [AP293] of V and A shapes.

For pp/sigma SPC algorithm showed 13% [AM290] of rising parts, 4% [AO290]

of falling parts, 0% [AQ290] of them were strong, and 50% [AP290] of V and A shapes.

SDS algorithm showed 0% [AM292] of rising parts, 17% [AO292] of falling parts, 25%

[AQ292] of them were strong, and 13% [AP292] of V and A shapes. SES algorithm

showed 8% [AM294] of rising parts, 0% [AO294] of falling parts, 0% [AQ294] of them

were strong, and 0% [AP294] of V and A shapes.

Total

For KNN SPC algorithm showed 8% [AR289] of rising parts, 8% [AT289] of

falling parts, 10% [AV289] of them were strong, and 40% [AU289] of V and A shapes.

SDS algorithm showed 7% [AR291] of rising parts, 25% [AT291] of falling parts, 30%

[AV291] of them were strong, and 50% [AU291] of V and A shapes. SES algorithm

showed 50% [AR293] of rising parts, 7% [AT293] of falling parts, 45% [AV293] of them

were strong, and 30% [AU293] of V and A shapes.
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For pp/sigma SPC algorithm showed 7% [AR290] of rising parts, 17% [AT290] of

falling parts, 10% [AV290] of them were strong, and 30% [AU290] of V and A shapes.

SDS algorithm showed 5% [AR292] of rising parts, 15% [AT292] of falling parts, 25%

[AV292] of them were strong, and 20% [AU292] of V and A shapes. SES algorithm

showed 8% [AR294] of rising parts, 12% [AT294] of falling parts, 5% [AV294] of them

were strong, and 10% [AU294] of V and A shapes.

C.IV Sparsity type

Protein type

Width

NFP

For KNN dense data showed 33% [AC133] of narrow shapes, 39% [AE133] of

wide shapes, and 50% [AF133] of changes. sparse data showed 53% [AG133] of narrow

shapes, 36% [AI133] of wide shapes, and 33% [AJ133] of changes. supersparse data

showed 46% [AK133] of narrow shapes, 37% [AM133] of wide shapes, and 44% [AN133]

of changes.

For pp/sigma dense data showed 56% [AC134] of narrow shapes, 17% [AE134] of

wide shapes, and 50% [AF134] of changes. sparse data showed 50% [AG134] of narrow

shapes, 25% [AI134] of wide shapes, and 33% [AJ134] of changes. supersparse data

showed 52% [AK134] of narrow shapes, 22% [AM134] of wide shapes, and 44% [AN134]

of changes.

IDP
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For KNN dense data showed 33% [AC135] of narrow shapes, 44% [AE135] of

wide shapes, and 83% [AF135] of changes. sparse data showed 33% [AG135] of narrow

shapes, 50% [AI135] of wide shapes, and 50% [AJ135] of changes. supersparse data

showed 33% [AK135] of narrow shapes, 48% [AM135] of wide shapes, and 67% [AN135]

of changes.

For pp/sigma dense data showed 50% [AC136] of narrow shapes, 22% [AE136]

of wide shapes, and 83% [AF136] of changes. sparse data showed 36% [AG136] of

narrow shapes, 39% [AI136] of wide shapes, and 42% [AJ136] of changes. supersparse

data showed 41% [AK136] of narrow shapes, 33% [AM136] of wide shapes, and 56%

[AN136] of changes.

Total

For KNN dense data showed 33% [AC137] of narrow shapes, 42% [AE137] of

wide shapes, and 67% [AF137] of changes. sparse data showed 43% [AG137] of narrow

shapes, 43% [AI137] of wide shapes, and 42% [AJ137] of changes. supersparse data

showed 40% [AK137] of narrow shapes, 43% [AM137] of wide shapes, and 56% [AN137]

of changes.

For pp/sigma dense data showed 53% [AC138] of narrow shapes, 19% [AE138] of

wide shapes, and 67% [AF138] of changes. sparse data showed 43% [AG138] of narrow

shapes, 32% [AI138] of wide shapes, and 38% [AJ138] of changes. supersparse data

showed 46% [AK138] of narrow shapes, 28% [AM138] of wide shapes, and 50% [AN138]

of changes.
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Shape

NFP

For KNN dense data showed 28% [AC295] of rising parts, 17% [AE295] of falling

parts, 17% [AG295] of them were strong, and 50% [AF295] of V and A shapes. sparse

data showed 17% [AH295] of rising parts, 8% [AJ295] of falling parts, 17% [AL295]

of them were strong, and 25% [AK295] of V and A shapes. supersparse data showed

19% [AM295] of rising parts, 8% [AO295] of falling parts, 42% [AQ295] of them were

strong, and 25% [AP295] of V and A shapes.

For pp/sigma dense data showed 11% [AC296] of rising parts, 17% [AE296] of

falling parts, 0% [AG296] of them were strong, and 17% [AF296] of V and A shapes.

sparse data showed 6% [AH296] of rising parts, 11% [AJ296] of falling parts, 8% [AL296]

of them were strong, and 17% [AK296] of V and A shapes. supersparse data showed 3%

[AM296] of rising parts, 3% [AO296] of falling parts, 0% [AQ296] of them were strong,

and 8% [AP296] of V and A shapes.

IDP

For KNN dense data showed 22% [AC297] of rising parts, 11% [AE297] of falling

parts, 33% [AG297] of them were strong, and 50% [AF297] of V and A shapes. sparse

data showed 22% [AH297] of rising parts, 19% [AJ297] of falling parts, 17% [AL297]

of them were strong, and 58% [AK297] of V and A shapes. supersparse data showed

25% [AM297] of rising parts, 17% [AO297] of falling parts, 42% [AQ297] of them were

strong, and 42% [AP297] of V and A shapes.
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For pp/sigma dense data showed 11% [AC298] of rising parts, 50% [AE298] of

falling parts, 33% [AG298] of them were strong, and 17% [AF298] of V and A shapes.

sparse data showed 3% [AH298] of rising parts, 14% [AJ298] of falling parts, 25%

[AL298] of them were strong, and 25% [AK298] of V and A shapes. supersparse data

showed 11% [AM298] of rising parts, 11% [AO298] of falling parts, 17% [AQ298] of

them were strong, and 33% [AP298] of V and A shapes.

Total

For KNN dense data showed 25% [AC299] of rising parts, 14% [AE299] of falling

parts, 25% [AG299] of them were strong, and 50% [AF299] of V and A shapes. sparse

data showed 19% [AH299] of rising parts, 14% [AJ299] of falling parts, 17% [AL299]

of them were strong, and 42% [AK299] of V and A shapes. supersparse data showed

22% [AM299] of rising parts, 13% [AO299] of falling parts, 42% [AQ299] of them were

strong, and 33% [AP299] of V and A shapes.

For pp/sigma dense data showed 11% [AC300] of rising parts, 33% [AE300] of

falling parts, 17% [AG300] of them were strong, and 17% [AF300] of V and A shapes.

sparse data showed 4% [AH300] of rising parts, 13% [AJ300] of falling parts, 17% [AL300]

of them were strong, and 21% [AK300] of V and A shapes. supersparse data showed 7%

[AM300] of rising parts, 7% [AO300] of falling parts, 8% [AQ300] of them were strong,

and 21% [AP300] of V and A shapes.

A�nity type

Width
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EN

For KNN dense data showed 33% [AK5] of narrow shapes, 42% [AM5] of wide

shapes, and 67% [AN5] of changes. sparse data showed 69% [AK7] of narrow shapes, 8%

[AM7] of wide shapes, and 25% [AN7] of changes. supersparse data showed 61% [AK9]

of narrow shapes, 31% [AM9] of wide shapes, and 25% [AN9] of changes.

For pp dense data showed 53% [AK6] of narrow shapes, 19% [AM6] of wide shapes,

and 67% [AN6] of changes. sparse data showed 72% [AK8] of narrow shapes, 0% [AM8]

of wide shapes, and 50% [AN8] of changes. supersparse data showed 78% [AK10] of

narrow shapes, 3% [AM10] of wide shapes, and 50% [AN10] of changes.

PL

For KNN sparse data showed 17% [AK13] of narrow shapes, 78% [AM13] of wide

shapes, and 58% [AN13] of changes. supersparse data showed 42% [AK15] of narrow

shapes, 36% [AM15] of wide shapes, and 75% [AN15] of changes.

For sigma sparse data showed 14% [AK14] of narrow shapes, 64% [AM14] of wide

shapes, and 25% [AN14] of changes. supersparse data showed 0% [AK16] of narrow

shapes, 92% [AM16] of wide shapes, and 8% [AN16] of changes.

Total

For KNN dense data showed 33% [AK17] of narrow shapes, 42% [AM17] of wide

shapes, and 67% [AN17] of changes. sparse data showed 43% [AK19] of narrow shapes,

43% [AM19] of wide shapes, and 42% [AN19] of changes. supersparse data showed 51%
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[AK21] of narrow shapes, 33% [AM21] of wide shapes, and 50% [AN21] of changes.

For pp/sigma dense data showed 53% [AK18] of narrow shapes, 19% [AM18] of

wide shapes, and 67% [AN18] of changes. sparse data showed 43% [AK20] of narrow

shapes, 32% [AM20] of wide shapes, and 38% [AN20] of changes. supersparse data

showed 39% [AK22] of narrow shapes, 47% [AM22] of wide shapes, and 29% [AN22] of

changes.

Shape

EN

For KNN dense data showed 25% [AM145] of rising parts, 14% [AO145] of falling

parts, 25% [AQ145] of them were strong, and 50% [AP145] of V and A shapes. sparse

data showed 14% [AM147] of rising parts, 8% [AO147] of falling parts, 0% [AQ147] of

them were strong, and 17% [AP147] of V and A shapes. supersparse data showed 6%

[AM149] of rising parts, 3% [AO149] of falling parts, 8% [AQ149] of them were strong,

and 0% [AP149] of V and A shapes.

For pp dense data showed 11% [AM146] of rising parts, 33% [AO146] of falling

parts, 17% [AQ146] of them were strong, and 17% [AP146] of V and A shapes. sparse

data showed 8% [AM148] of rising parts, 17% [AO148] of falling parts, 8% [AQ148] of

them were strong, and 25% [AP148] of V and A shapes. supersparse data showed 14%

[AM150] of rising parts, 6% [AO150] of falling parts, 0% [AQ150] of them were strong,

and 25% [AP150] of V and A shapes.
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PL

For KNN sparse data showed 25% [AM153] of rising parts, 19% [AO153] of falling

parts, 33% [AQ153] of them were strong, and 67% [AP153] of V and A shapes. super-

sparse data showed 39% [AM155] of rising parts, 22% [AO155] of falling parts, 75%

[AQ155] of them were strong, and 67% [AP155] of V and A shapes.

For sigma sparse data showed 0% [AM154] of rising parts, 8% [AO154] of falling

parts, 25% [AQ154] of them were strong, and 17% [AP154] of V and A shapes. su-

persparse data showed 0% [AM156] of rising parts, 8% [AO156] of falling parts, 17%

[AQ156] of them were strong, and 17% [AP156] of V and A shapes.

Total

For KNN dense data showed 25% [AM157] of rising parts, 14% [AO157] of falling

parts, 25% [AQ157] of them were strong, and 50% [AP157] of V and A shapes. sparse

data showed 19% [AM159] of rising parts, 14% [AO159] of falling parts, 17% [AQ159]

of them were strong, and 42% [AP159] of V and A shapes. supersparse data showed

22% [AM161] of rising parts, 13% [AO161] of falling parts, 42% [AQ161] of them were

strong, and 33% [AP161] of V and A shapes.

For pp/sigma dense data showed 11% [AM158] of rising parts, 33% [AO158] of

falling parts, 17% [AQ158] of them were strong, and 17% [AP158] of V and A shapes.

sparse data showed 4% [AM160] of rising parts, 13% [AO160] of falling parts, 17%

[AQ160] of them were strong, and 21% [AP160] of V and A shapes. supersparse data
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showed 7% [AM162] of rising parts, 7% [AO162] of falling parts, 8% [AQ162] of them

were strong, and 21% [AP162] of V and A shapes.

Algorithms

Width

SPC

For KNN dense data showed 8% [AC127] of narrow shapes, 42% [AE127] of wide

shapes, and 50% [AF127] of changes. sparse data showed 29% [AG127] of narrow shapes,

54% [AI127] of wide shapes, and 63% [AJ127] of changes. supersparse data showed 22%

[AK127] of narrow shapes, 50% [AM127] of wide shapes, and 58% [AN127] of changes.

For pp/sigma dense data showed 92% [AC128] of narrow shapes, 0% [AE128] of

wide shapes, and 25% [AF128] of changes. sparse data showed 50% [AG128] of narrow

shapes, 21% [AI128] of wide shapes, and 50% [AJ128] of changes. supersparse data

showed 64% [AK128] of narrow shapes, 14% [AM128] of wide shapes, and 42% [AN128]

of changes.

SDS

For KNN dense data showed 58% [AC129] of narrow shapes, 17% [AE129] of

wide shapes, and 50% [AF129] of changes. sparse data showed 50% [AG129] of narrow

shapes, 42% [AI129] of wide shapes, and 13% [AJ129] of changes. supersparse data

showed 53% [AK129] of narrow shapes, 33% [AM129] of wide shapes, and 42% [AN129]
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of changes.

For pp/sigma dense data showed 50% [AC130] of narrow shapes, 8% [AE130] of

wide shapes, and 75% [AF130] of changes. sparse data showed 38% [AG130] of narrow

shapes, 38% [AI130] of wide shapes, and 50% [AJ130] of changes. supersparse data

showed 42% [AK130] of narrow shapes, 28% [AM130] of wide shapes, and 67% [AN130]

of changes.

SES

For KNN dense data showed 33% [AC131] of narrow shapes, 67% [AE131] of

wide shapes, and 100% [AF131] of changes. sparse data showed 50% [AG131] of narrow

shapes, 33% [AI131] of wide shapes, and 50% [AJ131] of changes. supersparse data

showed 44% [AK131] of narrow shapes, 44% [AM131] of wide shapes, and 67% [AN131]

of changes.

For pp/sigma dense data showed 17% [AC132] of narrow shapes, 50% [AE132] of

wide shapes, and 100% [AF132] of changes.

sparse data showed 42% [AG132] of narrow shapes, 38% [AI132] of wide shapes, and

13% [AJ132] of changes. supersparse data showed 33% [AK132] of narrow shapes, 42%

[AM132] of wide shapes, and 42% [AN132] of changes.

Total

For KNN dense data showed 33% [AC137] of narrow shapes, 42% [AE137] of

wide shapes, and 83% [AF137] of changes. sparse data showed 43% [AG137] of narrow

shapes, 43% [AI137] of wide shapes, and 42% [AJ137] of changes. supersparse data
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showed 40% [AK137] of narrow shapes, 43% [AM137] of wide shapes, and 56% [AN137]

of changes.

For pp/sigma dense data showed 53% [AC138] of narrow shapes, 19% [AE138] of

wide shapes, and 75% [AF138] of changes. sparse data showed 43% [AG138] of narrow

shapes, 32% [AI138] of wide shapes, and 38% [AJ138] of changes. supersparse data

showed 46% [AK138] of narrow shapes, 28% [AM138] of wide shapes, and 50% [AN138]

of changes.

Shape

SPC

For KNN dense data showed 8% [AC289] of rising parts, 8% [AE289] of falling

parts, 0% [AQ289] of them were strong, and 0% [AP289] of V and A shapes. sparse

data showed 4% [AH289] of rising parts, 8% [AJ289] of falling parts, 0% [AL289] of

them were strong, and 50% [AK289] of V and A shapes. supersparse data showed 13%

[AM289] of rising parts, 8% [AO289] of falling parts, 25% [AQ289] of them were strong,

and 50% [AP289] of V and A shapes.

For pp/sigma dense data showed 8% [AC290] of rising parts, 42% [AE290] of

falling parts, 25% [AQ290] of them were strong, and 0% [AP290] of V and A shapes.

sparse data showed 0% [AH290] of rising parts, 17% [AJ290] of falling parts, 13% [AL290]

of them were strong, and 25% [AK290] of V and A shapes. supersparse data showed 13%

[AM290] of rising parts, 4% [AO290] of falling parts, 0% [AQ290] of them were strong,

and 50% [AP290] of V and A shapes.
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SDS

For KNN dense data showed 17% [AC291] of rising parts, 8% [AE291] of falling

parts, 0% [AQ291] of them were strong, and 50% [AP291] of V and A shapes. sparse

data showed 8% [AH291] of rising parts, 29% [AJ291] of falling parts, 25% [AL291]

of them were strong, and 63% [AK291] of V and A shapes. supersparse data showed

0% [AM291] of rising parts, 29% [AO291] of falling parts, 50% [AQ291] of them were

strong, and 38% [AP291] of V and A shapes.

For pp/sigma dense data showed 17% [AC292] of rising parts, 8% [AE292] of

falling parts, 0% [AQ292] of them were strong, and 25% [AP292] of V and A shapes.

sparse data showed 4% [AH292] of rising parts, 17% [AJ292] of falling parts, 38%

[AL292] of them were strong, and 25% [AK292] of V and A shapes. supersparse data

showed 0% [AM292] of rising parts, 17% [AO292] of falling parts, 25% [AQ292] of

them were strong, and 13% [AP292] of V and A shapes.

SES

For KNN dense data showed 50% [AC291] of rising parts, 25% [AE291] of falling

parts, 75% [AQ291] of them were strong, and 100% [AP291] of V and A shapes. sparse

data showed 46% [AH291] of rising parts, 4% [AJ291] of falling parts, 25% [AL291]

of them were strong, and 13% [AK291] of V and A shapes. supersparse data showed

54% [AM291] of rising parts, 0% [AO291] of falling parts, 50% [AQ291] of them were

strong, and 13% [AP291] of V and A shapes.
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For pp/sigma dense data showed 8% [AC292] of rising parts, 50% [AE292] of

falling parts, 25% [AQ292] of them were strong, and 25% [AP292] of V and A shapes.

sparse data showed 8% [AH292] of rising parts, 4% [AJ292] of falling parts, 0% [AL292]

of them were strong, and 13% [AK292] of V and A shapes. supersparse data showed 8%

[AM292] of rising parts, 0% [AO292] of falling parts, 0% [AQ292] of them were strong,

and 0% [AP292] of V and A shapes.

Total

For KNN dense data showed 25% [AC299] of rising parts, 14% [AE299] of falling

parts, 25% [AQ299] of them were strong, and 50% [AP299] of V and A shapes. sparse

data showed 19% [AH299] of rising parts, 14% [AJ299] of falling parts, 17% [AL299]

of them were strong, and 42% [AK299] of V and A shapes. supersparse data showed

22% [AM299] of rising parts, 13% [AO299] of falling parts, 42% [AQ299] of them were

strong, and 33% [AP299] of V and A shapes.

For pp/sigma dense data showed 11% [AC300] of rising parts, 33% [AE300] of

falling parts, 17% [AQ300] of them were strong, and 17% [AP300] of V and A shapes.

sparse data showed 4% [AH300] of rising parts, 13% [AJ300] of falling parts, 17% [AL300]

of them were strong, and 21% [AK300] of V and A shapes. supersparse data showed 7%

[AM300] of rising parts, 7% [AO300] of falling parts, 8% [AQ300] of them were strong,

and 21% [AP300] of V and A shapes.
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