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ABSTRACT

We are developing an ODE model of a human epidermal growth factor recep-

tor 2-positive (HER2+) breast cancer tumor that accounts, in a simplified way, for

the tumor structure and interaction with the immune system. Mounting empirical

research suggests that the tumor stroma or tumor interface zone is a critical de-

terminate of the propensity of the cancer to invade and/or metastasize. Likewise,

there is increasing interest in cancer therapies that encourage the immune system to

target and destroy cancer cells. We describe tumor growth while accounting for the

interface zone and the interaction between the tumor and natural killer cells (NK

cells). Interactions between HER2+ breast cancer tumor cells and NK cells can be

influenced by the antibody drug trastuzumab, and we use our model to investigate

tumor growth (i) in isolation, and (ii) in the presence of NK cells and trastuzumab.

Model predictions are compared to empirical data on tumor growth. We found that

increasing the cytotoxicity of patrolling NK cells may be insufficient for the con-

trol of highly aggressive tumors (those with very fast proliferation or high density).

However, if healthy tissue has high levels of patrolling cytotoxic NK cells, then the

tumor cannot exist.
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CHAPTER 1

INTRODUCTION

Cancer is a leading causes of death worldwide [44]. In the US alone, 602,350

people died of cancer in 2020 [22], and approximately 1.9 million people were diag-

nosed in 2022 [31]. As a result, billions of dollars are spent on cancer research every

year. Indeed, the National Institute of Cancer offered $6.4 billion of cancer research

funding in 2020 [32]. In 2022, breast cancer became the most diagnosed cancer

worldwide [64, 44], with approximately 2.3 million new cases recorded in that year

alone [64, 44]. At the molecular level, breast cancer is generally classified as one of

four types according to the expression of hormone receptors (HR) (i.e. estrogen re-

ceptor or progesterone receptor[12]) and human epidermal growth factor receptor 2:

HR+/HER2 -; HR+/HER2+; HR-/HER2+; and HR-/HER2- [47]. The four-year

survival rates for HR+/HER2-, HR+/HER2+, HR-/HER2+, and HR-/HER2- are

93.5%, 90.3%, 82.7%, and 77.0%, respectively [47].

This work concerns the mathematical modeling of breast cancer tumor growth

and therapeutic intervention. Our model of therapy is specific to HER2+ cancers.

Approximately 15 to 20% of breast cancers are HER2+ [53]. These cancers are

frequently treated with the antibody drug trastuzumab which can be used in combi-

nation with additional drugs and chemotherapy [47, 27, 55, 58, 6, 2]. Trastuzumab

works by binding to receptors on the cell surface[21, 66, 58], thereby reducing can-

cer cell proliferation and exposing cancer cells to Natural Killer (NK) cell- mediated

cytotoxicity [58, 55, 35, 68].

There exists a large body of research on mathematical modeling of tumors using

diverse techniques including ordinary differential equations (ODEs) [61, 3, 16, 17, 36,

60, 43, 34, 13, 51, 45], stochastic differential equations [14, 39], and partial differential

equations (PDEs) [67, 15, 30, 7, 63, 62]. See [65] for a review of mathematical

contributions to solid tumor research. We briefly summarize some works of note

which are related to our work in that they consider the impact of therapy, the

immune system, and/or spatial structure on cancer growth. ODEs are often used to

model the impact of the immune system and immunotherapy on cancer growth. In

[17], de Pillis et al. developed an ODE model to describe the role of NK cells and

CD8+ T cells in the tumor-immune response. This model considered three types of
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cells: tumor cells, NK cells, and CD8+ T cells. The model described logistic cancer

cell proliferation, killing of cancer cells by cytotoxic NK and CD8+ T cells, tumor-

induced enhancement of immune cell cytotoxicity, NK cell-mediated recruitment of

CD8+ T cells, and immune cell exhaustion. The two types of immune cells present

were assumed to exhibit different functional forms for tumor cell lysis, and this

difference was found to be critical for cancer control efficacy [17]. In other work

[34], Kronik et al. used a system of DEs to predict the outcome of immunotherapy

applied to prostate cancer. The model, which included cancer cells, cancer vaccine,

dendritic cells, and immune effector cells, was found to have significant predictive

power. Similarly, Ouerdani et al. [45] used ODEs to develop a model for the growth

of benign tumors in patients with neurofibromatosis type 2. The model, which

was able to describe and predict tumor volume growth with an without treatment,

included a nonlinear growth function which approximated exponential growth for

small tumors and linear growth for large tumors. In [17, 34], cancer burden was

measured by cancer cell number or density, both of which are directly proportional

to tumor volume. However, in some works, cancer burden is measured instead by

tumor radius or diameter [51, 13]. The model measure of tumor burden is generally

determined by the empirical data to which the model will be compared. Irrespective

of the type of tumor burden measurement, when modeling with ODEs, the functional

form for tumor growth is typically selected to fit empirical data. Hence ODE models

of tumor growth tend to be phenomenological in nature. More mechanistic models

of tumor growth are generally based on systems of PDEs [15, 30, 7, 67, 63, 62].

PDEs are a natural choice for describing the tumor geometry and its impact on the

spatial distribution of nutrients, inhibitors, and mechanical forces, which combine

to determine tumor growth. For example, a PDE model for drug transport within

a breast cancer tumor was developed in [36]. The model was used to study how

quantities important for therapy outcome, including the maximal drug concentration

and time-averaged drug concentration, vary with the tumor radius and distance

from the tumor boundary. Other authors have described tumor growth as a free

boundary problem [67, 15, 24, 7]. In these models, the tumor is usually supposed to

be spherically symmetrical to improve mathematical tractability, but see [29] for an

exception. In [24] a model for tumor growth with angiogenesis was developed and

analyzed. The model predicted that when the tumor proliferation rate is small, the
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tumor exhibits a stable steady state, while tumors exhibiting fast proliferation can

grow indefinitely. In [15] a model of tumor growth with quiescent and proliferating

cells is considered and it is shown that, under certain restrictions, this tumor model

exhibits an asymptotically stable steady state. In [67] a model of tumor growth in

the presence of nutrients and a therapeutic inhibitor was considered. Under some

assumptions, the model tumor radius is shown to be bounded, and the tumor may

persist or vanish depending on the concentration of the inhibitor. Finally, in [63] a

spatial model of tumor growth which accounts for the impact of mechanical stress

was developed, parameterized, and validated with patient data.

In this work, we construct a spacial model of tumor growth using ODEs to

evaluate the impact of immune system interactions with the tumor in space. Indeed,

as described in section 3.1, geometry and spatial constraints can influence tumor-

immune system interactions.

In this work, we use ODEs to construct a spatial model of tumor growth for

the purpose of evaluating the interactions between the tumor and immune system

in space. Indeed, as discussed in section 3.1, geometry and spatial constraints can

influence tumor/immune system interactions. We begin with a simple model of

tumor growth accounting for the spatial structure of the tumor. The model describes

a two-part tumor consisting of a proliferative peripheral growth region and central

tumor core. The tumor core represents a relatively quiescent region that has reached

confluent cell density. The peripheral growth region represents the tumor interface

zone or stroma [40]. It should be noted that our simple model does not include

necrotic cancer tissue. After analyzing this simple model, we incorporate immune

system activation into the model to consider the impact of trastuzumab treatment

on tumor growth.

To the best of our knowledge, this work is unique in that it uses ordinary differ-

ential equations to model structured tumor growth with immune system activation.

This approach results in models that more amenable to mathematical analysis and

numerical simulations than the systems of partial differential equations and free

boundary problems typically used to study spatial tumor growth. Hence, this work

has the potential to provide additional insights into the fundamental process of

tumor growth.

This manuscript is organized as follows. In section 2, we describe our model of
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tumor growth without drug-induced immune system and characterize the growth

of large and small tumors. In section 3, we give a general background on NK cells

(i.e., range, activation, exhaustion, and recruitment of NK cells). In section 4, we

describe our mathematical model of NK cells. In section 5, we add NK cell killing

into our tumor model. In section 6, we do a qualitative analysis of the model of

tumor growth with drug-induced immune system activation. In section 7, we use

numerical simulation to test the model’s ability to describe tumor growth data. In

section 8, we give a general discussion and open the door to future work. Finally,

in section 9, we provide a general conclusion of our manuscript.
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CHAPTER 2

A SIMPLE MODEL OF TUMOR GROWTH

2.1 Model derivation

In this paper, we suppose the tumor has a spherical form. The tumor has two

components: a central core and a peripheral region where tumor growth and invasion

occurs. We refer to the former as the core and the latter as the growth region. We

let VT denote the volume of the tumor, Vc denote the volume of the core, and VG

denote the volume of the growth region. The radius of the tumor is denoted by

R(t), and the width of the growth region is denoted by d. One assumption of the

model is that the width of the growth region is determined by processes, such as

diffusion of nutrients, that occur at the cellular and subcellular level, and hence

is constant/independent of the tumor’s size (i.e d is constant). See figure 1 for a

visual comparison of a real-world and model tumor. Let the number of tumor cells

in the growth region to be TG(t), and the number of tumor cells in the core region

be TC(t). The density of cells in the growth region is DG, and the density of cells

in the core is DC . We assume that the density of cells in the growth region is less

than the density of cells in the core region (i.e: DG < DC), and that both densities

are constant. This simplification is motivated by the fact that different cell types

are characterized by a steady-state density [42]. Hence, the assumption of constant

density in each compartment can be viewed as a quasi-steady state assumption.

In this model, we assume additionally that net population growth is the result of

proliferation in the growth region. This does not necessarily imply that cells in the

core are unable to die or proliferate, only that proliferation and death are exactly

balanced in the core region. Next we derive differential equations to describe tumor

growth under these assumptions.

The radius of the tumor core is:

RC(t) = R(t)− d. (2.1.1)
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Figure 1: Comparison of Biological and Mathematical Tumor Models: Left: A
biological model of a tumor including a central tumor core and interface zone. Right:
A mathematical model of a tumor including a central core and peripheral growth
region.

The cell number and volume of the growth region are related as:

TG(t) = DG · VG(t) (2.1.2)

The cell number and volume of the growth region are related as:

TC(t) = DC · VC(t) (2.1.3)

Meanwhile each region’s volume can be computed in terms of the tumor radius.

VC =


4
3
π(R− d)3, R ≥ d

0, R < d

(2.1.4)
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VG =


4πd

(
R2 −Rd+ 1

3
d2
)
, R ≥ d

4
3
πR3, R < d

(2.1.5)

Therefore, dTG

dt
can be computed as a function of R: (R ≥ d)

d

dt
TG = DG

d

dt
VG

= 4πdDG
d

dt

(
R2 −Rd+

1

3
d2
)

= 4πdDG

(
2R

d

dt
R− d

d

dt
R

)
= 4πdDG(2R− d)

dR

dt
.

In summary,

d

dt
TG =


4πdDG(2R− d)dR

dt
, R ≥ d

4πDGR
2 dR
dt
, R < d

(2.1.6)

Similarly, we express dTC

dt
in terms of R. (R ≥ d)

d

dt
TC = DC

d

dt
VC

=
4

3
πDC

d

dt
(R− d)3

= 4πDC (R(t)− d)2
dR

dt
.

So,

d

dt
TC =


4πDC(R(t)− d)2 dR

dt
, R ≥ d

0, R < d

(2.1.7)

Recall we have assumed population growth is due to proliferation in the growth

region. Hence, if cells in the growth region proliferate at the per capita rate µ, we
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have:

µTG =


d(TG + TC)

dt
, R ≥ d

dTG
dt

, R < d.

(2.1.8)

The previous yields a conservation equation for tumor growth (R ≥ d)

d

dt
(TC + TG) = 4π

[
DCR

2 − 2d(DC −DG)R + d2(DC −DG)
] dR
dt

= µTG(t) (2.1.9)

Substituting

TG(t) = 4πdDG

[
R2(t)−R(t)d+

1

3
d2
]

(2.1.10)

into 2.1.9 we derive a differential equation in R alone: (R ≥ d)

dR

dt
= µdDG

R2(t)−R(t)d+ 1
3
d2

DCR2(t)− 2d(DC −DG)R(t) + d2(DC −DG)
. (2.1.11)

Doing the same analysis for R < d, we derive a piece-wise differential equation in R

dR

dt
=


µdDG

R2(t)−R(t)d+ 1
3
d2

DCR2(t)− 2d(DC −DG)R(t) + d2(DC −DG)
, R ≥ d

1

3
µR, R < d

(2.1.12)

Theorem 1 dR
dt

is continuously differentiable for all R ≥ 0

Proof 1 Let consider 2.1.12 and suppose R ≥ d, we can expresse the derivative of
dR
dt

by

d

dR
(R′(t)) = µdDG

−d(DC − 2DG)R
2 + 2d2(2

3
DC −DG)R− 1

3
d3(DC −DG)

[DCR2 − 2d(DC −DG)R + d2(DC −DG)]
2

(2.1.13)

When R = d, we have

[
d

dR
(R′(t))

]
R=d

=
1

3
µ
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Hence d
dR

(R′(t)) is continuous. That ends the proof.

In the next section we will solve 2.1.11. For this, observe 2.1.11 separates as:

DCR
2 − 2d(DC −DG)R + d2(DC −DG)

R2 −Rd+ 1
3
d2

dR = µdDGdt. (2.1.14)
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2.2 Characterization of tumor growth in terms of R

In this section will solve 2.1.11 and analyze the behavior of the solution radius in

order to determine how the model tumor grows.

Theorem 2 There exists a unique solution of 2.1.11 together with R(0) = R0 ≥ d

for t ≥ 0. Moreover, this solution is strictly monotone increasing, and satisfies:

lim
t→∞

R(t) = ∞.

Proof 2 Let g(r) and f(r) be defined by:

f(r) := DCr
2 − 2d(DC −DG)r + d2(DC −DG)

and

g(r) := r2 − dr +
1

3
d2,

so that 2.1.14 can be expressed as

f(R)

g(R)
dR = µdDGdt.

Let ∆1 be the discriminant of f(r) and ∆2 be the discriminant of g(r). We see that,

∆1 = −4d2DG(DC −DG) < 0 (2.2.1)

Thus, f(r) > 0 for all r ∈ R. Since, in addition,

∆2 = −1

3
d2 < 0, (2.2.2)

g(r) > 0 for all r ∈ R.

Thus, dR
dt

= µdDG
g(R)
f(R)

is C1, and hence 2.1.11 together with R(0) = R0 > d

exhibits a unique maximal solution.
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Moreover, we may solve 2.1.11 to derive an implicit formula for R(t). We have

∫
µdDGdt =

∫
DCR

2 − 2d(DC −DG)R+ d2(DC −DG)

R2 −Rd+ 1
3d

2
dR

=

∫ [
DC +

dR(2DG −DC) + d2( 43DC −DG

R2 − dR+ 1
3d

2

]
dR

µdDGt+ F (R0) = DCR+
d(2DG −DC)

2
ln (R2 − dR+

1

3
d2) +

5

3
dDC

√
3 arctan

(
2
√
3

(
R

d
− 1

2

))

Therefore,

µdDGt+F (R0) = DCR+
d(2DG −DC)

2
ln (R2 − dR+

1

3
d2)+

5

3
dDC

√
3 arctan

(
2
√
3

(
R

d
− 1

2

))
(2.2.3)

where F is defined by the right-hand side of 2.2.3.

From 2.2.3 will see that R(t) is defined for t > 0. Indeed, 5
3
dDC

√
3 arctan

(
2
√
3
(
R
d
− 1

2

))
is bounded. In addition,

lim
R→∞

[
DCR+

d(2DG −DC)

2
ln (R2 − dR+

1

3
d2)

]
= lim

R→∞
R

[
DC +

d(2DG −DC)

2

ln (R2 − dR+ 1
3d

2)

R

]
,

and, using L’Hopital’s rule[54], we have

lim
R→∞

ln (R2 − dR + 1
3
d2)

R
= lim

R→∞

2R− d

R2 − dR + 1
3
d2

= 0.

Hence,

lim
R→∞

[
DC +

d(2DG −DC)

2

ln (R2 − dR + 1
3
d2)

R

]
= DC

Therefore, by product of limits, we have:

lim
R→∞

R

[
DC +

d(2DG −DC)

2

ln (R2 − dR + 1
3
d2)

R

]
= ∞
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Thus, we have,

lim
R→∞

[
DCR +

d(2DG −DC)

2
ln (R2 − dR +

1

3
d2) +

5

3
dDC

√
3 arctan

(
2
√
3

(
R

d
− 1

2

))]
= ∞

From the previous and 2.2.3, we see that R(t) is finite for t finite. Hence, the

solution of 2.1.11 is defined for t ≥ 0 [56].

In addition, since g(r) > 0, and f(r) > 0 for r ∈ R,

dR

dt
> 0; t ≥ 0 (2.2.4)

So, R(t) is strictly monotone increasing for t ≥ 0, and 2.1.11 has no steady states.

It follows that limt→∞R(t) = ∞.
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2.3 Instantaneous Doubling Time for Small and Large Tu-

mors

For comparison to empirical data, it is interesting to consider the doubling time for

tumor volume in large and small tumors. For this, consider 2.1.13.

In small tumor where R < d we have

[
d

dR
(R′(t))

]
R=d

=
1

3
µ

Thus, for small R, R′(t) is :

R′(t) =
1

3
µR (2.3.1)

We then define the doubling time of the radius of the nascent tumor, tR, by:

tR =
3 ln 2

µ
(2.3.2)

Now we find the doubling time of the volume, tV , of the nascent tumor:

V =
4

3
πR3

V ′(t) = 4πR2R′(t)

V ′(t)|R=d ≈ 4

3
πd3µ

= µV

Thus the doubling time of the volume, tV , of the nascent tumor is:

tV =
ln 2

µ
(2.3.3)

Some studies define the doubling time of the tumor as ln 2
SGR

, where SGR stands for

the Specific Growth Rate [37]. This is similar to our model for a small tumor.

Now we consider the growth of the tumor volume when R is very large.
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Define R′
∞ by:

R′
∞ := lim

R→∞
R′(t)

=
µdDG

DC

Thus when R is very large, the growth rate of the tumor volume is approximated as

follows:

V ′ = 4πR2R′

= 4πR2µdDG

DC

= V
3µdDG

RDC

= (36π)
1
3µd

DG

DC

V
2
3

From the final expression, we see that the growth of a large tumor is less than expo-

nential. In addition, from the second-to-last expression, we see that in a large tumor

the growth rate per unit volume scales with d
R
, so we may define the instantaneous

doubling time of a large tumor as:

t⋆ =
ln 2

3µ

(
DC

DG

)(
R

d

)
(2.3.4)

Hence, when the tumor is large, the instantaneous doubling time increases with

tumor radius.

For small tumors we observe that the model tumor radius and volume increases

exponentially, but for large tumors, the model tumor radius increases linearly and

the volume increases approximately sub exponentially. Pérez-García et al observed

different types of tumors can exhibit different types of volume growth in vivo; e.g.,

super-exponential, exponential, and linear, etc [49]. In general, the potential tumor

doubling time is shorter than the observed doubling time in vivo [37], which is

consistent with a model in which the rate of growth slows through time.
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CHAPTER 3

NATURAL KILLER CELLS IN BREAST CANCER, BACKGROUND

Natural Killer cells (NK cells) are lymphocytes, that is, immune cells that orig-

inate in the bone narrow, circulate through the blood, and patrol peripheral tissues

[50, 28, 4]. NK cells are distinguished among lymphocytes in their ability to detect

and eliminate cancer cells without prior sensitization [26, 28]. Indeed, they are con-

sidered part of the innate immune system [50, 9, 33, 59, 23, 1, 57]. NK cells can also

help orchestrate tissue remodeling and angiogensis [8, 50]. Indeed, a multitude of

NK cell phenotypes supports a wide range of functions in diverse tissues and con-

texts. It has been proposed that cancer tissues subvert the immune system, in part,

by exploiting the NK cells ability to promote healing, and the interplay between NK

cells and cancer cells is thought to be critical for determining the propensity of the

cancer to grow and invade [9].

In the following subsection we describe research on the function and activity of

NK cells in breast cancer, with special focus on HER2+ breast cancer and explain

how the available knowledge is translated into a simplified model.
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3.1 NK cell range/specificity

Even within a single tumor, cancer cells differ in their susceptibility to NK cell

killing. In the context of HER2+ breast cancer, studies suggest that NK cells

are severely limited in their ability to inhibit tumor growth. The addition of a

therapeutic antibody, trastuzumab, exposes the tumor to NK cell attack. However,

even in the presence of trastuzumab, NK cell cytotoxicity is limited to the tumor

periphery [55]. We interpret the inability of NK cells to penetrate the tumor matrix

as a manifestation of differences between cells in the tumor interior and cells in

the tumor periphery. Indeed, using mousse models of breast cancer, Cheung et al.

[11, 10] identified a marker of invasive and proliferative potential in the breast cancer

cells (Katerin-14 (K-14)), which is "enriched at the tumor’s invasive borders," [10]

and characterizes the subpopulation of cells that are susceptible to NK cell attack

[9]. As a result of these considerations, our model supposes that NK cells only

destroy tumor cells in the peripheral growth region of the tumor. See Figure 2B in

[55] for a schematic of NK cell specificity and activity with and without therapeutic

antigen.
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3.2 NK cell type, activation, and exhaustion/subversion by

the tumor

NK cells vary in their ability to destroy cancer cells. In our model, we distinguish

two type of NK cells: cytotoxic NK cells which are capable of killing cancer cells, and

noncytotoxic NK cells, which are unable to kill cancer cells [1]. It is suggested that

noncytotoxic NK cells can differentiate into cytotoxic NK cells through exposure

to activating signals [8]. However, we do not include the complex process of NK

cell differentiation in our model as it is unclear if differentiation from noncytotoxic

to cytotoxic NK cell subset can occur in tissues [8, 50]. The cytotoxic potential

of NK cells can be enhanced through exposure to cytokines produced by adaptive

immune cells, such as IL-2 or IL-15 [9, 59], or through exposure to cancer cells

[50, 28]. Our model does not include the adaptive immune response, so we assume

trastuzumab-treated tumor cells directly enhance cytotoxicity in the cytotoxic NK

cell subgroup. Thus, we include two classes of cytotoxic NK cells: resting cytotoxic

NK cells ([NK]c) and tumor-activated cytotoxic NK cells ([NK]∗). The biological

literature suggests NK cells typically die post activation. However, in some contexts,

a minority of active NK cells may be maintained in a state of heightened sensitivity

to protect against similar threats in the future [46].

Although initial exposure to cancer cells can induce cytotoxicity, long term expo-

sure can leave NK cells in a noncytotoxic, exhausted state [33, 9, 10]. In one study,

overnight exposure to tumor cells significantly impaired the cytotoxic potential of

NK cells and promoted apoptosis [33]. In the context of breast cancer, Chan et al.

found that after 3 to 4 days of exposure to cancer cells, NK cells lost their cyto-

toxicity [9]. The process by which tumor cells disarm NK cells is complex, studies

suggest that after prolonged contact with tumor cells, NK cells first lose their toxi-

city [9, 5, 11], and then become inactive or exhausted [9]. Exhausted NK cells may

remain around the tumor site and can even be reprogrammed to promote tumor

invasion cells [9, 50], although we do not describe the cancer-promoting potential of

exhausted NK cells in our model. To account for NK exhaustion, we include two

classes of noncytotoxic NK cells in our model: noncytotoxic NK cells ([NK]n) and

exhausted NK cells ([NK]e).
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3.3 NK cell recruitment

NK cells can be found in most tissues, although the number and activation profile

of the cells varies with the tissue type [50, 8]. Disease, including cancer, can lead to

NK cell recruitment [28] and alter the distribution of NK cell types within a tissue

[50, 8]. In some contexts, cancer can activate NK cell cytotoxicity. Specifically,

tumor cells can stimulate NK cells to produce chemokines and cytokines that attract

additional immune cells, NK cells included, to the tumor site [28], and co-culture

with cancer cells can induce NK cell proliferation [46, 25]. The expansion of the

NK cell population in response to disease is typically short lived due to the limited

proliferative potential of these cells [25]. Indeed, NK cell proliferation in response to

antigen presentation is proposed to be limited by concomitant telomere shortening

[52]. Our model assumes that NK cell infiltration of the tumor site is supported by

initial activation and subsequent immigration of NK cells from the blood, and/or

proliferation of resident cytotoxic NK cells. In addition, cancer has been shown

to alter the expression of chemokines within breast tissue, thereby increasing the

proportion of NK cells that are noncytotoxic [8, 50]. For this reason, we also include

NK cell recruitment by cancerous and healthy tissue in our model.
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CHAPTER 4

A MODEL OF NK CELLS WITHIN A TUMOR

In this section we describe our mathematical model of tumor growth in the presence

of trastuzumab.

4.1 Modeling NK Cells Killing and Activation

We model NK cell killing of tumor cells as a two-part process that consists of the

NK cell contacting and subsequently killing a tumor cell. The rate of contact with

tumor cells depends on the velocity of the NK cells and the density of tumor cells

in the region, and the rate of killing, given contact, is taken as the maximal kill

rate observed in the literature. Studies show that NK cell velocity depends on the

presence of stimulating ligands, so that NK cells move more quickly in the presence

of such ligands [18]. Based on this research we take the velocity of active NK

cells, v∗NK , as 5.2 10−3 mm min−1, and the velocity of nonactive NK cells, vNK , as

1.6 10−3 mm min−1 [18]. Additionally, since active NK cells are observed to kill in as

little as ten minutes [18], while inactive NK cells require at least 4 hours to kill [1],

we let the max kill rate for inactive cells, δ, be 0.0042 min−1 and the max kill rate

for active cells, δ∗, be 0.1 min−1. The observed kill rate is then determined from the

density of NK cells, the maximal kill rate, and the velocity of NK cells as follows.

Letting [NK]c be the density of non-active, cytotoxic NK cells and [NK]∗ be the

density of active cytotoxic NK cells, the volume occupied by a single non-active NK

cell per unit time (V ), and the volume occupied by a single active NK cell per unit

time (V ∗) are estimated as

V = πr2NKvNK , (4.1.1)

and

V ∗ = πr2NKv
∗
NK , (4.1.2)

where rNK is the radius of an NK cell, the shape of an NK cell is approximated as a

sphere, and the occupied area is approximated as a cylinder. Then, V DG represents

the number of tumor cells a cytotoxic NK cell contacts per unit time, and V ∗DG
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represents the number of tumor cells an active cytotoxic NK cell contacts per unit

time. Therefore, the NK cell killing rate (kills per day) of active NK cells, ξ∗, is

given as:

ξ∗ = [NK]∗
δ∗V ∗DG

δ∗ + V ∗DG

× VG = [NK]∗
δ∗V ∗TG

δ∗ + V ∗DG

, (4.1.3)

where VG is the volume of the growth region in which we assume the NK cells are

located (see 2.1.5). Similarly, the killing rate (kills per day) of non-active NK cells,

ξ, is defined as:

ξ = [NK]c
δV DG

δ + V DG

× VG = [NK]c
δV TG

δ + V DG

(4.1.4)

Finally, as described previously (see section 3.2), our model assumes trastuzumab-

treated tumor cells directly activate cytotoxicity in the the cytotoxic NK cell sub-

group. Specifically, we suppose that inacitve NK cells become active through the

process of tumor cell contact and killing, and take the rate of cytotoxic NK cell

activation as ξ
VG
.
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4.2 Recruitment of NK cells

As described in section 3.1, cancerous and healthy tissues recruit NK cell to the

tumor region, with cancerous tissue promoting an increase in the proportion of NK

cells that are cytotoxic [8, 50]. While some researchers propose that cancer does not

necessarily impact the density of NK cells within a tissue [8], other research supports

increased recruitment of NK cells to cancerous tissue [28]. We reconcile these ob-

servations within our model by supposing that in the absence of NK cell activation,

cancerous tissue alters the distribution of NK cells types without altering the total

density of NK cells. We propose the following, model of NK cell recruitment. Let

bn be the recruitment rate of noncytotoxic NK cells and bc be the recruitment rate

of cytotoxic NK cells. We set

bn =
α2K1 + α3DG

K1 +DG

,

and

bc =
α1K1

K1 +DG

,

where the constraint

α3 = α1 + α2, (4.2.1)

ensures the total density of NK cells is preserved. Assuming NK cells leave the tumor

region at a constant per capita rate β, which is determined by the life expectancy of

an NK cell, we arrive at the following differential equations for describing NK cell

recruitment and removal in the absence of activation by the tumor:

d

dt
[NK]c =

α1K1

K1 +DG

− β[NK]c (4.2.2)

d

dt
[NK]n =

α2K1 + α3DG

K1 +DG

− β[NK]n. (4.2.3)

From (4.2.2) and (4.2.3) we find the steady-state concentrations of cyctotoxic NK

cells

[NK]c =
α1

β

K1

K1 +DG

, (4.2.4)



22

noncytotoxic NK cells

[NK]n =
α2K1 + α3DG

β (K1 +DG)
, (4.2.5)

and total NK cells

[NK]T =
α3

β
. (4.2.6)

The parameter α3 is then determined from the life expectancy of an NK cell (14 days

[38]) and the density of NK cells in healthy tissue. NK cell density in healthy tissue

is estimated from [50] and [18] as 500 cells mm−3. Specifically, Ran et al report NK

cell density in healthy tissue as 100 cells mm−2 [50], and Deguine et al report NK

cell density in antigen free-tumor as 300 cells/mm2 [18].

α3 = 500 β

The parameters α1, α2, and K1 are determined from (4.2.1), (4.2.4 - 4.2.5), and the

steady-state ratios of cytotoxic to noncytotoxic NK cells in healthy and cancerous

breast tissue: In healthy breast tissue (where DG = 0) we set [NK]c

[NK]n
= 0.96

0.04
, while

in cancerous breast tissue (where DG = 105 Cell mm−3 [19]) we set [NK]c

[NK]n
= 0.7

0.3
[8].

These constraints give
α1

α2

=
0.96

0.04
,

so that

α1 = 0.96 α3,

α2 = 0.04 α3,

and K1 is determined from

α1K1

α2K1 + α3DG

=
0.7

0.3
.
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4.3 Modeling NK population expansion through immune sys-

tem activation

Now we describe a model for recruitment of cytotoxic NK cells through tumor-

induced NK cell activation and subsequent proliferation and immigration (see section

3.3). Since NK cells are the only immune cells included in our simplified model, we

suppose that tumor-activated cytotoxic NK cells directly recruit active cytotoxic

NK cells, although, in reality additional immune cell types can contribute to this

process. Specifically, we suppose active cytotoxic NK cells recruit active cytotoxic

NK cells with a constant per capita rate r. This recruitment is potentially the result

of immigration to the tumor site from the blood and/or proliferation of activated

NK cells. Research suggests that under activating conditions the density of NK cells

in a tissue can increase 5-10 fold within a few days [28]. In addition, Fujisaki et al.

found that seven-day coculture with "engineered" cancer cells produced an average

21.6-fold expansion of NK cells from peripheral blood (5.1- 86.6-fold; n = 50) [25].

As a baseline, we suppose a 5 fold increase in 2 days, and define the per capita

recruitment rate as;

r =
ln 5

2 · 24 · 60
. (4.3.1)

Since, NK cells are limited in their potential to proliferate post activation, we include

a separate compartment for newly created NK cells ([NK]∗p). We suppose these cells

are short lived and unable to proliferate [25]. The death rate of these NK cells is

denoted as βp.
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4.4 Tumor-induced exhaustion of active cytotoxic NK cells

In this section we describe our model of tumor-induced NK cell exhaustion. Al-

though the exhausted NK cells may have shorter lifespans and tumor-promoting

potential (see section 3.2) we do not incorporate these features into our model. We

treat exhausted NK cells as a noncytotoxic NK cell subset that cannot be revitalized.

As such, exhaustion serves a sink for NK cells. We suppose that under continuous

exposure to cancer cells, NK cells become exhausted at a maximal per capita rate γ.

As a baseline, we set the maximal time to exhaustion as one day (see section 3.2).

Then, a parameter K2 controls the sensitivity of the exhaustion response to tumor

cells, so that the per capita rate of exhaustion at tumor density D is

E∗ = γ
D

K2 +D
.

Here K2 determines the sensitivity of the exhaustion response to tumor cells. We

are unable to estimate K2 from the biological literature, so we express K2 as a

proportion of the maximal tumor density and vary the proportion during numerical

simulations.
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4.5 Differential equations for NK cells in the presence of im-

mune system activation
d

dt
[NK]c =

α1K1

K1 +DG

− [NK]c
δV DG

δ + V DG

− β[NK]c (4.5.1)

d

dt
[NK]∗ = [NK]c

δV DG

δ + V DG

−
(
β + γ

DG

K2 +DG

)
[NK]∗ (4.5.2)

d

dt
[NK]∗p = r[NK]∗ − βp[NK]∗p (4.5.3)

d

dt
[NK]e = γ

DG

K2 +DG

[NK]∗ − β[NK]e (4.5.4)

From 4.5.1 - 4.5.4, we find the steady-states of different concentrations of cytotoxicity

NK cells in the presence of immune system activation

[NK]c =
bc (δ + V DG)

βδ + V DG (δ + β)
, (4.5.5)

[NK]∗ =
bcδV DG

(β + E∗) (βδ + V DG (δ + β))
, (4.5.6)

[NK]∗p =
r

βp
[NK]∗, (4.5.7)

and

[NK]e =
E∗

β
[NK]∗ (4.5.8)

(4.5.5 - 4.5.8) will be useful in subsequent qualitative analysis.
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Figure 2: Schematic for NK cell dynamics in the presence of tumor-induced immune
system acitvation. 1. Cytotoxic NK cells are recruited to the tissue from the blood.
2. In the presence of trastuzumab, tumor cells activate NK cells. 3. Tumor-activated
NK cells kill tumor cells and 4. recruit additional active, cytotoxic NK cells to the
tumor site. 5. Newly recruited NK cells contribute to tumor cell killing. 6. In
the presence of tumor cells , tumor-activated cytotoxic NK cells gradually become
exhausted. Legend: NKc: cytotoxic NK cells, NK∗: active, NK∗

p : newly recruited,
cytotoxic NK cells, NKe: exhausted NK cells, active, cytotoxic NK cells, TG: tumor
cells in the growth region.
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CHAPTER 5

A MODEL OF TUMOR GROWTH WITH DRUG-INDUCED

IMMUNE SYSTEM ACTIVATION

In this section we incorporate immune system activation into our tumor growth

model. Our model of immune system activation is specific for trastuzumab treatment

of HER2+ breast cancer, wherein trastuzumab functions to expose cancer cells on

the tumor’s periphery to NK cell killing. The effect of trastuzumnab treatment

is to alter our conservation law, since now tumor cells in the growth region are

removed through killing by cytotoxic NK cells. In this model, the rate of tumor cell

population growth is:

µTG − ξ − ξ∗ =


d (TC + TG)

dt
, R ≥ d

dTG
dt

, R < d

(5.0.9)

Let’s suppose R ≥ d, that is,

d (TC + TG)

dt
= µTG − [NK]c

δV

δ + V DG

TG − [NK]∗T
δ∗V ∗

δ∗ + V ∗DG

TG. (5.0.10)

This yields the conservation equation.

4π
[
DCR

2 − 2d(DC −DG)R+ d2(DC −DG)
] dR
dt

= µTG−[NK]c
δV

δ + V DG
TG−[NK]∗T

δ∗V ∗

δ∗ + V ∗DG
TG

(5.0.11)

Defining φ, ϕ, and ψ by:

φ = µV V ∗, (5.0.12)

ϕ = µ(δ∗V + δV ∗)− δV V ∗[NK]c − δ∗V V ∗[NK]∗T , (5.0.13)

and

ψ = µδδ∗ − δδ∗V [NK]c − δδ∗V ∗[NK]∗T , (5.0.14)
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we can observe that

µTG − [NK]c
δV

δ + V DG

TG − [NK]∗T
δ∗V ∗

δ∗ + V ∗DG

TG =
φD2

G + ϕDG + ψ

(δ + V DG)(δ∗ + V ∗DG)
TG

(5.0.15)

so 5.0.11 becomes

4π
[
DCR

2 − 2d(DC −DG)R+ d2(DC −DG)
] dR
dt

= 4πdDG
φD2

G + ϕDG + ψ

(δ + V DG)(δ∗ + V ∗DG)

[
R2 −Rd+

1

3
d2
]
.

(5.0.16)

We let H be defined as follows:

H = dDG
φD2

G + ϕDG + ψ

(δ + V DG)(δ∗ + V ∗DG)
. (5.0.17)

Thus,

dR

dt
= H

R2 −Rd+ 1
3
d2

DCR2 − 2d(DC −DG)R + d2(DC −DG)
, R ≥ d . (5.0.18)

We do the same for R < d and we have

dR

dt
=


H

R2 −Rd+ 1
3
d2

DCR2 − 2d(DC −DG)R + d2(DC −DG)
, R ≥ d

1

3
HR, R < d

. (5.0.19)

From the previous, we have the following system of differential equations to

model tumor growth with immune system activation:
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d

dt
[NK]c =

α1K1

K1 +DG

− [NK]c
δV DG

δ + V DG

− β[NK]c

d

dt
[NK]n =

α2K + α3TG
K + TG

− β[NK]n

d

dt
[NK]e = γ

DG

K2 +DG

[NK]∗ − β[NK]e

d

dt
[NK]∗p = r[NK]∗ − βp[NK]∗p

d

dt
[NK]∗ = [NK]c

δV DG

δ + V DG

−
(
β + γ

DG

K2 +DG

)
[NK]∗ ,

(5.0.20)

and



d

dt
TG =


4πdDG(2R− d)

dR

dt
, R ≥ d

4πDGR
2dR

dt
, R < d

d

dt
TC =


4πDC(R(t)− d)2

dR

dt
, R ≥ d

0, R < d

dR

dt
=


H

R2 −Rd+ 1
3
d2

DCR2 − 2d(DC −DG)R + d2(DC −DG)
, R ≥ d

1

3
HR, R < d

, (5.0.21)

with H defined in 5.0.17.
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CHAPTER 6

QUALITATIVE ANALYSIS OF THE MODEL OF TUMOR GROWTH

WITH IMMUNE SYSTEM ACTIVATION

In this section, we give a qualitative analysis of the tumor growth model with

trastuzumab-induced immune system activation. First let’s consider the potential

for model steady-states.

Consider how the sign of dR
dt

varies with the parameter α1. Note that when

α1 = 0, [NK]c = 0 and [NK]∗T = 0. Hence, in this case, the tumor grows as in

the absence of immune system activation. In particular, dR
dt
> 0 as in section 2.2

and limt→∞R(t) = ∞. On the other hand, as α1 approaches infinity, both ϕ and

ψ approach negative infinity, so H approaches negative infinity as well. Hence, for

α1 large, dR
dt

< 0, and, by the intermediate value theorem, there exists a critical

value of α1 for which dR
dt

= 0. Moreover, since α1 determines the steady-state level

of cytotoxic NK cells in that absence of activation, this result implies that if healthy

tissue has high levels of patrolling NK cells, then the tumor can not exist.

Next we consider how the sign of dR
dt

varies with the parameter V . If V = 0,

then [NK]∗T = 0, and no tumor cell killing occurs. Hence, the tumor grows as in the

absence of immune system activation, dR
dt
> 0, and limt→∞R(t) = ∞ as in section

2.2. On the other hand, in the limit as V approaches infinity, [NK]c =
bc

(δ+β)
, and

[NK]∗T = bcδ
(δ+β)(β+E∗)

(1 + r
βp
). Substituting these expressions into the left-hand-side

of (5.0.15), we find that

H =
d

δ∗ + V ∗DG

[
µ(V ∗D2

G + δ∗DG)−
δbcV

∗DG

β + δ
− δδ∗V ∗bcDG

(δ + β)(β + E∗)
(1 +

r

βp
)− bcδδ

∗

δ + β

]
.

We conclude that H < 0, and hence dR
dt
< 0, if and only if

µ <

[
δbcV

∗DG

β + δ
+

δδ∗V ∗bcDG

(δ + β)(β + E∗)
(1 +

r

βp
) +

bcδδ
∗

δ + β

]
1

V ∗D2
G + δ∗DG

.

The sign of H varies similarly with DG. (Notice that the expression inside the

parenthesis of H is quadratic in DG with positive discriminant.) Thus, we cannot

control aggressive tumors (those with very fast proliferation or high density) by
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increasing the velocity of NK cells.

Next we consider how the sign of dR
dt

varies with the parameter δ. If δ = 0, then

H = µdDG, and no tumor cell killing occurs. Hence, the tumor grows as in the

absence of immune system activation, dR
dt
> 0, and limt→∞R(t) = ∞ as in section

2.2. As δ goes to infinity, [NK]c = bc
β+V DG

, and [NK]∗T = V DGbc
(β+e∗)(β+V DG)

(1 + r
βp
).

Substituting these expression into the left-hand-side of (5.0.15), we find that

H =
dDG

δ∗ + V ∗DG

[
µ(V ∗DG + δ∗)− bcV V

∗DG

β + V DG

− δ∗V V ∗DGbc
(β + E∗)(β + V DG)

(1 +
r

βp
)− bcδ

∗V

β + V DG

]

Hence, H < 0, and dR
dt
< 0, if and only if

µ <

[
bcV V

∗DG

β + V DG

+
δ∗V V ∗DGbc

(β + E∗)(β + V DG)
(1 +

r

βp
) +

bcδ
∗V

β + V DG

]
1

V ∗DG + δ∗
.

Thus the analysis for δ is similar to V ; we cannot control aggressive tumors by

increasing the killing rate of NK cells. In summary, the analyses of δ and V show

that increasing the cytotoxicity of patrolling NK cells may be insufficient for the

control of highly aggressive tumors.

Finally we consider how the sign of dR
dt

varies with the parameter r. Notice that as

r approaches infinity, [NK]∗T approaches infinity, and hence H approaches negative

infinity. Hence, for r large, dR
dt
< 0. That is for r large, the tumor is shrinking. On

the other hand, if r = 0, we have

H =
dDG

(δ + V DG)(δ∗ + V ∗DG)

[
µ(V V

∗
D

2
G + (δ

∗
V + δV

∗
)DG + δδ

∗
) −

bc(δV V ∗ + δδ∗V )(δ + V DG)

βδ + V DG(δ + β)
−

bcδV DG(δ∗V V ∗ + δδ∗V )

(β + E∗) (βδ + V DG(δ + β))

]

We conclude that H < 0, and hence dR
dt
< 0, if and only if

µ <

[
bc(δV V

∗ + δδ∗V )(δ + V DG)

βδ + V DG(δ + β)
+

bcδV DG(δ
∗V V ∗ + δδ∗V )

(β + E∗) (βδ + V DG(δ + β))

]
1

V V ∗D2
G + (δ∗V + δV ∗)DG + δδ∗

.

In summary, depending on the values of the remaining parameters, the tumor may

grow or shrink in the absence of NK cell proliferation, and even highly aggressive

tumors can be eliminated by driving the rate of NK cell proliferation large.
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CHAPTER 7

NUMERICAL SIMULATIONS

In this section, we test our model’s ability to describe tumor volume data from

patients with untreated hamartomas [49]. It should be noted that hamartomas

are not technically tumors, but atypical masses of predominantly normal cells [41].

However, because hamartomas are typically benign, it is possible to obtain data

on untreated hamartomas over long periods of time. Hence, for reasons of data

availability, we initially test our model on hamartoma data. We fit two model pa-

rameters: the per capita growth rate, µ, and the diameter of the growth region, d,

to the data by minimizing the squared error between the data and the model output.

Looking at figures 3-8, we see that our model provides an accurate description

of many patient data sets. In addition, we see that model fits suggest the rate of

volume increase in patient hamartomas spanned the exponential and sub exponential

regimes of our model.
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Figure 3: Hamartoma Volume Patient 1.
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Figure 4: Hamartoma Volume Patient 2.

Figure 5: Hamartoma Volume Patient 3.
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Figure 6: Hamartoma Volume Patient 4.

Figure 7: Hamartoma Volume Patient 5.
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Figure 8: Hamartoma Volume Patient 6.

Symbol Description Value (Range) Units Citation
V Volume occupied per minute (non-active NK cell) 61.575 10−9 mm3 min−1 *
V ∗ Volume occupied per minute (active NK cell) 200.120 10−9 mm3 min−1 *
γ Maximal rate of active NK cell exhaustion 6.9 × 10−4 min−1 *
α1 Rate of cytotoxic NK cell recruitment 24 × 10−3 cell mm−3 min−1 *
α2 Rate of noncytotoxic NK cell recruitment 10−3 cell mm−3 min−1 *
α3 Total rate of NK cell recruitment 25 × 10−3 cell mm−3 min−1 *
ξ Killing rate of non-active NK cells cell min−1 *
ξ∗ Killing rate of active NK cells cell min−1 *
K1 Parmeter for saturation of recruitment response to tumor cells 3.182 × 104 cell mm−3 *
K2 Parameter for saturation of exhaustion response to tumor cells *
bn Recruitment rate of noncytotoxic NK cells 1.265 × 10−2 cell mm−3 min−1 *
bc Recruitment rate of cytotoxic NK cells 1.235 × 10−2 cell mm−3 min−1 *
β Death rate of NK cells 5 × 10−5 min−1 [38]
r The recruitment rate of NKc by NK∗

c 5.59 × 10−4 min−1 [28]
δ Killing rate of active NK cells 0.1 min−1 [18]
δ∗ Killing rate of non-active NK cells ( 1

240
− 1

120
) min−1 [1]

DC Average cell density of epithelial tumor 105 cell mm−3 [19]
DG Average density of epithelial tumor 0.3DC cell mm−3 **
µ Time for breast cancer tumor volume to duplicate 25 · 1440 min [48]

lNk NK cell diameter 6 10−3 − 7 10−3 mm [20]
v∗
NK

Velocity of NK cells when stimulated by ligands 5.2 10−3 mm min−1 [18]

v
NK

Velocity of NK cells in absence of ligands 0.3 10−3 − 1.6 10−3 mm min−1 [18]
* composite parameter, ** assumed

Table 1: Model Parameters

Description Value Units Citation
Average NK cell life span 14 · 1440 min [38]

Duration of NK cell contact under ligand stimulation < 10 min [18]
Average density on NK cells in tumor tissue with NK ligands 1173 cell mm−3 [18]

Average density of NK cells in tumor tissue without NK ligands 301 cell mm−3 [18]
NK to tumor cell ratio with ligands 103 : 106 [18]

NK to tumor cell ratio without ligands 102 : 106 [18]

Table 2: Other Values from the Literature
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CHAPTER 8

DISCUSSION AND FUTURE DIRECTIONS

In this manuscript, we have constructed a simple model of breast cancer tumor

growth and immune system interactions in the context of trastuzumab treatment

for HER2+ breast cancer. Our model predicts the radius of small tumors increases

exponentially, while that of large tumors increases approximately linearly. Expo-

nential growth of small tumors is consistent with the definition of tumor doubling

time in [37], where doubling time is expressed as ln(2)
SGR

, where SGR stands for the

specific growth rate. We found a different result for the volume doubling time of a

large tumor. In particular, our model predicts the rate of growth of a large tumor is

less than exponential. Ouerdani et al. also observed slower growth of large tumors

[45]. Indeed, [45] used ODEs to develop a combination model of growth for benign

tumors in patients with neurofibromatosis type 2. The model, which was able to

describe and predict tumor volume growth with an without treatment, involved a

nonlinear growth function which approximated exponential growth for small tumors

and linear growth for large tumors.

A unique feature of this work is that it incorporates geometric constraints into an

ODE model of a tumor-immune system. Like free boundary problem models [67, 15,

7, 24], our model assumes constant tumor density and, similar to a subset of these

works, our model assumes a quiescent tumor core [15]. However, our model differs

in that it allows density to very between core and growth regions. This assumption

provides a distinct conservation law for tumor growth. Like our model without

immune system activation, [24] concludes that tumors exhibiting fast proliferation

can grow indefinitely. However, unlike our simple model, this tumor model exhibits

steady states when proliferation is slow. Since growth in [24] is limited by the

diffusion of nutrients, we expect that, similar to our model, proliferation will be

concentrated in the outermost region of the tumor in this model. However, in [24]

low nutrient concentrations can cause a net loss of cells, and this is likely the source

of the model steady states.

It is interesting to compare our results on tumor-immune system interactions to

those in [17] where a fractional kill rate was used for CD8+ T cell killing and a mass

action kill rate was used for NK cell killing. In this work, the functional forms of
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the kill rate were chosen to efficiently fit data. However, the most efficient model is

not necessarily well-suited for describing all scenarios and different functional forms

may be indistinguishable in their ability to describe some data. For example, the

mechanistic model of NK cell killing developed here takes a fractional form, which

approximates a mass action rate when δ >> V DG. While [17] concluded that T cells

were essential for tumor control, this work suggests that trastuzumab-induced acti-

vation of NK cells can be sufficient for HER2+ breast cancer tumor control in some

patients. In particular, in patients with sufficiently high levels of patrolling NK cells

or in those with sufficient activation-induced NK cells proliferation, trastuzumab

treatment is predicted to eliminate tumors. In patients with weaker immune sys-

tems, the outcome of trastuzumab treatment is predicted to depend heavily on the

aggressiveness of the tumor, specifically, on the tumor proliferation rate and tumor

cell density. Future work will delineate regions of concern in terms of patient- and

cancer-associated parameters.

It should be note that our spatial model of tumor growth and with immune

cell interactions has many limitations. For example, the model assumes a spherical

tumor where the tissue is homogeneous within each region, and it does not account

for the possibility of net loss of cells resulting from the death of cells in the tumor

core. Since some therapies can penetrate the cellular matrix to target tumor cells

within the core [55], as a future work, we are developing a more complex model that

accounts for net loss as a result of cell death in the tumor interior.
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CHAPTER 9

CONCLUSION

We have constructed a simple mechanistic model of tumor growth with and with-

out drug-induced immune system activation. The model is mathematically tractable

and able to reproduce a variety of growth types and patient tumor volume data. In

particular, the model fit hamartoma data well, and parameter estimation suggests

this data spans exponential and sub-exponential growth regimes. We have also de-

veloped a model for NK cell dynamics within breast cancer tissue, which includes a

mechanistic model of NK cell activation and killing in the context of trastuzumab

treatment of HER2+ breast cancer. This model predicts that we cannot control

aggressive tumors exhibiting very fast proliferation or high tumor cell density by

increasing NK cell cytotoxicity. However, increasing the density of patrolling NK

cells or proliferation of activated NK cells leads to robust tumor control.
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