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ABSTRACT 

Elementary cellular automata (ECA) is using Boolean logic functions to generate 

populations of ones and zeros. Population takes place temporally; each row of bits are 

populated based on the data from the previous row. The rules followed for generation 

of the next row are the functions mentioned above. Some rules produce very linear and 

predictable sets of binary data whereas some of them are chaotic in nature, like rule 30, 

and can be used to produce pseudo-random populations. This state by state calculation 

is ideal for cryptography in that it relies on an initial state (password or key) and can be 

streamed or generated as more data is transferred; the patterns are also largely 

unknown and are not predictable or linear in some cases. Currently, research shows 

many promising configurations of population generation that can be used for securing 

digital data or communications. Unfortunately the chaotic rules tend to repeat 

themselves after a given amount of temporal generation. This cyclic behavior is non-

linear and near impossible to detect without generating the ECA. This research is aimed 

at finding the relationships between row length and cycle length in an effort to make a 

given key more effective by lengthening or eliminating this repetitious behavior. 
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1 RESEARCH QUESTIONS 

What programming practices lead to rapid cellular automata calculation? 

What are the dynamics of chaotic elementary cellular automata? 

Which rules and bit lengths are most suitable for pseudo-random number generation? 

Which adjacency number and configuration is ideal for pseudo-random number 

generation? 
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4 BACKGROUND AND INTRODUCTION 

4.1 HISTORY 

Research into elementary cellular automata has been going on publically since the 

1980’s [2]. Only a few realized its application in computer encryption and steady 

research has been completed over the years since [1]. Recently there has been a surge 

in encryption methods due to many common encryption methods that have been 

broken. One person considered to be the father of cellular automata is Stephen 

Wolfram. Wolfram studied and published many papers and patents on the subject; his 

findings and conjectures are being used as a baseline for this research. An attempt to 

reproduce his data will be made whilst using advances in modern technology to expand 

upon the limit he reached. 

4.2 INTRODUCTION TO ENCRYPTION 

Encryption is used to obfuscate a message of any kind into a form in which an 

eavesdropper cannot interpret what the original message contained. In the case of 

digital communications on a basic level all messages are just a collection of binary ones 

and zeros whether they are pictures, text, video or files. 
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Encryption relies on an algorithm to transform the data using a private key, password, 

or seed. This key is propagated in such a way that it complexes the data and causes it to 

be incomprehensible. This is usually done with a linear, reversible Boolean operator 

such as the exclusive or. The data is then transferred via an unsecure method and then 

simply decrypted by the party with the proper private key. 

There are two basic methods for the data to be encrypted, the block cipher, where the 

set of data is finite, and the stream cipher, in which the data is constantly flowing. 

Cellular automata is perfect for the stream cipher as it is generated from the previous 

state and can continue indefinitely.  

 

Figure 1: The encryption and decryption process of a PRNG stream cypher. 
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The methods of encryption normally used work on the data itself, transforming the data 

by using an algorithm that changes the data in a way that can be reversed using a key. 

This method has flaws in that the formulas used in this process can be reverse 

engineered to produce the encrypted data. There are many ways to defeat such a 

system but it is still prevalent today.  

4.3 CHAOTIC CA BASICS 

Cellular automata is different in that only its very next state 

can be predicted by mathematics. The rule-space used in 

this research is limited to three bits; currently the next 

state is influenced by the previous state of that cell and its 

neighbors to the left and right. These three bits are used 

in a Boolean function to determine the next state. To the 

right is an example (ones are black and zeros are white) of rule 30. At the top of the 

chart the integer thirty is represented in binary “00011110”. This is the lower square in 

the “T” arrangement above each one or zero. The three squares above this represent its 

position, counting from zero on the right “000” to seven on the left “111”. Rule 30 is a 

nice example because a simple state, like all zeros with one in the middle escalates to 

chaos. Other rules are not so useful and in fact, research has shown the two major rules 

for chaotic cellular automata are rule 30 and 45 [3]. 

Figure 2: Rule 30 visualized. 
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This initial state of the generation is often called the seed but can represent the private 

key mentioned above. If two parties have the same key they can generate over ten 

thousand more random bits stemming from the original seed. This gives the user the 

ability to encrypt a massive amount of data with a relatively small seed. 

Rule 30 is an extremely simplified implementation of an encryption routine. Each time 

step can render a limitless amount of possibilities given a specific rule set using 

adjacency rules, arrangement rules, and even multiple rules. 

Previous research has been done to verify specific types of rules in the 3 bit rule space. 

Wolfram classified all rules into four types and outlined their properties [1]. 
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Using this data more research has been done to clarify which rules would be useful 

whilst calculating chaotic CA for pseudo-random number generation [3]. It was decided 

that there are sixteen chaotic rules that are viable for pseudorandom number 

generation. These rules are: 

30,45,60,75,86,89,90,101,102,105,135,149,150,153,165,195 as stated on page 41 of [3]. 

These rules can be broken into equivalence groups using concepts found in [4] that 

outline the relationships between inversion and reflection of rule bits. 

1. Non-linear group 30 consisting of the four rules: 30, 86, 135 and 149 

2. Non-linear group 45 consisting of the four rules: 45, 75, 89 and 101 

3. Linear group 60 consisting of the four rules: 60, 102, 153, and 195 

4. Linear group 90 consisting of the two rules: 90, 165 

5. Linear group 105 consisting of the two rules: 105, 150 
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Table 1 Rule group 1 

Rule 30 Rule 86 Rule 135 Rule 149 

    

 

Table 2 Rule group 2 

Rule 45 Rule 75 Rule 89 Rule 101 
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Table 3 Rule group 3 

Rule 60 Rule 102 Rule 153 Rule 195 

    

 

Table 4 Rule group 4 and 5 

Rule 90 Rule 165 Rule 105 Rule 150 
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5 TOPIC IMPORTANCE 

Most modern encryption methods rely on static mathematical principles to obfuscate 

the data in a way that is irreversible. Unfortunately these methods are widely known 

and are constantly being attacked. Since the methods are purely mathematical they can 

be reverse engineered and spoofed.  

Cellular automata is not formulaic in that it relies on a previous state to make a 

calculation. It works on itself and is therefore unpredictable mathematically thus far. 

This property makes it ideal for encryption in that it has no basis mathematically to work 

backwards from. There are of course linear rules that are very predictable 

mathematically but the chaotic rules are truly perplexing. 

The purpose of this research is to systematically try to develop ways to understand the 

properties of these systems so that it may be used to its full potential and also 

identifying any possible characteristics that may cause the system to fail. 
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6 TOOLS AND METHODOLOGY 

Many methods were considered and most were tested to different conclusions as for 

their usefulness and efficiency. The first section of this article will discuss the various 

permutations of algorithms used to test hypotheses. 

6.1 PROGRAMMING METHODS AND FAILURES 

6.1.1 Introduction 

Programming languages used in this research included C# and C++. MySQL was also 

used to log the data collected. A statistics software called diehard was used to 

determine the possible random p-values. This was used to scale the randomness of a 

given CA and seed. 

 

6.1.2 Languages 

C#’s high level was a great test tool as a proof of concept whilst testing CA. 

Unfortunately it seems to execute CA rather slowly in comparison to C++; yet it provides 

an excellent framework for Windows forms.  

C++ allows for the closest high level path to x86 (assembly), and it proved to be much 

faster than C# for direct CA calculations and memory management. C# dynamically 

allocates memory, which is likely the reason for the detrimental effects in speed. 
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It is possible that speed is not a major concern in one’s application, but clarity. In that 

case, scripting languages such as Python or Lua would be ideal; they have the advantage 

of no compilation, increased portability, and ease of use in development. 

 

6.1.3 User Interface 

Due to the widespread use of Windows computers, the simplest method for interacting 

with the underlying C++ programs was through Windows forms and the .NET 

framework.  

Keeping in mind the goal was testing, the Windows form method has drawbacks when 

wanting to migrate to other systems such as Linux or Mac OS X, where the UI can be 

different depending on usage.  

6.1.4 Form and Program Architecture 

The first method of transporting data from C# to C++ was running the C++ compiled exe 

via a C# form with a text file argument specifying settings for the particular CA. This 

method is necessary due to the fact the CA seeds can be longer than the command line 

parameters of windows processes. This method can be quite frustrating to debug as 

both code bases must be updated simultaneously; also to add a function or process 

takes valuable programming time to generate and receive output for settings passage. 
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The second, possibly slower, but much more adaptable method is compiling C++ into a 

Dynamic Link Library, or DLL, then importing and executing the external methods via C#. 

This requires heavy data manipulation prior to execution of the C++ method due to the 

data storage differences between the languages. 

The last method arrived upon was concocted using the above two methods. Using a 

single project the DLL is created then used by a mother C++ program that takes in a text 

based argument. In this way the DLL still may be used externally and text configuration 

files are still logged and documented. 

OOP, or Object Oriented Programming tends to exchange computational efficiency for 

clarity, yet it provides an excellent framework for testing CA in many configurations with 

little repetitious code. The small performance decrease was acceptable for the benefit 

of customization of a CA calculation. This also does not complement DLLs by any means 

but can be adapted using a wrapper function. Since CA can be executed once to receive 

a particular output the overhead involved in declaring classes is minimal. 

 

6.1.5 Cellular Automata Calculation 

When imposing rules to propagate the CA there are preferred methods for doing 

calculation that increase speed and minimize code length. Previously code had been 

written where there was a fixed C++ function for every rule in binary as well as a char 

(‘1’ and ‘0’). While this code executes fast it requires an extreme excess of code as well 
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as a very large margin for error as each rule must be converted into conventional logic 

gates. 

Fortunately rules are represented in binary and their logic can easily be found in 

storage. For example 30, represented as an unsigned single byte, is stored as 00011110. 

The position of each bit can be represented by a three bit binary number and conversely 

can be used to look up whether the CA is to produce a 1 or a 0 in the next time step.  

It is possible to store a three dimensional array of bools with two array elements for 

each dimension. This way three bits can be passed to receive the next state for a 

particular rule. This evolved into a four dimensional array that stored every rule so any 

Elementary Cellular Automata (ECA) rule can be used (3 bits, 256 rules).  
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Below is an example of such an implementation, where getBit(i,j) returns the “j”th bit of 

the binary number i. 

bool getBit(int from, int pos) { return (from >> pos) & 1; } 

 

bool minterms[256][2][2][2]; 

for (int i = 0; i < 256; i++) 

{ 

 minterms[i][0][0][0] = getBit(i,0); 

 minterms[i][0][0][1] = getBit(i,1); 

 minterms[i][0][1][0] = getBit(i,2); 

 minterms[i][0][1][1] = getBit(i,3); 

 minterms[i][1][0][0] = getBit(i,4); 

 minterms[i][1][0][1] = getBit(i,5); 

 minterms[i][1][1][0] = getBit(i,6); 

 minterms[i][1][1][1] = getBit(i,7); 

} 

 

The lookup time for this type of calculation is constant as it progresses to the exact 

element needed to do calculation. This saves valuable calculation time and has 

monumental effects on the overall time as this calculation is done millions, perhaps 

billions of iterations before execution completion. 
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6.1.6 Data Storage and Manipulation 

Using the methods above it is still possible to achieve moderately slow results by 

streaming data to a file. This can be said of most programs that do file system 

manipulation but is especially important in CA; large buffer reads and writes save 

computation time. There are many reasons for this, all of which contribute greatly to its 

efficiency. These include sequential reads/writes to drive, eliminating unnecessary 

os/file system communication and overhead, and benefiting from memory speeds in CA 

calculation.  

This method of file IO is essential to CA calculation. If large file storage is not an option, 

a large buffer should be used to communicate the data at specific times in execution, 

such as dumping it into a SQL database in memory. 
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6.1.7 Dynamics of Cellular Automata and Cycle Detection 

6.1.7.1 Introduction and first method 

Cycle detection is important in the testing of the cryptographical usefulness of CA. There 

are many algorithms and data structures that can be used to find a cycle in a given CA. 

Logically the first course of action is to record every state the CA produces and for each 

new time step look back through the previously stored data and determine if the state is 

a duplicate.  

An algorithm was contrived to identify GOE states for a given seed length by maintaining 

a database of every seed possibility and running them, one by one, until they cycle. 

After every state generation, or time step, the next step was deleted from the database. 

Therefore, after running every seed the database only contains GOE states. This was 

exhaustive and computer resource intense; we were unable to produce reliable results 

past bit length eighteen. This method is also not scalable because as every seed length 

increases the possibilities exponentially grow. 

 

 

 

 

 

Figure 3: The distribution and collection of seeds and cycles. 
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This was implemented using a MySQL database server and idle workstations. The SQL 

database was populated using a program with all possibilities of a given seed length. 

Then, a service was distributed across all workstations to pull from that database and 

run the ECA until it cycled. The workstations would also delete states that are generated 

from every row out of the main database because these states are accounted for. When 

the ECA has cycled the service reports back to the server and stores the following 

information: seed, transient length, cycle length, point of entry and a cycle id. 

 

Although this is the most thorough and straightforward approach it can be quite 

resource intensive. For example, a cycle cannot be longer than memory can hold and 

seeing as how CA is a power growth in cycle length, given seed length, this method is 

completely un-expandable. 

 

Figure 4: A larger overview of distributed CA computing. 
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6.1.7.2 Memory Intensive Methods 

This method was first tested with a linked list as storage which proved only a frustration 

and timely lesson in efficiency. Then a tree implementation was used and also proved 

inefficient due to its unbalanced nature. Finally a treap was programmed which 

provided functionality for a balanced binary tree and quite efficient lookups. This 

method stores around 14GB of data for a cycle length of 50 million. This is the only 

algorithm in our research that proved the ability to detect transient length (path to 

cycle) and an exact entry point. 

 

6.1.7.3 Computationally Limited (Constant Memory) Methods 

There is another algorithm used to detect cycles in CA and quite a few other pseudo-

random number generators or PRNGs. This is dubbed the Tortoise and the Hare 

algorithm due to the nature of its process. It finds a cycle using a fixed memory amount 

and just requires increased execution time to detect longer cycles. There is a small 

improvement using Brent’s Algorithm and this was the eventual method used in a CUDA 

(Compute Unified Device Architecture, NVIDIA’s Parallel GPU API) implementation to 

detect cycles for given seeds in parallel. The only drawback to this method is it provides 

only the cycle length and an arbitrary state in the cycle; transient lengths or entry points 

cannot be determined without further calculation. 
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6.1.8 Parallelism and Cellular Automata 

When looking at cellular automata, it can be simple to argue that it would benefit from 

parallelism (such as threading, cluster computing, NVIDIA CUDA, AMD Mantle, etc.) but 

like any other problem, it will raise the complexity and possibly blur results. This 

conversation breaks down into serial vs. parallel rather quickly. Basic CA is serial. Parallel 

CA can be looked at in two ways - macro and micro. 

 

6.1.8.1 Serial 

The basic process of CA is serial - results of the last step are fed into the next one. As an 

example, a one dimensional seed of length 8 that wraps at its ends has a three-bit rule 

(0 - 255) applied to each of the seed’s eight members, using the left and right bits as its 

adjacencies to use for the three bits in the rule’s lookup table. Each time step of this 

process generates a global change to the seed. The third time step depends on the 

second, which is the essence of the serial process in CA. 
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6.1.8.2 Parallel - Macro 

On a macro scale, multiple CAs can be tested at once, i.e. create several threads with a 

separate process for calculating a CA. If the computing hardware has 8 real (idle) 

threads, there is effectively 8 times the processing power of a single machine by setting 

a CA process to run on each thread. Bear in mind that work by the operating system 

must take place somewhere and that some threads which may appear idle are probably 

being used every so often for various processes. For this reason, testing and calculating 

CA via clustering can be very effective even with a non-parallel CA application. 

Using this technique code was generated for a CUDA application to parallelize the cycle 

testing of CA. The algorithm used is introduced in 6.1.7.3, the tortoise and hare 

algorithm.  

 

 

 

 

Figure 5: The tortoise and hare algorithm visualized. 

The above illustration shows the implementation of the tortoise and hare algorithm 

implemented given a particular rule, k and starting state. The CUDA application used 

this algorithm along with memory manipulation to run a large quantity of these cycle 

detection runs concurrently.  
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Using TITAN GPU equipment I have been able to parallel process cycle testing for any 

given seed (bit) length. In our GPU we have 15 multiprocessors with 64 warps each; and 

each warp can support 32 threads. This means the GPU can handle around 7680 threads 

at any one moment. Given that CA is binary and expands as such 8192 threads are 

launched at once for the GPU to process.  

In a traditional computer a maximum of 8 threads can be run at any time. The GPU 

provides 1000x faster results than using a CPU calculation method. 
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In the figure below only four states are shown but are actually 8192 in length. Each set 

of 8192 are sent to the device to be calculated then appended to the output csv file. 
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6.1.9 Parallel - Micro 

On the micro scale, it is necessary to look at the internals of the CA process. A single 

seed has k number of members. As a result, the number of calculations each time step is 

a multiple of k. In situations where those calculations are large, i.e. it is using a 

significant amount of time per calculation, the possibility of internally threading the CA 

process could be useful. It is important to realize that threading can present challenges 

not thought of in the basics of serial CA. Operations must be synchronized after a 

predetermined point, and if the thread synchronization takes longer than traditional 

serial CA, then it might be a better (cleaner, easier) path to simply not parallelize that 

part of the process. 

 

6.1.10 Recommended Programming Approach 

6.1.10.1 User Interface 

An IDE was used that supports creating a form and that is easily manipulated; where 

events and properties are automatically generated. The underlying code is ideally non 

OS dependent leaving room for many options for the interface. 

6.1.10.1.1 Windows 

Visual C# with Visual Studio form was used to import and use the low level DLL for its 

calculation.  
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The C++ DLL driver program uses the command line interface in windows to prompt the 

user for the text configuration file. 

6.1.10.1.2 UNIX Based Systems 

Because the C++ DLL driver is multi-platform compile-able all that is needed for 

calculation is an interface to generate the needed configuration files. 

6.1.10.2 Back-end Calculation 

The goal is creating a seamless, error-free CA calculator that is solid in execution but 

flexible in input.  

6.1.10.2.1 Seed 

Seeds are ideally stored in a bitset, an array of booleans, a string, or an array of 

characters. If using bool or char to store a binary bit in C++ the stored size is an entire 

byte rather than a bit; this multiplies storage necessary by eight. In this research an OOP 

approach was taken to store the binary value as well as that nodes adjacencies used to 

calculate its next step in the same structure. 

6.1.10.2.2 Rules 

Rules are best represented by a structure that can retrieve a value in a single lookup. 

The system is mentioned above and provides an excellent basis for speedy calculation of 

a rule.  
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6.1.10.2.3 Adjacencies 

In CA, adjacencies are the elements that determine the next state of the bit. For one 

dimensional CA with a three-bit rule, adjacencies the current bit is combined with the 

bit to the left and right. Ideally adjacencies are calculated once and a pointer is used to 

refer to the memory address in which it is stored so optimal efficiency may be 

employed.  

6.1.10.2.4 CA Calculation 

The process of temporally iterating the seed is core functionality. The structure used to 

store the seed nodes in the OOP structure created was used to calculate the next time 

step. 

6.1.10.2.5 End Results 

For random number testing, the end result could be constructing a binary file or 

streaming random data to a suite designed to test that data for randomness.  

6.1.10.3 Random Number Testing 

Most test suites provide source code or in some cases the ability to inject a custom DLL 

that performs the random generation of fixed length words. If using source, keeping the 

generated pseudo-random data in memory is most efficient when using the test suite; 

as this reduces the file IO time to read and write files to disk. In the case of DLL 

generation the suite will need to perform a particular function that will return a single 
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pseudo-random number. Background calculation must be done to generate more 

numbers and source the seed. 

6.1.10.3.1 Test Suites 

In the Diehard test suite, there are 229 p-values (statistical probability values - for this 

circumstance it is the probability that this set of data is random) generated from the 

tests and an overall p-value, for a total of 230. The limits on passing were p-values 

between 0.0005 and 0.9995, a threshold of 0.05%.  

6.1.10.3.2 Cycle and Transient Correlations 

One inevitable global dynamic in Cellular Automation that a cycle will develop. Using the 

algorithms above, a cycle detection can be written into the calculation to determine 

cycle and transient length to study these dynamics so they may be avoided in pseudo-

random number generation.  



26 
 

 
 

6.2 DYNAMICS OF CELLULAR AUTOMATA 

As mentioned before there are certain undeniable characteristics of Cellular Automata. 

Every possible seed or origin state must exist in a cycle or proceed and terminate into 

one. There are certain states however that cannot be generated by a specific rule, they 

must be a starting state or they will never be achieved. These state came to be known as 

“Garden of Eden” states or GOE’s. They are valuable in that they are usually the furthest 

point from each cycle; this gives a long sequence of random states before entering a 

cycle; we call this length the “Transient”.  

Below is an example of a seed of length three: 
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Figure 7: Seed length k = 3; transients and cycle. 
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6.2.1 Reversibility of Cellular Automata 

Another algorithm was developed to reverse the ECA process which was dubbed 

accordingly the “Reverse Algorithm”. This algorithm recursively looks at previous 

possible states and eliminates them based on their neighbors. In this way we are able to 

have a simple test to know if any state is a GOE. This is useful in determining maximum 

transients and cycles which in turn can be used in matching the length of data to 

encrypt to a specific seed to ensure no bits are repeated. Below is the algorithm for rule 

30 and seed ‘011’. The tables above the digits are the possible previous states.  

 

Figure 8: The reverse algorithm visualized with colored steps. 

 

In chaotic CA a particular seed can only produce a single output, but in some cases two 

separate seeds can produce the same single output. This accounts for branches in the 

state diagrams above [6.2] and below [6.2.2.1]. This property makes finding which state 
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produced a particular next state difficult as it can sometimes yield multiple possibilities, 

or none in the case of a GOE. Each pre-image of three adjacencies must share with other 

pre-images surrounding it. This relationship is defined above between solid and dotted 

boxes, and arrows between them; they are the same adjacencies and they must match 

for a pre-image to be viable. The colors represent passes through the pre-images to rule 

out particular ones. All neighboring adjacencies must match (smiley) to find a previous 

state that can produce the tested seed; in the example above there are no total 

matches and therefore the tested seed is considered a GOE.  
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6.2.2 Garden of Eden States and Importance 

6.2.2.1 Garden of Eden Introduction 

GOE states are important in studying CA because they traverse every possible transient. 

This greatly reduces the amount of tests that have to be run to determine cycles for a 

particular seed length. There are holes in this assumption as some cycles in CA have no 

transients. Generally they are small in length for chaotic rules and can largely be ignored 

and avoided when choosing seeds. 

For example, one of the most famous chaotic rules, rule 30; any even number seed with 

alternating bits will be permanently stuck in a cycle of a single state: 
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Figure 9: The single state failures of rule 30 and even 
seed lengths 



30 
 

 
 

Figure 10: A full state map of seed length six. 

Below is a state map for rule 30 and a k length of six. All states lead to 0 except 21 and 

42 which are examples of the above bit-flipping. The binary was converted to decimal 

for visual ease. 

  



31 
 

 
 

The state map was created using arbor.js, PHP and a simple SQL database. The database 

consisted of every state in a particular length followed by its next state. 

 

Figure 11: A full state map of seed length five. 
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Figure 12: A full state map of seed length seven. 

Notice the repetition of seven; seven points; seven central groups with seven states in 

them. 
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After k = 7 the physics engine in the browser begins to slow and the states start merging 

together. The memory in the browser is also strained and viewing larger sized seeds 

becomes impossible. Many have put together much greater accumulations of states by 

using GPU technology and have succeeded with rule 30 up to length 14. Unfortunately 

the number of states being viewed at once is 214 = 16384 which is hard to differentiate. 

These state diagrams do however give insight into what chaotic CA resembles and how 

complex the patterns eventually get.  

Figure 13: A full state map of seed length eight. 



34 
 

 
 

6.2.2.2 Numeric Garden of Eden Data 

GOE states make up a small population of a large amount of possibilities for any seed 

length k. Represented below is a table with the numbers mentioned and graphed: 

Table 5: Number of GOEs in a given length for k=1 to 32. 

Size 
k Total States GOEs % GOE 

% Reduced 
from last k 

1 2 1 50.00%  

2 4 1 25.00% 1 

3 8 3 37.50% 0.333333 

4 16 5 31.25% 0.6 

5 32 6 18.75% 0.833333 

6 64 12 18.75% 0.5 

7 128 22 17.19% 0.545455 

8 256 33 12.89% 0.666667 

9 512 57 11.13% 0.578947 

10 1024 101 9.86% 0.564356 

11 2048 166 8.11% 0.608434 

12 4096 280 6.84% 0.592857 

13 8192 482 5.88% 0.580913 

14 16384 813 4.96% 0.592866 

15 32768 1373 4.19% 0.592134 

16 65536 2337 3.57% 0.587505 

17 131072 3962 3.02% 0.589854 

18 262144 6708 2.56% 0.590638 

19 524288 11382 2.17% 0.589352 

20 1048576 19305 1.84% 0.589588 

21 2097152 32721 1.56% 0.589988 

22 4194304 55485 1.32% 0.589727 

23 8388608 94094 1.12% 0.589676 

24 16777216 159536 0.95% 0.589798 

25 33554432 270506 0.81% 0.589769 

26 67108864 458693 0.68% 0.589732 

27 134217728 777765 0.58% 0.589758 

28 268435456 1318777 0.49% 0.589762 

29 536870912 2236162 0.42% 0.58975 

30 1073741824 3791692 0.35% 0.589753 

31 2147483648 6429246 0.30% 0.589757 

32 4294967296 10901569 0.25% 0.589754 
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Figure 14: Three graphs visualizing Table 5. 
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Shown first is easily identifiable as a power graph, it is simply: �(�) = ��. It shows the 

number of possible states given a particular seed length; since each position in the seed 

can only have one of two states the number of possibilities is ��. 

The second plot is the number of GOE states in every lot of seed possibilities. The graph 

is remarkably similar to the first and the instinctual explanation is more states leads to 

more GOEs. While this is true the reasoning behind this phenomena is more complex. 

This rotational symmetry will be discussed in the future. 

The percentage of total states to GOEs seems to approach a constant ~0.58975. This is 

directly related to new symmetries created when more possibilities are added. 
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6.2.2.3 Garden of Eden Patterns 

Below the binary of a particular GOE is shown and to the right the seed lengths that 

have this particular pattern. For example “11” or 3 in decimal encoded binary exists as a 

GOE in seed lengths 2-27 in the table below, meaning “11” is a GOE in length 2, “011” is 

a GOE in length 3 etc. 

These results are easily expanded beyond k = 27 and have been proved up to lengths 

beyond 1000. For any seed k>2 “11” will be a GOE. GOEs tend to long transients which 

in turn provided the greatest protection from cycling when generating random data. 

  

Table 6: The top GOE patterns found in seed lengths 1-27. 
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6.3 ADJACENCIES AND MULTI-DIMENSIONAL CONFIGURATIONS 

In traditional one dimensional ECA the two adjacent bits are used in conjunction with 

the current state of the bit to generate the next state, as mentioned in more detail in 

the introduction. Other research has been put forward to suggest using two dimensional 

arrays of bits to generate pseudo-random data [7]. Whilst programming these 

adjacencies for one and two dimensional CA it was discovered that the math associated 

with converting and allocating 2D into 1D was expandable to any dimension. This was 

unique to my research and no documentation has been found pertaining to this subject. 

Below is a representation of how this was achieved: 

 

 

Figure 15: Dimensional adjacencies visualized. 1D to 4D. 
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6.3.1 Periodicity 

Normally in 1D CA the left and rightmost adjacencies are looped back around to create a 

periodic CA. This periodicity creates a continuous chaotic pattern. Many researchers in 

this subject refer to the current seed as a “window” or “sliding window” [6] because it is 

just a snapshot of the ring of values. As the previous state, “PS” and the next state, “NS” 

progress each ring is adjoined to the next creating a cylinder of values that are used as a 

cypher. There were two terms to describe the two concatenation methods alternate 

and classical. This concatenation method was important when determining the 

effectiveness of the cypher. 

Figure 17: The differences in concatenation of each row created by CA. 

Figure 16: The periodic nature of a seed length of 6; indices 0-5. 
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In two dimensional CA the seed becomes a torus due to its 

periodicity. Two dimensional CA and its properties and 

variations are discussed in the next section. 

 

 

6.3.2 Neighborhoods 

When discussing Cellular Automata in two dimensions two neighborhoods are generally 

discussed. In this research adjacencies were used to discuss the cells in the 

neighborhood. The two dimensional neighborhoods are Von Neumann and Moore 

neighborhoods.  

  

Figure 18: The toroidal nature 
of a two dimensional CA. 

Figure 19: The Von Neumann adjacencies (left) versus the Moore adjacencies. 
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Through research with two dimensional CA with chaotic rules diehard results showed 

that Moore was a better candidate to produce more random results. This is explained 

simply by introducing more adjacencies that in turn produces more obscurity.  

 

Figure 20: A graph of randomness versus the adjacency configuration used. 

 

Diehard test suite uses 32 bit integers to test randomness. In configurations where � ≈

32 the tests tend to fail due to correlation of integers. In the graph above all three tests 

droop around 32. Von Neumann is the worst, then Moore vertical, then Moore 

horizontal. Using 9 adjacencies versus 5 works better for defeating correlation around 

32. Vertical and horizontal are indications of how the adjacencies are reduced. 
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6.3.3 Extra Dimensional CA 

Whilst programming the CA engine I discovered when creating a one dimensional 

memory array from a two dimensional CA that the formulas and methods could be used 

for any dimension. 

  

��� ���� = � 

������ �� ����� = � 

��������� =  � 

������ �� ����������� =  � 

 

����� ∶ 

� = 3� 

� = �� 

 

��� ������� ∶ 

� = 2� 

� = �� 
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In the beginning of this section there is a visual of the progression of Moore Adjacencies; 3, 9, 

27, 81. This is using the Moore equation for adjacencies, which gave rise to the first 4D 

calculation of CA. The code written to test multidimensional CA was written to be configurable 

and is therefore recursive; it is computationally intense. If a single configuration was used 

however a fixed code function could be written to have a constant execution time and speed 

calculation.  

As dimension increases so does number of passing tests, also the 32 dependency decreases. On 

low numbers however the   greater dimensions fail.
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Figure 21: Dimensional differences of randomness. 
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6.4 MULTI-RULE CONFIGURATIONS 

During research it was surmised that using multiple rules instead of a single rule would be 

beneficial to the randomness of the numbers and reduce the likelihood of a particular seed 

reaching a small loop.  

First, a fixed method of using a particular rule was created so that we may see comparable 

results.  

Whilst brainstorming three methods were constructed to best simulate multi-rule functionality.  

6.4.1 Spatial Configuration  

In this method a different rule is used for each k position. For example, in a two rule 

configuration, at index 0 rule 30 is used whereas the next index, 1 rule 45 is used, 30 for index 2 

etc. This method is so used because it depends on a particular location in a given time step.  

 

  

Figure 22: The special rule changes visualized. 
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6.4.2 Temporal Configuration 

In a Temporal multi-rule configuration used rules change on the time step of the CA. For 

example, in a two rule configuration, at time step 0 all calculations use rule 30 whereas on the 

next time step (1) rule 45 is used to calculate the next step. 

6.4.3 Spatial-temporal Configuration 

This configuration uses different rules inter-spatially. This is impossible in one dimensional 

configurations due to only one calculation being made. In a two dimensional context however 

many calculations can be made to reduce adjacencies to a single bit. The rules used in this 

research deal with three bits but in multi-dimensional configurations there are many more than 

three adjacencies. 

  

Figure 23: Temporal rule changes visualized. 
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6.4.3.1 Arrow: Von Neumann Adjacencies 

Arrow was an ideal solution to the five adjacencies that two dimensional Von Neumann 

configuration presents. For example an up arrow consists of taking the left, right and top Von 

Neumann adjacencies and running a three bit rule on them. The resulting bit takes the place of 

the top bit and another calculation is made in the same time step to combine the top, middle 

and bottom bit for the final next state for the middle bit. This is easier demonstrated with a 

diagram. In two dimensional CA there are four different configurations for arrow. A binary 

string encoder/decoder was developed for the definition of arrow configuration. In the diagram 

the calculation shown is for bit “4”. 

In three dimensions there are 24 different configurations. The math is as follows. 

 

��������� =  � 

������ �� �������������� = � 

� = � 2�

�

���

(� − 1) 
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Figure 24: Arrow configuration: two-step process visualized. 
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6.4.3.2 Moore Adjacencies 

Moore adjacencies are ideal for dealing with three bit rules as they are always divided evenly by 

three. The number of adjacencies is 3� , where � is dimension. Naturally this can be reduced to 

a single bit fairly quickly. The number of steps to complete a single time step calculation is 

directly proportional to the dimension the CA is being calculated in. This reduction was 

classified into two categories: horizontal and vertical. Obviously this terminology breaks down 

in greater than two dimensions but the math remains the same.  

This was programmed recursively and is therefore quite slow; if a fixed method was chosen the 

hardware or software preforming the time steps could be hard-coded and would therefore be 

much faster than the recursive method used in this research. The recursive implementation 

yields higher configurability and was therefore our choice in testing. 

In the diagram the calculation shown is for bit “4”. 
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Figure 25: Moore configuration: two-step process visualized. 
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7 RESULTS 

Whilst testing multitudes of configurations and rules and rule combinations it became 

increasingly clear that the Diehard test suite was inadequate for the upper end of the tests; the 

best configurations were passing all of the tests and not leaving much room to determine a 

better configuration. 

7.1 ONE DIMENSIONAL 

In one dimensional CA there are many promising configurations that may be possible to 

generate a stream of pseudo-random bits.  

7.1.1 Single Rule 

Rule 30 proved useful above � ≥ 113. The only exception are k’s that are divisible by 32 minus 

one. Avoid � ��� 32 = 1. This fallacy is suspected to arise from diehard as it uses 32 bit 

samples from the binary data and therefore shows correlation in testing. 

 

Figure 26: Single rule, one dimensional randomness. 
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7.1.2 Two Rules 

For the two rule calculation all possibilities were tested in a 1D configuration. The accumulated 

data was quite large so it was injected into a MySQL database. 637,787 rows were accumulated 

and sorted and shown using Google Charts, PHP, and a bit of JavaScript magic. The reason this 

combination was chosen was to be able to interact with the charts and hover over a particular 

plot to find its value. Also, large compilation screens were generated so that many charts could 

be analyzed at once. The two rules are displayed separated by a “-“. On the right the first letter 

is the concatenation configuration (A-Alternate, C-Classical) and the second letter is the multi-

rule configuration (S-Spatial, T-Temporal). 

 

 

 

Figure 27: A small sample of Spatial-Alternate two rule tests 
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It was determined that the best configurations almost always contained rule 90 and the 

classical temporal set of data performed universally better. A full listing of this data is available 

in the reference section. 

Further research will have to be conducted for greater than two rules as the calculations 

performed with the two rule configuration took close to a month to complete. 

  

Figure 28: A small sample of Classical-Temporal two rule tests 
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7.2 TWO DIMENSIONAL 

7.2.1 Single Rule 

The single rule results in two dimensional CA showed a preference towards the Moore 

Horizontal configuration as shown earlier in section 6.3.2.  

 

There is a drastic dip at size close to 32 as this is the size of data that Diehard Test Suite uses. In 

these tests there was a huge improvement over the one dimensional CA as it does not fall 

below 228 tests after size 40. Whereas one dimensional failed every � ��� 32 = 1.  
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Figure 29: Randomness graphed for a two dimensional CA. 
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7.2.2 Two Rules 

Using what was learned from one dimensional space with two rules a few tests were run to 

determine the best two rule combination for Moore Horizontal.  
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Figure 30: Randomness graphed for 2D CA using the successful 1D configurations. 
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First rule 30 and rule 90 were tried using a Classical Temporal configuration in two dimensional 

space. The two rule configuration is only mildly better than the single rule configuration which 

is what lead to the exploration of upper dimensions in CA calculation. Introducing another rule 

into the calculation increases complexity but seems to have little measurable effect at sizes 

greater than fifty. 
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7.3 THREE DIMENSIONAL 

7.3.1 Single Rule 

In a three dimensional space the Moore Adjacencies add up to a total of 27. Every cell uses 27 

other cells to choose its next state. This exponential growth in complexity yields excellent 

results even using a single rule. At this point another testing suite was sought because Diehard 

is not thorough enough to determine small differences in results. 

Considering every size increment also constitutes a power increase in k it is understandable 

how these tests are far superior as the sheer volume of bits involved. In other words, there are 

more bits dependent on other bits as well as an increase in total bits. 
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Figure 31: Three dimensional CA randomness graph. 
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7.4 DISCUSSION 

This research was aimed at creating a better way to encrypt modern digital data. Current 

systems such as hashing and DES/AES are flawed in that given rise in computing capability the 

easier breaking the system will become. The reason DES was broken was this cause exactly. 

Industry’s solution: double or quadruple the bits, so that it is harder to break. The same 

vulnerabilities exist the only difference is time to break. I propose a new system, such as CA, 

that after every time step becomes exponentially harder to break due to possible pre-images. 

The origin of course being a password or seed of your choosing. The way this data is generated 

is chaotic in nature and math does not exist to break CA’s transformations.  

An encryption system based on CA is far superior and the possibilities are so endless many 

generations of configurations could potentially provide security to everyone forever. 

Of course this is not without some criticism; the only reason one would need such a system is to 

beat government cryptanalysis as everyone does not possess the resources to crack AES. Not 

only that but this system is strictly serial in that it cannot be done in parallel; every state 

depends on the previous. 

No doubt this is the option of the future but much more research into implementation, 

standards and configurations must be done to make it viable.  



57 
 

 
 

PUBLICATION REFERENCE 

[1] WOLFRAM, S.: ‘A New Kind of Science’. Champaign, IL: Wolfram Media, 2002. 

[2] WOLFRAM, S.: ‘Random Sequence Generation by Cellular Automata’, Advances in 

Applied Mathematics. Volume 7, Issue 2, June 1986, Pages 123-169. 

[3] SALMAN, K.: ‘Analysis of Elementary Cellular Automata Boundary Conditions’, 

International Journal of Computer Science & Information Technology. Volume 5, 

Number 4, August 2013 

[4] ANDREW WUENSCHE, AND MIKE LESSER, ‘The Global Dynamics of Cellular Automata’, 

Reference Volume I, Addison Wesley Publishing Company, 1992, ISBN: 0-201-55740-1. 

[5] MARSAGLIA, G.: ‘The Marsaglia Random Number CDROM including the Diehard Battery 

of Tests of Randomness’, Florida State University, http://i.cs.hku.hk/~diehard/ 

[6] SIPPER, M.: ‘Generating Parallel Random Number Generators by Cellular Programming.’ 

International Journal of Modern Physics Volume 7, Issue 2, 181-190, 1996. ISSN: 

01291831. 

[7] FUKŚ, H; SKELTON, A.: ‘Response Curves For Cellular Automata in One and Two 

Dimensions - An Example of Rigorous Calculations.’ Aug. 9, 2011



58 
 

 
 

8 APPENDIX
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SUPPLEMENTARY REFERENCE CHARTS 

8.1 TWO RULE 1D CHARTS 

The following are supplementary reference charts gathered and stored into a MySQL database 

then queried and displayed using the Google Chart API. Some data is missing due to the fact 

that tests could not be completed because there were not enough random numbers. These test 

areas are identified with a red bar in the top left indicating that the data is nonexistent. 
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8.1.1 Classical Temporal 
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8.1.2 Classical Spatial 
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8.1.3 Alternate Temporal 
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8.1.4 Alternate Spatial 
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