RESONANCE GRAPH OF PERFECT MATCHINGS

by
James Aluoch

A Thesis Submitted In Partial Fulfillment of the Requirements for the Degree of

Master of Science in Mathematical Sciences

Middle Tennessee State University
May 2019

Thesis Committee:

Dr. Dong Ye, Chair

Dr. Xiaoya Zha

Dr. Chris Stephens

DEDICATION

I dedicated this to my extremely supportive Dream Team and, the love of my life, Rashida.

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Dong Ye, for his guidance, patience, and understanding throughout the thesis process.

Abstract

Let G be a graph with perfect matchings and let \mathcal{C} be a set of linearly independent even cycles of G of width at most 2 . The resonance graph $\mathcal{R}(G, \mathcal{C})$ is a graph with the vertex set $M \subseteq \mathcal{M}(G)$ such that two vertices M_{i} and M_{j} are adjacent if and only if $M_{i} \oplus M_{j}=E(c)$ for some cycle $c \in \mathcal{C}$.

In this paper, we extend the results obtained by Tratnik and Ye [22] to general graphs. Particulary, we show that the resonance graph of every graph with perfect matchings with respect to a set of linearly independent even cycles is bipartite and each connected component of the resonance graph is an induced cubical graph.

CONTENTS

LIST OF TABLES vi
LIST OF FIGURES vii
CHAPTER 1: INTRODUCTION 1
1.1 Basic Definitions 1
1.2 Motivations 9
1.3 Main Result 11
CHAPTER 2: CYCLE SPACE 13
CHAPTER 3: RESONANCE GRAPH 16
BIBLIOGRAPHY 22

List of Tables

1 Resonance graphs of Q_{3} with respect to distinct subsets of $\mathcal{C}\left(Q_{3}\right)$ where dashed lines indicate perfect matchings 8

List of Figures

1 Hasse diagram of a lattice 2
2 Non-distributive modular lattice 3
3 A lattice in \mathbb{R}^{2} 4
4 An example of a graph 5
5 4-dimensional hypercube 6
6 Bipartite graph 7
$7 \quad$ Bipartite resonance graph with width $(\mathcal{C})=3$ where $c_{1}=12541, c_{2}=$45874, and $c_{3}=1236541$17

CHAPTER 1

INTRODUCTION

In this chapter, we lay the foundation with basic definitions and explore the motivation of studying resonance graphs.

1.1 Basic Definitions

In this section, we define the basic concepts of order theory, linear algebra, and graph theory that will be used throughout this paper. We will be basing our terminology primarily on Davey \& Priestly [4] and Birkhoff [2] for order theory, Strang [19] for linear algebra, and Diestel [5] for graph theory.

Let P be a set. A partial order is a binary relation \leq on the set P satisfying the following conditions:

1. For all $x \in P, x \leq x$. (Reflexive)
2. If $x \leq y$ and $y \leq x$, then $x=y$ for all $x, y \in P$. (Antisymmetric)
3. If $x \leq y$ and $y \leq z$, then $x \leq z$ for all $x, y, z \in P$. (Transitive)

Definition 1.1. A set P equipped with a partial order \leq is called a partially ordered set, poset for short.

For $x, y \in P, x$ and y are comparable if $x \leq y$ or $y \leq x$.

Definition 1.2. A poset P is a chain if any two elements of P are comparable.

Let P be a poset and $X \subseteq P$. An element $a \in P$ is an upper bound of X if $x \leq a$ for all $x \in X$. Similarly, a lower bound of X is an element $b \in P$ such that $b \leq x$ for all $x \in X$. Now, for $a \in P, a$ is the least upper bound of X if
(i) a is an upper bound of X, and
(ii) $a \leq y$ for all upper bounds y of X.

Similarly, for $b \in P, b$ is the greatest lower bound of X if
(i) b is a lower bound of X, and
(ii) $z \leq b$ for all lower bounds z of X.

Note that the least upper bound of the entire poset P is referred to as the top element of P. This is denoted by \top. Similarly, the greatest lower bound of the entire poset P is referred to as the bottom element of P which is denoted by \perp.

For $x, y \in P$, if there exists a least upper bound of $\{x, y\}$ we denote it as $x \vee y$ which is called the join of x and y. Similarly, for $x, y \in P$, if there exists a greatest lower bound of $\{x, y\}$ we denote it as $x \wedge y$ which is called the meet of x and y.

Definition 1.3. A lattice, then, is a poset L whereby $x \vee y$ and $x \wedge y$ exists for all $x, y \in L$.

Figure 1: Hasse diagram of a lattice

Figure 1 gives an example of a lattice in order theory. We can see each pair of elements has a join and meet. More specifically, $\top=a \vee b=a \vee c=b \vee c, a=x \vee y$, $b=x \vee z, c=y \vee z, x=a \wedge b, y=a \wedge c, z=b \wedge c$, and $\perp=x \wedge y=x \wedge z=y \wedge z$.

Definition 1.4. A lattice L is modular, if, for all $x, y, z \in L, x \leq z$ implies $x \vee$ $(y \wedge z)=(x \vee y) \wedge z$.

Definition 1.5. A lattice L is distributive, if, for all $x, y, z \in L, x \wedge(y \vee z)=$ $(x \wedge y) \vee(x \wedge z)$.

Figure 2: Non-distributive modular lattice

Though every distributive lattice is modular, the converse of that statement is not always true. Figure 2 is an example of a modular lattice that fails to be distributive. More specifically, $p \wedge(q \vee r)=p \neq \perp=(p \wedge q) \vee(p \wedge r)$.

Definition 1.6. Let V be a vector space over a field \mathbb{F}. For a set of vectors $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\} \subseteq V$ with scalars $c_{1}, \ldots, c_{k} \in \mathbb{F}$, we say $\vec{v}_{1}, \ldots, \vec{v}_{k}$ are linearly independent if $c_{1} \vec{v}_{1}+\cdots+c_{k} \vec{v}_{k}=\overrightarrow{0}$ only when $c_{1}=\cdots=c_{k}=0$.

Definition 1.7. Let V be a vector space over a field \mathbb{F}. We say w_{1}, \ldots, w_{l} spans V, if, for every vector $v \in V, v=c_{1} w_{1}+\cdots+c_{l} w_{l}$ whereby $c_{i} \in \mathbb{F}$.

Definition 1.8. A set of vectors B is a basis of vector space V, if B is a linearly independent subset of V that spans V.

The number of vectors in a basis is called the dimension of the vector space.
Definition 1.9. An incidence vector of a subset T of a set S is the vector $x_{T}:=$ $\left(x_{s}\right)_{s \in S}$ such that

$$
x_{s}= \begin{cases}1 & s \in T \\ 0 & s \notin T\end{cases}
$$

Definition 1.10. Let \mathbb{Z} denote the set of all integers and let \mathbb{R}^{m} denote the m dimensional real space. Given n linearly independent vectors $b_{1}, b_{2}, \ldots, b_{n} \in \mathbb{R}^{m}$, the lattice generated by $b_{1}, b_{2}, \ldots, b_{n}$ is defined as $L\left(b_{1}, b_{2}, \ldots, b_{n}\right)=\left\{\sum x_{i} b_{i}: x_{i} \in \mathbb{Z}\right\}$.

Definition 1.3 defines a lattice structure using concepts based from the field of order theory. However, like many terms in mathematics, lattice is not a unique name. Regev [18] defines a lattice structure algebraically, Definition 1.10. The applications of this form of a lattice has many uses in cryptography. Recently, Lai, Yang, Yu, Chen, and Bai [11] have implemented this form of lattices as a foundation for hash proof systems.

Figure 3: A lattice in \mathbb{R}^{2}

Figure 3 is an example of a lattice in \mathbb{R}^{2} [18].
Definition 1.11. A graph is a pair $G=(V, E)$ of sets satisfying $E \subseteq[V]^{2}$; thus, the elements of E are 2-element subsets of V. For example, x and y are elements of V so then we denote the element of E that connects x and y as $x y$.

Figure 4: An example of a graph

The elements of V are the vertices of the graph G and the elements of E are its edges. We denote the set of vertices of G as $V(G)$ and the set of edges of G as $E(G)$. A graph $G^{\prime}\left(V^{\prime}, E^{\prime}\right)$ is a subgraph of graph $G(V, E)$ if $V^{\prime} \subseteq V$ and $E^{\prime} \subseteq E$. An induced subgraph is a subgraph G^{\prime} of graph G that contains all the edges $x y \in E$ with $x, y \in V^{\prime} . G^{\prime} \subseteq G$ is a spanning subgraph of G if $V^{\prime}=V$.

The number of vertices of a graph G is its order which is denoted as $|G|$. A graph of order 0 or 1 is called a trivial graph. A graph is a k-dimensional hypercube with $k \geq 1$ if its vertices are all binary strings of length k and a pair of adjacent vertices' strings differ in only one position. We denoted a k-dimensional hypercube as Q_{k}. A directed graph is a pair (V, E) of disjoint sets of vertices and edges where every edge has an initial vertex and a terminal vertex.

Figure 5: 4-dimensional hypercube

The previous figure, Figure 5, is an example of a 4-dimensional hypercube. The vertices are binary strings indicating their position and relationship to adjacent vertices.

Definition 1.12. Let G and H be graphs. An injective function $f: V(H) \rightarrow V(G)$ is called an embedding if $x y \in E(H)$ implies $f(x) f(y) \in E(G)$ for any $x, y \in V(H)$.

We note that if there exists an embedding $f: V(H) \rightarrow V(G)$ then H is isomorphic to a subgraph of G. Also, if H is embedded into a k-dimensional hypercube as a induced subgraph then H is an induced cubical.

A path is a non-empty graph $P=(V, E)$ such that $V=\left\{x_{0}, x_{1}, \ldots, x_{k}\right\}$ and $E=\left\{x_{0} x_{1}, x_{1} x_{2}, \ldots, x_{k-1} x_{k}\right\}$ where $x_{i} \neq x_{j}$ for $i \neq j$.

Definition 1.13. A cycle is a non-empty graph $C=(V, E)$ such that $V=\left\{x_{0}, x_{1}, \ldots, x_{k}\right\}$ and $E=\left\{x_{0} x_{1}, x_{1} x_{2}, \ldots, x_{k-1} x_{k}, x_{k} x_{0}\right\}$ where $x_{i} \neq x_{j}$ for $i \neq j$.

A non-empty graph G is called connected if any two of its vertices are joined by a path in G. A connected component, or component, of a graph is a maximal connected subgraph of the previously mentioned graph. A graph not containing any cycles, known as acyclic, is called a forest. A connected forest is called a tree. So then, a spanning tree is subgraph which has all vertices connected with the minimal number of edges.

Definition 1.14. A graph $G=(V, E)$ is called a bipartite graph if V admits a partition into 2 classes such that every edge has its ends in different classes.

Figure 6: Bipartite graph

A matching M is a set of independent edges in a graph G.

Definition 1.15. A perfect matching of a graph G is a set of independent edges of G which covers all vertices of G. We denote the set of all perfect matchings of G as $\mathcal{M}(G)$.

Lovász [13] defines a matching lattice as the lattice generated by the set $\mathcal{M}(G)$ of incidence vectors of perfect matchings of the graph G.

Definition 1.16. Let G be a graph and $\mathcal{M}(G)$ be the set of all perfect matchings of G. Also let a set \mathcal{C} be a set of linearly independent even cycles of G. A resonance graph $\mathcal{R}(G, \mathcal{C})$ is a graph with the vertex set $M \subseteq \mathcal{M}(G)$ such that two vertices M_{i} and M_{j} are adjacent if and only if $M_{i} \oplus M_{j}=E(c)$ for some $c \in \mathcal{C}$.

Table 1: Resonance graphs of Q_{3} with respect to distinct subsets of $\mathcal{C}\left(Q_{3}\right)$ where dashed lines indicate perfect matchings

Resonance graph $\mathcal{R}\left(Q_{3},\left\{c_{1}, c_{3}, c_{5}\right\}\right)$

Resonance graph $\mathcal{R}\left(Q_{3},\left\{c_{2}, c_{4}\right\}\right)$

In Table 1, we have examples of resonance graphs of the 3-dimensional hypercube Q_{3}. These examples highlight how the form of a resonance graphs is subject to the set of linearly independent even cycles.

1.2 Motivations

Resonance graphs were first introduced by chemists in connection with benezoid systems which are finite connected plane bipartite graphs whereby every interior region is bounded by a regular hexagon of unit length [9]. Resonance graphs were later reintroduced by mathematicians as Z-transformation graphs [8]. Further study has resulted in extending concepts of the resonance graphs of a catacondensed benzenoid graphs [10] to resonance graphs of plane weakly-elementary bipartite graphs [23]. Zhang shows that the concept continues to hold on with resonance graphs of plane
bipartite graphs [12, 25].
Let G be a graph, for each two vertices $u, v \in V(G)$, the minimal number of edges between them is called their distance, denoted by $d_{G}(u, v)$. A set of vertices that are on the shortest path between u and v is called the interval which is defined as $I(u, v)=\left\{x: d_{G}(u, v)=d_{G}(u, x)+d_{G}(x, v)\right\}$. A graph is a median graph if the intervals of every three vertices intersect at a single point, i.e.,

$$
|I(u, v) \cap I(u, w) \cap I(v, w)|=1 \text { for all } u, v, w \in V(G)
$$

Note that one of the three vertices could be that point. Median graphs first appeared in work by Nebeskỳ [15]. However, the concepts were studied earlier by Birkhoff \& Kiss [3] and Avann [1]. It is known that the covering graph of a distributive lattice is a median graph, and a median graph can always be embedded in a hypercube as an induced subgraph, i.e., an induced cubical graph.

We define a surface Σ to be a compact and connected 2-dimensional manifold without boundary. A face of a graph embedded in Σ is the closure of a connected component of the surface having removed the graph. A face is even if it is contained in an even cycle. It follows that the set of even faces is called an even-face set [22]. A graph G is elementary [14] if the edges of G contained in a perfect matching induce a connected subgraph. Furthermore, a graph is weakly elementary [24] if every inner face of evey elementary component of G is still a face of the original G.

Theorem 1.17 (Klavžar, Žigert, and Brinkmann, [10]). The resonance graph of a catacondensed even ring system is a median graph.

Zhang, Lam, and Shiu obtained a general result for plane weakly elementary bipartite graphs as follows.

Theorem 1.18 (Zhang, Lam, and Shiu, [23]). The resonance graph of a plane weaklyelementary bipartite graph is a median graph.

A stronger result for plane elementary bipartite graphs has been obatined by Lam and Zhang [12].

Theorem 1.19 (Lam \& Zhang, [12]). Let G be a plane elementary bipartite graph and \mathcal{F} be the set of all inner faces of G. Then $\mathcal{R}(G, \mathcal{F})$ is the covering graph of a distributive lattice.

This result has been reached independently by Felsner [6] and Propp [17]. Other structures such as, orientations and flows and spanning trees, have been shown to share the properties as the resonance graph of a plane elementary bipartite graph [7,17]. However, if the graph is not plane bipartite, it may not be the covering graph of a distributive lattice. For example, see [21].

Conjecture 1.20 (Tratnik \& Žigert Pleteršek, [21]). Every connected component of the resonance graph a fullerene is a median graph.

Note Ovchinnikov [16] shows that the class of median graphs is a proper subclass of the class of parital cubes. We also know that the class of partial cubes are a subclass of the class of induced cubical graphs [16]. It is weaker problem to prove that every connected component of the resonance graph of a fullerene is a partial cube. In [22], Tratnik and Ye proved that every connected component of the resonance graph of a fullerene is an induced cubical graph by the following general result.

Theorem 1.21 (Tratnik \& Ye, [22]). Let G be a graph embedded in a surface Σ and let $\mathcal{F} \neq \mathscr{F}(G)$ be an even-face set. Then every connected component of the resonance graph is an induced cubical graph.

1.3 Main Result

In this thesis, we consider the resonance graphs of graphs without surface embedding information. We define resonance graph based on linearly independent sets of the cycle space of a graph. Hence, we are be able to extend Tratnik and Ye's result from embedded graphs to graphs without any restrictions. The following is the main result.

Theorem 1.22. Let G be a graph with perfect matchings and $\mathcal{C} \subsetneq \mathscr{C}(G)$ be a set of linearly independent even cycles of width at most 2. Then every connected component of the resonance graph $\mathcal{R}(G, \mathcal{C})$ is an induced cubical graph.

The paper proceeds as follows: some propositions and definitions focusing on the cycle space are given in Chapter 2, the proof for Theorem 1.22 is given in Chapter 3.

CHAPTER 2

CYCLE SPACE

Let $G=(V, E)$ be a graph and $\mathbb{F}_{2}=\{0,1\}$. The incidence vectors of all subsets of $E(G)$ form a vector space over \mathbb{F}_{2}, which is called the edge space $\mathcal{E}(G)$ of G. Every vector of $\mathcal{E}(G)$ corresponds to a subset of $E(G)$, and the addition of two vectors in $\mathcal{E}(G)$ corresponds the symmetric difference of two subsets of $E(G)$. The empty set $\emptyset \subseteq E$ is the zero element. Scalar multiplication is defined as the following:

- $0 \cdot F:=\emptyset \quad F \in \mathcal{E}(G)$
- $1 \cdot F:=F \quad F \in \mathcal{E}(G)$

Definition 2.1. The cycle space $\mathfrak{C}(G)$ is a subspace of $\mathcal{E}(G)$ generated by the set of all cycles of G. We denote the set of all cycles of G as $\mathscr{C}(G)$.

Note that the cycle space $\mathfrak{C}(G)$ and the set of cycles $\mathscr{C}(G)$ of graph G have a one-to-one correspondence.

Proposition 2.2. The function $f: \mathfrak{C}(G) \rightarrow \mathscr{C}(G)$ is bijective.
Proof. Let $f: \mathfrak{C}(G) \rightarrow \mathscr{C}(G)$ be a function such that $x_{C} \mapsto C$ for $x_{C} \in \mathfrak{C}(G)$ such that $x_{C}=\left(x_{e}\right)_{e \in E(G)}$ whereby $x_{e}=1$ if $e \in C$ else $x_{e}=0$. Suppose, for $C, D \in \mathscr{C}(G)$, $C=D$. So then, $E(C)=E(D)$. Since the edge sets of C and D are equal, each component of their incidence vectors are equivalent. Thus, $x_{C}=x_{D}$ which shows that f is injective.

Now, for some $B \in \mathscr{C}(G)$, there is $x_{B} \in \mathfrak{C}(G)$ such that $x_{B}=\left(x_{e}\right)_{e \in E(G)}$ whereby $x_{e}=1$ if $e \in B$ else $x_{e}=0$. So then, $f\left(x_{B}\right)=B$ which shows that f is surjective. Therefore, f is bijective.

The following propositions, Proposition 2.3 and Proposition 2.4, are known results. Their proofs are included for completeness of the paper.

Proposition 2.3. Every connected graph contains a spanning tree.
Proof. Let G be a connected graph. Suppose G has no cycles. It follows then that G is its own spanning tree. So then, suppose G contains cycles. Now, let T be a minimal connected spanning subgraph of G. Assume T has a cycle c. Then, for some edge $e \in E(c), T \backslash e$ is still connected and spanning. So then, $T \backslash e \subsetneq T$. However, this is a contradiction to the minimality of T. Thus, T is a spanning tree of G.

Proposition 2.4. The cycle space $\mathfrak{C}(G)$ has a basis $\left\{c_{1}, c_{2}, \ldots, c_{k}\right\}$.
Proof. Let G be a connected graph and T be the spanning tree contained in G. Note $|E(G) \backslash E(T)|=m-n+1$ where $|E(G)|=m$ and $|V(G)|=n$ since $|E(T)|=$ $|V(G)|-1$. So then, $E(G) \backslash E(T)=\left\{e_{1}, e_{2}, \ldots, e_{k}\right\}$ where $k=m-n+1$. Now, for some $e_{i} \in(E(G) \backslash E(T)), e_{i} \cup T$ contains a cycle c_{i}. Also note if $e_{i} \neq e_{j}$, then $c_{i} \neq c_{j}$. Suppose $\alpha_{1} c_{1}+\alpha_{2} c_{2}+\cdots+\alpha_{k} c_{k}=0$ where $\alpha_{i} \in \mathbb{F}_{2}$. Since each c_{i} contains a distinct edge e_{i}, then $\alpha_{1} c_{1}+\alpha_{2} c_{2}+\cdots+\alpha_{k} c_{k}=0$ only when $\alpha_{1}=\alpha_{2}=\cdots=\alpha_{k}=0$. Thus, $\left\{c_{1}, c_{2}, \ldots, c_{k}\right\}$ is linearly independent.

Now suppose, for some cycle $c \in \mathscr{C}(G), c \neq \sum \alpha_{i} c_{i}$ for some $\alpha_{i} \in \mathbb{F}_{2}$ and $c_{i} \in$ $\left\{c_{1}, c_{2}, \ldots, c_{k}\right\}$. So then c is a cycle where all edges originate from $E(T)$. However, by definition, T contains no cycles. Thus, for all $c \in \mathscr{C}(G), c=\sum \alpha_{i} c_{i}$. Therefore, $\left\{c_{1}, c_{2}, \ldots, c_{k}\right\}$ is the basis of the cycle space of G.

Note the dimension of the cycle space of G is $\left|\left\{c_{1}, c_{2}, \ldots, c_{k}\right\}\right|=k=m-n+1$. A set of cycles of G is linearly independent if their incidence vectors are linearly independent in the cycle space of G. The width of a set of cycles \mathcal{C}, denoted by width (\mathcal{C}), is the maximum cardinality of cycles which contains a common edge. For example, the set of all facial cycles of a graph embedded in a surface has width 2 .

Proposition 2.5. Let G be a graph and \mathcal{C} be a set of cycles in G. If \mathcal{C} is linearly independent of width at most 2, then there exists an $e \in E(\mathcal{C})$ which is covered by exactly one cycle of \mathcal{C}.

Proof. Let \mathcal{C} be linearly independent. Suppose, to the contrary, that every edge $e \in E(\mathcal{C})$ is covered by at least two cycles of \mathcal{C}. Note that width $(\mathcal{C}) \leq 2$. It follows that every edge of $E(\mathcal{C})$ is contained by exactly two cycles of \mathcal{C}. So then, $\sum \alpha_{i} c_{i}=0$ with $\alpha_{i}=1$ for all $\alpha_{i} \in \mathbb{F}_{2}$. However, this is a contradicition since \mathcal{C} is linearly independent. Therefore, there is some edge $e \in E(\mathcal{C})$ which is covered by exactly one cycle of \mathcal{C}.

CHAPTER 3

RESONANCE GRAPH

Let G be a graph and $\mathcal{C} \subsetneq \mathscr{C}(G)$ be a set of linearly independent even cycle of width at most 2 . We define a cycle sequence as a collection of cycles of G that generate cycles of the resonance graph $\mathcal{R}(G, \mathcal{C})$.

Lemma 3.1. Let G be a graph with perfect matchings and let $\mathcal{C} \subsetneq \mathscr{C}(G)$ be a set of linearly independent even cycles of widith at most 2. Assume that $C=$ $M_{0} M_{1} \cdots M_{t-1} M_{0}$ is a cycle of the resonance graph $\mathcal{R}(G, \mathcal{C})$. Let cycle $c_{i} \in \mathcal{C}$ correspond to the edge $M_{i} M_{i+1}$ for $i \in\{0,1, \ldots, t-1\}$. Then every cycle of \mathcal{C} appears an even number of times in the cycle sequence $\left(c_{0}, c_{1}, \ldots, c_{t-1}\right)$.

Proof. Let c be a cycle of \mathcal{C}, and let $\delta(c)$ be the number of times c appears in the cycle sequence $\left(c_{0}, c_{1}, \ldots, c_{t-1}\right)$. It suffices to show that $\delta(c) \equiv 0(\bmod 2)$. Since $C=M_{0} M_{1} \cdots M_{t-1} M_{0}$ is a cycle of $\mathcal{R}(G, \mathcal{C})$ and c_{i} is the corresponding cycle of the edge $M_{i} M_{i+1}$, it follows that $M_{i} \oplus M_{i+1}=E\left(c_{i}\right)$ for $i \in\{0,1, \ldots, t-1\}$. So

$$
\begin{equation*}
E\left(c_{0}\right) \oplus E\left(c_{1}\right) \oplus \cdots \oplus E\left(c_{t-1}\right)=\oplus_{i=0}^{t-1}\left(M_{i} \oplus M_{i+1}\right)=\emptyset \tag{1}
\end{equation*}
$$

where all subscripts take modulo t.
Let c and d be two cycles of \mathcal{C} such that there exists an edge $e \in E(c) \cap E(d)$. Since width $(\mathcal{C}) \leq 2, e$ is contained by only c and d from \mathcal{C}. The total number of cycles in the sequence $\left(c_{0}, c_{1}, \ldots, c_{t-1}\right)$ containing e is even by (1). It follows that $\delta(c)+\delta(d) \equiv 0(\bmod 2)$. So $\delta(c) \equiv \delta(d)(\bmod 2)$. Thus, all cycles of G have the same parity.

By Proposition 2.5, there exists an edge e which is covered by exactly one cycle $c \in$ \mathcal{C} since \mathcal{C} is linearly independent and has width at most 2 . By $(1), \delta(c) \equiv 0(\bmod 2)$. Hence $\delta(c) \equiv \delta(d) \equiv 0(\bmod 2)$ for any cycle d of \mathcal{C}. Thus, every cycle of \mathcal{C} appears an even number of times in the cycle sequence $\left(c_{0}, c_{1}, \ldots, c_{t-1}\right)$.

The following theorem follows immediately from Lemma 3.1.

Theorem 3.2. Let G be a graph with perfect matchings and $\mathcal{C} \subsetneq \mathscr{C}(G)$ be a set of linearly independent even cycles of width at most 2. Let $\mathcal{R}(G, \mathcal{C})$ be a resonance graph. Then $\mathcal{R}(G, \mathcal{C})$ is a bipartite graph.

Proof. Let $C=M_{0} M_{1} \cdots M_{t-1} M_{0}$ be a cycle of $\mathcal{R}(G, \mathcal{C})$ and c_{i} be a cycle of G corresponding to the edge of $M_{i} M_{i+1}$ for $i \in\{0,1, \ldots, t-1\}$. Since every cycle of G appears an even number of times in the cycle sequence $\left(c_{0}, c_{1}, \ldots, c_{t-1}\right), C$ is an even cycle. Therefore, $\mathcal{R}(G, \mathcal{C})$ is a bipartite graph.

(a) Graph G
(b) $\mathcal{R}(G, \mathcal{C})$

Figure 7: Bipartite resonance graph with width $(\mathcal{C})=3$ where $c_{1}=12541$,

$$
c_{2}=45874, \text { and } c_{3}=1236541
$$

Theorem 3.2 shows that the resonance graph $\mathcal{R}(G, \mathcal{C})$ is bipartite given, if \mathcal{C} is a set of linearly independent even cycles of width at most 2 . However, there do exist bipartite resonance graphs $\mathcal{R}(G, \mathcal{C})$ whereby \mathcal{C} has width greater than 2 . Figure 7 gives an example of a resonance graph where $\mathcal{C}=\left\{c_{1}, c_{2}, c_{3}\right\}$ has width of 3 and is bipartite.

In [20], Tratnik and Pleteršek show an example of a resonance graph of a tubulene with perfect matchings not being connected. So then, it follows that our resonance
graph $\mathcal{R}(G, \mathcal{C})$ may not be connected either. This motivates us to focus on the connected portion of our resonance graph. Let H be a connected component of $\mathcal{R}(G, \mathcal{C})$ such that $\left\{c_{1}, c_{2}, \ldots, c_{k}\right\} \subseteq \mathcal{C}$ is the set of cycles that correspond to the edges of H. For the author's convenience, we denote the set all elements of $E(H)$ that correspond to the cycle $c_{i} \in \mathcal{C}$ as E_{i}.

Proposition 3.3. Let $\mathcal{R}(G, \mathcal{C})$ be the resonance graph of a graph G with perfect matchings with respect to a set of linearly independent even cycles $\mathcal{C} \subsetneq \mathscr{C}(G)$ of width at most 2 and H be a connected component of $\mathcal{R}(G, \mathcal{C})$. If $M_{1} M_{2} \in E_{i}$, then M_{1} and M_{2} belong to different components of $H \backslash E_{i}$.

Proof. Let $M_{1} M_{2} \in E_{i}$. Assume M_{1} and M_{2} are in the same component of $H \backslash E_{i}$. So then, there exists a path P connecting M_{1} and M_{2} in $H \backslash E_{i}$. Note, since $P \in H \backslash E_{i}$, $E(P) \cap E_{i}=\emptyset$. Now, there is a cycle $C=P \cup\left\{M_{1} M_{2}\right\}$ of H. So then, c_{i} only appears once in the cycle sequence corresponding to the edges in C since $E(P) \cap E_{i}=\emptyset$. However, this contradicts Lemma 3.1. Therefore, M_{1} and M_{2} belong to different components of $H \backslash E_{i}$.

So then, $H \backslash E_{i}$ is disconnected for any cycle $c_{i} \in \mathcal{C}$ that corresponds to edges in E_{i}. Define the quotient graph \mathcal{H}_{i} of H with respect to c_{i} to be a graph constructed by contracting all the elements of $E(H) \backslash E_{i}$ and then replacing any multiple parallel edges with a single edge.

Lemma 3.4. Let $\mathcal{R}(G, \mathcal{C})$ be the resonance graph of a graph G with perfect matchings with respect to a set of linearly independent even cycles $\mathcal{C} \subsetneq \mathscr{C}(G)$ of width at most 2. If c_{i} is a cycle of G that corresponds to some edge of a connected component H of $\mathcal{R}(G, \mathcal{C})$, then the quotient graph \mathcal{H}_{i} with respect to c_{i} is bipartite.

Proof. Let c_{i} be a cycle of G that corresponds to some edge of a connected component H of $\mathcal{R}(G, \mathcal{C})$. Suppose \mathcal{H}_{i} has an odd cycle. We know vertices of \mathcal{H}_{i} are connected components of $H \backslash E_{i}$. So then, there is a cycle C of H whereby c_{i} appears an odd number of times in the cycle sequence of C. Yet this contradicts Lemma 3.1, since
we know every cycle of G appears an even number of times in the cycle sequence. So then, \mathcal{H}_{i} contains no odd cycles. Thus, the quotient graph \mathcal{H}_{i} with respect to c_{i} is bipartite.

Since \mathcal{H}_{i} with respect to c_{i} is bipartite, we shall let $\left(A_{i}, B_{i}\right)$ be the bipartition of \mathcal{H}_{i}. Now let $\mathcal{M}_{A_{i}}$ and $\mathcal{M}_{B_{i}}$ be the sets of perfect matchings of G which correspond to vertices of \mathcal{H}_{i} in A_{i} and B_{i}, respectively.

Define a function $\ell_{i}: V(H) \rightarrow\{0,1\}$ as follows, for any $M \in V(H)$,

$$
\ell_{i}(M)= \begin{cases}0 & M \in \mathcal{M}_{A_{i}} \\ 1 & M \in \mathcal{M}_{B_{i}}\end{cases}
$$

Furthermore, define a function $\ell: V(H) \rightarrow\{0,1\}^{k}$ such that, for any $M \in(H)$,

$$
\ell(M)=\left(\ell_{1}(M), \ldots, \ell_{k}(M)\right)
$$

Proposition 3.5. The function $\ell: V(H) \rightarrow\{0,1\}^{k}$ is injective.
Proof. Let G be a graph with perfect matchings and H be a connected component of the resonance graph $\mathcal{R}(G, \mathcal{C})$ of G with respect to a set of linearly independent even cycles $\mathcal{C} \subsetneq \mathscr{C}(G)$ of width at most 2 . Suppose $M_{1} \neq M_{2}$ for any $M_{1}, M_{2} \in V(H)$. Now let $P=M_{1} X_{1} \cdots X_{t-1} M_{2}$ be the shortest path joining M_{1} and M_{2} in H. Also let $\left\{d_{1}, d_{2}, \ldots, d_{s}\right\}$ be the cycles corresponding to the edges of P such that d_{n} corresponds to $X_{n-1} X_{n}$ for $n \in\{1, \ldots, s\}$ whereby $X_{0}=M_{1}$ and $X_{t}=M_{2}$. Note d_{i} may be equal to d_{j} for some distinct $i, j \in\{1, \ldots, s\}$. Now if every cycle of G appears an even number of times in $\left(d_{1}, d_{2}, \ldots, d_{s}\right)$, then $M_{2}=M_{1} \oplus E\left(d_{1}\right) \oplus E\left(d_{2}\right) \oplus \cdots \oplus E\left(d_{s}\right)=M_{1}$. However, this contradicts our hypothesis that $M_{1} \neq M_{2}$.

So then, there exists a cycle c_{i} of G that appears an odd number of times in $\left(d_{1}, d_{2}, \ldots, d_{s}\right)$. It follows that if we contract all elements of $E(P) \backslash E_{i}$, then the resulting path P^{\prime} of \mathcal{H}_{i}, which joins M_{1} and M_{2}, has an odd number of edges corresponding to c_{i}. Since \mathcal{H}_{i} is bipartite, the end vertices of P^{\prime}, M_{1} and M_{2}, belong
to separate partitions. Thus, without loss of generality, M_{1} belongs to $\mathcal{M}_{A_{i}}$ and M_{2} belongs to $\mathcal{M}_{B_{i}}$. So $\ell_{i}\left(M_{1}\right) \neq \ell_{i}\left(M_{2}\right)$ which implies $\ell\left(M_{1}\right) \neq \ell\left(M_{2}\right)$. Therefore, $\ell: V(H) \rightarrow\{0,1\}^{k}$ is injective.

Lemma 3.6. The function $\ell: V(H) \rightarrow\{0,1\}^{k}$ embeds H into a k-dimensional hypercube. Moreover, ℓ embeds H as an induced subgraph.

Proof. Let G be a graph with perfect matchings and $\mathcal{C} \subsetneq \mathscr{C}(G)$ be a set of linearly independent even cycles of width at most 2 . Also let H be a connected component of the resonance graph $\mathcal{R}(G, \mathcal{C})$. Suppose $M_{1} M_{2}$ corresponds to a cycle $c_{i} \in \mathcal{C}$ for some $M_{1} M_{2} \in E(H)$. It follows that $M_{1} M_{2} \in E_{i}$. So then, for an arbitrary $j \in\{1, \ldots, k\}$ such that $j \neq i, M_{1} M_{2} \in E(H) \backslash E_{j}$ since $E_{i} \cap E_{j}=\emptyset$. Furthermore, M_{1} and M_{2} are in the same connected component of $H \backslash E_{j}$. So $\ell_{j}\left(M_{1}\right)=\ell_{j}\left(M_{2}\right)$ for all $j \in\{1, \ldots, k\}$ such that $j \neq i$. By Proposition 3.5, we know $\ell\left(M_{1}\right) \neq \ell\left(M_{2}\right)$ if $M_{1} \neq M_{2}$. So then, $\ell\left(M_{1}\right)$ and $\ell\left(M_{2}\right)$ differ only at ℓ_{i}. Thus, $\ell: V(H) \rightarrow\{0,1\}^{k}$ embeds H into a k -dimensional hypercube.

Since $\ell_{i}\left(M_{1}\right) \neq \ell_{i}\left(M_{2}\right)$ and $\ell_{j}\left(M_{1}\right)=\ell_{j}\left(M_{2}\right)$ for all $j \in\{1, \ldots, k\}$ such that $j \neq i$, without loss of generality, $M_{1} \in \mathcal{M}_{A_{i}}$ and $M_{2} \in \mathcal{M}_{B_{i}}$. Note there is a path P of H that connects M_{1} and M_{2} since H is a connected component of $\mathcal{R}(G, \mathcal{C})$. If we contract all elements of $E(P) \backslash E_{i}$, then the resulting path P^{\prime} of \mathcal{H}_{i}, which joins M_{1} and M_{2}, has an odd number of edges corresponding to $c_{i} \in \mathcal{C}$. Yet if we contract all elements of $E(P) \backslash E_{j}$, for any $j \in\{1, \ldots, k\}$ such that $j \neq i$, then the resulting path $P^{\prime \prime}$ of \mathcal{H}_{j}, which joins M_{1} and M_{2}, has an even number of edges corresponding to $c_{j} \in \mathcal{C}$. So, for any edge $e \in E(G)$, e rotates along path P an even number of times if $e \notin E\left(c_{i}\right)$ and an odd number of times if $e \in E\left(c_{i}\right)$. It follows $E\left(c_{i}\right)=E\left(c_{1}\right) \oplus \cdots \oplus E\left(c_{k}\right)=M_{1} \oplus M_{2}$. So then, $M_{1} M_{2} \in E(\mathcal{R}(G, \mathcal{C}))$ which implies $M_{1} M_{2} \in H$ since H is a connected component of $\mathcal{R}(G, \mathcal{C})$. Therefore, $\ell: V(H) \rightarrow$ $\{0,1\}^{k}$ embeds H into a k-dimensional hypercube as an induced subgraph.

Theorem 3.7 follows directly from Lemma 3.6.

Theorem 3.7. Let G be a graph with perfect matchings and $\mathcal{C} \subsetneq \mathscr{C}(G)$ be a set of linearly independent even cycles of width at most 2. Then every connected component of the resonance graph $\mathcal{R}(G, \mathcal{C})$ is an induced cubical graph.

BIBLIOGRAPHY

[1] Sherwin P. Avann. Metric ternary distributive semi-lattices. Proceedings of the American Mathematical Society, 12(3):407-414, 1961.
[2] Garrett Birkhoff. Lattice theory, volume 25. American Mathematical Soc., 1940.
[3] Garrett Birkhoff and Stephen A. Kiss. A ternary operation in distributive lattices. Bulletin of the American Mathematical Society, 53(8):749-752, 1947.
[4] Brian A. Davey and Hilary A. Priestley. Introduction to lattices and order. Cambridge University Press, 2nd edition, 2002.
[5] Reinhard Diestel. Graph theory, volume 173 of Graduate Texts in Mathematics. Springer-Verlag Berlin Heidelberg, 5th edition, 2017.
[6] Stefan Felsner. Lattice structures from planar graphs. The Electronic Journal of Combinatorics, 11(1):15, 2004.
[7] Stefan Felsner and Kolja Knauer. Distributive lattices, polyhedra, and generalized flows. European Journal of Combinatorics, 32(1):45-59, 2011.
[8] Zhang Fu-Ji, Guo Xiao-Feng, and Chen Rong-Si. Z-transformation graphs of perfect matchings of hexagonal systems. 38:405-415, 1988.
[9] Wolfgang Gründler. Signifikante elektronenstrukturen fur benzenoide kohlenwasserstoffe, wiss. Z. Univ. Halle, 31:97-116, 1982.
[10] Sandi Klavžar, Petra Žigert, and Gunnar Brinkmann. Resonance graphs of catacondensed even ring systems are median. Discrete mathematics, 253(1-3):35-43, 2002.
[11] Qiqi Lai, Bo Yang, Yong Yu, Yuan Chen, and Jian Bai. Novel smooth hash proof systems based on lattices. The Computer Journal, 61(4):561-574, 2018.
[12] Peter Che Bor Lam and Heping Zhang. A distributive lattice on the set of perfect matchings of a plane bipartite graph. Order, 20(1):13-29, 2003.
[13] László Lovász. Matching structure and the matching lattice. Journal of Combinatorial Theory, Series B, 43(2):187-222, 1987.
[14] László Lovász and Michael D. Plummer. Matching theory, volume 367. American Mathematical Soc., 2009.
[15] Ladislav Nebeskỳ. Median graphs. Commentationes Mathematicae Universitatis Carolinae, 12(2):317-325, 1971.
[16] Sergei Ovchinnikov. Graphs and cubes. Springer Science \& Business Media, 2011.
[17] James Propp. Lattice structure for orientations of graphs. arXiv preprint math/0209005, 2002.
[18] Oded Regev. Tel-Aviv University 0368.4282, Lecture notes: Lattices in computer science, 2004. URL: https://cims.nyu.edu/~regev/teaching/lattices_ fall_2004/ln/introduction.pdf.
[19] Gilbert Strang. Linear Algebra and Its Applications. Thomson, Brooks/Cole, 2006.
[20] Niko Tratnik and Petra Zigert Pleteršek. Some properties of carbon nanotubes and their resonance graphs. MATCH Commun. Math. Comput. Chem, 74:175186, 2015.
[21] Niko Tratnik and Petra Žigert Pleteršek. Resonance graphs of fullerenes. Ars Mathematica Contemporanea, 11(2):425-435, 2016.
[22] Niko Tratnik and Dong Ye. Resonance graphs and perfect matchings of graphs on surfaces. arXiv preprint arXiv:1710.00761, 2017.
[23] Heping Zhang, Peter Che Bor Lam, and Wai Chee Shiu. Resonance graphs and a binary coding for the 1-factors of benzenoid systems. SIAM Journal on Discrete Mathematics, 22(3):971-984, 2008.
[24] Heping Zhang and Fuji Zhang. Plane elementary bipartite graphs. Discrete Applied Mathematics, 105(1-3):291-311, 2000.
[25] Heping Zhang, Fuji Zhang, and Haiyuan Yao. Z-transformation graphs of perfect matchings of plane bipartite graphs. Discrete mathematics, 276(1-3):393-404, 2004.

