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Abstract

We compare conditionally-secure and heuristic constructions in symmet-
ric cryptography on the basis of performance, security level, and feasibility
while simultaneously including the requisite mathematical background to
understand the comparison.
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Chapter 1

Introduction

1.1 General Background

Modern-day cryptography is the scientific study of the creation of tamper-resistant
systems through the use of mathematical tools [KL07]. In the information age,
cryptography is widely used—it secures credit card transactions, stored passwords,
military GPS, telephone calls, and any other sensitive digital information. Thus,
while an end-user of a system rarely notices the use of cryptography, one cannot
overstate its importance in the modern world.

Historically, the field of cryptology was comprised of the creation of secret sys-
tems (cryptography) and the breaking of secret systems (cryptanalysis). However,
since creating secret systems requires a detailed understanding of how they are
broken, many authors roll cryptography and cryptology into the same term (cryp-
tography) while still using cryptanalysis to refer specifically to the breaking of
secret systems. We use this terminology in this thesis.

Simplest in cryptography is the notion of encryption. Encryption is the process
of “scrambling” data in such a way that an eavesdropper cannot determine useful
information about the data (notably, what the data means). As an example, cell-
phone calls are encrypted, so an adversary with a radio who tries to eavesdrop on a
call will instead hear only static. See figure 1.1 for more information.

Cryptographers use a variety of methods to build tamper-resistant systems. At
the lowest level, we use cryptographic primitives. These primitives form the basis
for higher-level constructs. For example, we may use a random number generator
(RNG) to build an encryption cipher. This RNG would be called a cryptographic
primitive. On the other hand, we might also build a cipher from hand without the
use of a lower-level primitive. In this scenario, the cipher itself would be known
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encryption decryptionaudio data audio data

shared key shared key

encrypted data
over radio

cellphone tower

Figure 1.1: Diagram showing encrypted cellphone communication. Note that
the data transmitted over radio would be vulnerable to eavesdropping if not for
encryption. The shared key is prearranged between the two parties. Since the key
is shared, this is known as symmetric encryption.

as a cryptographic primitive. From the cipher, we could build more sophisticated
constructs; for instance, we might create a scheme to ensure a message has not been
tampered with in transit.

Of particular interest are constructions that are provably secure contingent on
the assumption that the underlying primitive is secure. For example, we might
prove that our cipher is secure under the assumption that the primitive we built it
on—say, a RNG—is secure. Such a scheme is also called conditionally secure, since it
is secure under the condition that the primitive is secure [Gol00].

We may divide real-world cryptography into roughly two areas [KL07]. First is
mathematical cryptography: this area tends to rely on assumptions from various
areas of mathematics, most notably number theory, to build its primitives. Construc-
tions from the realm of mathematical cryptography are almost always conditionally
secure, but they usually suffer from being very slow to compute [Dei09]. We tend
to leverage mathematical cryptography when our requirements demand we have
some underlying mathematical structure for our scheme; for example, asymmetric
cryptography concerns itself with the notion of having two keys, public and private,
where public can only encrypt and private can only decrypt [KL07]. This structure
requires the use of mathematics, as far as modern-day cryptographers can ascertain.

On the other hand, we have the realm of ad hoc or heuristic cryptography. Here,
cryptographers often construct “higher-level” primitives directly instead of basing
them on some mathematical assumption. For instance, the widely-renowned block
cipher Rijndael [DR02], standardized by the National Institute of Standards and
Technology (NIST) in 2001 as the “Advanced Encryption Standard” (AES) [Nat01],
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is a primitive all its own. Our belief in the security of Rijndael/AES does not come
from some proof or mathematical structure; instead, cryptanalysts (those who study
cryptographic structures and attempt to break them) have studied AES extensively
and have not yet found any significant flaws.

Mathematics is still used heavily in heuristic cryptography; rather, the divide is
determined by what we use as a basis for security. In mathematical cryptography,
we use some mathematical problem (say, the discrete logarithm problem) as the
basis for security, by assuming it is intractable and then proving that, under that
assumption, the construction is secure. On the other hand, in heuristic cryptog-
raphy, we build some construction and let loose the cryptanalysts upon it. If the
construction survives, we have faith in its security.

1.2 Mathematical Preliminaries

1.2.1 Binary

In the real world, we use the decimal number system—under which our numbers
have “places” that are worth a certain power-of-ten values. For example, the “ones
place” is worth 100, the “tens place” is worth 101, the “hundreds place” is worth
102, and so on. So, a number like 1234 is equivalent to the sum 1 · 103 + 2 · 102 + 3 ·
101 + 4 · 100 or 1000 + 200 + 30 + 4. Thus, our decimal number system is called base
10, and numbers written in decimal are sometimes followed by a subscript 10 (for
example: 123410). Here, deci- means “ten.” Note that each base-10 digit may have a
value from 0 to 9.

Modern computers, on the other hand, rely on a base 2 number system. In this
number system, each place is worth a power of 2, not a power of 10 like in decimal.
Instead of each digit having a value between 0 and 9, each digit instead has a
value of 0 or 1. Thus, an example binary number is 102, which is equivalent to the
(decimal) sum 1 · 21 + 0 · 20. So, we have 102 = 210. That is, 10 in binary is two
in decimal.1 As another example, 10102 is equivalent to 23 + 21 = 8 + 2 = 10 in
decimal.

Each binary digit is called a bit. Thus, a bit is a single 0 or 1. A group of 8 bits
is called a byte, which is usually the smallest unit of information in modern-day
computing. Multiple bits are sometimes called a bit string or bit stream, and a bit

1This is the basis of the old joke: “There are 10 types of people in the world: those that understand
binary and those that don’t.”
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string with n bits is usually called an n-bit string. (For example, a byte may be
called an 8-bit string.)

Understanding binary is a fundamental prerequisite for working with modern-
day cryptography. Cryptography works exclusively with bits and bytes because
we (1) use computers to do cryptography and (2) are interested in the most efficient
implementations possible.

Character Encoding

All data ultimately is stored as a string of bits/bytes in a computer, so how is actual
text (like this document) stored? The answer is a character-encoding scheme. An
example character-encoding scheme, once widely used, is ASCII. In ASCII, the
capital letter ‘A’ is defined to be the same as decimal 65. That can be represented
in binary as 10000012. Other letters, punctuation, and so on have the same style of
definition. So long as everyone agrees on a standard character-encoding scheme,
everyone can read each others’ documents.

Since cryptography is concerned with bits, the details of character encoding are
not important. However, since cryptography is frequently used to protect textual
data, it is important to know that working with bits does not mean we cannot also
work with textual data.

Exclusive-or Operation

The exclusive-or (XOR) operation is used in virtually every symmetric encryption
scheme, and so it is represented by the special symbol ⊕. It is defined as:

⊕ 0 1
0 0 1
1 1 0

Table 1.1: Operation table for exclusive-or

So, the XOR operation returns 1 if the two inputs are different (e.g., 0⊕ 1 = 1)
and 0 if they are the same (e.g., 1⊕ 1 = 0).

To XOR two bit strings together, we simply XOR each corresponding pair of bits
individually, much like adding two numbers; see figure 1.2.

The XOR operation has two significant properties. First, a bit string XOR’d with
itself simply leads to all zeroes; see figure 1.3.
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1010
⊕ 1110

0100

Figure 1.2: Example of XOR operation with two bit strings

1010
⊕ 1010

0000

Figure 1.3: Example of XOR operation canceling

Likewise, if you XOR an all-zero bit string with any other bit string, you get the
original bit string; see figure 1.4.

0000
⊕ 1010

1010

Figure 1.4: Example of XOR operation identity element

These two properties may be written algebraically as x ⊕ x = 0 and x ⊕ 0 =

x. Since XOR is so frequently used in cryptography, it is critical that these two
properties be kept in mind.

1.2.2 Permutations

A permutation is a function that represents a “shuffling” of the elements in a set. To
illustrate what properties are required for a permutation, let us take a simplified
card deck {1, 2, 3, 4} that has no suits. A permutation is a simple re-ordering of this
set. Some possible permuted values are {4, 3, 2, 1}, {3, 1, 2, 4}, {1, 3, 2, 4}, and so on.
Elements cannot be missing from a permuted set: {1, 2, 3} is not a valid permuted
set. Elements also cannot be repeated.

A permutation is a function, however; {3, 1, 2, 4} is a set that was created by
running each element of the input set {1, 2, 3, 4} through a permutation. In this
case, if we call the permutation p, then we have

p(1) = 3, p(2) = 1, p(3) = 2, p(4) = 4

as the permutation. We can also permute the set {3, 1, 2, 4} by the same permutation
again to get {p(3), p(1), p(2), p(4)} = {2, 3, 1, 4}. And again on that set to arrive at
{1, 2, 3, 4}.
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Our above p is just one permutation. How many permutations does a set with n
elements have? For the first slot of the output, one may pick any of the n elements
to place there. However, the second slot cannot have the same element as the
first—that would be a repeated element—so one can only pick from the remaining
n− 1 elements. The third slot cannot have the same element as the first or second
slots, so one can only pick from the remaining n − 2 elements. This argument
continues until we get to the last slot available: at that slot, we have already chosen
an element for every other slot in the output, so there is a single element remaining.

Thus, the number of permutations for a set with n elements is:

n(n− 1)(n− 2)(n− 3) · · · (3)(2)(1) = n!

to be read “n factorial.” So, for our above set {1, 2, 3, 4} there are 4! = 4 · 3 · 2 · 1 = 24
possible permutations.

Consider the set of all possible n-bit strings. Each bit in the string has a value of
either 1 or 0, so there are 2n possible n-bit strings. For instance, there are 28 = 256
different 8-bit strings (bytes). Therefore, there are (28)! = 8.578177753 × 10506

different permutations on the set of 8-bit strings. As a preview of coming attractions,
we will be working with permutations of 128-bit strings, and (2128)! is quite a large
number.

1.2.3 Modular Arithmetic

Modular arithmetic is sometimes known as clock arithmetic. In a 12-hour clock, our
count looks like:

1, 2, 3, . . . , 11, 12, 1, 2, . . . , 11, 12, 1, 2, . . .

In other words, our count “rolls over” once it hits 13. Modular arithmetic captures
this notion mathematically. In this case, we would be operating modulo 12, except
that our count starts at zero instead of one:

0, 1, 2, 3, . . . , 10, 11, 0, 1, 2, 3, . . .

The two are equivalent. So, under this system, we would say that 13 is congruent to
1 modulo 12, because our count rolls over to 0 at 12. Notationally, we write this:

13 ≡ 1 (mod 12)

(The parentheses and their proceeding space are sometimes omitted, depending
on context.) Another way to view modular arithmetic is remainder upon division.
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When dividing 13 by 12, we have a remainder of 1. With this view, we can say
that 24 is congruent to 0 modulo 12 (24 ≡ 0 mod 12), or that 512 is congruent to 8
modulo 12 (512 ≡ 8 mod 12).

Naturally, mathematicians are not interested specifically in arithmetic modulo
12. Instead, we consider arithmetic modulo some arbitrary integer depending on
context—or in number theory, arithmetic modulo n. As a concrete example, modern
computers have fixed-width integers, typically 64 bits wide (they cannot have an
infinite number of bits, of course, so we have to stop somewhere). When a computer
adds two integers together, the resultant sum may actually be wider than 64 bits
(264 − 1 + 2 is, for example). This case is known as overflow, and typically the result
“wraps around” starting again at zero. This is actually modular arithmetic in action:
addition in a 64-bit architecture is done modulo 264.

Modular arithmetic is also used frequently in cryptography. Some areas of
cryptography use algebraic number theory to build and study constructions. Since
algebraic number theory has roots in modular arithmetic, modular arithmetic forms
the foundation of some very widely-used cryptosystems, like RSA and Diffie-
Hellman [KL07].

1.2.4 Cyclic Groups

I hesitate to devote much space to cyclic groups, given that they are an advanced
topic in abstract algebra, but the bare basics allow for simple one-way functions
later on.

In essence, a group is a set with an operation on it, like multiplication, that
fulfills some axiomatic definitions. A cyclic group is a group where there is a
generator element that “creates” the rest of the group. An example best illustrates
this notion (without getting too heavy into the theory).

Take the set of integers modulo 7 excluding 0: {1, 2, 3, 4, 5, 6}. In this set, we can
multiply two numbers together modulo 7; for example, 2 · 5 ≡ 3 mod 7. We can
also exponentiate numbers, such as 23 = 8 ≡ 1 mod 7. A generator is an element
where all the powers of that element make up the entire group. In the case of the
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integers modulo 7, the generator of the group is 3. Thus, we have:

30 ≡ 1 (mod 7)

31 ≡ 3 (mod 7)

32 ≡ 2 (mod 7)

33 ≡ 6 (mod 7)

34 ≡ 4 (mod 7)

35 ≡ 5 (mod 7)

Therefore the set of powers of 3 modulo 7 forms the set of integers modulo 7
precisely. Because such an element exists, the group of integers modulo 7 is defined
to be cyclic.

Another way to view this property would be: f (x) = 3x mod 7 is a permutation
on the integers modulo 7. Because of this property, 3 is called a generator of that
group. As it happens, all sets of integers modulo p where p is a prime number are
cyclic groups under multiplication, and so if we let g be the generator of that group,
the function f (x) = gx mod p is a permutation. (Note: g is not necessarily the same
for every p. The choice of p will affect the value of g.)

The precise mathematical details of cyclic groups are beyond the scope of this
thesis, and they do not much matter for the following content. For more information,
see [Hof+08].

1.2.5 Computational Feasibility

In algorithmic analysis, algorithms are measured in the number of operations or
steps needed to solve a particular problem. Modern-day cryptography does not use
any constructions that are secure in the presence of an adversary with unlimited
resources—though such constructions do exist, as we will see shortly. Instead, we
use algorithms that have computational security: they are secure against realistic
attackers with limited time and memory.

Formally speaking, encryption schemes have an adjustable security level—
usually raised and lowered by making the secret key longer or shorter. What
makes a construction secure is the asymptotic behavior of adversaries and valid
parties as the security level increases. That is, when the security level is low enough,
we anticipate the scheme being insecure, and we raise the security level (key length)
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to a level where it becomes computationally infeasible for an adversary to break
the encryption scheme.

Cobham’s thesis, a core assumption in computational complexity theory [AB09],
states that efficient algorithms are those that take polynomial time. In this case,
specifically, that means time polynomial in the security level. The goal of secure
encryption is having valid parties (those with the secret key) able to efficiently
use the encryption scheme while having invalid parties (adversaries) unable to
efficiently break the encryption scheme.

Thus, we say that a secure encryption scheme must require at most polynomial
time from valid parties, and it must require at least super-polynomial-time for
adversaries to break. As a concrete example, suppose our security level is x. An
encryption scheme might require x2 operations from a valid party and 2x operations
to break the scheme by an adversary. That scheme would be secure: as the security
level x increases, the adversary’s 2x algorithm blows up exponentially while the
valid parties’ algorithm increases merely quadratically. Because of the growth
difference, it costs adversaries dearly when we raise the security level, while the
cost to valid parties is next to nothing in comparison. We can keep raising the
security level to bankrupt adversaries far before us, even if they have significantly
more resources.

This means that if any polynomial-time algorithm exists to break the scheme,
it is considered insecure. So, if it takes an adversary x3 operations to break the
scheme, that means there exists an efficient (polynomial-time) algorithm to do so.
As such, that encryption scheme would be broken.

In this way, we limit ourselves to “realistic” adversaries, since only polynomial-
time algorithms are considered “realistic” (or feasible). That is the essence of
computational security.

1.2.6 Computational Indistinguishability

Computational indistinguishability is a core principle in theoretical cryptogra-
phy. Intuitively, computationally indistinguishable functions cannot be “distin-
guished” by an adversary in polynomial-time (that is, the best adversaries are
super-polynomial time). The formal definition of indistinguishability uses a security
game [KL07].

In the security game, we pick randomly between two functions and allow the
adversary to make polynomially-many queries to that function, receiving back the
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result of their queries. After they are finished with their queries, we allow them
polynomial time to do computation. Once that is over, the adversary must declare
which function we allowed access to.

If the adversary can determine the correct answer with odds non-negligibly
greater than 50%, then the two constructs are considered distinguishable (usually,
this means one of them is broken). Note that the adversary always has at least a
50% chance of guessing correctly, which is why the requirement is that they have a
non-negligibly greater than 50% chance [KL07].

As an example, there are many constructions in theoretical cryptography that
are supposed to be indistinguishable from random. What this means is that one of the
functions we might give the adversary access to is a real random object—something
that genuinely is random. The other is the construction whose security we are
trying to prove. From there, one might prove that the adversary cannot possibly
have non-negligibly greater than a 50% chance.

This is purely a theoretical definition. Genuinely-random constructions, as a
general rule, cannot be efficiently created by mere mortals, and so while we may
use in a theoretical sense to prove certain facts, we usually cannot “implement” our
security game.

1.3 Definition of Symmetric Encryption

It is somewhat difficult to precisely define encryption. An encryption cipher is
a function that takes two inputs: a plaintext and a key. The plaintext is raw, un-
protected data. The key is a secret value that is somehow used to “scramble” the
plaintext. The output of the cipher is known as the ciphertext—it is the scrambled
data that the attacker (hopefully) cannot read. Typically, the plaintext, key, and
ciphertext are all strings of bits. The cipher must also have a way to “reverse” the
scrambling, given the secret key—otherwise we would never be able to unscramble
the data, revealing what it said. (That is the entire point of encryption, of course. . . )

The difficulty arises when attempting to define secure encryption. Take the
ciphertext-only attack, where an attacker is given just the ciphertext output of a
cipher. Is the cipher secure if the attacker cannot recover the entire plaintext? No: it
may be that the attacker can learn quite a lot without recovering the entire plaintext,
such as (for example) all but a single digit of a social security number.

Instead, we want to formalize the notion that an attacker cannot learn anything
useful about the plaintext by looking at the ciphertext. The ciphertext should
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be a totally opaque string of bits. The standard way to do this is to create an
indistinguishability security game [KL07]. In this game, the attacker generates two
plaintexts of identical length (the attacker may make the content of the plaintexts
whatever they desire). The attacker gives both plaintexts to us. We pick one of
the plaintexts uniformly at random, encrypt it with a random secret key, and give
the attacker back the ciphertext. If the attacker can determine which plaintext was
encrypted with greater than 50% odds, then the cipher is considered broken [KL07].
(The attacker can always guess one or the other, so they always have a 50% chance.
The requirement states that they must have a chance non-negligibly greater than
50%.)

Why does this game capture the notion of not being able to learn anything
about the plaintext given a ciphertext? Consider an example: Suppose an attacker,
by looking at the ciphertext, can learn if the plaintext (which was in binary) was
even or odd. Then when creating the two plaintexts in the game, they would
make one which was even and the other which was odd. When they are given
back the ciphertext, they can determine if the plaintext was even or odd—and
thus distinguish which plaintext was encrypted. Therefore, that cipher would be
considered broken despite the fact that the attacker can only learn marginally useful
information.

In other words, secure encryption seeks to protect all information about the
plaintext from the attacker. Some information that leaks may not actually impact
the security of an application; for example, in the above even-odd case, bank
transactions would be mostly unaffected (who cares if an attacker can learn if you
deposited an even or odd amount of money into your account). Nonetheless, the
point is that, ahead of time, cryptographers cannot be sure what information leaks
actually matter: we’d rather be safe and protect everything.

1.4 The One-Time Pad

The one-time pad is a special encryption scheme. It has the property of being
unconditionally secure (or information-theoretically) secure—that is, the one-time pad
is provably secure [KL07].

In the one-time pad, the input plaintext p is a string of bits. The key k is a
uniformly, truly random string of bits that is equal in length to the plaintext—and
the key cannot ever be re-used (it is one-time). Then the ciphertext is simply p⊕ k.
That is, figure 1.2 could also be an example of the one-time pad with 1010 as the
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plaintext and 1110 as the key. Given a ciphertext c = p ⊕ k and the key k, we
can compute c⊕ k = p⊕ k ⊕ k = p⊕ 0 = p to recover the plaintext. Thus, our
encryption scheme works.

Why is the one-time pad secure? Assuming that the key is never re-used, an
attacker simply does not have enough information to determine potential plaintexts
from the ciphertext. Given a ciphertext c, an attacker can find a key k for any
possible plaintext p. That is, all plaintexts are equally likely to be correct. Even if an
attacker enumerates through all possible keys, they cannot determine what putative
plaintext “looks” correct—this is sometimes called perfect secrecy. This property is
possible because the key is exactly the same length as the plaintext and is uniformly,
truly randomly chosen. For a more detailed explanation, refer to any standard text
such as [KL07].

1.4.1 Limitations of the One-Time Pad

Historically, three limitations are identified for the one-time pad. First, the key
must be precisely the same length as the plaintext. However, since both parties in
communication need the key, how does one distribute the key? If we have some
secure channel by which we can communicate the key, why not just communicate
the message instead? However, this limitation applies to all symmetric encryption
schemes.

Second, since the key must be as long as the plaintext and must never be re-
used, a large amount of keying material is needed, so if messages are exchanged
frequently, large keys must be pre-arranged frequently. For every bit that is securely
sent, there must be a key bit. This ties into the third issue: how does one generate
so many truly-random bits? In general, generating truly random data quickly is
difficult, especially on resource-limited platforms like smartphones.

These limitations are all direct results of the key length being equal to the
plaintext length. Claude Shannon proved that this condition must be met to have
unconditionally-secure encryption [Sha49], so no better solution exists for uncondi-
tional security. Unfortunately, the limitations of the one-time pad make it impracti-
cal for daily widespread use. However, supposedly, communication between the
US and Russian presidents was once secured by a one-time pad [MVO96].
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1.5 Realistic Symmetric Ciphers

Since unconditional security is impractical, we turn toward computational security.
With computational security, we abandon the notion of an unlimited attacker and
instead consider a much more realistic model: limited attackers—ones that are
restricted to polynomial time.

Two types of symmetric ciphers are used frequently. The first is known as a
stream cipher. Stream ciphers seek to take a small input key (256 bits or so) and
“expand” that key into a long, pseudorandom string that is then XOR’d with the
plaintext string [MVO96]. This is directly inspired by the one-time pad, but since
the pseudorandom string is not truly random, it does not qualify as a one-time pad,
and thus is not unconditionally secure.

Block ciphers are the second commonly used symmetric cipher. A block cipher
takes an input key k and a block of input bits b bits wide and outputs a ciphertext
block that is b bits wide. A block cipher is actually a family of permutations on the
set of b-bit strings. (How one applies a block cipher to multiple blocks of text is a
tricky matter; see block cipher modes of operation in [KL07] for more information.)

In the modern day, the line between stream ciphers and block ciphers is very
blurred: stream ciphers have block-cipher-like properties while block ciphers are
frequently used in modes of operation that turn them into a stream cipher. Whether
to use a stream cipher versus a block cipher mostly depends on the precise hardware
characteristics of the machine the cipher will be running on, how “modern” a
cryptographer wants their cipher to be, and if any security certifications are required
(e.g., one of the few ciphers certified for working with United States TOP SECRET
data is AES [DR02], which we will study in chapter 3).

In this thesis, we will focus on a discussion of conditionally-secure constructions
of ciphers (chapter 2) versus heuristic constructions of ciphers (chapter 3). A formal
comparison of their efficiency, security, and availability can be found in chapter 4.
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Chapter 2

Conditionally-Secure Constructions

Conditionally-secure constructions are those which have a concise, well-stated
mathematical assumption by which their security is proven. They are so-called
because, on the condition that the assumption is true, the construction is secure.

Such constructions are often-used in asymmetric cryptography. In asymmetric
cryptography, we consider two different keys that are mathematically related: usu-
ally one of these is called the public key and the other the private key [KL07]. An
example is a protocol known as Diffie-Hellman Key Exchange, invented by Whit-
field Diffie, Martin Hellman, and Ralph Merkle in 1976 [Sin99]. Diffie-Hellman key
exchange uses the assumption that given gx mod p and gy mod p, it is computation-
ally infeasible to find gxy mod p—this assumption is known as the Diffie-Hellman
problem [Hof+08], for obvious reasons.

However, conditionally-secure schemes can be created for symmetric cryptogra-
phy as well, by introducing one-way functions [Gol00]. The theoretical implications
of this fact are huge: as Katz and Lindell say, “the existence of one-way functions is
equivalent to the existence of all (non-trivial) [symmetric] cryptography. This is one of
the major contributions of modern cryptography” [KL07] (emphasis theirs).

In this chapter, we describe one-way functions and show how a candidate
one-way function can be used to construct a stream cipher and a block cipher.

2.1 One-way Functions

A one-way function f is a function that is easy to compute but difficult to invert.
Formally, given x, f (x) may be computed in polynomial time; on the other hand,
given f (x), an x′ such that f (x) = f (x′) cannot be found in polynomial time (with
non-negligible probability) [KL07]. See figure 2.1.
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x f (x)

easy

hard

Figure 2.1: Diagram showing the difficulty of computing one value given another
in the context of a one-way function f . To underscore this picture’s importance, it is
on the cover of [Gol00].

We do not know if any one-way functions exist [KL07]. Proving that they exist
would be a massive breakthrough in computational complexity theory. For context,
consider the famous P ?

= NP problem. It is one of the seven illustrious Millennium
Prize Problems, each of which has a $1 million prize from the Clay Mathematics
Institute (CMI) for its solution; as the CMI says: “The Prizes were conceived
to record some of the most difficult problems with which mathematicians were
grappling at the turn of the second millennium” [Ins00]. Only a single Millennium
Prize Problem has been solved—and that was not P ?

= NP . So, the P ?
= NP

problem is extraordinarily difficult. Yet despite the difficulty of the P ?
= NP

problem, proving that P 6= NP would still be insufficient to prove that one-way
functions exist [KL07]. Thus, if one of the most difficult problems in computer
science is strictly weaker than a proof of one-way functions, we truly have little
hope of a proof in the near future.

With this in mind, we must instead consider candidate one-way functions. Fortu-
nately, cryptographers have many candidates. Given a prime p and a generator g
of the multiplicative group of integers modulo p, the function f (x) = gx (mod p)
is conjectured to be a one-way function [KL07]—and at that, also a permutation.
For our purposes, this candidate one-way permutation will do nicely, but others
exist; see [Gol00; KL07] for others. (As a general rule, one may construct candidate
one-way functions from practically every popular mathematical discipline, so there
are many candidates.)

If we assume our above f is a one-way function, then as per [Gol00; KL07], we
may construct the whole of symmetric cryptography using f , and moreover, those
constructions will be conditionally secure. As mentioned previously, we will use f
to construct a stream cipher and a block cipher.
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2.2 Constructing a Stream Cipher

Before constructing the stream cipher, we must understand two more concepts—the
hard-core predicate and the pseudorandom generator.

2.2.1 Hard-core Predicates

With a one-way function f , if we are given an f (x), it is hard to find an x′ such that
f (x′) = f (x). Does that mean f conceals all information about x? Absolutely not.
For example, let g be a one-way function. Then let h(x) = (g(x), p(x)) where

p(x) =

0 if x is even

1 if x is odd

This h is also a one-way function—yet it very clearly leaks information about x,
namely whether x is even or odd.

A hard-core predicate is a single-bit-function (like p above) that captures the
information “hidden” by f . Formally speaking, a predicate b(x) is a hard-core
predicate of a one-way function f if any adversary given f (x) for some random x
cannot compute b(x) with probability non-negligibly greater than 1/2 in polyno-
mial time [Gol00]. See figure 2.2 for a visual explanation.

x f (x)

hc(x)

easy

easy hard

Figure 2.2: Diagram showing the difficulty of computing certain values relative to
another in the context of a one-way function f with a hard-core predicate hc(x).

As a general rule, intuitive guesses at what might be a hard-core predicate for
a given one-way function tend to be wrong [KL07]. However, we can prove that
hard-core predicates for any one-way function exist [Gol00], and we know several
“specialized” hard-core predicates for common number-theoretic problems [Gol00].
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For our one-way function case study, f (x) = gx mod p, we have

hc(x) =

0 x ≤ p/2

1 x > p/2

as a simple, provable hard-core predicate [Gol00]. Thus, we can say that f hides
whether the original x was greater than or less than half the prime we’re using—or
at least, it does if f is a one-way function.

2.2.2 Pseudorandom Generators

A pseudorandom generator (PRG) seeks to take an input and expand that input with
bits that are indistinguishable from random (in polynomial time and so forth). A
PRG has an expansion factor `(n). This function represents how much the PRG will
expand the input. For example, a PRG with expansion factor `(n) = n + 1 will add
a single pseudorandom bit to the input. On the other hand, `(n) = 2n will double
its input.

With a PRG, we are building toward a stream cipher. Recall that a stream
cipher takes a small key and expands that key, somehow, into a stream that is
indistinguishable from random—thereby using the same security argument as
the one-time pad. The difference between a generic PRG and a stream cipher
is that a stream cipher is supposed to be able to generate an unbounded length
pseudorandom stream, whereas a PRG has a specific expansion factor.

Given a one-way permutation f , we may easily construct a provably-secure
pseudorandom generator [KL07]. The standard construction, as given in [KL07], is
given a uniformly randomly distributed n-bit string s, consider

G(s) = f (s)||hc(s)

where f is a one-way permutation and hc is a hard-core predicate for f . (Here, the
vertical bars || mean concatenation, i.e., simply “gluing” the two functions together
as bit strings.)

The intuitive explanation for the security of this construction, again given
in [KL07], is:

[Note] first that the initial n bits of the output of G(s) (i.e., the bits of
f (s)) are truly uniformly distributed when s is uniformly distributed,
by virtue of the fact that f is a permutation. Next, the fact that hc is
a hard-core predicate of f means that hc(s) “looks random”—i.e., is
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pseudorandom—even given f (s) (assuming again that s is uniform).
Putting these observations together, we see that the entire output of G is
pseudorandom.

Note that our G(s) has an output length of n+ 1 but an input length of n. This means
we have created a pseudorandom generator with expansion factor `(n) = n + 1.
This construction may also be formally proven secure, assuming that f is a one-way
permutation, of course; see [Gol00].

With this G, we already have the means by which to securely encrypt n + 1
bits given an n-bit key: let Enck(x) = G(k)⊕ x where k is n− 1 bits wide and x
is n bits wide. This Enc is a fixed-length stream cipher—one that is conditionally
secure—that can encrypt n + 1 bits given an n-bit key. However, the overhead of
using this method to encrypt n + 1 bits is exorbitant: it would be better to generate
an extra bit and use a one-time pad instead. Nonetheless, this G will serve as the
basis for PRGs with an arbitrary-length expansion factor.

To expand `(n) to an arbitrary polynomial-length expansion factor, we use
a fixed beginning seed value that is uniformly random. We run that seed value
through a PRG G with expansion factor `(n) = n + 1. For every round, we take the
extra bit and emit it as a pseudorandom bit, then we take the seed from that round
as the seed for the next round. At the end of the rounds, we have emitted n bits
plus the width of the last round’s seed, thereby creating a PRG with an arbitrary
expansion factor. See figure 2.3 for a visual explanation.

2.2.3 The Stream Cipher

Armed with this algorithm, we can create an arbitrary-length stream cipher. To
encrypt a plaintext w-bit string p, we first select a uniformly random key k. This k
will be the initial seed for the pseudorandom generator. We continually make calls
to our expansion factor `(n) = n + 1 pseudorandom generator to build up a w-bit
pseudorandom stream1. Then we encrypt the plaintext by computing p⊕ Gw(k),
where Gw(k) represents the w-bit output stream of the arbitrary expansion factor
PRG G. So long as Gw(k) is indistinguishable from random, this has the same
security guarantees as the one-time pad, yet with a much smaller key. A proof of
the algorithm’s security under the assumption that f is a one-way permutation can
be found in [KL07].

1When used for encryption, a PRG’s output stream is sometimes called a keystream.
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s0 G s1

e1

G s2

e2

G · · · sn

en

Figure 2.3: Diagram showing how one can create an arbitrarily-long expansion
factor for a pseudorandom generator using a pseudorandom generator G with
expansion factor `(n). In this case, for each extra bit ei that we create, we have
another evaluation of the original G. In each round, the seed for that round is used
as the seed for the next round’s computation. Algorithm and figure were inspired
by a combination of [Gol00; KL07].

While that security guarantee is predicated on the assumption that we have
a one-way function f , because we have candidate one-way functions that are as
yet unbroken, this is still a potentially useful construction—certainly so from a
theoretical standpoint. Another useful consequence of studying pseudorandom
generators is that they are the theoretical model for real world stream ciphers; by
studying PRGs, we can provide formal security definitions and analyses for stream
ciphers.

Goldwater takes a broader view of PRGs in [Gol00]: many cryptographic appli-
cations require high-quality randomness, but high-quality randomness is computa-
tionally expensive to generate. In any case that requires such randomness, we may
instead “amplify” a small amount of randomness into a large, indistinguishable-
from-random stream of randomness without any thought for the consequences
(since the scheme is conditionally secure)!

Unfortunately, this scheme is not without its costs. Since G(s) = f (s)||hc(s), if
we want an expansion factor of `(n) = n + m, we must evaluate both the one-way
permutation and the hard-core predicate m times (see figure 2.3); this evaluation is,
as a typical rule, not cheap. Even for a relatively simple one-way permutation like
f (x) = gx mod p, generating m extra bits requires m modular exponentiations and
m comparisons. Modular exponentiation can be done in O(log e) time (where e is
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the exponent), which is not too bad, but this will still not compare favorably to a
real-world stream cipher—as we will see in chapter 4.

2.3 Constructing a Block Cipher

To create a block cipher, we can use the constructs described in section 2.2, Con-
structing a Stream Cipher. Specifically, using a one-way function f and a PRG G, it
is possible to construct a conditionally-secure block cipher. To do this, we need two
more constructions—a pseudorandom function and a pseudorandom permutation.

2.3.1 Pseudorandom Functions

Pseudorandom functions are motivated by the stream nature of a pseudorandom
generator’s output. Imagine a system encrypted an entire hard-disk drive with a
pseudorandom generator as a stream cipher. In a non-encrypted scenario, if the
system wishes to retrieve a file that is stored 75% of the way through the disk, the
system may merely request that the disk seek to that location, read the sector, and
return it. Crucially, however, in the case of a pseudorandom generator, the system
cannot decrypt that sector in disk without computing the portion of the keystream
that was used to encrypt that sector because each bit of the keystream depends on
the bits that came before it. That is, the system may be forced to compute nearly the
entire keystream to access data near the end of the ciphertext.

This situation is obviously non-optimal: it transforms a medium that can seek
to other locations with relative quickness (a hard-disk drive) into a medium that
is now forced to sequentially seek. One might as well use a cassette tape. Even
worse, the advantages of expensive truly random-access media like solid-state
drives would be eliminated. This is too high a cost for encryption.

Pseudorandom functions are essentially an efficient way to index the keystream
produced by a pseudorandom generator. Instead of being forced to generate the
entire keystream to read off blocks near the end, a pseudorandom function allows
the system to directly compute portions of the keystream near the end—or at least,
it makes doing so much more efficient than it would be otherwise.

With that motivation, we may define a pseudorandom function. A pseudoran-
dom function Fk is a fixed-length input, fixed-length output keyed function that is
indistinguishable from a truly random function. (A PRF cannot be used without
a key, which is why we notationally write Fk instead of F.) We may implement
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a PRF by creating a way to efficiently index the output from a PRG—although
the definition does not require such an implementation, as a PRF is meant to be a
concept of its own.

In section 2.2.2, we explained a method by which we can have an arbitrary-
expansion-factor PRG. To build a PRF, we will consider a PRG with expansion
factor `(n) = 2n, which still fits the polynomial expansion factor requirement from
section 2.2.2. Let this PRG be called G. This G will double the input received. Our
PRF will accept n bits of input and output n bits as well.

First, split the PRG’s output into two blocks:

G2n(s) = H0(s)||H1(s)

where again ||means concatenation and H0(s) and H1(s) are the same length. Since
`(n) = 2n, the length of both H0(s) and H1(s) must be n. As an example, if s = 110
and G2n(s) = 101011, then we have

101011︸ ︷︷ ︸
G2n(s)

= 101︸︷︷︸
H0(s)

011︸︷︷︸
H1(s)

Next, consider the input s in binary. Each bit will be either a 0 or 1, as usual. We
may use this—along with our split-in-half G2n(s)—to construct a binary tree. At
the root of our binary tree will be our key k: see figure 2.4.

k

H0(k)

H0(s0)

H0(s00) H1(s00)

H1(s0)

H0(s10) H1(s10)

H1(k)

H0(s1)

H0(s01) H1(s01)

H1(s1)

H0(s11) H1(s11)

Figure 2.4: This diagram represents the construction of an n-bit indistinguishable-
from-random string given a random key k and an input. At each junction of the
tree, we use a bit from the input to decide whether to go left or right. Each node of
the tree is computed from that node’s parent. An example input might be 011, in
which case we would have the result H0(H1(H1(k))). Figure inspired by [Gol00;
KL07].

In the case of disk or file encryption, this scheme allows us to compute blocks
of the keystream with only n evaluations of G. Recall that each extra bit of output
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from a PRG, using our construction, requires another evaluation of the underlying
one-way permutation. So, we have n evaluations of the underlying one-way per-
mutation each time G is evaluated, and n evaluations of G for every evaluation of
Fk, our PRF. So, evaluating Fk on an input takes n2 evaluations of the underlying
one-way permutation, where n is the bit length of the input/output.

We may use this PRF to implement a “seekable” stream cipher, as above. How-
ever, we have another option: We may also use the PRF to implement a pseudoran-
dom permutation, which is the theoretical model of a block cipher.

2.3.2 Pseudorandom Permutations

A pseudorandom permutation (PRP) is the theoretical model of a block cipher. It
acts identically to a pseudorandom function except that it is also a permutation,
and a PRP can be built out of a PRF relatively simply.

Pseudorandom permutations are useful because they are a flexible construc-
tion, specifically because they may easily be used to build other more complex
constructions. For example, cryptographic hash functions (while not covered here)
are widely used in the industry. One method of building a cryptographic hash
function is the Merkle-Damgård construction [KL07], which requires the use of a
one-way compression function. A pseudorandom permutation (or block cipher) can
be transformed into a one-way compression function in many different ways, with
the most popular being the Davies-Meyer, Matyas-Meyer-Oseas, and Miyaguchi-
Preneel constructions [DR02; MVO96], all of which are provably secure under the
assumption that the block cipher is ideal [MVO96]. This is but one example of the
utility of a block cipher.

To construct a pseudorandom permutation from a pseudorandom function
Fk, we use a three-round Feistel network [KL07], as demonstrated in figure 2.5.
Unfortunately, the proof of the Feistel network’s correctness is beyond the scope of
this thesis; it may be found in either [Gol00; KL07].

2.3.3 The Block Cipher

Given a pseudorandom permutation P, we may define a block cipher as Pk(x). This
will take a uniformly random key and an input plaintext block and return an output
ciphertext block. Using Pk(x) to directly encrypt text is actually ill-advised: how one
handles plaintexts consisting of multiple (possibly incomplete) blocks is a matter
left unsolved, and careful thought must be given to such a scenario. See [KL07] for
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L3 R3

Figure 2.5: Diagram showing use of a Feistel network to construct a pseudorandom
permutation from a pseudorandom function. We split the original input into two
halves, run the right half through the PRF, XOR the result with the left half, swap
the halves, and repeat. Figured inspired by [KL07].

a discussion of block cipher modes of operation and padding schemes, which are
required to safely encrypt data using a block cipher.

Notice that we evaluate the pseudorandom function Fk three times in the above
scheme. Recall that in section 2.3.1, we derived that evaluating Fk takes n2 eval-
uations of the underlying one-way function. In the case of a PRP, we evaluate Fk

three times, so we have 3n2 evaluations of the underlying one-way function for
each evaluation of Pk.
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Chapter 3

Heuristic Constructions

Heuristic constructions are those that cryptographers build directly without using a
compact mathematical assumption (like some f being a one-way function). Instead,
as an example, one might assume that an ad hoc function they build is itself a
pseudorandom function, and then from there use that PRF in a Feistel network to
build a PRP. Alternately, no assumption may be made at all, and the construction is
considered secure simply because no cryptanalysts have been able to break it yet.

Heuristic constructions have many advantages, but primarily, they are faster
than the conditionally-secure constructions we presented in chapter 2. In this
chapter, we will present a brief overview of some common heuristic constructions
so as to demonstrate their nature, mostly by selectively quoting the authoritative
works for each construction.

3.1 Salsa20

Salsa20 is a state-of-the-art stream cipher designed by Daniel Bernstein; detailed
information may be found in its design paper, [Ber08b]. No one summarizes the
algorithm better than Bernstein himself in [Ber08b]:

Salsa20 expands a 256-bit key and a 64-bit nonce (unique message num-
ber) into a 270-byte stream. It encrypts a b-byte plaintext by xor’ing the
plaintext with the first b bytes of the stream and discarding the rest of
the stream. It decrypts a b-byte ciphertext by xor’ing the ciphertext with
the first b-bytes of the stream.

There is no feedback from the plaintext or ciphertext into the stream.
Salsa20 generates the stream in 64-byte (512-bit) blocks. Each block is an
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independent hash of the key, the nonce, and a 64-bit block number; there
is no chaining from one block to the next. The Salsa20 output stream
can therefore be accessed randomly, and any number of blocks can be
computed in parallel.

This summary serves as the first real introduction into the world of “concrete”
cryptography in this thesis. One may see that seeking in PRGs is already addressed
by Bernstein. Note how many bytes can be safely generated by use of a single
256-bit key: 270 bytes—one full zebibyte! This is not far off from being able to
encrypt all human data on Earth.

Salsa20 has no underlying security assumption. Rather, Daniel Bernstein is a
well-known cryptographer, and so if he builds a construction that he himself cannot
break, that is a good indication that it is probably secure—this is enough to generate
the initial interest in the scheme. From there, other well-known cryptanalysts
attempt to break the cipher. If they do not succeed in creating even semi-practical
attacks, then the construction is considered secure. That is the case with Salsa20.

We will present a brief taste of Salsa20, but not a full algorithmic description.
Salsa20 has a 4× 4 matrix of internal state, where each element in the matrix is 4
bytes in size, for a total state size of 43 = 64 bytes. The initial matrix state is built
from the key, nonce, block counter, and a few constants. Next, a series of rounds
are executed using the state matrix. Salsa20’s round primitive is the function

b := b⊕ ((a� c)≪ k))

where ⊕ is the XOR operation, � is addition modulo 232, and≪ is a left rotation.
Here, k is not a key, but rather a round-specific constant (hard-coded into the
algorithm itself). This round primitive is used to update 8 elements of the state
matrix every round; those 8 elements form a diagonal pattern in the state matrix.
In particular, the b element has its value XOR’d with the modular addition of two
other elements a and c after left-rotation by a constant k.

This process of updating 8 different elements is repeated 20 times, and then the
original state matrix is added to the final post-round matrix. This forms a 64-byte
block.

As one can see, a heuristic primitive like Salsa20 has a much less clearly un-
derstood mathematical structure than something akin to the PRG construction we
saw back in section 2.2.2. Yet despite this, every element of Salsa20’s design was
carefully considered, even down to the specific rotation constants in the round
primitive, by Bernstein.
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In 2008, Bernstein published called ChaCha20 [Ber08a]. In ChaCha20, Bernstein
changes the round primitive to

b := (b⊕ (a� c))≪ k

in an attempt to increase bit-diffusion and re-defines the ordering of the state matrix
bytes in an attempt to thwart trail-width analysis. As one can see, in heuristic
constructions, there is much less emphasis on proofs of security and much more
emphasis on addressing real-world cryptanalytic techniques.

3.2 Data Encryption Standard

The Data Encryption Standard (DES) is a block cipher developed and standardized
in the 1970s by IBM and the NIST (at the time, known as the National Bureau
of Standards) [KL07]. It is widely known as being the first high-grade cipher
completely available to the public [MVO96].

DES has many interesting facets to discuss and is of great historical significance.
First of all, DES only has a 56-bit key, which is far too small for modern-day use.
Some believe that at the time of its design, its key size was intentionally reduced
by the National Security Agency (NSA) from 64 bits to 56 bits to enable easier
attacks [KL07; MVO96].

DES is a Feistel network, as discussed in section 2.3.2. However, DES is a 16-
round Feistel network instead of a 3-round (like the theoretically perfect PRP). DES’s
core function, built much the same way as Salsa20 (heuristically) and demonstrated
in figure 3.1, is simply assumed to be a pseudorandom function. As it turns out,
this assumption is not very good: we can pretty easily distinguish the core function
f from random, and there are (albeit theoretical) weaknesses in DES because of the
core function’s weaknesses.

In DES, in each round of the Feistel structure, a different round subkey is used.
These round subkeys are generated by an algorithm known as the key schedule for
DES. A secure key schedule is another key component in creating a cipher to stand
the test of time, as an insecure key schedule may lead to loss of security if not all
bits of the key are fully utilized. DES’s key schedule is demonstrated in figure 3.2.

In the core function, eight sets of 6-bits go through a substitution step in which
they are each replaced with 4-bits via a lookup table. This lookup table contains
what are known as S-boxes (demonstrated as the boxes containing si in figure 3.1),
which map 6-bit strings to 4-bits; they form the core of the security for DES, since
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48-bits

Expansion

32-bit input 48-bit sub-key

48-bits (8×6-bits)

32-bits (8×4-bits)

Permutation

s1 s2 s3 s4 s5 s6 s7 s8

Figure 3.1: Diagram demonstrating the core function for DES, sometimes known
as the DES mangler function. This function is assumed to be a pseudorandom
function and is used as the PRF in a 16-round Feistel network.

56-bit master key

28-bit 28-bit

L-Shift L-Shift

L PC R PC

48-bit sub-key

Figure 3.2: Diagram showing the key schedule of DES. The Left Permuted Choice
and Right Permuted Choice boxes indicate the selection of particular bits from the
input to those boxes; 24 bits of each 28 bit key-half are selected in any given round.
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without the S-boxes, DES would be trivially breakable. Those S-boxes are hard-
coded into the algorithm design.

The S-boxes have two historically interesting properties. First of all, when
differential cryptanalysis was discovered by the general public in the early 1990s,
researchers found that DES (designed in the 1970s) was already resistant to it [KL07].
This led to speculation that IBM had independently discovered differential crypt-
analysis before the general public and had kept its existence secret. IBM researchers
later admitted that this was the case [KL07].

Secondly, the NSA made unexplained changes to the S-boxes before DES was re-
leased to the general public. At the time, cryptographers were concerned that these
unexplained changes might negatively affect the strength of DES. As it happens,
however, the NSA’s S-box changes ended up improving DES’s resistance to linear
cryptanalysis, which was discovered in the mid-1990s [KL07].

DES has also received far-and-away the most scrutiny of any cipher—ever.
Despite that scrutiny, in practice, the most realistic attack on DES is still a brute-
force enumeration of all possible 256 keys [KL07]. Thus, DES is an extraordinarily
well-designed block cipher, though it has been superseded in practice thanks to the
small key size. There are methods by which one may extend the key length of DES
(by using multiple invocations of DES cascaded on one another, like Triple DES),
but these methods suffer from extreme slowness.

3.3 Advanced Encryption Standard

The Advanced Encryption Standard (AES) is the replacement for DES; it was
standardized in 2001 by the NIST. A detailed design justification can be found
in the book written by its creators, John Daemen and Vincent Rijmen, The Design
of Rijndael [DR02]. AES was selected out of many candidate block ciphers in a
competition held by the NIST; its original name was Rijndael, a play on the name
of the two authors.

AES accepts three different key sizes (128, 192, and 256 bits) and has a block size
of 128 bits. Depending on the key size, the cipher has a different number of rounds:
for 128 bits, there are 10 rounds; for 192 bits, there are 12; for 256 bits, there are 14.
Let the number of rounds be called Nr in the spirit of [DR02]. Like Salsa20, there
is a 4× 4 state matrix that is used in each round; this matrix is initialized with the
input to the cipher (the plaintext), which is 128 bits or 16 bytes.

Then the AES algorithm is comprised of the following four steps:
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(1) Key expansion: We create Nr + 1 round-specific keys from the master key
using an algorithm known as the key schedule. Call each round specific key Ki,
so we have K0, K1, . . . , KNr .

(2) Add round key: We XOR the first round-specific key K0 with the state matrix,
byte by byte. When XORing a derived key with the state, we are using
portions of the master key to directly provide security for the cipher.

(3) Rounds: We perform Nr − 1 rounds on the state matrix with each round using
a separate round-specific key (K1 through KNr−1). Each round does four steps:

(1) SubBytes: We use a set of nonlinear S-boxes, hard-coded into the algo-
rithm, to substitute each byte for another byte in the state. This step is
similar to DES’s S-boxes.

(2) ShiftRows: We shift each row by a fixed amount of spaces per round
to help bytes “move about” in the state. These fixed amounts are
hard-coded into the algorithm, much like the fixed-amount rotations
in Salsa20.

(3) MixColumns: We multiply each column of the state matrix with a fixed
matrix in order to mix the column’s data. This promotes diffusion of the
bits in the state matrix.

(4) AddRoundKey: We XOR the bytes of Ki with the bytes of the state matrix,
introducing actual security into the cipher.

(4) Final round: We perform the final round with KNr . The final round is the same
as the above rounds, but omits the MixColumns step.

This description is essentially a high-level distillation of the content presented
in [DR02]. As with the other heuristic constructions we have seen, each component
of the cipher has careful design justification, but at no point is the cipher actually
proven secure relative to some compact assumption.

AES is considered to be the ultimate choice of block cipher at the present time. It
has received (as of the time of this writing) 16 years of scrutiny by cryptographers;
the only attack that affects the security of AES is so inconsequential that AES is
practically untouched at this point. There are no indications that AES will be broken
any time soon [KL07].
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3.4 Security of Heuristic Constructions

As said above, at no point is a heuristic construction ever proven secure with some
simple assumption. Some heuristic constructions, like DES, make the assumption
that a core function is one of the “perfect” theoretical constructs like a PRF, and
then prove their security based on that—but that assumption is large and difficult
to test in the design phase.

Instead, heuristic constructions are considered secure by the cryptanalytic results
borne out by cryptanalysts. This is a much more practical view of security: no
theoretical proof is necessarily needed so long as there is no one who is capable
of breaking the construction. Because of this, our confidence in a construction is
directly correlated with the amount of scrutiny it has received. Thus, the “gold
standard” constructions have received intense focus from cryptanalysts over an
extremely long period of time. The easiest example of a gold standard is AES.

In recent years, the cryptographic community has grown fond of competitions.
These competitions usually seek to standardize one or perhaps a few excellent
constructions for a particular purpose. For example, the Advanced Encryption
Standard competition from 1997 through 2001 by the NIST sought to standardize
one fantastic block cipher [DR02]. The AES competition received fifteen different
candidate block ciphers, and over the course of several years, each of those can-
didates was subjected to intense study. As put in [KL07], this competition was
ingenious because all of the best cryptographers were submitting candidates—and
so those cryptographers had a vested interest in finding even the smallest flaws in
every other candidate.

At the end of the AES competition, there were five remaining finalists: Rijndael,
Serpent, Twofish, RC6, and Mars, with cryptographers resoundingly preferring
Rijndael over the others (per a poll) [DR02]. And the rest is history—NIST selected
Rijndael as the AES.

Emboldened by the success enjoyed by the AES competition, cryptographers
have sought to recreate the conditions of this competition. In 2004, the European
Network of Excellence for Cryptology (ECRYPT) launched the eSTREAM compe-
tition, which sought to create two “portfolios” of stream ciphers (one for use in
software, the other in hardware) [Exc12]. After four years and multiple phases of
testing, eight stream ciphers were selected—four for each portfolio. One of those
stream ciphers was Salsa20.

Yet another competition was held in 2007 by the NIST to select a new crypto-
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graphic hash function to be the Secure Hash Algorithm 3 (SHA-3). This competition
ran for five years, had sixty-four entries, and three rounds of testing/analysis. At
the competition’s conclusion, an entry known as Keccak (pronounced “ketch-ack”)
was selected as SHA-3 [ST12].

There are currently two widely-known cryptographic competitions ongoing.
One is the Password Hashing Competition [Org13], which will select one or more
password hashing schemes sometime in the second quarter of 2015. The other is
CAESAR [Ber15], which will tentatively select a portfolio of authenticated ciphers
in 2017.

With these competitions in mind, one can see how the security of most heuristic
constructions is judged: against many other competitors. Competitions also have
the benefit of ruling out candidates that, while secure, are suboptimal in some other
way—for example, some AES candidates were ruled out because they had the same
security level as one of the finalists but were merely less efficient [DR02].
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Chapter 4

Comparison of Heuristic and
Conditionally-Secure Constructions

With both heuristic and conditionally-secure constructions explored and explained,
we may finally turn toward their comparison.

4.1 Efficiency

One area where heuristic constructions handily dominate conditionally-secure
constructions is efficiency.

Let’s take Diffie-Hellman key exchange, which uses the familiar candidate
one-way permutation

f (x) = gx (mod p).

In Diffie-Hellman key exchange, when computing a shared secret, three values are
computed: gx mod p, gy mod p, and gxy mod p. ECRYPT runs a public domain
cryptographic benchmarking suite, which includes a suite for public-key cryp-
tography [ECR15a]. In this suite, on the Titan supercomputer, the median CPU
clock cycles required per shared secret computation for the sclaus2048 primitive1

is 1, 147, 528 cycles. This means that each modular exponentiation (i.e., each evalua-
tion of f (x) = gx mod p for a realistic p) takes roughly 1, 147, 528/3 ≈ 380, 000 CPU
clock cycles.

Recall from section 2.3.2 that each evaluation of a Feistel network using our
construction took 3n2 evaluations of the underlying one-way permutation f . Thus,

1sclaus2048 refers to the particular group used in the Diffie-Hellman key exchange. In this case,
sclaus2048 uses a realistically-sized prime p and regular multiplicative modular arithmetic: i.e.,
sclaus2048 is a realistic system.

32



a single evaluation of a pseudorandom permutation with a 128-bit width, with
our construction at least, would take 3(128)2 · 380, 000 ≈ 1.9× 1010 CPU clock
cycles on the Titan supercomputer. Since the Titan supercomputer node used in the
above benchmark has a clock rate of 3.501 GHz, that PRP evaluation would take
(1.9× 1010)/(3.501 GHz) ≈ 5.5 s. An alternate measurement is CPU cycles per byte
encrypted—in that case, our scheme would take (1.9× 1010 cycles)/(16 bytes) ≈
1.19× 109 cycles per byte.

On the other hand, we can look at the same project’s benchmark of ChaCha20
on the same machine [ECR15b] and see that for “long messages,” the median value
for ChaCha20 is 1.21 cycles per byte. No, scientific notation was not accidentally
omitted. That’s one point two one cycles per byte. Even on 8-byte messages—the
worst case for ChaCha20—it takes (on average) 47.50 cycles per byte (or 13.57 ns
per byte).

Even though this is comparing a stream cipher to a pseudorandom permutation
(block cipher), the comparison doesn’t really matter. When heuristic constructions
can take less than 100 cycles per byte to encrypt data, no one-way function that
takes 380, 000 clock cycles has any chance. A single evaluation of that OWF is too
expensive in comparison, and we are talking of possibly having to evaluate it n or
n2 or 3n2 times for a PRG, PRF, or PRP, respectively.

Suffice it to say that heuristic constructions obliterate naïve conditionally-secure
constructions on the grounds of efficiency.

4.2 Effective Security

Effectively, which should be trusted more: conditionally-secure or heuristic con-
structions? Surely something with a proof of security, even if only based on an
assumption, has the upper hand, right? Not necessarily.

Inverting the one-way function f (x) = gx mod p would certainly require a
breakthrough in our understanding of algebraic number theory. At the same time,
however, defeating AES would require a breakthrough in the field of cryptanalysis—
entirely new techniques as yet unknown must be discovered before AES will ever
be vulnerable.

If there were some way to determine which area is more likely to have a break-
through, we might consider one more secure than the other. We may possibly
speculate that since algebraic number theory is the older field, it is better stud-
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ied, and so sudden breakthroughs are less likely. However, this is not a rigorous
argument.

Side-channel attacks are another angle that must be considered. Side-channel
attacks attempt to measure some physical quantity (time taken, power drawn,
frequency of sound waves emitted, electromagnetic radiation, etc.) while the
cryptographic system is being operated, often with plaintexts or ciphertexts that
may be controlled by the attacker—a common-day scenario with the advent of
the internet. Timing attacks, in particular, are widely studied, since they can be
measured at range: an attacker can send a message over the internet and measure
how long it takes before a response is received. Other forms of side channel attacks,
such as differential power analysis, usually require physical access to the hardware,
which is a scenario cryptographers don’t usually defend against.

Side-channel attacks are particularly fearsome because they do not cryptograph-
ically attack the system. Instead, they attack the real-world implementation of the
system. Proofs of security do not address the possibility of side-channel attacks. In
modern day systems, like Salsa20, the scheme is carefully designed with timing
attacks already in mind [Ber08b], mostly by having enough real-world experience
with timing attacks in already-existing systems to know what types of operations
are vulnerable to timing attacks.

On the other hand, the theoretical constructions we’ve presented for PRGs, PRFs,
and PRPs do not take possible side-channel attacks into account. It may be that a
simple timing attack is capable of defeating one of the constructions without much
difficulty. Alternately, it may be possible to implement those constructions in such
a way that timing attacks are not possible—but such an implementation may be
difficult to do. (For example, AES is famously difficult to implement in software
without timing attacks.)

Because we don’t have an existing knowledge base of side-channel attacks as
they apply to our theoretical constructions—a result of those theoretical construc-
tions not being used in practice—we cannot say for sure if they are vulnerable
to side-channel attacks. Instead, we would need skilled cryptographers familiar
with side-channel attacks to investigate whatever implementations that might be
produced. This sort of analysis takes a large amount of effort: effort that has already
been put forth for heuristic constructions.
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4.3 Availability

So, in order to make conditionally-secure schemes worth using, we must find some
way to efficiently implement them, perhaps by choosing a better one-way function
or by simply making the theoretical constructions take fewer evaluations of the
one-way function for the same security level. (One might use a hard-core function
instead of a hard-core predicate, as discussed in [Gol00], but this is not enough.)

Next, we must actually implement the efficient theoretical construct. This
alone is a nontrivial effort: it is much harder to write computer code to perform
cryptographic operations than it is to discuss them in the abstract, especially if
one is using a programming language that lends itself to performance-optimized
code, like C. For instance, if the programmer wishes to use integers greater than
64 bits in width, they may no longer use the built-in mathematical functions in
C: they must find a “BigNum” library that is capable of handling larger integers.
These difficulties arise because our mathematical descriptions of constructions tend
to be concise and information-dense, whereas implementing those constructions
on a real-world computer requires the programmer to deal with thousands of
small details. On top of this, the programmer should be an experienced applied
cryptographer, one who is familiar with generic, non-algorithm-specific security
problems.

If we want the implementation to be actually usable, instead of merely proof-of-
concept, it must be carefully vetted by experienced cryptanalysts. When vetting a
cryptographic library, cryptanalysts first try to find possible programmatic errors.
Such programmatic errors are not cryptographic in nature; rather, they are merely
an error in the translation of the mathematical specification to real-world code.
An example might be the accidental omission of an XOR operation in a round
function, or a typo in a conditional statement. If a programming error is severe
enough to change the ultimate output of the algorithm, then usually programmers
catch it quickly enough by comparing the code’s output to a known-good example.
However, since this conditionally-secure library would be the first of its kind, there
are no known-good examples already existing; as a result, a manual scanning of
the potentially thousands of lines of code would be required.

That is merely the first stage, however. Once cryptographers are convinced
that the implementation is semantically correct, the hunt for possible side-channel
attacks (especially timing attacks) begins. Hopefully, the most common culprits
were already recognized by the programmer and eliminated, but the entire code-
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base must be checked all the same. Cryptanalysts can then study the algorithms
themselves for possible timing attacks.

These requirements may not happen in that exact order (some of them may
occur in parallel, perhaps by different cryptographers), but they must all happen
for the library to be considered trusted.

If we want to make conditionally-secure constructions usable in the real world,
the above is what must be done. On the other hand, all of the above has already been
done for heuristic constructions; there are a variety of pre-existing, vetted libraries
for consumption by the general public. In other words, an absolutely huge amount
of effort has already been poured into existing heuristic constructions by cryptogra-
phers. Attempting to supplant carefully-designed and carefully-vetted heuristic
libraries with a fresh conditionally-secure library would require a large duplication
of effort on the part of the entire security community. Non-cryptographers using
the old libraries would be required to be re-trained to use the new ones. We would
be abandoning decades of effort.

As is clear, as a community, we cannot recommend swapping to conditionally-
secure constructions until they have significant benefits. Those benefits do not
appear to be forthcoming any time in the near future.

36



Chapter 5

Conclusions

In our thesis, after familiarizing ourselves with the history, terminology, and mathe-
matical concepts in the field of cryptography, we did an in-depth discussion and
comparison of conditionally-secure constructions and realistic heuristic construc-
tions.

Conceptually, conditionally-secure constructions are cleaner—the assumption
on which they rest is clearly stated, mathematically examinable, and fully rigorous.
Sometimes, those assumptions are based on problems studied for thousands of
years (even if the only significant progress on those problems was made in the
past forty years). In that sense, conditionally-secure functions are preferable, and
they are certainly interesting from a theoretical point of view. However, clarity of
concept is insufficient justification for the widespread adoption of conditionally-
secure constructions in symmetric cryptography. Actual implementations would
be extremely inefficient. There are no proofs that they would be secure against
side-channel attacks. And, finally, there are no implementations currently available.

Realistic heuristic constructions are an area of extremely active study. They
are already widely available in pre-existing libraries. Heuristic constructions are
orders of magnitude more efficient than even the simplest conditionally-secure
constructions. Since providing an equal level of security and efficiency with a
conditionally-secure construction will take years of work, we conclude that heuristic
constructions are the only viable choice at this time.
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