
NEURAL NETWORKS FOR HIGHER-ORDER
REINFORCEMENT LEARNING AND

MULTI-PERSPECTIVE GENERATIVE MODELING

by

Arthur S. Williams

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

in

Computational Science

Middle Tennessee State University

June, 2022

Dissertation Committee:

Dr. Joshua L. Phillips, Chair

Dr. Salvador Barbosa

Dr. Wandi Ding

Dr. Qiang Wu

To my loving wife, two daughters, my son and my parents.

ii

ACKNOWLEDGMENTS

I would like to thank my advisor Dr. Joshua L. Phillips for taking the time to guide me in the

areas of Machine Learning and Computational Cognitive Neuroscience. Your wisdom and

patience has been a great asset to me over the years. You are the best adviser and mentor

a PhD student could ever have. Additionally, I would like to thank Dr. Medha Sarkar and

Dr. Chrisila Pettey for their help as Computer Science department chairs during my time

as a Graduate Assistant. My sincere thanks goes to Dr. John Wallin for encouraging me to

join the Computational Science PhD program. I truly appreciate all the assistance you have

provided me over the years. I would like to thank the rest of my dissertation committee:

Dr. Wandi Ding, Dr. Qianq Wu, and Dr. Salvador Barbosa for their astute observations on

my dissertation. Finally, I would like to thank my parents, my beautiful and supportive

wife Bianca, my two daughters, Aria and Brianne, and my son Kobe. I am grateful for the

motivation and support you all have bestowed upon me during this process.

Work performed for Chapter IV was funded by the Stark land grant fund, MTSU grant

number 93697.

iii

ABSTRACT

What does it mean for a system or machine to exhibit intelligence? In machine learning,

a system is said to exhibit artificial intelligence provided that it improves its performance

with experience on a given task. However, some tasks require more cognitive load than

others, and higher-order cognitive processes are needed to solve some tasks effectively.

We developed a framework inspired by how the human brain utilizes working memory to

solve complex tasks, and constructed a model with the ability to solve tasks with multiple

context layers. Our results show that working memory plays a vital role in solving cognitive

context processing tasks. Furthermore, we extended our model to utilize the generalization

benefits of output gating within a working memory system. This modification resulted

in successfully transferring knowledge across a temporally extended, partially observable

grid-world maze task that required the agent to learn three tasks throughout the training

period. Finally, Generative Adversarial Networks (GANs) can be viewed as using higher-

order cognitive processes to perform image-to-image translation. More specifically, we are

concerned with generating video frames from a missing camera feed, where each feed is

viewing the same area from different positions and angles. Results show that our model

can produce realistic video frames that resemble the missing video source.

iv

TABLE OF CONTENTS

LIST OF TABLES vii

LIST OF FIGURES viii

CHAPTER I: Introduction 1

CHAPTER II: Multi-Layer Context Reasoning 5

Background . 5

Working Memory Architecture . 5

Working Memory Toolkit . 7

Cognitive Tasks . 8

Methods . 9

Multilayer Hierarchical Context Model . 10

2-layer Hierarchical Maze Task . 12

AX-CPT Task . 14

1-2-AX-CPT Task . 15

Results . 18

Discussion . 21

CHAPTER III: Transfer Reinforcement Learning 23

Background . 23

Transfer Learning . 23

Methods . 26

Source and Target Tasks . 26

Transfer Learning Model . 27

Model Constraints and Features . 31

Results . 33

v

Discussion . 37

CHAPTER IV: Multi-Perspective Generative Model 38

Background . 38

Generative Adversarial Networks . 38

The Multi-Perspective Video Generation Problem 40

Methods . 42

Model Design . 42

Implementation . 44

Model Training . 45

Results . 47

Discussion . 47

CHAPTER V: Conclusion 49

BIBLIOGRAPHY 51

vi

LIST OF TABLES

Table 2.1 Hierarchical Maze Task Hyperparameters 14

Table 2.2 AX-CPT Task Hyperparameters . 15

Table 2.3 1-2-AX-CPT Task Hyperparameters 17

Table 3.1 Hyperparameter Descriptions and Values 31

Table 3.2 Time to Threshold Statistics . 36

Table 4.1 Training Hyperparameters . 46

Table 4.2 MSE for Generators . 47

vii

LIST OF FIGURES

Figure 2.1 The 1-2-AX-CPT task . 9

Figure 2.2 Multilayer hierarchical maze task . 12

Figure 2.3 Working memory model while solving the 1-2-AX-CPT task 16

Figure 2.4 The 1-2-AX-CPT task without working memory 18

Figure 2.5 1-2-AX-CPT task without working memory constraints 19

Figure 2.6 Mean accuracy of the 1-2-AX-CPT task 20

Figure 3.1 Grid-world environment for the Red, Green, and Purple tasks 25

Figure 3.2 This diagram shows the flow of information within our model 28

Figure 3.3 Single layer neural network used to store the Q-values 29

Figure 3.4 Jumpstart metrics for the output gate and input gate models 34

Figure 3.5 Time to threshold metrics for the output gate and input gate models . . 35

Figure 4.1 Sample Video frames from the cafe scene environment. 40

Figure 4.2 Multi-Perspective GAN Diagram . 41

Figure 4.3 Cycle consistency loss within the Multi-Perspective GAN model . . . 42

Figure 4.4 The neural networks for the Multi-Perspective GAN model 45

Figure 4.5 The real and generated set of video frames 46

viii

1

CHAPTER I : INTRODUCTION

The ability to engage in higher-order thinking is critical to developing other forms of rea-

soning (Richland and Simms, 2015). By utilizing our higher-order thinking skills (Ander-

son et al., 2001), we are able to learn a rule and generalize to new stimuli with minimal

effort. Some tasks require more cognitive load than others, and higher-order cognitive

processes are needed to solve these tasks effectively. Furthermore, partially observable

and temporally extended problems are difficult for machines and may require cognitive

mechanisms in order to be solved. Our goal in this dissertation is to demonstrate novel

approaches to solving partially observable reinforcement learning problems by developing

a framework inspired by how the human brain utilizes working memory to solve complex

tasks (Williams and Phillips, 2018, 2020). Additionally, we show the effectiveness of Gen-

erative Adversarial Networks (GANs) (Zhu et al., 2017; Isola et al., 2017) for generating

missing video frames in a multi-perspective environment.

In cognitive neuroscience, the working memory system enables the ability to hold mul-

tiple pieces of information in one’s mind while continuing to process other information.

In the human brain this system is supported by the prefrontal cortex and the mesolimbic

dopamine system (O’Reilly and Munakata, 2000a). Computational models seek to rep-

resent such systems through the use of artificial neural networks. The Working Memory

Toolkit (WMtk) aimed at creating a working memory framework that could easily be in-

corporated in a robotic system (Phillips and Noelle, 2005). The WMtk used the delayed

saccade task to demonstrate the effectiveness of the framework. The WMtk framework was

improved to utilize Holographic Reduced Representations (HRRs) (Plate, 1995) in order to

encode representations of the environment as well as working memory concepts (Dubois

and Phillips, 2017). While the WMtk has been applied to various robotic tasks (Kawa-

mura et al., 2008; Busch et al., 2007; Erdemir et al., 2008; Wang et al., 2009), it often fails

to solve multilayer hierarchical problems commonly explored in the cognitive sciences.

2

Therefore, we have extended the use of HRRs within the WMtk to simulate multilayer hi-

erarchical context reasoning in a working memory system. We show that our revised model

can solve working memory tasks that are hierarchical in nature.

We take for granted our ability to adapt and respond appropriately to novel stimuli while

performing a task. Similarly, it is also routine for humans to use knowledge gained from

prior tasks in order to speed up the learning for new tasks. For example, imagine trying to

throw a baseball for the first time. Even though a person might have never thrown a base-

ball, they can still use prior knowledge of “throwing” and transfer that information to the

current task of throwing a baseball. Furthermore, if a person was unable to transfer knowl-

edge across these two task, they would be relegated to relearning the process of “throwing”

due to the novel context presented by the baseball. This example presents a common trans-

fer reinforcement learning problem where a source task (e.g. throwing a football) is used

to improve learning performance on a target task (e.g. throwing a baseball). In addition,

output-gating is a mechanism for controlling how knowledge retained in upstream neu-

ral processes influence downstream cognitive processes in computational cognitive neuro-

science models, and has been utilized to improve generalization performance within tasks

(Kriete and Noelle, 2011; Kriete et al., 2013). These models are based on established in-

teractions between the prefrontal cortex (PFC) and mesolimbic dopamine system. Each

PFC neuronal stripe (assumed anatomical unit of storage) has the implied ability to allow

or disallow maintained representations to flow both inside as well as outside of the PFC

via input-gating and output-gating, respectively. Here we propose a novel approach to the

transfer learning problem that utilizes the generalization benefits of output-gating coupled

with the flexibility of the HWMtk (Dubois and Phillips, 2017; Phillips and Noelle, 2005), a

working memory framework based on the putative interactions between the PFC and basal

ganglia.

3

Generative Adversarial Networks (GANs) are typically used in computer vision and

image processing to translate an image from one domain to another (Zhu et al., 2017; Isola

et al., 2017). However, what happens when one wants to translate a video feed from one

domain to another? Currently, there is minimal research dedicated to the process of video-

to-video translation in the deep learning literature. Moreover, image-to-image translation

with GANs is a highly explored topic, with multiple works addressing the issue (Turkoglu

et al., 2019; Huang et al., 2018; Odena et al., 2017; Isola et al., 2017; Mirza and Osindero,

2014; Zhu et al., 2017). Video data consists of a sequence of video frames, with each

representing a single image. Therefore, we can then use the latest GAN methods and extend

them to the video-to-video translation domain by leveraging the current research in image-

to-image translation. This work presents a novel modification to the GAN architecture

that enables video data generation. More specifically, we are concerned with generating

video frames from a missing camera feed, where each feed is viewing the same area from

different positions and angles. In addition, we utilize a novel cycle consistency component

within our model. As a result, our model can produce realistic video frames that resemble

the missing camera feed.

In Chapter II we discuss multilayer context reasoning and detail a model that success-

fully solves a common hierarchical working memory task in the cognitive sciences. Next

in Chapter III, we present a novel reinforcement leaning approach to the transfer learning

problem. And in Chapter IV, we showcase a novel modification to the GAN architecture

that enables video data generation in a multi-perspective environment. The associated pub-

lications are as follows:

Williams, A. and Phillips, J. (2018). Multilayer Context Reasoning in a Neurobio-

logically Inspired Working Memory Model for Cognitive Robots. Proceedings of the

40th Annual Meeting of the Cognitive Science Society, pages 2687–2692.

4

Williams, A. and Phillips, J. (2020). Transfer Reinforcement Learning Using Output-

Gated Working Memory. Proceedings of the AAAI Conference on Artificial Intelli-

gence, 34(02):1324–1331.

Williams, A., Phillips, J., Cui, S., and Butler, D. (2022). A Multi-Perspective Gener-

ative Model for Video Interpolation. In preparation for the Proceedings of the 34th

IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2022

(submission deadline of July 31st, 2022).

5

CHAPTER II : MULTI-LAYER CONTEXT REASONING

In this chapter we describe a working memory based architecture for solving multi-layer

hierarchical problems (Williams and Phillips, 2018). We utilize a reinforcement learn-

ing method, the temporal difference learning algorithm, to simulate the modulation of

dopamine. The modulation of dopamine is important because it regulates the flow of infor-

mation in and out of working memory stripes within the PFC. Our model was applied to a

common cognitive load task known as the 1-2-AX-CPT task. Typical reinforcement learn-

ing algorithms are unable to solve temporally extended hierarchical problems. We show

that our model can successfully solve these class of reinforcement learning problems.

Background

Working Memory Architecture

Working memory plays an important role in cognitive neuroscience. Working memory

allows the ability to hold on to task-relevant information needed for further processing. An

example of this can be shown by the task of storing someones phone number into your

cell phone. When you are entering their number, you must maintain each number in mem-

ory. Once all the numbers have been entered, the phone number is no longer maintained

and flushed out of memory. Once out of memory, the phone number is forgotten and is

unavailable for recall. This example illustrates how working memory keeps active repre-

sentations of relevant information while likewise ignoring distracting information (such as

a horn blast from a passing car). The neural network keeps these representations active

by making concepts available for rapid updating while having them readily accessible for

ongoing processing.

Attractor dynamics is the process of achieving a stable activation state from a range

of different starting states in a neural network (O’Reilly and Munakata, 2000b). Each sta-

ble attractor could be used to actively maintain information over a period of time. In the

6

prefrontal cortex (PFC), attractors provide a mechanism for robust active maintenance of

information while counteracting the interference presented by ongoing processing. This

allows the firing rate of the neurons to encode representations that will then be maintained

in working memory. In previous models, the neural firing rate encoding of representations

was handled by a complex multilayer artificial neural network (ANN). In our model, we

represent the encoding of representations in the form of holographically reduced represen-

tations (HRRs) (Plate, 1995). The use of HRRs in our model reduces the complexity of

the network down to a single layer, having the HRRs provide the encoding instead of using

multiple layers within an ANN.

The interaction between the prefrontal cortex and mesolimbic dopamine system is key

to the emergent behavior of working memory. Additionally, the use of reinforcement learn-

ing is also important as it pertains to working memory. Literature in the cognitive sciences

suggest that learning is driven by rewards and punishments in response to the changes in

expectation of future events (Schultz et al., 1997). This led researchers to postulate that the

mesolimbic dopamine system is a neural substrate responsible for reinforcement learning

in the brain. This system consists of the basal ganglia and ventral tegmental area (VTA).

Recorded data from the firing of dopamine cells in monkeys show that dopamine cells

fire in response to adjustments in expected future reward (Schultz et al., 1997). The basal

ganglia is responsible for broadcasting dopamine signals to the PFC. The interaction be-

tween the PFC and basal ganglia create a feedback loop where internal memory updates

are chosen based on dopamine signals.

Our working memory model captures the PFC and dopamine system through the use

of the temporal difference (TD) learning algorithm (Barto and Sutton, 1998). TD learning

simulates the modulation of the dopamine system through the use of TD error (δ) signals.

A TD δ of zero is given if the environment behaves as expected, positive TD δ in reaction

to unexpected reward, and negative TD δ in response to the absence of expected reward

7

(Smith et al., 2007). These TD δ signals aim to simulate how the basal ganglia computes

the firing of dopamine neurons. TD has traditionally been used to learn external action

selection, making changing the external environment well suited for leaning internal action

selection as well. Changing internal representations of the environment would consist of

the opening or closing of circuits in the PFC for either flushing working memory contents

or maintaining them.

Working Memory Toolkit

The Working Memory Toolkit (WMtk) is a framework that was created for the purpose

of providing a robot control system with the ability to utilize working memory (Phillips and

Noelle, 2005). The utility of the WMtk has been tested on several robotic tasks. One task

aimed to explore the feasibility of cognitive control systems in humanoid robots (Kawa-

mura et al., 2008). Another task was a spatial memory task that required the robot to learn

to associate perceptual information with that of a particular location in order solve the task

(Busch et al., 2007). The next task required a robot to explore different internal scenar-

ios before actually executing an external action (Erdemir et al., 2008). And a final task

explored automatic scene recognition in regard to robotic navigation (Wang et al., 2009).

The Holographic Working Memory Toolkit (HWMtk) improved upon the Working

Memory Toolkit (WMtk) (Phillips and Noelle, 2005) by providing an interface between

the distributive encoding of artificial neural networks and symbolic encoding (Dubois and

Phillips, 2017). Previously, using the WMtk required the user to manage the conversion

between distributive encoding (DE) and symbolic encoding (SE). An example of DE is the

use of a vector in an artificial neural network. An example of SE is the use of a word or

phrase as a representation of a concept. Through the use of holographically reduced repre-

sentations (HRRs), the HWMtk was able to automate the SE/DE conversion problem. In

order to solve this problem a HRR engine was developed to facilitate the conjunctive en-

coding and decoding of concepts. Holographic reduced representations (HRRs) are created

8

using a vector of real values taken from a Normal distribution with mean zero and standard

deviation 1/
√

n, with n being the length of the vector (Plate, 1995). HRRs can be used to

encode a particular concept within a model. Circular convolution allows for complex repre-

sentations by combining two representations together into a single HRR of the same vector

length. The circular convolution operation can be computed using Fast Fourier transforms

which takes O(nlog(n)) time. Another operation is correlation which uses a HRR as a key

in order to retrieve information from complex HRRs containing multiple combined HRR

representations.

The HWMtk allows agents to learn to gate-in appropriate cues in order to make ap-

propriate action choices later in time. However, the HWMtk shows selective interference

between policies contingent on hierarchically structured cues, suggesting future improve-

ment to the framework may be needed.

Cognitive Tasks

The AX Continuous Performance Test (AX-CPT) is a cognitive task that tests the con-

text processing ability of an individual (Braver et al., 2005). In this task, an individual is

presented with a pair of letters. The individual is only rewarded when they see the letter

“A” followed by the letter “X” and press the right button. All other letter combinations are

seen as distractors. The presentation of a letter sequence followed by an action marks the

end of a trial. Performing well on this task requires correctly updating context information

after each trial. Our model learns the correct button to press based on the sequence of let-

ters presented to it. The agent was presented the A-X letter sequence 70% of the time and

presented the B-X, A-Y, and B-Y sequences at a rate of 10% each. The particular letter

sequence was determined randomly before each trial.

The 1-2-AX-CPT task is an extension of the AX-CPT task that adds an extra layer of

context that must be maintained by the working memory system (Frank et al., 2001). The

target sequence is dependent on a previous context cue and varies depending on which

9

Figure 2.1: The 1-2-AX-CPT task. Shows the letters presented to the agent over time.
Also, the action choice of the agent, which is either L (for left button press) or R (for right
button press), is determined at each time step.

stimulus was observed by the agent. For example, if the agent saw a 1, then the target

sequence will be A-X. Instead, if the agent saw a 2, then the target sequence will be B-Y.

In order to successfully learn the 1-2-AX-CPT task, the agent must maintain the outer loop

of context, which is the task context cue (1 or 2), and the inner loop of context, which

is the sequence of letters as detailed in Figure 2.1. The context cue, which lets the agent

know whether the target is A-X or B-Y, was provided to the agent randomly with equal

probability at the beginning of each trial.

Methods

We implemented a multilayer hierarchical model of working memory that extends the

capability of the WMtk. Our model uses a novel approach to internal working memory

updates that relies on the SARSA TD learning algorithm (Barto and Sutton, 1998). This

differs slightly from the approach provided by the WMtk, which learns a state value func-

tion instead of a state-action value function as a means for action selection and working

memory updates. The utility of our model was determined by testing it on a set of learning

10

tasks. First, we created a 2-layer hierarchical maze task for proof of concept. We then

tested our model on the AX-CPT task, which is a common working memory task in the

cognitive sciences that tests one’s ability to maintain relevant features over time. Finally,

to fully observe the multilayer hierarchical learning of context features, we implemented

the 1-2-AX-CPT task. The 1-2-AX-CPT extends the AX-CPT task by adding an additional

layer of context, thereby requiring a multilayer context to be learned in order to complete

the task effectively. We then compared the accuracy of our model to that of the LSTM

model (Hochreiter and Urgen Schmidhuber, 1997). LSTM is a common deep learning

architecture in sequence learning. The juxtaposition of our model and the LSTM model,

while performing the 1-2-AX-CPT task, is key toward displaying our model’s overall util-

ity. The source code for the AX-CPT task, 1-2-AX-CPT task, and 2-layer hierarchical maze

task is available online at: https://github.com/arthurw125/TD_learning. Next, we

will explain the computational models and tasks.

Multilayer Hierarchical Context Model

The WMtk uses the temporal difference (TD) learning algorithm which learns the cor-

rect action to take by learning the value function V (s), an estimate of the sum of discounted

future rewards, for all states (Sutton, 1988). The SARSA learning algorithm is another re-

inforcement learning algorithm. SARSA is similar to TD in the sense that they are both

temporally extended and estimate a value function. The difference is that SARSA learns the

state-action value function called the Q function, Q(s,a), instead of the state-value func-

tion (Sutton, 1988). We learn Q(s,a) by making transitions from one state-action pair to

the next, thus learning the value of all state-action pairs. Reward is given only to the state-

action pair that transitioned to the goal state. We decided to use the Q function approach as

opposed to the value function approach used by the WMtk for memory updates.

In order to use SARSA to model working memory, we modified the Q function to be a

state-action-working memory triplet. The amount of states, actions, and working memory

https://github.com/arthurw125/TD_learning

11

slots are determined by the particular task being observed. The value of Q(st ,at ,wmt) can

be written as:

Q(st ,at ,wmt) = r(st+1)+ γQ(st+1,at+1,wmt+1), (II.1)

where t is the time, s is the set of observable states, a is the action taken, γ is the discount

factor, α is the learning rate and wm is the set of working memory slots. The error is

computed by taking the difference between the expected and true value of Q(st ,at ,wmt).

The Q function is then updated using the following:

δ (st ,at ,wmt) =[r(st+1)+ γQ(st+1,at+1,wmt+1)]

−Q(st ,at ,wmt)

(II.2)

Q(st ,at ,wmt) = Q(st ,at ,wmt)+αδ (st ,at ,wmt) (II.3)

where α is a learning rate hyperparameter in the range [0,1] and γ is the discounting hy-

perparameter for future rewards in the range [0, 1). This process is repeated over several

episodes until the Q function is learned for all state-action-working memory triplets. With

this new configuration of the Q function, we can now begin to apply it as a means towards

updating working memory slots within our model. The exact contents of what is being held

in working memory is available to our model and can be recalled if needed. This feature

of our model is contrasted with LSTM’s mechanism, which stores its memory information

in the weights of the recurrent neural network, thus making it more difficult to determine

what memory content is being stored and how it is being maintained.

For our model to learn multiple layers of context, we must provide as many working

memory slots as there are contextual layers within the task. We encode the external features

and their internal representations for a task using HRRs. The HRR size is typically set to

be an order of magnitude greater than the number of input permutations (NIP) of the task.

This NIP can be computed by multiplying together all the states, actions, and working

memory for a given task. Our model then learns the hierarchy of a task by computing

the Q function Q(s,a,wm) at each time step to determine whether to gate-in new working

12

(a) Green/Purple Maze Task

(b) Red/Blue Maze Task

Figure 2.2: Multilayer hierarchical maze task. The goal state when the agent is flashed the
color green followed by purple (a) and the goal state when the agent is flashed the color
red followed by blue (b). In the actual simulation, the color cues are only present when the
agent first enters the maze.

memory representations or maintain old working memory representations. Also, external

action selection is determined at this step. This is achieved by computing all the state-

action-working memory combinations within the Q function and choosing the combination

with the highest learned discounted future reward. A weight vector for the current state

is updated after each state transition and provides an input to output mapping of the Q

function’s single-layer neural network.

2-layer Hierarchical Maze Task

To demonstrate that our model was able to tackle tasks that were hierarchical in nature,

we created the multilayer hierarchical maze task. The 2-layer hierarchical maze task re-

quires the agent to learn the location of the goal state within a 1D maze environment as

illustrated in Figure 2.2. The agent is dropped in the maze at a random location. The agent

is then flashed the color red or green followed by blue or purple at the beginning of the

task. The agent then must navigate the maze to find the goal state within the maze. Based

on what combination of colors was flashed initially, the goal will be either in the middle or

13

at the front of the maze. The objective of the agent is to find the goal based on the set of

initial cues seen. This task is partially observable because the agent does not have access

to cues after initial sightings. This is why the agent must use its working memory system

to actively hold on to the color cue at both levels of hierarchy throughout the task. The

purpose of the task is to show the agent’s ability to maintain viable concepts in its work-

ing memory while discarding irrelevant information. Also, this task seeks to show how

multilayer context reasoning can have an effect on the working memory system.

Our computational model for the 2-layer hierarchical maze task requires HRR repre-

sentations for states, actions, color cues, and working memory slots. We then precompute

the convolutions of each representation for efficiency and store the output of vectors in an

array. The convolutions of each representation can also be computed on the fly if needed.

We initialize the weight vector and set the bias b equal to 1 for an optimistic initialization.

We then set the number of action and color cues to 2. We randomly place the agent in

our maze environment by choosing a random number between 0 and the number of states.

This value is then mapped to a location in a grid maze environment. A color signal is

then flashed to the agent, representing either red or green. If the color is red followed by

blue then the goal is in the far-left corner of the maze environment as seen in Figure 2.2b.

Furthermore, if the color is green followed by purple then the goal will be located in the

middle of the maze environment as seen in Figure 2.2a. We provided 2 working memory

slots to our model so that the agent has the ability to maintain both the inner and outer cues

being relayed from the environment.

A NIP of 8100 was computed for this task. This was evaluated by multiplying all the

encoded states, actions, and working memory features. We noticed that in order to achieve

stability in our model, we needed to provide an HRR size that was an order of magnitude

greater than the NIP of the task. This is why we chose the HRR and weight vector length for

this task to be n= 64000. Epsilon-greedy ε is a hyperparameter that controls the probability

14

Table 2.1: Hierarchical Maze Task Hyperparameters

Name Value Description
n 64000 Size of HRR vectors
ε 0.01 Probability of non-greedy action choice
γ 0.9 Discount factor
α 0.1 Learning rate
episodes 10000 Number of training cycles
b 1 Network bias

in which a non-optimal action is taken by the agent. Moreover, ε is important because it

forces exploration within a reinforcement learning environment. The model was trained

for 10000 episodes. A list of the hyperparameters for the 2-layer hierarchical maze task is

available in Table 2.1.

AX-CPT Task

The implementation of the AX-CPT task required that we use the modified SARSA

algorithm from equations 1, 2 and 3 for action selection and HRRs for concept encoding.

We encoded HRRs for 1 working memory slot, 4 different external cues, and 2 actions. The

HRRs were pre-convolved and stored in an array for later use. We created the weight vector

from a new HRR, and fixed bias weight of 1. The possible working memory contents that

could be used by the agent consisted of seeing nothing or the outer signal. Using SARSA

along with a softmax function, the outer working memory is chosen along with an action

of 1 or 0 (left or right button). The error is computed and the weight vector is updated. This

process is repeated until the Q function is learned for the task.

We computed the NIP of this task to be 54. In order to achieve stable learning, the HRR

length for our encoded features had to be an order of magnitude larger than the NIP. Due to

this constraint, the HRR and weight vector length for this task was n = 128. The model was

trained on 1000 trials, where each trial is a different stream of letter combinations presented

to the agent. The λ hyperparameter controls the decay factor of eligibility traces. The

temperature hyperparameter temp affects the final probabilities of the softmax function. A

15

Table 2.2: AX-CPT Task Hyperparameters

Name Value Description
n 128 Size of HRR vectors
ε 0.01 Probability of non-greedy action choice
γ 0.9 Discount factor
α 0.1 Learning rate
λ 0.8 Trace decay
temp 0.1 Adds entropy to the softmax function
trials 1000 Number of trials during training
b 1 Network bias

low temp generates softmax probabilities where the distance between probabilities is more

pronounced, while a high temp does the opposite. A list of the hyperparameters for the

AX-CPT task is available in Table 2.2.

1-2-AX-CPT Task

The implementation of the 1-2-AX-CPT task required that we use the modified SARSA

algorithm from equations 1, 2 and 3 for action selection and internal memory updates. We

encoded HRRs for 2 different working memory slots, 6 different external cues, and 2 action

HRRs. The HRRs were pre-convolved and stored in an array for later use. We created a

weight vector from a new HRR, and fixed bias weight of 1. The possible working memory

contents that could be used by the agent consist of seeing nothing or the outer signal for the

outer context stimulus. For the other working memory slot, the possible working memory

contents are nothing or the inner signal. Using the modified SARSA algorithm along with

a softmax function, the outer and inner memory slots are chosen, as displayed in Figure

2.3, along with an action of 1 or 0 (left or right button). The TD error is computed and the

weight vector is then updated.

A NIP of 486 was computed for this task. As in the previous models, we observed

that in order to achieve stability in our model we needed to provide an HRR size that was

an order of magnitude greater than the NIP of the task. This is why we chose the HRR

and weight vector length for this task to be n = 1024. Choosing a learning rate of 0.4

16

Figure 2.3: Diagram of our working memory model while solving the 1-2-AX-CPT task.
The gating policy is learned by our modified Q function and is responsible for making
internal working memory updates. At time step t1, the agent is presented with an outer
cue of “1”. The gating policy then determines what should be gated into the outer working
memory slot. The options available to gate-in at time t1 is as follows: gate-in the current
outer cue of “1”, maintain what was previously in the outer working memory slot, or flush
the outer working memory slot. At time step t2, the agent is presented with an inner cue
of “A”. The gating policy then determines what should be gated into the inner working
memory slot. The options available to gate-in at time t2 is as follows: gate-in the current
inner cue of “A”, maintain what was previously in the inner working memory slot, or flush
the inner working memory slot. At time step t3, the Probe State consists of convolving
working memory with probe “X”. Finally, the action ”R” is selected and evaluated for
correctness.

allowed our model to learn the task at a faster rate, causing the number of trials to equal

only 2000, while still being low enough to allow for convergence. Also, we elected to use

an ε-greedy policy set at 0.01 which allowed for exploration of suboptimal states. This

17

Table 2.3: 1-2-AX-CPT Task Hyperparameters

Name Value Description
n 1024 Size of HRR vectors
ε 0.01 Probability of non-greedy action choice
γ 0.9 Discount factor
α 0.4 Learning rate
λ 0.8 Trace decay
temp 0.1 Adds entropy to the softmax function
trials 2000 Number of trials during training
b 1 Network bias

allowed our model’s loss function to avoid getting caught in local minima. A list of the

hyperparameters for the 1-2-AX-CPT task is available in Table 2.3.

It is worth noting that without working memory, an agent within a multilayer hierar-

chical task is unable to learn the outer loop context of a task, resulting in performance that

is equivalent to random chance. In Figure 2.4, we see that for the A-X and B-Y presen-

tations the model struggles to perform above random chance. Without working memory

our model is still able to learn the B-X and A-Y presentations. This learning occurred be-

cause the target sequence for both B-X and A-Y did not change during context switches.

In order for our model to achieve adequate performance, it was required that we constrain

the possible working memory options made available to the model. The graph in Figure

2.5 displays how learning can become erratic when constraints are taken off of the working

memory slots. This meant that we had to limit the options for each working memory slot

to only have the ability to gate-in current external stimuli or gate-in nothing. Without these

constraints in place the model would become unstable and unlearn a given task over time.

We used Keras with a TensorFlow backend to implement the LSTM version of the

1-2-AX-CPT task for comparison with our own working memory model. We randomly

generated test data to be fed into the neural network for learning. The LSTM model con-

tained 3 hidden layers, each with 32 nodes. The output layer used softmax for action

selection of either left button press or right button press. The hyperparameters were as fol-

18

Figure 2.4: The 1-2-AX-CPT task without working memory made available to the system.
The graph depicts the mean accuracy of the 1-2-AX-CPT task over a 100 trial window. The
graph shows the mean accuracy for all the AX, BX, AY and BY presented during each trial
window.

lows: loss=categorical crossentropy; optimizer=rmsprop; and metrics=accuracy. We used

the default setting for all other parameters. We then generated 10,000 sequences as train-

ing data and 100 sequences as testing data. The model was fit using a batch size=64 and

epochs=20.

Results

Adding additional layers of working memory slots allowed our model to retain infor-

mation in a hierarchical manner without the need for the continuous presence of stimuli.

This allowed our model to solve the 2-layer hierarchical maze task in which the cue was

only flashed once and the system had to determine whether or not to remember the initial

cue. The model was able to learn the correct Q function for the given task despite multiple

distractors. Also, the 2-layer hierarchical maze task has a large state space, so we noticed

19

Figure 2.5: 1-2-AX-CPT task without working memory constraints. The graph depicts the
mean accuracy of the 1-2-AX-CPT task over a 100 trial window. The graph shows the
mean accuracy for all the A-X, B-X, A-Y and B-Y presented during each trial window.

that the working memory encoding required large HRRs in order to observe adequate learn-

ing. The HRR size needed to increase from 32000 for a 1-layer hierarchical task to 64000.

If the HRR was less than 64000 we observed that the Q function for the task was unable to

properly learn the correct values.

The performance metric we used in order to validate our model’s ability to learn the

1-2-AX-CPT task was the mean accuracy per 100 trials. The mean accuracy was gathered

by calculating the mean percentage of correct responses to the A-X, B-X, A-Y and B-Y

letter sequences independently. We then graphed the mean correct action and saw that the

percentages of correct actions maintained levels above 95% accuracy and was stable there-

after (see Figure 2.6). Small residual error remains due to the ε-greedy policy employed,

indicating our model can successfully solve the 1-2-A-X-CPT task. Comparatively, the

simple one layer model generated suboptimal accuracy as conveyed in Figure 2.6. Also,

20

(a) Multilayer Context Model

(b) One Layer Context Model

Figure 2.6: Mean accuracy of the 1-2-AX-CPT task using the multilayer hierarchical con-
text model (a), and the 1-2- AX-CPT task using a simple one layer context model (b),
presented over a 100 trial window. AX, BX, AY and BY trials are plotted independently.

21

behavioral data showed that human subjects were able to perform the 1-2-A-X-CPT task

at a 95% mean accuracy rate (Nee and Brown, 2013). Once we set ε=0 our model was

able to exceed human performance and reach 100% accuracy resulting in optimal behavior.

We validated our model’s ability to solve the A-X-CPT task by logging the mean percent-

age of correct actions per 100 episodes. Similarly, we logged the agent’s response to the

A-X, B-X, A-Y, and B-Y presentations. We observed our model was able to achieve per-

formance accuracy of 100% and stabilize for the remaining episodes. Our model’s ability

to solve these cognitive tasks makes it amenable for human and animal performance data

comparison.

The LSTM model was also able to successfully learn the 1-2-A-X-CPT task and obtain

100% accuracy rates while learning the task. This makes sense, being that the LSTM model

uses a more informative supervised learning signal, making it easier to learn a given task.

In contrast, our model only relies on reinforcement error signals to adjust the weights for

learning. Also, our hierarchical model is a more biologically plausible simulation of the

interaction between the prefrontal cortex and the mesolimbic dopamine system. Despite

the previously stated constraints, our model was still able to obtain 100% accuracy rates

while learning the 1-2-A-X-CPT task, just like the LSTM model, once we set ε=0.

Discussion

The ability to model the brain gives us the ability to run simulations of certain cognitive

phenomenon in which we lack clear understanding. Our working memory models are based

on the interactions between the prefrontal cortex and the mesolimbic dopamine system.

Understanding the role that the dopamine system plays in relation to cognition is one aspect

that our model focuses on. To model dopamine function, we use learning algorithms based

on temporal differences in estimated reward. In addition, we used HRRs which allowed for

us to encode concepts dynamically, as compared to previous models within the WMtk. Our

model extended the WMtk by allowing for multilayer of hierarchical context to be learned.

22

Adding multiple layers of working memory slots gives our model the ability to handle more

complex problems and tasks. Our model’s capacity to learn both the A-X-CPT and 1-2-

A-X-CPT validates our model’s ability to learn partially observable tasks with hierarchical

context reasoning. Unlike the LSTM model, our working memory model allows for the

transparent viewing of the explicit storage of working memory contents in the PFC.

23

CHAPTER III : TRANSFER REINFORCEMENT LEARNING

The previous chapter introduced a working memory model with the ability to solve tempo-

rally extended hierarchical tasks in the reinforcement learning domain. In this chapter, we

explore designing a model that has the ability to generalize not just within a task but across

tasks that share similarity. This is known as the transfer learning problem. We detail a

novel approach that utilizes the generalization benefits of output-gating, combined with the

effectiveness of our working memory architecture for learning multiple policies (Williams

and Phillips, 2020). In addition, we show that these mechanisms aid in increasing transfer

across tasks as indicated by our results. We tested the model’s utility on several variations

of a temporally extended, partially observable 5× 5 2D grid-world maze which aimed to

demonstrate generalization (or lack thereof) across tasks.

Background

Transfer Learning

Transfer learning requires generalization to occur not just within tasks but across tasks

(Taylor and Stone, 2009). Therefore, the goal of transfer learning is to train on a source

task and then exploit that knowledge within the target task. The source task you choose can

positively or negatively affect performance on the target task. If the source and target tasks

are not adequately related then performance on the target task may not show improvement.

This is known as negative transfer (Weiss et al., 2016; Taylor and Stone, 2009). Common

metrics used to evaluate a transfer learning method’s efficacy are as follows: jumpstart,

asymptotic performance, total reward, transfer ratio, and time to threshold (Taylor and

Stone, 2009). First, the metric jumpstart relates to increasing the initial performance on the

target task. Second, asymptotic performance is concerned with testing the improvements

of the final accuracy of the agent. Third, the metric for total reward compares the total

reward accumulated by transfer as opposed to without transfer. Fourth, transfer ratio is a

24

ratio of the total reward acquired with and without transfer. Finally, time to threshold deals

with how fast the agent can reach a predefined performance threshold (Taylor and Stone,

2009). We decided to use the jumpstart and time to threshold metrics to show transfer

performance because we were interested in showing our models ability to reduce training

time on a target task. Furthermore, asymptotic performance is difficult to obtain in practice

and reward based metrics are specific to reinforcement learning, making them difficult to

use when comparing with other forms of learning.

The PFC and basal ganglia (BG) interact with one another in order to flexibly and dy-

namically update information in a working memory system. The PBWM model (O’Reilly

and Frank, 2006) demonstrates this interaction by utilizing a dynamic gating mechanism

that sits in between the PFC and BG. This gate is modulated by the dopaminergic sys-

tem through the use of reinforcement learning. The PBWM model was proven to reach

performance criteria faster and have the lowest error when compared to a simple recur-

rent network (SRN), a recurrent backpropagation learning network (RBP), and a LSTM

network. Even though PBWM shows superior generalization on single tasks, it was not

tested for generalization across tasks, which is a key feature of transfer learning. It was

then observed that with the addition of a PFC stripe based output-gating mechanism, the

model became markedly better as simulated in a vocabulary task (Kriete and Noelle, 2011).

Output-gating was even demonstrated to assist in tasks that are hierarchical in nature (Unger

et al., 2016). Unlike the tasks used on the previously discussed models, some domains may

contain multiple competing optimal policies and temporally-delayed feedback. Moreover,

this increases the complexity of solving the task. We hypothesize that the addition of

output-gating mechanisms to the HWMtk can overcome these difficulties.

25

Red Task

Goal State

Green Task

Goal State

Purple Task

Goal State

Figure 3.1: Grid-world environment for the Red, Green, and Purple tasks. The agent is
indicated by the colored dot. The dot color is based on the initial flashed cue at beginning
of the trial. Based on the initial cue color, the goal state will be in the upper far left corner
(red cue) the upper far right corner (green cue), or the upper middle (purple cue). The grid
is divided into 25 states. The thick blue lines represent barriers that restrict how the agent
can transition within the grid world. The agent’s goal is to reach the colored goal state in an
optimal manner. The arrows show an optimal path that can be taken by the agent to reach
the goal. All tasks share the same optimal policy for the lower half of the grid.

26

Methods

Source and Target Tasks

In order to show our model’s ability to transfer knowledge, we utilize a 5×5 2-D grid-

world maze task containing 25 states as our source task (see Figure 3.1). In this task the

agent starts off by being randomly placed in the lower half of the maze which is located

below the barriers. Once spawned, the agent is flashed a color and then released to explore

the grid-world maze on its own. The available colors that the agent can experience during

the initial spawn consist of red or green. These colors are cues that signal the location of

the goal state. As displayed in Figure 3.1, if the agent is flashed the color red then the goal

state will be located in the upper left corner of the grid-world. Also, if the agent is flashed

the color green, then the goal state is positioned in the upper right corner. Finally, located 2

rows from the top of the grid-world is a barrier with a single opening. We intend to use this

single point of entry onto the other side of the grid-world as the basis for forming a shared

representation between our source task and target task since both tasks share an identical

optimal policy for the lower half of the maze.

For knowledge transfer to take place, there must be some shared characteristics between

the source task and target task. In our target task, we will maintain the same 5×5 2-D grid-

world maze as that of the source task. The agent will spawn in a random position on

the lower half of the maze below the barriers. Now instead of 2 colors (red and green)

available at the initial state, another color (purple) is added to the list of possible cues.

The addition of the color purple means that there is another task that can be present during

a trial. Additionally, if purple is flashed then the goal state will be located in the upper

middle portion of the grid-world maze as illustrated in Figure 3.1. Both the source task and

target task share the lower half of the grid-world. We utilize this shared representation to

demonstrate transfer learning between our source task and target task.

27

Transfer Learning Model

A detailed diagram of our model is provided in Figure 3.2. Presented in that diagram,

we see that the input gate controls the flow of information into WM Maint. The slots in WM

Maint represent stripes in the PFC. The input gate, output gate and the agent’s motor output

are each controlled by a separate neural network that store the Q values. We modulate the

opening and closing of the gates using the temporal difference learning algorithm (Barto

and Sutton, 1998). Holographic Reduced Representations (HRRs) (Plate, 1995) are used

to encode the actions (both internal and external) and the states. HRRs key utility is that it

allows the conjunction and/or disjunction of features without an increase in dimensionality.

Also each representational vector is approximately orthogonal, which enables the use of an

efficient single layer network. Furthermore, each slot in WM Maint is mapped to its own

input gate and output gate. This means that an input gate designated for one slot cannot

interfere with the updating of another slot’s contents. Finally, the output gate for that slot

would not be able to gate-out the contents of another slot.

The input gate governs whether or not information will be ignored or stored for main-

tenance by the agent. The input gate’s neural network receives the state information of the

environment as input. It also receives as input the role associated with the cue it is presented

with. This role information serves as an abstract representation of the cue. For example, in

Figure 3.2 we see that the cue green is bound with the role color. Furthermore, if differ-

ent cues are presented, the role will still be that of color. This feature allows the model

to effectively generalize to new cue representations. Next, the input gate’s neural network

determines whether the gate should open or close as detailed in Figure 3.3. This action mIt

is selected by choosing the highest Q-value in the input gate network at time t as follows:

mIt = argmax
aI∈AI

((sI ∗aI) ·wI +b) (III.1)

where mIt represents the highest Q-value for the input gate at time t, sI is the state informa-

tion for the input gate, aI is an action vector for the input gate, AI is the set of all possible

28

State
Info color

green Empty Empty

state role

Slot 1 Slot 2 Slot 3

State
Info

Slot 1
Filled

green Empty Empty

Slot 1 Slot 2 Slot 3

green State
Info

WM
Output state

WM
Maint

Output
Storage

Input-Gate

Output-Gate

state
Slot Status
(Empty/Filled)

Sent as input to Input-Gate network

Sent as input to Output-Gate network

Agent

Action
Selection

Sent as input to Agent network

green

green

cue

Figure 3.2: This diagram shows the flow of information within our model. Initially, the
agent is presented with a color. The role associated with the cue, along with state infor-
mation, is sent as input to the input gate’s network where a decision to open or close the
gates is determined. If the gate is open, the color is then stored in working memory and
maintained, otherwise the slot remains empty. Each working memory slot has its own ded-
icated input gate and associated output gate. The output gate network uses the knowledge
of whether or not the working memory slot is empty or filled as input. The output gate
network then decides to either open the output gate or have the output gate stay closed. If
opened, the contents of the working memory slot associated with the gates are then propa-
gated as output. The output and state information is then sent to the agent network where
an action is determined.

29

location role

S = location*role

Input Vector

Q-Values

𝑄1 = (𝑆 ∗ 𝑂𝑝𝑒𝑛) , 𝑊 +𝑏 𝑄2 = (𝑆 ∗ 𝐶𝑙𝑜𝑠𝑒) , 𝑊 + 𝑏

W
CloseOpen Q1 Q2

Weight

Bias

S

b

argmax

Action
Output

Figure 3.3: This diagram shows the mechanisms for the single layer neural network used to
store the Q-values of the input gate, output gate, and agent network. The orange triangles
represent vectors; the green circles represent scalar values; and the blue bar represents a
function. The blue arrows show the direction in which data is flowing within the network.
The input vector is created when location is convolved with role, creating the vector
S. Next, the Q-values are computed by convolving the S vector with all combinations of
actions (Open and Close). The dot product of the previous result and the weight vector W
is computed and the bias b is added thus creating the Q-values of Q1 and Q2. Finally, the
Q-values are passed to the argmax function and the highest Q-value is selected resulting in
an action selection (e.g. Open or Close) signified by Action Output.

action vectors for the input gate, wI is the weight vector for the input gate network and b

is the bias for the input gate. If opened, the cue is stored and maintained in WM Maint as

30

depicted with the purple arrow in Figure 3.2. Otherwise, the cue information is ignored and

the WM Maint slot does not get updated.

Downstream processing is influenced by whether or not the contents in WM Maint are

allowed to pass the output gate. The neural network for the output gate takes as input

the state information of the environment and a representation that signifies whether the WM

Maint slot is empty or filled. The output gate then decides to open or close using this

formula:

mOt = argmax
aO∈AO

((sO ∗aO) ·wO +b) (III.2)

where mOt represents the highest Q-value for the output gate at time t, sO is the state

information for the output gate, aO is an action vector for the output gate, AO is the set of

all possible action vectors for the output gate, wO is the weight vector for the output gate

network and b is the bias for the output gate.

If the gate is open, then the contents of WM Maint is allowed to affect the downstream

processing of input at the motor output layer or action selection stage. In Figure 3.2 we

see the purple arrow illustrating the transition of slot contents from the maintenance layer

to the output layer. Finally if the gate is selected to be closed, then the slot will be empty

and the working memory contents will have no affect on the agent‘s motor action. The

agent then makes an action to move in a particular direction. This action is governed by the

formula:

mAt = argmax
aA∈AA

((sA ∗aA) ·wA +b) (III.3)

where mAt represents the highest Q-value for the agent at time t, sA is the state information

for the agent, aA is an action vector for the agent, AA is the set of all possible actions for the

agent, wA is the weight vector for the agent network and b is the bias for the agent. Once

the agent has completed an action, we calculate δ for each network using the following

31

formulas:

δA = (r+ γmAt)−mAt−1

δO = (r+ γmAt)−mOt−1

δI = (r+ γmAt)−mIt−1

(III.4)

where r is the reward given for the current state and γ is the discount factor. We use the

agent’s action as the target and force the input gate and output gate to adjust their error

accordingly. This helps to correlate the agent’s action to the gates’ actions. We then update

the input gate network, output gate network, and agent network as follows:

wA = wA +αδAxAt

wO = wO +αδOxOt

wI = wI +αδAxIt

(III.5)

with xAt , xOt and xIt being the value of the input vector for each of the networks at time t.

Table 3.1 details the hyperparameters used along with the values for the input gate,

output gate, and agent networks. Also, the source code is available online at: https:

//github.com/arthurw125/AAAI20_Transfer.

Table 3.1: Hyperparameter Descriptions and Values

Name Value Description
n 1024 Size of HRR vectors
ε 0.1 Probability of non-greedy action choice
γ 0.9 Discount factor
α 0.1 Learning rate
λ 0.9 Trace decay
b 1 Network bias

Model Constraints and Features

In order for the model to generate a shared representation within the task, some con-

straints had to be placed on the input gate and the output gate. In the earlier stages of

building the model, we allowed both the input gate and output gate to have full control

https://github.com/arthurw125/AAAI20_Transfer
https://github.com/arthurw125/AAAI20_Transfer

32

and autonomy over their actions. We provided both gates with the ability to open or close

regardless of the environment encountered during each time step. We observed that the

model was unable to learn on tasks that were more than 10 states large. The input gate’s

ability to overwrite working memory contents played a major part in causing the model to

fail. Using this knowledge, we constrained the input gate such that it only has the option

to open if the environment of the agent presented features available for storage. This con-

straint allowed our model to solve the 5×5 2-D grid-world maze task presented in Figure

3.1 which contains 25 states. Even though the model was able to solve the task, it did not

exhibit the behavior that we had expected. Our desired policy was one in which the output

gate would stay closed on the shared side of the maze and only open once the agent passed

through the opening in the barrier. In actuality, the output gate learned a policy that allowed

it to toggle actions (open or close) from one state to the next. This prevented the model

from learning a shared representation, which is a feature we needed to exploit for transfer

learning given it’s necessity for the model of Kriete and Noelle to perform generalization.

In our previous output gate model, the working memory contents were not affected by

the actions of the output gate. But due to the toggling of actions between state transitions,

we changed our approach of the output gate’s functionality as well. In our current model,

if the output gate chooses to open then the contents of working memory is utilized only

once and is then flushed and is no longer available for use by the agent. The previous

iteration of our output gate model allowed for multiple uses of working memory contents

for downstream processing. By constraining memory usage, the agent is forced to learn

when to use it’s memory contents. If the output gate stays closed then the working memory

contents are maintained. Once the output gate opens, working memory is used by the agent

for action selection and then flushed. The goal is to learn the state in which to gate-out

what is maintained in working memory so that it yields the most reward.

33

One main feature of our current output gate model is the ability to create a shared

representation. The output gate model creates these shared representations by partitioning

the state space into 3 parts. The first state space partitioning occurs by having the agent

internally monitor whether or not there is anything loaded into the working memory slot.

An internal query happens on each time step and the agent is presented with a HRR vector

for remembering if the working memory slot is full or not remembering if the working

memory slot is empty. This representation is presented to the agent until the output gate

is opened or the trial ends. If the agent is maintaining something in memory and gates

it out, the agent is then presented with a HRR vector memory used. The item stored in

working memory is also presented to the agent and then flushed out of working memory,

unable to be used by the agent in future time steps. Finally the memory used representation

persists with the agent there on after until the trial ends. This mechanism is a weak form of

episodic memory which helps the agent understand the context of its own working memory

decisions.

Results

To test our model’s ability to transfer knowledge across tasks, we observed whether or

not there was significant jumpstart provided to the target task. The jumpstart metric deals

with the reduction of initial error from training on the source task relative to the target task.

Also, we measured the time to threshold metric for the target task and the source task for

comparison on both the input gate model and output gate model. The time to threshold

metric calculates how long it takes the error to reach a fixed error threshold for the system.

For both metrics the error was determined by calculating the optimal number of steps to

get to the goal minus the actual steps taken by the agent. We then took the mean of this

step difference across 100 sample runs of learning. Our goal is to determine whether or not

output-gating can provide significant transfer across similar task sets.

34

(a) Jumpstart metrics for the output gate model

(b) Jumpstart metrics for the input gate model

(c) Compares jumpstart between the input gate model and the output
gate model

Figure 3.4: Jumpstart metrics for the output gate model (a) and the input gate model (b)
display the initial error for the Red-Green-Purple grid-world task. Each model trained on
a set of source tasks where RG is the Red-Green source task; RP is the Red-Purple source
task; R is the red source task; and P is the purple source task. No Transfer means that
no source task was used to train the model. Furthermore, these values come from taking
the mean of 100 training sample runs. Next, jumpstart is compared between models (c) by
taking the difference between the No Transfer training run and the lowest training run in
which a source task was used for transfer.

35

(a) Time to threshold metrics for the output gate model

(b) Time to threshold metrics for the input gate model

Figure 3.5: Time to threshold metrics for the output gate model (a) and the input gate
model (b) display the training time required to reach an error threshold for the Red-Green-
Purple grid-world task. Each model trained on a set of source tasks where RG is the Red-
Green source task; RP is the Red-Purple source task; R is the red source task; and P is the
purple source task. No Transfer means that no source task was used to train the model.
Furthermore, these values come from taking the mean of 100 training sample runs.

The first metric we will discuss is the jumpstart criterion. In our experiment, we used 4

different source tasks respectively to test the utility of our output gate model. These source

tasks consist of the Red-Green task, the Red-Purple task, the Red task, and the Purple task.

Looking at Figure 3.4(a) and Figure 3.4(b), we see that both the output gate model and

the input gate model both achieved a noticeable level of jumpstart as compared to the task

36

Table 3.2: Time to Threshold Statistics

Input Gate Output Gate
No Transfer 3.46k 32k
Red-Green 0.83k 16.18k
Red-Purple 1.11k 19.76k
Red 2.37k 35.74k
Purple 2.75k 1

with no source task training. Also when we compare the jumpstart criterion between both

the input gate model and output gate model, we see that the jumpstart differential is larger

for the output gate (see Figure 3.4(c)). Jumpstart differential is measured by taking the

difference between the NO Transfer training run and the lowest training run utilizing a

source task. This is computed for each model respectively. Our findings show that the

output gate model is more robust to transferring knowledge that aids in improving initial

learning performance.

The time to threshold metric measures the time it takes to learn to a specified threshold

level. This metric aims to see a decreased training time relative to the NO Transfer task,

which is trained without source task knowledge. Also, we chose an error threshold of 1

which relates to the agent being 1 step off of being optimal within a 25 state grid-world

maze. In Figure 3.5(a) and Figure 3.5(b) we see the time to threshold metrics for both the

output gate model and the input gate model. These metrics were computed by logging the

error of each episode of a simulation run. In Figure 3.5(a) we see that the we were able

to achieve transfer that resulted in one-shot learning when the purple task was used as a

source task with the output gate model. This is made evident by the output gate model’s

Purple source task only requiring 1 episode to reach the error threshold as indicated in

Table 3.2 and Figure 3.5(a). Conversely, the input gate model is unable to achieve this

level of performance, even though it requires significantly less training episodes to reach

the error threshold. This shows that an output gate model is capable of robustly transferring

knowledge resulting in immediate generalization to novel tasks.

37

Discussion

We utilize transfer learning throughout our everyday life without thinking about it. The

mechanisms that allow the transfer of knowledge from source task to target task are pivotal

as it relates to cognition. Output gate models have been shown to provide added lev-

els of generalization as observed in several tasks (Kriete and Noelle, 2011; Kriete et al.,

2013). But the question is whether such generalization is a key component of transfer?

Furthermore, does generalization as it pertains to output-gating provide noticeable utility

in transfer learning? We propose that generalization and specifically, the ability to control

downstream processing provided through output-gating mechanisms, are integral to solving

the transfer learning problem.

Our claims were validated when our model exhibited transfer learning by illustrating a

marked performance increase in 2 transfer metrics: time to threshold and jumpstart. We

noticed that our model was able to achieve jumpstart by a large margin. Additionally, our

model dramatically outperformed the input gate model for that same criterion. Next, we

observed that our model displayed positive transfer as it relates to the time to threshold

criterion and was able to immediately generalize to new tasks using the Purple source task

for transfer.

38

CHAPTER IV : MULTI-PERSPECTIVE GENERATIVE MODEL

In Chapters II and III, we discussed techniques related to reinforcement learning and work-

ing memory. In this chapter, we explore solving the multi-perspective problem with GANs.

The multi-perspective problem consists of multiple cameras viewing the same location

within an environment except from different perspectives. This problem is usually used to

showcase object tracking and detection across multiple video feeds (Zhang and Izquierdo,

2019a; Nguyen et al., 2022; Strbac et al., 2020; Shim et al., 2021; He et al., 2018; Han

et al., 2021). For the purpose of our experiment, we are concerned with generating video

data as opposed to object tracking. However, research is limited on the utilization of GANs

for video-to-video translation in a multi-perspective environment (Mahmud et al., 2018).

Furthermore, these models fail to address the scenario in which a total camera feed must

be reconstructed.

Generally, GANs are used for image-to-image translation. We know that video data

is composed of a sequence of image frames. Therefore, we can transform the video-to-

video translation problem into an image-to-image translation problem, thus allowing us to

leverage GANs generative capabilities. With the addition of a novel loss formulation we

refer to as Multi-Perspective Cycle Consistency Loss, results show that our GAN model

can generate realistic video frames.

Background

Generative Adversarial Networks

GANs are the state-of-the-art in image generation and translation. The idea behind a

GAN is that there are two networks, a generator and a discriminator. The purpose of the

generator is to create a real enough image whereby it is able to spoof the discriminator.

The discriminator’s goal is to adequately classify which images are real and which are

generated. The generator learns to produce fake images drawn from a distribution similar

39

to that of the real images it is trained on (Goodfellow et al., 2014). Given a generator G

and discriminator D, both models are trained using adversarial loss which is quantified as:

lossG =
(
D(G(z))−1

)2

lossD =
(
D(y)−1

)2
+
(
D(G(z)

)2
(IV.1)

where y is a real image drawn from domain Y such that y ∈ Y and z is random input vector

to introduce noise into the system.

Why would we choose GANs over other generative models such as (Kingma and

Welling, 2014; Vincent et al., 2010; Sohn et al., 2015; Salakhutdinov and Hinton, 2009)

for image generation? GANs are known for producing sharper images compared to other

generative models. Furthermore, since a GAN is an unsupervised learning method, we do

not have to concern ourselves with the labeling of data for training.

Currently, there are several GANs: Radford et al. (2016); Odena et al. (2017); Almahairi

et al. (2018); Zhu et al. (2017); Isola et al. (2017); Goodfellow et al. (2014); Yoon et al.

(2018); Turkoglu et al. (2019). Our model is built off the Cycle GAN (Zhu et al., 2017). The

Cycle GAN is typically used for image-to-image translation where the goal is to translate

an image from a source domain to a target domain. For example, given source images of

horses and target images of zebras, a mapping is learned that translates an image of a horse

into that of a zebra. The model is comprised of two mapping functions G : X → Y and

F : Y → X where X and Y are different image domains with associated discriminators DY

and DX . Also, the Cycle GAN introduces cycle consistency loss which aims to regularize

the mappings with the concept that if an image is translated from domain X to domain

Y then we should be able to arrive back to domain X where we began. Forward cycle

consistency loss and backward cycle consistency loss can be seen as:

x → G(x)→ F(G(x))≈ x

y → F(y)→ G(F(y))≈ y
(IV.2)

40

(a) Camera 1 (b) Camera 2

(c) Camera 3 (d) Camera 4

Figure 4.1: Sample Video frames from the cafe scene environment within the
MMPTRACK dataset for camera 1 perspective (a), camera 2 perspective (b), camera 3
perspective (c), and camera 4 perspective (d).

where x ∈ X , y ∈ Y , function G maps to the Y domain, and function F maps to the X

domain.

The Multi-Perspective Video Generation Problem

The experiment consists of four video feeds, with all the feeds viewing the same loca-

tion within a room. Additionally, each feed views this location from different positions in

the room and different angles. However, what if we removed one of the video feeds? Is

there enough information within the remaining three video sources to produce the missing

fourth video source? To further explore this question, we will need to find a dataset that

possesses the aforementioned qualities.

The MMPTRACK dataset is a collection of five simulated environments with around

five hours of video for training and one and a half hours of video for validation (Han et al.,

2021). The environments are as follows: retail, lobby, industry, cafe, and office. Also, 28

41

Figure 4.2: A high level overview of the Multi-Perspective GAN model conditioned on
three video frames from different perspectives to generate the fourth perspective. We see
four generators that takes 3 video frame perspectives as input. The outputs from the gener-
ators are used as input into the discriminator along with the real set of video frames. The
discriminator classifies each set as either real or fake, and the discriminator along with the
four generators are updated.

people participated in the video recording, with 14 in training, 7 in validation, and 7 in

testing. The cameras were placed at different angles, with each camera having a field of

view overlap with at least one of the other cameras. Video frames are synchronized and

extracted at 15 frames per second at 640× 320 resolution. We utilized the cafe scene for

our experiment, which contained four camera feeds viewing seven individuals sitting at two

tables as seen in Figure 4.1.

42

Figure 4.3: The computation of cycle consistency loss within the Multi-Perspective GAN
model that we refer to as Multi-Perspective Cycle Consistency Loss. The green circles rep-
resent different video frame perspectives, marked by W, X, Y, and Z. The blue squares are
four different Generators, each designated to produce a video frame perspective specified
by their label. Solid blue lines represent the flow of data, while dashed blue lines represent
the flow of computed loss.

Methods

Model Design

The Multi-Perspective GAN model in Figure 4.2 consists of four generators and one

discriminator. Each generator is responsible for producing a different camera perspective.

For example, camera perspectives 1, 2, 3, and 4 would each have a generator tasked with

producing their respective video frame. Also, each generator takes three video frame per-

spectives as input. Therefore, given the camera perspectives 1, 2, 3, and 4, which we will

denote as W, X, Y, and Z, respectively, we formulate the generators as:

GW (xi,yi,zi)→ ŵi

GX(wi,yi,zi)→ x̂i

GY (wi,xi,zi)→ ŷi

GZ(wi,xi,yi)→ ẑi

(IV.3)

43

where wi, xi, yi, and zi are the images at frame i for camera perspectives 1, 2, 3, and 4

respectively and wi ∈W , xi ∈ X , yi ∈ Y , and zi ∈ Z. Next, the discriminator takes as input

the set of generated frames and the set of real frames and can be defined as:

Dset
(
{wi,xi,yi,zi},{ŵi, x̂i, ŷi, ẑi}

)
→


0 if Fake

1 if Real
(IV.4)

where {wi,xi,yi,zi} is the real set of images and {ŵi, x̂i, ŷi, ẑi} is the generated set of images

at frame i. Also, Dset outputs a 0 if it predicts that the set is fake/generated and outputs a 1

if it predicts that the set is real.

The generator and discriminator are trained using adversarial loss. The generator is

updated by minimizing the sum squared difference between the predicted and expected

values as though the generated image set is real. The loss for GW ,GX ,GY , and GZ is:

lossGW ,GX ,GY ,GZ =
(
Dset({ŵi, x̂i, ŷi, ẑi})−1

)2 (IV.5)

The discriminator is updated by minimizing the sum squared difference between predicted

and expected values for real and fake image sets. The loss for Dset is:

lossDset =
(
Dset({wi,xi,yi,zi})−1

)2

+
(
Dset({ŵi, x̂i, ŷi, ẑi})

)2
(IV.6)

Cycle consistency for the Multi-Perspective GAN requires a two stage approach because

the mappings are not a one-to-one translation as illustrated in Figure 4.3. Each generator is

conditioned with 3 frame perspectives as input. We utilized the outputs ŵ, x̂, ŷ, and ẑ from

the generators and feed them as input back into the same generators to produce a set of

image frames ˆ̂w, ˆ̂x, ˆ̂y, and ˆ̂z. The forward cycle is represented as:

GW (x̂, ŷ, ẑ)→ ˆ̂w

GX(ŵ, ŷ, ẑ)→ ˆ̂x

GY (ŵ, x̂, ẑ)→ ˆ̂y

GZ(ŵ, x̂, ŷ)→ ˆ̂z

(IV.7)

44

The real w,x,y, and z are then compared with ˆ̂w, ˆ̂x, ˆ̂y, and ˆ̂z to produce the cycle consistency

loss as follows:

lossW
cyc

=
(
wi − ˆ̂wi

)2

lossX
cyc

=
(
xi − ˆ̂xi

)2

lossY
cyc

=
(
yi − ˆ̂yi

)2

lossZ
cyc

=
(
zi − ˆ̂zi

)2

(IV.8)

total loss
cyc

= lossW
cyc

+ lossX
cyc

+ lossY
cyc

+ lossZ
cyc

(IV.9)

where wi, xi, yi, and zi are the real images at frame i and ˆ̂wi, ˆ̂xi, ˆ̂yi, and ˆ̂zi are the generated

images at frame i after the outputs in Equation IV.3 are used as inputs for generators GW ,

GX , GY , and GZ as seen in Figure 4.2. Therefore, the total loss used to update the generator

models is defined as:

losstotal = lossGW ,GX ,GY ,GZ +λ total loss
cyc

(IV.10)

where lossGW ,GX ,GY ,GZ is the loss as defined in Equation IV.5, λ is a hyperparameter that

controls the importance of the cycle consistency loss, and total loss
cyc

is the loss as defined

in Equation IV.9.

Implementation

Our Multi-Perspective GAN model consists of four generator networks. All the gen-

erator networks have the same architecture as illustrated in Figure 4.4d. The network ar-

chitecture for the generator is composed of a 3d-convolution layer with 64 filters and a

7x7x7 kernal size. The next layer is instance normalization followed by a rectified linear

activation unit (ReLU). Also, the generator contains two downsampling blocks from Figure

4.4b, two residual blocks (He et al., 2016) from Figure 4.4a, and two upsampling blocks

from Figure 4.4c. Finally, the output from the previous upsampling block proceeds to a 3d-

45

(a) Residual
Block

(b) Downsam-
pling Block

(c)
Upsampling

Block

(d) Generator

(e)
Discriminator

Figure 4.4: The neural networks for the Multi-Perspective GAN model. The Residual
Block (a), Downsampling Block (b), and Upsampling Block (c) are smaller networks, when
put together aid in the building of larger network architectures such as the Generator model
(d) and Discriminator model (e).

convolution layer that has three filters and a kernal size of 7x7x7 with a hyperbolic tangent

(Tanh) activation function.

We utilize one discriminator network to classify the set of generated and real frames as

either real or fake. A network overview can be seen in Figure IV.4. The network consists of

a 3d-convolution layer containing 64 filters with a kernal size of 4x4x4 and a 2x2x2 stride.

Also, the discriminator network has three downsampling blocks, and a 3d-convolution layer

with one filter, 4x4x4 kernal size, and a 1x1x1 stride. Next, the output from the previous

layer is flattened and sent to a fully connected layer with a sigmoid activation function.

All models were implemented in Keras/Tensorflow and the source code can be found at

https://github.com/arthurw125/GAN_Research.

Model Training

The model was trained for 50 epochs with at batch size of 16. The image frames

were scaled down from 640× 320 to 100× 56 before being sent as input into the model.

https://github.com/arthurw125/GAN_Research

46

(a) Real Frame Set from the cafe scene
environment

(b) Generated Frame Set with
Multi-Perspective Cycle Consistency Loss

(c) Generated Frame Set without
Multi-Perspective Cycle Consistency Loss

Figure 4.5: The real and generated set of video frames across the four different camera
perspectives from the cafe scene environment within the MMPTRACK dataset. The image
frames were scaled down from the original size of 640×320 to 100×56. The model was
trained for 50 epochs.

Table 4.1: Training Hyperparameters

Name Value Description
α 2e−4 Learning rate for Adam optimizer
β1 0.5 1st moment exp. decay for Adam optimizer
β2 0.999 2st moment exp. decay for Adam optimizer
ε 1e−7 Numerical stability constant
λ 10 Cycle consistency loss importance level

The image frames were scaled down to reduce the network size and processing time during

training. The optimization method used during training was Adam (Kingma and Ba, 2015),

which is the combination of AdaGrad (Duchi et al., 2011) and RMSProp and was applied

to the four generator networks and the discriminator network. The Adam hyperparameter

of the learning rate α was set to 2e−4 and the exponential decay β1 was set to 0.5 and λ

set to 10. Also, the Adam hyper-parameter ε was set to 1e− 7. We trained the model on

47

Table 4.2: MSE for Generators

Generator MSE w/ Cycle Loss MSE w/o Cycle Loss
Cam1 0.020171724 0.39746407
Cam2 0.0850371 0.23035194
Cam3 0.042203967 0.22101375
Cam4 0.06065816 0.24351284

1000 image frames from the cafe scene within the MMPTRACK dataset and withheld 200

image frames for testing. A list of the training hyperparameters is available in Table 4.1.

Results

We performed an ablation study on the cycle consistency loss function of our Multi-

Perspective GAN model. Also, we provided qualitative and quantitative metrics to evaluate

the efficacy of our model. We used Mean Squared Error (MSE) to evaluate how far off the

generated image frames are from the real image frames. In Table 4.2, we show the MSE

results with and without our Multi-Perspective Cycle Consistency Loss for all four camera

perspectives. Furthermore, Figure 4.5 shows the real image frame set (see Figure 4.5a)

along with a generated image frame set utilizing Multi-Perspective Cycle Consistency Loss

(see Figure 4.5b) and without utilizing it (see Figure 4.5c). These results were gathered

from a 200 image frame test set from the cafe scene within the MMPTRACK dataset. The

camera perspectives for the generators in Table 4.2 are mapped to Figures 4.5b and 4.5c

where the top left image corresponds to Cam1, the top right image corresponds to Cam2,

the bottom left image corresponds to Cam3, and the bottom right image corresponds to

Cam4.

Discussion

There is limited research dedicated to applying GANs for video generation. Further-

more, the multi-perspective video generation problem is an area that GAN research has

not fully explored. Typically, multi-perspective problems are in the area of object tracking

48

within a multi-camera environment (Zhang and Izquierdo, 2019b; Bredereck et al., 2012;

Khan et al., 2021; Liu et al., 2017; Ristani et al., 2016). Our goal is to show that additional

mechanisms must be added to GANs in order to generate realistic video frames in a multi-

perspective environment. To do so, we introduced a novel cycle consistency loss that we

refer to as Multi-Perspective Cycle Consistency Loss.

Qualitative results in Figure 4.5b show that our model is able to produce realistic video

frames when compared to the true image frames for each camera perspective in 4.5a. We

are able to achieve these quality generated video frames because of the addition of Multi-

Perspective Cycle Consistency Loss. We are able to make this claim because when Multi-

Perspective Cycle Consistency Loss is removed, we notice a significant degradation in

video frame quality as seen in Figure 4.5c. We also observe an order of magnitude in-

crease in MSE when Multi-Perspective Cycle Consistency Loss is ablated from our Multi-

Perspective GAN model.

Even though our model is able to produce realistic video frames, it still suffers from

some mode collapse in scenes that have minimal change. Future work will consists of

exploring additional mechanisms that can be added that will better capture small changes

that may occur over a long temporal horizon. This may include utilizing transformers for

the generator and discriminator model (Lee et al., 2019; Jiang et al., 2021). In addition,

relational networks (Santoro et al., 2017, 2018) could be useful because of their capacity

to learn relationships between objects within an image and across a set of images.

49

CHAPTER V : CONCLUSION

Machine learning algorithms are powerful tools that can solve a multitude of problems

and tasks. But that does not mean they can solve every problem. Some problems are too

difficult for vanilla machine learning algorithms and additional mechanisms are needed.

To effectively tackle these problems, we draw inspiration from the human brain and its

ability to utilize working memory to solve complex tasks. Understanding that some tasks

require more cognitive load than others allows us to implement higher-order thinking skills

within the machine learning domain, and progresses us closer to creating an agent that

exhibits higher-order cognition. Current machine learning research is mainly concerned

with beating specific benchmarks in accuracy and error. Furthermore, minimal focus is

given on internal cognitive actions within an artificial agent and how that can aid in creating

a more robust artificial intelligence system. This work demonstrates that by augmenting

machine learning algorithms with a cognitive inspired approach, we can achieve better

performance results on certain tasks while furthering our understanding of the potential

neural substrates of the human mind.

Reinforcement learning algorithms lack the mechanisms needed to effectively solve

temporally extended hierarchical problems. Designing a system with the ability to solve

multilayer hierarchical problems required that we provide additional mechanisms to the

reinforcement learning framework. By providing a working memory system based on the

interaction between the mesolimbic dopamine system and the prefrontal cortex, we were

able to successfully solve a common hierarchical working memory load task in the cog-

nitive science known as the 1-2-AX-CPT task. Furthermore, by augmenting our working

model with an output-gating mechanism, we were able to generalize not just within task but

across tasks within similar domains. These changes allowed our model to exhibit transfer

learning in a partially observable reinforcement learning domain as tested by our grid-world

maze task.

50

GANs are great for image-to-image translation. Adversarial loss coupled with cycle

consistency allows for a realistic image generation. But what about video-to-video trans-

lation? Currently, there is minimal research in the area of using GANs for video-to-video

translation. Moreover, GANs are mostly used for translating an image from one domain

to another. In comparison, we are concerned with taking frames from three different video

sources, and recreating the missing fourth video frame. These frame are sourced from cam-

eras viewing the same scene but from different perspectives. To achieve this, we designed

a novel cycle consistency loss we refer to as Multi-Perspective Cycle Consistency Loss.

Results show that the addition of utilizing our Multi-Perspective Cycle Consistency Loss

allows for a sharper and more realistic video frame generation in this domain.

51

BIBLIOGRAPHY

Almahairi, A., Rajeswar, S., Sordoni, A., Bachman, P., and Courville, A. (2018). Aug-
mented CycleGAN: Learning Many-to-Many Mappings from Unpaired Data. 35th In-
ternational Conference on Machine Learning, ICML 2018, 1:300–309.

Anderson, L. W., Krathwohl Peter W Airasian, D. R., Cruikshank, K. A., Mayer, R. E., Pin-
trich, P. R., Raths, J., and Wittrock, M. C. (2001). A Taxonomy for Learning, Teaching,
and Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives. Pearson,
1st edition.

Barto, A. G. and Sutton, R. S. (1998). Reinforcement learning: An introduction. IEEE
transactions on neural networks / a publication of the IEEE Neural Networks Council,
9(5):1054.

Braver, T. S., Rush, B. K., Satpute, A. B., Racine, C. A., and Barch, D. M. (2005). Context
processing and context maintenance in healthy aging and early stage dementia of the
Alzheimer’s type. Psychology and Aging, 20(1):33–46.

Bredereck, M., Jiang, X., Körner, M., and Denzler, J. (2012). Data association for multi-
object tracking-by-detection in multi-camera networks. In 2012 Sixth International Con-
ference on Distributed Smart Cameras (ICDSC), pages 1–6.

Busch, M. A., Skubic, M., Keller, J. M., and Stone, K. E. (2007). A robot in a water maze:
Learning a spatial memory task. In Proceedings 2007 IEEE International Conference
on Robotics and Automation, pages 1727–1732.

Dubois, G. M. and Phillips, J. L. (2017). Working Memory Concept Encoding Using
Holographic Reduced Representations. In Proceedings of the 28th Modern Artificial
Intelligence and Cognitive Science Conference.

Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive subgradient methods for online learn-
ing and stochastic optimization. Journal of Machine Learning Research, 12(61):2121–
2159.

Erdemir, E., Frankel, C. B., Kawamura, K., Gordon, S. M., Thornton, S., and Ulutas,
B. (2008). Towards a cognitive robot that uses internal rehearsal to learn affordance
relations. In 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 2016–2021.

Frank, M. J., Loughry, B., and O’Reilly, R. C. (2001). Interactions between frontal cortex
and basal ganglia in working memory: A computational model. Cognitive, Affective, &
Behavioral Neuroscience, 1(2):137–160.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., and Bengio, Y. (2014). Generative adversarial nets. In Ghahramani, Z.,
Welling, M., Cortes, C., Lawrence, N., and Weinberger, K., editors, Advances in Neural
Information Processing Systems, volume 27. Curran Associates, Inc.

52

Han, X., You, Q., Wang, C., Zhang, Z., Chu, P., Hu, H., Wang, J., and Liu, Z. (2021).
Mmptrack: Large-scale densely annotated multi-camera multiple people tracking bench-
mark.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recogni-
tion. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 770–778.

He, W., Tao, W., Sun, K., Xu, L., Fu, Q., and Zhao, H. (2018). Multi-camera object tracking
via deep metric learning. In Yu, Y., Zuo, C., and Qian, K., editors, Sixth International
Conference on Optical and Photonic Engineering (icOPEN 2018), volume 10827, pages
331 – 339. International Society for Optics and Photonics, SPIE.

Hochreiter, S. and Urgen Schmidhuber, J. (1997). Long Short-Term Memory. Neural
Computation, 9(8):1735–1780.

Huang, X., Liu, M. Y., Belongie, S., and Kautz, J. (2018). Multimodal Unsupervised
Image-to-Image Translation. Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11207
LNCS:179–196.

Isola, P., Zhu, J. Y., Zhou, T., and Efros, A. A. (2017). Image-to-image translation with
conditional adversarial networks. Proceedings - 30th IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2017, 2017-Janua:5967–5976.

Jiang, Y., Chang, S., and Wang, Z. (2021). Transgan: Two pure transformers can make one
strong gan, and that can scale up. In Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang,
P., and Vaughan, J. W., editors, Advances in Neural Information Processing Systems,
volume 34, pages 14745–14758. Curran Associates, Inc.

Kawamura, K., Gordon, S. M., Ratanaswasd, P., Erdemir, E., and Hall, J. F. (2008). Imple-
mentation of cognitive control for a humanoid robot. International Journal of Humanoid
Robotics, 05(04):547–586.

Khan, M. N., Al Hasan, M., and Anwar, S. (2021). Improving the robustness of object
detection through a multi-camera–based fusion algorithm using fuzzy logic. Frontiers in
Artificial Intelligence, 4.

Kingma, D. P. and Ba, J. (2015). Adam: A method for stochastic optimization. In Bengio,
Y. and LeCun, Y., editors, 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings.

Kingma, D. P. and Welling, M. (2014). Auto-Encoding Variational Bayes. In 2nd Interna-
tional Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April
14-16, 2014, Conference Track Proceedings.

Kriete, T. and Noelle, D. C. (2011). Generalisation benefits of output gating in a model of
prefrontal cortex. Connection Science, 23(2):119–129.

53

Kriete, T., Noelle, D. C., Cohen, J. D., and O’Reilly, R. C. (2013). Indirection and symbol-
like processing in the prefrontal cortex and basal ganglia. Proceedings of the National
Academy of Sciences, 110(41):16390–16395.

Lee, J., Lee, Y., Kim, J., Kosiorek, A., Choi, S., and Teh, Y. W. (2019). Set transformer:
A framework for attention-based permutation-invariant neural networks. In Chaudhuri,
K. and Salakhutdinov, R., editors, Proceedings of the 36th International Conference on
Machine Learning, volume 97 of Proceedings of Machine Learning Research, pages
3744–3753. PMLR.

Liu, W., Camps, O., and Sznaier, M. (2017). Multi-camera multi-object tracking.

Mahmud, T., Billah, M., and Roy-Chowdhury, A. K. (2018). Multi-view frame reconstruc-
tion with conditional gan. In 2018 IEEE Global Conference on Signal and Information
Processing (GlobalSIP), pages 1164–1168.

Mirza, M. and Osindero, S. (2014). Conditional generative adversarial nets.

Nee, D. E. and Brown, J. W. (2013). Dissociable frontal-striatal and frontal-parietal net-
works involved in updating hierarchical contexts in working memory. Cerebral Cortex,
23(9):2146–2158.

Nguyen, P., Quach, K. G., Duong, C. N., Le, N., Nguyen, X.-B., and Luu, K. (2022).
Multi-camera multiple 3d object tracking on the move for autonomous vehicles.

Odena, A., Olah, C., and Shlens, J. (2017). Conditional image synthesis with auxiliary clas-
sifier gans. 34th International Conference on Machine Learning, ICML 2017, 6:4043–
4055.

O’Reilly, R. and Munakata, Y. (2000a). Computational Explorations in Cognitive Neuro-
science. A Bradford Book.

O’Reilly, R. and Munakata, Y. (2000b). Computational Explorations in Cognitive Neuro-
science. MIT Press.

O’Reilly, R. C. and Frank, M. J. (2006). Making Working Memory Work: A Computational
Model of Learning in the Prefrontal Cortex and Basal Ganglia. Neural Computation,
18(2):283–328.

Phillips, J. L. and Noelle, D. C. (2005). A Biologically Inspired Working Memory Frame-
work for Robots *. In Proceedings of the 27th Annual Meeting of the Cognitive Science
Society.

Plate, T. A. (1995). Holographic Reduced Representations. IEEE TRANSACTIONS ON
NEURAL NETWORKS, 6(3).

Radford, A., Metz, L., and Chintala, S. (2016). Unsupervised representation learning with
deep convolutional generative adversarial networks. 4th International Conference on
Learning Representations, ICLR 2016 - Conference Track Proceedings, pages 1–16.

54

Richland, L. E. and Simms, N. (2015). Analogy, higher order thinking, and education.
Wiley Interdisciplinary Reviews: Cognitive Science, 6(2):177–192.

Ristani, E., Solera, F., Zou, R. S., Cucchiara, R., and Tomasi, C. (2016). Performance
measures and a data set for multi-target, multi-camera tracking.

Salakhutdinov, R. and Hinton, G. (2009). Deep boltzmann machines. In van Dyk, D. and
Welling, M., editors, Proceedings of the Twelth International Conference on Artificial In-
telligence and Statistics, volume 5 of Proceedings of Machine Learning Research, pages
448–455, Hilton Clearwater Beach Resort, Clearwater Beach, Florida USA. PMLR.

Santoro, A., Hill, F., Barrett, D., Morcos, A., and Lillicrap, T. (2018). Measuring abstract
reasoning in neural networks. In International Conference on Machine Learning, pages
4477–4486.

Santoro, A., Raposo, D., Barrett, D. G., Malinowski, M., Pascanu, R., Battaglia, P., and
Lillicrap, T. (2017). A simple neural network module for relational reasoning. In Guyon,
I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett,
R., editors, Advances in Neural Information Processing Systems, volume 30. Curran
Associates, Inc.

Schultz, W., Dayan, P., and Montague, P. R. (1997). A neural substrate of prediction and
reward. Science, 275(June 1994):1593–1599.

Shim, K., Yoon, S., Ko, K., and Kim, C. (2021). Multi-target multi-camera vehicle tracking
for city-scale traffic management. In 2021 IEEE/CVF Conference on Computer Vision
and Pattern Recognition Workshops (CVPRW), pages 4188–4195.

Smith, A. J., Li, M., Becker, S., and Kapur, S. (2007). Linking animal models of psychosis
to computational models of dopamine function. Neuropsychopharmacology : official
publication of the American College of Neuropsychopharmacology, 32(1):54–66.

Sohn, K., Lee, H., and Yan, X. (2015). Learning structured output representation using deep
conditional generative models. In Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., and
Garnett, R., editors, Advances in Neural Information Processing Systems, volume 28.
Curran Associates, Inc.

Strbac, B., Gostovic, M., Lukac, Z., and Samardzija, D. (2020). Yolo multi-camera object
detection and distance estimation. In 2020 Zooming Innovation in Consumer Technolo-
gies Conference (ZINC), pages 26–30.

Sutton, R. S. (1988). Learning to Predict by the Methods of Temporal Differences. Machine
Learning, 3:9–44.

Taylor, M. E. and Stone, P. (2009). Transfer Learning for Reinforcement Learning Do-
mains: A Survey. Journal of Machine Learning Research, 10:1633–1685.

55

Turkoglu, M. O., Thong, W., Spreeuwers, L., and Kicanaoglu, B. (2019). A layer-based se-
quential framework for scene generation with gans. Proceedings of the AAAI Conference
on Artificial Intelligence, 33(01):8901–8908.

Unger, K., Ackerman, L., Chatham, C. H., Amso, D., and Badre, D. (2016). Working mem-
ory gating mechanisms explain developmental change in rule-guided behavior. Cogni-
tion, 155:8–22.

Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., and Manzagol, P.-A. (2010). Stacked
denoising autoencoders: Learning useful representations in a deep network with a local
denoising criterion. Journal of Machine Learning Research, 11(110):3371–3408.

Wang, X., Tugcu, M., Hunter, J. E., and Wilkes, D. M. (2009). Exploration of configural
representation in landmark learning using working memory toolkit. Pattern Recognition
Letters, 30(1):66 – 79.

Weiss, K., Khoshgoftaar, T. M., and Wang, D. (2016). A survey of transfer learning.
Journal of Big Data, 3(1):9.

Williams, A. and Phillips, J. (2018). Multilayer Context Reasoning in a Neurobiologically
Inspired Working Memory Model for Cognitive Robots. Proceedings of the 40th Annual
Meeting of the Cognitive Science Society, pages 2687–2692.

Williams, A. and Phillips, J. (2020). Transfer Reinforcement Learning Using Output-
Gated Working Memory. Proceedings of the AAAI Conference on Artificial Intelligence,
34(02):1324–1331.

Yoon, J., Jordon, J., and Van Der Schaar, M. (2018). GAIN: Missing data imputation using
generative adversarial nets. 35th International Conference on Machine Learning, ICML
2018, 13:9042–9051.

Zhang, X. and Izquierdo, E. (2019a). Real-time multi-target multi-camera tracking with
spatial-temporal information. In 2019 IEEE Visual Communications and Image Pro-
cessing (VCIP), pages 1–4.

Zhang, X. and Izquierdo, E. (2019b). Real-time multi-target multi-camera tracking with
spatial-temporal information. In 2019 IEEE Visual Communications and Image Process-
ing (VCIP), pages 1–4.

Zhu, J. Y., Park, T., Isola, P., and Efros, A. A. (2017). Unpaired Image-to-Image Translation
Using Cycle-Consistent Adversarial Networks. Proceedings of the IEEE International
Conference on Computer Vision, 2017-October:2242–2251.

	List of Tables
	List of Figures
	Introduction
	Multi-Layer Context Reasoning
	Background
	Working Memory Architecture
	Working Memory Toolkit
	Cognitive Tasks

	Methods
	Multilayer Hierarchical Context Model
	2-layer Hierarchical Maze Task
	AX-CPT Task
	1-2-AX-CPT Task

	Results
	Discussion

	Transfer Reinforcement Learning
	Background
	Transfer Learning

	Methods
	Source and Target Tasks
	Transfer Learning Model
	Model Constraints and Features

	Results
	Discussion

	Multi-Perspective Generative Model
	Background
	Generative Adversarial Networks
	The Multi-Perspective Video Generation Problem

	Methods
	Model Design
	Implementation
	Model Training

	Results
	Discussion

	Conclusion
	Bibliography

