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ABSTRACT

In this dissertation, the research focuses on Natural Language Processing (NLP)

applications in actuarial science. NLP techniques, as powerful text analytic tools,

can help actuaries to exploit the information in textual data. Recently, many NLP

techniques have been applied in different research fields, but only a few NLP ap-

plications can be found in actuarial science. This dissertation researches NLP

techniques in actuarial science and proposes some NLP solutions for actuarial

applications.

This dissertation consists of five chapters. The first chapter is an introduction

of NLP and some opportunities for its use in actuarial science. The possibilities

of traditional actuarial applications incorporating NLP are also discussed. A few

NLP applications proposed by actuaries are also introduced as references.

The second chapter is the literature review of relevant NLP techniques. Some

basic technologies are introduced such as word embeddings and tokenizations.

Also, advanced NLP tools such as Bidirectional Encoder Representation for Trans-

formers (BERT) and related techniques are discussed.

The third chapter is an NLP application based on extended truck warranty

data. This chapter develops a BERT-based aggregate loss model with a rescaled

10-value scale severity to predict future losses based on the frequency distribution

of claim counts with contracts and severity distribution of claim records. The NLP

tool helps to extract information from the textual description in the data, and the

extracted values are exploited to predict loss severity.

The fourth chapter is another NLP application for basic truck warranty data.



A data-based portfolio allocation model is proposed to predict losses using the

modern portfolio theory (MPT) developed by Nobel Laureate Harry Markowitz

in 1952. In this chapter, BERT is applied to improve the accuracy of multi-class

classification in the BERT enhanced data-based portfolio allocation model. Also,

a technique similar to the one used in chapter 3 is applied to derive a BERT-

based severity model for multi-class aggregate loss prediction through a different

approach with the BERT enhanced data-based portfolio allocation model.

The last chapter summarizes the described applications. The applications

of modern NLP techniques for predictive analytics are practical and promising.

However, applications in actuarial science are almost nonexistent. This disser-

tation demonstrates the possibilities of NLP applications to improve predictive

modeling in actuarial science. The NLP techniques can help to gather information

from textual descriptions discarded by traditional models. The possible improve-

ments that can be made in future research are also described in this chapter.
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CHAPTER 1

INTRODUCTION

With the development of computer technologies, such as machine learning and

artificial intelligence, many researchers and scientists have devoted themselves to

finding a way for machines to read and understand human language. To achieve

this goal, a subfield of computer science, artificial intelligence, and linguistics,

known as Natural Language Processing (NLP), was introduced to process human

language. Generally, tasks and challenges in NLP involve text mining, natural

language understanding, natural language generation, and speech recognition.

Converting information to text is one of the main methods used by humans to

store information that can be found in books, documents, reports, emails, web-

sites, etc. Analyzing this textual data may render helpful information for re-

searchers as well as to the general public. However, textual data is one of the

less exploited data types in the machine learning area, especially in actuarial sci-

ence related applications.

Traditional methods in actuarial science were built based on statistical and

mathematical concepts. It is difficult to process textual data directly by traditional

methods. Therefore, textual data was usually neglected in actuarial science. How-

ever, textual data contains hidden information which is useful when analyzing

limited data. Some NLP techniques, such as word embeddings that convert texts

into numerical vectors, could help to process textual data. Although these tech-

niques provide a solution to incorporating texts into traditional actuarial models,
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the models may not be able to handle the converted values like high dimensional

vectors. Unlike general high dimensional data, common dimension reducing tech-

niques are not appropriate for high dimensional vectors extracted from texts. To

process this high-dimensional data, machine learning models enhanced with NLP

techniques can be a good strategy.

The Bidirectional Encoder Representations from Transformers (BERT) is a

machine learning based NLP tool released by Google in late 2018 [12]. BERT

obtains new state-of-the-art results on many NLP tasks such as General Lan-

guage Understanding Evaluation (GLUE), as a pre-trained language representa-

tion model that requires fine-tuning to process different NLP downstream tasks.

In recent years, many BERT-Based Tools and applications have been developed

in different fields [58, 45, 16, 3]. For example, predicting a review helpfulness

score as an NLP task is quite challenging. There are many factors that determine

the helpfulness score of a review. Some of these are extractive information, such

as the overall star rating for each product obtained directly from the data, and

others are abstractive information like linguistic features that are more difficult to

extract from the review text. In [59], a neural network (NN) based model was

developed with BERT features, instead of explanatory variables, and was used to

rank the helpfulness of product review data collected by Amazon.com, using the

ratio of helpful votes to total votes for each review. This NN-based tool was used

to analyze the product review data by incorporating BERT features. The proposed

model predicts the helpfulness of customer reviews with a ranking score by ana-

lyzing the review text, its star rating, and the product type. The prediction should
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help consumers to make a better purchase decision.

There are some examples and opportunities for NLP applications that can be

found in the insurance industry [36]:

1. NLP has been used for applications of enhancing marketing strategies by insur-

ance companies. NLP models can help insurance companies to extract the topic

from texts or covert comments and feedback into structured data for sentiment

analysis.

2. During the policy renewal time period, text mining applications can help under-

writers to process a large number of policies to check for compliance and report

any changes. These applications provide better tracking for the underwriting pro-

cess, and may also be helpful for the insured to have more transparency during the

renewal period.

3. Analyzing and classifying claim textual data are two common NLP tasks in

actuarial analytics. It can reduce errors introduced by humans, and save time.

Also, NLP can help to detect insurance fraud through classifiers and predict losses

more accurately by incorporating information hidden in textual descriptions to the

model.

The textual analysis provides some new options, such as text mining, to pro-

cess the insurance data through different approaches for better results. Some re-

searchers indicate that text mining has potential in actuarial data analysis [32, 36].

It is important to choose an appropriate strategy to apply NLP to actuarial models.

Gee Y. Lee et al. introduced the applications of word embeddings incorporated
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with the generalized additive model which are extended from the generalized lin-

ear model [32]. In the applications, the authors extracted features from short tex-

tual descriptions of insurance claims. In 2020, Antoine Ly et al. mentioned in

their paper that some NLP tools could be useful in insurance analytics and intro-

duced several popular NLP techniques such as Word2Vec, Doc2Vec, and BERT

[36]. The paper also emphasized that BERT could be a potential tool in insurance

data analysis based on its state-of-the-art performance in many NLP applications

[12].

This dissertation aims at applying text mining techniques in NLP for predic-

tive modeling in actuarial applications. BERT, as a newly developed NLP tech-

nique, is applied to different actuarial models for model enhancement and im-

provement, to enhance traditional statistical or mathematical models that only use

numeric inputs. The dissertation is organized as follows. Chapter 2 is the intro-

duction of relevant NLP techniques. The next chapter describes an application

of the BERT-enhanced aggregate loss model on extended truck warranty data.

The BERT model in Chapter 3 increases the robustness via the BERT-modified

severity using textual data. In Chapter 4, several new approaches to data-based

portfolio modeling are discussed. The BERT-enhanced portfolio model improves

the multi-class classification accuracy to get a better prediction. Chapter 5 is a

summary and conclusion; it also suggests future avenues for work.
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CHAPTER 2

PROGRESS ON NLP, BERT-TOOL, AND APPLICATIONS

2.1 Introduction

Text is one the most widely used communication methods in human history.

It can be used to transmit and record information as textual data. Text mining,

also known as text data mining, is a field of data analytics that derives hidden

information from textual data. Textual data can be a document, a paragraph, a

sentence, or a single word. Generally, text mining is the process of converting

unstructured textual data which is difficult to be used in traditional mathemati-

cal or statistical models, to structured data such as numerical values that can be

easily used in those traditional models. Traditionally, unstructured textual data is

read and transformed into structured data manually by humans. However, these

kinds of processes can be expensive when analyzing a large-scale document with

thousands of words and sentences. With the evolution of computer technologies,

textual data is processed and incorporated into numerical data using machines.

The first extraction of information from text through the machine was in 1979 by

DeJong [11]. A probabilistic model to calculate the likelihood of each word given

its context was introduced by Bahl et al. in 1983 [5]. Semantic analysis, a common

task of NLP, was developed later in the 1990s by Grishman and Sundheim [19].

In their approach, the linguistic information was extracted using templates created

by humans. However, the manual templates were limited in many cases. With the
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growth of textual information due to the Internet, subsequently, researchers intro-

duced algorithms using HTML formatted text [2, 13]. According to [26, 36], two

of basic NLP tasks are:

1. Named entity recognition, which is a technique to extract values of common

names from text and can extend to the recognition of metric values.

2. Extraction of related information from words and their contexts.

Applying rules is a simple way to do named entity recognition. A rule is

applied for a detected pattern. It can be used to extract information from textual

data by regular expressions [52]. For example, a regular expression can help to

identify a name that follows the word ”Mr”. Rabiner developed one of the earliest

name entity recognition algorithms using probabilities in 1989 [47]. In 1997,

Bikel et al. introduced another statistical model to identify the role of each word

in a given document [8]. This statistical model is similar to some text mining

techniques of modern NLP.

When processing textual data, some common words are not useful for mod-

eling due to their high frequency in documents. Therefore, some techniques are

essential to pre-process the textual data before modeling. One of the techniques

is to remove some connective words such as ”and”, some common words like

”the”, or suffixes like ”-ful”. Such words or suffixes may not be helpful for under-

standing the meaning of sentences. Another technique is to split a document into

several pieces of sentences or words, a process called tokenization. Many modern
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NLP techniques involve tokenization as the essential pre-processing step to ana-

lyze the textual data piece by piece. In 2016, the WordPiece tokenization method

[56] was developed using machine learning techniques to split words into smaller

pieces to retain suffixes. The WordPiece tokenization is trained on a large-scale

corpus to tokenize words and sentences efficiently.

After the tokenization, textual data needs to be transformed into numerical

values in order to be used by mathematical or statistical models. One technique,

word embeddings, converts textual data into vectors with numerical values that

can be incorporated with other numerical data [32, 60].

2.2 Word Embeddings

It is difficult to analyze textual information directly by machine learning. In

order to understand the language, the converted vectors are required to contain not

only the information of each word but also the relations with the corresponding

context. In 2003, Bengio et al. developed a large-scale language model based on

neural networks. The model processed the text as an unsupervised learning task.

The main idea of the model was the transformation of raw words into words vec-

tors, known as word embeddings. Word embeddings are vector representations of

words as numerical values through a mapping [54]. The input of the mapping is

a set of non-duplicated words from the original text, called a dictionary. The out-

put of the mapping is the vector representations of the corresponding words from

the input. After the mapping is implemented, the textual data can be processed
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by machine learning models. The fundamental method of word embeddings is

bag-of-words (BOW) introduced in 1954 by Harris [21]. The BOW method rep-

resents the frequency of each word in each sentence of the given document. This

representation is simple, but there is no semantic difference between each word.

For example, the word ”bank” has multiple meanings in reality but has not in its

embeddings. Generally, there are two types of word embeddings [6]:

1. Models that use word counts or frequencies information are called count-based

models.

2. Models based on the context information and usually incorporated with neural

networks are named prediction-based models.

2.2.1 Count-based Models

Count-based models process words by collecting word counts or word-context

co-occurrence counts in a corpus (a large and structured set of texts produced in

a natural communicative setting that can be read by machines). The basic idea of

early count-based models is to build count vectors that represent the frequencies

of words from the dictionary of a given corpus. This idea is simple, but some

common words like “a” or “is” may have a very high frequency in those count

vectors. To solve this issue, term weighting-based schemes were introduced by

researchers, including term frequency [34], inverse document frequency [27], and

term frequency-inverse document frequency [50]. The term frequency, tf(w, d),
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of word w in document d can be defined as:

tf(w, d) =
numeber of times that w appears in d

total number of words in d
(1)

The inverse document frequency idf(w, d) can be defined as:

idf(w, d) = log(
number of sentences in d

number of sentences in d containing w
) (2)

And the term frequency-inverse document frequency Tf -Idf is obtained by mul-

tiplying tf(w, d) and idf(w, d). These term weighting-based approaches can de-

crease the weights of common words in articles. Count-based models that lever-

age word-context were introduced by Deerwester et al. in 1990 [10]. These count-

based models incorporated word-context by implementing co-occurrence matrices

used widely in NLP research. One of the more recent count-based word embed-

ding models is Global Vectors for Word Representation (GloVe), which was re-

leased by Pennington et al. in 2014 [43]. GloVe obtains vector representations

of words by global word-word co-occurrence statistics, which tabulates how fre-

quently a word co-occurs with another word in a given corpus via an unsupervised

learning algorithm. The main idea of the GloVe model is that ratios of word-word

co-occurrence probabilities can help to encode some form of meaning.
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2.2.2 Prediction-based Models

With the development of machine learning algorithms, prediction-based em-

bedding models are more popular. The first prediction-based model was intro-

duced with artificial neural networks in 2003 [7]. The model applied word em-

beddings in its first layer of artificial neural networks. An artificial neural network

is an information gathering and processing model which has a similar structure to

a biological neural system. Therefore, artificial neural networks can learn through

examples. Generally, artificial neural networks have multiple layers to transmit

and process the information of inputs, including an input layer, several hidden

layers, and an output layer. In 2010, Mikolov et al. used a Recurrent Neural

Network (RNN) as an optimized way to train a language model. RNNs are a

standard type of neural network that can be extended over time and is designed

to process sequences such as texts, through cycles in its structure which can pass

the historical information from the sequences. The general idea of using RNNs

is to store and pass information of earlier words in the text in the hidden layers,

which can help the model to analyze texts among long sentences. Due to their

structures, RNNs have limitations when dealing with long sequences of words.

One of the main tasks of prediction-based models is to speed up and improve the

accuracy of training processes. Mikolov et al. proposed two models for training

embeddings called the continuous skip-gram and bag-of-words (CBOW) models

in 2013 known as Word2Vec [38, 40]. The two models defined a context window

C of size k on anywhere of a sentence of size n, where k ≤ n. The skip-gram

model predicts the surrounding context from the central word in C. The CBOW
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model predicts the central word based on its context in C. The two models used

neural networks in their training step and built relations between words and corre-

sponding contexts [39]. In 2014, Mikolov and Le extended the Word2Vec model

to the Doc2Vec model by adding a new embedding that can map a paragraph to

a vector [30]. The vector is called a paragraph vector and represents the informa-

tion, such as the topic, of the paragraph from its context.

2.3 Transformers

There are some problems when using Word2Vec models. One of the main

problems is that the relations of words within the model are purely statistical and

contain only spatial proximity. To obtain more complex relations, many tradi-

tional language models are based on neural networks, such as RNNs and convolu-

tional neural networks (CNNs), as their encoder-decoder mechanism. A CNN is

one type of neural network which can extend across space through shared weights

[1]. However, RNNs have difficulties in handling long sequences and CNNs can

be time-consuming when processing large scale of textual data. In order to im-

prove efficiency, Google researchers proposed the transformer model based on the

attention mechanism [55] in 2017. The transformer model can function like a hu-

man brain by giving attention only to the most important information. The model

is designed to reduce the cost of the training stage and increase the accuracy of pre-

dictions without either traditional RNN or CNN structures. Bidirectional Encoder

Representations from Transformers (BERT) is a transformer-based NLP tool re-
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leased by Google in late 2018 [12]. Many researchers have shown that BERT can

process product review data with high accuracy, working alongside reading com-

prehension and aspect-based sentiment analysis [45, 16]. Recently, many NLP

task-related types of research are running with BERT-based models [44, 23, 3].

2.3.1 BERT

BERT is a language model trained on a large corpus that allows fine-tuning

for specific tasks. It was developed by Jacob et al. in 2018. It enables outstanding

results on many NLP tasks such as General Language Understanding Evaluation

(GLUE), Natural Language Inference (NLI), Corpus of Language Acceptability

(CoLA), etc [12]. The general idea of BERT is to pre-train the language model

by using large-scale corpora in a transformer model [55]. Pre-trained represen-

tations can be either contextual or context-free. The contextual representation

can be bidirectional and unidirectional. Context-free models such as GloVe and

word2vec create a single word embedding representation for each word from the

document, regardless of its context. Contextual models, on the other hand, create a

representation of each word based on the context. The bidirectional representation

uses both the left and the right context for each word, and the unidirectional repre-

sentation uses only the left or the right context. The BERT model is trained bidi-

rectionally through multiple layers using transformer neural networks. It learns

the words and their contexts during pre-training. Then, the BERT model can be

used to learn some specific details for the given textual task during fine-tuning.

The model tokenizes its input using WordPiece [56] as its word embedding.
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The WordPiece tokenization is applied before pre-training and fine-tuning for

the model:

1. A special token [CLS] is added before each sequence.

2. Another special token [SEP ] is used for sentence separation.

3. All inputs are tokenized based on a large vocabulary using WordPiece tokeniza-

tion [56] as token embeddings. The WordPiece tokenization can split a sentence

or a word into small pieces. The sentences or the words with similar pieces have

a similar meaning or a strong relation.

4. In order to represent that a word belongs to a specific sentence in the text, seg-

ment embeddings are applied to every token.

5. Positional embeddings are also applied to show the location of the word in the

given text.

During pre-training, BERT is trained using a large plain text corpus such as

Wikipedia and is structured by combining several encoders extracted from trans-

formers. The bidirectional encoder architecture is pre-trained with two main tasks

[12]:

1. Masked Language Modeling, is a process that replaces about 15% of the orig-

inal words by [MASK] tokens. The model can then be trained to predict the

masked words.

2. Next Sentence Prediction, as a classification problem, is used to train a model
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to predict whether one sentence follows another, given two sentences.

The goal of pre-training is to learn the language by minimizing the loss func-

tions for these two tasks. The pre-trained BERT can go through fine-tuning to

solve downstream tasks using its learned language. The input and output of fine-

tuning are specific to the downstream task. In this dissertation, the inputs are

textual descriptions from the data sets and the outputs are the extracted vector

representations that can be exploited using neural network models.

BERT has showed its adaptivity for multiple end tasks by optimizing differ-

ent fine-tuning processes [44, 23]. BERT is useful for multiple downstream tasks

without changing its pre-trained language model. Compared to other language

methods, BERT has better prediction accuracy in many different downstream

tasks, especially those that feature extraction-related tasks. BERT has two pri-

mary model sizes with different parameters:

BERTBase: 12 layers, 768 hidden dimensions, 12 self-attention heads and 110

million total parameters.

BERTLarge: 24 layers, 1024 hidden dimensions, 16 self-attention heads and 340

million total parameters.

In 2020, 24 smaller BERT models that referenced were released [53]. The re-

leases of smaller BERT models were intended for some environments with limited

computational resources.
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BERT is a powerful and popular NLP tool that is already used in different tasks

by many NLP researchers. For example, Ly et al. introduced the NLP techniques

and emphasized that BERT is a potential tool for insurance data analysis in 2020

[36]. In this dissertation, the BERTBase model will be used in extended truck

warranty and basic truck warranty actuarial science studies.
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CHAPTER 3

BERT-BASED LOSS SEVERITY PREDICTION MODEL FOR

EXTENDED WARRANTY DATA ANALYSIS

3.1 Introduction

Traditional probability and statistical based models on aggregate claim data

are widely used in risk assessment, loss reserving, and rate-making [48, 15, 51,

18]. However, these aggregated models may neglect information such as indi-

vidual claim details [57]. Nowadays, many actuaries are seeking new methods

through machine learning techniques to process claim data [57, 29]. By applying

machine learning based methods, the information not considered in traditional

models can be used in processing [57, 29, 46, 42]. Machine learning based meth-

ods such as Decision Trees and Neural Networks [57, 46], are used to process

large-scale structured information. In the last two decades, many machine learn-

ing models have been developed by actuaries to process data in insurance analytics

[57, 42].

Machine learning tools can help actuaries achieve many goals, including fraud

detection and predictive modeling. By applying these machine learning based

methods, complicated models that incorporate more information such as depen-

dencies can be considered. For example, traditional aggregated models for deter-

mining premium rates, also called rate-making, are based on the independence of

loss frequency and severity. These models are not reliable without the indepen-
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dence assumption. Actuaries developed a generalized linear mixed model which

incorporates the dependency of frequency and severity [15, 20, 17, 25]. Machine

learning techniques are implemented not only for loss reserving and rate-making

but also for multiple actuarial tasks such as survival analysis [42, 35, 28]. Thus,

machine learning based methods is becoming more popular in actuarial analytics

[29, 33].

In insurance analytics, text information was formerly utilized only for de-

scriptive purposes. It was difficult to exploit text directly by traditional methods

without pre-processing. However, these textual data may contain hidden infor-

mation which can contribute to better actuarial analysis for loss reserving and

rate-making. By using word embeddings, actuaries can apply hidden textual in-

formation in modeling. There are very few applications in insurance analytics that

use word embeddings. G.Y Lee et al. developed a generalized additive regres-

sion model for the Wisconsin Local Government Property Insurance Fund data,

to show how to improve insurance claims management and risk mitigation proce-

dures in 2019 [32]. Just like the application by G.Y Lee et al., NLP techniques

have demonstrated reliability and accuracy in other research areas [41, 13, 56].

In 2019, we applied a Bidirectional Encoder Representations from Transform-

ers (BERT) model for a predictive task dealing with product review helpfulness.

Thus, we believe these NLP techniques can also be implemented in insurance

analytics.

BERT is a language representation model that can be fine-tuned for various

tasks. As of 2020, it obtains new state-of-the-art results on many NLP tasks such
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as General Language Understanding Evaluation (GLUE), Natural Language Infer-

ence (NLI), Corpus of Language Acceptability (CoLA), etc [12]. In this chapter,

we describe a BERT-based model for loss severity prediction by incorporating

textual information found in claims and repair records of truck warranties.

3.2 Description of Data and Data Pre-processing

In this chapter, a general strategy is described to process raw textual data. The

strategy provides a solution for developing a traditional actuarial model incorpo-

rating textual information processed by BERT.

The dataset in this chapter was collected from extended warranty policies with

coverage of 4 years. The dataset was extracted from a raw data set and was then

expanded via simulation for actuarial modeling. The dataset contains each truck’s

warranty contract policy information (contract table), and claim details created

over a 5-year period for warranted trucks (claim table). The data in the claim table

includes textual descriptions that explain the causes of truck failures. Attributes

in the contract table and the claim table are listed in Table 1 and Table 2.

There are 7,557 claim records contained in the dataset. In this study, the data

was split into training and testing sets using Scikit Learn, a machine learning

tool in Python for data splitting, with 60% for training, 40% for testing, and no

overlapping data among the two datasets.

Furthermore, some addtional pre-processing was added to the claim table for

machine learning. Claim records with missing values were removed, and extreme
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cases with abnormal values, for example, multiple repairs in one claim, were also

removed.

Some attributes of the tables are explained as below:

Attributes Description

SERIAL NO. Each truck has a unique serial number as its identification

MODEL There are several different models for trucks

BUILD DT Truck-built date

PLCY NM Policy name

WARR START Warranty started date

WARR END Warranty ended date

CVRG TYPE Coverage type

Table 1: Attributes in Contract Table
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Attributes Description

SERIAL No., MODEL,
BUILD DT, and CVRG TYPE as same as Contract table

CLAIM Each claim record has a unique number

FAILDAT Truck failed date

REPADAT Truck repaired date

DEFECTDESC Short description of cause of failures (No more than 5 words)

GROUPDESC Group of troubles and failures

COMPLAINT Complaint from customers

CAUSE Detailed description of cause of troubles and failures

CORRECTION Detailed description of repair

LABORPD Paid amount for labor

PARTSPD Paid amount for broken parts

OTHERPD Paid amount for other expenses

TOTALPD Total paid amount

Table 2: Attributes in Claim Table
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The COMPLAINT, CAUSE, and CORRECTION attributes are textual de-

scriptions with long sentences or paragraphs.

In the raw data, limited useful information is available for building traditional

prediction models. Many of the non-textual information seem to have no direct

relation to the total loss amount. Therefore, NLP techniques are used to extract

features to build the prediction model.

3.3 BERT-based Aggregate Loss Model

The aggregate loss model, which was built to predict the future loss based on

the frequency distribution of claim counts with contracts and severity distribution

of claim records, is described in this section.

3.3.1 Aggregate Loss Model

In insurance industry data, N usually represents the number of losses to the

insured who is a person or entity buys insurance. X represents the claim payments

of the insurer (an insurer is an entity that provides insurance). X can also repre-

sent the claim payment of the reinsurer, an entity issuing the reinsurance policy

(Reinsurance is insurance that an insurance company buys from another insurance

company to reduce the risk of claims), or the deductibles paid by the insured. In

this chapter, N refers to the claim count random variable. The distribution of N

is the claim count distribution, known as the frequency distribution. X refers to

the individual loss size random variable and its distribution, known as the severity
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distribution.

The aggregate loss model is used to predict total loss payments by insur-

ance companies. The model is based on the number of historical claims and the

amounts of each claim as its random variables. Generally, there are two ways to

model the number of total losses on all claims that occurred in a specific time

period with a set of insurance contracts.

The first is the collective risk model that is usually applied to independent and

identically distributed (i.i.d.) observations. The collective risk model represents

the aggregate losses by a sum S of individual payment amounts X1, X2, X3,...,XN

with a claim count random variable N :

S = X1 +X2 +X3 + · · ·+XN , N = 0, 1, 2, ..., (3)

In this equation, S = 0 when N = 0. The independence assumptions of this

model are:

1. X are independent and identically distributed random variables conditional

on N = n.

2. The common distribution of X does not depend on n, conditional on N = n.

3. The distribution of N is independent of the values X1, X2, X3,...,XN .

The second model is the individual risk model. This model represents the

aggregate loss amount as a sum S of n insurance contracts. The loss amounts of
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contracts are random variables X , which are assumed to be independent but not

necessarily identically distributed. The distribution of these random variables has

a probability mass at zero in general, which presents the probability of no loss

occurring on that contract. The individual risk model is used to calculate the total

losses of a set of insurance contracts. The model becomes a special case of the

collective risk model when X are identically distributed with the distribution of

N being the degenerate distribution of Pr(N = n) = 1.

The distribution of total losses S is determined by the distribution of random

variable N and the distribution of random variable X . Usually, the frequency

and the severity of claims are modeled separately by using this approach. An

alternative approach of total loss S is to obtain the distribution of S simply by

information that directly comes from S. Modeling S separately by using the dis-

tribution of N and the distribution of X has its applications, such as changing

individual deductibles. Policy limits can be implemented easily by modifying the

details of the severity distribution. The impact on claims frequency of changing

deductibles can be better observed using this approach.

Let S denote aggregate losses associated with a set of observed claims X1, X2,

X3,...,XN with the number of claims N . The model is designed in three steps:

1. Build a model for the distribution of N based on the data in the contract ta-

ble as the frequency model.

2. Develop a model for the distribution of X based on the data from the claim

table as the severity model.
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3. Estimate the expected value of S by using the frequency model and severity

model.

The total expected loss amount E(S) is measured by the multiplication of the

expected frequency E(N) and the expected severity E(X).

E(S) = E(N)E(X) (4)

The frequency distribution of the contract data is determined by fitting a neg-

ative binomial distribution based on the shape of the histogram (Figure 1). The

frequency is listed in Table 3. The sample mean is 1.55166 and the sample vari-

ance is 6.19509. A Poisson distribution is not considered, since there is a large

difference between mean and variance. The probability mass function of the neg-

ative binomial distribution is:

Pr(N = n) = (

(
n + r− 1

r− 1

)
)pr(1− p)n, for n ≥ 0, 0 < p ≤ 1 (5)

Where r is the number of successes, n is the number of failures, and p is

the probability of success. The fitted distribution is showed in Figure 1. The

red curve is the optimization with smallest errors when r = 0.872801 and p =

0.391902 (Green: r = 1, p = 0.391902;Blue: r = 0.556025, p = 0.391902). The

parameters r and p are estimated using Maximum Likelihood Estimation (MLE).
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Number of claims
for each contract Frequency

0 1233
1 509
2 299
3 162
4 105
5 59
6 59
7 32
8 38
9 21
10 16
11 7
12 8
13 3
14 4
15 0
16 6
17 1
18 1
19 0
20 1
21 0
22 1

Table 3: Frequency Distribution

(a) Frequency

Figure 1: Fitted Negative Binomial Distribution for Frequency by Three Set of
Parameters
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In this study, BERT is applied to process textual data via a fine-tuning step.

In order to incorporate BERT appropriately, one approach is to predict the loss

amount for each test data directly through a regression model. We previously de-

veloped a model to automatically assign the review helpfulness score using the

information extracted by BERT from review comments [59]. Similar to the scor-

ing model, BERT can help adjust losses by predictions using regression. Alter-

natively, another different approach provided in this chapter is to rescale severity

levels, based on the loss amount, to fit a severity distribution by its histogram for

the aggregate loss model. In Table 4, the severity is mapped to a 10-value scale

with a likelihood of gamma distribution on its histogram. By this pre-processing,

the BERT model can be utilized to map the rescaled severity levels to fit a new

gamma distribution. The definition of the severity level follows several rules:

1. An appropriate number of divided subsets is required for the severity distribu-

tion. A smaller number may improve the accuracy of the BERT model to predict

the severity but will also increase errors from the fitted distribution since a distri-

bution generated by a few points may be too rough for fitting. On the other hand,

a larger number can result in a better fitting but may increase the predictive errors.

Hence, a 10 to 15 value scale was deemed reasonable. In this chapter, a 10 value

scale is selected.

2. Different widths for each severity level may result in different shapes of his-

tograms. The widths are modified intentionally to generate a gamma-like his-

togram for better fitting in this chapter. Other values for different distributions
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can also be considered.

3. For each divided subset of severity, the losses are assumed to be distributed

uniformly for a simple calculation of the average. The average severity for each

subset can be used to measure the expected severity for the 10-value scale severity

system.

Loss amount(X) Severity level(L)

0 ≤ X<100 1

100 ≤ X<200 2

200 ≤ X<300 3

300 ≤ X<500 4

500 ≤ X<700 5

700 ≤ X<1200 6

1200 ≤ X<1700 7

1700 ≤ X<2600 8

2600 ≤ X<3600 9

3600 ≤ X 10

Table 4: 10-Value Scale Severity Level

The gamma distribution with parameters alpha and beta is given in Equation

(6):

f(x;α, β) =
βαxα−1e−βx

Γ(α)
(6)

Where α is the shape parameter and β is the scale parameter.

In the severity model, the BERT-modified severity levels are generated from

the textual description data from the claim table, using the BERT NLP tool. The
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(a) Severity (b) BERT-modified

Figure 2: Fitted Gamma Distribution for Severity

BERT model helps to extract hidden information from text via its context, and

converts it by modifying the original severity level to the BERT-modified severity

level by feeding it through a neural network. The process of generating BERT-

modified severity levels is the focus of this chapter.

3.3.2 BERT-based Severity Level Model

In the previous section, the BERT-modified severity level was introduced. The

proposed model uses BERT to extract features from the raw textual data. The

dimension (length of the converted vector) of extracted features is high and may

not be useful without BERT since the extracted features are difficult to read in raw

form. Thus, BERT-based neural networks are built to apply the extracted features

as the strategy in this study.

During the fine-tuning process, a neural network is formed by incorporating

the BERT pre-trained model with one additional output layer to generate the mod-

ified severity by regression. The input to the neural network model is a vector that
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contains the extracted BERT features from the CAUSE column, the DEFECT-

DESC column, and the GROUPDESC column. The output of the neural networks

model is the modified 10-value scale severity. The model is built as:

L̂ = f(wT
1 x1 + wT

2 x2 + wT
3 x3 + b), (7)

Where L̂ is the modified severity, f is the activation function, w1, w2 and w3 are

vectors of weight of specific terms x1, x2 and x3. The length of w1, w2 and w3

are determined by the length of the corresponding input x1, x2 and x3. In this

test, x1 are the extracted features by BERT from the CAUSE column, x2 are the

BERT features from the DEFECTDESC column, and x3 are BERT features from

the GROUPDESC column. b is a bias vector. The BERT-modified severity is

generated through the neural network trained on the 10-value scale severity level.

The input of the NN are elements in x. For each element in x, it multiples the

corresponding weight in the hidden layer. The bias b is added to this. The output

of the NN is the summation of outputs that come from the activation function.

The loss function of the model is measured by mean squared error (MSE)

between the 10-value scale severity level Li with the BERT-modified 10-value

scale severity level L̂i :

MSE =
1

n

n∑
i=1

(Li − L̂i)
2, (8)

The goal of fine-tuning is to minimize the loss function. The procedure of the
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BERT based severity level model is listed as follows:

Model 1 BERT-Based Severity Level Model
Require: Textual data xi1, xi2, xi3 and xj1, xj2, xj3, original severity Xi and Xj

Ensure: Parameters of gamma distribution α̂, β̂ and α, β
1: Split data into training set with size of m, and testing set with size of n
2: for j = 1 to m do
3: Lj ← 10VALUESCALE(Xj)
4: end for
5: for j = 1 to m do
6: Train BERTSEVERITY model using xj1, xj2, xj3 as its input and Lj as

its output
7: end for
8: for i = 1 to n do
9: Li ← 10VALUESCALE(Xi)

10: end for
11: for i = 1 to n do
12: L̂i ← BERTSEVERITY(xi1, xi2, xi3)
13: end for
14: α, β ← MOMENTMATCH(Li)
15: α̂, β̂ ← MOMENTMATCH(L̂i)

3.3.3 Fine-tuning

Several different sets of hyper-parameters were tested to archive the best re-

sult. The tested values of hyper-parameters are listed in Table 5.

The parameter max seq length specifics the lengths of input tokens are used

to train the model. The train batch size is the number of samples processed

before the model is updated. The adjusted value of max seq length was 192 and

train batch size was 16.
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Hyper parameter

max seq length 96, 128, 144, 192, 256

train batch size 8, 16, 32

Modeltype BERTBase

Optimizer Adam

Table 5: Fine-tuning hyper parameters

3.4 Results

In the aggregate loss model, the BERT-based model is applied in order to

improve the performance of predicting results of severity. In this study, an exam-

ination is designed to test the robustness by comparing the standard deviation of

means and variances from multiple tests.

3.4.1 Validation and Test

To examine the robustness of the BERT-modified severity level model, a group

of tests was designed. We created 10 subsets by randomly selecting 90% of the

original data. Each subset contains 90% records with both original severity levels

and BERT-modified severity levels.

For each subset, we fitted two gamma distributions with parameters and cal-

culated the mean α/β and variance α/β2 of the distributions for both the original

severities and the BERT-modified severities. The average of the means, variances,

and standard deviations of the 10 tests were then calculated. A example of fitted

distribution is showed in Figure 2 (α = 6.0691, β = 1.3117 for defined sever-
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ity level; α = 7.4716, β = 1.5536 for BERT-modified severity). More detailed

severities for 10 tests is listed in Table A.1 and Table A.2. The graphs of fitted

distribution are shown in Figure 3-5.

Mean Mean Variance Variance
(Pre-defined) (BERT-modified) (Pre-defined) (BERT-modified)

test1 4.619321 4.800765 3.529984 2.400382
test2 4.625349 4.810426 3.518216 2.405213
test3 4.627702 4.807969 3.527620 2.403985
test4 4.627555 4.803411 3.512953 2.401706
test5 4.623438 4.807381 3.520162 2.403691
test6 4.620791 4.801206 3.528455 2.400603
test7 4.615792 4.798559 3.520227 2.399280
test8 4.638583 4.818409 3.534133 2.409205
test9 4.631084 4.812233 3.522627 2.406117

test10 4.621085 4.804293 3.519267 2.402147

average 4.625070 4.806465 3.523364 2.403233
std.dev. 0.006565 0.006068 0.006465 0.003034

Table 6: Average and Standard Deviation of 10 Tests

The results in Table 6 show that the standard deviation of the mean value of

BERT-modified severity is close to the value of the original severity level, and the

standard deviation of BERT-modified severity is 7.57% lower. The standard de-

viation of variances is slightly different, the standard deviation of BERT-modified

severity is 53.07% smaller. The difference in the standard deviation of the vari-

ances shows the BERT-modified severity is more stable when data changes.

In Table 7, the value of E(S) is the predicted loss of a single contract. The

expected severity E(X) is calculated using the 10-value scale under uniformly
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E(N) 1.354287 Var(N) 3.4556747

E(X) 631.1294 Var(X) 144498.6

E(X)(BERT) 678.2765 Var(X)(BERT) 97673.2

E(S) 854.7303 Var(S) 1572172

E(S)(BERT) 918.581 Var(S)(BERT) 1722091

Table 7: Predictive Results

distributed assumption and the fitted gamma distribution. For example, if the

mean of the fitted gamma distribution is 4.655647, then the expected severity

E(X) can be determined using the equation: (4.655647 − 4) ∗ (700 − 500) +

500 = 631.1294. The total predicted loss amount for 2,565 contracts in the test

set is 2,192,383 by original severity, and 2,356,160 by BERT-modified severity.

Compared to the real loss amount 2,437,637 from the data, the predicted losses

using BERT enhanced model are closer to the true losses.

Overall, the test results from the data show that the aggregate loss model en-

hanced by BERT results in a better prediction. From the comparison of their

standard deviations, the BERT enhanced aggregate loss model has better stability

(standard deviation) than the original aggregate loss model on the different data

sets (Table 6). The result supports the strategy proposed in this study applying the

BERT NLP tool to a traditional actuarial model.
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CHAPTER 4

BERT-Based Model Enhancement on Portfolio Allocation Method in Basic

Warranty Data Study

4.1 Introduction

In a recent MS Thesis research project on basic warranty data study, completed

by C.L. Zhang [61], the loss payment data was divided into groups and multi-class

logistic regression classification algorithms were applied to determine the proba-

bilities to achieve a more precise prediction on the total loss for the policy. Along

this research direction, we first formulate the model as the data-based portfolio

allocation model, then propose a BERT-based model enhancement, using textual

information in the claims and repair records, to achieve better prediction accuracy

and stability. The model enhancement involves a neural network classifier to clas-

sify the claim payment portfolios. The BERT-based severity model discussed in

the previous Chapter is also applied to portfolio distribution modeling. Portfolio

variances are calculated for further analysis of the model.

Traditionally, portfolio allocation is an investing strategy that helps determine

what percentage of assets should be in diversified investments to optimize the

risk-return trade-off. Modern portfolio theory (MPT) was developed by Nobel

Laureate Harry Markowitz [37] aiming to minimize market risk and maximize in-

vestors’ returns by creating efficient weighted percentages for portfolios, based on

the calculation of their variances and correlations to result in lower total variabil-
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ity. In [22], advanced data science methods were applied to improve MPT and to

efficiently compute a solution of portfolio criterion. Leveraging this emulator, we

first introduce a data-based portfolio model for the product’s manufacturer basic

warranty data study, then apply a recently developed natural language process-

ing (NLP) tool called Bidirectional Encoder Representations from Transformer

(BERT) to incorporate textural information for the model enhancement.

Many traditional models for loss prediction and reserve evaluation may ne-

glect information such as individual claims’ details [57]. In products’ manufac-

turer basic warranty data, the payment records can usually be divided into different

groups, based on payment types. For example, under a basic warranty for mov-

ing trucks, the payment dataset consists of information including the truck model,

number of claims, each claim’s loss amount (usually the insurance payment), loss

descriptions, payment types, and payment amounts, among others. During the in-

sured period, a basic truck warranty covers most losses of a new truck, within a set

time period from the truck’s sell date. Each payment to truck warranty claim can

be divided into three groups: labor payments, parts payments, and other payments

(such as coverage of towing services). Analogous to the risk probability and re-

turns in investments, loss payments can be classified according to the payment

nature and corresponding severity level. A data-based portfolio predictive model

that efficiently computes weighted percentages associated with loss severity val-

ues of corresponding classified loss payments can be important and very practical

when determining basic warranty policies.

The first task of this chapter is to formulate a data-based portfolio predictive
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model through the basic warranty data study. First, the multiple-class logistic

regression model was used to predict the probabilities that a given observation

belongs to in its corresponding portfolio, where the parameters of the model were

fitted by the training data. Then, for each portfolio, the mean payment amount can

be calculated or estimated using training data. The predicted total payment is cal-

culated by using the total expectation formula. This method is easy to implement

and yields satisfactory prediction accuracies.

With the goal of incorporating textual information to enhance the data-based

portfolio model, the second task in this chapter is to develop a BERT-based clas-

sification algorithm to achieve efficient computing of the probabilities associated

with portfolio allocations of loss data.

The remainder of this chapter is organized as follows. Section 4.2 gives a de-

scription of the data and data-based portfolio modeling. Detailed procedures of

the model with the logistic classification algorithm for the model are presented in

the following section. In Section 4.4, the BERT-based classification for model en-

hancement is discussed. Also, BERT-based severity modeling method is applied

to estimate the portfolio loss distributions for a possible even more precise pre-

diction of aggregate losses. Portfolio variances are calculated for further analysis

and reference. Conclusions and final remarks are included in the final section.
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4.2 Description of Data and Data Pre-processing

4.2.1 Data Explanation

The dataset in this chapter is based on trucks under a 2-year basic warranty

policy that was extracted from the same raw data set as that used in the previ-

ous chapter and was then expanded via simulation for actuarial modeling. The

dataset, collected over a 5-year period, contains each truck’s warranty contract

policy information and claims details for warranted trucks. In the claim table, the

total loss amount for each record contains 3 categories: parts-payments, labor-

payments, and other-payments. In many cases, the amount of labor-payments in

a claim record are relatively small compared to the parts-payments. The category

of other-payments consists the payments that do not belong to parts or labor, e.g.

towing services. The data include textual descriptions that explain the causes of

truck failures. Attributes in the claim table are listed in Table 8.

The dataset is composed of 11,742 claim records. Similarly, the data was split

as what we did it chapter 3 by Scikit Learn package in Python for data splitting

with 60% for training, 40% for testing and no overlapping data among the two

datasets.

There are several features of a basic truck warranty policy which make it dif-

ferent from a general auto insurance policy, with challenges requiring the appli-

cations of different techniques for rate-making. Due to the newness of trucks, the

maintenance cost is the most significant portion under a basic warranty. Also, for

the basic warranty loss severity consideration, identifying the risk stemming from
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Explanatory Variable Description

Model
Alphanumeric values of truck models
that categorized in different models.

Defect Code
Numeric value as the cause of the failure,
categorized in 73 values.

Cause Description Textual data as the description of the failure.

Hour Meter Numeric value of the truck driven time.

Deal to Fail
Numeric value that shows the time difference
between the shipped date and the failure date.

Labor Payment Numeric value of labor payment.

Parts Payment Numeric value of parts payment.

Other Payment Numeric value of other payment.

Total Payment Numeric value of total payment.

Table 8: Explanatory Variables in Simulated Data

the driver is not as important as it is under general auto insurance policies.

Compared to the truck extended warranty data, the truck basic warranty data

have some characteristics, such as shorter time periods, larger sample sizes, and

more similarity on trucks’ conditions. A truck basic warranty usually has up to 2

years of coverage, and all of the trucks in the basic warranty data were brand new

when purchased. The data size of the basic warranty is obviously larger than the

extended warranty for the same model of trucks.

In the truck basic warranty data, the records of payments can be divided

into four different groups based on the different types of payments [61]: labor-

dominant (LD), parts-dominant (PD), other-dominant (OD), and none-dominant

(ND) payments. There are several interesting phenomena in the data observa-
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tions of PD-payments. First, the total payment amount will always be relatively

large. Second, the main source of total payments is from the cost of parts. Third,

the parts-payment not only has the largest mean value among other types of pay-

ments, but it also has the largest standard deviation. The initial thresholds to

classify the payments are 75%, i.e., the ratio of parts-payment to total payment

is 75% or above defines the PD-payment group. The classes of LD-, OD-, and

ND-payments are selected similarly. The class of PD-payments always has a high

mean value and a large variance. This feature is similar to the investment scenar-

ios with a high average return rate and a high volatility in modern portfolio theory

(MPT). Therefore, we would like to classify the loss claims of different portfo-

lios and apply the portfolio allocation strategy to predict aggregate loss with small

variance. For this purpose, the multi-nomial classification will play an important

role in determining corresponding probabilities, especially with portfolios having

both a high mean value and a large variance.

4.2.2 Data Exploratory Analysis

Table 9 shows the summary (from the original work), for the 5 data classes

with mean value information regarding the TOTAL PAYMENT from the entire

training dataset and its corresponding four subsets, namely labor-dominant (LD),

parts-dominant (PD), other-dominant (OD), and none-dominant (ND) groups [61].

In the next section, the other predictors in the multi-nomial logistic classifi-

cation algorithm include explanatory variables from DEAL TO FAIL, DEFECT

CODE and SALES MODEL.
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Dataset Min. Q1 Median Mean Q3 Max.

ND 18.23 228.79 293.76 353.87 416.18 3153.95

LD 8.86 72.00 84.00 105.69 99.00 1238.08

PD 2.02 706.10 955.31 1085.73 1311.56 6849.83

OD 32.87 147.81 173.07 216.04 205.81 1261.42

Total 2.02 171.79 293.69 495.72 646.57 6849.83

Table 9: Quantiles and Mean Values of TOTAL PAYMENT in 5 Data Classes
From the MS Student’s Thesis [C.L. Zhang, 2021]

4.3 Data-Based Portfolio Model

As we have seen from the previous discussion, it is essential to compute the

probabilities corresponding to each portfolio of the payment data in order to pre-

dict the aggregate loss payment under a basic warranty policy. In this section, we

outline the portfolio allocation model with a multi-nomial classification algorithm.

4.3.1 Multiple-Class Classification

A classification problem identifies which group one or more observation be-

long to, given that there are two or more groups and each observation is from

exactly one of these groups. In statistics, the terminology of a so-called group

is class [24]. Multi-class classification has been widely used in handwriting and

speech recognition [31, 41, 14], text classification, and information retrieval [4, 9].

A typical k-classes multi-class classification problem can be defined as follows.

For a given data D in the form of {x1, x2, ..., xn, y1, y2, ..., yn}, and class labels
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L = {l1, l2, ..., lk} where li ̸= lj for any i ̸= j. x1, x2, ..., xn are the inputs, and

y1, y2, ..., yn ∈ L are the output of labels.

There are several algorithms to perform classification. The outputs of a lo-

gistic regression are probabilities that each observation belongs to corresponding

classes. The outputs of some other algorithms, such as linear discriminant anal-

ysis (LDA), provide only the classes each observation belongs to. In this study

for portfolio probability calculation, multiple-class logistic regression is imple-

mented.

4.3.2 Data-Based Portfolio Allocation Model

In C.L. Zhang’s thesis, a multiple-class logistic regression model is applied

to predict the probabilities that a given observation belongs to one of the corre-

sponding groups (LD, PD, OD, and ND) [61]. The parameters are estimated by

the training dataset. To predict the mean payment amount for each group, some

advanced algorithms can be applied based on data distributions. We can simply

use the sample mean payment for each group and find the predicted total losses

using the weighted average formula:

E(T ) =
n∑

i=0

E(X|Yi)Pr(Yi) (9)

Where E(T ) is the expected total losses. E(X|Yi), for i = 0, 1, ..., n is the ex-

pected loss under Yi class with corresponding probability Pr(Yi). The probability

Pr(Yi), fori = 0, 1, ..., n can be determined by the classifier, and the conditional
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expected loss for each ith class E(X|Yi) can be calculated in various ways. In this

chapter, the term E(X|Yi) is simply estimated using sample mean.

4.3.3 Analysis Results

By using the multiple-class logistic regression/classification algorithm, we can

classify and estimate the probability of each payment in its corresponding group.

The classification results are shown in Table 12 and Table 16.

The prediction accuracy, the sum of true positive ratios, is 0.5284. Since the

losses from the PD group always have a higher mean value and a larger variance,

we pay more attention to this group. From the Table 12, we have 825
1267

= 0.6511

and see that more than 65% of claim payments in the records are correctly pre-

dicted.

Without using classification algorithm, for this particular test dataset, the to-

tal payment calculated by using initial group percentages for weighted average

yields the real aggregate payment amount: 2,301,937. In comparison, the pre-

dicted aggregate payment amount is 2,323,561 and prediction is 0.9394% more

than the real aggregate payment amount. The root mean squared error (RMSE) is

the measurement used to calculate the error of prediction:

RMSE =

√√√√ 1

n

n∑
i=1

(si − ŝi)2, (10)

The RMSE calculated based on the predicted total payment amount and the

real total payment amount is 483.4353.
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Experiment results also show that this model outperforms other general pre-

dictive models such as generalized linear model based on this dataset.

4.4 NLP-BERT Enhanced Portfolio Allocation Model

Traditional methods in actuarial science were built based on statistical and

mathematical concepts. It is difficult to process textual data directly by traditional

methods in general; therefore, textual data was usually neglected in actuarial sci-

ence. However, textual data can contain hidden information which may be useful

when analyzing limited data. Some NLP techniques, such as word embeddings

that convert text into numerical vectors, could help process textual data. Although

these techniques provide a solution for incorporating texts into traditional actu-

arial models, the models may not be able to handle the converted values as high

dimensional vectors. Unlike general high dimensional data, common dimension

reducing techniques are not appropriate for the vectors extracted from texts. To

process this high dimensional data, models enhanced with machine learning based

on NLP techniques should be considered, and are a good strategy for their use.

4.4.1 BERT Enhanced Data-Based Portfolio Allocation Model

The next goal of this work is to enhance the data-based portfolio model by us-

ing BERT to extract features from the textual data. BERT-based neural networks

are applied to process the extracted features for the model enhancement. BERT

converts textual descriptions into vectors as BERT features through the fine-tuning
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step. The input of the neural network classifier is the vector converted contains

the BERT-extracted features. The neural networks are formed by incorporating

BERT pre-trained model with one additional output layer to perform a multi-class

classification so that the output of the neural networks model is a matrix of prob-

abilities.

In general, a multi-layered feed forward neural network uses the a back-propagation

algorithm for the multi-class classification problem. The input and output of the

hidden nodes of neural networks can be defined as:

aj =
n∑

i=1

wjixi, zj = f(aj) for j = 1, 2, ..., H, (11)

where xi is in the input D, wji is the corresponding weight associated with the jth

node, H is the number of hidden nodes, and f is a logistic function as the active

function.

For the enhanced data-based portfolio model, let

Ŷ = g(wT
1 x1 + wT

2 x2 + ...+ wT
mxm + b), (12)

where g is the activation function with softmax, w1, w2, ..., wm are vectors of

weights corresponding to the terms x1, x2, · · · , xm. The length of w1, w2, · · · , wm

are determined by the length of the corresponding input x1, x2, · · · , xm. In this

study, x1, x2, · · · , xm are the features extracted from the BERT hidden layers and

b is the bias vector. Ŷ is the output of the classifier consisting of the elements
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y1, y2, · · · as the probabilities of corresponding classes for each single prediction.

Let zi be the outputs in the hidden layers of the neural network as the input of the

softmax layer and notice the sum of yi’s is equal to 1. We have

yi =
ezi∑
k e

zk
,

The neural network model was trained using historical data in the claims table.

The loss function of the model is measured by cross-entropy:

Loss =
∑
i

ti ln(yi), (13)

where ti is the true value and yi is the prediction by softmax. The procedure

followed for the BERT enhanced data-based portfolio allocation model is listed:

Several different sets of hyper-parameters were tested to achieve the best re-

sult. The tested values of hyper-parameters are listed in Table 10. The adjusted

value of max seq length was 64 and train batch size was 32.

Hyper parameter

max seq length 16, 32, 64, 96, 128, 144

train batch size 8, 16, 32, 48

Modeltype BERTBase

Optimizer Adam

Table 10: Fine-tuning Hyper Parameters

With the probabilities associated with portfolios and the corresponding loss
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Model 2 BERT Enhanced Data-Based Portfolio Allocation Model
Require: Textual data xi and xj , Class labels Yj

Ensure: Total predicted loss E(T )
1: Split data into training set with size of m, and testing set with size of n
2: for j = 1 to m do
3: Train BERTMULTICLASSCLASSIFICATION model using xj , and Yj

4: end for
5: Calculate sample mean E(X|Y1),E(X|Y2),E(X|Y3),E(X|Y4) using training

set.
6: for i = 1 to n do
7: yi1, yi2, yi3, yi4 ← BERTMULTICLASSCLASSIFICATION(xi)
8: end for
9: E(T )← 0

10: for i = 1 to n do
11: E(T ) ← E(T ) + E(X|Y1) × yi1 + E(X|Y2) × yi2 + E(X|Y3) × yi3 +

E(X|Y4)× yi4
12: end for

severity values, the aggregate loss can be calculated as a weighted average.

4.4.2 Validation and Classification Accuracy Results

A hold-out validation test was designed to achieve better parameters and pre-

vent over-fitting for the model based on the split data. Ten percent of the training

data was used as the development set in order to adjust the parameters. To show

whether the information from the textual data was helpful, two classification mod-

els were tested: The BERT-based neural network multi-class classification model

that incorporated information extracted from the textual description of the CAUSE

attribute, and the logistic regression multi-class classification model that only used

explanatory variable with numerical values discussed in last section.
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The classification predictions and errors of the two models are shown in Ta-

bles 11-16 in percentages, respectively. The measurements of Precision, Recall,

and F1 Score are usually applied to examine classifiers. Precision, also called

Positive Predictive Value, is the ratio of True Positives to True Positives and False

Positives. A low value of precision may indicate a large number of False Positives.

Recall, also called Sensitivity, is the ratio of True Positives to True Positives and

the number of False Negatives. A low value of Recall may indicate in a large num-

ber of False Negatives. F1-Score is defined by 2× Precision×Recall
Precision+Recall

. The F1-Score

is the measurement of balance between Precision and Recall.
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Prediction

Reality
ND LD PD OD Total

ND 1236 97 252 256 1841

LD 41 486 12 35 574

PD 247 20 955 69 1291

OD 283 79 48 581 991

Total 1807 682 1267 941 4697

Table 11: BERT based Neural Network Multi-class Classification Contingency
Table

Prediction

Reality
ND LD PD OD Total

ND 1028 178 338 324 1868

LD 60 332 6 30 428

PD 516 98 825 290 1729

OD 203 74 98 297 672

Total 1807 682 1267 941 4697

Table 12: Logistic Multi-class Classification Contingency Table
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Prediction

Reality
ND LD PD OD Total

ND 26.3147% 2.0651% 5.3651% 5.4503% 39.1952%

LD 0.8729% 10.3470% 0.2555% 0.7452% 12.2206%

PD 5.2587% 0.4258% 20.3321% 1.4690% 27.4856%

OD 6.0251% 1.6819% 1.0219% 12.3696% 21.0986%

Total 38.4714% 14.5199% 26.9747% 20.0341% 100%

Table 13: BERT based Neural Network Multi-class Classification Contingency
Table in Percentage

Prediction

Reality
ND LD PD OD Total

ND 21.8863% 3.7897% 7.1961% 6.8980% 39.7701%

LD 1.2774% 7.0683% 0.1277% 0.6387% 9.1122%

PD 10.9857% 2.0864% 17.5644% 6.1742% 36.8107%

OD 4.3219% 1.5755% 2.0864% 6.3232% 14.3070%

Total 38.4714% 14.5199% 26.9747% 20.0341% 100%

Table 14: Logistic Regression Multi-class Classification Contingency Table in
Percentage
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The classification accuracy, the number of correct predictions divided by the

total number of predictions, is 0.69. In Table 15 and Table 16, it shows that

the BERT-based enhancement model clearly improves the logistic classification

based model. Using the BERT-enhanced model, we obtain a predicted aggregate

payment amount of 2,371,387 by sample means, which is 3.017% more than the

real aggregate payment amount.

Class Precision Recall F1-Score

ND 0.68 0.66 0.67

LD 0.80 0.72 0.75

PD 0.72 0.77 0.74

OD 0.60 0.61 0.60

Table 15: BERT based Neural Network Multi-class Classification Accuracy

Class Precision Recall F1-Score

ND 0.55 0.57 0.56

LD 0.78 0.49 0.60

PD 0.48 0.65 0.55

OD 0.44 0.32 0.37

Table 16: Logistic Regression Multi-class Classification Accuracy
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Modern Portfolio Theory analyzes variances and correlations of portfolio data.

We applied the data-split algorithm 10 times to form 10 sets of training and test-

ing data based on 11,742 claim records, respectively, then calculate the portfolio

variances as well as the total loss variances based on that and obtain the follow-

ing results for possible further analysis and reference. The variances are listed in

Tables 17-21.
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Mean Varuance Std.Dev

Test 1 353.64 52943.05 230.09
Test 2 360.45 46626.26 215.93
Test 3 358.08 47529.97 218.01
Test 4 356.41 49381.31 222.22
Test 5 355.88 48836.88 220.99
Test 6 357.86 48539.95 220.32
Test 7 361.06 52235.62 228.55
Test 8 357.85 50983.85 225.8
Test 9 361.36 54067.25 232.52
Test 10 353.18 45373.33 213.01

Average 357.58 49651.75 222.74

Table 17: Mean, Variance, and
Standard Deviation of ND

Mean Varuance Std.Dev

Test 1 106.06 9367.17 96.78
Test 2 101.34 7596.26 87.16
Test 3 104.30 7766.21 88.13
Test 4 102.52 8422.72 91.78
Test 5 101.27 6485.54 80.53
Test 6 101.13 8721.01 93.39
Test 7 105.12 9066.64 95.22
Test 8 99.61 5910.01 76.88
Test 9 102.57 8321.76 91.22
Test 10 102.17 8107.54 90.04

Average 102.61 7976.49 89.11

Table 18: Mean, Variance, and
Standard Deviation of LD

Mean Varuance Std.Dev

Test 1 1078.71 400787.9 633.08
Test 2 1084.86 425849.4 652.57
Test 3 1070.66 390180.2 624.64
Test 4 1077.58 395893.6 629.2
Test 5 1085.11 415975.6 644.96
Test 6 1081.15 417208.7 645.92
Test 7 1081.95 389373.3 624
Test 8 1070.86 393895 627.61
Test 9 1080.27 417659.3 646.27
Test 10 1067.29 382674.2 618.61

Average 1077.84 402949.7 634.69

Table 19: Mean, Variance, and
Standard Deviation of PD

Mean Varuance Std.Dev

Test 1 216.51 17447.37 132.09
Test 2 217.53 20196.02 142.11
Test 3 215.06 19115.55 138.26
Test 4 212.02 16627.4 128.95
Test 5 215.54 17717.74 133.11
Test 6 216.99 17714.44 133.1
Test 7 213.24 17625.14 132.76
Test 8 221.42 20937.27 144.7
Test 9 214.96 16377.73 127.98
Test 5 218.81 19807.49 140.74

Average 216.21 18356.61 135.38

Table 20: Mean, Variance, and
Standard Deviation of OD

Mean Varuance Std.Dev

Test 1 494.39 274652.4 524.07
Test 2 490.37 274804.3 524.22
Test 3 486.37 262727.1 512.57
Test 4 487.90 268345.6 518.02
Test 5 489.17 274915.2 524.32
Test 6 495.71 279517.2 528.69
Test 7 493.73 269866.4 519.49
Test 8 497.13 272704.5 522.21
Test 9 494.17 278842.1 528.15
Test 10 489.1 263875.3.2 513.69

Average 491.8 272035 521.54

Table 21: Mean, Variance, and
Standard Deviation of Original
Total Loss
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4.5 BERT-Based Severity Model for Multi-Class Aggregate Loss

Prediction

In the previous calculation of aggregate loss using data-based portfolio allo-

cation model, the severity means were determined by the sample means. In this

section, we apply the BERT-based loss severity model discussed in Chapter 3 to

portfolio data distributions to predict corresponding aggregate losses. The condi-

tional expected severities E(Si|Xi) in Equation 9 are the expected aggregate loss

amounts for each class, and the distribution of the total loss would be a weighted

average of the mean severities of subclasses.

The severity level is defined based on the same scale as that in previous chap-

ter. For each severity level, the losses are assumed to be uniformly distributed. By

observing the histogram of the severity level for each class, gamma distributions

are fitted for all classes as the same was done in Chapter 3. The fitted distributions

are listed as follows from Table 22 to Table 25.

4.5.1 Predicted Aggregate Loss and Comparison

The average losses are calculated using the definition of the rescaled severity

by the assumption that the losses at each severity level are distributed uniformly.

The corresponding weights in percentages were obtained by the ratio of class

counts to total count in the training data set. The expected severity is measured

using the Equation 7. The aggregate loss of the proposed model is 2,509,164 for

4,697 claims. Comparing to reality of 2,301,937, the prediction is 9% greater than
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Parameter Value

α 8.362012

β 2.312543

mean 3.615938

variance 1.56362

Table 22: Gamma Distribution of ND

Parameter Value

α 2.383158

β 1.296036

mean 1.838806

variance 1.418793

Table 23: Gamma Distribution of LD

Parameter Value

α 14.80725

β 2.631891

mean 5.626087

variance 2.137659

Table 24: Gamma Distribution of PD

Parameter Value

α 6.11038

β 2.075307

mean 2.944325

variance 1.418742

Table 25: Gamma Distribution of OD

the real losses. The results of three models are compared by RMSE in Table 26.

The the two BERT models incorporated textual data have improved RMSE against

the data-based portfolio model without textual information.

Model RMSE

Data-Based Portfolio Model
(sample mean) 483.4353

NLP-BERT Enhanced
Portfolio Allocation Model

(sample mean)
430.6993

BERT-Based Severity Level Portfolio Model 431.013

Table 26: Comparison of RMSE for Predictive Models
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CHAPTER 5

Conclusions and Final Remarks

In this dissertation, the two studies of NLP applications demonstrated the po-

tential possibilities to improve predictive modeling in actuarial science. In Chap-

ter 3, the BERT enhanced severity level model is developed. The model improves

the stability of severity estimation in traditional aggregate loss modeling among

different datasets. The study showed a way to exploit textual data which is not

used in many traditional applications. There are three models described in Chap-

ter 4, the data-based portfolio allocation model for predictive analytics is very

practical in many applications and is particularly promising when enhanced by

NLP tools, such as BERT. The BERT enhanced portfolio model improves the

prediction accuracy through the improvement of classification rates using textual

data.

There are many improvements that can be made in future research for the mod-

els:

1. For the severity modeling, different re-scaling of severity can be considered

and different distributions can be fitted based on the re-scaling to achieve better

prediction. The possibilities of using NLP for frequency modeling can also be

considered.

2. If the loss severity distributions can be estimated, then the data-based portfolio

model can be used in the portfolio tail value at risk calculation for further risk

evaluation [49].



56

3. Modern Portfolio Theory analyzes variances and correlations of portfolio data.

More advanced methods and tools in MPT can be applied for model development

along with certain criteria emphasized on variances and correlations.

4. Some NLP tools, such as BERT, require a lot of computational power and large

amounts of computer memory. The BERT models in this dissertation used the

BERTBase model released in later 2018 and trained by a Geforce RTX 2080ti

graphic card. The more recent BERT model such as the BERTsmall model re-

leased in 2020 [53], can be considered for some environments with limited com-

putational resources.
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Severity Count Modified

1 191 40

2 715 424

3 864 1051

4 1965 1963

5 938 1294

6 1112 877

7 413 442

8 351 472

9 238 225

10 14 13

Severity Count Modified

1 188 37

2 694 417

3 883 1034

4 1971 1991

5 934 1282

6 1115 890

7 406 446

8 361 470

9 232 222

10 17 12

Severity Count Modified

1 186 37

2 709 414

3 873 1056

4 1948 1948

5 949 1300

6 1115 901

7 410 441

8 360 467

9 237 225

10 14 12

Severity Count Modified

1 184 39

2 704 414

3 879 1055

4 1949 1973

5 945 1282

6 1130 893

7 402 437

8 360 467

9 232 229

10 16 12

Severity Count Modified

1 194 40

2 700 405

3 877 1059

4 1944 1962

5 952 1285

6 1117 905

7 417 437

8 353 477

9 232 220

10 15 11

Severity Count Modified

1 195 37

2 711 417

3 857 1049

4 1951 1957

5 957 1303

6 1120 898

7 409 444

8 355 461

9 232 221

10 14 14

Table A.1: Severity Level and BERT-modified Severity Level of 10 Tests



69

Severity Count Modified

1 189 39

2 711 413

3 879 1053

4 1951 1972

5 936 1296

6 1121 888

7 407 431

8 360 478

9 231 218

10 16 13

Severity Count Modified

1 191 40

2 707 413

3 877 1055

4 1967 1975

5 945 1291

6 1106 892

7 399 437

8 364 457

9 228 228

10 17 13

Severity Count Modified

1 182 40

2 706 405

3 869 1035

4 1939 1971

5 953 1298

6 1127 896

7 409 439

8 360 474

9 240 230

10 16 13

Severity Count Modified

1 189 33

2 707 418

3 858 1039

4 1948 1970

5 957 1298

6 1127 893

7 403 440

8 363 469

9 235 228

10 14 13

Table A.2: Severity Level and BERT-modified Severity Level of 10 Tests
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APPENDIX B

FIGURES
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(a) test1 (b) test1 BERT

(c) test2 (d) test2 BERT

(e) test3 (f) test3 BERT

(g) test4 (h) test4 BERT

Figure 3: Fitted Gamma Distributions of 10 Tests
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(a) test5 (b) test5 BERT

(c) test6 (d) test6 BERT

(e) test7 (f) test7 BERT

(g) test8 (h) test8 BERT

Figure 4: Fitted Gamma Distributions of 10 Tests
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(a) test9 (b) test9 BERT

(c) test10 (d) test10 BERT

Figure 5: Fitted Gamma Distributions of 10 Tests
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(a) ND (b) LD

(c) PD (d) OD

(e) Original

Figure 6: Fitted Gamma Distribution for Each Class


