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Abstract 

Finding improved protein folding pathway modeling tools is crucial to develop 

more potent treatments for disorders caused by protein misfolding. The fast-folding 

streptococcal protein G (1GB1), which has alpha-helices and several beta-sheets, can be 

used to assess models of protein folding. Pathway prediction is often computationally 

expensive and time-consuming, so current research focuses on accelerating Molecular 

Dynamics (MD) simulations. To fix the issue of proteins getting trapped in minima, past 

methods have imposed an unnatural bias on the potential and kinetic energies of the 

simulation environments. Finding unbiased methods for MD simulations was an open 

problem and was addressed by (Syzonenko & Phillips, 2020), introducing a combination 

of the A* algorithm and MD simulations. The current implementation has storage issues 

due to an abundant number of files produced preventing large-scale implementation. A 

viable alternative could be the replacement of auxiliary file storage on disk with a key-

value data structure for storage. This would prove less burdensome on the file systems. 

Instead of relying on GROMACS commands using OS system calls, the MDAnalysis 

library, which is based on GROMACS, may be used for simulation commands and 

storing coordinates. Once validated on the complex and fast-folding 1GB1 protein, the 

approach may be applied to even larger α-β proteins. 
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Chapter 1 Introduction 

1.1. Proteins 

Proteins are big, complex molecules that serve several important roles in the 

body. These include digesting, transportation, structural functions, defense, storage, 

and mobility. Proteins are important in the movement of chemicals throughout the 

body. Hemoglobin, which transports oxygen throughout the body, is one such 

example. Proteins such as Immunoglobulin also play a vital role in the immune 

system, protecting the body against infections. Each protein in a cell has a distinct 

function. This is enabled by a basic characteristic of proteins: they fold. Protein 

folding refers to the ongoing and universal process by which the long, coiled strings 

of amino acids that comprise proteins in all living things fold into more sophisticated 

three-dimensional structures. (McGill University, 2011). 

1.2. Protein Folding 

A protein is made up of a lengthy chain of amino acids. The arrangement of these 

amino acids controls how the protein chain folds and how it functions. Some parts of 

the protein chain coil up into the highly common slinky-like forms known as alpha-

helices or zigzag patterns known as beta-sheets (which resemble the folds of a paper 

fan). These two highly common structures can interact with one another to produce 

more complicated structures. Proteins, despite being made up of the same 

fundamental building components, can perform vastly distinct roles by folding into 

various shapes or conformations (Geiler, 2014).  
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The structure of a protein is closely related to its function. For example, antibody 

proteins fold into forms that allow them to accurately detect and target certain foreign 

substances, analogous to how a key fits into a lock. Understanding the structure that 

proteins will fold into is thus critical to understanding how organisms work and how 

life functions (Toews, 2021). 

1.3. Protein Folding Pathways 

The Protein Folding Problem has three key issues: 1) determining the folding 

code, 2) how the protein folds, and 3) if it is even feasible to predict how a protein 

will fold. This thesis focuses on the second issue of predicting the specific pathway 

for protein folding. Current researchers in protein folding can predict folded protein 

structures with high accuracy. The protein folding pathway prediction issue aims to 

provide an accurate path outlining all stages taken in the process. The complete 

pathways are necessary for biological research because certain mutations could be 

added to the simulated folding states, and we could observe the resulting protein. 

Knowledge of folding pathways is significant because improperly folded proteins 

in people cause illnesses such as Alzheimer's, Parkinson's, Huntington's, Emphysema, 

and Cystic fibrosis. It is critical to find better protein folding modeling techniques to 

create more effective treatments for such diseases. (McGill University, 2011). This 

can also be useful in researching methods to degenerate or disintegrate certain folding 

proteins. The complete states and we can observe the resulting protein. This would 

also be beneficial in studying ways to degenerate or disintegrate certain viral proteins, 

for example. 
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Chapter 2 Background 

2.1 Molecular Dynamics (MD) Simulations 

It is difficult to experimentally study such protein misfolding in these situations. 

For such studies, Molecular Dynamics (MD) simulations, which are physics-based 

models, have become quite common and effective in studying such protein folding 

mechanisms so far. For computational path-finding algorithms to work, an accurate 

representation of the ‘goal state,’ or final protein conformation (structure) is needed. 

Also, pathway prediction is often computationally expensive and time-consuming, so 

current research focuses on creating efficient methods that would save computing power 

and overall calculation times. These methods have been helpful but are still expensive in 

terms of computing power and overall time required. Therefore, current studies aim at 

speeding up these MD simulations. 

Computational protein folding simulations may be used to evaluate experimental 

folding data, plan innovative folding studies, and investigate the impact of mutations and 

small molecules on folding. However, while significant experimental and computational 

progress has been made in understanding how tiny proteins fold, research on bigger, 

multidomain proteins, which make up most proteins, has underperformed. Folding 

simulations based on MD and native structure knowledge can give essential, 

comprehensive information on folding free energy landscapes, intermediates, and routes.  
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Furthermore, developments in computer power and methodological breakthroughs 

have made massive protein folding simulations practicable and beneficial (Gershenson et 

al., 2020). Beyond the tiny fast-folding model proteins that have historically been chosen 

by protein-folding researchers, research beyond the small fast-folding model proteins is 

required in the field of drug development and biological investigations. Protein folding 

presents a puzzle of such intrigue and depth that the scientific community cannot even 

agree on a single statement of the problem (Ben-Naim, 2012). 

 Some might argue that the problem has been solved in theory, but in practice, 

there is no simple solution. Improving molecular dynamics is one key strategy to address 

the protein-folding challenge. Finding a stable folded conformation for a protein is 

insufficient; the pathway is also a key component. One of the common issues in protein 

folding simulations is the protein getting trapped in local minima of energy surface states 

(gets stuck in the minima). It remains stuck there until the kinetic energy can push it out 

of this area. Revisitation of previous minima also often slows progress. The two 

approaches used in the past to overcome this issue are Metadynamics (Pfaendtner, 2019) 

and replica exchange (Zhou, 2022). 
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2.1.1 Replica-Exchange Molecular Dynamics (REMD) 

By combining MD simulations and the Monte Carlo methodology, the REMD 

method is a hybrid approach. REMD simulations use MD simulations at various 

temperatures or the same temperature but with various Hamiltonians to simulate multiple 

copies (replicas) of the same system concurrently. With a probability determined by the 

Metropolis criterion, swapping between nearby copies is tried on occasion. 

 Using this technique, a generalized ensemble of the simulated system is produced. 

This enables investigation of the free energy landscape of protein aggregates since 

REMD can quickly cross high-energy barriers and sample conformational space 

sufficiently (Qi et al., 2017). 

 

Figure 1 Replica-Exchange MD 
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2.1.2 Metadynamics 

Metadynamics is a computational simulation technique used in molecular 

dynamics simulations to overcome the problem of free energy barriers and accelerate 

the sampling of rare events. It achieves this by adding a bias potential that increases 

over time, allowing the system to explore new regions of phase space. The method is 

particularly useful for studying complex molecular systems, such as proteins, and has 

applications in drug discovery, material science, and biochemistry (Lombardi & 

Nigro, 2018). 

 

 

Figure 2 Metadynamics 
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2.1.3 Finding Unbiased Methods 

However, these methods impose an unnatural bias on the potential and kinetic 

energies, respectively, of the environment of the simulations. REMD affects the kinetic 

energy of the system. This happens because of the elevated temperatures required to 

explore more states. In Metadynamics, the potential energy is affected, as this 

modification could potentially lead to unnatural states being visited in some other 

minima. Figure 3 shows graphically how the potential energy varies throughout the 

simulation states. It shows the probability of each state being visited, and we can see 

there are many peaks and valleys. While getting out of one minima, it may get stuck in 

another one again.  

 

 

Figure 3 Potential Energy Surface 

 

 



8 

 

Finding unbiased methods for such simulations was an open problem and was 

addressed by (Syzonenko & Phillips, 2020), by getting rid of such unnatural biases by 

introducing a combination of the A* (a path-finding algorithm used in artificial 

intelligence) algorithm and MD simulations, as described later. 

2.2 Pathfinding and Search Algorithms 

To determine the shortest route between two locations in a graph, pathfinding 

algorithms are used. A popular pathfinding algorithm that determines the shortest route 

between two points in a graph with positive edge weights is called Dijkstra's algorithm. It 

operates by keeping track of a priority queue of nodes, choosing the node with the lowest 

cost to investigate next at each step (Cormen et al., 2009). Uniform-cost search is a graph 

traversal algorithm that seeks to discover the most cost-effective path between two nodes. 

It works by traversing the graph, starting from the node with the lowest cost path, giving 

priority to paths with the lowest accumulated cost thus far. The advantage of this 

algorithm is that it is guaranteed to find the optimal solution if one exists.  

Conversely, greedy search is a heuristic-based algorithm that identifies the most 

favorable decision at each step based on a locally optimal choice. Unlike uniform-cost 

search, it only considers the next step leading to the target node and does not consider the 

entire path cost. As a result, it can provide faster solutions, but there is no guarantee that 

it will find the optimal solution (Russell & Norvig, 2010). 
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2.2.1 The A* Algorithm 

The A* algorithm uses a heuristic function to guide the search toward the goal node, 

and it is based on the idea of combining the advantages of both Dijkstra's algorithm and 

the greedy Search algorithm (Hart, Nilsson, & Raphael, 1968). The A* algorithm is a 

combination of uniform-cost search and greedy search algorithms.  

Implementation of the A* algorithm is related to the theoretical best-first search 

algorithm but differs in the cost estimation process i.e., f(n) = g(n) + h(n), where g(n) is 

the actual cost from the initial state to the current state and h(n) is the estimates cost from 

current state to a goal state. Therefore, f(n) is an approximate minimum distance estimate 

of the path of any solution going through node n. At every step in the search process, the 

lowest f(n) is chosen for node n. The algorithm terminates when a goal state is found 

(Sharma & Kumar, 2016). 

 Syzonenko & Phillips (2020) obtained the h(n) values by calculating distances 

between the current and folded state of the protein. They used a greedy proximal 

approach; we will trust the h(n) values more than the g(n) values. By minimizing the 

importance of g(n), this approach encourages progress that would otherwise be stifled 

due to the stochastic nature of MD simulations. We can avoid the issue of getting stuck in 

local minima. They tested their method of integrating the A* algorithm with MD 

simulations (GPA*) on the following proteins: (a) the Trp-cage mini protein construct 

TC5b (1L2Y), which is a short, fast-folding protein with an α -helical secondary 

structure; (b) the immunoglobulin binding domain of the streptococcal protein G (1GB1), 

which contains an α-helix and several β-sheets; and (c) the chicken villin subdomain HP-

35, N68H protein (1YRF), which forms from several α-helices. They compared the 
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technique to replica-exchange MD (mentioned above), which is the most used algorithm 

for speeding protein folding using MD. They discovered that GPA* not only lowered the 

computing time required to acquire the folded conformation without adding artificial 

energy bias but also enabled them to design trajectories with minimum movements 

required for the folding transition. These results were successful only in certain limited 

conditions for 1GB1 because it contains both α-helix and several β-sheets. Such proteins 

with α- β content have not been studied vigorously. The other two proteins yielded 

satisfactory results under all conditions, and this was expected based on prior research for 

such α-helical proteins. Further testing would be required to validate the application of 

this method to α- β content proteins. The folding trajectories of 1YRF and 1L2Y were 

easily replicated under various simulation conditions, whereas results for 1GB1 were 

minimal. We need additional validation for α- β content, and until we do so it is uncertain 

whether the GPA* algorithm should be applied to larger proteins. 
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Chapter 3 Methodology 

We picked up where Syzonenko & Phillips (2020) left their research, by studying 

and continuing to improve their methodology. We developed our code in Python for 

better portability. We also used a shelve storage system, which is database inspired. 

Figure 4 describes an example of how each node is stored in the shelve data structure.  

 

 

 

Figure 4 Key-Value Data Structure for Storage of Generated Search Tree 

 

We used the Worldwide Protein Data Bank (wwPDB.org, 2021), which is an archive of 

experimentally determined 3D structures, to obtain the protein structures and 

conformations of 1GB1 (Gronenborn et al., 1991).  
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We used the common tools used in molecular dynamics computing, like GROMACS, to 

run our simulations (Lemkul, J. A. 2018), VMD which is a popular 3-D modeling tool 

(Humphrey et al., 1996), and the BioSim Computer Cluster, available via the MTSU 

(Middle Tennessee State University) Computer Science department, to run and 

parallelize our biomolecular simulations.  

We also utilized MDAnalysis, which is a toolkit commonly used for analyzing 

MD simulations (Michaud-Agrawal et al., 2011). GROMACS is a free and open-source 

software that is commonly used for high-performance molecular dynamics and output 

analysis. It follows a modular process, which means it works in stages like pre-processing 

and post-processing to make the processes more efficient. We follow a similar approach 

at the core of our implementation.  

The streptococcal protein G (1GB1), is a fast-folding protein and has an α-helix 

and several β-sheets, making it difficult to predict how 1GB1 folds due to the complex 

energy landscape shown by such α-β proteins. Because of these properties, it is 

commonly used to validate MD sim.  

3.1 Obtaining the Unfolded Structure for 1GB1 

We ran the NVT simulations for 10 ns at 600K to obtain the unfolded structure 

for 1GB1, which is what we use as the initial structure to start the search process. We 

started with the PDB (Protein Data Bank) structure from (Gronenborn et al., 1991) The 

steps followed for system preparation can be found here: 

http://www.mdtutorials.com/gmx/lysozyme/index.html.  
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In the above simulation, we kept pressure-coupling and position-restraints off 

during the production stage. No pressure coupling means that there is a fixed box size for 

the atoms in the system. Position restraints are used during equilibration to avoid drastic 

rearrangements of critical parts of the protein (User guide#). We used the AMBER94 

(Lindorff-Larsen et al., Proteins 78, 1950-58, 2010) force field with the recommended 

T1P3P water mode. 

 

Figure 5 Obtaining the Unfolded 1GB1 Structure 
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3.2 Code Implementation 

The previous implementation of GPA* has certain limitations and benefits. Their 

implementation was done using the language C++. Python (programming language) is 

slower than C++ because C++ is statically typed, which speeds up code execution. 

However, Python improves readability and can be easier to understand for biologists not 

familiar with C++. We reimplemented our code to use python. Our re-implementation 

can be found here: https://github.com/For-am/GPAstar/tree/UndergradThesis    

We are re-implementing the existing code. They stored all files on disk, causing 

billions of auxiliary files, which became difficult to work with. As we now know that the 

algorithm has major success, we need not worry about the auxiliary files. As they were 

still in the preliminary stages of evaluating the algorithm, they needed to have all the files 

available for debugging purposes. They were focused on getting the algorithm to work 

and evaluating its accuracy. Now that we know that the algorithm works, we can focus 

more on reconstructing the code and modifying the tools used by the code to make it 

more user-friendly.  

Furthermore, the code is limited in portability and does not have modularity. It 

also has scalability issues on typical file systems used nowadays. Current storage 

mechanisms are usually database systems instead of using on-disk storage of files.  

Their code was a single code block implemented for all steps. By breaking the 

process up into phases, our code fragments can work independently. This is like the 

modular phase system GROMACS also uses. We divided our code into three phases: Pre-

Processing, Search process, and post-Processing.  
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All files are easily accessible to all three of the code sections, as they all use a 

common shelve data structure. We used MDAnalysis to save disk storage space and 

avoided having thousands of gro files. Ongoing research aims to accelerate these 

Molecular Dynamics (MD) simulations.  

 

Figure 6 Generating a Search Space 
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     3.2.1     Code Implementation 

In the preliminary MD simulations phase, we generated a search space, which is a 

graph/tree of the possible protein structures generated. According to the user-provided 

seed value N, the code generates N number of mdp files with n seeds. Then the initial 

coordinates are stored in the shelve, and we initialize all values in the shelve to get 

started. In Figure 6, we can see how there is a root node ‘R’, we initialized this node here.  

The user only provides the following files to get started: mdp file, topology file, 

initial and target gro file; the rest is handled by the code:  

1. The topology file is built following the GROMACS specification for a molecular 

topology. A topology file can be generated by pdb2gmx, which is a commonly 

used GROMACS command (User guide#). 

2. The GRO file format contains information about the positions of all atoms in a 

molecular system, as well as the box size and shape, and the velocity of each atom 

if available. GROMACS uses the GRO file format as an input and output file 

format for many of its tools and utilities, such as energy minimization, 

equilibration, and molecular dynamics simulations. GRO files can be easily 

viewed and edited using text editors or molecular visualization software, such as 

VMD. (User guide#) The initial gro file is the unfolded protein structure we start 

with, and the target gro file is the final folded structure we would like to achieve. 

3. In GROMACS, an MDP file is a text file that contains all the input options and 

settings for a molecular dynamics simulation (Berendsen, van der Spoel, & van 
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Drunen, 2015). The only settings we overwrite to the user-provided mdp file are 

setting gen_vel to ‘yes’ and changing the seed values while generating the mdp 

files needed. The seed values simply ensure that whenever the simulation is rerun, 

the same output is obtained. Setting gen_vel to ‘yes’ ensures that velocities are 

generated according to a Maxwell distribution at given temperature gen-temp, 

with provided seed values (User guide#). The user has the flexibility to customize 

the simulation as they want. MDP stands for "Molecular Dynamics Parameter" 

file, and it contains information on the simulation conditions such as temperature, 

pressure, time step, integrator algorithm, and force field parameters. It allows the 

user to customize and optimize the simulation parameters for their specific 

research needs. The file is highly customizable, and GROMACS provides a 

comprehensive manual to help users understand and modify the different options 

available (Berendsen, van der Spoel, & van Drunen, 2015). 
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Chapter 4 Results 

Using Python instead of C++ makes our code implementation quicker. We have been 

working on code development and figuring out methods to make the entire process 

scalable. The initial barrier we had was that the number of files generated per simulation 

was so much that it became burdensome on the file systems. We used a shelve, which is a 

key-value data structure, for storage instead of storing auxiliary files on disk. Instead of 

relying on GROMACS commands using OS system calls, we switched to using the 

MDAnalysis library, which is based on GROMACS at the core for simulation commands 

and storing coordinates. We currently have an implementation with GROMACS 

successfully running without errors and can now be made more efficient using the 

MDAnalysis library. Our preprocessor implementation enables the user to customize the 

simulation runs according to their requirements, as they only must provide us with the 

three files: initial structure, target structure, and required mdp files. The user has the 

flexibility to customize the simulation settings as they wish. 
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Chapter 5 Future Work 

It is recommended to use the following two stages, after using our preprocessor code,  

when running the simulations and obtaining results from the code: 

5.1  GPA Search Code 

The first stage is where we would run the actual simulations and generate more 

nodes as we progress through the search process. The main loop must be structured in 

such a way that fault recovery is possible, as the loop runs the net simulations only for 

keys not present in the tree. We will end up with a final key that describes the best 

sequence of keys used to build the complete pathway.  

5.2 Post-Processing 

The second stage is the compilation of all the data gathered and this part of the 

code is under development. We decided to store only the atoms of each gro file in our 

shelve data structure and discard all auxiliary files, as there were many files generated in 

each run, and storage issues must be mitigated to proceed. From the key we obtain in the 

Search phase, we can now rerun the simulations in the order specified and then use the 

files obtained to view the complete pathway using a 3-D modeling tool like VMD.  
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Chapter 6 Conclusion 

We expected the approach to yield positive results, as the former researcher found 

success with other protein structures. This method also removes the unnatural biases we 

discussed earlier. In summary, this thesis is a preliminary step in the validation of the 

greedy-proximal A* algorithm on the complex and fast-folding 1GB1 protein.  

Once this is validated, the approach may be applied to even larger proteins and 

across a broader spectrum of biological systems. Proteins with α- β content have not been 

studied vigorously. Further testing would be required to validate the application of this 

method to α- β content proteins. The GPA* algorithm is expected to lower the computing 

time required to acquire the folded conformation without adding artificial energy bias and 

to enable trajectory design with minimum movements required for the folding transition. 
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