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ABSTRACT

Coronavirus disease 2019 (COVID-19) is a contagious disease caused by severe

acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that can be transmitted

through human interaction. In this thesis, we present a Piecewise Susceptible-Exposed-

Infectious-Unreported-Removed model (SEIUR) for infectious diseases and discuss

it qualitatively and quantitatively. The parameters are explored by mathematical

and statistical methods. Numerical simulations of these models are performed on

COVID-19 US data, and Python is used in the visualization of the simulation results.

Outbreak factor is generated by piecewise SEIUR model to explore the future trend

of the US pandemic. Several error metrics are given to discuss the accuracy of these

models. The main achievement of this thesis is to propose the SEIUR model and

piecewise SEIUR model and to find the relationship between the spread of the pan-

demic and control strategies by observing the results of the numerical simulations.

Performance analysis of SEIUR model and piecewise SEIUR model is presented based

on COVID-19 data.

v



CONTENTS

LIST OF TABLES viii

LIST OF FIGURES ix

CHAPTER 1: INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

CHAPTER 2: SEIR MODEL FOR INFECTIOUS DISEASES . . . . . . 5

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Susceptible-Exposed-Infectious-Removed (SEIR) Model . . . . . . . . 5

2.3 Signals for Outbreak and end of the Epidemic . . . . . . . . . . . . . 7

2.4 The Outbreak Factor generated by SEIR Model . . . . . . . . . . . . 9

2.5 Numerical Solution of SEIR Model using Python . . . . . . . . . . . 9

2.6 Parameter Estimation for SEIR Model . . . . . . . . . . . . . . . . . 12

CHAPTER 3: SEIUR MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Reported and Unreported Cases . . . . . . . . . . . . . . . . . . . . . 16

3.3 Piecewise SEIUR Model based on Control Strategies . . . . . . . . . 17

3.4 The Outbreak Factor generated by Piecewise SEIUR Model . . . . . 19

3.5 Numerical Solution of SEIUR Model and Piecewise SEIUR Model . . 21

3.6 Parameter Estimation for SEIUR Model and Piecewise SEIUR model 22

CHAPTER 4: PERFORMANCE ANALYSIS OF SEIUR AND PIECE-

WISE SEIUR FOR COVID-19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

vi



4.2.1 Data source . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2.2 Data content . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2.3 Data preprocessing . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2.4 Separate data in different period . . . . . . . . . . . . . . . . . 26

4.2.5 Training data and test data . . . . . . . . . . . . . . . . . . . 27

4.2.6 Visualize data using Python . . . . . . . . . . . . . . . . . . . 28

4.3 Performance analysis of SEIUR and Piecewise SEIUR Models using

Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3.1 Parameter Estimation for SEIUR model . . . . . . . . . . . . 29

4.3.2 Parameter Estimation for Piecewise SEIUR model . . . . . . . 30

4.3.3 Numerical simulation for SEIUR model . . . . . . . . . . . . . 32

4.3.4 Outbreak factor and Numerical simulation for piecewise SEIUR

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3.5 Error analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

CHAPTER 5: CONCLUSION AND FUTURE WORK . . . . . . . . . . . . . 43

REFERENCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

vii



List of Tables

1 Data content of total cases, active cases and total deaths . . . . . . . 25

2 Data content of total cases, active cases, total deaths removed cases

and total recoveries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Split data according to strategies [26] . . . . . . . . . . . . . . . . . . 27

viii



List of Figures

1 SEIR model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 SEIUR model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Strategies[26] release timeline . . . . . . . . . . . . . . . . . . . . . . 18

4 SEIUR model for period i . . . . . . . . . . . . . . . . . . . . . . . . 19

5 Total Cases and Reported Active Cases in US . . . . . . . . . . . . . 28

6 Total Recoveries and Total Deaths in US . . . . . . . . . . . . . . . . 28

7 3D error graph with different β and γ for SEIUR model . . . . . . . . 29

8 3D error graph for different β and γ for period 1 and 2 . . . . . . . . 30

9 3D error graph for different β and γ for period 3 and 4 . . . . . . . . 30

10 3D error graph for different β and γ for period 5 and 6 . . . . . . . . 31

11 3D error graph for different β and γ for period 7 and 8 . . . . . . . . 31

12 Numerical simulation for SEIUR . . . . . . . . . . . . . . . . . . . . . 32

13 Numerical simulation in period 1 and 2 . . . . . . . . . . . . . . . . . 33

14 Outbreak factor in period 1 and 2 . . . . . . . . . . . . . . . . . . . . 33

15 Numerical simulation in period 3 and 4 . . . . . . . . . . . . . . . . . 34

16 Outbreak factor in period 3 and 4 . . . . . . . . . . . . . . . . . . . . 35

17 Numerical simulation in period 5 and 6 . . . . . . . . . . . . . . . . . 35

18 Outbreak factor in period 5 and 6 . . . . . . . . . . . . . . . . . . . . 36

19 Numerical simulation in period 7 and 8 . . . . . . . . . . . . . . . . . 36

20 Outbreak factor in period 7 and 8 . . . . . . . . . . . . . . . . . . . . 37

21 Numerical simulation for piecewise SEIUR and SEIUR . . . . . . . . 38

22 Relative error in period 1 and 2 . . . . . . . . . . . . . . . . . . . . . 39

23 Relative error in period 3 and 4 . . . . . . . . . . . . . . . . . . . . . 40

24 Relative error in period 5 and 6 . . . . . . . . . . . . . . . . . . . . . 40

25 Relative error in period 7 and 8 . . . . . . . . . . . . . . . . . . . . . 41

26 Relative error for Piecewise SEIUR and SEIUR . . . . . . . . . . . . 41

ix



27 Absolute error and Square error for Piecewise SEIUR and SEIUR . . 42

x



1

CHAPTER 1

INTRODUCTION

When the Ebola epidemic broke out in Africa in 2015, Bill Gates issued a warn-

ing in a speech. He said: “If anything kills over 10 million people in the next few

decades, it’s most likely to be a highly infectious virus rather than a war.” [22]. Un-

fortunately, he became a prophet. Since the end of 2019, the COVID-19 pandemic

[21][27] caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-

2) is raging around the world [6]. In December 2019, the first cases of COVID-19

was detected in Wuhan, Hubei Province, China. As of March 11, 2021, more than

118 million confirmed cases had been reported in 219 countries and regions, of which

more than 2.621 million died and 66.926 million were cured. At present, the number

of confirmed cases is still rising rapidly [25].

In the last two decades, human beings have gone through lots of severe infectious

diseases, such as the SARS and Ebola [1]. In fact, from the perspective of history, the

natural enemy of human beings - infectious diseases - have never stopped invading

us. Plague, cholera, smallpox, syphilis and tuberculosis have all caused great harm

to humans in history. In the course of struggling with infectious diseases, human

beings have very limited capabilities. It was not until the last one hundred years that

scientists gradually gained some scientific insight of infectious diseases. For instance,

Yersinia pestis was separated out in 1894 [9], and Alexander Fleming, a British sci-

entist, invented penicillin, the first antibiotic in the world in 1928 [20][10]. Viral

infectious diseases are more formidable than bacterial infectious diseases. Scientists

still have no progress to eliminate viral infectious diseases other than smallpox. In

1796, the British doctor E. Jenner carried out the first successful vaccination test

in human body, so as to really control smallpox [8]. Until 1979, the WHO (World

Health Organization) officially declared that smallpox was wiped out.

When we are stagnant in the field of biological research, we need to find a new
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approach. Studying mathematical models of infectious diseases can also help scientists

understand the various indicators of them so as to control their spread. Mathematical

models could describe the transmission rate, spatial range, and transmission path of

infectious disease. These models can provide a guidance on how to implement effective

prevention and controls. Based on the types of infectious diseases, common infectious

disease models can be divided into SI, SIR, SIRS, SEIR models, etc.. In addition,

based on the propagation mechanism, they also can be divided into different types

based on ordinary differential equations, partial differential equations, and network

dynamics.

Infectious disease models have a long history, generally believed to begin with D.

Bernoulli’s study of vaccination against smallpox in one of his papers [13] in 1760. The

advancement of infectious disease models is in the beginning of twenty century. W. H.

Hamer, R. A. Ross, and other scientists had published several papers [17][14] related

to the establishment of infectious disease models. It was not until 1927 that Ker-

mack and McKendrick obtained the first compartmental deterministic model (SIR)

proposed in the study of the Black Death in London [18][2]. Five years later, in 1932,

the SIS model was given [19][3]. Along with the appear of these infectious disease

models, the threshold theory was also presented [4]. The SIR model is the most basic

compartmental model, and many models that later appeared were based on it. The

SIR model divides the total population into the following three populations: suscep-

tible S, which represents the individuals who are not infected but are likely to be

infected by this type of disease; infectious I, which represents the individuals who

have been infected as patients and have the capability of transmitting the disease;

and removed R, which stands for the individuals who have been removed from the

infected. The establishment of the SIR model is based on the following three assump-

tions [16]: a. The population dynamics such as birth, natural death, and mobility of

the population are not considered. The total population always maintains a constant,

that is, S(t) + I(t) + R(t) = N . b. Contacts between the infected and susceptible
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individuals are sufficient to spread the disease. c. Removed individuals will not be

infected again. As time passes by, the SEIR model [5] draws more attention. Nowa-

days, the SEIR model is popularly used to analyze infectious diseases. In this model,

people experience an incubation period in the process of transiting from susceptible

compartment to infected compartment (we use Exposed (E) to represent people in

this process). We assume that the individual in the incubation period (E) is infected

but not yet infectious. For instance, SARS and Ebola diseases have an incubation

period where the individual cannot yet transmit the disease to others.

As the COVID-19 continues to spread, it is crucial to find a reasonable mathe-

matical model to simulate this spread. Previous work for simulating the spread of

COVID-19 has been developed using many different methods, such as the deep learn-

ing neural networks, polynomial regression, SEIR model, and ARIMA [11]. Neural

networks are not stable due to their always reaching a local optimum for data with

irregular growth. Polynomial regression with third degree end up over-fitting the

data, which leads to a very high bias when making predictions [12]. This is because

the COVID-19 data has a different trend of spread during different periods. The

most commonly used method to simulate COVID-19 data is the SEIR model. But

Exposed individuals in the SEIR model do not have the capability of transmitting

the disease, which is inconsistent with COVID-19. The parameters of SEIR model,

such as transmission rate β and removed rate γ are not easy to derive. In this thesis,

we propose the piecewise SEIUR model and use a type of least-squares method to do

the parameter estimation, which overcomes the main difficulty in the SEIR model.

This thesis contains five chapters. Chapter 1 is the introduction. Chapter 2 intro-

duces the SEIR model. In chapter 3, a modified SEIR model, called SEIUR model,

is introduced and discussed. We use the least square method to do the parameter

estimation for the model. In chapter 4, numerical simulations and error analysis of

SEIUR model and piecewise SEIUR model are performed based on COVID-19 data

and the Outbreak factor is calculated. In the last chapter, we make the conclusion of
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whole research and do a discussion about our future work.
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CHAPTER 2

SEIR MODEL FOR INFECTIOUS DISEASES

2.1 Introduction

The main consideration and research aspect of epidemiology is to study the spread of

diseases. Epidemiology is mainly responsible for tracking and analyzing the factors

that cause the disease to spread over time, and in this process, it tries to explore

possible control methods. In addition to epidemiology, mathematical modeling is also

an effective method for us to conduct research on infectious diseases. Mathematical

modeling helps us analyze and predict infectious disease behavior. We have been

studying mathematical epidemiological models for a long time. The first epidemic

infectious disease compartment model was proposed by Kermarck and McKendrick.

Epidemiological models usually divide the total population into several categories or

compartments. In order to study the dynamic changes of infectious diseases, the SEIR

epidemic model divides the population into four categories: susceptible S, exposed

E, infectious I, and removed R individuals. In this basic model, the movement of

individuals between compartments depends on their personal resistance, resilience,

and their interaction with the infected person.

In this chapter, the properties of the SEIR models are explored. We represent

the SEIR model by a diagram containing the four compartments, and we explore the

relationship and conversion between the compartments through the interpretation

and analysis of the four compartments and parameters.

2.2 Susceptible-Exposed-Infectious-Removed (SEIR) Model

Nowadays, the SEIR model is widely used to analyze infectious diseases. The SEIR

model divides the total population into the following four populations: susceptible
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S, which represents the people who are not infected but are likely to be infected by

this type of disease; exposed E, which represents the people who have been infected

but are not yet infectious; infectious I, which represents the people who have been

infected as patients and has capability of transmitting the disease; and removed R,

which stands for the people who have been removed from the infected.

The establishment of the SEIR model is based on the following assumptions [7]:

• The population dynamics such as birth, nature death, and mobility of the pop-

ulation are not considered.

• Contacts between the infected and susceptible individuals are sufficient to spread

the disease.

• Removed individuals will not be infected again.

• Only infectious individuals are capable of transmitting the disease.

The SEIR model is as follows;

dS(t)

dt
= −βS(t)I(t)

N
(1)

dE(t)

dt
=
βS(t)I(t)

N
− σE(t) (2)

dI(t)

dt
= σE(t)− γI(t) (3)

dR(t)

dt
= γI(t) (4)

The meaning of each parameter and variable is shown below:

N : Total population.

S(t): The number of susceptible individuals at time t.

E(t): The number of exposed individuals at time t.

I(t): The number of infected individuals at time t.

R(t): The number of individuals who have been removed from the infected at

time t.
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β: Transmission rate.

γ: Removed rate.

σ: Incubation rate.

The SEIR diagram below shows how individuals move through each compartment

in the model:

Figure 1: SEIR model

The SEIR model can be applied to most infectious diseases, but there are some

limitations when used in the COVID-19 data. Due to the characteristics of COVID-

19, exposed individuals also have the capability of transmitting the disease. The SEIR

model is the neglect of infectivity of the people during the incubation period. The

SEIR model also ignores the group of unreported cases. Due to the lack of medical

resources and variability in the testing policy, there is no guarantee that all infected

people are tested and reported under such a huge pandemic. This group of people is

likely to become spreaders hidden in the population. The SEIR model with constant

parameters cannot be used for long-term simulation. This is because the transmission

rate β and removed rate γ must be changed in a long time.

2.3 Signals for Outbreak and end of the Epidemic

In an epidemic, we can obviously judge whether the epidemic is breaking out or

disappearing through the change rate of the number of infected people. In the SEIR

model, both E and I represent the number of infections. The difference is that those

in E are in the incubation period while those in I have been diagnosed.
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Thus, we can conclude that the epidemic is still in outbreak when the change rate

of the summation of E and I is greater than 0, that is,

d(E + I)

dt
> 0

which implies
dE

dt
+
dI

dt
> 0

By the SEIR model, we have

βS(t)I(t)

N
− σE(t) + σE(t)− γI(t) > 0

It follows that
βS(t)I(t)

N
− γI(t) > 0

Because of I(t) > 0, we can imply

βS(t)

N
− γ > 0

Consequently, We can simplify the above inequality to

βS(t)

N
− γ > 0

Since β > 0 and γ > 0, it is equivalent to

βS(t)

γN
> 1

When the rate of change of E + I < 0, we have that the virus is disappearing.

By the similar steps,
d(E + I)

dt
< 0

dE

dt
+
dI

dt
< 0

βS(t)I(t)

N
− σE(t) + σE(t)− γI(t) < 0

βS(t)

N
− γ < 0
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βS(t)

γN
< 1

When the rate of change of E + I = 0, we have that the virus is under control

and may coexist with humans for a long time.

We do not repeat the proof again; we can derive βS(t)
γN

= 1 by several steps.

In the next section, we use the results obtained in this section to derive the

outbreak factor.

2.4 The Outbreak Factor generated by SEIR Model

In the last section, we implied that βS(t)
γN

can determine the trend of epidemic. There

are three situations:

• βS(t)
γN

> 1, which indicates that the epidemic is still in outbreak;

• βS(t)
γN

= 1, which indicates that the virus is under control and may coexist with

humans for a long time;

• βS(t)
γN

< 1, which indicates that the virus is disappearing.

For the SEIR model, we can define βS(t)
γN

as the outbreak factor at time t, denoted

as O(t), that is,

O(t) =
βS(t)

γN

Solving the O(t) can help to generate the control strategies and explore the future

trend of the epidemic.

2.5 Numerical Solution of SEIR Model using Python

There are many ways to solve the numerical solution of differential equations. Here

we choose the forward Euler method and choose ∆t = 1. Although the theoretical
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model changes continuously, the real-life data are updated once a day. Therefore,

using the forward Euler method with ∆t = 1 can better fit the data we selected, and

more information about the data is introduced in the following chapters.

Before using the forward Euler method, we can get the discrete model of SEIR

with ∆t = 1. It is shown as:

S[t+ 1] = S[t]− βS[t](I[t])

N

E[t+ 1] = E[t] +
βS[t](I[t])

N
− σE[t]

I[t+ 1] = I[t] + σE[t]− γI[t]

R[t+ 1] = R[t] + γ(I[t])

Note that: S[t] is different than S(t) mentioned in the previous section. S(t) is a

continuous function, and t can be any non-negative real number. But here in S[t], t

can only could be an integer. E[t], I[t] and R[t] are similar.

S[t]: The number of susceptible individuals on day t from the initial point.

β: Transmission rate.

N : Total population

E[t]: The number of exposed individuals on day t from the initial point.

σ: Incubation rate.

I[t]: The number of infected individuals on day t from the initial point.

γ: Removed rate.

R[t]: The number of removed individuals on day t from the initial point.

Now we can start to use the forward Euler method at t = 0. When we know the

initial value of each variable at t=0, including S[0], E[0], I[0] and R[0] (in fact, this

is simple, usually we set S[0] = N − 2, E[0] = I[0] = 1, R[0] = 0), and all parameters

β, γ and σ (the determination of the parameters is introduced in the next section),

we can obtain the value of each variable at t = 1 through one iteration, which is S[1],

E[1], I[1] and R[1].
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They are shown as:

S[1] = S[0]− βS[0](I[0])

N

E[1] = E[0] +
βS[0](I[0])

N
− σE[0]

I[1] = I[0] + σE[0]− γI[0]

R[1] = R[0] + γ(I[0])

Similarly, we can generate the S[2], E[2], I[2] and R[2] by performing the second

iteration:

S[2] = S[1]− βS[1](I[1])

N

E[2] = E[1] +
βS[1](I[1])

N
− σE[1]

I[2] = I[1] + σE[1]− γI[1]

R[2] = R[1] + γ(I[1])

Repeating this step, we can generate the value of each variable at any time t. We use

S[t], E[t], I[t] and R[t] to represent them respectively, and they satisfy the following

equations.

S[t] = S[t− 1]− βS[t− 1](I[t− 1])

N

E[t] = E[t− 1] +
βS[t− 1](I[t− 1])

N
− σE[t− 1]

I[t] = I[t− 1] + σE[t− 1]− γI[t− 1]

R[t] = R[t− 1] + γ(I[t− 1])

Where S[t− 1], E[t− 1], I[t− 1] and R[t− 1] are all from the result of the previous

iteration.

In summary, the algorithm is shown as Algorithm 1.
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Algorithm 1 Determining the numerical solution of basic SEIR model
at all time t ∈ {1, 2, . . . , n}
Input:
The initial value of variables: S[0], E[0], I[0] and R[0];
The optimal parameters: β, γ and σ;
Total population of some area: N ;
The number of iterations or days: n;
Output
S[t], E[t], I[t] and R[t] at all time t ∈ {1, 2, . . . , n}
Procedure
For i in 1 to n

S[i] = S[i− 1]− βS[i−1](I[i−1])
N

E[i] = E[i− 1] + βS[i−1](I[i−1])
N

− σE[i− 1]
I[i] = I[i− 1] + σE[i− 1]− γI[i− 1]
R[i] = R[i− 1] + γ(I[i− 1])
Return S[i], E[i], I[i] and R[i]

2.6 Parameter Estimation for SEIR Model

In the SEIR model, there are three unknown parameters that need to be estimated: β,

σ, and γ. The incubation rate of the COVID-19 has been estimated precisely, which is

between 2 to 11 days(2.5th to 97.5th percentile) and that the mean incubation period

was 6.4 days(95% CI: 5.6 - 7.7) [15]. Thus, we assume σ = 1
6
. The least square

method is applied to find the optimal parameters of β and γ. The algorithm is shown

as Algorithm 2.
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Algorithm 2 Parameter Estimation for SEIR model
Input
Sequence {βj}99j=0 = {0, 0.01, 0.02, . . . , 0.99};
Sequence {γj}99j=0 = {0, 0.01, 0.02, . . . , 0.99};
Parameters: σ = 1

6
;

Numerical Solution for I at day t, denoted as I(t, β, γ);
True value for I at day t, denoted as AI(t)
The number of iterations or days: n;
Output
Optimal Parameters: β, γ
Procedure
For i in 0 to 99

For j in 0 to 99
mij = 1

n
Σn
t=0(AI(t)− I(t, βi, γj))

2

Find min{mij, for i, j in 0 to 99} and corresponding indices a and b
Return βa and γb
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CHAPTER 3

SEIUR MODEL

3.1 Introduction

As we mentioned in chapter 2, we know that the SEIR model has two limitations: one

is the neglect of infectivity, and the other is that it does not consider the unreported

cases.

We expect to complement these two weaknesses in the SEIUR model. To over-

come the second weakness, the SEIUR model divides the infection equation (3) from

SEIR model into two new parts, namely, unreported infection equation (14) and re-

ported symptomatic infection equation (13). The new variables U and I represent

people who have been infected but have not been tested for various reasons and the

reported/confirmed infected people respectively. Let f be the proportion from E to I,

and 1−f be the proportion from E to U . To handle the first weakness, the infectious

population I in equation (11) and (12) is replaced by the sum of exposed population

E and unreported infectious cases U , because the individuals in groups U and E have

the ability to spread the virus to others during the infection. On the contrary, people

in group I were required to be quarantined at home or in a hospital and thus could

not infect others.

The establishment of the SEIUR model is based on the following assumptions:

• Keep first three assumptions same as SEIR model

• Exposed and Unreported infected individuals are capable of transmitting the

disease

• Reported infectious individuals do not have capability of transmitting the dis-

ease
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• Unreported infected individuals cannot become the reported infected individuals

The SEIUR model is given by;

dS(t)

dt
= −βS(t)(E(t) + U(t))

N
(5)

dE(t)

dt
=
βS(t)(E(t) + U(t))

N
− σE(t) (6)

dI(t)

dt
= σfE(t)− γI(t) (7)

dU(t)

dt
= σ(1− f)E(t)− γU(t) (8)

dR(t)

dt
= γ(I(t) + U(t)) (9)

Keep S(t), E(t), R(t), β, γ, and σ same as SEIR Model

I(t): The number of reported infected individuals at time t

U(t): The number of unreported infected individuals at time t

f : The proportion of Exposed individuals that become reported infected individ-

uals (Reported rate)

The transition diagram is shown as:

Figure 2: SEIUR model

Because real data based on SEIR is updated daily, we use the discrete model with

∆t = 1. It is shown as:

S[t+ 1] = S[t]− βS[t](E[t] + U [t])

N
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E[t+ 1] = E[t] +
βS[t](E[t] + U [t])

N
− σE[t]

I[t+ 1] = I[t] + σfE[t]− γI[t]

U [t+ 1] = U [t] + σ(1− f)E[t]− γU [t]

R[t+ 1] = R[t] + γ(I[t] + U [t])

3.2 Reported and Unreported Cases

At the early stage of the outbreak, test reagents for COVID-19 were not fully effective,

and the number of reagents was not enough to cope with the huge test population.

So it is certain that at the beginning of the pandemic, a significant number of people

infected with COVID-19 could not be tested. In the middle stage of the pandemic,

although various states had gradually opened up testing, due to the variability of

COVID-19 test policy and the imperfect reagents, many people still could not be

tested or received false negative results. And until the past six months, with the

continuous improvement of the range and accuracy of the test, this has made the

average test rate higher than before.

Now, our main goal is to estimate an appropriate value of the proportion f .

Recalling the definition explained in the previous section, f stands for the proportion

of E that become I. Let E(t) represent the exposed individuals in time t, γ represent

the removed rate, σ is the incubation rate, n(t) represent the daily COVID-19 tests

per thousand people at time t, p(t) stand for the daily positive rate (the share of

COVID-19 tests that are positive) at time t, and N is the total population. And we

assume that all individuals in E(t) are newly infected, then the proportion f(t) at

time t can be defined as (10).

f(t) =
( 1
σ

+ 1
γ
)(n(t)p(t)N

1000
)

E(t)
(10)
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Since the number of exposed people cannot be directly counted, it is almost impos-

sible to find relevant statistical data on E. Here we use the SEIR model to generate

historical data of E(t). σ is 1
6

assumed in section 2.6. γ is obtained by the least square

method shown in Algorithm 2. N is the total population of United States. Regarding

the data of n(t) and p(t), we use data from ‘Our World in Data’ [23], which provides

the daily COVID-19 tests per thousand people and the daily positive rate. Now, we

can generate the proportion f(t) at any day t.

For simplicity, we define f = f(t) as the constant proportion rate for all data.

By the formula (10) and the data we have, we estimate f = f(t) = 0.5937

3.3 Piecewise SEIUR Model based on Control Strategies

No matter how the SEIR model changes, the most core parameters are always β and

γ. Therefore, the estimation of β and γ is particularly vital for both SEIR model and

SEIUR model.

The basic SEIR model has a fixed value for β and γ for the entire time period.

Since the values of β and γ are affected by many factors, such as government epidemic

prevention measures, quarantine, and vaccination, it is unreasonable to set β and γ

as constants. In addition, another popular method is to use a function to fit β and γ

respectively. This approach makes the values of β and γ continuous and the changes

are too frequent. Therefore, this thesis combines these two ideas, assuming that the

value of β and γ are constant in a period of time, and when entering the next period,

the values of β and γ are updated. The selection of update points is based on the time

when government issued the relevant strategies or policies and the phase between two

consecutive update points is called the ”period” in this thesis. The strategies release

timeline is shown in Figure 3.
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Figure 3: Strategies[26] release timeline

By the Figure 3, we separate the whole time period from 2/28/2020 to 3/16/2021

to 8 different parts, which are a. From 2/28/2020 to 3/16/2020 b. From 3/17/2020

to 3/31/2020 c. From 4/1/2020 to 4/20/2020 d. From 4/21/2020 to 6/10/2020 e.

From 6/11/2020 to 7/15/2020 f. From 7/16/2020 to 10/4/2020 g. From 10/5/2020 to

1/15/2021 h. From 1/15/2021 to 3/16/2021. For each period, we have independent

SEIUR model, and corresponding specific parameters β and γ. The piecewise SEIUR

model is shown below:

dS(t)

dt
= −βiS(t)(E(t) + U(t))

N
(11)

dE(t)

dt
=
βiS(t)(E(t) + U(t))

N
− σE(t) (12)

dI(t)

dt
= σfE(t)− γiI(t) (13)

dU(t)

dt
= σ(1− f)E(t)− γiU(t) (14)

dR(t)

dt
= γi(I(t) + U(t)) (15)

βi: Transmission rate during the period i.

γi: Removed rate during the period i.
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Other notations have the same meaning as before and the transition diagram for

period i is shown in Figure 4.

Figure 4: SEIUR model for period i

Because real data based on SEIUR is updated daily, for the epidemic of period i,

we use the discrete model with ∆t = 1, which is shown as:

S[t+ 1] = S[t]− βiS[t](E[t] + U [t])

N

E[t+ 1] = E[t] +
βiS[t](E[t] + U [t])

N
− σE[t]

I[t+ 1] = I[t] + σfE[t]− γiI[t]

U [t+ 1] = U [t] + σ(1− f)E[t]− γiU [t]

R[t+ 1] = R[t] + γi(I[t] + U [t])

3.4 The Outbreak Factor generated by Piecewise SEIUR Model

Recall Section 2.3 and 2.4 about the outbreak factor O(t) for the SEIR model. We

know that O(t) = βS(t)
γN

which can be used to learn the future trend of the epidemic.

If O(t) > 1, it indicates that the epidemic is still in outbreak. If O(t) < 1, then the

virus is disappearing. If O(t) = 1, the virus is under control and may coexist with

humans for a long time.
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In this section, we discuss the outbreak factor O(t) produced by the piecewise

SEIUR model. We know that the value of outbreak factor O(t) is related to the

transmission rate β and the removed rate γ. Section 3.3 shows that different time

periods have distinct parameters β and γ, thus, the outbreak factor O(t) is also

different for each period.

In piecewise SEIUR model, for each period i, when the rate of change of E+I+U >

0, we have that the epidemic is still in outbreak, that is,

d(E + I + U)

dt
> 0

which implies
dE

dt
+
dI

dt
+
dU

dt
> 0

By SEIUR model

βiS(t)(E(t) + U(t))

N
− σE(t) + σE(t)− γi(I(t) + U(t)) > 0

It follows that σE(t)

βiS(t)(E(t) + U(t))

N
− γi(I(t) + U(t)) > 0

Since γi, I(t), U(t) are all positive, we have

βi(E(t) + U(t))S(t)

γi(I(t) + U(t))N
> 1

When the rate of change of E+ I+U < 0, we have that the virus is disappearing.

By the similar steps, we have that

βi(E(t) + U(t))S(t)

γi(I(t) + U(t))N
< 1

When the rate of change of E+ I+U = 0, we have that the virus is under control

and may coexist with humans for a long time.

we have
βi(E(t) + U(t))S(t)

γi(I(t) + U(t))N
= 1
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By mathematical analysis above, in each period i, the formula of outbreak factor

at time t generated by piecewise SEIUR model is defined by

(O(t))i =
βi(E(t) + U(t))S(t)

γi(I(t) + U(t))N

And we define Oi = O(t)i to represent the average value of outbreak factor in period

i.

3.5 Numerical Solution of SEIUR Model and Piecewise SEIUR

Model

Section 2.4 introduces the numerical solution of the SEIR model. Similarly, we can

also obtain the numerical solution of the SEIUR model and piecewise SEIUR model.

The algorithms are shown as Algorithm 3 and 4.

Algorithm 3 Determining the numerical solution of SEIUR model
at all time t ∈ {1, 2, . . . , n}
Input:
The initial value of variables: S[0], E[0], I[0], U [0] and R[0];
The optimal parameters: β, γ, f and σ;
Total population of some area: N ;
The number of iterations or days: n;
Output
S[t], E[t], I[t], U [t] and R[t] at all time t ∈ {1, 2, . . . , n}
Procedure
For i in 1 to n

S[i] = S[i− 1]− βS[i−1](I[i−1])
N

E[i] = E[i− 1] + βS[i−1](I[i−1])
N

− σE[i− 1]
I[i] = I[i− 1] + σfE[i− 1]− γI[i− 1]
U [i] = U [i− 1] + σ(1− f)E[i− 1]− γU [i− 1]
R[i] = R[i− 1] + γ(I[i− 1] + U [i− 1])
Return S[i], E[i], I[i], U [i] and R[i]
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Algorithm 4 Determining the numerical solution of piecewise SEIUR model
at time t ∈ {pi, pi + 1, . . . , pi+1 − 1} for i = 1 . . . n
where pi is the start point of period i and p1 = 0
Input:
The initial value of variables: S[0], E[0], I[0], U [0] and R[0];
The optimal parameters for each period i: βi, γi, f and σ;
Total population of some area: N ;
The number of iterations or days: n;
Output
S[t], E[t], I[t] and R[t] at all time t ∈ {1, 2, . . . , n}
Procedure
For i in 1 to n

For j in pi to pi+1 − 1

S[j] = S[j − 1]− βiS[j−1](I[j−1])
N

E[j] = E[j − 1] + βiS[j−1](I[j−1])
N

− σE[j − 1]
I[j] = I[j − 1] + σfE[j − 1]− γjI[j − 1]
U [j] = U [j − 1] + σ(1− f)E[j − 1]− γjU [j − 1]
R[j] = R[j − 1] + γj(I[j − 1] + U [j − 1])
Return S[j], E[j], I[j], U [j] and R[j]

3.6 Parameter Estimation for SEIUR Model and Piecewise

SEIUR model

In the SEIUR model, there are four unknown parameters that need to be estimated:

β, σ, f , and γ. We have shown that the proportion of E to I is 0.6, that is, f = 0.6,

from section 3.2. We still assume σ = 1
6

for the same reason in section 2.6. The least

square method is employed to find the optimal parameters of β and γ. The algorithm

is shown as Algorithm 5.
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Algorithm 5 Parameter Estimation for SEIUR model
Input
Sequence {βj}99j=0 = {0, 0.01, 0.02, . . . , 0.99};
Sequence {γj}99j=0 = {0, 0.01, 0.02, . . . , 0.99};
Parameters: f = 0.6, σ = 1

6
;

Numerical Solution for I at day t, denoted as I(t, β, γ);
True value for I at day t, denoted as AI(t)
The number of iterations or days: n;
Output
Optimal Parameters: β, γ
Procedure
For i in 0 to 99

For j in 0 to 99
mij = 1

n
Σn
t=0(AI(t)− I(t, βi, γj))

2

Find min{mij, for i, j in 0 to 99} and corresponding indices a and b
Return βa and γb

In the piecewise SEIUR model, we also have σ = 1
6

and f = 0.6. Parameter

estimation of βi and γi for each period i is shown as Algorithm 5.

Algorithm 6 Parameter Estimation for piecewise SEIUR model
Input
The number of periods: k;
Sequence {βj}99j=0 = {0, 0.01, 0.02, . . . , 0.99};
Sequence {γj}99j=0 = {0, 0.01, 0.02, . . . , 0.99};
Parameters: f = 0.6, σ = 1

6
;

Numerical Solution for I at day t, denoted as I(t, β, γ);
True value for I at day t, denoted as AI(t);
The number of iterations or days: n;
Note that: {0, 1, 2, ..., n} = Uk

i=1{pi, pi + 1, . . . , pi+1 − 1};
where pi is the start point of period i and p1 = 0;
Output
Optimal Parameters: (βi, γi) for all i in 0 to k
Procedure
For i in 1 to k

For j in 0 to 99
For g in 0 to 99

mijg = 1
pi+1−piΣ

pi+1

t=pi(AI(t)− I(t, βj, γg))
2

Find min{mijg, for j, g in 0 to 99} and corresponding indices ai and bi
Return βai and γbi
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CHAPTER 4

PERFORMANCE ANALYSIS OF SEIUR AND PIECEWISE SEIUR

FOR COVID-19

4.1 Introduction

For a better understanding of the mechanics of our model, the implementation of

SEIR model and piecewise SEIUR model using Python for United Stated COVID-19

data is presented in this chapter. Data comes from the reference website ‘World-

meter’ [24]. We use a Python program to capture the active cases, the total cases

and the total deaths as raw data and then perform data preprocessing on them. We

generate the removed cases and total recoveries from the raw data. These five groups

of data can be applied to estimate parameters in the SEIUR model Using Python

program. Since piecewise SEIUR model is a policy-based piecewise model, we need

to divide the whole set of data into several different parts, which represent various

control strategies. We define each part as a period. After obtaining the piecewise

data, the optimal parameters of piecewise SEIUR model can be obtained using the pa-

rameter estimation algorithm introduced in chapter 3 by a Python program. Finally,

combining the optimal parameters and numerical solutions of the SEIUR model and

piecewise SEIUR model generated in previous chapters, the numerical simulation of

the active cases of each model at different time t is obtained. Error analysis is shown

in the last section of this chapter.

4.2 Data

This section briefly introduces the source of the database used in this thesis, the

content of the data, and how we preprocessed it. Finally, a graphical representation

of data is provided.
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4.2.1 Data source

The data used in this thesis is from the reference website ‘Worldmeter’ [24]. This

website provides access to a variety of real-time statistical data. The website belongs

to Dadax, an independent digital media company in the United States. This website

records all pandemic data in the United States from February 15, 2020 to the present

and data is updated daily.

4.2.2 Data content

The data consists of three different contents. The first is active cases starting from

2/15/2020 to 3/16/2021. The second and third contents are in same period as the

first one, and they include the total cases and total deaths respectively. The detail

of each content is shown in Table 1:

Table 1: Data content of total cases, active cases and

total deaths

Data content Data description Data period Data size
Total Cases Total number of infections 2/15/2020 to 3/16/2021 (1, 396)

(including deaths and recoveries)
Active Cases Current number of infections 2/15/2020 to 3/16/2021 (1, 396)

(excluding deaths and recoveries)
Total Deaths Total number of deaths 2/15/2020 to 3/16/2021 (1, 396)

4.2.3 Data preprocessing

So far, we have obtained the total cases, the active cases and the total deaths from

2/15/2020 to 3/16/2021. In this section we discuss how we preprocess this raw data

into what we need. First, we shift the initial data point from 2/15/2020 to 2/28/2020.
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Although the United States announced the first case of coronavirus on 1/21/2020, the

lack of effective detection methods and insufficient understanding of the coronavirus

have led to the low accuracy of the data during the early stage of the pandemic. Thus,

we discarded the data from the early period of the pandemic and set 2/28/2020 as

the new initial data point.

Secondly, in addition to the above three sets of data, this thesis also needs the

total removed cases and total recovered cases. And these two sets of data can be

obtained by simple calculations between total cases, active cases, and total deaths.

The formulas are as follows:

Total Removed Cases = Total Cases− Active Cases

Total Recovered Cases = Total Removed Cases− Total Deaths

Table 2 shows the data content after processing,

Table 2: Data content of total cases, active cases, total

deaths removed cases and total recoveries

Data content Data period Data size
Total Cases 2/28/2020 to 3/16/2021 (1, 383)
Active Cases 2/28/2020 to 3/16/2021 (1, 383)
Total Deaths 2/28/2020 to 3/16/2021 (1, 383)
Removed Cases 2/28/2020 to 3/16/2021 (1, 383)
Total Recoveries 2/28/2020 to 3/16/2021 (1, 383)

4.2.4 Separate data in different period

In Section 3.3, we clearly explained the reasons for constructing the piecewise model

and how we separate it. This section mainly shows the details after separation at the
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data level.

Table 3 shows the details about each time period.

Table 3: Split data according to strategies [26]

Period # Time period Data size Related policy
Period 1 2/28/2020 to 3/16/2020 (1, 18) No control measures implemented
Period 2 3/17/2020 to 3/31/2020 (1, 15) States gradually follow the strategy

of home quarantine
Period 3 4/1/2020 to 4/20/2020 (1, 20) States keep the home quarantine
Period 4 4/21/2020 to 6/10/2020 (1, 51) Requirement for face masks on public places
Period 5 6/11/2020 to 7/15/2020 (1, 35) More than half of states get people back

to work
Period 6 7/16/2020 to 10/4/2020 (1, 81) Stricter mask-wearing rules
Period 7 10/5/2020 to 12/14/2020 (1, 71) Cold temperatures facilitate the spread

of COVID-19
Period 8 12/15/2020 to 3/16/2021 (1, 92) Vaccination begins

4.2.5 Training data and test data

According to the piecewise SEIUR model, in each period i, there is a corresponding

SEIUR model. In addition to showing the accuracy of SEIUR model in each period i,

this thesis also illustrates the performance of this model in the short future term. In

other words, we obtain the SEIUR model in period i, and use it to estimate the data

at the beginning of period i+ 1. For that reason, the training data for SEIUR model

in period i is all data from itself, and takes the data of the first 7 days from period

i+ 1 as the test data. For the last period, since the next period data is not available,

we divide the period itself into training data and test data, and the number of test

data is 7 days.
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4.2.6 Visualize data using Python

Figure 5: Total Cases and Reported Active Cases in US

Figure 6: Total Recoveries and Total Deaths in US

Figure 5 shows the total cases and reported active cases. Combining the two figures,

we can see that the total cases in the United States has exceeded 30 million since

March. This means that nearly ten percent population in the United States has been

infected with COVID-19, but the good news is that as the availability of the vaccine

grows, the reported active cases has continued to decrease since February. We also

found that starting from October 2020, due to policy changes, the total cases and the
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reported active cases have both increased sharply. Figure 6 shows the total recoveries

and the total deaths. We can see that the curves of the total deaths and the total

recoveries have similar patterns.

4.3 Performance analysis of SEIUR and Piecewise SEIUR

Models using Python

Before implementing the model, we need to estimate the parameters of SEIUR model

and piecewise SEIUR model respectively.

4.3.1 Parameter Estimation for SEIUR model

Based on the parameter estimation algorithm 4 discussed in section 3.6, we estimate

the parameters β and γ for SEIUR model in this section. Figure 7 is the 3D error

graph with different β and γ.

Figure 7: 3D error graph with different β and γ for SEIUR model

Optimal parameters: β = 0.13, γ = 0.08
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4.3.2 Parameter Estimation for Piecewise SEIUR model

Based on the parameter estimation algorithm 5 discussed in section 3.6, we estimate

the parameters βi and γi for piecewise SEIUR model in each period i. Figures 8 to

11 are the 3D error graphs for each of period.

Figure 8: 3D error graph for different β and γ for period 1 and 2

Optimal parameters for period 1: β = 0.44, γ = 0.36

Optimal parameters for period 2: β = 0.26, γ = 0.1

Figure 9: 3D error graph for different β and γ for period 3 and 4

Optimal parameters for period 3: β = 0.1, γ = 0.04

Optimal parameters for period 4: β = 0.03, γ = 0.01
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Figure 10: 3D error graph for different β and γ for period 5 and 6

Optimal parameters period 5: β = 0.08, γ = 0.03

Optimal parameters period 6: β = 0.06, γ = 0.03

Figure 11: 3D error graph for different β and γ for period 7 and 8

Optimal parameters period 7: β = 0.11, γ = 0.06

Optimal parameters period 8: β = 0.1, γ = 0.05
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4.3.3 Numerical simulation for SEIUR model

Figure 12: Numerical simulation for SEIUR

Figure 12 shows the numerical simulation results of SEIUR model on all data. We

find that when simulating all of the data at once, the SEIUR model can successfully

simulate the trend of data, but it cannot accurately reflect the true value of the data

at each point. We have a more intuitive reflection in the error analysis in the next

section.



33

4.3.4 Outbreak factor and Numerical simulation for piecewise SEIUR

model

Figure 13: Numerical simulation in period 1 and 2

Figure 14: Outbreak factor in period 1 and 2

Figure 13 shows the estimated reported active cases and real data in period 1 and 2,

and the blue dots are training data, green dots are test data. Figure 14 shows the daily

outbreak factor in period 1 and 2. In period 1, no control measures were implemented

which led to an exponential outbreak, and we calculate that the O1 = 4.9461 in period

1, which is much greater than 1. This is consistent with what we proved in Section
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2.3: When O(t) is much greater than 1, the pandemic is in a major outbreak stage.

Observing the simulation results on the test data, the SEIUR model in the first

period can still simulate the data at the beginning of the second period very well.

This also means that at the beginning of the second period, the home quarantine

strategy has not yet contributed to a significant impact, and the pandemic was still

breaking out. The O(t) of the entire second period also confirmed this point. In this

period, the O2 = 4.8743, which is slightly lower than that of the period 1 but still far

greater than 1. It indicates that in the middle and late stages of the period 2, the

home quarantine strategy had achieved initial results, but the epidemic was still in

outbreak. The test data of the period 2 showed that at the beginning of the period 3,

we can hardly simulate the data by the model in period 2. The true value of the test

data is significantly smaller than the result obtained by SEIUR model generated in

period 2, which implies that the home quarantine strategy implemented in the period

2 achieved a significant effect in the period 3.

Figure 15: Numerical simulation in period 3 and 4
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Figure 16: Outbreak factor in period 3 and 4

Figure 15 and 16 shows the results of numerical simulations and outbreak factor

in period 3 and 4. O3 = 2.3412 in period 3, which has a 52% decrease compared to

period 2. This confirms the analysis made in the discussion of period 2. The home

quarantine strategy has slowed the spread of the epidemic. In period 4, mask wearing

further reduced the spread of pandemic. The figure about period 4 illustrates the

growth rate of the active cases has decreased compared to period 3 and reached the

first turning point at the end of May. Quantitatively, O4 = 1.5362 in period 4, which

is a decrease of 34% compared to period 3.

Figure 17: Numerical simulation in period 5 and 6
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Figure 18: Outbreak factor in period 5 and 6

Figure 17 and 18 shows the results of numerical simulations and outbreak factor

in period 5 and 6. In period 5, many states are relaxing their restrictions, with more

than half set to be partially reopened, which led to the pandemic to rebound rapidly

after reaching the first turning point. The number of active cases start to rise again.

Average outbreak factor also rose from 1.5362 to 1.7176. In period 6, stricter mask-

wearing rules slowed the spread of pandemic, the second turning point was reach at

the end of August and O6 = 1.1660.

Figure 19: Numerical simulation in period 7 and 8
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Figure 20: Outbreak factor in period 7 and 8

Figure 19 and 20 show the results of numerical simulations and outbreak factor in

period 7 and 8. As winter brings shorter days and lower temperatures to the United

Stated this facilitates the spread of COVID-19. Period 7 shows this process. With

the advent of winter, active cases began to increase again after reaching the second

turning point and O7 rose back to 1.3414. Period 8 is the latest period so far, and

vaccinations began on the first day of this period. The graph in period 8 shows that

the vaccination quickly controlled the spread of the pandemic, and the third turning

point appeared at the end of January 2021. So far, the reported active cases has

continued to decline. And in period 8 O8 = 0.9991, which is less than 1. If this

continues, the epidemic is likely to be completely controlled in the next few months.
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Figure 21: Numerical simulation for piecewise SEIUR and SEIUR

Figure 21 shows the numerical simulation results of piecewise SEIUR model and

SEIUR model, where the result of piecewise SEIUR is obtained by combining the

graphs of 8 periods. It can be seen from the figure that the piecewise SEIUR model

performs better than the SEIUR model. This also means that it is reasonable to

divide a long period of time into different sub-period according to policy dates, and

then use the SEIUR model to simulate each period respectively.

4.3.5 Error analysis

After performing the numerical simulation of the model, error analysis is an effective

way to evaluate the performance of the model. There are many error metrics, such

as Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute

Error (MAE), Mean Absolute Percentage Error (MAPE), and Symmetric Mean Ab-

solute Percentage Error (SMAPE). In this section we discuss several representative

error metrics for error analysis.

The Mean Absolute Percentage Error (MAPE) [28] is one of the most commonly

used metrics to measure model accuracy. It is the average of the relative error and is
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given by the following formula:

MAPE =
1

n
·

n∑
i=1

∣∣∣∣reali − estimateireali

∣∣∣∣× 100%

The Mean Absolute Error (MAE) [28] is a popular error metric to measure model

accuracy. As the name implies, it is the average of the absolute error. The formula

is shown below:

MAE =
1

n
·

n∑
i=1

|reali − estimatei|

The Mean Squared Error (MSE) [28] is an error metric to measure model accuracy.

Since MSE is a continuous function, it is often used together with the least square

method and gradient descent method. It is defined as the average squared error. The

formula is shown below:

MSE =
1

n
·

n∑
i=1

(reali − estimatei)2

Figure 22: Relative error in period 1 and 2

Figure 22 shows the relative error of each data point in period 1 and period 2. By

the formula of MAPE, we have that:

MAPEperiod 1 = 8.436%
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MAPEperiod 2 = 5.645%

Figure 23: Relative error in period 3 and 4

MAPEperiod 3 = 4.443%

MAPEperiod 4 = 4.721%

Figure 24: Relative error in period 5 and 6

MAPEperiod 5 = 2.665%
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MAPEperiod 6 = 4.961%

Figure 25: Relative error in period 7 and 8

MAPEperiod 7 = 4.404%

MAPEperiod 8 = 2.615%

Figure 26: Relative error for Piecewise SEIUR and SEIUR

MAPEPW-SEIUR = 4.083%
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MAPESEIUR = 59.526%

From the results shown in Figure 26, it can be seen that the piecewise SEIUR model

has small MAPE in each period and entire period. Specifically, the MAPE from

period 3 to period 8 is lower than 5%, the MAPE in all periods is lower than 10%,

and the MAPE in the entire period is only 4%. In contrast, the MAPE of SIEIUR

model exceeds 50%.

Figure 27: Absolute error and Square error for Piecewise SEIUR and SEIUR

MAEPW-SEIUR = 1.12× 105. MSEPW-SEIUR = 2.50× 1010

MAESEIUR = 1.041× 106, MSESEIUR = 1.55× 1012

Figure 27 shows that MAE and MSE also gave the same results. No matter which

error metric is used, the piecewise SEIUR model has a better performance than the

SEIUR model. Quantitatively, the error of piecewise SEIUR model under the MAE

metric is only one-tenth of that of the SEIUR, and under the MSE metric it is only

one-sixth.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

The main achievement of this thesis is to incorporate unreported cases into the SEIR

model to obtain the SEIUR model. On this basis, we considered piecewise parameters

β and γ and derived the piecewise SEIUR model. These two models are applied to

explore the COVID-19 data in the United States. The main conclusion of this thesis

is that the piecewise SEIUR model does have higher simulation accuracy than the

SEIUR model. The MAPE of the piecewise SEIUR model is only 4%. The error of

the piecewise SEIUR model under the MAE and MSE metrics is far less than that

of SEIUR model. The outbreak factor generated by the piecewise SEIUR model can

be applied to explain the changes of the epidemic prevention strategy in each period.

This also provides a mathematical tool for future research on the impact of different

strategies on the epidemic.

We introduced the pandemic that affected the world, research background of this

thesis, and some methodologies are used. We have developed the improvement meth-

ods and reasons for the deficiencies of SEIR model mentioned and introduced the

SEIUR model. We discussed the core part of the SEIUR model, that is, the reported

and Unreported Cases. But for numerical simulations with a long time period, the

model with constant parameters is always difficult to cope with changing situations.

Therefore, we gave the concept of a piecewise model, which performs parameter esti-

mation and numerical simulation for each period independently. Due to the modifi-

cation of the model, the expression of outbreak factor, the form of numerical solution,

and the algorithm of parameter estimation is partially changed. We discussed these

changes and obtained suitable forms for the piecewise SEIUR model.

We discussed the performance of the SEIUR model and the piecewise SEIUR

model for the COVID-19 data. This chapter is mainly divided into two parts. The

first part discussed the data, and the second part showed the implementation of the
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models. We discussed the data source, the data content, the data preprocessing, the

training data and the test data, and the data visualization. In the implementation

part, we performed parameter estimation, numerical simulation, and error analysis

for the SEIUR model and piecewise SEIUR model respectively.

The difficulty in implementing the piecewise SEIUR model is to determine the data

division strategy. Using different division strategies could result in different parameter

estimations and numerical simulation results. Therefore, a specific algorithm to find

the division strategy of the data is my future work. I plan to use neural networks and

deep learning methods to achieve this. The model that can automatically determine

the division strategy can be more conveniently used for analysis in more complex

situations.

All the code written in Python language. The core code has been uploaded

to my github: https://github.com/ZirenChen/Thesis_Code/blob/main/Python%

20code

https://github.com/ZirenChen/Thesis_Code/blob/main/Python%20code
https://github.com/ZirenChen/Thesis_Code/blob/main/Python%20code
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