

SQL INJECTION VULNERABILITY DETECTION IN WEB APPLICATIONS

By

Jason York

A Thesis Submitted in Partial Fulfillment

of the Requirements for the Degree of

Master of Science in Computer Science

Middle Tennessee State University

May 2014

Thesis Committee:

Dr. Zhijiang Dong

Dr. Cen Li

Dr. Jungsoon Yoo

ii

ACKNOWLEDGEMENTS

 I am heartily thankful to my supervisor, Dr. Dong for all his continuous advices,

encouragements, and guidance at all times. I want to dedicate this work to my parents for

their continuous support and motivation. To all my family and friends for being there at

all times when I needed them most.

iii

ABSTRACT

 Security is an essential requirement of most web applications, which typically

access sensitive data such as personal information, and financial records. Leaking of such

sensitive data could cause huge financial losses and hurt the reputation of the

organization. However, studies have shown that security vulnerabilities are common in

web applications due to the increased pressure on budget and timeline as well as the lack

of security training. The goal of the project is to detect one specific kind of security

vulnerabilities – SQL injection vulnerability in web applications by exploring source

code. The developed tool is easy to use and provides enough flexibility to handle

different database extensions.

iv

TABLE OF CONTENTS

LIST OF TABLES .. vii

LIST OF FIGURES ... viii

LIST OF SYMBOLS AND ABBREVIATIONS .. xi

Chapter

I. INTRODUCTION ... 1

1. Problem and Motivation ... 1

2. Approach .. 2

II. BACKGROUND .. 4

1. SQL Injection ... 4

2. Related Works on SQL Injection Detection ... 10

3. Related Works on Vulnerability Detection System 12

III. SYSTEM DESIGN .. 14

1. System Architecture ... 14

2. Configuration File... 16

3. Parser .. 18

3.1. Nikic PHP Parser .. 19

3.2. Application Parsing Design .. 23

4. Analyzer .. 24

4.1. Dependency .. 24

4.2. Vulnerability Analysis .. 26

4.3. Vulnerability Analysis for Function ... 28

v

5. Output .. 29

IV. IMPLEMENTATION ... 30

1. Introduction .. 30

2. Parsing implementation .. 30

3. Analysis Implementation .. 32

4. Test Cases ... 34

4.1. MYSQL Test Cases .. 35

4.1.1. User Input to SQL Query Directly 35

4.1.2. User Inputs to SQL Query Indirectly 36

4.1.3. Accessing Database through User-Defined Functions 38

4.1.4. Escape method inside Function .. 39

4.1.5. Branches ... 41

4.2. MYSQLI Test Cases ... 42

4.2.1. User Input to SQL Query Directly 42

4.2.2. Escape Method ... 44

4.2.3. Access Database within Functions 45

4.2.4. Access Database within Function—Parameter Contributes

Indirectly ... 47

4.2.5. Multiple Value Source .. 48

V. CASE STUDY ... 50

1. Introduction .. 50

2. Data Collection ... 52

2.1. Detail Analysis of Each Group ... 55

vi

2.1.1. Group One .. 55

2.1.2. Group Three .. 57

2.1.3. Group Nine ... 60

3. Summary ... 61

VI. CONCLUSION AND FUTURE WORKS .. 63

1. Conclusion ... 63

2. Future Works .. 64

BIBLIOGRAPHY ... 66

APPENDICES .. 68

A. SOURCE CODE ... 69

B. TEST CASE TABLE STRUCTURE .. 101

vii

LIST OF TABLES

Table 1 – Languages used ... 53

Table 2 – Page extensions ... 54

Table 3 – Result of Student Projects ... 55

viii

LIST OF FIGURES

Figure 1 – Login page. .. 5

Figure 2 – HTML code for login page .. 5

Figure 3 – Login PHP code ... 7

Figure 4 – HTML login form with malicious input .. 8

Figure 5 – Successful login with malicious input ... 9

Figure 6 – Ambiguous function name .. 11

Figure 7 – System Architecture .. 14

Figure 8 – Interface for developed tool... 16

Figure 9 – Example of adding new database extension .. 17

Figure 10 – Example of adding safe functions ... 17

Figure 11 – Example of adding new user input function .. 18

Figure 12 – Sample PHP code to be converted... 19

Figure 13 – Nikic’s PHP parser. ... 19

Figure 14 – Usage of Nikic PHP parser. ... 20

Figure 15 – PHP code to be parsed ... 20

Figure 16 – Generated abstract syntax tree ... 21

Figure 17 – Simple code for converted into array .. 23

Figure 18 – Sample PHP code .. 25

Figure 19 – PHP code for function dependency ... 25

Figure 20 – Variable without SQL injection prevention function 27

Figure 21 – Example with SQL injection prevention function 28

Figure 22 – Example of function analysis .. 29

ix

Figure 23 – Example of function parameter tracing ... 33

Figure 24 – MYSQL Example of basic usages. .. 35

Figure 25 – Application output of example code in Figure 24 36

Figure 26 – MYSQL Example of user input for query indirectly................................. 37

Figure 27 – Application output of example code in Figure 26 37

Figure 28 – MYSQL Example of accessing database within function 38

Figure 29 – Application output of example code in Figure 28 39

Figure 30 – MYSQL Example of escape variables within function 40

Figure 31 – Application output of example code in Figure 30 40

Figure 32 – MYSQL Example of condition statement ... 41

Figure 33 – Application output of example code in Figure 32 42

Figure 34 – MYSQLI Example of basic usage ... 43

Figure 35 – Application output of example code in Figure 34 43

Figure 36 – MYSQLI Example of escape method.. 44

Figure 37 – Application output of example code in Figure 36 45

Figure 38 – MYSQLI Example of database access within function 46

Figure 39 – Application output of example code in Figure 38 46

Figure 40 – MYSQLI Example of indirect database access within function 47

Figure 41 – Application output of example code in Figure 40. 48

Figure 42 – MYSQLI example of multiple value sources .. 49

Figure 43 – Application output of example code in Figure 42 49

Figure 44 – Group one login page vulnerable code .. 56

Figure 45 – Application output of group one login page. ... 57

x

Figure 46 – Group three tagprint page vulnerable code .. 58

Figure 47 – Application output of group three tag print ... 58

Figure 48 – Incorrect used of prepare statement ... 59

Figure 49 – Correct way of using prepare statement. ... 59

Figure 50 – Application output of group three insert tag page 60

Figure 51 – Application output of group nine user page .. 61

Figure 52 – Return value... 65

xi

LIST OF SYMBOLS AND ABBREVIATIONS

PHP – PHP: Hypertext Preprocessor (originally stood for Personal Home Page)

SQL – Structured Query Language

MYSQL – My Structured Query Language

PDO – PHP Data Objects

MYSQLI – MySQL Improved

HTML – Hyper Text Markup Language

CSS – Cascading Style Sheets

JS – JavaScript

AST – Abstract Syntax Tree

XSS – Cross Site Scripting

1

CHAPTER I

INTRODUCTION

1. Problem and Motivation

 Developing a web application is not hard. Most people who have some

programming experience could build a simple web application fairly easily. However, it

is not easy to build web applications without security vulnerabilities. According to the

“Hewlett-Packard 2011 top cyber security risks report,” all the investigated web

applications contained at least one vulnerability [7]. One of the major reasons is that

developers don’t pay enough attention to the security component because of variant

reasons such as lack of experience, deadline pressure, and budget restriction. Therefore,

many web applications contain dangerous security flaws, which attract evil attackers and

leads to the leak of data that are used for e-commerce, e-shopping, online education, etc.

These data are typically confidential and have sensitive information like credit card

numbers, social security numbers, and medical records. Those data cannot and should not

be viewed or used by unauthorized personnel. The illegal disclosing of those data could

lead to lawsuits, financial losses, and reputation damage.

 In 2011, a hacktivist group called Anonymous hacked into Sony's PlayStation

Network. This incident caused seventy-seven million users’ personal information

disclosed, including names, addresses, e-mail addresses, and login details for the PSN

[15]. It also prevented users of PSN from playing online. It was one of the largest data

security breaches in history, and it lasted twenty four days [15]. This incident is due to a

variety of types of vulnerabilities in systems. SQL injection is one of them.

2

 This research focuses on the detection of SQL injection vulnerability in web

applications written in PHP. We choose SQL injection and PHP web applications for

several reasons. First, many web applications have SQL injection vulnerability. SQL

injection attack could combine with other attach techniques, which occurs very

frequently, and could cause huge financial losses for organizations and companies.

Actually, SQL injection was ranked in top 10 web application vulnerabilities in 2007 and

2010 by the Open Web Application Security Project (OWASP) [16]. In 2013, OWASP

Top Ten Project rated SQL injection as the number one attack [16]. Second, PHP is a

popular web development programming language, but web applications developed in

PHP are the most vulnerable web applications according to the study conducted by

Positive Technologies [14]. The study compared the security vulnerabilities of web sites

on PHP, ASP.NET, and Java caused by inappropriate software implementation. It

showed that 81% of sites in PHP contain critical security vulnerabilities, and 91%

contained medium-risk vulnerabilities. Last, but not the least, the tool developed in the

research can be used for educational purpose. Students can use this tool to check SQL

injection vulnerability on their course projects.

2. Approach

 This research develops a tool to detect SQL injection vulnerability by exploring

PHP code of the websites. The user interface of the tool is a simple web page which

allows the users to specify files or folders to be checked as well as the database extension

used in the web site. There are many popular database extensions for PHP, such as

MYSQL, MYSQLI, and PDO. Each database extension provides a set of functions or

classes to access database. In addition to the support of these common PHP database

3

extensions, the tool allows the users to add new database extension. All they need to do is

to add the extension name and functions that trigger SQL execution to the configuration

file.

Once the files and the database extension are provided, the tool will start to detect

SQL injection vulnerabilities based on the database extension by exploring the source

code. When the process is completed and SQL injection vulnerability exists, the tool will

output detailed information about the SQL injection vulnerability including the file name,

the line number and the variable or function that causes the security vulnerability

To evaluate the effectiveness of the tool, a case study on student projects from

database classes has been conducted. The result shows that the tool can detect SQL

injection vulnerabilities accurately and efficiently.

The main advantage of the tool that distinguishes it from existing vulnerability-

detection applications is that it uses the white-box testing approach by exploring source

code. White-box testing means it will audit the code instead of just checking the

functionality. It gives the developers a better understanding of where the code is

vulnerable [3].

4

CHAPTER II

BACKGROUND

1. SQL Injection

 An SQL injection attack occurs when an application does not validate the input

from users and gives evil attackers the chance to influence the SQL query. The attacks

usually happen when the web page, like login page, produces SQL statements based on

user inputs to retrieve data from database servers located behind web applications [8].

The attackers could insert a malicious query into the web page instead of developer

expected user name and password.

 Consider the basic login page shown in Figure 1. The login page is used to verify

the identity of legal users. A sample HTML code of the login page is given in Figure 2.

As shown in the HTML code, the action of validating users is in the login.php file.

5

Figure 1. Login page

<form action="login.php" method="post" style="margin:0px;">

<!-- Modal -->

<div class="modal-header">

<h3 id="myModalLabel">Login:</h3>

</div>

<div class="modal-body">

<input name="user_ID" class="input-xlarge" type="text"

placeholder="User Name (login id)">

<input name="user_password" class="input-xlarge"

type="password" placeholder="password">

<div class="modal-footer">

<button class="btn-danger" data-dismiss="modal" aria-

hidden="true">Close</button>

<button class="btn-primary">Submit</button>

</div>

</div>

</form>

6

Figure 2. HTML code for login page

 A sample login.php is given in Figure 3, When the submit button in the login page

is clicked, the login.php script is executed in server side to construct and submit a SQL

query to database servers to verify the existence of the user with the given username and

password. If such user doesn’t exist in the system, the access to the system will be

rejected.

7

<?php

$tempID = "'" . $_POST['user_ID'] . "'";

if($row = mysql_fetch_assoc(mysql_query("SELECT Session_exp

FROM User Where Id =$tempID")))

if(strtotime($lastLogin) < strtotime('-90 days'))

{

$tempPW = "'" . $_POST['user_password'] . "'";

$query = "SELECT * FROM User Where Id = $tempID AND

Password = $tempPW ";

}

else

$query = "SELECT * FROM User Where Id = $tempID";

echo $tempID. " " . " " . $lastLogin;

$result = mysql_query($query) or die("Query failed : " .

mysql_error());

if($row = mysql_fetch_assoc($result))

{

$user = new user;

$user->Id = $row['Id'];

$user->Password = $row['Password'];

$user->Session_exp = $row['Session_exp'];

$user->FName = $row['FName'];

$user->LName = $row['LName'];

$_SESSION['user'] = $user;

}

if(isset($_SESSION[user']))

{

if(strtotime($lastLogin) < strtotime('-90 days'))

$storeSession = mysql_query("Update User SET

Session_exp=NOW() where Id= $tempID");

mysql_query("INSERT INTO Log VALUES (" . $tempID . ", '" .

$_SERVER['REMOTE_ADDR'] . "', '" . getenv('COMPUTERNAME') .

"', NOW())");

header('Location:'. 'homepage.php');

}

else

header('Location:'.

$_SERVER['HTTP_REFERER'].'?login=fail') ;

?>

8

Figure 3. Sample login.php file

As long as regular names and passwords are entered, the above login page works

fine. Unfortunately, attackers can access the system without entering correct username

and password. For example, an attacker could enter ‘OR ‘1’=’1 for the password and

nothing for the username as shown in Figure 4:

Figure 4. Malicious input in login page

The query generated in the sample login.php file from the above malicious input is:

SELECT * FROM User Where Id = '' AND Password ='' OR

'1’=’1'

9

Because of the OR statement in the SQL query, the application checks '1' does equal

'1', thus the query will return TRUE, resulting in a successful login as shown in Figure

5.

 Another way to skip password checking is to type ' OR 1=1 -- to the user name

and leave password empty. The generated query by the code becomes the following:

SELECT * FROM User Where Id = '' OR 1=1 ––' AND Password =

''

Since –- in SQL comments out the rest of the line, the where condition in the above

query will ignore the password checking and therefore always be true. This particular

attack is frequently used to bypass the system authentication.

Figure 5. Successful login with malicious input

10

 Thus, the above sample login page has a SQL injection vulnerability, which

allows attackers to log in successfully without providing valid usernames and passwords.

Such SQL injection vulnerability could lead to a leak of sensitive information and loss of

confidentiality. However, it could be even worse. For example, an attacker could empty

or modify a table by appending a DELETE, UPDATE, INSERT, or DROP SQL

statement. This action would be disastrous to a web page’s information integrity and

availability. Consider the following SQL code snippet, which can be generated when

attackers enter '; DROP ALL TABLES; -- for password and leave username field empty:

SELECT * FROM User Where Id = '' AND Password = ''; DROP

ALL TABLES; --'

 If the above query is executed, although attackers don’t get authentication to

access the database, the injected DROP statement would be executed successfully and

completely erase all the data and all the tables in the database. Unless a database backup

is available, all the data would be lost. If the attackers use UPDATE or INSERT SQL

statements to pollute the database, the users could retrieve deceitful data that could cause

confusion.

2. Related Works on SQL Injection Detection

 Etienne Janot and Pavol Zavarsky’s work “Preventing SQL Injections in Online

Applications” [4] describes how to prevent SQL injections on the applications. The

article describes techniques, like active input data encoding, instruction-set

randomization, and query pre-modeling to prevent SQL injection from happening.

11

However, the paper does not describe how to detect SQL Injection if the vulnerabilities

exist within the code.

To detect all the vulnerabilities, one has to look inside the code and search for any

place that may be vulnerable to SQL injection. In “SQL Injection Attacks and Defense,”

Justin Clarke provides useful methods such as pattern matching and backward tracing [6].

However, pattern matching can lead to false positive results if used alone. For example,

the pattern matching leads to a false positive for the following example because these two

functions are similar and it cannot distinguish one from the other:

$result = MyCustomFunctionToExec_mysql_query($sqlStm);

$result = mysql_query($sqlStm);

Figure 6. Ambiguous function name

Pattern matching alone is not suitable for large or complex applications. However,

if other approaches are applied on top of pattern matching, the overhead cost will

increase, and performance will decrease. To counter this problem, our tool uses PHP

parser with pattern matching [6].

Justin Clarke also talks about using trace-back technique to detect SQL injection

vulnerable code. This approach traces a variable back to its root. It will be used to

eliminate unnecessary work for the detection function which improves performance [6].

Our tool also adopts this trace-back technique.

12

3. Related Works on Vulnerability Detection System

 There are commercial web application scanners to detect security vulnerabilities,

such as Acunetix WVS by Acunetix [1], AppScan by IBM [5], and Retina Web Security

Scanner by BEYONDTRUST [2]. Those applications are non-freeware. Some of them

cost a fortune to use, and are, therefore, not very good candidates for small companies or

students.

 There are also some open-source web application scanners such as Wapiti by

Nicolas Surribas [9], Grabber by Romain Gaucher [12] and Wikto by SensePost [13].

Those are free of charge to use, but they have limited features and are not as powerful as

the commercial scanner. Some of them may lack the ability to detect certain types of

vulnerabilities, have lower performance rates, and consume more memory.

 Those web application scanners focus on black box techniques, which take users’

URL’s and scan each web page using the tree structure of the webpages. They inject

malicious code into the website and investigate the website’s vulnerability to injections.

However, they are not able to see the hidden files or server-side files.

 One drawback of those applications is they do not tell the users where exactly the

vulnerable code is, like which lines of code cause the security breaches. The applications

only tell users how many threats the website may have and the threat level of each,

ranked from high to low. The information is somewhat important if developers have

some knowledge about security. However, they will not be able to understand what each

means or will not be able to know where to start looking for security holes.

13

Most web vulnerability scanners on the market have one common approach: most

of them use black-box testing. It will give the developers a clear view of how secure the

application is, but not where the vulnerabilities are.

14

CHAPTER III

SYSTEM DESIGN

1. System Architecture

 The architecture of the system, as shown below, contains four major components:

Configuration file, PHP parser, Analyzer, and Output. Each of them performs different

sets of tasks.

Figure 7. System Architecture

The configuration file provides information about PHP database extensions,

which adopted by web applications to access databases. It tells the analyzer the types of

database extensions, user input methods, prevention methods, and functions to be

15

evaluated. The information is essential for the analyzer and hard to retrieve from web

applications.

 The PHP parser builds an abstract syntax tree from PHP code. It takes the files

from the user and converted them into abstract syntax trees, which specify the syntactic

structure of PHP code. It has all the information about each variable and function.

 The analyzer takes database extension information from the configuration file as

well as the program structure from the parser. A dependency tree is built to help analyze

the data. Trace back process is performed at the analysis step, to properly identify the

ancestors of variables based on the dependency tree. The ancestors of variable var are a

set of variables or values, each of which can affect the value of the variable var.

 There will be two different output results: the overall result and function only

result. Overall result contains information of all vulnerabilities based on the entire

dependency tree. On the other hand, function only result contains information of

vulnerable functions that access database but have SQL injection vulnerability. Those

results will be populated during the analysis step if a SQL injection vulnerability is

detected. The output includes file name, line number of the code and unsafe variables that

generate SQL injection vulnerability.

The interface of the tool is shown in Figure 8. Once the source code of web

applications and the configuration file is submitted, the PHP parser starts parsing and

builds an abstract syntax tree. The analyzer will detect SQL injection vulnerabilities

based on the abstract syntax tree and information specified in the configuration file. If

vulnerable code exists, the analyzer will write out the debug information associated with

the vulnerable code.

16

Figure 8. Interface for developed tool

2. Configuration File

There are different PHP database extensions that can be used to access database.

The most common ones are MYSQL, MYSQLI, and PDO to access MySQL database,

and MSSQL to access MS SQL Server. The configuration file allows users to tell the

analyzer which database extension is used. The default options are MYSQL, MYSQLI,

PDO, and MSSQL. Different strategies are adopted based on the provided database

extension to detect SQL injection vulnerabilities.

 The users are also allowed to add any new database extension. The configuration

file requires users to insert the database name preceded by @ character, followed by all

database access functions the users wish to evaluate. The following code is an example

17

for adding MYSQL database extension to the configuration file. This example requires

the tool to detect SQL injection vulnerabilities in all occurrences of MYSQL_QUERY

function calls in the code.

@mysql

MYSQL_QUERY

Figure 9. Example of adding new database extension

Users are allowed to add functions they believe will make the variables safe. The

default value for it is MYSQL_REAL_ESCAPE_STRING which escapes the special

character from the SQL statement. Users could add, edit, or delete any functions. To add

more function to the safe function section, users need to insert the function between #safe

and #database, as shown in the following example.

#safe

MYSQL_REAL_ESCAPE_STRING

NewSafeFunction

#database

Figure 10. Example of adding safe functions

Furthermore, users could specify the approach used in PHP code to retrieve user

inputs. In the PHP, there are three main approaches: GET, POST, and REQUEST. Users

could modify the configuration file to insert or delete any user input identifiers they wish.

18

Any additional input method should be inserted after #php. For example, if a new user

input method is introduced in PHP called RECEIVE, the user could add the following

code and subsequently, the new input will be considered in the analyst step.

#php

RECEIVE

Figure 11. Example of adding new user input function

The configuration file also allows users to specify the type of PHP database

extensions, either functional or object-oriented. For example, MYSQL database extension

provides a set of functions to access database, while PDO database extension provides a

set of objects to access database. For MYSQLI database extension, users can use either

functions like mysqli_query, or object oriented features like query statement to access

database.

Since not every parameter in the database access functions will be used to

construct SQL query, like the second parameter in mysql_query function, it is more

efficient to check the function parameters only that affect the construction of SQL

queries. Therefore, the configuration file allows users to specify the parameters that will

not produce SQL injection vulnerability.

3. Parser

 The parser component consists of two parts: nikic PHP parser [10] and application

parser. The nikic PHP parser is an open source PHP parser, which parses the PHP code

19

and generates an abstract syntax tree. However, the generated abstract syntax tree

contains lots of information that is not needed by our tool. Therefore, the application

parser takes the abstract syntax tree as input and converts it into some concise form. The

following is a snipped code that is converted into more analyzable form.

<?php

$var3=$_GET[‘Fname’];

mysql_query(“SELECT * FROM Person where

FirstName=”.$var3,$link);

?>

Figure 12. Sample PHP code to be converted

The above code is eventually converted into the following by the application parser:

Array ([var3] => Array ([0] => _GET) [] => Array ([fun] =>

mysql_query [line] => 3 [0] => var3 [1] => link))

3.1 Nikic’s PHP Parser

 The parsing step utilizes Nikic’s open source PHP parser. The parser converts

PHP code into an abstract syntax tree. It also has the functionality to convert a syntax tree

back to PHP code which allows the developer to do code preprocessing. It is simple to

install. The developer only needs to include the folder in the code as the following code

[10]:

require ‘/PHP-Parser/lib/bootstrap.php’;

Figure 13. Nikic’s PHP parser

20

In order to parse source code, the user first has to create a PHPParser_Parser

object by taking a PHPParser_Lexer instance as the parameter. The PHP code is passed

as a string to parse method of the PHPParser_Parser object. If a syntax error occurs, the

application will throw a PHPParser_Error if no catch is used. Figure 14 shows the basic

usage of Nikic PHP parser.

<?php

$code = ‘<?php // some code’;

$parser = new PHPParser_Parser(new PHPParser_Lexer);

try {

$stmts = $parser->parse($code);

} catch (PHPParser_Error $e) {

echo ‘Parse Error: ‘, $e->getMessage();

}

Figure 14. Usage of Nikic PHP parser

For example, Figure 15 shows the PHP code to be parsed, and the generated abstract

syntax tree is displayed in Figure 16.

$code = “<?php echo ‘Hi ‘, getTarget();”

Figure 15. PHP code to be parsed

21

array(

0: Stmt_Echo(

 exprs: array(

 0: Scalar_String(

 value: Hi

)

 1: Expr_FuncCall(

 name: Name(

 parts: array(

 0: getTarget

)

)

 args: array(

)

)

)

)

)

Figure 16. Generated abstract syntax tree

Since there is only one statement in the code, the parser will generate only one array,

with only one node. The node is an instance of PHPParser_Node_Stmt_Echo.

PHP is a large language with a variety of node types; therefore, the PHP parser

groups the tree nodes into the following four categories [10]:

I. PHPParser_Node_Stmts are statement nodes, i.e. language constructs that do not

return a value and cannot occur in an expression. For example, a class definition

is a statement. It does not return a value, and something like like func(class

A {});cannot be written.

22

II. PHPParser_Node_Exprs are expression nodes, i.e. language constructs that return

a value and thus can occur in other expressions. Examples of expressions are

$var (PHPParser_Node_Expr_Variable) and func()

(PHPParser_Node_Expr_FuncCall).

III. PHPParser_Node_Scalars are nodes representing scalar values, like ‘string’

(PHPParser_Node_Scalar_String), 0 (PHPParser_Node_Scalar_Lnumber) or

magic constants like __FILE__ (PHPParser_Node_Scalar_FileConst). All

PHPParser_Node_Scalars extend PHPParser_Node_Expr, as scalars are

expressions, too.

IV. There are some nodes not in either of these groups, for example names

(PHPParser_Node_Name) and call arguments (PHPParser_Node_Arg).

Every node has a number of sub nodes. The user can access sub nodes by writing

$node->subNodeName. The above example has only one sub node “exprs.”

Therefore, to retrieve the statement, the user can write $stmts[0]->exprs. If the

user wants to retrieve the name of the function call, he or she would write

$stmts[0]->exprs[1]->name.

Furthermore, the PHP parser gives the user extra information such as node types,

node attributes, start line, etc. The information can be retrieved with PHP functions. The

type is the class name with the PHPParser_Node_ prefix. Some examples are

PHPParser_Node_Stmt_If, PHPParser_Node_Expr_Variable, and

PHPParser_Node_Stmt_Function. The PHPParser_Node_Stmt_If is a node of if

statement, PHPParser_Node_Expr_Variabl is a a node of a expression variable, and

HPParser_Node_Stmt_Function is a function node. By default, the parser adds the start

23

line number, end line number, and comments attributes. They can be retrieved through

provided functions such as etline(), ibute(), getAttribute() and getAttributes(). Also, it is

possible to associate custom metadata with a node using the setAttribute() method.

Comments can be retrieved with getAttribute(‘comment’). The start line can be accessed

using getLine() or etline() instead of getAttribute(‘startLine’).

3.2 Application Parser

 The application needs to know each variable and function to determine if the code

is vulnerable to SQL injection attacks, but those data need to be separated and identified.

Therefore, the application has two main arrays, one for functions and one for variables.

Everything that is not a function will be put into the variable array. Anything that is

inside a function will be put into the function array. The code in Figure 17 will be

converted into a variable array:

<?php

$var=$var2;

?>

Figure 17. Simple code for converted into array.

The full abstract syntax tree generated from PHP parser will look like the following:

PHPParser_Node_Expr_Assign Object ([subNodes:protected] =>

Array ([var] => PHPParser_Node_Expr_Variable Object (

[subNodes:protected] => Array ([name] => var)

[attributes:protected] => Array ([startLine] => 2

[endLine] => 2)) [expr] => PHPParser_Node_Expr_Variable

Object ([subNodes:protected] => Array ([name] => var2)

[attributes:protected] => Array ([startLine] => 2

24

[endLine] => 2))) [attributes:protected] => Array (

[startLine] => 2 [endLine] => 2))

The array contains many unnecessary information. Therefore, the application

parser only collects the data it needs and categorizes them into the respective array. The

variable array for the above example will look like

Array ([var] => Array ([0] => var2))

The variable name is the key of the array. The array contains another array which

includes all the assigned value.

4. Analyzer

 Once all the necessary data are collected, the analysis step will be performed. The

first step of analyzing the data is to determine if the variables or the functions have

relation to each other. Therefore, a dependency tree is constructed. Only the functions or

variables that contribute to SQL query construction and execution are considered. After

the dependency tree is built, the application will verify SQL injection vulnerability for

every statement that accesses database.

4.1 Dependency

 The dependency function traces back each variable or function call to their

original variables. To accomplish this, the function uses the key and value structured

arrays to determine if the value is the original value. If a value is a key in the array, then

the function keeps tracing back until the value is not a key. The end value is the original

value. The following PHP code is an example of trace back:

25

<?php

$firstName = $_GET['Fname'];

$middleName = $firstName;

$lastName = $middleName;

?>

Figure 18. Sample PHP code

 The variable lastName is assigned to middleName, and the middleName is

assigned to firstName. In the trace-back process, the application looks into the variable

lastName and checks which array contains the key with the lastName assigned value. The

process continues until either no assigned value is found or user input is reached.

Therefore the application will determine that the variable lastName is affected by

$_GET['Fname'].

 To trace back a function call, the application need to use the function array and

may need to use the variable array to complete the dependency function. The PHP code

in Figure 19 is used to demonstrate how the function dependency is created.

<?php

$test = $_GET['Fname'];

myFunctionCall($test);

function myFunctionCall ($var){

echo $var;

26

}

?>

Figure 19. PHP code for function dependency

Variable array for the above code looks like the following array:

Array ([test] => Array ([0] => _GET) [] => Array ([fun] =>

myFunctionCall [line] => 3 [0] => test))

Function array for the above code looks like the following array:

Array ([myFunctionCall] => Array ([var] => Array ()))

 In the above PHP code, the function myFunctionCall is called. In order to

evaluate the function call, one must determine if the function is vulnerable. First, the

dependency function will look for the function call myFunctionCall in the variable

array and then it searches for it in the function array. If the function name matches the

key in function array, then the dependency will be created base on the matched key and

value.

4.2 Vulnerability Analysis

 During the vulnerability’s analysis step, the application will first look up the

arrays to see if any SQL execution or user-defined function in the configuration file are

used to access database. If such a function call is found, the application will look at the

dependency tree and trace back the variable to verify if any user input is involved directly

or indirectly to construct the SQL query. If user input is involved, then the application

checks if any prevention function is applied to the user input. If no prevention functions

are found, the application will alert the user that this function call is vulnerable to SQL

27

injection. The PHP code in Figure 20 demonstrates how the application determines which

variables are unsafe.

<?php

$test2 = $_GET['Fname'];

$var2=$test2;

mysql_query("SELECT * FROM Person where

FirstName".$var2,$link);

?>

Figure 20. Variable without SQL injection prevention function

The application first looks at the SQL execution statement mysql_query and

then traces back the variable $var2 that is used to construct the query in the function

call. Therefore, by looking up the dependence tree, the application traces back to

$test2 from $var2. Because $test2 contains the user input and no prevention

function is applied to $test2 or $var2, the application will alert the user that the

function call mysql_query is vulnerable to SQL injection attack.

 Figure 21 shows a similar example. The function call mysql_query is safe

because mysql_real_escape_string is applied to $test3 so that it is

impossible to for attackers to pollute the SQL query. To analyze the code in Figure 21,

the application will perform the same process illustrated in the earlier example, but

28

instead of warning the user, the application will not throw any messages because there is

no SQL injection vulnerability.

<?php

$test3 = mysql_real_escape_string($_GET['Fname']);

$var3 = $test3;

mysql_query("SELECT * FROM Person where

FirstName".$var3,$link);

?>

Figure 21. Example with SQL injection prevention function

4.3 Vulnerability Analysis for Function

 In addition to detect the SQL injection vulnerability in functions provided by the

database extensions, we also need to detect vulnerabilities in user defined functions that

access databases. The reason to provide this feature is because in large web applications,

a group of user-defined functions may be provided so that the rest of web applications

could use these functions to access databases. Instead of checking all PHP files, only the

group of user defined functions need to be verified. If there is no vulnerability in these

functions, we can say the web application is safe with regard to SQL injection attack.

We use the PHP code in Figure 22 to explain the idea. In this code, the SQL

execution function is called to access database within the function

29

“myFunctionCall,” and the function parameter $var is used to construct the SQL

query. When myFunctionCall is invoked, the variable $test is passed as argument.

Since $test is escaped by a SQL injection prevention function, the PHP code is not

SQL injection vulnerable. However, the function itself is vulnerable to attack since the

function myFunctionCall could be invoked (in other places) with unescaped user

input. Thus, the application will give a warning to the user that the function

myFunctionCall is vulnerable to attack in the function result section.

<?php

$test = mysql_real_escape_string($_GET['Fname']);

myFunctionCall($test);

function myFunctionCall ($var){

$query = "SELECT * FROM users WHERE user=".$var;

mysql_query($query);

}

?>

Figure 22. Example of function analysis

5. Output

 The application displays two groups of results: code vulnerability result and

function vulnerability result. Each of them provides different information of the given

data. The code vulnerability result displays all detected SQL injection vulnerabilities;

while the function vulnerability result show all unsafe functions, which may or may not

produce any SQL injection vulnerability in the current code.

30

 To help developers locate vulnerable code or functions, the application provides

detailed information including file name, total number of detected vulnerabilities,

vulnerable code or unsafe functions and their line numbers as well as detailed error

message.

CHAPTER IV

IMPLEMENTATION

1. Introduction

The developed application is a simple and clean web page. The users use the page

to submit PHP files as well as database extension information. Based on user provided

database extension, the application reads all necessary information about the database

extension from the configuration file and starts SQL injection vulnerability.

The detection of SQL injection vulnerability is divided into two phases. The first

phase is parsing, which retrieves useful program information from the PHP code and

store them in respective arrays. The second phase is data analysis to detect vulnerable

code by looking up stored data.

2. Parsing Implementation

The major class that was adapted from Nikic’s PHP Parser for this application is

PHPParser_Parser. The method “parse” in the class is used frequently to generate an

abstract syntax tree for a piece of PHP code. And then, useful information is retrieved

from the abstract syntax tree and stored in variable and function arrays, respectively. The

31

focus objects of the arrays are name and value. The name could be a variable name or a

function name. Value could sometimes be a function name.

The application defines a class named myPar to handle the parsing process. The

class contains several major methods such as restart, breakStmts,

arrayHandle, fun, and general, as well as several trivial functions to set and

gather data from the configuration file and from functions.

 This application loops through and evaluates each file individually; thus, new

arrays are needed for each file. The data generated from the previous file should be

removed when start processing the next file. Therefore, a restart function is

implemented to reset all the arrays and variables. It is the first function called whenever a

new file is being processed.

 ArrayHandle function is used to manage the variable and function arrays. The

function assigns incremental index numbers for statements that are not assigned by a

variable. It also removes duplicate keys in the same array. For example, if a key is

assigned to a different value, it will keep the old value and add the new value into the

array, instead of creating another new array with the same key.

 BreakStmts function acts as a distributor in the class. It sorts the statements

and determines whether they belong to the function or the variable array. Since Nikic’s

PHP Parser defines and categorizes if, elseif, and else statements as different from any

other conditional statement, they need to be sorted differently. Hence, there are five

different categories that need to be sorted: if, elseif, else, other conditional statements,

and the remaining statements. If a PHP statement is an if, elseif, else, or conditional

32

statement, a recursion will occur until the statement is not a function statement. If it is a

function statement, it will be sorted to the fun function; otherwise, it will call the

general function.

The general function has a recursion method which repeats itself until the

name is reached. This function also captures the line of each Fun function, handles all the

variables and statements that are inside the function, and puts them into the function

array.

3. Analysis Implementation

 The analysis process is handled by the myAn class in this application. Major

functions in this class include checkFun, getTarget, traceback, checkParam,

and focusTarget. There are several trivial functions to retrieve and set data from user

input and the configuration file.

 In the analysis process, all that needs to be validated is the statements that access

database. Therefore, the first step in the analysis is to filter out any statements that do not

access database, which is the major job of the checkFun function. In other words, the

checkFun function explores the generated abstract syntax tree to find all database

access function call and store them into an array.

 The getTarget function uses the array returned from the checkFun function.

It breaks down the potential statement into variables and sends it to the focusTarget

function for further evaluation. It also checks to see if the statement has any parameters.

If it does, the parameters are sent to the focusTarget function for later use.

33

 An important piece of the analysis process is being able to know what the

variables actually are. Variables may not be constant. They may change at different

times. In Figure 18, the variable “lastName” is assigned to the variable firstName. The

application has no idea what the variable “middleName” is if the application does not

trace back what the variable middleName is. Therefore, the traceBack function serves

the purpose of finding the root value of the variables.

 The checkParam function is invoked in the focusTarget function. It

serves the purpose of tracing back the parameters. Since the parameters’ variables are

treated differently from the normal variables, the traceBack function will not work.

Considering the code in Figure 23, the function abc is invoked with two arguments

$test2 and $test. Inside the function, an SQL execution statement is called, and the

parameter $var6 is used to construct the query. This application needs to determine the

value of the parameter $var6 is actually variable $test3 defined outside the function.

The checkParam function serves this purpose to trace back parameter variables inside

the function to outside variables.

<?php

//function calling sql statment with reference variables

$test2 = ($_GET['Fname']);

$test3 = mysql_real_escape_string($_GET['Fname']);

abc($test2,$test3);

function abc($var5,$var6){

mysql_query("SELECT * FROM Person where

FirstName=".$var6,$link);

}

?>

34

Figure 23. Example of function parameter tracing

 The last step of the analysis phase is implemented in the focusTarget

function. It uses all the information that was collected by other functions to determine if

the PHP code are vulnerable to SQL injection or not. The function first checks if users

want to evaluate the whole PHP code or just a group of user-defined database access

functions.

To evaluate the whole PHP code, both the variable and function arrays will be

checked. If a variable is not a user input, then the variable is safe. If it is a user input, then

this application will check if the SQL injection prevention is applied to it. If the

prevention method is used, then the variable will be safe, else this application will

evaluate if the variable is used to construct a SQL query. If yes, it then determines if the

query is used in the SQL execution function, if yes, then the code is not safe, else it is

safe.

 To evaluate the safety of user-defined functions, only the function array is used.

Since in this step, only local variables defined with the functions are checked, it is

simpler than the previous case. This application only evaluates any SQL execution

statement that is called inside the function. If any SQL execution statement is found, then

this application traces back the variable inside the function scope. If no SQL injection

prevention method is applied to the variable that are used to construct SQL query, then

we say the function itself is unsafe.

4. Test Cases

35

 Ten test cases are designed, five for MYSQL and five for MYSQLI, are used to

ensure major features of this tool are implemented correct. MYSQL and MYSQLI

database extensions are chosen because they are the two main database extensions and

other database structures are similar to them. MYSQL will cover all the database

extensions that use structures like somedatabase_query. MYSQLI will cover all the

database extension that used SQL execution method like

someObject->prepare($sql) or someObject->query($sql)

4.1 MYSQL Test Cases

4.1.1 User Inputs to SQL Query Directly

 The first test case is to detect the situation where user inputs are used directly to

construct SQL queries in MYSQL execution statements. The sample code for the test

case is given in Figure 24. There are three database execution statements. One uses an

unprotected variable, one uses a protected variable, and the last one uses a value straight

from the user input.

<?php

$test2 = ($_GET['Fname']);

$test3 = mysql_real_escape_string($_GET['Fname']);

mysql_query("SELECT * FROM Person where FirstName".$test2);

mysql_query("SELECT * FROM Person where FirstName".$test3);

mysql_query("SELECT * FROM Person where

FirstName".$_GET['Fname']);

?>

Figure 24. MYSQL Example of basic usages

36

Since the first and the third execution statements’ variables are not validated, the

application returns the variables with warning.

Figure 25. Application output of example code in Figure 24

4.1.2 User Inputs to SQL Query Indirectly

The second test case is to detect the situation where user inputs are used indirectly

to construct SQL queries in MYSQL execution statements. It means the variables/values

used to construct SQL query depends on user inputs indirectly. The sample code for the

test case is given in Figure 26. The variable $var2 refers to the variable $test2 which

is an unsafe variable. The variable $var3 refers to the variable $test3 which is a safe

37

variable. There are two SQL execution statements. The first one uses the unsafe variable,

and the second uses the safe variable.

<?php

$test2 = ($_GET['Fname']);

$test3 = mysql_real_escape_string($_GET['Fname']);

$var2 = $test2;

$var3 = $test3;

mysql_query("SELECT * FROM Person where FirstName".$var2);

mysql_query("SELECT * FROM Person where FirstName".$var3);

?>

Figure 26. MYSQL Example of user input for query indirectly

As shown in Figure 27, the application gives the one with the unsafe variable a warning.

38

Figure 27. Application output of example code in Figure 26.

4.1.3 Accessing Database Through User-Defined Functions

The third test case is to detect the situation where user-defined functions are used

to construct and submit SQL queries. The SQL statement as shown below is called

through the function abc. The variables are passed through outside variables. The first

statement uses the unsafe variable $var5 which is the variable $test2. The second

statement uses a safe variable $var6 which is the variable $test3.

<?php

$test2 = ($_GET['Fname']);

$test3 = mysql_real_escape_string($_GET['Fname']);

abc($test2,$test3);

39

function abc($var5,$var6){

mysql_query("SELECT * FROM Person where FirstName=".$var5);

mysql_query("SELECT * FROM Person where FirstName=".$var6);

}

?>

Figure 28. MYSQL Example of accessing database within function

As shown in Figure 29, the result returns one warning for the overall variable and

two for the function only. The warning shows because the variable $test2 is unsafe

since no prevention method is applied. There are two warnings in the function because

the variables inside the function are not validating. If the function is used somewhere

else, the code may be vulnerable.

Figure 29. Application output of example code in Figure 28

40

4.1.4 Escape method inside Function

The fourth example changes the variable’s value to another value inside the

function, as shown in Figure 30. The variable $var5’s original value is the variable

$test3, but it is assigned to the user input value “Fname.” The unsafe variable $var5

is escaped first and then assigned to the variable $var6 which is now a safe value. The

output of the code is given in Figure 31.

<?php

$test2 = ($_GET['Fname']);

$test3 = mysql_real_escape_string($_GET['Fname']);

abc($test2,$test3);

function abc($var5,$var6){

$var5=$_GET['Fname'];

mysql_query("SELECT * FROM Person where FirstName=".$var5);

$var6=mysql_real_escape_string($var5);

mysql_query("SELECT * FROM Person where FirstName=".$var6);

}

?>

Figure 30. MYSQL Example of escape variables within function

41

Figure 31. Application output of example code in Figure 30

4.1.5 Branches

 The last example for MYSQL uses conditional statements, if and else. Since the

application will never know which condition is correct, this application considers all the

possible paths that could happen. Therefore, this application validates function abc in

the if statement and def in the else statement. The if condition is taking from the fourth

example, and else condition is taken from the third example. The result is the

combination of both examples, except the line values changed slightly.

<?php

42

$test2 = ($_GET['Fname']);

$test3 = mysql_real_escape_string($_GET['Fname']);

if($test2==1)

abc($test2,$test3);

else

def($test2,$test3);

function abc($var5,$var6){

$var5=$_GET['Fname'];

mysql_query("SELECT * FROM Person where FirstName=".$var5);

$var6=mysql_real_escape_string($var5);

mysql_query("SELECT * FROM Person where FirstName=".$var6);

}

function def($var5,$var6){

mysql_query("SELECT * FROM Person where FirstName=".$var5);

mysql_query("SELECT * FROM Person where FirstName=".$var6);

}

?>

Figure 32. MYSQL Example of condition statement

Figure 33. Application output of example code in Figure 32

43

4.2 MYSQLI Test Cases

4.2.1 User Inputs to SQL Query Directly

 The first example is the basic usages of MYSQLI. The MYSQLI database

extension provides two interfaces to access database: prepare and query methods of

class mysqli, or a global function mysqli_query. All the function calls in the code

of Figure 34 use the variable $var1 to construct SQL queries. This variable is not

escaped by any prevention method, so it is an unsafe value. Hence, all the function calls

that use the variable $var1 are vulnerable to SQL injection attack, as shown in Figure

35.

<?php

$var1=$_POST['uid'];

$abc = "INSERT INTO fo_table (Tag_num, FO_num, Eng_notes,

Type) VALUES('$var1')";

$mysqli->query($abc);

$sth = $dbh->query("SELECT name, colour, calories FROM

fruit WHERE calories < $var1");

$test= $mysqli->prepare($abc);

mysqli_query($abc);

?>

Figure 34. MYSQLI Example of basic usage

44

Figure 35. Application output of example code in Figure 34

4.2.2 Escape Method

In the second example given in Figure 36, the code is similar to the previous

example. The only difference is that a prevention method is applied to the variable

$var1 to escape special characters in the variable so that SQL injection is prevented.

Therefore, all function calls are safe in this example as shown in Figure 37.

<?php

$var1=mysql_real_escape_string($_POST['uid']);

$abc = "INSERT INTO fo_table (Tag_num, FO_num, Eng_notes,

Type) VALUES('$var1')";

45

$mysqli->query($abc);

$sth = $dbh->query("SELECT name, colour, calories FROM

fruit WHERE calories < $var1");

$test= $mysqli->prepare($abc);

mysqli_query($abc);

?>

Figure 36. MYSQLI Example of escape method

Figure 37. Application output of example code in Figure 36

4.2.3 Access Database Within Functions

 In the third example, database access function is invoked within a user-defined

function. One function parameter is used to construct SQL query. Therefore, if the

function is invoked and the function argument comes from user input, it causes SQL

injection vulnerability. As shown in Figure 38, both parameters of the function abc are

46

used to construct queries. When the function is invoked in the example, the variable

$var5’s root value is variable $test2 which is assigned to an unsafe value. The

variable $var6’s root value is a safe value, the variable $test3. Therefore, the SQL

execution statement with $var5 is vulnerable to an SQL injection attack because the

variable $var5 is unsafe. Furthermore, if one considers the function alone, then both

SQL statements will not be safe, because the variables are not validating inside the

function. Hence, if the function is used somewhere else in the code, it is possibly

vulnerable to SQL injection attack. The application output of this example is given in

Figure 39.

<?php

$test2 = ($_GET['Fname']);

$test3 = mysql_real_escape_string($_GET['Fname']);

abc($test2,$test3);

function abc($var5,$var6){

$sth = $dbh->query("SELECT name, colour, calories FROM

fruit WHERE calories < $var5");

$sth2 = $dbh->query("SELECT name, colour, calories FROM

fruit WHERE calories < $var6");

}

?>

Figure 38. MYSQLI Example of database access within function

47

Figure 39. Application output of example code in Figure 38

4.2.4 Access Database Within Function—Parameter Contributes Indirectly

The fourth example is similar to the previous case except that function parameters

are used indirectly to construct SQL queries. As shown in Figure 40, database is accessed

within the function abc. Within the function, new local variables $var7 and $var8 are

introduced to construct SQL queries. The values of these two new local variables are

dependent on function parameters, respectively. The application should be able to detect

SQL injection vulnerability: the query constructed from variable $var7, since it uses the

value of $var5, which is actually the value of the unsafe variable $test2. The

application output is given in Figure 41.

<?php

$test2 = ($_GET['Fname']);

48

$test3 = mysql_real_escape_string($_GET['Fname']);

abc($test2,$test3);

function abc($var5, $var6){

$var7=$var5;

$sth = $dbh->query("SELECT name, colour, calories FROM

fruit WHERE calories < $var7");

$var8=$var6;

$sth2 = $dbh->query("SELECT name, colour, calories FROM

fruit WHERE calories < $var8");

}

?>

Figure 40. MYSQLI Example of indirect database access within function

Figure 41. Application output of example code in Figure 40

4.2.5 Multiple Value Source

The last example demonstrates the situation that the variable used to construct

query depends on two or more value sources. For example, in Figure 42, the variable

49

$var1 is used to construct SQL query, and its value is a concatenation of two variables

$test2 and $test3. Since one value resource, i.e. $test2, is unsafe, the application

should return a warning for the statement but only for the unsafe variable. The output is

given in Figure 43.

<?php

$test2 = ($_GET['Fname']);

$test3 = mysql_real_escape_string($_GET['Fname']);

$var1=$test2." ".$test3;

$sth2 = $dbh->query("SELECT name, colour, calories FROM

fruit WHERE calories < $var1");

?>

Figure 42. MYSQLI example of multiple value sources

50

Figure 43. Application output of example code in Figure 42

51

CHAPTER V

CASE STUDY

1. Introduction

 To evaluate the effectiveness of the tool, a case study has been conducted. The

PHP web applications were collected from CSCI 4560/5560: Database Management

System class taught in Middle Tennessee State University at Fall 2013.

In the class, a real-world database project was provided by local office of

Schneider Electric, a France-based multinational corporation. The goal of the project is to

rewrite an existing Access application using PHP and MySQL. Students in the class are

divided into groups of three students with a total of 10 groups. Each group is required to

develop their own applications and give the presentation at the end of the semester. The

company will choose the one they feel more comfortable. The rest of the section gives a

brief introduction of the project. Detailed specification of the project can be found at

Appendix B.

The major functionality of the project is to maintain the database of products

(called TAG in the company), and manage users. The users of the application will be

divided into groups. Each user group has different access privileges on the product

database. Four predefined groups are provided: tag members, OE, user, and

administrator. Only users of the tag members group can insert, revise, and search TAGs.

Those of the user group can only view the TAGs one by one (excluding Price information

which is only accessible by tag members and OE users). Only administrators can view

and add groups in addition to adding and removing users to or from groups. A user may

be in multiple groups. All other unassigned viewers will see only a blank page or one

52

showing “Contact TAG Group for pricing.” This restriction requires non-approved users

to contact the TAG group to verify proper application of TAGs.

Besides the viewing and editing of TAGs, the project has other functionalities like

security, print, and search. The security feature records successful logins on a table. The

recorded information includes time, date, machine name, IP address, username, and other

necessary information. Only administrative users can view the login log. After a user logs

in successfully, the system remembers the user for the next ninety days so that no

password is required. The print feature is on all viewable pages and allows end users to

print a clean page that excludes unnecessary filler (colors, links, buttons, etc.) but

includes company logo, time, and date of printed page, and username as “Printed by”.

The search feature is available for tag member group users and allows them to search

TAGs using one or more of the following searching criteria:

• Tag Number

• Rev#

• Date

• Tag description contains a substring

• Sub-category

• HVL product type

• HVL/CC product type

• Metal clad product type

• MVMCC product type

• Tag note contains a substring

• Install cost

53

• Price note contains a substring

• User who created/updated the revision

An option is provided to specify the target of the search with the latest revision of

TAGs or obsolete revision of TAGs. Whenever a change is made to the database, a

window will pop up to confirm the change. The default values for Price expire,

Labor/Engineering are three months and one hour, respectively.

2. Data Collection

 MySQL database is required to store data, but there is no restriction on the

database extension that can be used to access database. As shown in Table 1, three

different database extensions were used among student projects: MYSQL, MYSQLI, and

PDO. It is clear that MYSQL and MYSQLI are more popular than PDO since there are

four groups using MYSQL and MYSQLI respectively, but there is only one group using

PDO.

54

Table 1. Languages used

 Group MYSQL MYSQLI PDO

 Group 1 1 0 0

 Group 2 1 0 0

 Group 3 0 1 0

 Group 4 0 1 0

 Group 5 0 1 0

 Group 6 0 1 0

 Group 7 1 0 0

 Group 8 0 1 0

 Group 9 1 0 1

 Group 10 1 0 0

 Total 5 5 1

Table 2 lists the number of different types of pages each group created. Since our

application can only check PHP files, all non-PHP files such as HTML, CSS, or JS files

are omitted because those files are not able or not likely to interact with databases.

Several groups use PHP files as HTML files, so some results will not return anything,

since the parser will not parse HTML code.

55

Table 2. Page extensions

Group PHP HTML JS CSS

Group 1 29 0 1 4

Group 2 21 0 0 3

Group 3 26 0 0 8

Group 4 24 0 0 1

Group 5 70 5 0 0

Group 6 18 0 2 8

Group 7 33 0 2 2

Group 8 23 13 0 0

Group 9 38 0 0 2

Group 10 73 0 8 4

 The result of each group is showing in table 3. Group five is omitted because the

group’s code has syntax errors. The first four groups used MYSQL, the second four

groups used MYSQLI and the last group used combination of PDO and MYSQL.

56

Table 3. Result of Student Projects

Group # 1 2 7 10 3 4 6 8 9 9
MYSQL

Vulnerable Page 16 12 8 32 6 5 7 5 0 3

Vulnerabilities Found

19 24 9 50 59 13 12 8 0 10

Vulnerable Page Ratio

55% 57% 24% 44% 23% 21% 39% 22% 0% 8%

 Three groups were selected to take a closer look: group one, group three, and

group nine. Group one was selected because it is vulnerable to the simple SQL injection

attack on the login page. It will be valuable to check if this application detects the

vulnerability. Group three was selected because it uses MYSQLI database extension, and

is working properly. Group nine was selected because it is the only project using PDO

database extension.

2.1 Detail Analysis of Each Group

 The most vulnerable pages among the groups are the login page, search page,

modify page, and insert page. The reason for these vulnerabilities is that those pages are

required to use SQL statements. SELECT for login pages and search pages, UPDATE for

modify pages, and INSERT for insert pages.

2.1.1 Group One

 The main problem for group one is that most variables are used without

validation. For example, the application found two vulnerable variables in group one’s

login page. In line twenty-nine, group one uses the variable query in the SQL execution

57

function. In line forty-five, the variable tempID is used directly in the SQL execution

function. The variable query is a string of SQL statements concatenate with variable

tempID, a user input value. In the code, group one did not validate variable tempID

nor variable query, so the application returns warnings for these two variables.

<?php

…

//Here is the code to get user input

$tempID = "'" . $_POST['user_ID'] . "'";

…

$query = "SELECT * FROM User Where Id = $tempID";

…

//Here is the code to execute database access function

$result = mysql_query($query) or die("Query failed : " .

mysql_error());

…

?>

Figure 44. Group One login page vulnerable code

58

Figure 45. Application output of group one login page

2.1.2 Group Three

 Group three used MYSQLI, which is a newer and more advanced version of the

MYSQL database extension. It is safer than MYSQL, if the users utilize it properly. The

groups used prepare and query statements to execute SQL statements. The application

would be safer if the group used prepare statement across the web pages and used SQL

escape methods for the variables or SQL statements.

 In the tagprint page, the group used the query function instead of the prepare

function. All the variables used in the query function were not validated. Therefore, the

application returned warnings to all the SQL execution functions in the page.

59

<?php

…

//Here is the code to get user input

$rev = ($_GET['rev'] == "") ? getRevMax($Num) :

test_input($_GET['rev']);

…

//Here is the code to execute database access function

$sql="SELECT * FROM TAG WHERE Tag_number = $Num and

Rev_number = $rev";

$myData=$mysqli->query($sql);

…

?>

Figure 46. Group three tagprint page vulnerable code

Figure 47. Application output of group three tag print

60

 In some pages, the group used the prepare statement incorrectly. For example, in

line forty-seven of “inserttag” page, the following prepare statement is used:

$stmt = $mysqli->prepare("INSERT INTO TAG (Tag_number,

Rev_number, Current) VALUES ('$_POST[tag_number]',

'0','1')");

Figure 48. Incorrect used of prepare statement.

This prepare statement is dangerous and vulnerable because the SQL statement

has a user input without validation. Users should instead use the placeholder for the value,

like the following:

$stmt = $mysqli->prepare("INSERT INTO TAG (Tag_number,

Rev_number, Current) VALUES (?, '0','1')");

$stmt->bind_param(“s”, $_POST[tag_number]);

Figure 49. Correct way of using prepares statement.

The prepare function will not be safe if the developers use the user input directly

in the statement. Group three did not validate user input nor use the place holder in the

function. Therefore, the application returns the lines with warning.

61

Figure 50. Application output of group three insert tag page

2.1.3 Group Nine

 Group nine is the only group using PDO extension. PDO is similar to MYSQLI.

Both are object-oriented and safer than MYSQL. In some pages, the group also used

MYSQL to access database. The application is not able to detect two extensions at the

same time, so the results are split into PDO and MYSQL.

 The pages with PDO return zero vulnerability. All the pages with PDO use

prepare statements with placeholders. Therefore, all the SQL statements are safe.

However, the pages with MYSQL have some vulnerability. In most cases, the reason is

that the group did not validate the variables before using them in the SQL execution

statements.

62

 The group also used pages that contain only functions. These functions can be

called by other PHP pages, and these functions did not validate the parameters before

inserting the parameters variable in the MYSQL SQL execution statements. Therefore,

the application returns several warnings to those functions.

Figure 51. Application output of group nine user page

3. Summary

 The common mistakes students made are that user input values are not validated

before executing SQL statements. This mistake is happened to almost every group in this

case study. This mistake can be easy prevent by using

mysql_real_escape_string().

63

 Another mistake student made is that the prepare statement of MYSQLI and PDO

is not used properly. In group three example, instead of using placeholder and parameter

binding approach to construct SQL query, user inputs is used directly to create the query

string in prepare statement. This creates SQL injection vulnerabilities in the code.

 This case study shows that most students are not aware of security issues when

developing software. As security becomes an important feature in today’s software, the

training on security is required for students. The application can help students quickly

and precisely detect SQL injection vulnerabilities in their programs.

64

CHAPTER VI

CONCLUSION AND FUTURE WORKS

1. Conclusion

 It takes time and knowledge to implement security requirement correctly. Some

developers would neglect the security components due to variant reasons such as lack of

experience, deadline pressure, and budget restriction. To help developers detect SQL

injection vulnerability in their PHP applications, we developed a tool for this purpose.

This tool explores the PHP code to detect all SQL injection vulnerable code. The tool

supports all different types of PHP database extensions. The developed tool meets all the

expectations. It is able to find potential SQL injection threats in PHP code. All the run

times are under a second, which is much faster than most of the vulnerability-detecting

system online. The application is reliable since no false positive is found in the results.

 Through our case study on student projects, we found out that students typically

don’t pay attention to security requirements. In the case study, three of the nine projects

had potential to be victims of SQL injection. The main reason these students’ projects are

vulnerable is that the students did not validate the data or use the function correctly. Also,

many students are still using the MYSQL extension, which is not recommended by the

PHP user group. The PHP official site states, “This extension is deprecated as of PHP

5.5.0, and will be removed in the future. Instead, the MYSQLI or PDO_MYSQL

extension should be used.” [11] MYSQL does not provide the prepare statement like

MYSQLI and PDO, making MYSQL more vulnerable to injection-type attacks like SQL

injection, JavaScript injection, and XSS.

65

Schools and teachers have a lot of influence on students’ coding styles. Students

should be encouraged to write safer code. Additionally, teachers should teach the

importance of picking the right API’s and extensions. In our case study, students should

be encouraged to use MYSQLI and PDO instead of MYSQL. Students also need to know

how to use the prepare statement properly. In the group three example, the group used the

prepare statement, but they used it improperly causing the code to be vulnerable to

attacks. In addition, teachers should encourage students to implement basic security

features in projects by offering extra credits.

2. Future Works

 Some additional features could be added to application. Since JavaScript injection

attacks are similar to SQL injection attacks, it would be beneficial to implement the

detection mechanism to the application. The application could add another, or modify the

existing, configuration file to implement this feature in the application.

 A problem with this application is that the application is not able to detect the

variables or functions if the developers use include statements in the PHP code. The

application is not able to trace back the variables or function in the include files. This

decreases the reliability of the application. However, to implement this feature, a larger

scale of detecting and analyzing method is required. The run time will increase

exponentially if the developers have a lot of include files. To complement this, the

application implemented the function only result, which could be an alternative of this

feature.

66

 Another problem is that the application is not able to validate the return values.

An example code is showing below:

<?php

$var5=$_GET['Fname'];

mysql_query("SELECT * FROM Person where

FirstName=".def($var5));

function def($var7){

return $var7;

}

?>

Figure 52. Return value

In this case, this application should return a warning, but in current version it will not

warn the user. Another function will be needed to parse the return value into our current

array. Once the return value is in the array, the application will need to trace back and

validate the possible values of the return value.

67

BIBLIOGRAPHY

[1] Acunetix (2014) Acunetix WVS Available at: http://www.acunetix.com/

(Accessed: 3rd march 2014)

[2] BEYONDTRUST (2014). Retina Web Security Scanner. Available at:

http://www.beyondtrust.com/ (Accessed: 3rd march 2014)

[3] Ehmer Khan, Mohd (2011) Different Approaches to White Box Testing

Technique for Finding Errors, International Journal of Software Engineering

and Its Applications, 5(3), pp. 1-6.

[4] Etienne Janot, Pavol Zavarsky (2008) Preventing SQL Injections in Online

Applications: Study, Recommendations and Java Solution Prototype Based on

the SQL DOM. Available at: https://www.owasp.org/images/5/57/OWASP-

AppSecEU08-Janot.pdf (Accessed: 3rd march 2013)

[5] IBM (2014). Security AppScan. Available at: http://www-

03.ibm.com/software/products/en/appscan/ (Accessed: 3rd march 2014)

[6] Justin Clarke (2012) SQL injection attacks and defense, 2nd. Waltham, MA:

Elsevier.

[7] Linda Davis, et al (2011) 2011 top cyber security risks report: Hewlett-Packard

Development Company. Available at:

http://www.hpenterprisesecurity.com/collateral/report/2011FullYearCyberSecu

rityRisksReport.pdf (Accessed: 3rd march 2013)

[8] Mirza Mohammed, Akram Baig (2012) Security Vulnerabilities in PHP

ApplicationSan Diego State University. Available at:

http://sdsudspace.calstate.edu/bitstream/handle/10211.10/2027/Baig_Mizra.pdf

?sequence=1 (3/18/13).

[9] Nicolas Surribas (2013). Wapiti. Available at: http://wapiti.sourceforge.net/

(Accessed: 3rd march 2014)

[10] Nikic (12/01/2013). Documentation for version 0.9.x GiHub.com/nikic.

Available at: https://github.com/nikic/PHP-Parser/tree/0.9/doc. (Accessed: 3rd

march 2013)

[11] The PHP Group (2013) Choosing an API, Available at:

http://www.php.net/manual/en/mysqlinfo.api.choosing.php (Accessed: 1st

march 2013).

68

[12] Romain Gaucher (2013). Grabber. Available at:

http://rgaucher.info/beta/grabber/ (Accessed: 3rd march 2014)

[13] SensePost (2008). Wikto. Available at:

http://research.sensepost.com/tools/web/wikto (Accessed: 3rd march 2014)

[14] Sergey Gordeychik, et al Web application vulnerability statistics for 2010-

2011 (2012) Positive Technologies. Available at:

http://www.ptsecurity.com/download/statistics.pdf (Accessed: 3rd march 2013)

[15] Sony faces legal action over attack on PlayStation network. (4/29/2011). BBC

News. Available at: http://www.bbc.co.uk/news/technology-13192359.

(Accessed: 3rd march 2013)

[16] Top 10 2007 OWASP Foundation (2007). Available at:

https://www.owasp.org/index.php/Top_10_2007 (Accessed: 3rd march 2014)

69

APPENDICES

70

APPENDIX A

SOURCE CODE

<html>

<head>

<link rel="stylesheet" type="text/css" href="style.css">

<script src="http://code.jquery.com/jquery-

1.9.1.js"></script>

<script type="text/javascript" src="myScript.js"></script>

</head>

<body>

<?php

error_reporting(E_ERROR);

require '/PHP-Parser/lib/bootstrap.php';

$parser = new PHPParser_Parser(new PHPParser_Lexer);

$traverser = new PHPParser_NodeTraverser;

$prettyPrinter = new PHPParser_PrettyPrinter_Default;

$fileSize = count($_FILES['userfile']['name']);

$testFiles = array();

$allFiles=checkUpload($_FILES['userfile']['tmp_name'],

$_FILES['userfile']['name']);

$zipFiles=forZipFile($allFiles[0]);

//added 2/3/2014 handle zip files

foreach ($zipFiles[0] as $zipFile){

 $filename = substr(strrchr($zipFile, "/"), 1);

 if (!array_key_exists($filename,$testFiles)){

 $testFiles[$filename]=file_get_contents($zipFile);

 $myFile[substr($filename,0,-4)]=file($zipFile);

 }

 else{

 $testFiles[$filename."-

copy".rand()]=file_get_contents($zipFile);

 $myFile[substr($filename."-copy".rand(),0,-

4)]=file($zipFile);

 }

}

foreach ($allFiles[1] as $key=>$tempFile){

71

 if (!array_key_exists($filename,$testFiles)){

 $testFiles[$key]=file_get_contents($tempFile);

 $myFile[substr($key,0,-4)]=file($tempFile);

 }

 else{

 $testFiles[$key."-

copy".rand()]=file_get_contents($tempFile);

 $myFile[substr($key,0,-4)]=file($tempFile);

 }

}

$count=0;

$functionName = "";

$userDatabase=$_POST["userDatabase"]; //user select

database

//read the config file

$config = file('config.txt', FILE_IGNORE_NEW_LINES |

FILE_SKIP_EMPTY_LINES);

$dataBaseArray= array();

//database sql execute method

$sqlExeMethod = array();

$key=array_search('@'.$userDatabase ,$config);

$size= sizeof($config);

for ($i=$key+1;$i<$size;$i++){

 if (!strstr($config[$i],"@")){//new database extension

start

 $sqlExeMethod[]=strtoupper($config[$i]);

 }

 else

 break;

}

//end of getting execute method $sqlExeMethod array

//php user input method

$key=array_search('#safe',$config);

$userInput = array();

for ($i=1;$i<$key;$i++){

 $userInput[]=$config[$i];

}

$StopSafeKey=array_search('#database',$config);

for ($i=$key+1;$i<$StopSafeKey;$i++){

 $safeConfig[]=$config[$i];

72

}

//end of getting user input method

//object sql exe stmt like prepare or query 1 means yes

empty means no

$objectSQL=$_POST["objectSQL"]; //user select database

//end

//should we remove the 2nd parameter of sql stmt or not 1

mean yes empty means no

$onlyOne=$_POST["onlyOne"]; //user select database

//end

echo "<h1>Database Extension: $userDatabase </h1>";

echo "<h2>Total Threats Pages: <span

id='totalScore'>0</h2>";

echo "<button onclick=toggleThreatA('danger')>Show Only

Danger</button> </br></br>";

foreach ($testFiles as $testFile){

 $me = new myPar();

 $newStatement =newClass();

 $newStatement->restart();

 $myAn=NewAn();

 $myAn->destoryVul();

 if (stripos(array_keys($testFiles)[$count],'php') !==

false){

 echo "<div

id='result".array_keys($testFiles)[$count]."'

class='mainResult'>";

 echo "<div class='resultPage' id='overviewHeader' >";

 echo "<h2>File Name: ".array_keys($testFiles)[$count];

 $tempFileStringName=array_keys($testFiles)[$count];

 if (strpos($tempFileStringName,'copy')===false){

 $tempFileName=

substr(array_keys($testFiles)[$count],0,-4);

 }

 else{

 $tempFileName= str_replace(".php-

","",array_keys($testFiles)[$count]);

 }

 echo "</br>Total Possible Threat Found: <span

id='vulCount".$tempFileName."'>0</h2>";

 echo "</div>";

 echo "<hr>";

 //gather data ----phase 1

 try {

 // parse

73

 $stmts = $parser->parse($testFile);

 // traverse

 $stmts = $traverser->traverse($stmts);

 $counStmt=0;

 foreach ($stmts as $temp){

 $newStatement->SetobjectSQL($objectSQL);

 $newStatement->SetexSqlStmt($sqlExeMethod);

 $newStatement->breakStmts($temp);

 }

 }

 catch (PHPParser_Error $e) {

 echo 'Parse Error: ', $e->getMessage();

 }

 if (strstr($DBname, '_')){

 $pos = strpos($DBname, "_");

 $DBname= substr($DBname,0,$pos);

 }

 //function params

 echo "<div class='resultPage' >";

 echo "<div class='heading'><h2>Overview array </h2>

<button

onclick=toggle('".$tempFileName."')>Show/Hide</button></div

>";

 echo "<div id=".$tempFileName."

style='display:none'>";

 echo "<h3 >this is variable Array: </h3>";

 print_r(array_filter($ifData));

 echo "</br>";

 //echo "This is ".$DBname." Databasae "."</br>";

 echo "<h3>this is function Array: </h3>";

 $functionArray=$newStatement->getFunctionData();

 print_r($functionArray);

 echo "</br>";

 echo "</div></div>";

 //analysts data phase 2

 $myAn->SetobjectSQL($objectSQL);

 $myAn->SetexUserInput($userInput);

 $myAn->SetexSqlStmt($sqlExeMethod);

 $myAn->SetOnlyOne($onlyOne);

 $myAn->setFile($myFile);

 $myAn->SetSafeFunFromConfig($safeConfig);

 foreach($newStatement->getFunctionData() as

$objKey=>$tester){

74

 foreach($tester as $tester2){

 $result=$myAn->checkFun($tester2,$objKey);

//if the array has MYSQL_QUERY added it to the result array

 if(!empty($result)){

 $myAn->addCheckFun($objKey,$ifData);

//only test the function that is used

 }

 }

 }

 echo "<div class='resultPage' >";

 echo "<hr><div class='heading'><h2>Check Variable

</h2> <button

onclick=toggle('".$tempFileName."VS')>Show/Hide</button></d

iv></br>";

 echo "<div id='".$tempFileName."VS' >";

 $useFunction = $myAn->getDangerFun();

 //check inside the function in $dangerFun array

 foreach($functionArray as $key=>$checkThisArray){

 $myAn-

>getTarget2($checkThisArray,$key,null,$ifData);

 }

 $myAn->getTarget($ifData); // normal variable array

 echo "</div>";

 echo "</div>";

 echo "<div class='resultPage' >";

 echo "<hr><div class='heading'><h2>Function </h2>

<button

onclick=toggle('".$tempFileName."FS')>Show/Hide</button></d

iv></br>";

 echo "<div id='".$tempFileName."FS' >";

 foreach($functionArray as $key=>$checkThisArray){

 $myAn->getTarget($checkThisArray,$key,true);

 }

 echo "</div>";

 echo "</div>";

 $tempCount=$myAn->getVul();

 $tempFileStringName= array_keys($testFiles)[$count];

 $tempFileStringName=array_keys($testFiles)[$count];

 if (strpos($tempFileStringName,'copy')===false){

 $tempFileName=

substr(array_keys($testFiles)[$count],0,-4);

 }

75

 else{

 $tempFileName= str_replace(".php-

","",array_keys($testFiles)[$count]);

 }

 echo "<script

type=text/javascript>jsfunction('".$tempFileName."',".$temp

Count.",'".array_keys($testFiles)[$count]."');</script>";

 echo "</br></div> ";

 }

 $count++;

}

function newClass(){

 $myNewClass = new myPar();

 return $myNewClass;

}

function newAn(){

 $myNewAn = new myAn();

 return $myNewAn;

}

#seperate the zip file and normal php files allfile array

index 0 is for zip file index 1 is normal file array

function checkUpload($uploads,$fileType){

 $counter =0;

 $normalCounter=0;

 $zipFile = array();

 $normalFile = array();

 foreach ($fileType as $upload){

 if (substr($upload,-3)=="php"){

 $normalFile[$fileType[$normalCounter]]=$uploads[$count

er];

 $normalCounter++;

 }

 elseif (substr($upload,-3)=="zip"){

 $zipFile[]=$uploads[$counter];

 }

 $counter++;

 }

 $allFile[0]=$zipFile;

 $allFile[1]=$normalFile;

 return ($allFile);

}

76

function forZipFile($myZipFiles){

 $dir = array();

 foreach ($myZipFiles as $myZipFile){

 if(!empty($myZipFile))

 $dir[]=unzip($myZipFile, false, true, true);

 }

 return $dir;

}

function unzip($src_file, $dest_dir=false,

$create_zip_name_dir=true, $overwrite=true)

{

 $zipFiles=array();

 if ($zip = zip_open($src_file))

 {

 if ($zip)

 {

 $splitter = ($create_zip_name_dir === true) ? "." :

"/";

 if ($dest_dir === false) $dest_dir =

substr($src_file, 0, strrpos($src_file, $splitter))."/";

 // Create the directories to the destination dir if

they don't already exist

 create_dirs($dest_dir);

 // For every file in the zip-packet

 while ($zip_entry = zip_read($zip))

 {

 // Now we're going to create the directories in the

destination directories

 // If the file is not in the root dir

 $pos_last_slash =

strrpos(zip_entry_name($zip_entry), "/");

 if ($pos_last_slash !== false)

 {

 // Create the directory where the zip-entry

should be saved (with a "/" at the end)

create_dirs($dest_dir.substr(zip_entry_name($zip_entry), 0,

$pos_last_slash+1));

 }

 // Open the entry

 if (zip_entry_open($zip,$zip_entry,"r"))

 {

 // The name of the file to save on the disk

77

 $file_name =

$dest_dir.zip_entry_name($zip_entry);

 // Check if the files should be overwritten or

not

 if ($overwrite === true || $overwrite === false

&& !is_file($file_name))

 {

 // Get the content of the zip entry

 $fstream = zip_entry_read($zip_entry,

zip_entry_filesize($zip_entry));

 file_put_contents($file_name, $fstream);

 // Set the rights

 chmod($file_name, 0777);

 //echo "save: ".$file_name."
";

 $zipFiles[]=$file_name;

 }

 // Close the entry

 zip_entry_close($zip_entry);

 }

 }

 // Close the zip-file

 zip_close($zip);

 }

 }

 else

 {

 return false;

 }

 return $zipFiles;

}

 //This function creates recursive directories

 //if it doesn't already exist @param String

 //The path that should be created @return void

function create_dirs($path)

{

 if (!is_dir($path))

 {

 $directory_path = "";

 $directories = explode("/",$path);

 array_pop($directories);

 foreach($directories as $directory)

78

 {

 $directory_path .= $directory."/";

 if (!is_dir($directory_path))

 {

 mkdir($directory_path);

 chmod($directory_path, 0777);

 }

 }

 }

}

class myPar{

private $check=1 ; //0 is true 1 is false

public $array=array(); // data for the hashtable

private $funData=array(); // data include all the info

private $subData=array();

private $keyStorage= array(); //check if key is already

exist

private $ifData = array(); //store if stmt variaible and

values;

private $ifValue = array(); // store the value of if

statment

private $functionArray = array(); //store functional name

and its info

private $noNameCount;

private $funParams=array(); //store the function param

private $objectSQL; //determine if it is a db using prepare

or query stmts

public function restart(){

global $array;

global $funData;

global $subData;

global $keyStorage;

global $ifData;

global $ifValue;

global $functionArray;

global $noNameCount;

global $funParams;

$array=array();

$funData=array();

$subData=array();

$keyStorage= array();

$ifData = array();

79

$ifValue = array();

$functionArray = array();

$funParams=array();

}

public function SetexSqlStmt($exSqlStmt){

 global $exSqlExeMethod;

 $exSqlExeMethod = $exSqlStmt;

}

public function GetexSqlStmt(){

 global $exSqlExeMethod;

 return $exSqlExeMethod;

}

public function SetobjectSQL($UserInput){

global $objectSQL;

$objectSQL= $UserInput;

}

public function GetobjectSQL(){

 global $objectSQL;

 return $objectSQL;

}

public function general($object){

global $check;

global $myCount;

global $DBname;

global $funData;

global $ifData;

global $noNameCount;

foreach($object as $key=>$stmts){

if (get_class($stmts)!=""){

 if (substr(get_class($stmts),15)=="Expr_Variable"){

 $check = 0; // check if it is variable (we need

check variables only)

 }

 if (substr(get_class($stmts),15)=="Expr_MethodCall"){

 $check = 3; // check if it is object like $sth =

$dbh->prepare

 }

}

if (get_class($stmts)==""

&&substr(get_class($object),15)=="Expr_MethodCall"){

 $check = 4; // check if it is object like $dbh-

>prepare

80

}

if (strstr($key,"name") || strstr($key,"value")

||strstr($key,"class"))

{

 $checkValue = $stmts->value;

 if(strstr($checkValue,"?")||strstr($checkValue,":")){

 $funData['safe']=1;

 }

 if (gettype($stmts)=="object"){

 if (!empty($stmts->parts)){

 foreach ($stmts->parts as $value){

 if(gettype($value)=="string"){

 if

(get_class($stmts)=="PHPParser_Node_Name"){//only if it is

a function

 //added 12/11/2013

mysql_query($query) or die("Query failed : " .

mysql_error()

 //ingnore the MYSQL_ERROR function

 if(strtoupper($value)!="MYSQL_ERROR")

 $funData['fun']=$value;

 $funData['line']=$stmts-

>getAttribute('startLine');

 }

 }

 else if (gettype($value)=="object"){

 if(get_class($value)=="PHPParser_Node_Expr_ArrayDimFet

ch"){

 $funData[]= $value->var-

>name;

 }

 else{

 $funData[]=$value->name;

 }

 }

 }

 }

 else{

 $this->general($stmts);

 }

81

 }

 else{

 if ($check ==0){

 $check=1;

 $funData[]=$stmts;

 }

 else if ($check==4){ //added 1/22/2014 for $dbh-

>prepare

 $check=1;

 //if(strtolower($stmts)=="query" ||

strtolower($stmts)=="prepare")

 if(in_array(strtoupper($stmts),$this-

>GetexSqlStmt())){

 $funData['fun']=strtolower($stmts);

 $funData['line']=$object-

>getAttribute('startLine');

 $funData[]=null; //because analyst skip

the first value need have a placeholder.

 }

 }

 }

}

else if(strstr($key,"expr") && $check==3 && $this-

>GetobjectSQL()==1){ // check if it is object like $sth =

$dbh->prepare 11/11/2013

 if(in_array(strtoupper($stmts),$this-

>GetexSqlStmt())){

 $funData['fun'] = strtolower($stmts->name);

 $funData['line']=$stmts-

>getAttribute('startLine');

 }

 $this->general($stmts);

}

else{

 $this->general($stmts);

}

}

}

public function breakStmts($object){

82

 if (substr(get_class($object),15)=="Stmt_If" &&

!empty($object->elseifs)){

 foreach($object->elseifs as $elseifs){

 $this->breakStmts($elseifs);

 }

 }

 if (substr(get_class($object),15)=="Stmt_If" &&

!empty($object->else)){

 $this->breakStmts($object->else);

 }

 if (substr(get_class($object),15)=="Stmt_Function"){

 $this->fun($object,$object->name);

 }

 //it mean it is a if/try/while type of block statement

 elseif(!empty($object->stmts) && gettype($object-

>stmts)=="array"){

 foreach($object->stmts as $stmts){

 //it mean inside the block it has more block

 if(!empty($stmts->stmts) && gettype($stmts-

>stmts)=="array"){

 $this->breakStmts($stmts);

 }

 else{

 $this->general($stmts);

 $this->arrayHandle();

 }

 }

 }

 else{

 $this->general($object);

 $this->arrayHandle();

 }

}

public function arrayHandle(){

global $funData;

global $keyStorage;

global $ifData;

global $ifValue;

global $noNameCount;

$preArray=$this->GetFunData();

83

$keepArray=$preArray; //keep array in case the function

call without set variable

$spliceArray=array_splice($preArray, 1); //first index is

key rest is value

if(array_key_exists('safe',$spliceArray)){ //added

1/26/2014

 array_push($ifData[$preArray[0]],9999);

}

//if key is already exist

if(in_array($preArray[0],$keyStorage)){

 foreach ($spliceArray as $arrayData){

 array_push($ifData[$preArray[0]] ,$arrayData);

 }

}

//function call without variable

else if ($preArray[0]==null){

 $ifData[$noNameCount]=$keepArray;

 $noNameCount++;

}

else{

 $keyStorage[]=$preArray[0];

 $finalKeys = array_unique($keyStorage); //remove

duplicate keys

 if ($spliceArray != ""){

 $ifData[$preArray[0]]= $spliceArray;

 }

}

$this->destroy_Fundata();

}

//this handle function stmt

public function fun($object,$functionName){

global $check;

global $myCount;

global $DBname;

global $funData;

84

global $functionArray;

global $noNameCount;

global $funParams;

$functionAlert=1; //0 is true 1 is false

foreach($object as $key=>$stmts){

if (get_class($stmts)!=""){

 //echo substr(get_class($stmts),15)."</br>";

 if (substr(get_class($stmts),15)=="Expr_Variable"){

 $check = 0; // check if it is variable (we need

check variables only)

 }

}

//sub statement need to improved

if($key=="stmts"){

 if (gettype($stmts)=="array"){

 if($myCount==null){

 $myCount=0;

 }

 $subTempArray= array();

 foreach($stmts as $subStmts){

 $this->general($subStmts);

 $preArray=$this->GetFunData();

 $savArray=$preArray;

 $spliceArray=array_splice($preArray, 1);

//first index is key rest is value

 //if there no assign variable

 if ($preArray[0]==""){

 $subTempArray[$noNameCount]=$savArray;

 $noNameCount++;

 }

 else

 $subTempArray[$preArray[0]]=$spliceArray;

 $this->destroy_Fundata();

 //echo "</br>";

 //echo "Sub Stmts: ".$myCount."</br>";

 $myCount++;

 }

 $this-

>functionArray($functionName,$subTempArray);

 }

85

}

else if ($key=="params"){ // add params value to array

 $tempParmArray=array();

 foreach($stmts as $stmt){

 $tempParmArray[]=$stmt->name;

 }

 $funParams[$functionName]=$tempParmArray;

}

}

}

//all the data

public function hashTable($key, $object){

 global $array;

 if($key!="")

 $array[$key]=$object;

}

public function functionArray($key, $object){

 global $functionArray;

 if($key!="")

 $functionArray[$key]=$object;

}

public function getFunctionData(){

 global $functionArray;

 return $functionArray;

}

//return all the data

public function getData(){

 global $array;

 return $array;

}

//data in one statment

public function GetFunData(){

 global $funData;

 return $funData;

}

//new array for each statement

function destroy_Fundata() {

86

 global $funData;

 $funData=array();

}

public function GetFunParams(){

 global $funParams;

 return $funParams;

}

public function destory_ifdata(){

 global $ifdata;

 $ifdata = array();

}

}

class myAn{

private $check ; // the variable to be check

private $user; //check if the variable is user input

private $myTestArray =array();

private $userInputCheck= array();

private $dangerFun=array(); //function that need to be

checked

private $avoidFun=array();

private $exUserInput = array(); //exeternal userInput (from

the ini file)

private $exSqlExeMethod = array(); //external sql exe stmt

(from the ini file)

private $safeFun = array(); //safe function from the config

private $objectSQL; //determine if it is a db using prepare

or query stmts

private $onlyOne; //if we only care about the first

parameter

private $vulCount; //number of vulnerability

private $testFile;

public function SetexUserInput($exUser){

 global $exUserInput;

 $exUserInput=$exUser;

}

public function GetexUserInput(){

 global $exUserInput;

 return $exUserInput;

}

87

public function SetexSqlStmt($exSqlStmt){

 global $exSqlExeMethod;

 $exSqlExeMethod = $exSqlStmt;

}

public function GetexSqlStmt(){

 global $exSqlExeMethod;

 return $exSqlExeMethod;

}

public function SetSafeFunFromConfig($safeFunConfig){

 global $safeFun;

 $safeFun = $safeFunConfig;

}

public function GetSafeFun(){

 global $safeFun;

 return $safeFun;

}

public function SetobjectSQL($UserInput){

 global $objectSQL;

 $objectSQL= $UserInput;

}

public function GetobjectSQL(){

 global $objectSQL;

 return $objectSQL;

}

public function SetOnlyOne($UserInput){

 global $onlyOne;

 $onlyOne= $UserInput;

}

public function GetOnlyOne(){

 global $onlyOne;

 return $onlyOne;

}

public function checkFun($objects,$objKey){

 //$checkArray=array("MYSQL_QUERY"); //if the function

using sql exe stmts

 $checkArray=$this->GetexSqlStmt();

 $result =

array_intersect(array_map('strtoupper',$objects),$checkArra

y);

88

 $newStatement =newClass();

 $tempParm=$newStatement->GetFunParams();

 foreach($objects as $key=>$object){

 if(is_int($key)){

 if(in_array($object,$tempParm[$objKey])){

 return $result;

 }

 }

 }

}

public function addCheckFun($fun,$objects){ //the dangerFun

that is used is added to checkarray

 global $dangerFun;

 foreach($objects as $object){

 if($fun==$object['fun']){

 $dangerFun[]=strtoupper($fun);

 $dangerFun=array_unique($dangerFun);

 }

 }

}

public function getDangerFun(){

 global $dangerFun;

 return $dangerFun;

}

public function getTarget($objects,$myKey,$Fon){ //check if

any variables use my_sql_query $myKey is the function name

 global $dangerFun;

 $objects=array_filter($objects);

 $tempTest=$this->GetexSqlStmt();

 foreach($tempTest as $temp){

 $dangerFun[] = $temp;

 }

 $dangerFun=array_unique($dangerFun);

 //the function that we want to check

89

 $checkArray=$dangerFun;

 foreach($objects as $key=>$object){

 foreach($object as $var){

 $newStatement =newClass();

 $testTemp=$newStatement->GetFunParams();

 if(in_array(strtoupper($var),$checkArray)){

//mysql found ?

 if($key == null){

 $this-

>focusTarget(null,$objects,$Fon);

 }

 else{

 if($oldKey!=$key) // added

1/5/2014 prevent repeat analyst

 $this-

>focusTarget($key,$objects,$Fon);

 $oldKey = $key;

 }

 }

 }

 }

}

public function getTarget2($objects,$myKey,$Fon,$ifdata){

//check if any variables use my_sql_query $myKey is the

function name

 global $dangerFun;

 $tempTest=$this->GetexSqlStmt();

 foreach($tempTest as $temp){

 $dangerFun[] = $temp;

 }

 $dangerFun=array_unique($dangerFun);

 //the function that we want to check

 $checkArray=$dangerFun;

 foreach($objects as $key=>$object){

 foreach($object as $var){

 $newStatement =newClass();

 $testTemp=$newStatement->GetFunParams();

 if(in_array(strtoupper($var),$checkArray)){

//mysql found ?

 $turn=$this-

>checkParm($myKey,$objects,$ifdata);

90

 if ($turn==1 and !empty($myKey)){ //if

param is use in sql exe statement

 if($key == null){

 $this-

>focusTarget(null,$objects,$Fon,$myKey,$ifdata);

 }

 else{

 $this-

>focusTarget($key,$objects,$Fon,$myKey,$ifdata);

 }

 }

 }

 }

 }

}

public function checkParm($myKey,$objects,$ifdata){

 global $dangerFun;

 global $myTestArray;

 $newStatement =newClass();

 $tempParm=$newStatement->GetFunParams();

 foreach ($objects as $object){

 if

(in_array(strtoupper($object['fun']),$dangerFun)){

 foreach ($object as $key=>$Iobject){

 if (is_int($key)){ // only check

variable

 if(

in_array($Iobject,$tempParm[$myKey])){ // check if

parameter is use in the danger function

 return 1;

 }

 //added 1/23/2014

 else{

 if(!empty($objects[$Iobject])){

 $this-

>traceback($objects,$Iobject);

91

 foreach

($myTestArray as $tempVar){

 if(

in_array($tempVar,$tempParm[$myKey])){ // check if

parameter is use in the danger function

 return 1;

 }

 }

 $this-

>destoryTestArray();

 }

 }

 }

 }

 }

 }

}

public function

focusTarget($key,$objects,$Fon,$isFun,$ifdata){ //which

variable need to be check

 global $tempFileName; //testfile name

 $SafeObject =0;

 $userInputArray = $this->GetexUserInput();

 $checkVar =array();

 $userInputSql = $this->GetexSqlStmt();

 $objectSql= $this->GetobjectSQL();

 //!!need parameter check before add to list

 foreach($objects[$key] as $objKey=>$set){ // add

every variable to the $checkVar array

 if (in_array(strtoupper($set),$userInputSql)){ //

only consider about the 1 variable

 if(empty($objectSql) &&

sizeof($objects[$key])>3)

 $popIt = true;

 }

 if(is_int($objKey)){ //only traceback variable

 $checkVar[]=$set;

 }

 }

92

 //removing the first variable of prepare statment

11/11/2013

 foreach($objects[$key] as $objKey=>$set){

 if($objKey=="fun"){

 if(gettype($objKey)=="string"){ //some

reason index 0 keep poping up disregard the comparesion of

the value

 if(in_array(strtoupper($objects[$key]['fun']),$userInp

utSql) && !empty($objectSql)){

 if(strtolower($set)=="query"

||strtolower($set)=="prepare")

 unset($checkVar[0]);

 }

 }

 }

 }

 $tempOnlyOne =$this->GetOnlyOne();

 if (!empty($popIt) && !empty($tempOnlyOne)){ //only

check the first parameter of mysql_stmt 11/9/2013

 array_pop ($checkVar);

 }

 $treeArray=array(); // with key

 foreach($checkVar as $var){ // variable found that

need to be check

 $this->traceback($objects,$var);

 $treeArray[$var]=$this->getMyTestArray();

 $this->destoryTestArray();

 }

 $tempFun=($objects[$key]['fun']);

 if(!empty($treeArray) && !empty($tempFun)){

 $objLine= $objects[$key]['line'];

 }

 foreach ($objects[$key] as $value){ //added 1/26/2014

 if($value==9999){

 $SafeObject = 1;

 }

 }

 if ($objects[$key]['safe']==1){//added 1/26/2014

 $SafeObject = 1;

 }

93

 $lastStepCheck=$this-

>checkFunByLine($objects[$key]['line'],$objects); //check

if it is a function call 11/09/2013

 if ($SafeObject!=1){

 foreach($treeArray as $indKey =>$treeArrayInd){

 $result=$this-

>checkArrayUserInput($treeArrayInd); //if an array has user

input (_GET,_POST,_REQUEST)

 if(!empty($result)){

 $result2=$this-

>checkArrayDef($treeArrayInd); // check if users use sql

preventation

 if(!empty($result2)){ //if use sql

prevention

 }

 else{ // at this point the variabe has

no sql prevention method and has user input _GET etc

 $result3= $this-

>paramCheck($indKey,$tempFun,$objects); //check if the

varible is really use in the function

 //if it is empty it means it is

not use in function

 if(!empty($result3)){

 $para2 = $this-

>paramCheck2($indKey,$tempFun,$objects);

 if(!empty($para2)){

 //echo "<span

class='Nothreat'>Line: $objLine $indKey safe with

prevention method</br>";

 }

 }

 else //not find in the function

statment

 {

 if(in_array(strtoupper($lastStepCheck),$userInputSql))

{

94

 if(!empty($indKey)){

 echo "<span

class='threat'>Line:

".$objLine." $indKey Not safe.Not a function call and

no prevention method found </br>";

 $this->addVul();

 $this-

>textFromFileByLine($tempFileName,$objLine);

 }

 }

 }

 }

 }

 else{

 if($Fon){ // for function only

 $checkFunOnly = $this-

>checkArrayDef($treeArrayInd);

 if (!empty($checkFunOnly))

 echo"";//echo "<span

class='NothreatF'>Line: $objLine $indKey safe with

prevention method</br>";

 else{

 if(!empty($indKey)){

 echo "<span

class='threatF'>Line:

".$objLine." $indKey not safe no prevention

method</br>";

 $this->addVul();

 $this-

>textFromFileByLine($tempFileName,$objLine);

 }

 }

 }

 else{ //if the an array doesn't have

user input and not a function only

 if(in_array(strtoupper($indKey),$userInputArray)){

 echo "<span

class='threatF'>Line:

".$objLine." $indKey not safe no prevention method for

user input</br>";

95

 $this->addVul();

 $this-

>textFromFileByLine($tempFileName,$objLine);

 }

 else{

 if(!empty($isFun)){ //it is a

funtion need to check the variable back to the variable of

function call

 $newStatement =newClass();

 $tempParm=$newStatement-

>GetFunParams();

 $tempDef=$this-

>checkArrayDef($treeArrayInd);

 if

(!empty($objects[$indKey])){

 foreach($objects[$indKey] as $testFunctionVariable){

 $tempParamIndex =

array_search($testFunctionVariable, $tempParm[$isFun]);

 foreach ($ifdata as

$tempIfdata){

 if($tempIfdata['fun']==$isFun){

 $tempResult =

$ifdata[$tempIfdata[$tempParamIndex]];

 $MytempResult=$this->checkArrayDef($tempResult);

 if

(!empty($MytempResult)){

 echo "";

 }

 else if

(!empty($tempDef)){ //added 1/20/2013 if the function has

defence

 }

 else{

96

 if(!empty($tempResult)){ //varibles that aren't user

input

 echo

"Line:

".$objLine." $testFunctionVariable not safe no

prevention method for variable in

function</br>";

 $this->addVul();

 $this->textFromFileByLine($tempFileName,$objLine);

 }

 }

 }

 }

 }

 }

 else{ // no variable was

assigned use the variable straight to the function. added

1/23/2013

 $tempParamIndex =

array_search($indKey, $tempParm[$isFun]);

 foreach ($ifdata as

$tempIfdata){

 if($tempIfdata['fun']==$isFun){

 $tempResult =

$ifdata[$tempIfdata[$tempParamIndex]];

 $MytempResult=$this->checkArrayDef($tempResult);

 if

(!empty($MytempResult)){

 echo "";

 }

 else if

(!empty($tempDef)){ //added 1/20/2013 if the function has

defence

 }

97

 else{

 if(!empty($tempResult)) //varibles that aren't user

input

 if(!empty($indKey) || !empty($testFunctionVariable)){

 echo "<FONT

COLOR=#990000>Line: ".$objLine." $indKey

$testFunctionVariable not safe no prevention method for

variable in function</br>";

 $this->addVul();

 $this->textFromFileByLine($tempFileName,$objLine);

 }

 }

 }

 }

 }

 }

 else{

 if(!empty($objects[$indKey])){

 global

$myTestArray;

 $this-

>traceback($objects,$indKey);

 $this-

>destoryTestArray();

 }

 }

 }

 }

 }

 }

 }

}

98

public function checkFunByLine($line,$objects){

 foreach($objects as $object){

 if($object['line']==$line){

 return $object['fun'];

 }

 }

}

public function paramCheck($key,$fun,$objects){ //$fun is

the function name $key is the variable inside the function

that needs to be check

 $newStatement =newClass();

 $normalStmt=$newStatement->GetFunParams();

 $funStmt=$newStatement->getFunctionData();

 $dangerFun=$this->getDangerFun();

 foreach ($objects as $object){

 if ($object['fun']==$fun){

 $index= (array_search($key,$object));

//index of the variable

 $tran=$normalStmt[$fun][$index];

 foreach($funStmt[$fun] as $objects2){

 if(in_array(strtoupper($objects2['fun']),$dangerFun)){

 $find=array_search(

$tran,$objects2);

 if (is_int($find)){

 return "find";

 }

 }

 }

 }

 }

}

//12-4-2013 added to check if the variable is using any

preventation method

public function paramCheck2($key,$fun,$objects){ //$fun is

the function name $key is the variable inside the function

that needs to be check

 $newStatement =newClass();

99

 $normalStmt=$newStatement->GetFunParams();

 $funStmt=$newStatement->getFunctionData();

 $dangerFun=$this->getDangerFun();

 foreach ($objects as $object){

 if ($object['fun']==$fun){

 $index= (array_search($key,$object));

//index of the variable

 $tran=$normalStmt[$fun][$index];

 foreach($funStmt[$fun] as $objects2){

 if(in_array(strtoupper($objects2['fun']),$dangerFun)){

 $find=array_search(

$tran,$objects2);

 if (is_int($find)){

 $result=$this-

>checkArrayDef($funStmt[$fun][$tran]);

 return ($result);

 }

 }

 }

 }

 }

}

public function traceback($objects,$var){

 global $myTestArray;

 $checkVar =array();

 $maxCount =sizeof($objects[$var])+1;

 $count=0;

 foreach($objects[$var] as $objKey=>$set){

 $count=$count+1;

 if($count<$maxCount){

 $checkVar[]=$set;

 }

 unset($objects[$var]); //1/5/2014 remove infinte

loop

 }

 foreach($checkVar as $myVar){

 $myTestArray[]=$myVar;

 if($myVar!=$var){

 $this->traceback($objects,$myVar);

 }

100

 }

}

public function destoryTestArray(){

 global $myTestArray;

 $myTestArray=array();

}

public function getMyTestArray(){

 global $myTestArray;

 return $myTestArray;

}

public function addVul(){

 global $vulCount;

 $vulCount++;

}

public function getVul(){

 global $vulCount;

 return $vulCount;

}

public function destoryVul(){

 global $vulCount;

 $vulCount=0;

}

public function checkArrayUserInput($array) {

 //$userInputArray=array("_GET","_POST","_REQUEST"); //

array for all the user input method

 $userInputArray=$this->GetexUserInput();

 $result =

array_intersect(array_map('strtoupper',$array),$userInputAr

ray);

 return $result;

}

public function checkArrayDef($array) {

 $userDefArray=$this->GetSafeFun(); //array for all the

sql prevention method

 $result =

array_intersect(array_map('strtoupper',$array),$userDefArra

y);

 return $result;

}

101

public function destoryAn(){

 global $check ; // the variable to be check

 global $user; //check if the variable is user input

 global $myTestArray;

 global $userInputCheck;

 global $dangerFun; //function that need to be checked

 global $avoidFun;

 global $exUserInput ; //exeternal userInput (from the

ini file)

 global $exSqlExeMethod ; //external sql exe stmt (from

the ini file)

 global $objectSQL; //determine if it is a db using

prepare or query stmts

 global $onlyOne; //if we only care about the first

parameter

 global $vulCount; //number of vulnerability

 $check=null;

 $user=null;

 $myTestArray =array();

 $userInputCheck= array();

 $dangerFun=array(); //function that need to be checked

 $avoidFun=array();

 $exUserInput = array(); //exeternal userInput (from

the ini file)

 $exSqlExeMethod = array(); //external sql exe stmt

(from the ini file)

 $objectSQL=null;

 $onlyOne=null;

 $vulCount=null;

}

public function setFile($FileArray){

global $testFile;

$testFile=$FileArray;

}

public function getFile(){

global $testFile;

return $testFile;

}

//added 1/24/2013 print out the entire line

public function textFromFileByLine($fileName,$line){

102

$myFile=$this->getFile();

$line=$myFile[$fileName][$line-1];

echo " ".$line." </br></br>";

}

}

?>

</body>

</html>

103

APPENDIX B

TEST CASE TABLE STRUCTURE

Attributes Description

Tag Number A unique number, which should be auto

incremented when a new TAG is inserted into

the database.

Rev# Whenever the information of a TAG is

modified, the Rev# is increased by one

automatically

Date Date the original or updated revision was

created. When a TAG is inserted or revised, the

value of Date is always the current date.

Sub-Category Has one of the predefined values such as: AC

Panel, Arc Resistant, and Auto Xfer. These

predefined values should be stored in a

separate table.

Complexity Contains one of the following: A, B, C, D, E,

F, and G, which should be stored in a separate

table.

104

Lead Time Value is in week days.

Tag Description General description associated to TAG

Tag Notes General Notes Associated to TAG

Price Note General Notes associated to Tag Pricing

TAG Member User selected from User table during

edit/creation process

Price Expires The value is Date (created/edited) plus months

inputted during created/edited process.

Product Option TAG price may be applied to one or more of

the following 4 product types:

• HVL

• HVL/CC

• Metal Clad

• MVMCC

For each product type, it has price in different

country currency, which is calculated using the

following formula:

Country List dollar equal Install Cost times

105

Product Multiplier times Country Multiplier

Product Type and its multiplier should be

stored in a separate table. Country and its

multiplier should be stored in a separate table.

Attachments Attachments can be any pdf, doc, and xls, bmp

document that has been associated and

uploaded during the creation /editing process.

Applied FO table Each TAG may have an applied FO table,

which contains information about Quote,

Factory order or both.

The following four attributes are only visible to Tag Members and OE group. All TAGs have the

same Labor price per hour and Engineering price per hour, which should be stored in a separate

table.

Material Cost in dollar based on Material cost.

Labor Cost in dollar based on hours inputted x Labor

price per hour.

Engineering Cost in dollar based on hours inputted x

Engineering price per hour.

Install Cost Total of Material plus Labor plus Engineering.

106

Attributes Description

Tag Number A unique number, which should be auto incremented

when a new TAG is inserted into the database.

Rev# Whenever the information of a TAG is modified, the

Rev# is increased by one automatically

Date Date the original or updated revision was created.

When a TAG is inserted or revised, the value of Date

is always the current date.

Sub-Category Has one of the predefined values such as: AC Panel,

Arc Resistant, and Auto Xfer. These predefined values

should be stored in a separate table.

Complexity Contains one of the following: A, B, C, D, E, F, and G,

which should be stored in a separate table.

Lead Time Value is in week days.

Tag Description General description associated to TAG

Tag Notes General Notes Associated to TAG

Price Note General Notes associated to Tag Pricing

107

TAG Member User selected from User table during edit/creation

process

Price Expires The value is Date (created/edited) plus months

inputted during created/edited process.

Product Option TAG price may be applied to one or more of the

following 4 product types:

• HVL

• HVL/CC

• Metal Clad

• MVMCC

For each product type, it has price in different

country currency, which is calculated using the

following formula:

Country List dollar equal Install Cost times Product

Multiplier times Country Multiplier

Product Type and its multiplier should be stored in a

separate table. Country and its multiplier should be

stored in a separate table.

108

Attachments Attachments can be any pdf, doc, and xls, bmp

document that has been associated and uploaded

during the creation /editing process.

Applied FO table Each TAG may have an applied FO table, which

contains information about Quote, Factory order or

both.

The following four attributes are only visible to Tag Members and OE group. All TAGs

have the same Labor price per hour and Engineering price per hour, which should be

stored in a separate table.

Material Cost in dollar based on Material cost.

Labor Cost in dollar based on hours inputted x

Labor price per hour.

Engineering Cost in dollar based on hours inputted x

Engineering price per hour.

Install Cost Total of Material plus Labor plus

Engineering.

109

