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ABSTRACT

Partitioned Global Address Space (PGAS) languages are becoming more important as

we move into the Exascale era. The complexities brought on by the architectures of these

machines make traditional message passing approaches challenging. Currently, we lack a

portable and flexible runtime for PGAS languages. The suggestion is that this is possible

with an OpenSHMEM-based runtime.

OpenSHMEM is a PGAS library for the C language aiming to provide a standard

Application Programming Interface (API) for Symmetric Hierarchical MEMory (SHMEM).

OpenSHMEM is a portable, flexible, and performant API for PGAS runtimes through

its use of thread safety semantics and grouping of processes through teams. This allows

OpenSHMEM to make performance-oriented decisions on behalf of the language or library

being implemented.

This thesis demonstrates a mapping and implementation of a Unified Parallel C (UPC)

runtime based on OpenSHMEM, and an evaluation our runtime’s performance in comparison

to the popular Berkeley UPC implementation. Berkeley UPC uses a runtime based on

Global-Address Space Networking (GASNet), a language independent middleware for

PGAS programming languages.
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CHAPTER I

INTRODUCTION

Partitioned Global Address Space (PGAS) is a parallel processing programming model

in which the global address space is partitioned by process. In this programming model,

each process has affinity to a portion of the shared space, and can do remote memory access

(RMA) to and from the global address space. RMA allows processes within the parallel

job to read from or write to the shared portion of memory of other processes within the

job. PGAS programming models are emerging as an alternative or complement to Message

Passing Interface (MPI) for programs with irregular message patterns [11]. This is due to

the benefits of programming with one-sided communication over two-sided communication

in programs that have data-dependencies and dynamic communication patterns [29]. In

a PGAS programming model, the user can exploit data locality allowing for less network

communication and use familiar and flexible shared memory semantics. This is enabled by

the memory being logically partitioned such that each processing element (PE) has affinity

to a portion of the global address space.

PGAS language runtimes implement the execution model of a PGAS language. Several

PGAS languages and library runtimes are implemented using the language independent mid-

dleware Global-Address Space Networking (GASNet). GASNet clients include Stanford’s

Legion [15], Cray’s Chapel [7], Rice University’s Co-Array Fortran [20], and Berkeley

UPC [2]. PGAS runtimes may also leverage high-performance communication libraries

such as Unified Communication X (UCX). UCX has support from several hardware vendors

including Mellanox and ARM [24]. Prior work has shown that the higher level library

OpenSHMEM can serve as a runtime for Co-Array Fortran, in place of a GASNet-based

runtime, with a positive performance impact [17]. This suggests that OpenSHMEM can

serve as a general high-performance PGAS runtime.

OpenSHMEM is an open specification of a PGAS library that provides an Application
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Programming Interface (API) for Symmetric Hierarchical MEMory [22]. This specification,

allows for greater portability of OpenSHMEM applications. The use of OpenSHMEM as a

runtime affords more portability, flexibility, and ease of programming for PGAS languages

over lower-level libraries and frameworks. OpenSHMEM is already widely distributed

on the types of systems targeted by PGAS languages and libraries, because it comes with

the popular MPI implementations OpenMPI and MVAPICH2-X MPI [23], [18], [16]. An

OpenSHMEM runtime also allows for non-standard extensions to PGAS languages and

libraries and makes hybrid programming techniques available.

There are several PGAS languages and libraries. One of the most common PGAS

languages is Unified Parallel C (UPC) [25]. UPC is an extension of the C language.

This means, in general, the compiler can be more portable as it generates regular ANSI

C code which is then compiled by the system’s C compiler. In order to facilitate our

evaluations of OpenSHMEM as a PGAS runtime, we have created a mapping and runtime

layer implementation of UPC.

While OpenSHMEM is a flexible API, not all of the UPC language specification maps

neatly to OpenSHMEM library calls. This is especially true in regards to memory manage-

ment. All dynamic shared memory in OpenSHMEM is allocated on the symmetric heap. The

symmetric heap is a portion of shared memory which every PE allocates that allows remote

memory access (RMA). This means all nodes must allocate shared memory collectively and

in the same amounts. It is possible to read and write these locations in memory from other

processes in the same job. In UPC, shared memory is not always symmetric or collectively

allocated. For instance, in UPC it is possible to allocate shared memory on only one process.

This is not possible in OpenSHMEM as all shared memory must be symmetric across all

PEs at all times. Therefore, new strategies are needed to navigate these mismatches with

limited impacts on performance.

The use of an OpenSHMEM runtime also opens up some opportunities with regard to
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hybrid programming techniques. For example, a UPC runtime might be implemented in

a manner that makes it possible to make OpenSHMEM library calls from UPC programs.

This would give the programmer the ability to perform operations present in OpenSHMEM

but not in UPC such as the creation and use of teams. Also, calls to OpenMP might be used

to increase the performance of certain aspects of the runtime.

In this thesis, we use UPC as a case study for OpenSHMEM as a runtime for language

based PGAS programming models.

Our contributions are as follows:

1. We analyze UPC and develop a mapping of compatibility between interfaces of UPC

and OpenSHMEM in Chapter IV.

2. We implement a prototype UPC runtime with OpenSHMEM in Chapter V.

3. We evaluate our prototype on a mixture of micro-benchmarks and applications in

comparison with Berkeley UPC in Chapter VI.

This thesis is organized as follows: In Chapter II, we discuss the background material of

this thesis, in particular execution models, Unified Parallel C, and OpenSHMEM. Chapter III

covers how related work motivates our design. We discuss our design of an OpenSHMEM

runtime for UPC in Chapter IV. In Chapter V, we cover some of the important details

of our implementation. We evaluate the performance of our UPC runtime using several

benchmarks and applications in Chapter VI. In Chapter VII, we discuss the results of our

evaluations, draw conclusions and explore avenues that could be investigated in the future.
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CHAPTER II

BACKGROUND

In this section we discuss the PGAS language and PGAS library involved in our project.

We discuss both the UPC language for which we implemented a runtime, and OpenSHMEM

which is the PGAS library used in our runtime implementation.

Execution Model

UPC and OpenSHMEM both follow a single process multiple data (SPMD) execution

model illustrated in Figure 1. In this execution model, each process has the same source

and are created at the beginning of the job and continue until execution is complete. The

processes communicate via a communication layer.

Figure 1: The Single Process Multiple Data model in which each process has the same
source, and all processes communicate via a communication layer
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Overview of Unified Parallel C

UPC is a superset of the C language aimed at parallel computing [25]. UPC programs

follow the PGAS programming model. In the PGAS programming model, every process has

access to distributed shared memory in a global address space. The address space is logically

partitioned into two categories. The first is private memory that only the owner process

can access, and the second is shared memory that is remotely accessible through RMA

operations. This is demonstrated in Figure 2. The type of memory allocated is selected by

the user using a UPC-based memory allocation function or by declaring a variable with the

shared keyword. RMA operations are either implicit by changing the value of an element in

a variable declared as shared or explicit by using a PUT or GET operation.

Figure 2: The memory model of UPC. Every UPC thread has a private and shared section of
memory.

Compiling UPC programs is a multi-stage process involving translation to ANSI C and

compilation of the C source code. This process is shown in Figure 3. UPC programs are

first translated from UPC into ANSI C programs with calls to the UPC Runtime (UPCR)

interface. This process is shown in Figure 4. UPCR defines an interface between the

platform independent ANSI C generated by the translator and the UPC runtime layer [5].

The runtime layer implements the UPC language for a specific architecture. This separation

allows for UPC to be implemented on various platforms without the reimplementation of

the translator. Because the translation is source to source, translation is not specific to the

target architecture. This means translation can happen remotely over http [3].
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Figure 3: This figure shows the layers of the Berkeley UPC system

As stated above, the execution model of UPC follows a SPMD model. Every process,

called threads, operate on a single global address space. Threads in UPC are not the same

as operating system threads such as POSIX threads, but in some implementations they can

sometimes be implemented as such. To avoid potential confusion we will refer explicitly

to the type of thread (UPC thread, POSIX thread or OpenMP thread) in the rest of this

document.

Synchronization is managed by using locks, barriers, and fences. Locks in UPC are an

opaque datatype. Locks are allocated, locked, unlocked, and freed only via functions the

language provides. Manipulating locks in any other fashion is undefined behavior. When

locks are allocated, communication between the calling thread and thread 0 is required,
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Figure 4: This figure shows the Berkeley UPC translation process.

because all locks must be allocated by thread 0. This negatively affects scalability in UPC,

because this can be a bottleneck as UPC thread counts increase.

Barriers in UPC are collective. UPC includes split-phase barriers using the upc notify

and upc wait statements. These statements take an optional expression. If this expression

is used, barriers with the same expression or no expression will be matched with the

barrier. Split-phase barriers help to reduce the amount of time threads spend blocked on

synchronization. This works by setting a synchronization point with upc notify. After

threads reach this synchronization point they can continue to perform computation that does

not depend on the synchronization. The threads will then call upc wait and block until all

threads have reached the synchronization point. This type of synchronization is illustrated

in Figure 5.

Memory consistency in UPC is controlled by the user on a per variable, statement, or

type basis [25]. The user can do this with the strict and relaxed keywords. In strict mode,

shared operations happen in order, and the program executes in a sequential manner. This
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Figure 5: Execution path of a program using a split phase barrier. Threads 3 and 4 wait at
upc wait until 0 and 2 arrive at upc notify. The green section indicates where computation
that does not depend on synchronization is performed.

means communications will arrive in the order they are sent. In relaxed mode this is not the

case. Shared operations may be reordered by the compiler or runtime, and the operations

may appear out of order to other UPC threads.

UPC programmers can also control the data layout of variables. One way this can be

done is with the shared keyword [25]. The shared keyword is a way the programmer can

allocate an array in the shared space. By default, the affinity of elements in shared arrays are

distributed in a round robin fashion on a per element basis. The distribution can be adjusted

by the user during allocation, and affinity can be distributed in a cyclic (Figure 6), blocked

cyclic (Figure 7), or blocked (Figure 8) arrangement depending on what is requested by the

user. These arrays can be allocated in a collective fashion in which all threads participate

and allocate some amount of memory, or in a non-collective fashion in which only one

thread participates and allocates memory. This does not affect the layout of the data.
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Figure 6: Cyclic layout for a shared array.

Figure 7: Blocked layout for a shared array.

Figure 8: Blocked layout for a shared array.
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Overview of OpenSHMEM

OpenSHMEM is a specification of a library based approach to a PGAS programming

model [22]. There are several compliant OpenSHMEM implementations [23]. OpenSH-

MEM has a distinction between memory inside a global address space and private memory.

In OpenSHMEM, all memory in the global address space must be symmetrically allocated

across PEs (Figure 9). OpenSHMEM provides interfaces to perform RMA operations across

all PEs. Unlike some libraries for parallel communication, such as MPI, there is no implicit

synchronization. All synchronization must be explicit.

Like UPC, OpenSHMEM follows an SPMD execution model where each PE is launched

during initialization and lasts the duration of the entire job. PEs can be synchronized

using the locks, barriers, and fences provided by the library. Otherwise, they behave

asynchronously, and may take different execution paths. In addition, OpenSHMEM also

provides atomic and collective operations as a convenience to the programmer.

Figure 9: OpenSHMEM Memory Model
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CHAPTER III

Related Work

In this section we will discuss work related to this thesis. In particular we will look the

PGAS programming model, UPC runtime implementations, and OpenSHMEM’s ability to

act as a runtime layer.

Baker et al. describe in this conference paper the performance benefits of OpenSHMEM

over MPI-3 when implementing the Smith-Waterman algorithm [1]. This shows the benefit

of a PGAS programming model when implementing an algorithm which requires non-

uniform access patterns. It is also a demonstration of the performance benefits of the

implementations of the OpenSHMEM API over the implementations of MPI-3 one-sided

communications. Similarly, Grossman et al. found that Graph500 implementations based

on OpenSHMEM scaled more readily and were more programmable than the available MPI-

based implementations [9]. This was due to the irregular patterns of the Graph500 benchmark

that suit the PGAS programming model, and OpenSHMEM’s fine-grain communication

support for high-performance interconnects.

Over the years several UPC runtimes have been proposed. Zhang et al. present an MPI

and POSIX thread based UPC runtime [30]. They used a two-sided communication and a

threaded approach. Each UPC thread is implemented with two POSIX threads. One thread

performs computation while the other performs all communication. The use of lightweight

threads within UPC threads in an OpenSHMEM based design can be found in Chapter IV.

In this paper they also discuss the value of and implement atomic operations for UPC.

GNU UPC uses a Portals 4 based runtime [8]. They found that Portals’ atomic operations

were useful in implementing UPC collective operations, but for some collectives such as

upc all prefix reduce<<TYPE >>() they simply use the MPI implementation. Because

OpenSHMEM has support for teams, contexts, atomic operations and collectives, our

approach to collectives is similar as can be seen in Chapter IV.
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The OpenSHMEM API can be implemented with various communication libraries

which may leverage many different types of transports. The interface makes very few

assumptions about how the underlying communication is accomplished. This flexibility

increases portability, as there is a separation between the networking hardware and the

OpenSHMEM API. This means that as underlying communication libraries change it is less

likely that runtimes based on the OpenSHMEM API will need to make drastic changes.

One concern when designing OpenSHMEM based PGAS runtimes is the amount of

overhead it will add to the communication layer. It is important that the OpenSHMEM

API does not add too much overhead in terms of performance. Coti et al. suggest that

OpenSHMEM implementations can be lightweight, and can add very minimal overhead to

the communication layer [6].

Namashivayam et al. demonstrate an OpenSHMEM runtime as a replacement for

GASNet with Co-Array Fortran [17]. This paper showed promising results that support the

idea of OpenSHMEM as a unified runtime for PGAS languages. This paper also contains

additional latency tests demonstrating various OpenSHMEM implementations’ performance

in comparison to GASNet and MPI. GASNet and OpenSHMEM both outperformed MPI-3.0

implementations in one-sided communication tests. OpenSHMEM outperformed or matched

GASNet for large message sizes or when there is network contention. OpenSHMEM

was also aided by the inclusion of remote atomic operations. These tests suggest that

OpenSHMEM is a promising candidate as a performant PGAS runtime, but more testing

should be performed to support this idea.
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CHAPTER IV

Design of a UPC Runtime

Many of the functions and keywords in the UPC language map easily to functions

available in the OpenSHMEM library. These UPC functions and keywords can be mapped

directly to OpenSHMEM. Other parts of the UPC language are more difficult to map

to OpenSHMEM and require more complex solutions. One example is the split phase

barrier and optional barrier expressions. These types of barrier semantics are not present in

OpenSHMEM. OpenSHMEM only has a strided collective barrier over an active set. An

active set is a grouping of PEs defined by the starting PE, a log2 stride between the included

PEs, and an ending PE. Another important example is memory management. UPC does

not maintain symmetry between allocations of shared memory, but this is a requirement in

OpenSHMEM. In this chapter we will describe how the UPC runtime was designed using

OpenSHMEM.

UPC Types

One of the additions UPC makes to the C language is the inclusion of shared and shared

pointer types. These additional types allow for RMA. Internally, these types need to carry

additional information a primitive type does not carry, such as the UPC thread to which the

pointer points. One way to have a type that can contain all of this information is to segment

a register sized primitive type, and use groups of the bits to contain the information that

is required. This method would ensure that the type can fit in a register. This could have

performance benefits, but makes trade-offs about the maximum sizes of UPC thread counts,

address size, and array size based on the size of the register. For this reason, we chose to

design our pointers as the complex type shown in Figure 10. This method will scale better

as clusters, node counts, and address space increase.
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struct upcr_pshared_ptr_S {

char *addr;

char *loc_addr;

size_t thread;

size_t blocksize;

size_t pos;

size_t elemsz;

size_t phase;

} typedef upcr_pshared_ptr_t;

Figure 10: Internal pointer to shared type

RMA

UPC defines functions for RMA - upc memput() that copies a number of characters from

the calling UPC thread to a remote UPC thread and upc memget() that copies a number

of characters from a remote UPC thread to the calling UPC thread. These functions map

nicely onto the OpenSHMEM functions shmem put() and shmem get(). These types of

functions are common in many PGAS languages, and are required functionality for UPC.

One area where UPC offers functionality that is not directly present in OpenSHMEM is

upc memcpy(). This function can copy memory between two remote PEs. In our design,

we copy the data through a buffer on the calling thread if both the source and destination

threads are not the calling thread. This is shown in Figure 11.

Memory Management

UPC and OpenSHMEM diverge significantly when it comes to memory management.

OpenSHMEM strictly maintains a symmetric heap, and all allocations must be made

collectively. In contrast, UPC allows one thread to non-collectively allocate shared memory

on all UPC threads. This makes a direct mapping from OpenSHMEM memory management

to UPC memory management impossible.
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Figure 11: Design of upc memcpy(). The UPC thread calling upc memcpy() does
a shmem getmem() from the source to a local shared buffer and then must do a
shmem putmem() to the destination UPC thread. This is only required when both the
source and destination are not the calling thread.

To work around this fact, our design partitions our symmetric memory into multiple

sections. On each UPC thread there is local shared memory, global shared memory and

symmetric shared memory. Local shared memory is allocated in a symmetric buffer created

during initialization. Allocations for local shared variables made by upc alloc() can occur in

this buffer. Likewise, global shared memory is allocated in a separate symmetric buffer, and

allocations made by upc global alloc() happen inside this global buffer. Having separate

buffers for these types of allocations means that memory is always symmetric across all

UPC threads in the global buffer. In order to facilitate the allocations within these buffers

we included a separate runtime level memory allocator.

This memory allocator helps us manage the memory within these buffers. The objects

which hold the state for this allocator are allocated on the symmetric heap during initializa-

tion. Global memory is distributed, but the state of global shared memory is located on UPC

thread 0. By doing RMA operations to UPC thread 0, one UPC thread can allocate memory

on all other UPC threads asynchronously.
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Synchronization

UPC and OpenSHMEM also have semantic differences in synchronization routines

which prohibit a direct mapping from OpenSHMEM to UPC. These differences occur both

in the locking and barrier routines of UPC and OpenSHMEM.

The locking routines in OpenSHMEM require that the lock be a symmetric data object of

type long in the C language. In UPC there is no requirement that the lock be collectively or

symmetrically allocated. This means that in our UPC runtime design we must ensure that all

locks are symmetric objects while not enforcing this requirement on the UPC programmer.

This is made difficult by the fact that upc global lock alloc() is not collective. Our design

accomplishes this via allocating the locks on the global shared heap. This means that locks

are allocated on every UPC thread. By allocating our locks in this way we ensure that

the OpenSHMEM requirement that all locks are allocated symmetrically is met while not

enforcing a collective allocation.

UPC defines a split phase barrier which does not have an analogous OpenSHMEM

function. This type of barrier is in 2 parts. The first is upc notify. The second is upc wait.

We have designed these two functions in terms of shmem wait until() which blocks a thread

until some condition has been reached. In order to notify, every PE involved must do

an atomic ADD to every other thread’s barrier count. As was mentioned in Chapter II

atomic operations are a beneficial feature when implementing PGAS runtimes. The wait

is accomplished by calling shmem wait until() which blocks the thread until the local

barrier count is equal to the number of UPC threads. This allows us to support the optional

expression and only block the appropriate UPC threads. This would not be possible using

OpenSHMEM barrier semantics which are not split phase and can only operate on a strided

subset of PEs which constitute the active set.

OpenSHMEM has a strided barrier function over an active set. UPC barriers are

collective statements. These statements are translated into UPCR functions when using
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the Berkeley UPC translator. UPC’s barrier statement is equivalent to a strict null access

(an RMA access with strict ordering that makes no change) and a upc notify followed by

a upc wait. For performance reasons, we did not design our runtime this way when no

expression is present. Instead in the case of a upc barrier statement without the optional

expression we call shmem barrier().

Collectives Library

UPC and OpenSHMEM handle collectives in similar ways, and in several cases this

makes a mapping from OpenSHMEM to UPC little more than rearranging the arguments

to the functions. For example, broadcasts function in a very similar fashion in both the

OpenSHMEM library and the UPC language. The upc all broadcast function copies a

block of memory from a single UPC thread to a block of shared memory on every other

UPC thread [26]. This maps directly from OpenSHMEM to UPC. This is an example of

the features of OpenSHMEM benefiting it’s use as a PGAS runtime as was mentioned in

Chapter II. However, there are some mismatches particularly when it comes to reductions.

UPC library spec defines two separate semantics for reductions:

1. upc all prefix reduce<<TYPE>> which maps simply to an OpenSHMEM reduction,

because the destination and source arrays are equal in size.

2. upc all reduce<<TYPE>> which completely reduces an entire array across all

threads down to a single element on thread 0.

In our design of upc all reduce(), each UPC thread performs the required operation

across the portion of the array local to the same UPC thread and then a reduction is done

on the local results of the parallel operation. This method does most of the computation in

parallel, and minimizes communication.

UPC is also unlike OpenSHMEM in that OpenSHMEM provides separate reduce func-

tions for all operations. UPC provides only one of each type of reduce function which

takes an operation flag, and a datatype flag. The operation flag determines the type of
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operation to be completed on every data element across all participants, and the datatype

flag tells the translator the UPCR function to which the call should be translated. In order to

implement this in OpenSHMEM, every UPCR function generated must also decide based

on the operation flag which OpenSHMEM call is required. In addition, not all of the types

supported by UPC reduce have a direct mapping to an OpenSHMEM call and vice versa.

For example, in OpenSHMEM there are is no character reduction. This means that some

type coercion is also required, for instance, to do a reduction on a character array. In our

implementation we cast characters to short integers resulting in character reductions being

much larger than they would otherwise need to be. Reductions for larger types, such as

integers, would not suffer from this effect as integer reductions are defined in both the UPC

Collective Library and OpenSHMEM.



19

CHAPTER V

Implementation

GASNet to OpenSHMEM

Figure 12: The layers of the Berkeley UPC runtime vs the layers of our OpenSHMEM based
runtime

Our implementation is based on Berkeley UPC which is a layered design. Figure 12

shows the layer where we used the UPCR interface to create our UPC runtime. Our UPC

runtime implementation mostly takes place at this layer, and does not need to make many

changes at any higher layer. We do make some minor changes to the generated C source

code. These changes mostly deal with removing GASNet specific macros and inserting our

OpenSHMEM specific headers. This is done with a POSIX compliant shell script. This

shell script acts as a wrapper for the translator and compilers involved. The user only needs

to invoke it in the same way they would invoke any compiler. This will generate a binary
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with calls to the OpenSHMEM library.

Our UPCR functions and macros should work with any OpenSHMEM implementation.

This, along with the fact that UPC translation is available over http, allows for a high degree

of portability with our UPC runtime.

UPC Infrastructure

UPC, like OpenSHMEM, requires the execution of an initialization function. This means

our implementation of UPC’s initialization must call shmem init(). Our UPC runtime also

uses this initialization portion to setup data structures, call the UPCR startup functions, and

allocate memory for runtime level buffers such as the buffer used by upc memcpy(), local

allocations, and global allocations.
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CHAPTER VI

Experimental Evaluation

Methodology

In evaluating the performance of our runtime we utilized resources provided by Chameleon

Cloud [14]. Chameleon Cloud is a experimental platform aimed at cloud computing research.

Our test configuration consisted of Haswell nodes at the Texas Advanced Computing Center

(TACC) with Intel Xeon 2.3 GHz processors with 48 hardware threads and 128GB of RAM.

Each node had a Mellanox Technologies MT27500 Family ConnectX-3 network controller.

Each node was running CentOS 7. For our standard UPC implementation we used Berkeley

UPC version 2019.4.4, and for our OpenSHMEM implementations we used MVAPICH2-X

2.3rc2 and OpenMPI 4.0.1 for all our tests. In all of our tests, OpenMPI OpenSHMEM was

using the Unified Communication-X communication layer [21], and MVAPICH2-X was

using the Unified Communication Runtime (UCR). Both OpenSHMEM implementations

used the XPMEM linux kernel module for shared memory communication[28]. XPMEM

allows a process to map a memory region from another process into its own address space.

In all of our tests the UPC threads were distributed on the nodes in a round-robin fashion.

When using the OpenSHMEM based UPC runtime nodes were bound to a socket in all tests

except in our threaded reduction test. Binding to a socket means that each process will be

scheduled to a hardware thread on a particular socket.

For our tests on UPC we used the OSU Micro-Benchmark Suite 5.6.2. These bench-

marks are designed to test the performance of message passing and PGAS languages and

libraries [19]. We intend to show that OpenSHMEM can adequately act as a runtime for

UPC without increasing latency and in several cases can reduce latency when compared to

GASNet. We also show example runs from several sample programs that are packaged with

Berkeley UPC to demonstrate correctness and performance with multiple UPC applications.
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OSU Micro-Benchmarks

We tested the PUT latency using the OSU UPC Put Latency Micro-Benchmark with a

single pair of processes on 2 nodes. When using the OpenSHMEM based UPC runtime

the UPC threads were bound to a socket. This is not possible when using Berkeley UPC.

This setup tests the latency over the network and not the latency involved in shared memory

operations between two processes on the same node. The test performs 10000 iterations of

each size PUT operation. By default the largest size tested is 4MB. Each PUT operation

must be complete before the next one can be issued. Our runtime shows larger performance
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Figure 13: UPC PUT single pair PUT latency. This test measures the latency for
upc memput(). Lower is better.
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gains with smaller blocks of memory. For small PUT operations 2kB or less our runtime is

faster when using MVAPICH2-X OpenSHMEM. With MVAPICH2-X OpenSHMEM and

OpenMPI OpenSHMEM we see a percent decrease in latency of 3.23% and 3.76% between

our runtime and Berkeley UPC respectively for single byte PUT operations. As we can

see in Figure 13, the differences in PUT latency between the OpenSHMEM and GASNet

based runtimes are not as significant at the largest default tested size of 4MB. Because the

differences between runtimes become very small at large sizes, we did not test any larger

sizes. This test suggests that for smaller PUT operations an OpenSHMEM based UPC

runtime could have performance benefits.
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Figure 14: UPC GET single pair GET latency. This test measures the latency for
upc memget(). Lower is better.
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To test the GET latency, we used the same experimental setup as the above PUT latency

test and the OSU UPC Get Latency Micro-Benchmark. For a single byte GET, our runtime

using MVAPICH2-X OpenSHMEM saw a latency percentage decrease of 0.46%. We saw

no measurable difference in latency between our runtime with OpenMPI OpenSHMEM and

Berkeley UPC for a single byte GET. For larger GET operations of 4MB bytes our runtime

using MVAPICH2-X OpenSHMEM increases latency by 0.51% compared to Berkeley

UPC. Our runtime using OpenMPI OpenSHMEM increases latency over Berkeley UPC

by 0.61% for 4MB GET operations. This is shown in Figure 14. Our runtime increases

latency by 0.03% on average with OpenMPI OpenSHMEM and 1.73% on average for

MVAPICH2-X OpenSHMEM. The differences between our UPC runtime and Berkeley

UPC are not significant, and can be attributed to noise on the network.

In PGAS languages, such as UPC, explicit synchronization such as barriers are required.

Since, barriers are important to this programming model, we also tested the barrier latency.

To do this we used the OSU UPC Barrier Latency Micro-Benchmark. We tested with several

UPC thread counts in order to test how the barrier implementations would scale. Each

UPC thread was distributed in a round-robin fashion. When using the OpenSHMEM based

runtime UPC threads were bound to socket. As can be seen in Figure 15, we did not see

equivalent performance. With only 2 threads we see large differences in performance. With

only 2 threads our runtime using OpenMPI OpenSHMEM decreases latency by 56.09%

while our runtime using MVAPICH2-X increases latency by 61.00%. When we increase

the number of threads to 128 we see a latency increase from our runtime using OpenMPI

OpenSHMEM of 3997.65%, but when using MVAPICH2-X OpenSHMEM we see an

latency increase of only 10.59%. This discrepancy in performance between implementations

of OpenSHMEM is likely due to MVAPICH2-X and OpenMPI using different barrier

algorithms. MVAPICH2-X uses a node aware dissemination algorithm similar to what

Hensgen et al. describe in [12]. While OpenMPI use the pairwise exchange with recursive
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Figure 15: UPC barrier latency. This test measures the latency for upc barrier statements
for UPC thread counts 2-1024. Lower is better.

doubling technique described by Gupta et al. by default [10]. Both algorithms are O(NP) in

complexity but the communication patterns differ.

We also implemented functions included in the UPC Collectives Utilities library. The

UPC collectives library is a required library in the UPC Specification version 1.3. Open-

SHMEM defines many similar collective functions such as broadcasts. However, not all

UPC collective functions have a trivial mapping to OpenSHMEM collectives. In general,

performance is best when the mapping from OpenSHMEM to UPC is simple. A simple

mapping keeps the runtime overhead low.
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We implemented and tested the upc all broadcast() function. This function copies a

block of memory from a single UPC thread to all other UPC threads. This is a one to

all operation, and it maps easily to OpenSHMEM’s broadcast function. We tested the

performance of our implementation with 1024 threads on 23 nodes. The UPC threads were

distributed in a round-robin fashion. When using the OpenSHMEM based runtime, UPC

threads were bound to socket. As can be seen in Figure 16, at a broadcast size of 1 byte

we show a 98.17% decrease in latency when using MVAPICH2-X OpenSHMEM and with

OpenMPI OpenSHMEM we show 61.49% decrease. This may be due to MVAPICH2-X’s
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Figure 16: This test measures the latency of upc all broadcast() function calls as shared
array size increases for UPC thread counts of 1024. Lower is better.



27

algorithm more effectively exploiting shared memory communication between UPC threads

on the same node.
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Figure 17: This test measures the latency of upc all reduce<<TYPE >>() function calls as
shared array size increases for UPC thread counts of 1024. Lower is better.

We also tested the upc all reduce<<TYPE >>() function. This function reduces all

elements in a shared array down to one shared element. We used the test from the OSU

Micro-Benchmarks to test the performance of our UPC runtime. Our test was ran with

1024 UPC threads distributed across the nodes in a round-robin fashion. When using

the OpenSHMEM based runtime, UPC threads were bound to socket. As can be seen

in Figure 17, our UPC runtime performs best with smaller reductions. This seems to

result from the mismatch between OpenSHMEM’s reduction and the UPC reduction that
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is tested. This mismatch means that our runtime must iteratively perform the operation

requested on the local portion of the shared array. The result of this operation is reduced

using shmem reduce(). The number of times each thread must do the requested operation

increases by the size of the shared array divided by the number of UPC threads. Our runtime

using MVAPICH2-X OpenSHMEM performs better than Berkeley UPC for shared arrays

smaller than 512 bytes.
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Figure 18: This test measures the latency of upc all reduce<<TYPE >>() threaded function
calls as the size of the shared array increases for UPC thread counts of 128 on 6 nodes.
Lower is better.

The OpenSHMEM implementations we used support the use of OpenMP threads. This

allowed us to implement a threaded version of our upc all reduce<<TYPE >>() function.

This threaded version decreases the time needed to do the local operations required in the
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reduction. We modified the OSU Reduce Latency Test to do a SUM instead of a MAX

operation, because a MAX is not as easily threaded in this way. For this test we did not

bind UPC threads to socket when using the OpenSHMEM based runtime, because this

degrades performance when using OpenMP threads. We ran our test of the threaded reduce

on 6 nodes each of which have 48 hardware threads. This gives us a total of 288 hardware

threads. It is important that there are enough hardware threads on each node to support both

the OpenMP threads and UPC threads or performance will degrade. We ran this test with

128 UPC threads and 2 OpenMP threads per UPC thread which used slightly less than the

total number of hardware threads available. There is some performance penalty due to the

overhead of launching the OpenMP threads. For MVAPICH2-X OpenSHMEM we begin to

see performance benefits at 4kB. Using this threaded approach for a 1MB reduction and 128

UPC threads, we saw a 56.16% decrease in latency with our runtime using MVAPICH2-X

OpenSHMEM from the single threaded approach and a 10.75% decrease in latency with

OpenMPI OpenSHMEM from the single threaded approach.

As can be seen from our PUT and GET latency tests our OpenSHMEM based runtime

does not add overhead with respect to fundamental communication. In addition, the ability

to leverage collective operations further increases performance. Collectives operations for

which we were able to most directly leverage OpenSHMEM collectives showed the best

performance. By using OpenSHMEM implementations’ support for OpenMP threads, we

were able to improve the performance of reductions over the single threaded approach for

reductions over 4kB.

Evaluation of UPC Applications

We also show that our runtime can run unmodified UPC programs. We do this in order to

show correctness and performance in real world applications. In these tests, we used 4 nodes

and up to 128 UPC threads. UPC threads were distributed in a round-robin fashion, and

when using the OpenSHMEM based runtimes the UPC threads were bound to socket. The
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three programs we tested are CPI [4], Stream-Triad [4] [13], and RandomAccess [4] [13].

All of these programs are example programs from the Berkeley UPC distribution. Two

of the programs (RandomAccess and Stream-Triad) are UPC versions of HPC challenge

programs [13].

Tests of evaluated applications are presented with error bars that represent an approxi-

mate 95% confidence interval above and below the mean. These values are calculated by

respectively adding or subtracting 1.96 times the standard error from the mean value.
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Figure 19: CPI average execution time over 100 runs for Berkeley UPC and UPC with
OpenSHMEM Runtimes with UPC thread counts 2-128.

We ran the CPI program from the example programs packaged with Berkeley UPC.

In this experiment, we ran the program on 4 nodes with 2-128 UPC threads. We ran the
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test 100 times for each UPC thread count and averaged the execution times. The runtimes

display less than a 2.64% difference in terms of execution time on all the UPC thread counts

tested. The standard deviation for this test is fairly large at approximately 290000 uSec for

every runtime and thread count. We see the large differences in execution times between

runs because this program contains very little synchronization, but we also see very small

differences between average execution times between our runtime using OpenSHMEM and

Berkeley UPC using GASNet.

We also tested the Stream-Triad program with UPC thread counts of 2 - 128. The test

used a vector of 4000000 elements and an alpha of 1.5. This test is strongly scaled. This

means the problem size does not increase as the UPC threads increase. These are the default

settings for the Berkeley UPC test harness. As can be seen in Figure 20, our runtime using

MVAPICH2-X OpenSHMEM shows up to a 39.00% decrease in best time at 64 UPC threads

and 5.09% increase at 128 UPC threads.

We do see variation in terms of memory bandwidth. This is shown in Figure 21. Our

runtime using MVAPICH2-X and OpenMPI OpenSHMEM shows a bandwidth increase of

63.12% and 49.15% respectively over Berkley UPC at 64 threads. At 128 threads, we show

a bandwidth decrease of 4.58% and 36.21%. This drop in bandwidth could be explained by

the inclusion of a upc barrier statement in the timed section. As can be seen in Figure 22

the decrease in bandwidth at 128 UPC threads is reflected in an increase in latency for the

OSU Barrier Latency test that was ran with the same experimental setup as the Stream-Triad

test. Our OpenSHMEM runtimes show an increase in barrier latency at 128 UPC threads.

This indicates that bandwidth is not decreasing, but synchronization is affecting the test.

Our final test for UPC is RandomAccess. We ran this test with thread counts of 2-128

UPC threads. As stated before, this test mainly demonstrates interprocess bandwidth. This

includes network communication in addition to local shared memory operations. In our

testing we used the default table size of 221 words. Each word is represented by a unsigned
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Figure 20: Stream-Triad average execution time for Berkeley UPC and UPC with OpenSH-
MEM Runtime with UPC thread counts 2-128.

64 bit integer. The test then performs 3,640,838 random RMA updates and measures the

time required to perform them. The output of this test is in Giga-Updates Per Second

(GUPS). On the nodes used in this test, 12 UPC threads can be bound to socket 0. This

is the socket closest to the network interface card (NIC). With 4 nodes we have a total of

48 UPC threads that can be near the NIC. As can be seen in Figure 23, our OpenSHMEM

runtime performs well compared to Berkeley UPC while all UPC threads can be bound to

socket 0. As we begin to exceed this number at 64 UPC threads, the update latency increases

and GUPS decrease. This effect is more pronounced for MVAPICH2-X OpenSHMEM.



33

2 4 8 16 32 64 128
UPC Threads

0

200

400

600

800

1000

1200

1400

B
an

dw
id

th
(M

B
)

Stream-Triad BandWidth as Threads Increase

UPC over MVAPICH2-X OpenSHMEM
Berkeley UPC (GasNET)
UPC over OpenMPI OpenSHMEM

Figure 21: Stream-Triad average memory bandwidth for Berkeley UPC and UPC with
OpenSHMEM Runtimes with UPC thread counts 2-128

Berkeley UPC seems to have the same issue, but happens at 128 threads rather than 64 when

a larger ratio of threads are distant from the NIC.

These results show that our runtime implementation does not negatively affect normal

operation or performance in most circumstances, and that unmodified UPC programs are

possible to run using our runtime. This supports the idea that OpenSHMEM can be a

performant runtime for UPC.
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Figure 22: Barrier latency for 2-128 UPC threads. This demonstrates the barrier latency
increasing as we see the bandwidth decreasing in the Stream-Triad tests.
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Figure 23: This figure shows execution time for the RandomAccess test for Berkeley UPC
and UPC with OpenSHMEM runtimes with 2-128 UPC threads. The Giga-Updates Per
Second drop as the number of threads exceeds what is possible to place on socket 0.
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Figure 24: This figure shows the percentage error for the RandomAccess test for Berkeley
UPC and UPC with OpenSHMEM runtimes with 2-128 UPC threads.
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CHAPTER VII

Conclusion

Results

In this thesis, we analyzed UPC and developed a mapping of compatibility between the

interfaces of UPC and OpenSHMEM in Chapter IV. We implemented a prototype UPC

runtime with OpenSHMEM in Chapter V. This UPC runtime based on OpenSHMEM was

then evaluated using MVAPICH and OpenMPI OpenSHMEM in Chapter VI.

We tested our runtime using the OSU Micro-Benchmarks. Our evaluation of PUT and

GET latency with this runtime showed very minor differences for most data sizes of PUTs

and GETs. But the OpenSHMEM based runtime did reduce latency when performing PUTs

at smaller sizes. Our barrier tests with our UPC runtime using MVAPICH2-X OpenSHMEM

showed up to a 17.79% increase in latency over Berkeley UPC. However, the broadcast test

showed a split in increase and decrease in latency over Berkeley UPC. Our runtime using

MVAPICH2-X showed a decrease in latency of up to 98.70% from Berkeley UPC. Our

reduction tests showed split results once again. Our runtime using MVAPICH OpenSHMEM

showed a significant decrease in latency for reduction sizes less than 512 bytes. We also

demonstrated a possible route for optimization of reductions using lightweight threads.

We also tested the OpenSHMEM based runtime using some example programs. These

example programs demonstrate that we can run UPC programs correctly. In addition, we

saw no significant difference in the execution times of these programs. This leads us to the

conclusion that OpenSHMEM can be a viable runtime for UPC.

Future Work

Our plans for future work include investigating how new OpenSHMEM features such

as teams and contexts can be utilized in our runtime. One possible area to explore is how

teams can be used for runtime level optimizations. UCX performs network-based atomics

if one PE is accessible via the network, it may be possible to leverage teams so that CPU
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atomics are used when communication is only between shared memory capable PEs. To do

this, we could expose an interface to the client language to be used in these situations, or

perhaps the runtime could be made to do this optimization automatically.

One area to explore is the design of more intelligent threaded collectives. Some more

profiling will be required for the runtime to intelligently create additional threads when

required. In this paper, our threaded collectives used OpenMP threads. Other types of

lightweight threads could be explored such as POSIX threads. Also, different algorithmic

techniques should be explored so that communication patterns can be better optimized for

each collective.

By using the proposed function, shmem malloc with hints() we may be able to get

additional performance from our runtime level operations which require the use of atomics.

We would also like to do profiling of our runtime’s memory accesses. It could be that some

of our memory partitions are more likely to be involved in RMA operations than others.

If this is the case, it would be desirable to allocate those memory partitions that are more

likely to be involved in RMA closer to the network interconnect. This is not yet supported

in the OpenSHMEM specification, but the ability to do this has been implemented by other

researchers [27].
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[9] Grossman, M., Pritchard, H., Budimlić, Z., and Sarkar, V. Graph500 on openshmem:

Using a practical survey of past work to motivate novel algorithmic developments. In

Proceedings of the Second Annual PGAS Applications Workshop, PAW17, New York,

NY, USA, 2017. Association for Computing Machinery.

[10] Gupta, R., Tipparaju, V., Nieplocha, J., and Panda, D. Efficient barrier using remote

memory operations on via-based clusters. In In IEEE Cluster Computing, page 83.

IEEE Computer Society, 2002.

[11] Hamidouche, K., Zhang, J., Panda, D. K., and Tomko, K. Openshmem non-blocking

data movement operations with mvapich2-x: Early experiences. In 2016 PGAS

Applications Workshop (PAW), pages 9–16, Nov 2016.



40

[12] Hensgen, D., Finkel, R., and Manber, U. Two algorithms for barrier synchronization.

International Journal of Parallel Programming, 17:1–17, 02 1988.

[13] Hpc challenge benchmark. http://icl.cs.utk.edu/hpcc/.

[14] Keahey, K., Riteau, P., Stanzione, D., Cockerill, T., Mambretti, J., Rad, P., and Ruth, P.

Chameleon: a scalable production testbed for computer science research. In Vetter, J.,

editor, Contemporary High Performance Computing: From Petascale toward Exascale,

volume 3 of Chapman & Hall/CRC Computational Science, chapter 5, pages 123–148.

CRC Press, Boca Raton, FL, 1 edition, May 2019.

[15] Legion overview. https://legion.stanford.edu/overview/, 2020.

[16] Mvapich: Mpi over infiniband, omni-path, ethernet/iwarp, and roce.

http://mvapich.cse.ohio-state.edu/, 2020.

[17] Namashivayam, N., Eachempati, D., Khaldi, D., and Chapman, B. Openshmem as

a portable communication layer for pgas models: A case study with coarray fortran.

In 2015 IEEE International Conference on Cluster Computing, pages 438–447, Sep.

2015.

[18] Open mpi: Open source high performance computing. https://www.open-mpi.org/,

2020.

[19] OSU Network Based Computing Laboratory,. Mvapich: Mpi over infiniband, omni-

path, ethernet/iwarp, and roce. https://mvapich.cse.ohio-state.edu/benchmarks/, 2020.

[20] Reid, J. The new features of Fortran 2018, 2018.

[21] Shamis, P., Venkata, M. G., Lopez, M. G., Baker, M. B., Hernandez, O., Itigin, Y.,

Dubman, M., Shainer, G., Graham, R. L., Liss, L., and others,. Ucx: an open source



41

framework for hpc network apis and beyond. In 2015 IEEE 23rd Annual Symposium

on High-Performance Interconnects, pages 40–43. IEEE, 2015.

[22] The OpenSHMEM Project,. OpenSHMEM Application Programming Interface, 2017.

[23] The OpenSHMEM Project,. Related sites. http://openshmem.org/site/Links, 2020.

[24] The Unified Communication X Library. http://www.openucx.org.

[25] UPC Consortium,. UPC Language Specifications Version 1.3, 2013.

[26] UPC Consortium,. UPC Required Library SpecificationsVersion 1.3, 2013.

[27] Venkata, M. G., Aderholdt, F., and Parchman, Z. Sharp: Towards programming

extreme-scale systems with hierarchical heterogeneous memory. In Conference: 6th

International Workshop on Heterogeneous and Unconventional Cluster Architectures

and Applications, 2017.

[28] Xpmem linux cross memory attach. https://gitlab.com/hjelmn/xpmem, 2020.

[29] Zhang, J., Behzad, B., and Snir, M. Optimizing the barnes-hut algorithm in upc.

Proceedings of 2011 SC - International Conference for High Performance Computing,

Networking, Storage and Analysis, 11 2011.

[30] Zhang Zhang,, Savant, J., and Seidel, S. A upc runtime system based on mpi and posix

threads. In 14th Euromicro International Conference on Parallel, Distributed, and

Network-Based Processing (PDP’06), pages 8 pp.–, 2006.


