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ABSTRACT 

This dissertation thesis explores few aspects of electric vehicle (EV) adoption; 

more specifically, this study focuses on the incentive policies on EV, the effects of EV 

adoption on energy consumption, and the factors behind the joint adoption of EV and 

solar Photovoltaics (PV). In the first chapter of my dissertation, I analyze the effect of 

state-level tax credit policy on electric vehicle sales in Maryland by focusing on a 

synthetic control approach using Bayesian structural time series. I found this incentive 

indeed increased the electric vehicle (EV) adoption, but at the same time, the State’s goal 

of EV adoption is too high to achieve with the current incentive program. As I have 

observed a substantial increase in EV adoption by the State incentive program, I elaborate 

my analysis on my second chapter, which focuses on two different but interrelated 

aspects of EV adoption. First, using California’s monthly county-level data for 2010 to 

2019, this study reveals that EV, and their supportive infrastructures significantly 

increase residential and commercial electricity consumption. Second, analyzing the 

electricity generation information by county, this study concludes that there is a 

significant negative relation between EV adoption and the share of electricity from 

renewable sources. This study argues that unless California adopts cleaner sources of 

power plants, public spending on EV adoption may not result in a clean atmosphere, 

which was the primary concern of the EV incentive policies in the first place. That leads 

me to my third chapter, which explores the factors behind the joint adoption of EV and 

solar PV, as solar PV is an environmentally friendly energy generation option for 

households. I find education levels significantly influence the future decision of the joint 

contribution. Also, income level and household type are essential factors of adoption. 
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CHAPTER I 

THE EFFECT OF TAX CREDIT POLICY ON ELECTRIC VEHICLE SALES: 

A SYNTHETIC CONTROL APPROACH USING  

BAYESIAN STRUCTURAL TIME SERIES 

 

An electric vehicle is becoming an important transportation choice day by day, 

mostly because of its energy efficiency. Recently, many countries have set goals to ban 

the sales of gasoline and diesel-powered vehicles in the future to reduce greenhouse gas 

emissions; notably, Norway by 2025, China by 2030, India by 2030, Germany by 2030, 

France by 2040, and Britain by 2040 or 2050 (Fingas, 2016; Petroff, 2017; Riley, 2017). 

Similarly, many cities around the world have begun transitioning public transportation 

towards environment-friendly electric vehicles (Forrest, 2017). 

An electric vehicle (EV) or electric car is an automobile that is propelled by one or 

more electric motors, using energy stored in rechargeable batteries.  

Until December 2018, there were about 5.3 million light-duty all-electric and plug-in 

hybrid vehicles in use across various countries in the world. Most recently, in July 2019, 

US-based Motor Trend Automotive Magazine awarded an electric car as the "ultimate car 

of the year" (Guarnieri, 2012). Compared with internal combustion engine cars, electric 

vehicles are quieter, have no tailpipe emissions, and have lower emissions in general. 

Several national and local governments have established government incentives, like 

tax credits, subsidies, etc., for plug-in hybrids and electric vehicles. The aim is to 

promote the introduction and adoption in the mass market of new electric vehicles, 
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generally depending on battery size, their electric range, and purchase price. The current 

maximum tax credit allowed by the US Government is US $7,500 per car (Alternative 

Fuel Data Center [AFDC], 2019). Prior studies have tested these policy effects with 

various discrete choice models. As a better alternative to estimate the tax incentive effects 

on consumer purchases, this study employs the Bayesian structural forecasting model.  

The rest of this study is organized as follows. First, I give a brief literature review in 

section 2. In section 3, I present an overview of data and Maryland tax credit policy. 

Section 4 discusses the theoretical background and model specification. I present the 

result of my analysis in section 5. Finally, I include robustness checking and sensitivity 

analysis in section 6 before concluding in section 7, with discussions about the limitation 

and scope of this study. 

Literature Review 

Østli, et al., (2017) found that purchase tax for vehicles of higher CO2 emission 

with exemptions granted for battery electric vehicles has a major impact on the average 

type of approval rate of CO2 emissions from new passenger cars registered in Norway. 

The fuel tax in Norway also encourages car customers to buy low emission vehicles. In 

contrast, Liu and Cirillo (2017) proposed a dynamic discrete choice model for Maryland 

car consumers and forecasted a decrease in both hybrid and electric car adoption. This 

paper formalizes a general dynamic discrete choice framework in which forward-looking 

agents optimize their utility over time; two options are available to consumers at each 

time: keeping the current vehicle or buying a new vehicle among the options available in 

the market. Concerning the behavior derived from the analysis, the authors suggested a 

conclusion that consumers are more interested in purchasing gasoline and hybrid cars, for 
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which the predicted market shares a peak of around 20% over the nine-year study period. 

Electric cars represent 4-7% of the future market, and there is a slightly increasing trend 

over time. The market share of electric cars highly depends on electricity price, 

purchasing price of the electric car, MPG equivalent electricity, and recharging range. 

The data used for this analysis were collected from a self-interview and web-based stated 

preference survey, which was designed to analyze households' future preferences on new 

vehicle adoption in a dynamic market. Moreover, a new method to solve multivariate 

discrete-continuous problems is introduced by Fang (2008). He develops and applies the 

model to measure how much residential density influences households’ vehicle choices. 

He proposes a more flexible method of modeling vehicle holdings in terms of the number 

of vehicles in each category, using a Bayesian multivariate ordinal response system. 

Using the 2001 National Household Travel Survey data, he finds that increasing 

residential density reduces households' truck holdings and utilization in a statistically 

significant but economically insignificant way. Nevertheless, Bolduc, et al., (2008) used a 

hybrid choice model to analyze the car choice pattern of Canadian consumers with new 

technology. They used perception and attitude as the latent variable of this hybrid model. 

With a multinomial logit model, they described the choice. The contribution of a given 

observation of the likelihood function of the full system is an intel of dimension equal to 

the number of latent variables in the model. All these above studies focused on several 

discrete choice models.  

However, BSTS was first proposed by Scott and Varian (2013) and then extended 

to the synthetic control setting by Brodersen, et al. (2015). The article titled “Inferring 

causal Impact using Bayesian structural time series mode,” discusses the strengths and 
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limitations of the state-space model. This paper proposes to infer causal impact based on 

a diffusion-regression state-space model that predicts the counterfactual market response 

in a synthetic control that would have occurred had no intervention taken place. This 

forecasting method has the advantage that it does not require a set of control units and 

instead can use any related time series to predict the counterfactual. This synthetic control 

approach using the Bayesian structural model is used by Kurtz et al. (2019) to estimate 

the effect of Bariatric surgery on health care costs in the absence of a randomized control 

trial. 

Overviews of Policy & Data 

Maryland Tax Credit Program 

In addition to federal incentives, Maryland is also offering a one-time excise tax 

credit of up to $3000 for qualified vehicles, which is effective from July 1, 2017, through 

June 30, 2020. 

According to the House bill, qualified Plug-in Electric Vehicle (PEV) and fuel cell 

EV purchasers may apply for a tax credit against the imposed excise tax up to $3,000. 

The tax credit is first-come, first-served, and is limited to one vehicle per individual and 

ten vehicles per business entity. Vehicles must be registered in Maryland unless the 

vehicle manufacturer conforms to applicable state or federal laws or regulations 

governing PEVs or fuel cell EVs during the year in which the vehicle was purchased, or 

the vehicle was originally registered in another state (AFDC, 2019). A qualified vehicle 

must meet the following criteria: 

a) Have a total purchase price not exceeding $63,000; (was $60,000 in 2017) 
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b) Be propelled to a significant extent by an electric motor that draws electricity from 

a battery with a capacity of at least five kilowatt-hours. 

c) Have not been modified from original manufacturer specifications. 

d) Be purchased and titled for the first time between July 1, 2017, and July 1, 2020. 

e) The vehicle must have been acquired for use or lease by the taxpayer and not for 

resale. 

f) There is no fee for applying for the tax credit. 

The credit is returned to the taxpayer in the form of a check from the state. The state 

registration requires proof of residency, and an out-of-state permit does not require 

registration, and reselling the credit is not possible. Moreover, examining other applicable 

state’s policies, it is clear that Maryland tax credit is not higher than other applicable 

States (AFDC, 2019). So, we can ignore the possibility that people from other states 

might be buying cars in Maryland or consumers from other applicable states might be 

applying for the tax credit in Maryland, which would cause the effect of the policy to be 

larger. 

Another important thing is differentiating the pre and post-period of the policy, or in 

other words, the cut. Another important thing is differentiating the pre and post period of 

the policy, or in other words, the cut point of this model. This policy was effective from 

July 2017, but the bill of the excise tax credit for EV passed the Maryland House of 

Delegates on March 20, 2017, and then moved to the Senate for consideration, and this is 

the time the people of Maryland first came to know about the policy (Reference House 

Bill 1246, 2019). Also, as from the Maryland Department of Transportation Motor 

Vehicle Administration website, I came to know that titling and registering one’s vehicle 
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needs some additional time after purchasing. Maryland dealers are required by law to 

submit EV customers' title application documents and related fees no later than thirty 

days after the vehicle is delivered to the customer. Also, for registration, vehicles must be 

inspected by a licensed Maryland inspection station. A certificate of inspection is issued 

within ninety days of the vehicle to be titled (Maryland Department of Transportation 

Website, 2019). So, if any consumer purchases EVs in March, they could still apply for 

the tax credit for the 2017 -2018 fiscal year. 

In my data set, I have the information about the delivery-date of each of the vehicles 

from the dealer. So, it seems more logical to me to use 20th March as my cut point rather 

than July 1 (see Appendix A). 

Data 

The analysis is based on a daily dealer sales record of vehicles in Maryland State. The 

sales record is separated by fuel type along with model, price, and vehicle type 

(truck/van/car, etc.) for the calendar year 2014 to February 2019. This data set contains 

2.8 million vehicle transactions. It is a unique dataset, which is collected from the 

Maryland Department of Transportation Motor Vehicle Administration (MDT MVA). 

As I mentioned above, our cut point is 20th March 2017 when the policy is first 

announced publicly. This indicates, in our dataset, we have 168 weeks of pre-period data 

and 102 weeks of post-period data. However, I aggregated the daily data into a weekly 

level. I then took the mean weekly price for necessary vehicle types over this 5-year 

period.  

In this analysis, I omit all the hybrid vehicles. The reason being, in Maryland’s tax 

program, along with electric cars, some “qualified plug-in hybrid" vehicles are also 
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included. But from the given information of my data, I could not figure out which hybrid 

cars are conventional hybrid and thus not included in the policy, and which are “qualified 

plug-in hybrids” that are included. So, I drop all the hybrid models to avoid any potential 

bias. 

 Table 1.1 shows the summary statistics of the variables in my model for both 

the pre-policy and the post-policy period. 
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Table 1.1 

Summary Statistics for Pre & Post-Policy Period 

Weekly measure Mean Median Min Max Total 
Pre period (January 1, 2014- March 20, 2017) 

Electric car sale 9.65 8 1 49 1622 (.097%) 

Gasoline car sale 8830.2 8716 4337 13323 1483473 (88.9%) 

Diesel car sale  210.04 204.5 107 358 35287 (2.11%) 

Flex-fuel car sale 886.02 888.5 425 1270 148852 (8.92%) 

Electric car price ($) 28768.64 28676.26 10567.67 64044.38 -- 

Gasoline car price ($) 24551.84 24491.89 21497.26 27788.34 -- 

Diesel car price ($) 48606.33 47109.68 37028.17 65637.82 -- 

Median HH income ($) 78869 77573 76,668 82747 -- 

Post period (March 21, 2017- February 28, 2019) 
Electric car sale 67.88 49.5 14 335 6924 (.67%) 

Gasoline car sale 9062.09 8898 6677 11898 924333 (89.63) 

Diesel car sale 194.35 191 132 332 19824 (1.92%) 

Flex-fuel car sale 785.13 771 541 1097 80083 (7.77%) 

Electric car price ($) 58091.98 57051.58 37127.42 84078.92 -- 

Gasoline car price ($) 25857.05 25706.72 24170.27 28854.81 -- 

Diesel car price ($) 52723.4 52629.9 44342.67 62155.52 -- 

Median HH income ($) 82995 82995 82747 83242 -- 

Total sale= 2700398             Total sale (pre)=1669234             Total sale (post)= 1031164 
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Figure 1.1 

Electric Vehicle Sales Before & After the Tax Credit Policy. 

 

 

Figure 1.1 shows a graphical depiction of Electric car sales before and after the tax 

credit program. This plot may give a general idea about the sales pattern of electric 

vehicles. Here, red and blue lines are smoother for the dotted plots. 

Theoretical Background & Model Specifications 

Synthetic Control 

The traditional synthetic control (SCM) by Abadie and Gardeazabal (2003) and 

Abadie et al. (2010) is an approach to determine the treatment effect without randomized 

controls that goes farther along with general pre-post comparisons of means. With this 

method, a number of untreated time series are optimally weighted according to their fit to 

the model outcome in the pre-intervention period. After that, they are combined into a 

composite time series to which the treatment group is compared. This difference is used 
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to estimate the counterfactual scenario, and it allows variation of observed and 

unobserved predictors over time. 

In this study, however, I use the Bayesian structural time series (BSTS) approach to 

construct the synthetic control that uses Gibbs sampling to estimate the model on the pre-

treatment period and then iterates each sampling trajectory forward using the estimated 

parameters to construct the post-intervention counterfactual. This approach differs from 

the traditional synthetic control approach that explicitly models the outcome of the 

treated unit. It also includes information from the post-intervention period for the control 

units. In this way, the BSTS approach produces a dynamic forecast. Besides, it can more 

flexibly include time-series effects such as trends and seasonality. 

Bayesian Structural Time-Series Models 

Structural time-series models are state-space models for time-series data. This model 

starts by defining two equations: 

                   

𝑦t= ZTt αt+ εt (1) 

αt+1= Ttαt+Rtηt (2) 

 

Where, εt ∼N (0, σt2) and η t∼ N (0, Qt) are independent of all other unknowns. 

Equation (1) is the observation equation; it links the observed data 𝑦t to a latent d-

dimensional state vector αt. Equation (2) is the state equation; it governs the evolution of 

the state vector αt through time. In the present paper, 𝑦t is a scalar observation, Zt is a d-

dimensional output vector, Tt is a d × d transition matrix, Rt is a d × q control matrix, εt is 
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a scalar observation error with noise variance σt, and ηt is a q-dimensional system error 

with a q × q state-diffusion matrix Qt, where q ≤ d.  

The above specification is advantageous as it allows us to incorporate a linear trend in 

the state variable (αt) as well as the seasonality and the additional state variable.  

The local trends model from above can be directly interpreted by its components. If we 

decompose the model as a sum of trend component 𝜇t and regression component 𝜆t, we 

can rewrite it as follows: 

 

𝑦0t = 𝜇t + 𝜆t + ut, ut∼ N (0, 𝜎2u) (3) 

 

In the present case, the response variable is EV sales at weekly level, and regression 

components are a set of untreated control units, such as average EV price, gasoline 

vehicle sale, diesel vehicle sale, flex-fuel vehicle sale, average diesel vehicle price, 

average gasoline vehicle price, average flex-fuel vehicle price and median household 

income of Maryland.  

The Bayesian model is asymptotically unbiased because this is the exact data-

generating model; the posterior distribution would generally converge to a point mass on 

its actual value as the number of post-intervention time points goes to infinity (Brodersen, 

et al. 2015). Some other advantages of this BSTS approach are, we can report statistics 

such as the average absolute, relative, and cumulative effect caused by the intervention, 

including their confidence intervals (CIs). The CI can be considered as the region of 

firmest subjective belief, within which an unobserved parameter falls (Jaynes & 

Kempthorne, 1976).  
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Components of State 

Local Level Model. The first component of our model is a local level model 

which is a popular trend model choice defined by the equation 

 

μt+1 = μt+ ημ,t (4) 

 

Where, ημ,t∼ N(0,σδ2 ).The μt component is the value of the trend at time t. 

 

Seasonality. We have some commonly used state-component models to account 

for seasonality. The most frequently used model is 

 

𝛾! = -' (𝛾!"#) + 𝜂!
$"%
#&'  (5) 

 

Where S represents the number of seasons, and 𝛾!"# denotes their joint contribution 

to the observed response 𝑦t. The state in this model consists of the S −1 most recent 

seasonal effects. The mean value of 𝛾! is such that the total seasonal effect would be zero 

when we sum over S seasons. For example, if we set S = 4 to capture four seasons per 

year, the mean of the spring coefficient will be,  

  −1 × (winter+ summer+ fall) 

The preceding seasonal model can be generalized to allow for multiple seasonal 

components with different periods. When modeling weakly data, for example, I set S = 

52 annual cycles. In the data set, I have a total of 270 weeks starting from January 2014 

to February 2019. 
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Contemporaneous Covariates with Static Coefficients. In this model, covariates 

are a set of untreated control units, as mentioned before. Control time series that received 

no treatment is vital to this method for obtaining accurate counterfactual predictions since 

they account for variance components that are shared by the series. A natural way of 

including a control series in the model is through linear regression. Here, our coefficients 

are static.  

 

Figure 1.2 

Inclusion Probability of all the Covariates for the BSTS Model 

 

In Figure 1.2, a white bar indicates that the predictor has a positive relationship with 

consumer sentiment, and a black bar indicates a negative relationship. The size of the bar 

measures the proportion of the estimated models in which that predictor was present. In 

the state-space form, we can write a static regression by setting Zt = βTxt and αt = 1.  



 

 

14 

One crucial advantage of working in a fully Bayesian treatment is that we do not need 

a fixed set of covariates. The “spike-and-slab prior” allows the model to integrate out the 

posterior uncertainty about which covariates to include and how they would influence 

model predictions, which avoids overfitting. All covariates are assumed to be 

contemporaneous. 

Prior Distributions and Prior Elicitation 

The unknown parameters 𝜽 in this system are the variance terms and the regression 

coefficients: 

𝜽∶ {𝜎u2, σδ2, 𝛃 } 

 

(6) 

 

And let α = (α1, . . . , αm) denote the full state sequence. This study adopts a Bayesian 

approach to inference by specifying a prior distribution p(𝜽) on the model parameters as 

well as a distribution p(𝜽,𝜶|y) on the initial state values. We may then sample from 

p(𝜽,𝜶|y) using Markov Chain Monte Carlo (MCMC) through a Gibbs sampler. We can 

then draw predictions of the counterfactual from p(𝜽,𝜶|y). I define an inverse gamma 

prior to the state error variance parameter and a “spike-and-slab” prior for the regression 

coefficients. 

A spike-and-slab prior combines point mass at zero (the “spike”), for an unknown 

subset of zero coefficients, with a weakly informative distribution on the complementary 

set of nonzero coefficients (the “slab”). The spike part is a Bernoulli distribution, and the 

slab part is a weakly informative normal-inverse-gamma distribution. 
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Inference 

Posterior inference in this model can be broken down into three pieces. First, I 

simulate draws of the model parameters 𝜽 and the state vector α given the observed data 

y1 : n in the training period. Second, I use the posterior simulations to simulate from the 

posterior predictive distribution p( ˜yn+1 : m|y1 : n) over the counterfactual time series    

˜yn+1 : m given the observed pre-intervention activity y1: n.  

Third, I use the posterior predictive samples to compute the posterior distribution of 

the pointwise impact yt − ˜yt for each t = 1, . . . , m. I use the same samples to obtain the 

posterior distribution of cumulative impact. 

We are primarily interested in the posterior over model parameters and states 

p(𝜽,α|y1: n), and at the same time, the causal impact analyses are concerned with the 

posterior incremental effect, 

p(˜yn+1 : m|y1 : n, x1 : m) (7) 

 

The density in the above equation is defined precisely for that portion of the time 

series which is unobserved: the counterfactual market response ˜y n+1, . . . , ˜ym that would 

have been observed in the treated market, after the intervention, in the absence of 

treatment. 

The posterior predictive density in this equation is defined as a joint distribution over 

all counterfactual data points, rather than as an assemble of pointwise univariate 

distributions. This ensures that we correctly transmit the serial structure determined on 

pre-intervention data to the trajectory of counterfactuals.  
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Causal Impact 

To find the best fit for my model (see Appendix B), I run several different possible 

specifications with various state components. The lowest AIC (Akaike Information 

Criterion) value of these models indicates the best fit (Akaike, 1974). After selecting the 

best fit BSTS model, I use the estimated states and parameters of the treated unit for the 

post-intervention time points. Then this procedure is repeated many times. Samples from 

the posterior predictive distribution over counterfactual activity can be used to obtain 

samples from the posterior causal effect, that is, the sales of EV. For each draw τ and for 

each time point  

t = n+1, . . . , m, we set, 

 

φt(τ )   = yt− ˜yt(τ ) (8) 

 

yielding samples from the approximate posterior predictive density of the effect 

attributed to the intervention.  

In addition to its pointwise impact, we can see the cumulative effect of an 

intervention over time- 

0 𝜑!
())

!

!!&+,%

 

 

(9) 

∀t = n+1, . . . ,m. 
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I implement BSTS in the R (R Core Team, 2017) programming language with the 

CausalImpact (Brodersen et al., 2015) package. Unlike more common “micro-

econometric” techniques like difference-in-differences, synthetic control, or regression 

discontinuity, CausalImpact is designed to work with a univariate time series. 

However, it is worth mentioning that our time series is long enough to plausibly 

estimate the parameters we are interested in. 

Results 

Table 1.2 presents the results of the BSTS analysis, and Figure 3 shows the observed 

and predicted time-series data.  

The result shows that, during the post-intervention period, EV sales had an average 

value of approximately 68. By contrast, in the absence of an intervention, we would have 

expected an average response of 33. The 95% interval of this counterfactual prediction is 

[+19, +48]. To find the absolute effect, we may subtract this prediction from the observed 

response, which yields an estimate of the causal effect the intervention had on the 

response variable. This effect is 35 with a 95% confidence interval of [+19, +49].  
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Table 1.2 

The Causal Effect of the Tax Credit on Electric Vehicle Sales 

  Actual Effect Predicted Predicted 
Lower-Upper 
 

SD 

Actual Average 68 33 [19- 48] 7.5 
Cumulative 6924 3338 [1898- 4944] 760.8 

  Absolute Effect Absolute Lower Absolute Upper SD 

Absolute 
Average 35 19 49 7.5 

 
Cumulative 3586 1980 5026 760.8 

  Relative Effect Relative Lower Relative Upper SD 
Relative  107% 59% 151% 23% 
Posterior tail area probability, P=0.0034 

Posterior probability of a causal effect= 99.96577% 
 

Results also show a cumulative effect by summing up the individual data points 

during the post-intervention period. The EV sales had an overall value of 6.92K. By 

contrast, had the intervention not taken place, we would have expected a sum of 3.34K. 

The 95% interval of this prediction is [+1.90K, +4.94K]. In relative terms, the response 

variable showed an increase of 107%. The 95% interval of this percentage is [+59%, 

+151%]. This means that the positive effect observed during the intervention period is 

statistically significant and unlikely to be due to random fluctuations 

The probability of obtaining this effect by chance is very small (Bayesian one-sided 

tail-area probability p = 0). This means the causal effect is statistically highly significant. 
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Also, our confidence interval band is in the lower range, which indicates that our estimate 

is strong, and there is less uncertainty. 

 

Figure 1.3  

Electric Vehicle Sales Before and After the Tax Credit Program 

 

In this figure, the upper plots (“original”) show the observed sales (solid black line) 

and the counterfactual synthetic controls (dashed blue line), including the 95% credible 

interval, according to the Bayesian structural time series model. The middle plots 

(“pointwise”) show the average difference between the observed and estimated values. 

Another way of visualizing posterior inferences is by employing a cumulative impact 

plot, which is our lower plot. It shows, for each day, the summed effect up to that day.  

 



 

 

20 

Robustness Check 

Causal Impact on Other Fuel Type Vehicles 

BSTS analysis for other fuel type vehicles sales reveals that there is no policy effect 

on these vehicles sales in the post intervention period.  

 

Figure 1.4 

Sales For Other Types of Vehicles Combined Before and After Tax Credit Program 

 

In Figure 1.4, there is no increase in sales after the policy is implemented. The plot 

shows the observed sales (solid black line) and the counterfactual synthetic controls 

(dashed blue line), including the 95% credible interval (blue area), according to the 

Bayesian structural time series model. 
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Table 1.3 shows the results of the BSTS analysis for different fuel type vehicles other 

than EV. The first column of this table shows the result of the policy effect on gasoline, 

diesel, and flex-fuel vehicles combined. The next three columns present the result of 

Bayesian analysis for these three types of vehicles separately. 

 

Table 1.3  

Average Effect of Tax Credit Program on Other Fuel-Type Vehicles 

 Other Fuel Combined Diesel Gasoline Flex-fuel 

Actual effect 10,040 194 9062 785 
Predicted 10,040 204 8185 896 
95% CI [9,990,10,090] [144,266] [6751,9741] [734,1069] 
Absolute effect 4.5 -9.9 877 -111 
95% CI [-45,52] [-71,50] [-679,2311] [-284,51] 
Relative effect 0.045% -4.8% 11% -12% 
95% CI [-0.45%,0.52%] [-

35%,25%] 
[-
8.3%,28%] 

[-
32%,5.7%] 

Posterior tail area P 0.41441 0.36657 0.12553 0.07734 
Prob. of a causal 
effect 

59% 63% 87% 92% 

 

I run the same analysis for diesel, gasoline, and flex-fuel vehicles separately and 

found no policy effect either. I remove those tables and graphs for the sake of brevity.  

Sales Pattern 

Figure 1.5 depicts the sales pattern of EVs in comparison with other fuel type 

vehicles like gasoline, diesel, and flex-fuel. Although EV market share is still small, after 

the intervention, EV shows an apparent increase in sales. Figure 5 shows the relationship 

of EV with other fuel type vehicle sales over time.  
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Figure 1.5  

Sales Patterns of EV and Other Fuel Types of Vehicles 

 

EV Price Change 

To see if there is any drop in the price level near our cut-off point, I plot the average 

weekly EV price. If there is any price drop, our result of the tax credit effect may not be 

valid, but Figure 1.6 instead shows a price jump just before the cut point. It seems like 

people started to buy expensive EVs when the tax credit was announced, or we may say 

people stopped buying cheaper EVs after the tax credit was announced. Moreover, the tax 

credit only allocates $3000 for each EV, but the price range increased so much higher 

than that. Also, the tax credit does not apply to a vehicle with a price that exceeds 

$63000. However, we can see that those expensive vehicle purchases increased after the 

implementation of the tax credit.  
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Figure 1.6 

Average EV Price Over Time 

 

In this figure, the black vertical line represents the cut point. Nevertheless, all the 

above results/plots suggest that the tax credit policy itself had a positive effect on the EV 

market.  

Discussion & Conclusion 

This study has several limitations. As I mentioned before, I omit all the hybrid 

vehicles because I cannot differentiate between a conventional hybrid and a plug-in 

hybrid from the dataset I used.  

In addition, there are some other incentives in Maryland State for EV, for example, 

qualified vehicles can use the HOV lane, and there are more charging stations available 

now for people's convenience. I could not measure these incentives in this model. 

However, Maryland is one of the wealthiest states in the USA. According to the ACS 

2019 survey of median household income, Maryland is actually the number one richest 
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state now. Moreover, electric vehicles are still considered an expensive consumer choice. 

So, there is a chance that this type of policy effect may not be as effective in other states 

also.  

Nevertheless, all the above analysis finds that the tax credit policy had a definite 

positive effect on the Maryland EV market. The actual average EV sales more than 

doubled than our counterfactual prediction. Our estimate is highly significant; moreover, 

our confidence interval band is smaller, which indicates less uncertainty.  

However, Maryland State announced ambitious goals when implementing this policy, 

which is to achieve 300,000 EVs and PHEVs on the road by 2025. According to our 

result, we see during our over 23 months of post-intervention period, around seven 

thousand EVs were adopted. So, assuming this rate will continue, we can roughly 

calculate that only around Thirty thousand EVs will be adopted by 2025. Although we 

excluded Plug-in Hybrid (PHEV) from our estimate, this amount seems very lower than 

the stated goal, which is 300,000. 

Moreover, according to Maryland State’s website, this state already burned through 

the funds of 6 million dollars. So, the availability of tax credit for the 2019-2020 fiscal 

year becomes uncertain. Unless the state can come up with more funding, it is likely to 

see a decrease in sales of EV and PHEV. 

In the future, I want to think about capturing the trade-offs and substitution patterns 

that the tax incentive created. For example, whether someone that would not have been 

willing/ able is now willing/ able to buy a vehicle or whether they are switching the 

purchase choice. If so, from what vehicle are they switching? Are consumers switching 

from hybrid vehicles or gasoline vehicles? If they are only switching from Hybrid 
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vehicles, then the effect would not be so high in terms of environmental perspective 

because hybrid vehicles are more energy-efficient than diesel/gasoline cars. 
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APPENDIX A: DIFFERENT CUT-POINT 

 

         As I mentioned before, I chose my cut point to be 20th March 2017. But the policy 

was effective formally from 1st July 2017. To check if there is an anomaly, I run my 

model with cut point 1st July as well.  

 

Figure A1  

Causal Impact of the tax credit with cut point 1st July 2017 

 

            Figure A1 shows the Causal Impact of the tax credit with cut point 1st July 2017. 

We can see some prior jump in the figure of sales before the new cut point, which can be 

explained by the reason I mentioned earlier that it takes some time for customers and 

dealers to titling the vehicle officially so that they were eligible for the tax credit. In this 

case, the actual effect is higher, where the cumulative effect is lower. The confidence 
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interval span increased, which indicates a little more uncertainty. These suggest that the 

20th March cut point is the better representation of this policy. 

Table A1 

Causal Impact with a Different Cut Point 

  Actual Effect Predicted Predicted 
Lower-Upper 
 

SD 

Actual Average 74 28 [9.6- 49] 9.8 
Cumulative 6460 2447 [838.5- 4291] 856.6 

  Absolute Effect Absolute Lower Absolute Upper SD 

Absolute Average 46 25 65 9.8 
Cumulative 6460 2169 5622 856.6 

  Relative Effect Relative Lower Relative Upper SD 
Relative  164% 89% 230% 35% 
Posterior tail area probability, P= P=0.0012 

Posterior probability of a causal effect= 99.898% 
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APPENDIX B: MODEL CHOICE 

To find the best fit for my model, I run several different possible specifications with 

various state components. I then count the AIC (Akaike Information Criterion) of each of 

these seven models. 

                                 AIC= 2k-2ln(L) 

Where k is the number of parameters, and ln(L) is the natural log-likelihood function. 

The lowest AIC tells us which model is our best fit. I found model 1, which is a local-

level trend with regressor or seasonality, is the best model as this model has the lowest 

AIC value [25]. 

 

Table B1 

AIC Values for Seven Different Combinations of Models 

Model Model configuration           AIC Value 
Model 1 (Lowest) Local-level model with 

regressor but no seasonality 
1022.21   

Model 2 Local linear model with 
regressor but no seasonality 

1036.65 

Model 3 Local-level model without 
seasonality or regressor 

1029.17 

Model 4 Local linear model without 
seasonality or regressor 

1041.404 

Model 5 Local linear model with 
seasonality but no regressor 

1374.92 

Model 6 Local-level model, with 
regressor and seasonality 

1362.97 

Model 7 Local linear model, with 
regressor and seasonality 

1375.24 
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AIC value suggests that the best configuration of our model is a local-level trend with 

regressor but no seasonality, which is model 1 in our table. 
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CHAPTER II 

IMPACT OF ELECTRIC VEHICLE ADOPTION ON ELECTRICITY 

CONSUMPTION AND GENERATION: EVIDENCE FROM CALIFORNIA 

 

The United States is the third-largest electric vehicle (EV) market, following 

China and Europe. The State of California alone accounted for half of all new 2019 

electric vehicle sales in the USA. Federal and state-level actions, including regulations, 

financial and non-financial incentives for consumers, charging infrastructure 

development, and consumer awareness programs, are playing an essential role in 

increasing EV adoption. These incentives are important because upfront purchase cost is 

a barrier (Bui et al., 2020). Apart from federal incentives, 40 states currently have their 

own EV incentive, rebate, or emission control programs (Alternative Fuel Data Center, 

2020). The government is trying to promote electric vehicles, mostly due to 

environmental concerns. The U.S. Department of Energy (DOE) report states that 

increasing passenger vehicle efficiency and reducing the use of petroleum-based fuels 

can reduce consumers' fuel costs, support the domestic industry, minimize pollution, and 

increase energy security (DOE, 2014, p.7). The DOE supports EV as a solution for the 

challenge of providing affordable, clean, secure transportation. The government also 

supports plug-in-hybrid vehicles (PEVs) that are powered at least in part by electricity. 

On September 8, 2011, Energy Secretary Steven Chu announced the Clean Cities 

Community Readiness and Planning for Plug-In Electric Vehicles and Charging 

Infrastructure awards. These awards helped communities forge public-private 

partnerships to take strategies to support the adoption of PEVs and charging 
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infrastructure installation. These 16 awards, totaling $8.5 million, helped prepare 24 U.S. 

states and the District of Columbia to adopt PEV technologies to reduce U.S. petroleum 

dependence and build the foundation for a clean transportation system (DOE, 2014). 

While the changes towards electric energy sources represent a positive change, 

that progress is diminished by the fact that coal, natural gas, and nuclear fuels are still the 

most-used electricity generation sources nationwide. Natural gas and, to a certain extent, 

and shale oil remains relatively cheap and reliable energy sources. Despite the prevalence 

of non-renewable fuels, electric power can also be derived from renewable sources, 

including wind power, hydropower, and solar power (U.S. Energy Information 

Administration [EIA], 2020). Below two figures show the energy generation share and 

trend by sources.  

 

Figure 2.1 

U.S Primary Consumption of Electricity Share1 by Sources in 2019 

 

 
1 Sum of the components may not equal to 100% due to independent rounding 
1 Btu= 0.293071 Watt-hour 
Source: U.S Energy Information Administration, Monthly Energy Review, Table 1.3 and 10.1, April 2020, 

Preliminary data 
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 Figure 2.2 

 U.S Primary Energy Consumption by Major Sources from 1950 to 2019 

 

 

Figure 2.1 and Figure 2.2 show that electricity generation still relies mainly on 

fossil fuel, primarily responsible for emitting the major air pollutants in the USA. US 

Department of Energy report contends, "Power plants are the largest source of sulfur 

dioxide (SO2) emissions in the United States... Power generation from fossil fuels, 

biomass, and waste contributes to air pollutants that adversely impact human health and 

the environment" (Oak Ridge National Laboratory, 2017, p vii). This has policy 

implications regarding EV adoption, which may increase electricity consumption.  

This study aims to examine the impact of EV adoption on electricity consumption 

and, eventually, on electricity generation from renewable sources. As stated by the DOE 

website, an average EV's electricity consumption is 0.34 kWh/km, and an average 

American drives 46 km daily. So, per capita, monthly electricity consumption due to EV 

is roughly 470 kWh for an EV driver. In the USA, the average residential electricity 

consumption per person is 909 kWh each month (DOE, 2020); this data suggests a 
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person's electricity consumption due to EV could be on the order of 50% of one's 

residential electricity consumption. The DOE website also states that, based on the 

national average of 12.6 cents/kWh, fully charging an all-electric vehicle with a 100-mile 

range and depleted battery would cost about the same as operating an average central air 

conditioner for six hours. These estimates indicate that EVs can cause an increase in 

electricity demand, and so that electricity generation sources should also be analyzed.  

This study consists of two major parts. First, using county-level monthly data 

from California for the year from 2010 to 2019, I estimate the effect of EV adoption on 

residential and commercial electricity consumption. By employing fixed-effect panel 

regression, this study finds that each electric vehicle charging station significantly 

increases the residential and commercial electricity consumption per county by 0.12%. 

Second, after establishing the relationship between EV adoption and electricity 

consumption, this study explores the electricity generation pattern by sources, especially 

whether there is any significant relationship between excess electricity consumption and 

renewable electricity generation. By analyzing ten years of electricity generation 

information in California, this study finds an increased electricity consumption 

significantly reduces renewable energy share.   

The rest of this study is organized as follows: first, I give a brief literature review 

in section 2. Section 3 presents an overview of the data, and section 4 discusses the model 

specification. I offer the result of our analysis in section 5 before concluding in Section 6, 

along with discussions of the limitations of this study. 
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Literature Review 

Analysis of electricity consumption due to electric vehicles' adoption is absent in 

the economics literature so far. Most studies about EV adoption focused on purchasing 

patterns due to incentives using various consumer choice models. However, studies about 

electricity consumption due to the adoption of new technologies are available. Su (2019), 

in his research about residential electricity demand in Taiwan, found that the effects of 

urbanization and energy poverty have a significant positive impact on energy 

consumption. He used Air cooler (AC) as an exogenous variable to account for the 

differences between urban and rural areas. Hung and Huang (2015) also estimated the 

same relationship using dynamic panel data. 

Holtsmark et al. (2014) studied Norwegian subsidy policies for EV purchasers 

and concluded that the sales of EVs in Norway increased rapidly as a result of these 

policies. Due to the subsidies, driving an EV implies very low costs to the owner on the 

margin, probably leading to more driving at the expense of public transport and cycling. 

Moreover, because most EVs' driving range is low, the policy gives Norwegian 

households incentives to purchase a second car, again stimulating the use of private 

vehicles instead of public transport and cycling. This study also analyzed the emission 

level due to the production of two models of EVs and their batteries. All of these lead to 

more pollution. The authors concluded that the EV policy could not be justified. 

There are several environmental engineering fields of studies that address this 

question with different aspects. For instance, Foley et al. (2012) examined the Irish 

government's target in 2008 that 10% of all vehicles in the transport fleet be powered by 

electricity by 2020. The study confirms that off-peak charging is more beneficial than 



 

 

38 

peak charging and that charging EVs will contribute 1.45% energy supply to the 10% 

renewable energy in transport target, which also contributes to a certain amount of CO2.  

Muratori (2018) found that even if the total PEV market share remains limited, 

high PEV adoption clusters can be found in certain areas. The results show that the 

introduction of one single PEV in a residential distribution network consisting of six 

households can potentially increase the distribution transformers' peak load factor if 

Level 2 (a type of EV charger) charging is considered, which can lead to a significant 

decrease in the expected transformer life. In general, the higher charging level 

significantly exacerbates the impact of PEV charging on the residential distribution 

infrastructure.  

However, Rolim et al. (2012) collected information about driving behavior by 

interviewing eleven EV drivers in Lisbon, Portugal, with onboard diaries, including km 

traveled, kWh charged, and the number of trips per day for five months duration. Results 

indicate that the EV's adoption impacted everyday routines on 36% of the participants, 

and 73% observed changes in their driving style. Compared to conventional internal 

combustion engine vehicles running on gasoline or diesel, EV reveals considerable 

reductions in energy consumption and CO2 emissions. 

Nicholas et al. (2015) estimate to what extent PEVs are more environmentally 

friendly, than conventional passenger cars in Texas, controlling for the emissions and 

energy impacts of battery provision and other manufacturing processes. Results indicate 

that PEVs on today's grid can reduce some types of pollutants in urban areas but generate 

significantly higher emissions of SO2 than existing light-duty vehicles. A primary 
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concern for PEV growth is the use of coal for electricity production, but there is a benefit 

of electrified vehicle miles' energy security.  

Data 

This study examines empirical data to estimate the effect of EV adoption on 

electricity consumption and the relationship between electricity generation by renewable 

sources. Primarily, I use California's county-level monthly data for the year 2010-2019 to 

find the effect on electricity consumption. California's EV rebate program also started at 

the beginning of 2010. California has 58 counties, so, there are 6960 monthly 

observations in the dataset. I have collected electricity consumption and revenue data for 

different sectors from the California Energy Commission. I then use this information to 

calculate electricity prices also.  

I have to use a proxy variable for the EV adoption data because original EV 

registration data is not publicly accessible. California state has a rebate program for EV 

purchasers, which started in 2010. The California Air Resources Board's Clean Vehicle 

Rebate Project (CVRP) provides rebate checks to California individuals, businesses, and 

government agencies to purchase or lease eligible clean vehicles, including plug-in 

hybrid, all-battery, and fuel-cell electric vehicles. According to the CVRP website, 

rebated vehicles constitute a majority (74%) of new clean-vehicle sales in the state 

(Center for Sustainable Energy, 2015). We assume that there are no differences in rebate 

rates across counties. I discuss more detail about this CVRP program and other incentives 

for electric vehicle supply equipment (EVSE), such as charging stations, in Appendix A.  

EV charging Station information is provided by the U.S. Department of Energy 

and National Renewable Energy Laboratory. In the data set, there is information about 
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the opening date of each station or charging ports. I aggregate the numbers of active 

stations at the monthly level of each county. In this study, I use connectors and stations 

interchangeably. In one station, there might be more than one connector to charge more 

vehicles at a time. I use the number of total connectors. Currently, there are three types of 

charging stations available. Level 1, level 2, and DC fast. These three settings require 

different volts and amps and take a different range of times to charge EV. In my model, 

however, I do not differentiate these types of stations since this study focuses on 

electricity consumption, not the intensity of the electricity flow at particular times. 

Information on different housing units like single-unit, multi-unit, and the mobile 

unit, are collected from the California state association of counties. I collect per capita 

personal income, population, and employment data from the Bureau of Economic 

Analysis (BEA), and U.S. Department of Commerce website. I collect average monthly 

temperature per county information from the National Centers for Environmental 

Information of National Oceanic and Atmospheric Administration (NOAA).  

Figure 2.3 to Figure 2.7 show the population density by county, the average total 

electricity consumption of ten years, average per capita electricity consumption, total 

electric vehicle, and charging station adoption level at the end of 2019. Figure 2.8 shows 

the percentage of electricity that comes from renewable resources in each county. 
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Figure 2.3 

The Average Population by County in California 

 

 

Figure 2.4 

Average Electricity Consumption by Counties 
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Figure 2.5 

Total EV Adoption at the End Of 2019 by Counties 

 

Figure 2.6 

Per Capita Average Electricity Consumption by Counties 
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Figure 2.7 

Total Charging Station at the End of December 2019 by Counties

  

 

Figure 2.8 

Percentage of Electricity Comes from Renewable Sources 
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Although I did not control for anything to depict the intensity of EV adoption, 

station constructure, and electricity consumption, these maps might give a general idea 

about the relationship considered here. Table 2.1 shows the summary statistics of the 

variables I use in this study. Table 2.2 represents the average per capita electricity 

consumption for ten most EV adopting counties and ten least EV adopting counties 

annually for the study period.  

Table 2.1 
Summary Table 

Variables Mean St Dev Min Max 

EV 2052.90 7428.94 0 97538 

Station 147.7 494.12 0 8016 

Income ($) 49061 18090.95 26717 141735 

Population 665831 1441469 1047 10105708 

Employment 382226 879935.8 970 6685737 

Residential Electricity (MWh) 130518.40 257371.51 328.60 2555402.70 

Commercial Electricity (MWh) 149504 336388.80 93 2746909 

Residential Electricity Price ($) 159.83 38.77 0.0105 1200.34 

Weighted Average Price ($) 151.70 34.36 35.5 635.3 

Single housing 155818 292312.52 1049 1965018 

Multi housing 74368 205912.60 106 1545580 

Mobile housing 9654 14608.09 32 80315 

% of Electricity share from 
Renewable source (MWh) 

46.93 40.08 0.000 293.58 

Number of observation (N)= 6960 
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Table 2.2  
Per Capita Average Electricity Consumption (MWh) of Ten Highest & 
Ten Lowest EV Adopting Counties. 

 Per capita Electricity Consumption 

Year Highest ten EV Adopting  
Counties  

Lowest ten EV 
Adopting  

Counties  

2010 5.196 7.729 

2011 5.203 7.449 

2012 5.237 7.351 

2013 5.169 7.819 

2014 5.181 7.276 

2015 5.114 7.279 

2016 5.061 7.558 

2017 5.133 7.713 

2018 4.988 7.450 

2019 4.954 7.673 

Welch Two Sample t-test: t = -34.764, p-value = 3.568e-14 
 

Moreover, I have collected electricity generation data of California at the yearly 

level by counties for 2010 to 2019 from the California Energy Commission to estimate 

the effect of EV adoption on the types of electricity generation by renewable sources. In 

California, primary electricity sources are coal and natural gas. Major renewable 

electricity sources are Hydroelectric, solar, and wind. Figure 2.9 shows the electricity 

generation trend by sources in California State as a whole for the past ten years, and 

Table 3 shows the summary statistics of the electricity sources. 
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Figure 2.9 

Electricity Generation of California by Sources 

(Source: EIA, 2020) 

 

From Figure 2.9, we can see that solar production did not start in California until 

December 2013. Renewable electricity share in the total electricity production is 

relatively low in these ten years in California. 
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Table 2.3 

Summary Statistics of Electricity Generation by Sources 

  Non-Renewable 
 

Renewable 
 

 All Fuel Coal Natural 
Gas 

Nuclear Hydroelectric Solar Wind 

Minimum 287,800 60,008 63,431 54,547 16,074 1,375 5,432 

Average 340,978 118,088 104,483 66,475 23,060 5,566 16,249 

Maximum 418,693 179,600 176,458 74,649 32,607 11,941 29,711 

Number of observation (N) = 580 

 

According to the Table 2.3, in December 2019, total electricity generation in 

California was 337253.09 thousand MWh. Hydroelectric, solar, and wind combined 

generated 54929.56 thousand MWh electricity, only 16% of the total electricity 

generation. The other three sources, coal, natural gas, and nuclear, contribute the most to 

California's electricity production. Table 2.4 shows the average percentage share of 

electricity from renewable resources in the ten most EV adopting and ten least EV 

adopting counties.  
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Table 2.4 

 EV Adoption & Renewable Electricity Generation for Ten Highest & Lowest EV Adopting Counties 

Highest EV adopting counties 
 

Lowest EV adopting counties 
 

County   % of 
renewable 
electricity 

 

EVs Station 
 

County   % of 
renewable 
electricity 

EVs Station 

Los Angeles 9.686 379,538 27,958 Modoc NA 0 20 

Santa Clara  0.8831 208,307 8,430.2 Sierra 92.75 18.7 11 

Orange 1.6723 176,010 5,160.6 Alpine NA 13.60 61.7 

San Diego 6.1137 116,925 10,552 Lassen 20.979 23.1 24.8 

Alameda 17.7320 118,198 4,713 Trinity 100 46.50 25.0 

Contra 
Costa 

0.64937 55,773 1,123.8 Colusa 0 46.0 23 

San Mateo 0 54,804 1,797.6 Glenn 100 59.70 0 

Riverside 34.184 36,840 5,231 Mono 24.40 51.50 380.6 

San 
Bernardino 

27.99 29,062 3,606 Plumas 89.50 57.30 28.9 

Sacramento 13.575 27,828 6,185 Inyo 20.706 78.60 43.2 

 

Methodology 

EV Adoption on Electricity Consumption 

This study constructs a two-way fixed-effect linear regression model where the 

dependent variable is the monthly electricity consumption over time. I look at residential 

and commercial electricity because, according to the California Energy Commission, 

electricity consumption due to EV charging is mostly under residential and commercial 
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sectors. People charge their EVs either at home or at the charging stations. Apart from 

public charging stations, there is a number of private charging stations in California, and 

many EV owners adopt relatively simple Level 1 EVSE or the slightly more complex 

Level 2 EVSE at their residents. People in nearby residents also share the charging 

facilities with neighbors using mobile apps. For example, California-based startup 

EVMatch and ampUp are these types of initiatives, which by using people can share their 

residential charging connectors with others and earn money (CVRP, 2020). So, in my 

model, I exclude other sectors like the agricultural sector, industrial sector, etc., from this 

analysis. The electricity consumption for county i at time t is specified as- 

Log(ELECTRICit)= b0 + b1 Log(EVit) + b2  Log(STATIONit) + b3 Log(POPit) +  

b4  SINGLEit + b5 Log(EMPLOYit) + b6 Log(INCOMEit)+  

b7 Log(HOTMONTHit)+b8Log(COLDMONTHit) 

+ b9 Log(PRICEit) + dt + fi + uit (1) 

Here, ELECTRIC is the monthly residential and commercial electricity 

consumption for each county. EV is the number of electric vehicle rebate application 

numbers in a specific county and month, and this is our primary variable of interest. In 

the dataset, there is information about the application date. I take the cumulative sum of 

the numbers of applications for each county at the monthly level. In my model, I am 

assuming people file their applications in the same month they purchase EV.  

Moreover, the term STATION represents the charging stations of EVs in each 

county. Apart from installing charging connectors at home, many EV owners charge their 

cars at a station rather than their homes, primarily because of its fast-charging capacity. 

So, this variable should also have a positive relationship with the outcome variable. In my 
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data, I have the opening date of each station or charging connector. Like the EV variable, 

I take the cumulative sum of the number of stations for each county at the monthly level. 

However, in my model, I primarily use the STATION variable and EV variable separately 

as they both should account for the EV adoption. However, I also use these two variables 

together to see the EV effect while controlling for STATION and vice versa. 

The remaining variables are control variables. The term SINGLE is the percentage 

of single housing in each county. There are three types of housing available, which are 

Single, Multi, and Mobile housing. Households with a different number of members may 

have a different electricity-consuming pattern. People living in the same household can 

share their electricity services, such as cooking or watching TV together. Thus, if the 

demand-side economies of scale exist, the effect of different types of households should 

have different effects on electricity consumption.  

HOTMONTH and COLDMONTH are two separate variables representing the 

climate factors, like average hot/cold degree months when people use more electric 

appliances like air coolers and heaters would positively influence electricity demand. I 

consider 86 degrees Fahrenheit or more temperature as hot days and 32 Degree 

Fahrenheit or less as cold days (Alberini et al., 2017). So, if the average monthly 

temperature is above 86 degrees, the HOTMONTH variable would be equal to 1, 

otherwise 0. Similarly, if the average monthly temperature is below 32 degrees, the 

COLDMONTH variable would be equal to 1, otherwise 0. 

The term PRICE is the weighted average electricity price of the residential and 

commercial sectors, which I calculated from electricity consumption and the revenue 

information. The term INCOME is the per capita personal income for each county. Based 
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on the demand theory, the price effect is expected to be negative, while the income effect 

is expected to be positive on electricity demand. The term POP represents the population 

for each county, which is the number of potential electricity users. This variable also 

controls the size of each county. A county with more residences will consume more 

electricity, so the population's effect would be positive.  The variable EMPLOY is the 

total employment in each county, which controls for any unobserved economic activity 

for electricity consumption and purchasing EVs.  

d and f stand for county fixed effect and time fixed effect, respectively. More 

specifically, time fixed effects account for the year- month level in this model.  

Renewable Electricity Generation due to EV Adoption 

 To address the second question of this study, I again employ the two-way fixed-

effect model. The electricity from renewable sources in county i and year t would be, 

 

RENEWABLEit = b0 + b1 Log(ELECTRICit)+ b2 Log(NCOMEit) + b3 Log(POPit)+  

b4 SINGLEit+ b5 Log(EMPLOYit)+ b6 Log(PRICEit)+ dt+ fi + uit (2) 

 

Here, RENEWABLE is the percentage share of the electricity generation that 

comes from renewable sources in a specific county and year. Other variables are the same 

as the first specification, except the I do not add temperature control here since that 

should not affect the source of electricity. Electricity generation is supposed to be 

independent of temperature. 
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Result 

Effect of EV Adoption on Electricity Consumption 

Table 2.5 represents the results of the unlogged analysis of the effect of EV 

adoption on both residential and commercial sectors together.  I use a weighted average 

price for these two sectors. The three separate columns in the table represent different 

model specifications. In the first column, I use EV as my explanatory variable without the 

charging station in it. I use the charging station as my explanatory variable without EV in 

it in the second column. In the third column, I keep both EV and charging station as an 

explanatory variable. Although charging stations and EVs should be correlated, it is 

worth looking at the EV effect while controlling for the charging station and vice versa. 

As we know, least EV adopting counties might also want to build more stations for 

travelers. This study adopts a two-way fixed-effect model where I control for county-

fixed effect and year-month fixed effect. We can see that, in column (2), the charging 

station has a coefficient of 29.71, and this result is highly significant, which means one 

extra charging station or connector can increase monthly electricity consumption by 

29.71 MWh. In column (3), while accounting for both EV and Station, this coefficient is 

27.16. The population has a significant positive result on consumption while 

Employment has negative impacts. Hot degree months have a highly significant positive 

effect.  
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Table 2.5 

Effect on Residential & Commercial Consumption 

Variables (1)  (2)  (3)  

EV 0.695 
(0.447) 

╳ 0.318 
(0.701) 

Charging 
Station 

╳ 29.71*** 
(7.49) 

27.16*** 
(9.93) 

Income 0.231 
(0.310) 

0.819** 
(0.401) 

0.772* 
(0.412) 

Population 0.418*** 
(0.074) 

0.613*** 
(0.097) 

0.608*** 
(0.098) 

Weighted 
Price 

134.74** 
(55.16) 

174.97** 
(78.68) 

171.91** 
(79.72) 

% of Single 
HH 

7,885.49 
(720.71) 

9,493.09 
(7176.01) 

10,160.81 
(7358.46) 

 

Employment 
-0.123*** 
(0.0431) 

-0.297*** 
(0.056) 

-0.308*** 
(0.059) 

 

Hot Months 169,478.93*** 
(11725.16) 

192,259.71 
(13742.45) 

191,572.84*** 
(13843.41) 

Cold Months 17,198.96 
(12,556.87) 

24,458.90 
(15,029.43) 

25,233.86 
(16,430.62) 

County 
Fixed effect ✓ ✓ ✓ 

Time Fixed 
effect ✓ ✓ ✓ 

Notes: *** p<.001, ** p<.01, * p<.05. standard errors reported in 
parenthesis 
Number of observations = 6960 

 

 

Table 2.6 shows the logged analysis for several explanatory variables, which 

represents the primary results of the effect of EV adoption on both residential and 
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commercial sectors together. In this specification all the predictor and the outcome 

variables are log-transformed. For the weather control, this time, I use numbers of 

dummy variables with a range of 5° bins for both hot and cold months. I had to drop one 

of these dummies because none of these months fall under the range of 30-35° 

Fahrenheit. These weather controls are not logged, as they are binary variables.  

 

Table 2.6  

Robustness Check Specifications for Electricity Consumption on EV Adoption 

Variable (1) (2) (3) 
Log (EV) 0.0062 

(0.0042)  
╳ 0.0006 

(0.0079) 
Log (Station) ╳ 0.0105*** 

(0.0037) 
0.0118*** 
(0.0039) 

Log (Income) 0.0299 
(0.0712)  

0.1909** 
(0.0847) 

0.1536* 
(0.0843) 

Log (Population) 0.6727*** 
(0.1592)  

0.8640*** 
(0.1986) 

0.8324*** 
(0.2056) 

Log (Weighted price) 0.0947*** 
(0.0142) 

0.1021*** 
(0.0175)  

0.0984*** 
(0.0176)  

Log (Employment) 0.1077 
(0.1055) 

0.0831 
(0.1247) 

0.0915 
(0.1318) 

% of Single HH 0.8180* 
(0.4259)  

1.3947*** 
(0.4580)  

0.0195** 
(0.0084)  

Factor (80-85) 0.1833*** 
(0.0128) 

0.1921*** 
(0.0138)  

0.1879*** 
(0.0136)  

Factor (>90) 0.4467** 
(0.0358)  

0.4529*** 
(0.0406)  

0.4465*** 
(0.0400)  

Factor (25-30) 0.2557*** 
(0.0321)  

0.3325*** 
(0.0329)  

0.3145*** 
(0.0363) 

Factor (20-24) 0.5465*** 
(0.1233)  

0.5751*** 
(0.1181)  

0.5781*** 
(0.1163)  

County Fixed Effect ✓ ✓ ✓ 
Year Fixed Effect ✓ ✓ ✓ 
Notes: *** p<.001, ** p<.01, p<.05. standard errors reported in parenthesis 
Number of observations = 580 
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In this specification charging station again shows a significant positive effect on 

electricity consumption. We can interpret that a 1% increase in charging station 

installation increases the electricity consumption by 0.012%. According to our average 

county-level electricity usage data, this 0.012% would yield 33.04 MWh electricity 

consumption per country per month. This time, single housing unit shows a positive 

effect. All the temperature variables are positively significant at a 1% level.  

Table 2.7 represents the result for the residential electricity consumption only. As 

before, In the first column, I use EV as my explanatory variable without the charging 

station in it, and in the second, I use the charging station as my explanatory variable 

without EV in it. Column (3) shows the result for both EV and charging stations. This 

model is also a two-way fixed-effect model. In column (2), Station shows a coefficient of 

18.22 for residential electricity consumption. This result is significant at a 1% level. So, 

one extra charging station adoption can cause 18.22 MWh residential electricity 

consumption monthly. The population has a significant positive result on consumption, 

employment has a significant negative effect, and hot degree months have a significant 

positive impact as we expected. In column (3), EV does not have any significant effect, 

but charging station is still highly significant and has a positive effect on residential 

electricity consumption.  
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Table 2.7  
Effect on Residential Consumption Only 

Variables (1) (2) (3) 

EV 0.152 
(0.294) ╳ -0.179 

(0.461) 

Charging Station ╳ 18.22*** 
(4.92) 

20.13*** 
(6.53) 

Income 
-0.003 
(0.202) 

 

0.279 
(0.262) 

0.289 
(0.269) 

Population 0.245*** 
(0.049) 

0.393*** 
(0.064) 

0.392*** 
(0.064) 

Residential Price 7.257 
(22.88) 

16.16 
(32.45) 

16.74 
(32.77) 

Single HH 6,525.89* 
(3,754.08) 

7,330.94 
(4,709.09) 

6,972.81 
(4,828.14) 

Employment -0.058** 
(0.028) 

-0.191*** 
(0.037) 

-0.189*** 
(0.039) 

Hot Months 137,806.95*** 
(7,707.42) 

158,027.64*** 
(9,029.48) 

157,450.91*** 
(9,093.58) 

Cold Months 4,888.51 
(8,247.63) 

8,853.32 
(9,871.24) 

9,288.32 
(10,790.26) 

County Fixed effect ✓ ✓ ✓ 

Time Fixed effect ✓ ✓ ✓ 

Notes: *** p<.001, ** p<.01, *p<.05. standard errors reported in parenthesis 
Number of observations = 6960 

 

Electricity Generation in California 

Natural gas, coal, nuclear, hydroelectric, solar, and wind are the primary 

electricity generation sources in California. Among these, hydroelectric, solar, and wind 

are considered clean, renewable sources. As California State is concerned about the 
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environment and trying to impose public policies to reduce pollutants, it is worth looking 

at the electricity generation pattern and whether the EV adoption policies are 

accompanied by more secure and cleaner power plants. To analyze the relationship 

between EV adoption and renewable energy sources, I construct a variable: the 

percentage share of electricity that comes from renewable sources in each county. Then, I 

run a two-way fixed-effect model to see the effect. This time, the data is yearly. So, the 

time fixed effect represents the year fixed effect. Other variables remain the same.  

In California, most renewable electricity comes from hydroelectric power. Solar 

and wind follow hydroelectricity. There are some biomass and geothermal electricity 

production as well.  

Table 2.8 shows the result of the impact of EV adoption on renewable sources of 

energy. In the table, column (1), (2), (3), and (4) shows the logged analysis of variables. 

Column (5) shows the result for unlogged variables. In the first three columns, I use EV 

and Station as an explanatory variable. However, it seemed more logical to have 

Electricity itself as the explanatory variable, shown in the column (4), and (5), as high 

electricity demand or usage should affect the energy mix of the electricity generation 

decision. According to the U.S. Energy Information Administration, electricity demand is 

one factor that influences the mix of energy sources for electricity generation. 

Intermediate load generating units (rather than Baseload units, which supply electricity at 

a nearly constant rate) comprise the largest generating sector and provide load responsive 

operation between baseload and peaking service. In general, the demand profile varies 

over time, and intermediate sources are technically and economically suited for following 
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changes in load. Natural gas-fired combined-cycle units, which currently provide more 

generation than any other technology, generally operate as intermediate sources. 

The result shows that neither EV adoption nor Station increases renewable 

electricity generation. Instead, when I use Electricity as the explanatory variable, it shows 

a significant negative impact on renewable energy sources. In this specification, the 

dependent variable, the percentage of electricity from renewable sources, is not log-

transformed, but all the predictor variables are log-transformed. We can interpret that a 

1% increase in electricity consumption decreases the renewable energy share by 0.34%. 

This negative effect is crucial for the policy perspective. It means more EV adoption, or 

in other words, more electricity usage is accompanied by decreased adoption of 

renewables sources.  
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Notes: *** p<.001, ** p<.01, p<.05. standard errors reported in parenthesis 
Number of observations = 580 
 
 
 
Discussion and Conclusion 

In addition to the rebate programs for EV and EVSE, California has enacted 

several other incentives to adopt electric vehicles, including HOV lane access, zero-

Table 2.8 

Effect of Electricity Usage on Renewable Energy Source 

 (1)  (2)  (3)  (4) 
 

(5) 
(Unlogged) 

Log (Electric 
Vehicle) 

  0.3217 
(1.55) 

╳ -2.40 
(2.89) 

╳ ╳ 

Log 
(Charging 
Station) 

╳ 0.5540 
(1.51) 

0.8954 
(1.60) 

╳ ╳ 

Log 
(Electricity) 

╳ ╳   -34.78 
(21.05) 
* 

-0.0000085** 
       (0.0000036) 

Log 
(Population) 

-20.12 
(61.50) 

5.23 
(82.50) 

-21.30 
(85.44) 

-9.08 
(54.31) 

       0.000016*** 
       (0.0000036) 

Log (Income) -36.15 
(25.35) 

-59.65* 
(32.63) 

-68.78** 
(33.79) 

-4.51 
(22.66) 

0.000022 
(0.000015) 

Log 
(Weighted 
Price)  

-1.87 
(6.66) 

0.9975** 
(9.81) 

0.0235 
(9.85) 

 

-0.0906 
(5.94) 

-0.0055 
(0.0039) 

Log 
(Employment) 

120.97*
** 
(42.60) 

121.81 
(51.00) 

144.80*
* 

(56.02) 

139.65 
(39.85) 

-0.0000024* 
        (0.0000012) 

Log (Single 
HH) 

-43.18 
(151.93

) 

-34.87 
(178.57) 

0.2921 
(181.66) 

125.79 
(148.02

) 

2.55 
(3.01) 

County Fixed 
effect 

✓ ✓ ✓ ✓ ✓ 

Year fixed 
effect 

✓ ✓ ✓ ✓ ✓ 
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emission transit bus tax exemption, and nine other regional incentive programs. The state 

rebate program for EVs alone has already spent $823 million since 2010 (California 

Public Utilities Commission, 2020). Nikolewski (2019) provides the breakdown of 

California's all EV incentive programs' total spending, which is $2.46 billion for 

approximately ten years. As I stated earlier, all of these incentives have been introduced 

in response to environmental concerns. In general, experts agree that electric vehicles are 

cleaner than other conventional vehicles powered by diesel or gasoline while driving 

because EVs emit fewer pollutants in the atmosphere. Nevertheless, the increased 

electricity demand due to EV and its supporting infrastructure is an important part of the 

policy discussions. If this issue is not addressed correctly, there will be unintended 

consequences on public spending and, most importantly, on the environment. Although 

California is trying to reduce its coal-based power plants in recent years, coal is still one 

of its primary electricity sources, along with natural gas and nuclear energy. These power 

plants emit a significant amount of greenhouse gas and other pollutants, as discussed 

earlier. Besides, hydroelectricity is the major source of renewable options in California. 

Solar and wind exist to a limited extent. So, there are rooms for renewable resources to be 

escalated as one of the primary electricity production sources.  

  This study has some limitations. California is the biggest importer of electricity as 

well. In 2018, almost one-third of California's electricity supply came from generating 

facilities outside the state. In this study, I cannot account for the imported electricity 

sources, which would be the scope for future research. Another interesting aspect of this 

research could be analyzing the adoption of small-scale customer-sited solar 

photovoltaics (PV) in California, known as a behind-the-meter generation, a predominant 
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technology in residential solar PV. In 2019, solar PV self-generated about 16,000 GWh 

of energy (California Energy Commission, 2019, slide 8). But there is no data available 

right now at the county level to see the relationship of EV adoption with PV adoption.  

However, this study finds that EV adoption significantly increases electricity 

consumption in residential and commercial sectors, and energy usage is accompanied by 

a lower adoption of renewable power plants. Considering the average number of charging 

stations per county, EV adoption increases monthly residential and commercial electricity 

consumption by 0.012%. Based on California's average energy generation, this would 

yield 33.04 MWh. Besides, a 1% increase in electricity consumption is associates with 

0.34% of the decrease in the renewable electricity share. These results should be an 

essential viewpoint for policymakers. Evaluating government EV incentives' true 

environmental impact should weigh the reduced gasoline engine emissions against the 

increased fossil fuel or nuclear consumption during electricity generation. Unless 

California adopts cleaner sources of power plants, billions of dollars of public spending 

on EV adoption will not be as effective as it would be if accompanied by increased 

adoption of renewable energy sources. 
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APPENDIX C: CLEAN VEHICLE REBATE PROJECT 

 

The Clean Vehicle Rebate Project (CVRP) promotes clean vehicle adoption by 

offering rebates of up to $7,000 for the purchase or lease of new, eligible zero-emission 

vehicles, including electric, plug-in hybrid electric, and fuel cell electric vehicles. Until 

funds are available, eligible California residents can follow a simple process to apply for 

a CVRP rebate after purchasing or leasing an eligible vehicle. The Center for Sustainable 

Energy (CSE) administers CVRP throughout the California Air Resources Board 

(CARB) state. [17] In my dataset, there are a total of 371892 rebate application records.  

Income Eligibility 

● Income Cap: Higher-income consumers are not eligible for CVRP rebates if their 

gross annual incomes are above the income cap. The income cap applies to all 

eligible vehicle types except fuel-cell electric vehicles. The present income cap is 

mentioned below- 

1. $150,000 for single filers 

2. $204,000 for head–of–household filers 

3. $300,000 for joint filers 

● Increased Rebate: Consumers with household incomes less than or equal to 300 

percent of the federal poverty level are eligible for an increased rebate amount. 

Increased rebate amounts are available for fuel-cell electric vehicles, battery 

electric vehicles, and plug-in hybrid vehicles. 

Rebate Limit 
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Individual and business applicants are not eligible to receive more than one CVRP 

rebate either via direct purchase and/or lease as of December 3, 2019. Traditional rental 

and car share fleets are subject to limits of 20 rebates per calendar year. Public fleets are 

limited to 30 rebates per calendar year. 

Vehicle Eligibility 

Eligible vehicles must meet requirements that include, but are not limited to, the 

following: 

● Be on the list of Eligible Vehicles which meet required emission standards. 

● Be new as defined in the California Vehicle Code (CVC) Section 430 and 

manufactured by the original equipment manufacturer (OEM) or its authorized 

licensee. Vehicles considered new vehicles solely for the determination of 

compliance with state emissions standards are not eligible. 

● Be registered as new in California. Vehicles may not be purchased, leased, or 

delivered out of state. Purchases/leases must be made via a California purchase or 

lease contract. Vehicles ordered online and delivered outside of California are not 

eligible. The seller's address, as reflected on the purchase or lease agreement, 

must be in California. 

● Have an odometer reading below 7,500 miles at the time of purchase or lease. 

Funding Availability 

If funds are not available at the time of application, people may still apply and be 

placed on a rebate waitlist. Rebates for approved applications on the waitlist will be 

issued if additional funding from the state of California becomes available. 
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APPENDIX D: CHARGING STATION REBATE 

 

Rebates for Residential Level 2 Charging Stations 

Numbers of California utility providers and air districts2 offer rebates to make 

home Level 2 charging stations more affordable. Some of the rebates also help offset the 

cost of installing the charging station at the EV owner's home if additional electrical work 

is required. The minimum rebate amount is $400, and the maximum is $4000 based on 

the location and EVSE type. In California, the most popular charging is Level 2 charging. 

The median installation cost of a Level-2 charger is $1,200 (Idaho National Laboratory, 

2015). 

Rebates for Commercial EV Charging Stations 

Property owners can get rebates for installing commercial charging stations for 

public use and thus generate a new revenue stream (charging fees). In California, there 

are nineteen separate utility incentives and ten air district incentives for the commercial 

installation of an EV charging station 

 

 

 

 
2 Air districts refer to county or regional agencies throughout California that have primary 

responsibility for controlling air pollution from stationary sources and administer various air pollution-
related rebate programs and initiatives. California has 23 Air Pollution Control Districts (APCDs) and 12 
Air Quality Management Districts (AQMDs). 
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CHAPTER III 

THE FACTORS INFLUENCING THE JOINT ADOPTION OF ELECTRIC 

VEHICLE AND SOLAR PHOTOVOLTAICS: 

 EVIDENCE FROM CALIFORNIA 

 

Household-level pollution control is certainly an important policy discussion. 

Along with the government, people are also trying to make greener choices due to 

climate change concerns. In terms of emission control, there are a number of federal and 

state-level incentives that are present for electric vehicles (EV). These incentives are 

making EVs affordable to more consumers, and as a result, EV market share is growing 

day by day. But, EVs have some other social costs as well. For example, previous study 

has shown that electric vehicles and their supportive infrastructures, like charging 

stations, significantly increase residential and commercial electricity consumption in 

California (Ferdousee, 2021). The study also indicates that the production of electricity is 

still mostly dependent on non-renewable sources like gasoline and coal. Figure 3.1 shows 

that, while transportation (29%) is the primary source of greenhouse gas emission in the 

USA, electricity generation (25%) is the second (EPA 2021). While electricity production 

is primarily not a household decision, its production certainly depends on household 

consumption levels in the long run.  

Nonetheless, in the USA, people are now interested in getting more renewable 

energy than before to reduce greenhouse gas production (Borunda, 2021). People are 

interested in, for example, producing their own energy by installing small-scale 
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photovoltaics or solar power generator. Just like electric vehicles, both federal and state 

government is incentivizing the solar PVs as well. 

 

Figure 3.1 

Total U.S. Greenhouse Gas Emissions by Economic Sector in 2019 

 

Source: US environmental and Protection Agency (2021). Inventory of US greenhouse gas emissions and 

sinks: 1990-2019. 

 

This study explores the factors that influence the decision to purchase EV as well 

as installing solar PV at homes in California by implementing a bivariate probit 

regression model. As both green technologies are new and durable in nature, my 

hypothesis is that characteristics like education level and age should have a significant 

impact on making these choices. More specifically, highly educated, younger consumers 

may have more potential to make these choices. Again, although there are federal and 

state-level incentives are available, EV is still an expensive option compared to other 
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conventional vehicles. So, the high-income level should have a positive impact on 

adopting EV. Previous studies also find evidence that age, education, income levels have 

such effects on adopting these technologies (Nath, 2016; Araújo et al., 2019). Also, 

different household types should have different effects because of their structures and 

different energy consumption patterns. However, previous studies that explore the joint 

adoption of EV and solar applied regression analysis or separate binomial logit or probit 

model to analyze the factors, whereas this study implements a bivariate probit model to 

analyze these factors. 

The bivariate probit model has the capability to overcome the biases that result 

from unobserved characteristics of people who are adopting both green technologies. For 

instance, since EV and solar PV are greener choices, someone who is more 

environmentally friendly is more likely to have both. An econometrician cannot identify 

which person is more environmentally friendly from given consumption data. Applying 

the bivariate probit model, this study strengthens the existing literature on EV and solar 

PV adoption. The findings suggest income and single household type have a significant 

positive impact on adopting both. When I consider the future adoption decision, higher 

education level becomes significant. Moreover, when analyzing the decision to adopt 

only one technology, we see older age has a negative impact on adopting EV but a 

positive impact on Solar.  

The rest of this study is organized as follows: first, I give a brief literature review 

in section 2. Section 3 presents an overview of the data and model specification. I offer 

the results of the analysis in section 4 before concluding in Section 5.  
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Literature Review 

The joint purchase of EV and Solar PV has been discussed in economics literature 

from several perspectives. Delmas et al. (2016) showed that quality improvements and 

falling prices of both electric vehicles and solar panels lead to households increasingly 

purchasing both durable goods as a bundle. They analyzed five years of data of California 

and concluded that the correlation between the share of households with solar panels and 

electric vehicles rose over time. For the hypothesis testing, they used the numbers of EV 

as the dependent variable and the number of solar PV as one of the explanatory variables 

in the regression analysis.  

Nath (2016), in his MA thesis, explored the factors behind the adoption of both 

EV and solar PV using binomial logit regression and showed that Both EV and solar PV 

respondents were wealthy and highly educated. A high level of trust is placed upon 

technology providers and a lower degree of trust in the adopters’ interpersonal network. 

This study also finds strong support for the theory of planned behavior through the 

identification of the role of personal norms, subjective norms, attitude, and perceived 

behavioral control on intention and, ultimately, behavior. The mix of environmental, 

societal, and self-oriented values was clearly observed in the decision-making process.  

Araújo et al. (2019) studied electric vehicles and solar photovoltaic technology 

diffusion in the State of New York. Using geospatial, regression, and cluster analyses of 

the zip-code level and county indicators, they analyzed trends with locational, political, 

and socio-demographic profiles to identify areas of convergence and divergence in 

adoption patterns. Their study confirmed the importance of income and median home 

value in early-staged, electric vehicle and solar photovoltaic technology adoption. They 
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also found that political orientation and age tendencies are more nuanced and less 

predictive. However, they noted key adoptive tendencies among those aged 30-44 and 

above 59 for solar photovoltaics. Moreover, southeastern counties near New York City, 

particularly on Long Island, are identified as critical niches in the early-staged diffusion 

of clean energy.  

Based on historical diffusion data of solar PV and EV in the Netherlands, Kam et 

al. (2018) have characterized the adopter groups of these technologies and build scenarios 

for future diffusion. They also investigate how the joint deployment of these technologies 

may impact the local energy system and assess the viability of the integration of solar PV 

and EV in vehicle-to-grid systems. They find large differences in the spatial diffusion 

patterns of solar PV and EV using 40 regions in the Netherlands, which will have an 

impact on the viability of vehicle-to-grid systems. To characterize PV and EV adopters, 

they performed two ordinary least squares (OLS) regressions, one with the number of PV 

installations per person and one with the number of EVs per person as the dependent 

variable. 

Delmas et al. (2016) argue that the joint purchase of electric vehicles and solar 

panels is one way to significantly reduce carbon emissions in the suburban United States. 

This is because electric vehicles may lead to environmental damages due to increasing 

energy consumption (Graff Zivin et al., 2014; Holland et al., 2015, Ferdousee, 2021). 

Households that invest in both solar panels and electric vehicles can mitigate their carbon 

footprint from household and transportation activities. 

Unlike the previous studies, this study analyzes the joint purchase decision by 

using a bivariate probit model. This model can overcome the biases due to some people 
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being more environmentally friendly and consequently being more likely to make more 

green choices than others.  

Data and Methodology 

This study uses 2019 California Vehicle survey data from the Transportation 

Secure Data Center of The National Renewable Energy Laboratory (NREL). From the 

dataset, I only use the residential portion of the data, which includes 4136 observations. 

Table 3.1 shows the summary statistics of all the variables. The explanatory variables 

include age group, education, gender, income, household type, number of household 

members. This dataset contains geographical information about respondents and divided 

the state into six separate regions, which will control for region-specific unobservables. 

Most of the variables are categorical variables, except the number of household members. 

 
 

Table 3.1  

Summary Statistics 

Variable Category Value 
Gender   

 Male 47.78% 
Female 51.06% 
Other 0.15% 

Do not wish to answer 1.02% 
Age Group   

 Below 18 0 
18 to 34 12.33% 
35 to 64 52.85% 

65 or above 34.82% 
EV   

 Yes 6.67% 
No 93.33% 

EV Future   
 Yes 4.3% 

No 95.7% 
Solar   

 Yes 15.96% 
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Table 3.1  

Summary Statistics 

Variable Category Value 
No 84.04% 

Solar Future   
 Yes 18.3% 

No 81.7% 
Housing   

 Single 76.33% 
Mobile 2.59% 
Multi 20.65% 
Other 0.44% 

Education   
 High School 15.21% 

Some College Degree 21.74% 
College Graduate 37.98% 

Postgraduate 25.07% 
Income   

 Below 50k 19.15% 
50k – 99.9k 14.7% 

100k - 149.9k 18.74% 
150k - 199.9k 10.28% 
200k - 249.9k 20.79% 
250k or more 7.59% 

Not willing to answer 8.75% 
Region   

 Central Valley 5.85% 
Los Angeles 45.21% 
San Diego 7.88% 

San Francisco 9.28% 
Sacramento 23.55% 

Rest of the State 8.15% 
Unknown 0.07% 

Total HH Members   
 Min 1 

Mean 2.3 
Max 16 

Total sample size is 4136 
 

There are two binary outcomes of interest. One is having an EV or not having an 

EV, and another one is having a solar PV or not having a solar PV. People who are more 

environmentally concerned might be more likely to adopt both. From the data, we cannot 
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identify which respondents are more environmentally friendly. In this case, the bivariate 

probit model is appropriate for my research question.  

The bivariate probit model is a joint model for two binary outcomes. These 

outcomes may be correlated. If the correlation turns out insignificant, then we can 

estimate two separate probit models. The unobserved latent variables are presented as: 

 y1*= x1’b1+ e1 (1) 

 y2*= x2’b2+ e2 (2) 

 

In this case, our x1= x2 

The bivariate probit model specifies the outcomes as: 

 y1 = 31	𝑖𝑓	𝑦%
∗ > 	0

0	𝑖𝑓	𝑦%∗ 	≤ 0 (3) 

 y2 = 31	𝑖𝑓	𝑦.
∗ > 	0

0	𝑖𝑓	𝑦.∗ 	≤ 0 (4) 

 

In this case, y1 is the binary choice of EV, and y2 is the binary choice of having a 

solar PV. The explanatory variables have categorical variables like Education level, 

Income level, Age Group, Gender, Housing type, and Region. I have one continuous 

variable, which is the Number of household members. Although California has incentives 

for both EV and solar, I do not account for that incentive in our model. The reason being 

these incentives are available statewide, and there is no variation from region to region.  

Table 3.2 shows the summary statistics for all variable categories in the 

percentage level. In this study, EV represents both plug-in-hybrid vehicles and fully 

battery electric vehicles. In the data, we have information on the future decision of 
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vehicles and solar. So, EV Future and Solar Future variables represent the survey 

respondents who are interested in purchasing an EV and solar in the future. EV Total and 

Solar Total variables represent the summation of present and future adoption. Like the 

present value EV and solar PV analysis, I conduct the same analysis using EV Total and 

Solar Total when considering both present and future adoption decisions. 
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Table 3.2 

Conditional summary statistics of EV and Solar 

Variable Category EV Solar EV total Solar Total 
Education      

 High School 3.82%  13.83% 34 
(5.41%) 

177 
(28.14%) 

Some College 4.89%   13.79% 9.45% 28.59% 
College Grad   6.17% 15.14% 10.63% 30.55% 
Postgraduate 10.70% 20.35% 15.14% 36.84% 

Gender      
 Male 7.99% 17.35% 10.98% 34.06% 

Female 5.35%  14.72% 10.32% 28.88% 
Other 0 1 

(16.66%) 
0 2 

(33.33%) 
Not willing to 

Answer 
11.90%  11.90% 19.04% 26.19% 

Income      
 Below 50k 1.91% 8.59% 6.06% 19.82% 

50k – 99.9k 4.11% 15.30% 7.73% 29.61% 
100k - 149.9k 7.23% 16.52% 11.74% 32.90% 
150k - 199.9k 9.88%    20.24% 13.17% 39.76% 
200k - 249.9k 7.20% 13.72%   11.74% 30.00% 
250k or more 15.92% 31.21% 18.15% 50.64% 

Not willing to Ans 7.18% 19.06% 11.88% 32.61% 
Region      

 Central Valley   2.89% 14.46% 4.55% 30.58% 
Los Angeles   5.77% 13.74% 9.73% 27.75% 

Rest of the State 5.83% 23.31% 10.74% 38.65% 
San Diego 7.03% 20.83% 10.42% 34.91% 

San Francisco 10.16% 15.21% 15.31% 33.57% 
Sacramento 4.45% 18.99% 7.41% 34.12% 
Unknown 33.33% 0 33.33% 33.33% 

Housing      
 Single 7.31% 19.58%   10.64% 37.12% 
 Mobile 0    3.73% 4.67% 19.63% 
 Multi 5.26% 3.98% 11.82% 11.36% 

 Other 0  22.22%       5.56%        33.33% 
Age Group      
 18 to 34   7.45% 10.39%    14.12%        27.25% 

35 to 64  7.91% 15.55%    11.71%        32.20% 
65 or older  4.51% 18.54%    7.99%        31.46% 
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Results 

Table 3.3 represents the marginal effects of probit and bivariate probit regression 

for the present value of adopting EV and Solar. The first two columns show the marginal 

effects of probit regression for EV adoption and for solar PV adoption separately. 

Column 3 shows the marginal effect of the bivariate probit model for adopting both 

technologies. We can see that income has a significant positive effect on adopting both 

technologies. Single housing type has a positive effect as well. Only postgraduate level 

education is significant at 1% level. The age group has no significant level in this case. 

 

Table 3.3 

Marginal Effects of Present EV- Solar adoption 

Variable  Category Probit 
EV 

Probit 
Solar 

Biprobit 
EV- Solar 

Education     
 High School ---- ----- ----- 

Some College .0101 
(0.421) 

-.0092 
(0.614) 

.0020 
(0.593) 

College Grad .0141 
(0.212) 

.0053 
(0.757) 
 

.0047 
(0.186) 

Postgrad .0432 
(0.001) 

.0303 
(0.111) 

.0149** 
(0.001) 

Gender     
 Male ----- ----- ----- 

Female -.0231** 
(0.003) 

-.02132 
(0.055) 

-.0085** 
(0.001) 

Other N E .0278 
(0.866) 

-.0263*** 
(0.000) 

Not willing to 
Answer 

.0408 
(0.417) 
 

-.0270 
(0.622) 

.0072 
(0.653) 

Income     
 Below 50k ----- ----- ----- 

50k – 99.9k .0159 
(0.154) 

.0325 
(0.082) 

.0057 
(0.063) 

100k - 149.9k .0417*** 
(0.000) 

.0445* 
(0.014) 

.0133*** 
(0.000) 
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Table 3.3 

Marginal Effects of Present EV- Solar adoption 

Variable  Category Probit 
EV 

Probit 
Solar 

Biprobit 
EV- Solar 

150k - 199.9k .0597*** 
(0.00) 

.0719** 
(0.001) 

.0215*** 
(0.000) 

200k - 249.9k .0446*** 
(0.000) 

.0225 
0.186) 

.0116*** 
(0.000) 

250k or more .0947*** 
(0.000) 

.1541*** 
(0.000) 

.0442*** 
(0.000) 

Not willing to 
Answer 

.0428** 
(0.006) 

.0725** 
(0.002) 

.0164** 
(0.001) 

Age Group     
 18 to 34 ----- ----- ----- 

35 to 64 -.0125 
(0.386) 

.0281 
(0.088) 

.0005 
(0.893) 

65 or older -.0381* 
(0.010) 

.07632*** 
(0.000) 

-.0027 
(0.540) 

Region     
 Central Valley -.0391 

(0.066) 
-.0883** 
(0.007) 

-.0189* 
(0.021) 

Los Angeles -.0165 
(0.339) 

-.1041*** 
(0.000) 

-.01397* 
(0.047) 

Rest of the State ----- ----- ----- 
San Diego -.0028 

(0.895) 
-.0351 
(0.259) 

-.0029 
(0.740) 

San Francisco .0133 
(0.476) 

-.1074*** 
(0.000) 

-.0069 
(0.345) 

Sacramento -.0320 
(0.109) 

-.0696* 
(0.023) 

-.0154 
(0.053) 

Unknown .2102 
(0.379) 

NE -.0326 
(0.000) 

Housing     
 Single .0159 

(0.102) 
.1269*** 
(0.000) 

.0168*** 
(0.000) 

 Mobile N E -.0163 
(0.471) 

-.0086*** 
(0.000) 

 Multi ----- ----- ----- 
 Other NE .2042 

(0.054) 
-.0086*** 
(0.000) 

HH member .0036 
(0.311) 
 

.0257*** 
(0.000) 

.0037** 
(0.002) 

*NE= Not Estimable 

Rho=.2674 
athrho=.2741 
            (000) 

Notes: *** p<.001, ** p<.01, * p<.05. p values reported in parenthesis 
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The correlation coefficient of Present EV-Solar adoption is 0.2674, and it is 

significant, which suggests that the bivariate probit model is appropriate here rather than 

two separate probit models. The result shows that increasing fifty-thousand-dollar income 

above a hundred thousand can increase the probability of adopting EV and solar PV 

together by 1% to 4%. Being a part of a single household increases the probability by 1%.  

Table 3.4 shows the marginal effect of the bivariate probit model for adopting 

either EV or Solar PV. We can see that Income is more significant for EV adoption than 

Solar, which is expected because although the State gives incentives for EV, it is still an 

expensive choice for consumers. 65 or older age group is highly significant in adopting 

only solar. This group is also significant at a 1% level for adopting the only EV. My 

result resonates with Araújo et al. (2019) that age group tendencies are more nuanced and 

less predictive. 
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Table 3.4  

Marginal effect of Bivariate Probit for adopting either EV or Solar 

Variable  Category Only EV, No Solar Only Solar, No EV 
Education    
 High School ---- ----- 

Some College .0080 
(0.362) 

-.0107 
(0.526) 

College Grad .0099 
(0.207) 

.0019 
(0.904) 

Postgrad .0264** 
(0.003) 

.0148 
(0.389) 

Gender    
 Male ----- ----- 

Female -.0137* 
(0.012) 

-.01328 
(0.184) 

Other -.0512*** 
(0.000) 

.0535 
(0.745) 

Not willing to Answer .0368 
(0.342) 

-.03456 
(0.443) 

Income    
 Below 50k ----- ----- 

50k – 99.9k .0097 
(0.231) 

.02606 
(0.140) 

100k - 149.9k .0272** 
(0.001) 

.0300 
(0.076) 

150k - 199.9k .0375** 
(0.001) 

.0497* 
(0.015) 

200k - 249.9k .0312*** 
(0.000) 

.01015 
(0.521) 

250k or more .0493*** 
(0.000) 

.1103*** 
(0.000) 

Not willing to Answer .0250 
(0.020) 

.0554* 
(0.011) 

Age Group    
 18 to 34 ----- ----- 

35 to 64 -.0136 
(0.210) 

.0270 
(0.055) 

65 or older -.0354** 
(0.001) 

.07813*** 
(0.000) 

Region    
 Central Valley -.01513 

(0.245) 
-.0673* 
(0.028) 

Los Angeles .00133 
(0.896) 

-.0884*** 
(0.000) 

Rest of the State ----- ----- 
San Diego .00413 

(0.743) 
-.0314 
(0.269) 
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Table 3.4  

Marginal effect of Bivariate Probit for adopting either EV or Solar 

Variable  Category Only EV, No Solar Only Solar, No EV 
San Francisco .0237* 

(0.038) 
-.0993*** 
(0.000) 

Sacramento -.0114 
(0.340) 

-.0524 
(0.064) 

Unknown .2408 
(0.298) 

-.2127*** 
(0.000) 

Housing    
 Single -.00214 

(0.795) 
.1094*** 
(0.000) 

 Mobile -.0476*** 
(0.000) 

-.0083 
(0.709) 

 Multi ----- ----- 
 Other -.0476*** 

(0.000) 
.2126 
(0.045) 

HH member .00002* 
(0.01) 

.0222*** 
(0.000) 

Notes: *** p<.001, ** p<.01, * p<.05. p values reported in parenthesis 
 

Besides analyzing the present factors of EV and solar adoption, I am also 

interested in analyzing the future decision of people about these two technologies. In the 

dataset, there were survey questions about the future decision of their vehicle choice as 

well as about having a solar. Based on the responses, I create variables on future EV and 

solar, then run a similar analysis. In this case, I consider both present and future EV and 

solar purchaser and sum them up to construct new dependent variables, which are EV 

Total and Solar Total. Table 3.5 shows the marginal effect of this analysis for probit and 

bivariate probit model. In this case, again, the correlation coefficient indicates that 

bivariate probit is more appropriate, which is represented by the third column of the table.  

In this case, education level has a more significant effect than the present analysis for 

adopting EV and Solar. College degrees increases the probability by around 2%, and 

postgraduate degree can increase the possibility by around 4%. Income level and single 
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housing have a significant positive effect as before. In this case, the 65 years or older age 

group shows a significant negative impact of adopting these technologies. This age group 

decreases the probability of joint adoption by 2%. 

 

Table 3.5  

Total EV Solar Average Marginal Effect 

  Probit 
EV_total 

Probit 
Solar_total 

Biprobit 
EV_total- Solar_total 

Education     
 High School ---- ----- ----- 

Some College .04319** 
(0.003) 

.0072 
(0.754) 

.01683** 
(0.005) 

College Grad .04216** 
(0.001) 

.0250 
(0.237) 

.01847** 
(0.001) 

Postgrad .0756*** 
(0.000) 

.0534 
(0.022) 

.03538*** 
(0.000) 

Gender     
 Male ---- ----- ----- 

Female -.0002 
(0.978) 

-.0462** 
(0.001) 

-.00539 
(0.200) 

Other 0 .03847 
(0.838) 

-.04799*** 
(0.000) 

Not willing to Ans .0729 
(0.209) 

-.0524 
(0.441) 

.0195 
(0.434) 

Income     
 Below 50k ---- ----- ----- 

50k – 99.9k .0070 
(0.639) 

.04034 
(0.098) 

.0058 
(0.312) 

100k - 149.9k .04204** 
(0.007) 

.0653** 
(0.006) 

.02135** 
(0.001) 

150k - 199.9k .0487* 
(0.010) 

.1173*** 
(0.000) 

.0307*** 
(0.000) 

200k - 249.9k .0456** 
(0.002) 

.0475* 
(0.035) 

.0205*** 
(0.000) 

250k or more .0802** 
(0.001) 

.1791*** 
(0.000) 

.0542*** 
(0.000) 

Not willing to Ans .04009* 
(0.039) 

.0729* 
(0.013) 

.0220*** 
(0.007) 

Age Group     
 18 to 34 ---- ----- ----- 

35 to 64 -.03397 
(0.052) 

.0116 
(0.601) 

-.01095 
(0.146) 
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Table 3.5  

Total EV Solar Average Marginal Effect 

  Probit 
EV_total 

Probit 
Solar_total 

Biprobit 
EV_total- Solar_total 

65 or older -.0679*** 
(0.000) 

.0376 
(0.121) 

-.02186** 
(0.006) 

Region     
 Central Valley -.0735** 

(0.003) 
-.0871* 
(0.024) 

-.0400** 
(0.001) 

Los Angeles -.02836 
(0.167) 

-.1155*** 
(0.000) 

-.0250* 
(0.016) 

Rest of the State ---- ----- ----- 
San Diego -.02264 

(0.359) 
-.0413 
(0.239) 

-.0049 
(0.656) 

San Francisco .01349 
(0.546) 

-.0827** 
(0.006) 

-.0302* 
(0.011) 

Sacramento -.05069* 
(0.036) 

-.0789* 
(0.025) 

-.03017 
(0.011) 

Unknown .1745 
(0.496) 

-.0769 
(0.749) 

.0517 
(0.680) 

Housing     
 Single -.0074 

(0.561) 
.2112*** 
(0.000) 

.0253*** 
(0.000) 

 Mobile -.0362 
(0.260) 

.0990* 
(0.030) 

.0025 
(0.825) 

 Multi ---- ----- ----- 
 Other -.0542 

(0.358) 
.2443* 
(0.035) 

.0056 
(0.855) 

HH member -.0035 
(0.422) 

.0503*** 
(0.000) 

.0046 
(0.015) 

   rho= .1674 
athrho= .1689 
              (0.000) 

Notes: *** p<.001, ** p<.01, * p<.05. p values reported in parenthesis 
 

 

Table 3.6 shows the marginal effect of the bivariate probit model of having either 

EV or solar PV. In this case, Education is significant for having the only EV; income 

level becomes less significant in than present analysis. More household members have a 

positive impact on adopting only solar. 
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Table 3.6  

Marginal effect of Bivariate Probit for adopting either EV or Solar 

Variable  Category Only EV, No Solar Only Solar, No EV 
Education  High School ---- ----- 

Some College .0262** 
(0.004) 

-.0092 
(0.665) 

College Grad .0238** 
(0.003) 

.0061 
(0.757) 

Postgrad .0399*** 
(0.000) 

.0175 
(0.418) 

Gender Male ----- ----- 
Female .0054 

(0.358) 
-.0405 
(0.001) 

Other -.0585*** 
(0.000) 

.0867 
(0.645) 

Not willing to Ans .0528 
(0.177) 

-.0699 
(0.215) 

Income Below 50k ----- ----- 
50k – 99.9k .0010 

(0.919) 
.0342 
(0.130) 

100k - 149.9k .0201 
(0.048) 

.0434* 
(0.044) 

150k - 199.9k .0178 
(0.129) 

.0857** 
(0.001) 

200k - 249.9k .0248* 
(0.014) 

.0264 
(0.200) 

250k or more .0261 
(0.053) 

.1246*** 
(0.000) 

Not willing to Ans .0188 
(0.132) 

.0502 
(0.059) 

Age Group 18 to 34 ----- ----- 
35 to 64 -.0234* 

(0.041) 
.0228 
(0.233) 

65 or older -.0465*** 
(0.000) 

.0597** 
(0.005) 

Region Central Valley -.0313 
(0.023) 

-.0430 
(0.138) 

Los Angeles -.0016 
(0.884) 

.0469 
(0.194) 

Rest of the State ----- ----- 
San Diego -.0061 

(0.651) 
.0204 
(0.560) 

San Francisco .0203 
(0.104) 

-.0303 
(0.320) 

Sacramento -.0187 
(0.165) 

-.0018 
(0.959) 

Unknown .1174 -.0860 
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Table 3.6  

Marginal effect of Bivariate Probit for adopting either EV or Solar 

Variable  Category Only EV, No Solar Only Solar, No EV 
(0.510) (0.637) 

Housing Single -.0332** 
(0.001) 

-.0894* 
(0.030) 

 Mobile -.0387 
(0.081) 

-.1856*** 
(0.000) 

 Multi ----- ----- 
 Other -.0611 

(0.045) 
.0518 
(0.640) 

HH member -.0079** 
(0.003) 

.0456*** 
(0.000) 

Notes: *** p<.001, ** p<.01, * p<.05. p values reported in parenthesis 
 

 

Lastly, I try to predict future solar adoption possibilities with the present adoption 

of EV and vice versa. More specifically, I am interested to see if EV ownership 

influences solar adoption. As I stated earlier, EVs require electricity for charging, 

increasing household energy consumption at a significant level (Ferdousee, 2021). A 

consumer might be interested in adopting solar PV to cut down the effect. So, EV 

ownership might impact the decision to have a solar. The opposite could also be true. In 

this case, EV (and solar) becomes an explanatory variable. In this probit regression, Table 

3.7 shows that EV has a positive impact on solar, which is significant at 5% level, but 

solar has no significant impact on EV. EV adoption increases the possibility of having a 

solar PV by 7%. 
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Table 3.7  

Marginal Effect of predicting One with Another: Probit Model 

  Predicting Future Solar Predicting Future EV 
    
EV present  .0773* 

(0.014) 
----- 

Solar 
Present 

 ----- -.0100 
(0.242) 

Education    
 High School ----- ----- 

Some College .0184 
(0.372) 

.0312*** 
(0.000) 

College Grad .0260 
(0.169) 

.0307*** 
(0.000) 

Postgrad .0378 
(0.076) 

.0344*** 
(0.000) 

Gender    
 Male ----- ----- 

Female -.0335* 
(0.010) 

.0213** 
(0.001) 

Other .0119 
(0.947) 

 NE 

Not willing to 
Ans 

-.0341 
(0.572) 

.0298 
(0.403) 

Income    
 Below 50k ----- ----- 

50k – 99.9k .0164 
(0.455) 

-.0025 
(0.813) 

100k - 149.9k .0317 
(0.139) 

.0116 
(0.295) 

150k - 199.9k .0686* 
(0.011) 

-.0039 
(0.694) 

200k - 249.9k .0326 
(0.112) 

.0096 
(0.362) 

250k or more .0636*** 
(0.046) 

-.0186 
(0.109) 

Not willing to 
Ans 

.0127* 
(0.629) 

.0058 
(0.656) 

Age Group    
 18 to 34 ----- ----- 

35 to 64 -.0117 
(0.571) 

-.0255 
(0.035) 

65 or older -.0235 
(0.296) 

-.0350** 
(0.005) 

Region    
 Central Valley -.0288 -.0289 
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Table 3.7  

Marginal Effect of predicting One with Another: Probit Model 

  Predicting Future Solar Predicting Future EV 
(0.431) (0.066) 

Los Angeles -.0482*** 
(0.078) 

-.0105 
(0.491) 

Rest of the State ----- ----- 
San Diego -.0259 

(0.445) 
-.0189 
(0.215) 

San Francisco -.0113** 
(0.701) 

.0050 
(0.730) 

Sacramento -.0393* 
(0.244) 

-.0194 
(0,216) 

Unknown .0539 
(0.818) 

NE 

Housing    
 Single .1218*** 

(0.000) 
-.0192* 
(0.031) 

 Mobile .1263** 
(0.005) 

-.0046 
(0.853) 

 Multi ----- ----- 
 Other .0921 

(0.390) 
-.0096 
(0.845) 

HH member .0356*** 
(0.000) 

-.0056 
(0.071) 

Notes: *** p<.001, ** p<.01, * p<.05. p values reported in parenthesis 
                   *NE= Not Estimable 

 

Conclusion 

Although several previous studies explore the joint adoption of EV and solar PV, 

this study distinctively implemented a bivariate probit model to analyze these factors. 

This model enables us to overcome the biases due to unobservable characteristics like 

environmental friendliness driving both decisions. This study strengthens the existing 

literature on EV and solar PV adoption by applying the bivariate probit model. 

The findings of this study are consistent with previous literature in that income 

plays a significant role in adopting both EV and solar PV. Higher levels of education are 
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highly significant when I consider the future decision. In this case, the age group of 65 

years or older shows a significant negative impact. Again, this age group shows a positive 

impact when I consider only solar adoption. Moreover, single household types are more 

likely to adopt EV and solar PV together. Although EV and solar PV incentives are 

available statewide, the central valley area shows a significant negative effect on this 

adoption, which should be a concern for the local governments. 

Since electric vehicles significantly increase energy usage, it was one of my interests 

to see if adopting EV impacts adopting solar in the future. However, I find a lower 

significant positive effect on that. I find no significant effect for the opposite relationship, 

i.e., that solar panels do not impact EV adoption. So, there might be greater externalities 

to subsidizing EV rather than solar. If policymakers care about joint adoption, this 

relationship is something they should consider. 

 

 

 

 

 

 

 

 

 

 

 



 

 

90 

REFERENCES 
Araújo, K., Boucher, J. L., Aphale, O. (2019). A clean energy assessment of early 

adopters in electric vehicle and solar photovoltaic technology: Geospatial, 
political and socio-demographic trends in New York, Journal of Cleaner 
Production, 216, 99-116, ISSN 0959-6526, 
https://doi.org/10.1016/j.jclepro.2018.12.208  

Borunda, A. (2021, Aprill 20). Americans want more renewable energy. Can 
‘community choice’ help them get it? National Geographic. 
https://www.nationalgeographic.com/environment/article/americans-want-
more-renewable-energy-can-community-choice-help-them-get-it  

Delmas, M. A., Kahn, M. E., Locke, S. L. (2017). The private and social 
consequences of purchasing an electric vehicle and solar panels: Evidence 
from California, Research in Economics, 71(2), 225-235. ISSN 1090-9443, 
https://doi.org/10.1016/j.rie.2016.12.002  

Ferdousee, A. (2021). Impact of Electric Vehicle Adoption on Electricity Consumption 
and Generation: Evidence from California [Unpublished doctoral dissertation 
thesis]. Middle Tennessee State University. 

            https://ferdousee.com/assets/docs/JobMarketPaper.pdf  
Graff Zivin, Joshua S., Matthew J. Kotchen, and Erin T. Mansur. (2014). “Spatial and 

temporal heterogeneity of marginal emissions: Implications for electric cars 
and other electricity- shifting policies.” Journal of Economic Behavior & 
Organization 107: 248-268.  

Holland, Stephen P., Erin T. Mansur, Nicholas Z. Muller, and Andrew J. Yates. 
“Environmental benefits from driving electric vehicles?” American Economic 
Review forthcoming. 

Kam, M. J. V. D., Meelen, A.A.H., Sark, W. G. J. H. M. V., Alkemade, F. (2018). 
Diffusion of solar photovoltaic systems and electric vehicles among Dutch 
consumers: Implications for the energy transition, Energy Research & Social 
Science, 46, 68-85, ISSN 2214-6296, 
https://doi.org/10.1016/j.erss.2018.06.003  

Nath, V. (2016). Drivers of environmentally-friendly technology adoption: electric 
vehicle and residential solar PV adoption in California [Unpublished doctoral 
dissertation/master’s thesis]. The University of Texas at Austin. 
https://repositories.lib.utexas.edu/bitstream/handle/2152/39524/NATH-
THESIS-2016.pdf?sequence=1&isAllowed=y  

Transportation Secure Data Center. (2019). [National Renewable Energy 
Laboratory]. www.nrel.gov/tsdc. Retrieved May 1, 2021. 

United States Environmental Protection Agency. (2021, April 14). Sources of 
Greenhouse Gas Emissions. https://www.epa.gov/ghgemissions/sources-
greenhouse-gas-emissions#electricity  

 

 

 


