

ENHANCING CLOUD SECURITY AND PRIVACY WITH ZERO-
KNOWLEDGE ENCRYPTION AND VULNERABILITY ASSESSMENT IN

KUBERNETES DEPLOYMENTS

By

Ali Alqarni

APPROVED:

Graduate Committee:

Supervisor Dr. Yi Gu (Computer Science)

Dr. Joshua L. Phillips (Computer Science)

Dr. Arpan Sainju (Computer Science)

__

Dr. Medha Sarkar, Chairperson Computer Science Department

__

Dr. David Butler, Dean of the College of Graduate Studies

Enhancing Cloud Security and Privacy with Zero-Knowledge Encryption and
Vulnerability Assessment in Kubernetes Deployments

By

Ali Alqarni

A thesis submitted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE

in

Computer Science

Middle Tennessee State University

 (May 2023)

ii

ACKNOWLEDGEMENTS

 I would like to thank MTSU and Computer Science department for everything. I

am indebted to my supervisor, Prof. Yi Gu, for her continued guidance and endless supply

of fascinating projects. I would also like to thank Prof. Joshua L. Phillips and Prof. Arpan

Sainju. Words cannot express my gratitude to my parents, Khowilid and Nourh. Your

unwavering support and belief in me have helped me get to this day. Finally, I am deeply

grateful to my siblings Jawharah, Khaled, Sarah, Haya, Muhammad, and my wife, Amjad,

for your sacrifices and support throughout my lifelong educational pursuits, especially over

the last years of this process.

iii

ABSTRACT

 Cloud computing has become increasingly significant in recent years, yet security

concerns and the challenges of rapidly building, testing, and deploying systems in

monolithic environments can hinder innovation. Kubernetes provides a practical approach

for distributed systems. In this thesis, we investigate an integrated framework to enhance

the security and privacy of a Django-based application deployed on an open-source

Kubernetes cluster, adding hybrid encryption and zero-knowledge encryption, and

identifying vulnerabilities. This work contributes to understanding how Django's built-in

security features can be effectively combined with Kubernetes deployment to provide a

potentially robust web application environment. The results demonstrate that Django and

Kubernetes can be effectively combined to create an efficient application deployment

platform showing minimal vulnerabilities using monitoring tools such as Kube-hunter,

Datree, and Mozilla Observatory. Also, our results showcase a practical implementation of

zero-knowledge encryption and how it can be applied in a real-world setting.

iv

TABLE OF CONTENTS

LIST OF TABLES .. vi

LIST OF FIGURES .. vii

LIST OF SYMBOLS AND ABBREVIATIONS .. ix

Chapter

I. INTRODUCTION .. 1

Contributions .. 3

II. BACKGROUND ... 4

CIA triad: Availability, Integrity, and Confidentiality 4

Cloud service models ... 5

Vulnerabilities .. 6

Monitoring tools ... 8

III. RELATED WORK .. 9

Django-based applications .. 9

Kubernetes-Based Environments ... 10

Hybrid Encryption Schemes ... 10

Zero-Knowledge Encryption .. 11

Overcoming the Gap in Related Work ... 11

IV. PROBLEMS AND METHODS .. 12

V. RESULTS ... 29

VI. DISCUSSION .. 45

v

VII. FUTURE WORK ... 46

BIBLIOGRAPHY .. 47

APPENDIX .. 51

vi

LIST OF TABLES

Table 1 – An example of how to insert a file into the database. 29

Table 2 – Results of encryption methods for stored files ... 32

Table 3 – IP address blocking due to excessive requests ... 38

Table 4 – Comparison between Kubernetes and standard servers 44

vii

LIST OF FIGURES

Figure 1 – The top 10 web application vulnerabilities ... 6

Figure 2 – The database security information with VPC ... 12

Figure 3 – The diagram showing Docker as a container for the application images ... 13

Figure 4 – The complete diagram that shows when the application connects with nodes14

Figure 5 – Configuration deployment yaml file. ... 15

Figure 6 – Configuration service yaml file. ... 16

Figure 7 – Configuration ingress yaml file. ... 17

Figure 8 – Configuration Role, RoleBinding, and ServiceAccount yaml files. 18

Figure 9 – Nodes of the application ... 19

Figure 10 – The figure showing the connection between database storage and nodes 20

Figure 11 – This figure shows the user can connect with any node 21

Figure 12 – This diagram shows the first step of uploading a file to the server by user..23

Figure 13 – The registration Page .. 24

Figure 14 – The login Page .. 25

Figure 15 – This diagram shows that any node can help for uploading file 25

Figure 16 – The three options for encryption of a file when uploading 26

Figure 17 – This diagram shows a node helps to upload the file 26

Figure 18 – This diagram shows the file is stored without encryption 27

Figure 19 – This diagram shows the file is stored with encryption from server-side .. 27

Figure 20 – This diagram shows the file is stored with encryption from the client-side28

Figure 21 – This figure shows an example of how to insert a file into the database 30

viii

Figure 22 – Zero Knowledge Encryption ... 31

Figure 23 – The results of how the file encrypted with the three options of encryptions on

List Upload Interface .. 34

Figure 24 – Monitoring from Datree website A ... 34

Figure 25 – Monitoring from Datree website B ... 35

Figure 26 – Monitoring from Kube-hunter website A ... 35

Figure 27 – Monitoring from Kube-hunter website B .. 36

Figure 28 – Monitoring from Mozilla Observatory website A 37

Figure 29 – Monitoring from Mozilla Observatory website B 38

Figure 30 – The login page with a warning message. .. 39

ix

LIST OF SYMBOLS AND ABBREVIATIONS

SaaS - Software as a Service

PaaS - Platform as a Service

IaaS - Infrastructure as a Service

AES - Advanced Encryption Standard

VPN - Virtual Private Network

AWS - Amazon Web Services

APIs - Application Programming Interfaces

MTSU - Middle Tennessee State University

ORAM - Oblivious Random Access Machine

OWASP - Open Web Application Security Project

XSS - Cross-Site Scripting

NIDS - Network Intrusion Detection System

IPS - Intrusion Prevention System

ZAP - Zed Attack Proxy

FP - False Positives

FN - False Negatives

ORM - Object-Relational Mapping

IaC - Infrastructure as Code

VPC - Virtual Private Cloud

CDN - Content Delivery Networks

RBAC - Role-Based Access Control

x

ZKE - Zero Knowledge Encryption

DRY - Don't Repeat Yourself

PVs - Persistent Volumes

PVCs - Persistent Volume Claims

1

CHAPTER I

INTRODUCTION

 Over time, physical servers transitioned into providers of hardware resources, with

virtual servers created on the physical servers using virtualization tools. This approach,

known as virtualization, allowed for deploying applications on virtual servers.

Subsequently, virtualization advanced to containerization, whereby applications were

deployed within containers. Finally, cloud computing emerged as technology evolved,

transforming how businesses and individuals accessed and managed computing resources

[10].

In recent years, there has been a significant increase in the utilization of the Internet

and cloud services [3] and web applications [29]. Cloud computing enabled the provision

of on-demand, scalable infrastructure, and services, allowing users to access resources over

the internet without the need to maintain and manage their hardware. Also, it facilitates on-

demand access to computing resources such as data storage and processing power without

necessitating direct active management by the user. The onset of the COVID-19 pandemic

in 2020 accelerated the adoption of cloud services across numerous sectors, including

work, research, conferences, and corporate applications [3,30]. Also, with the rise of the

ubiquitous use of web applications, the demand for web application development has

thrived [29].

Despite the rapid growth in cloud-based interest and web applications, there are

various concerns, such as data privacy and security [3,29]. Data privacy in cloud computing

involves the secure collection, storage, transfer, and sharing of information without

jeopardizing individuals' privacy [22]. However, malicious individuals, such as hackers,

2

may exploit this data; hence, cloud professionals must continuously improve privacy

measures. Therefore, numerous studies focus on strengthening cloud infrastructure [16].

Vulnerabilities in web applications occur due to a lack of knowledge of the web

developers or due to built-in flaws in the platform used. Inexperienced web developers who

may not be fully aware of secure code practices end up designing applications with high-

security risks. When launched without prior security testing, these apps become an

attractive target for attackers. Any user who uses such vulnerable applications becomes

prey for the hacker and their privacy and confidential information being compromised [31,

32].

One strategy to enhance privacy in cloud computing and safeguard user data is

encryption. Encryption entails encoding information by transforming the original

representation, or plaintext, into an alternative form called ciphertext. Ideally, only

authorized parties can decode a ciphertext or image back to plaintext and access the original

information [33]. Building on the concept of encryption, certain web app development

frameworks, like Django, provide robust security features and practices to enhance privacy

and data protection further [37].

Django has many built-in security features, including protection against cross-site

scripting and cross-site request forgery. It also has a secure password hashing algorithm

and a built-in user authentication system that can help prevent unauthorized access [34].

However, managing their deployment and infrastructure becomes increasingly important

as web applications grow in complexity and scale. This is where Kubernetes [36], an open-

source container orchestration platform, enters the picture. Kubernetes clusters provide a

powerful and flexible platform for deploying and managing containerized applications at

3

scale. Also, it can help improve security for containerized applications by providing strong

access controls and network security policies [35].

Contributions

We answer the following research question: RQ: How effective is the

combination of Django and Kubernetes, and integrating hybrid encryption, zero-

knowledge encryption, and attack prevention measures?

Our contributions are as follows:

1. We effectively combine Django and Kubernetes, leveraging their strengths while

integrating hybrid encryption, zero-knowledge encryption, and attack prevention

measures.

2. We investigate the potential synergies between Django, Kubernetes, hybrid encryption,

and zero-knowledge encryption in enhancing application security and performance and

efficiently blocking malicious IP.

3. We evaluate the application's security posture using monitoring tools like Kube-hunter,

Datree, and Mozilla Observatory, enabling us to identify and address potential

vulnerabilities and maintain a high level of protection for the infrastructure.

4

CHAPTER II

BACKGROUND

CIA triad: Availability, Integrity, and Confidentiality

The CIA triad, which means availability, integrity, and confidentiality, is a model

for making information security rules in a company or organization. It helps ensure the

organization's data is safe and easy to get when needed [23, 24].

Confidentiality is crucial in organizations' safeguarding of sensitive data and

preserving privacy. Achieving confidentiality necessitates regulating information access to

avert unauthorized data sharing, whether intentional or accidental [2]. In addition,

preventing unauthorized individuals from accessing valuable business assets is critical to

maintaining confidentiality. In Cloud systems, confidentiality centers around protecting

users' data. These systems often transmit data through private networks, prone to attacks.

Implementing a specialized VPN and firewall can enhance the security of databases on

private networks [2]. This approach aims to maintain the confidentiality of data while

navigating the vulnerabilities of Cloud systems.

Integrity involves making sure the data is trustworthy and free from tampering. The

integrity of the data is maintained only if the data is authentic, accurate, and reliable. Data

integrity in the Cloud system means preserving information integrity (i.e., not lost or

modified by unauthorized users). Data is the base for Cloud Computing services, such as

Data as a Service, Software as a Service, and Platform as a Service, so keeping data

integrity is a fundamental task [39]. In addition, cloud computing usually provides massive

data processing capability [38].

5

Even if data is kept confidential and its integrity maintained, it is only useful if

available to those in the organization and the customers they serve. This means that

systems, networks, and applications must function as they should and when. Also,

individuals with access to specific information must be able to consume it when needed

and get to the data within the reasonable access time [40].

Cloud service models

The three primary Cloud service models are software as a service (SaaS), platform

as a service (PaaS), and infrastructure as a service (IaaS) [5, 7, 21]. Although these models

have distinctive differences, they all face similar privacy-related challenges. Cloud

providers must enhance privacy in the cloud, raise user awareness of potential issues, and

develop customer trust in cloud privacy to effectively use services and share data. Despite

the rapid growth in cloud-based interest, various concerns exist, such as data privacy. Data

privacy in cloud computing involves the secure collection, storage, transfer, and sharing of

information without jeopardizing individuals' privacy [22]. However, malicious

individuals, such as hackers, may exploit this data; hence, Cloud professionals must

continuously improve privacy measures. In addition, numerous studies focus on

strengthening cloud infrastructure. For example, Daniel [16] suggested solutions for the

challenges of privacy and reliability in cloud computing. Containerization tools operate as

services on virtual or physical servers and manage application containers, thus facilitating

the efficient transfer of applications as containers between servers [9]. Numerous

enterprises have embraced the Internet as a cost-effective and user-friendly platform for

communication, information exchange with potential clients, and conducting transactions

with users. With the rise of the ubiquitous use of web applications, the demand for web

6

application development has thrived [6]. The elegance of web application development is

that young developers with exciting ideas can form a group to develop interesting web

applications [11].

Vulnerabilities

Figure 1. The OWASP top 10 web application vulnerabilities.

In [25] recent years, the Open Web Application Security Project (OWASP) has

published a list of the top 10 web application vulnerabilities, which highlights numerous

security risks that potentially expose sensitive user data, such as phone numbers, addresses,

credit card information, and other valuable information to attackers. These vulnerabilities

have implications for both the service provider and the end user. Therefore, it is essential

for the provider to continuously update their systems to safeguard the data stored within

their infrastructure and protect user data stored in their databases (Figure 1).

7

Web applications have become integral to our daily lives, providing various

services such as e-commerce, online banking, and social networking. However, the rapid

development of web technologies has given rise to numerous security vulnerabilities,

making web applications attractive targets for malicious attacks. Among the most common

and severe threats to web applications are SQL Injection and Cross-Site Scripting (XSS)

attacks [4, 40].

As web applications handle sensitive user data, ensuring their security is

paramount. However, due to the nature of these applications, the confidentiality of the data

and the user's privacy are often compromised [14, 41]. Attackers exploit vulnerable areas,

such as login pages or other open access points, to inject malicious scripts that compromise

security measures. These attacks must be detected and eliminated before they can impact

the integrity and confidentiality of the data.

Several solutions have been proposed to address these issues, including the use of

vulnerability scanners to identify and mitigate potential threats. For example, open-source

vulnerability scanners, such as OWASP ZAP and Skipfish, have successfully detected SQL

Injection and XSS vulnerabilities [17]. However, relying solely on vulnerability scanners

can be insufficient due to their limitations in accuracy and coverage.

An alternative approach to detect and prevent SQL Injection and XSS attacks is

using the Nginx Reverse Proxy protocols and Suricata NIDS/IPS rules [18]. This method

has shown promising results in reducing network overhead and effectively identifying

different types of attacks without needing a firewall.

Moreover, incorporating honeypots into Web Application Firewalls (WAF) and

utilizing machine learning models has been suggested to improve web application security

8

[12]. By introducing a honeypot in the network architecture, the application owner can be

notified of ongoing attacks while providing a fake response to the attackers, effectively

thwarting their attempts.

Monitoring tools

Kube-hunter is a security testing tool for Kubernetes clusters. It is designed to help

identify potential vulnerabilities in your Kubernetes environment by actively scanning for

known security risks, misconfigurations, and compliance violations. With Kube-hunter,

you can get insights into how an attacker might potentially exploit your Kubernetes

infrastructure. It can be run remotely to probe public IPs or internally within the cluster to

discover and report potential issues [26].

Datree is a policy enforcement and continuous configuration management tool that

ensures developers follow best practices when using Kubernetes and other infrastructure

as code (IaC) platforms. It helps organizations maintain consistency, avoid errors, and

enforce compliance by automatically scanning and validating Kubernetes configurations,

Terraform files, and other IaC files against customizable rules. "Datree Feature" refers to

a specific feature or functionality within the Datree platform [27].

Mozilla Observatory is a free online service developed by Mozilla to help

developers analyze and improve the security of their websites. The tool performs various

tests on a given website to evaluate its security configuration, such as checking for HTTPS,

Content Security Policy, HTTP Strict Transport Security, and other best practices. After

the analysis, the tool provides a report with a security score, a list of issues, and

recommendations for improvement [28].

9

CHAPTER III

RELATED WORK

In this section, we will discuss work related to this thesis. In particular, we will look

at security in Django-based applications and Kubernetes-based environments. Also, we

will look at data storage security in cloud computing based on hybrid encryption schemes

and zero-knowledge encryption.

Django-based applications

Aborujilah et al. [19] addressed security challenges in modern web applications,

focusing on common vulnerabilities such as SQL injections, cross-site scripting, and

broken authentication. It reviews, compares, and analyzes the built-in security features of

various web development frameworks (e.g., Laravel, Spring Boot, Django) to protect

against these vulnerabilities. The study aimed to help developers and organizations choose

the most effective protection methods offered by web application frameworks, as manual

protection mechanisms can increase the likelihood of attacks.

Giannopoulos et al. [1] discussed web frameworks that provide default security

checks but can be vulnerable to attacks like Cross-site Scripting (XSS) and Cross-Site

Request Forgery (CSRF) if developers disable these checks. Framework-specific elements

make identifying such issues difficult. The authors introduced Pythia, a tool designed to

analyze Django-based applications, considering all framework-specific elements and

employing data-flow analysis and taint tracking techniques. Pythia is the first mechanism

of its kind. The evaluation of Pythia on five open-source applications yielded positive

results, identifying dangerous paths leading to vulnerabilities in four cases, often involving

Django-specific features.

10

Kubernetes-Based Environments

Shamim et al. [15] focused on Kubernetes, an open-source software for automating

computerized services management, which is susceptible to security vulnerabilities. To

help practitioners secure their Kubernetes installations, the authors analyze 104 Internet

artifacts and systematize knowledge related to Kubernetes security practices. They identify

11 security practices, including implementing role-based access control (RBAC) for least

privilege, applying security patches to keep Kubernetes updated, and enforcing pod and

network-specific security policies.

Mytilinakis [20] investigated various attacks on Kubernetes, including those

targeting the engine and its components, network layer attacks like MITM and DNS

spoofing, attacks on containers within pods, and Infrastructure as Code vulnerabilities. The

author suggested defense measures such as using the kube-bench tool, implementing

network policies and service meshes, employing the Clair scanner for container security,

and applying Pod Security Policies to prevent the deployment of vulnerable code.

Hybrid Encryption Schemes

Sarkar and Kumar [8] discussed cloud computing, which allows organizations to

adopt information technology without upfront investment, offering on-demand

computational infrastructure and storage services. However, data security is a significant

challenge in cloud computing due to the possibility of unauthorized access through virtual

machines. The authors proposed a new framework based on Hybrid Encryption Schemes

to address this issue, which can efficiently encrypt and retrieve data. Performance

evaluation and validation demonstrate that the proposed architecture is feasible, scalable,

and efficient for ensuring data security in cloud computing.

11

Zero-Knowledge Encryption

Luchs et al. [13] discussed the benefits of cloud computing for businesses, such as

cost savings and scalable computing, but also highlighted the risk of data leakage due to

challenges in verifying the confidentiality and integrity of cloud services. Zero-knowledge

data encryption is presented as a solution to address these security concerns. A zero-

knowledge system ensures that the system does not know user data content, using a private

key known only to the user for encryption before storing on the server. This approach,

combined with other security measures, restricts data decryption to the original user and

enhances security. The paper analyzed the comparative advantages of zero-knowledge

encryption and traditional security schemes in cloud data storage.

Overcoming the Gap in Related Work

Our related work covers various security aspects in web applications like Django,

Kubernetes clusters, and cloud-based storage systems. However, there are some gaps and

potential areas for improvement. For example, the literature discusses Django [19,1] and

Kubernetes [15, 20] security separately. However, we observe a lack of research on the

specific combination of Kubernetes, Django, and zero-knowledge encryption in a single

application. Our work bridges this gap by showcasing how Django's built-in security

features can be effectively combined with Kubernetes deployment, providing a secure web

application environment. Also, the related work mainly provided a theoretical analysis of

zero-knowledge encryption in cloud storage without discussing practical implementation

details. On the other hand, our work demonstrates a real-world implementation of zero-

knowledge encryption combined with other security measures in a Django-based

application running on Kubernetes clusters.

12

CHAPTER IV

PROBLEMS AND METHODS

We employed modern technologies and security measures to ensure data security

and privacy in the cloud. In addition, we used the Django platform. This free, open-source,

Python-based web framework follows the model-template-views (MTV) architectural

pattern for building the website and facilitating rapid development.

We created a database using Python and PostgreSQL within a Virtual Private Cloud

(VPC) to enhance the site's security. In addition, robust security measures were employed

to protect the data, making unauthorized changes difficult. Finally, the connection between

the cloud and application databases was established as specified in the (.env.prod file)

(Figure 2).

Figure 2. The database security information with VPC.

 To facilitate secure and confidential file uploads, we connected the cloud storage

in the application with Content Delivery Networks (CDN). This CDN file allowed for the

efficient transfer of fixed files, such as storage, to the cloud and optimize storage usage.

The CDN file has following: AWS_S3 settings:

13

We utilized Docker to package the project into small, easily transportable

containers. Docker is a set of platform-as-a-service products that use OS-level

virtualization to deliver software in packages called containers. The Docker command line

utilities were used to build container images based on Dockerfiles, push/pull these images

to/from remote web repositories and run/deploy containers on the host machine. (Figure

3).

Figure 3. The diagram shows using Docker as a container for the application images.

AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY,

AWS_STORAGE_BUCKET_NAME, AWS_S3_ENDPOINT_URL,

AWS_S3_OBJECT_PARAMETERS, DEFAULT_FILE_STORAGE,

and STATICFILES_STORAGE.

14

We used Kubernetes, an open-source container orchestration system for automating

software deployment, scaling, and management (Figure 4).

Figure 4. The full diagram shows when the application connects with nodes.

Kubernetes is what we use to distribute applications, and it provides a safe

environment for publishing applications. Although in this Kubernetes environment there

are many ways for configuring Kubernetes, we use deployment yaml files in the

configuration (Figures 5, 6, 7, and 8):

15

Figure 5. Configuration deployment yaml file.

1. Deployment (thesis-deployment) (Figure 5):

• This resource creates a "thesis-deployment" deployment with three replicas

for high availability.

• The deployment uses the "django-k8s-web-serviceaccount" service account

for authentication and authorization.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: thesis-deployment
 labels:
 app: thesis-deployment
spec:
 replicas: 3
 selector:
 matchLabels:
 app: thesis-deployment
 template:
 metadata:
 labels:
 app: thesis-deployment
 spec:
 serviceAccountName: django-k8s-web-serviceaccount
 containers:
 - name: my-thesis-upload
 image: registry.digitalocean.com/container-1/my-thesis-upload:latest
 imagePullPolicy: Always
 envFrom:
 - secretRef:
 name: thesis-secure
 env:
 - name: PORT
 value: "8004"
 ports:
 - containerPort: 8004
 imagePullSecrets:
 - name: container-1

16

• The application container, named "my-thesis-upload," is based on the image

"registry.digitalocean.com/container-1/my-thesis-upload:latest."

• The image is pulled with the "Always" pull policy, ensuring the latest

version is used.

• The container exposes port 8004 and retrieves environment variables from

the "thesis-secure" secret.

Figure 6. Configuration service yaml file.

2. Service (thesis-service) (Figure 6):

• This resource creates a ClusterIP service named "thesis-service" to expose

the deployment internally within the Kubernetes cluster.

• The service maps port 80 to the target port 8004 for HTTP and port 443 to

the target port 8004 for HTTPS.

apiVersion: v1
kind: Service
metadata:
 name: thesis-service
spec:
 type: ClusterIP
 ports:
 - name: http
 protocol: TCP
 port: 80
 targetPort: 8004
 - name: https
 protocol: TCP
 port: 443
 targetPort: 8004

 selector:
 app: thesis-deployment

17

Figure 7. Configuration ingress yaml file.

apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

 name: django-k8s-web-ingress

 annotations:

 kubernetes.io/ingress.class: nginx

 nginx.ingress.kubernetes.io/content-security-policy: "default-src 'self'; script-src

 'self' https://cdn.jsdelivr.net https://nyc3.digitaloceanspaces.com

 https://trusted.script.source; img-src 'self' data:

 https://nyc3.digitaloceanspaces.com https://trusted.image.source

 style-src 'self' https://cdn.jsdelivr.net https://nyc3.digitaloceanspaces.com

 https://trusted.style.source; font-src 'self' https://cdn.jsdelivr.net

 https://nyc3.digitaloceanspaces.com; object-src 'none'; frame-ancestors

 'none'; connect-src 'self';"

 nginx.ingress.kubernetes.io/force-ssl-redirect: "true"

spec:

 tls:

 - hosts:

 - thesis.hospitaltest.site

 - www.thesis.hospitaltest.site

 secretName: django-k8s-web-tls

 rules:

 - host: thesis.hospitaltest.site

 http:

 paths:

 - path: /

 pathType: Prefix

 backend:

 service:

 name: thesis-service

 port:

 name: https

 - host: www.thesis.hospitaltest.site

 http:

 paths:

 - path: /

 pathType: Prefix

 backend:

 service:

 name: thesis-service

 port:

 name: https

18

3. Ingress (django-k8s-web-ingress) (Figure 7):

• This resource creates an ingress controller to expose the application

externally.

• It uses the NGINX ingress controller and enforces a Content Security Policy

(CSP) for improved security.

• It forces SSL redirection, meaning all requests will be redirected to HTTPS.

• The ingress is configured to route traffic for "thesis.hospitaltest.site" and

"www.thesis.hospitaltest.site" to the "thesis-service" on the HTTPS port.

Figure 8. Configuration Role, RoleBinding, and ServiceAccount yaml files.

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 name: pod-reader
rules:
- apiGroups: [""]
 resources: ["pods"]
 verbs: ["get", "watch", "list"]

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: django-k8s-web-rolebinding
subjects:
- kind: ServiceAccount
 name: django-k8s-web-serviceaccount
 namespace: default
roleRef:
 kind: Role
 name: pod-reader
 apiGroup: rbac.authorization.k8s.io

apiVersion: v1
kind: ServiceAccount
metadata:
 name: django-k8s-web-serviceaccount
 namespace: default

19

4. Role (pod-reader) (Figure 8):

• This resource defines a role named "pod-reader" that allows reading ("get",

"watch", "list") access to the "pods" resource in the cluster.

5. RoleBinding (django-k8s-web-rolebinding) (Figure 8):

• This resource binds the "pod-reader" role to the "django-k8s-web-

serviceaccount" service account, granting the specified permissions to the

service account.

6. ServiceAccount (django-k8s-web-serviceaccount) (Figure 8):

• This resource creates a service account named "django-k8s-web-

serviceaccount" in the "default" namespace for the application to use for

authentication and authorization.

After configuring the YAML files, the deployment functions effectively, allowing

the application to be launched seamlessly in the real world. In the event of human errors,

such as accidentally deleting nodes, alternative nodes are automatically generated due to

the command in the file, which specifies the number of nodes needed for the application

deployment (Figure 9). In addition, each node contains all application images, ensuring

settings remain unchanged.

Figure 9. Nodes of the application.

thesis-deployment-9bd9fb459-4mblp 1/1 Running

thesis-deployment-9bd9fb459-fgccw 1/1 Running

thesis-deployment-9bd9fb459-fxfhq 1/1 Running

20

With the improved deployment process and security in the cloud, it became possible

to use the cloud to allow users to upload files easily (Figure 10).

Figure 10. This figure shows the connection between database storage and the nodes.

21

Figure 11. This figure shows that the user can connect with any node using Helm https.

Comprehensive and detail-oriented security measures have been implemented to

protect all communication pathways between the application, nodes, database, and storage

systems (Figure 11). These security measures have been achieved through the deployment

of firewalls, which serve to permit only specified IP addresses or ports to establish

connections with other components within the network. Such a well-planned security

strategy effectively minimizes the risk of unauthorized access, safeguarding the integrity

of the entire system and its sensitive data.

Indeed, the simplicity with which user files can be uploaded poses a significant

challenge in establishing distinct user roles to deter unauthorized access between users.

Furthermore, implementing robust authentication and authorization mechanisms is

essential within the Django framework to guarantee the security and privacy of user data

and interactions. Incorporating Role-Based Access Control (RBAC) within the website is

22

a vital security measure to protect sensitive information and safeguard the associated

components. By employing RBAC, access to system resources and data is limited to

authorized individuals according to their designated roles, substantially mitigating the risk

of unauthorized access or data breaches. This security strategy bolsters the overall

protection and privacy of the website's infrastructure and the data it oversees, creating a

secure environment for users and stakeholders.

Where users wish to upload a file, they may opt to utilize any available node, as all

nodes maintain seamless connectivity with both the storage system and the database, as

illustrated in (Figures 11, 12, and 15). If a user selects the option to upload a file without

implementing encryption, the file will be stored accordingly. The database will register the

user's choice of uploading in an unencrypted manner, as depicted in (Figure 15). This

flexible design allows for diverse user requirements while comprehensively understanding

user activities and preferences.

Hybrid encryption is used, considered more secure, and is done in two ways. The

first one comes from the cloud or server side, which allows the key to be used in the cloud

without problems and stored in a specific way in the database (Figure 16). Decoding is

easy using this approach. Another approach is to apply encryption user-side with ZKE,

which is known as zero-knowledge encryption (Figures 17, 18, 19, and 20).

23

Figure 12. This diagram shows the first step of uploading a file to the server by the user.

24

Figure 13. The registration Page.

To utilize the application, users must complete a registration process that entails

submitting specific personal information, including their name, username, password, and

unique email address (Figure 13). Following successful registration, users may log in

anytime to upload additional files. When users provide input inconsistent with their

previously registered information, the system will notify them appropriately (Figure 14).

25

Figure 14. The login Page.

Figure 15. This diagram shows that any node can help for uploading the file.

26

Figure 16. The three options for encryption of a file when uploading.

Figure 17. This diagram shows a node helps to upload the file.

27

Figure 18. This diagram shows the file is stored without encryption.

Figure 19. This diagram shows the file is stored with encryption from the server-side.

28

Figure 20. This diagram shows the file is stored with encryption from the client-side.

29

CHAPTER V

RESULTS

 Depending on the method, we have the results of testing the system differently.

After testing the encryption and decryption using both sides, we can say all of them protect

the data and are not accessible for attackers to use the key for the files encrypted by the

server side (Table 1).

Table 1. An example of how to insert a file into the database.

We can see this in the user upload in the database, which shows test upload files

with three levels. First we examine the encryption client-side, which means using Zero

Knowledge Encryption (ZKE) (Figure 22). Using ZKE will save the data in storage and let

the database this user uploads data and no key in PDF and JPG files. The second shows

uploading files without encryption and saving them in storage and database without a key

in PDF and JPG files. The last one is server-side encryption which offers the key to the

database and the file in the repository for both files (Table 1).

Name Key Key Is-encryption Option type

images/alipic.jpg NULL NULL 0 no-encryption

images/FinalPaper.pdf NULL NULL 0 no-encryption

images/alipic.jpg NULL NULL 1 client-side

images/FinalPaper. pdf NULL NULL 1 client-side

images/alipi.jpg x'4c95b445d2e25f7e.. x'2984a77824055af650dle. 1 server-side

images/FinalPaper.pdf x'66f78cbc216eb9fba. x'2a5b3a27aca65c9866b6b5. 1 server-side

30

Figure 21. Zero Knowledge Encryption.

31

Figure 22. The results show how the file encrypted with the three options of encryptions

on the List Upload Interface.

32

Table 2. Results of encryption methods for stored files

As users interact with the website to upload files, they are presented with three

distinct options for the uploading process, as demonstrated in (Figure 13). The

responsibility of selecting whether to upload files without encryption or utilizing

encryption mechanisms rests solely with the user. This approach offers individuals the

autonomy to make informed decisions based on their preferences and security

requirements, ensuring that the website caters to diverse user needs while maintaining high

adaptability.

In Table 2, the first row represents a file encrypted using the client-side encryption

method. In this case, the symmetric_key, private_key, tag, and iv fields are set to NULL

since these values are not stored on the server in a zero-knowledge encryption scheme. The

Is-encryption field is set to 1 (True), and the ENCRYPTION_METHOD field is set to

'client-side'. The second row represents a file that has not been encrypted. In this case, all

the encryption-related fields (symmetric_key, private_key, tag, and iv) are set to NULL, as

they are unnecessary for an unencrypted file. The Is-encryption field is set to 0 (False), and

the ENCRYPTION_METHOD field is set to 'no-encryption'. The third row represents a

file encrypted using the server-side encryption method. In this case, the symmetric_key,

private_key, tag, and iv fields have non-null values used in the encryption and decryption

processes. The Is-encryption field is set to 1 (True), and the ENCRYPTION_METHOD

Name symmetric_key private_key tag iv salt Is-encryption METHOD

images/ali.jpg NULL NULL NULL NULL NULL 0 no-encryption

images/ali.jpg NULL NULL NULL NULL NULL 1 client-side

images/ali.jpg x'4c2e25f7e.. x'782405dle. x'29840dle. x'2984adle. NULL 1 server-side

33

field is set to 'server-side'. As shown in (Figure 23), the user can use any of these three

options to upload the file, and the user can choose which option is used.

We have leveraged Content Delivery Networks (CDNs) to secure stable files in the

cloud, optimizing the application of Kubernetes and eliminating the need for Persistent

Volumes (PVs) and Persistent Volume Claims (PVCs). File stability has been achieved by

integrating a CDN with our website hosted on Kubernetes. Our Kubernetes cluster

distributes the website's content via HTTPS and incorporates the CDN provider's servers

as an additional caching layer.

Monitoring

This section presents a comparative analysis of two distinct Kubernetes YAML file

configurations and their impact on security. Website A employs a high-security setup,

whereas Website B utilizes the default settings. Three monitoring mechanisms are

deployed to examine the differential security outcomes for each website.

A comprehensive security assessment was conducted on Website A, revealing an

8% failure rate in terms of security performance. The discrepancy between Website A and

Website B, demonstrating a 7% failure rate, highlights the importance of constant

evaluation and refinement of security measures in website development (Figures 24 and

25).

34

Figure 23. Monitoring from Datree website A.

Figure 24. Monitoring from Datree website B.

The Kube-hunter tool was utilized to investigate possible security vulnerabilities

associated with the websites. The analysis of Website A revealed a complete lack of

exploitable vulnerabilities. In contrast, the comparative study of another website detected

vulnerabilities using Kube-hunter, emphasizing the significance of a well-established

security framework (Figures 26 and 27).

35

Figure 25. Monitoring from Kube-hunter website A.

Figure 26. Monitoring from Kube-hunter website B.

36

The Mozilla Observatory, a prominent tool for assessing security configurations,

was used to analyze the project's website. This evaluation generated an A+ rating and an

exceptional score of 125/100, indicative of an optimal security configuration. However, a

second website assessed using the same tool garnered a C+ rating, with a score of 60/100,

passing 9 out of the 11 tests. The disparity in security ratings is attributed to factors such

as robust encryption, data protection protocols, and advanced security measures like

Content Security Policy (CSP) and HTTP Strict Transport Security (HSTS) (Figures 28

and 29).

Figure 27. Monitoring from Mozilla Observatory website A.

37

 Figure 28. Monitoring from Mozilla Observatory website B.

If an attacker attempts to compromise a website, systematic efforts to gain

unauthorized access to sensitive pages or functions, such as the login page, may occur. The

server detects malicious activity, temporarily blocks the attacker's IP address, and denies

further access to the targeted login page (Figure 30). This defense mechanism mitigates the

risk of unauthorized access and helps maintain the website's integrity (Table 3).

38

Figure 29. Shows the attack and the message with the IP.

Table 3. IP address blocking due to excessive requests

NO. ip_address block_reason block_time

1 127.0.0.1 Exceeded requests per minute threshold. 2023-04-17 19:22

39

Figure 30. The login page with a warning message.

The authentication mechanism ensures secure management of user accounts and

reinforces the application's overall security by safeguarding against unauthorized access.

For example, when attempting to use an SQL query to log in, the system prevents it and

displays, "There was an error logging in. Please try again." (Figure 31).

Benefits of using Django

Django is a high-level Python web framework that enables the rapid development

of secure and maintainable websites. Using Django for your website pages offers several

benefits:

1. Faster Development: Django follows the "batteries included" philosophy,

which includes many built-in features that simplify and speed up the

development process, such as a powerful ORM (Object-Relational Mapping),

form handling, authentication, and more.

2. Scalability: Django is designed to handle various applications, from small-

scale personal projects to large-scale enterprise applications. Its modular and

reusable components make it easier to scale your website as your user base or

feature set grows.

40

3. Security: Django strongly focuses on security, offering built-in protection

against common web vulnerabilities like cross-site scripting (XSS), cross-site

request forgery (CSRF), and SQL injection. The framework also provides

robust user authentication and authorization features.

4. Maintainability: Django promotes clean, modular code use by adhering to the

DRY (Don't Repeat Yourself) and lose coupling principles. Using DRY

encourages developers to write reusable and maintainable code, making it

easier to update and extend your website over time.

5. Wide Ecosystem: Django's large and active community contributes to a broad

ecosystem of reusable third-party applications, packages, and plugins means

you can often find pre-built solutions for everyday tasks or requirements,

further speeding up development.

6. Clear Documentation: Django is known for its extensive and well-organized

documentation, which makes it easier for developers to learn and use the

framework effectively.

7. Admin Interface: Django includes a built-in admin interface, which provides a

convenient way to manage your application's data and perform administrative

tasks without additional development.

8. Customizability: While Django comes with many out-of-the-box features, it

also allows for extensive customization, ensuring you can build a website that

meets your needs.

41

9. Portability: Django is platform-agnostic, meaning it can run on any operating

system that supports Python, making it easy to migrate your website to

different environments as needed.

Benefits of using Kubernetes

1. Scalability: Kubernetes simplifies the process of scaling applications up or

down based on demand, allowing for efficient use of resources and handling

varying workloads.

2. High availability: Kubernetes automatically distributes containers across

multiple nodes, ensuring that applications remain available even if a node fails.

This promotes a robust and fault-tolerant infrastructure.

3. Simplified deployment and management: Kubernetes streamlines the

deployment process by managing the lifecycle of containerized applications,

enabling rolling updates, automatic rollbacks, and version control.

4. Service discovery and load balancing: Kubernetes provides built-in service

discovery and load balancing, which improves application performance and

resilience by distributing traffic across multiple instances.

5. Resource efficiency: Kubernetes optimizes resource utilization by intelligently

scheduling and allocating resources based on application requirements,

resulting in cost savings.

6. Self-healing: Kubernetes can detect and replace failed containers, reschedule

containers on failed nodes, and automatically scale applications based on

resource constraints, promoting system stability.

42

7. Extensibility: Kubernetes can be extended with custom resource definitions,

plugins, and a rich ecosystem of third-party tools, enabling customization and

integration with existing infrastructure.

8. Container-centric approach: Kubernetes uses a container-based approach,

which allows for consistent deployment and management of applications across

various environments, promoting developer productivity and operational

efficiency.

9. Strong community and ecosystem: Kubernetes is supported by a vibrant

community and ecosystem of tools, libraries, and services, making it a popular

choice for container orchestration.

10. Multi-cloud and hybrid-cloud support: Kubernetes enables you to run

applications on any cloud platform or even on-premises, providing flexibility

and reducing vendor lock-in.

The tabular analysis (Table 4) presents a comparative evaluation, delineating the

differences between utilizing Kubernetes and traditional servers. This comparative

assessment focuses on critical factors such as scalability, resource utilization, deployment

and management, fault tolerance and high availability, load balancing, service discovery,

and portability. The results indicate a superiority in employing Kubernetes over

conventional server infrastructures.

The first factor, scalability, refers to the capability of a system to adapt to varying

workloads by expanding or contracting its resources. In this context, Kubernetes

demonstrates an enhanced ability to manage the scaling requirements of applications in

contrast to standard servers.

43

Resource utilization is another critical aspect of system performance, which denotes

the effective and efficient allocation of resources, such as CPU, memory, and storage.

Again, Kubernetes excels in this area due to its container-based architecture, which enables

efficient resource sharing and optimizes overall utilization compared to traditional server

infrastructures.

In terms of deployment and management, Kubernetes streamlines the process by

offering a unified and automated approach for deploying, scaling, and managing

containerized applications, resulting in significantly reduced manual intervention and

improved productivity, unlike the cumbersome processes typically associated with

standard servers.

Furthermore, Kubernetes demonstrates a higher level of fault tolerance and high

availability, as it inherently supports rapid detection and recovery from failures, ensuring

that applications remain operational with minimal downtime. Conversely, conventional

servers often necessitate manual intervention and lengthy recovery times.

Load balancing and service discovery are essential for distributing the workload among

multiple servers to optimize resource usage and minimize response time. Kubernetes

provides an integrated solution for these tasks, resulting in efficient traffic management

and automatic service discovery. However, standard servers require additional external

tools and manual configurations to achieve similar functionality.

Lastly, portability measures the ease with which an application can be transferred from

one environment to another. Kubernetes facilitates portability by standardizing the

deployment process and maintaining consistency across various platforms. This advantage

44

starkly contrasts the platform-specific dependencies and varying configurations of

traditional server environments.

Table 4. Comparison between Kubernetes and standard servers

 Kubernetes Standard servers
Scalability Automatic, handles traffic spikes

and load balancing
Manual, time-consuming,

error-prone

Resource utilization Efficient, shares resources across
containers

Often underutilized, dedicated
resources per app

Deployment and
management

Simplified, declarative
configuration, rolling updates

Complex, manual
intervention, custom scripts

Fault tolerance and
high availability

Automatic restarts, high
availability

Manual configuration,
additional tools

Load balancing and
service discovery

Built-in load balancing and
service discovery

Additional tools, manual
configuration

Portability Containerization, easily portable
across environments

Environment-specific, more
challenging

45

CHAPTER VI

DISCUSSION

 This thesis demonstrated the effectiveness of combining Django, Kubernetes, hybrid

encryption, zero-knowledge encryption, and attack prevention measures in enhancing

cloud security and privacy. We have found that integrating these technologies and security

measures yields significant benefits in terms of security and privacy. Furthermore, the

built-in security features of Django, along with the scalability and orchestration capabilities

of Kubernetes, create a robust and dynamic infrastructure that can likely adapt to various

threats and challenges.

 Integrating hybrid encryption and zero-knowledge encryption enhances the

application's data security. Hybrid encryption provides an additional layer of protection,

ensuring that sensitive information is encrypted using a combination of symmetric and

asymmetric encryption algorithms. Zero-knowledge encryption, conversely, ensures that

even the service providers cannot access the encrypted data, thus providing users with a

higher level of privacy.

 Furthermore, our work highlighted the benefits of implementing zero-knowledge

encryption in cloud-based systems, emphasizing its potential to promote data privacy and

its practical implementation in real-world scenarios.

 In addition, we utilized a three-tier approach to data uploading, which grants

customers the autonomy to decide whether to upload sensitive or non-sensitive data and

determine the storage location of the encryption key—either in the cloud or retained by the

user. This layered approach further strengthens data protection and empowers customers

to safeguard their information.

46

CHAPTER VII

FUTURE WORK

 Pursuing enhanced security and privacy in web applications and cloud storage is an

ongoing endeavor, necessitating continuous efforts to expand our knowledge and develop

innovative methods for thwarting potential attackers. In future research, we will explore

the potential integration of machine learning or deep learning techniques with cloud storage

systems to further improve security and privacy, which are paramount for all cloud users.

Additionally, we will investigate incorporating more zero-knowledge proof

methods, which can bolster security during login, registration, authentication, and

authorization processes. This approach will empower users with greater control over their

data.

Furthermore, we will consider using multiple cloud storage providers to examine

the impact on security enhancements, aiming to ensure optimal data protection without

compromise. By diversifying storage options, we can identify best practices and develop

tailored security strategies to meet the unique requirements of various cloud storage

solutions.

Finally, we will consider implementing different server-side encryption methods

and compare them with the current user-side encryption for various performance measures.

47

BIBLIOGRAPHY

[1] L. Giannopoulos, E. Degkleri, P. Tsanakas, and D. Mitropoulos, “Pythia:
Identifying Dangerous Data-flows in Django-based Applications,” in Proceedings
of the 12th European Workshop on Systems Security, Dresden Germany: ACM,
Mar. 2019, pp. 1–6. doi: 10.1145/3301417.3312497.

[2] M. Zhou, R. Zhang, W. Xie, W. Qian, and A. Zhou, “Security and Privacy in Cloud
Computing: A Survey,” in 2010 Sixth International Conference on Semantics,
Knowledge and Grids, Beijing, China: IEEE, Nov. 2010, pp. 105–112. doi:
10.1109/SKG.2010.19.

[3] B. Tubre and P. Rodeghero, “Exploring the Challenges of Cloud Migrations During
a Global Pandemic,” in 2020 IEEE International Conference on Software
Maintenance and Evolution (ICSME), Adelaide, Australia: IEEE, Sep. 2020, pp.
784–785. doi: 10.1109/ICSME46990.2020.00090.

[4] M. Theoharidou, N. Papanikolaou, S. Pearson, and D. Gritzalis, “Privacy Risk,
Security, Accountability in the Cloud,” in 2013 IEEE 5th International Conference
on Cloud Computing Technology and Science, Bristol, United Kingdom: IEEE,
Dec. 2013, pp. 177–184. doi: 10.1109/CloudCom.2013.31.

[5] Z. Tari, X. Yi, U. S. Premarathne, P. Bertok, and I. Khalil, “Security and Privacy
in Cloud Computing: Vision, Trends, and Challenges,” IEEE Cloud Comput., vol.
2, no. 2, pp. 30–38, Mar. 2015, doi: 10.1109/MCC.2015.45.

[6] Z. Tari, “Security and Privacy in Cloud Computing,” IEEE Cloud Comput., vol. 1,
no. 1, pp. 54–57, May 2014, doi: 10.1109/MCC.2014.20.

[7] S. K. Sowmya, P. Deepika, and J. Naren, “Layers of Cloud – IaaS, PaaS and SaaS:
A Survey,” in 2014 (IJCSIT) International Journal of Computer Science and
Information Technologies, Vol. 5 (3) , 2014, 4477-4480

[8] M. K. Sarkar and S. Kumar, “Ensuring Data Storage Security in Cloud Computing
Based On Hybrid Encryption Schemes,” In 2016 Fourth International Conference
On Parallel, Distributed And Grid Computing (PDGC), Waknaghat, India: IEEE,
2016, pp. 320–325. doi: 10.1109/PDGC.2016.7913169.

[9] P. P. W. Pathirathna, V. A. I. Ayesha, and W. A. T. Imihira, “Security Testing as a
Service with Docker Containerization,” In 2017 11th International Conference on
Software, Knowledge, Information Management and Applications (SKIMA) pp. 1-
7. IEEE.

[10] M. Moravcik, M. Kontsek, P. Segec, and D. Cymbalak, “Kubernetes - Evolution
of Virtualization,” in 2022 20th International Conference on Emerging eLearning

48

Technologies and Applications (ICETA), Stary Smokovec, Slovakia: IEEE, Oct.
2022, pp. 454–459. doi: 10.1109/ICETA57911.2022.9974681.

[11] V. B. Mahajan and S. B. Mane, “Detection, Analysis and Countermeasures for
Container Based Misconfiguration Using Docker and Kubernetes,” in 2022
International Conference on Computing, Communication, Security and Intelligent
Systems (IC3SIS), Kochi, India: IEEE, Jun. 2022, pp. 1–6. doi:
10.1109/IC3SIS54991.2022.9885293.

[12] S. Rahul, C. Vajrala, and B. Thangaraju, “A Novel Method of Honeypot Inclusive
WAF to Protect from SQL Injection and XSS,” in 2021 International Conference
on Disruptive Technologies for Multi-Disciplinary Research and Applications
(CENTCON), Bengaluru, India: IEEE, Nov. 2021, pp. 135–140. doi:
10.1109/CENTCON52345.2021.9688059.

[13] R. Luchs and L. Sneeringer. "Zero-Knowledge Encryption in the Cloud: A
Solution for the Remote File Storage," in 2018 University of Pittsburgh, Swanson
School of Engineering, Conference Session: A11, Mar. 2018, pp.8069. Available:
https://sites.pitt.edu/~budny/papers/8069.pdf

[14] I. Kovacevic, M. Marovic, S. Gros, and M. Vukovic, “Predicting Vulnerabilities
in Web Applications Based on Website Security Model,” in 2022 International
Conference on Software, Telecommunications and Computer Networks
(SoftCOM), Split, Croatia: IEEE, Sep. 2022, pp. 1–6. doi:
10.23919/SoftCOM55329.2022.9911436.

[15] Md. S. Islam Shamim, F. Ahamed Bhuiyan, and A. Rahman, “XI Commandments
of Kubernetes Security: A Systematization of Knowledge Related to Kubernetes
Security Practices,” in 2020 IEEE Secure Development (SecDev), Atlanta, GA,
USA: IEEE, Sep. 2020, pp. 58–64. doi: 10.1109/SecDev45635.2020.00025.

[16] W. K. Daniel, “Challenges on privacy and reliability in cloud computing security,”
in 2014 International Conference on Information Science, Electronics and
Electrical Engineering, Sapporo, Japan: IEEE, Apr. 2014, pp. 1181–1187. doi:
10.1109/InfoSEEE.2014.6947857.

[17] B. Zukran and M. M. Siraj, “Performance Comparison on SQL Injection and XSS
Detection using Open Source Vulnerability Scanners,” in 2021 International
Conference on Data Science and Its Applications (ICoDSA), Bandung, Indonesia:
IEEE, Oct. 2021, pp. 61–65. doi: 10.1109/ICoDSA53588.2021.9617484.

[18] P. Tanakas, A. Ilias, and N. Polemi, “A Novel System for Detecting and
Preventing SQL Injection and Cross-Site-Script,” in 2021 International
Conference on Electrical, Computer and Energy Technologies (ICECET), Cape
Town, South Africa: IEEE, Dec. 2021, pp. 1–6. doi:
10.1109/ICECET52533.2021.9698

49

[19] A. Aborujilah, J. Adamu, S. M. Shariff, and Z. Awang Long, “Descriptive
Analysis of Built-in Security Features in Web Development Frameworks,” in 2022
16th International Conference on Ubiquitous Information Management and
Communication (IMCOM), Seoul, Korea, Republic of: IEEE, Jan. 2022, pp. 1–8.
doi: 10.1109/IMCOM53663.2022.9721750.

[20] M. Panagiotis "Attack Methods and Defenses on Kubernetes" in 2020. Master's
thesis, Piraeus University, Piraeus, Greece. Jun. 2020,
http://dx.doi.org/10.26267/unipi_dione/311

[21] S. Watts and M. Raza. “SaaS vs PaaS vs IaaS: What’s The Difference & How To
Choose.” https://www.bmc.com/blogs/saas-vs-paas-vs-iaas-whats-the-difference-
and-how-to-choose/. Jun. 15, 2019.

[22] N. T. “What is Data Privacy in Cloud Computing? Definition, Challenges ..” Data
Privacy in Cloud Computing. https://binaryterms.com/data-privacy-in-cloud-
computing.html. Dec. 12, 2020.

[23] W. Chai. “What is the CIA Triad? Definition, Explanation, Examples.”
TechTarget. https://www.techtarget.com/whatis/definition/Confidentiality-
integrity-and-availability-CIA

[24] D. S. “Principles of Security-Tryhackme. Learn The Principles of Information.”
https://medium.com/. Sep. 08, 2021. https://medium.com/@DimigraS/principles-
of-security-tryhackme-fef726cf0b74

[25] OWASP Top Ten | OWASP Foundation. https://owasp.org/www-project-top-ten/.
Accessed 10 Apr. 2023.

[26] I. Shakury. “kube-hunter: Hunt For Security Weaknesses Kubernetes Clusters.”
GitHub. Sep. 04, 2022. https://github.com/aquasecurity/kube-hunter

[27] T. Swimmer. “Datreeio/Datree: About Prevent Kubernetes Misconfigurations
from Reaching Production. From Code to Cloud, Datree Provides an E2E Policy
Enforcement Solution to Run Automatic Checks for Rule Violations.” GitHub.
Oct. 04, 2021. https://github.com/datreeio/datree

[28] G. Wood. “mozilla/http-observatory-website: Mozilla Observatory (Website).”
GitHub. Nov. 07, 2022. https://github.com/mozilla/http-observatory-website

[29] Z. Ghanbari, Y. Rahmani, H. Ghaffarian and M. H. Ahmadzadegan, "Comparative
Approach to Web Application Firewalls," 2015 2nd International Conference on
Knowledge-Based Engineering and Innovation (KBEI), Tehran, Iran, 2015, pp.
808-812, doi: 10.1109/KBEI.2015.7436148.

[30] S. Alhomdy, F. Thabit, F. Abdulrazzak, A. Haldorai, and S. Jagtape. “The Role Of
Cloud Computing Technology: A Savior to Fight The Lockdown in COVID 19

50

Crisis, The Benefits, Characteristics and Applications.” COVID 19. Oct. 05, 2021.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8492023/

[31] I. Chua. “Real Life Examples of Web Vulnerabilities (OWASP Top 10).” OWASP
Top 10. Jan. 04, 2022. https://www.horangi.com/blog/real-life-examples-of-web-
vulnerabilities

[32] S. Foster. "Vulnerabilities Definition: Top 10 Software Vulnerabilities" Jul 27,
2020. https://www.perforce.com/blog/kw/common-software-vulnerabilities

[33] S. El-etriby, E. Mohamed, and H. Abdul-kader. "Modern Encryption Techniques
for Cloud Computing Randomness and Performance Testing" ICCIT 2012 In
Proceedings of International Conference on Communications and Information
Technology (ICCIT2012), Hammamet, Tunisia (pp. 800-805)

[34] K. Duisebekova, K. Nationa, and R. Khabirov "Django as Secure Web-Framework
in Practice" The Bulletin of Kazakh Academy of Transport and Communications
named after M. Tynyshpayev ISSN 1609-1817. Vol. 116, No.1 (2021), pp.275-
281

[35] T.-T. Nguyen, Y.-J. Yeom, T. Kim, D.-H. Park, and S. Kim, “Horizontal Pod
Autoscaling in Kubernetes for Elastic Container Orchestration,” Sensors, vol. 20,
no. 16, p. 4621, Aug. 2020, doi: 10.3390/s20164621.

[36] Holovaty, A., & Kaplan-Moss, J. (2009). The Definitive Guide to Django: Web
Development Done Right, Second Edition (2nd. ed.). Apress, USA.

[37] Tari, Z., Yi, X., Premarathne, U. S., Bertok, P., and Khalil, I. Security and Privacy
in Cloud Computing: Vision, Trends, and Challenges. IEEE Cloud Computing,
2(2):30–38, 2015.

[38] Theoharidou, M., Papanikolaou, N., Pearson, S., and Gritzalis, D. Privacy Risk,
Security, Accountability in The Cloud. In 2013 IEEE 5th International Conference
on Cloud Computing Technology and Science, volume 1, pages 177–184. IEEE,
2013.

[39] A. Priyanka and S. Smruthi, "WebApplication Vulnerabilities: Exploitation and
Prevention," Proceedings of the Second International Conference on Inventive
Research in Computing Applications (ICIRCA-2020) IEEE Xplore Part Number:
CFP20N67-ART; ISBN: 978-1-7281-5374-2

[40] A. S. Dikhit and K. Karodiya, “Result Evaluation of Field Authentication Based
SQL Injection and XSS Attack Exposure,” in 2017 International Conference on
Information, Communication, Instrumentation and Control (ICICIC), Indore:
IEEE, Aug. 2017, pp. 1–6. doi: 10.1109/ICOMICON.2017.8279148.

51

APPENDIX

The code developed during this research is available online in a GitHub repository:

https://github.com/alialqarni2040/project.git

