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ABSTRACT 

 Hurricanes have affected the waters of the east coast of the United States 

throughout the region’s history. These storms cause changes in water quality through 

mechanisms such as damage to infrastructure, excessive precipitation, and storm surges. 

We attempt to conduct a regional assessment of these changes in water quality through 

the study of 14 hurricanes. To reach our goal we collected water quality datasets for 815 

stations from the USGS’s Water-Quality Data for the Nation database, extracted a 

various range of contributing variables for each investigated station, and constructed and 

employed a machine learning based procedure to determine which contributing factors 

have the highest impact on water quality as well as the magnitude of the response. This 

technique yields a better understanding of the relationship between hurricanes and their 

impact on water quality and also provides a predictive capability where the impact of 

future hurricanes can be modeled and estimated. 
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CHAPTER I 

INTRODUCTION 

Water Quality and Hurricanes 

The impacts of hurricanes on water quality is a topic that has been moderately 

studied by the scientific community. These studies are limited in geography as well as 

number. All of the studies reviewed have focused on areas in the eastern United States, 

possibly due to the limited geographical locations affected by occurrences of tropical 

storms and hurricanes. The limited number of studies quantifying the relationship 

between hurricanes and water quality parameters are primarily small-scale studies. The 

impacts of hurricanes on water quality typically revolve around measuring water quality 

parameters in single areas after a single event. The two areas most often studied are 

estuaries (Hagy et al., 2006; Peierls et al., 2003; Wetz & Yoskowitz, 2013) and urban 

areas (Adams et al., 2007; Pardue et al., 2005), with lakes (Steward et al., 2006), swamps 

(Rybczyk et al., 1995), and rivers (Mallin et al., 1999; Mallin et al., 2002) sometimes 

being studied. The findings of these studies are relatively consistent. Runoff from rainfall 

creates nutrient rich situations in estuary or lacustrine settings. Turbidity typically 

increases in estuary, riverine, and lacustrine settings (Mallin et al., 1999; Steward et al., 

2006). Dissolved oxygen (DO) is consistently found to be lower than normal and 

sometimes completely anoxic for days after a storm (Hagy et al., 2006; Mallin et al., 

1999; Pardue et al., 2005). A non-consistent finding is that salinity in bodies of water can 

both increase and decrease after a hurricane (Hagy et al., 2006; Mallin et al., 1999), 

where storm surges cause high salinity and rainfall causes low salinity, outcome 

depending on which of these phenomena is more impactful in the area of study. 
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Conditions typically return to normal within four days to a week after an event in urban 

and riverine settings (Adams et al., 2007; Mallin et al., 1999; Pardue et al., 2005), 

however some effects (e.g. DO, Turbidity) can last up to two months in estuaries (Peierls 

et al., 2003). Gaps in scientific knowledge exist in the form of large-scale studies. All of 

these studies focused at one event at a time or at one location over several events. 

Objectives 

The goal of this project is to evaluate and quantify the relationship between 

hurricane events and water quality parameters in a generalizable way. The main 

hypothesis of this study is the following:  

 

“Hurricane impacts to water quality indicators can be quantified and modeled using 

machine learning tools.” 

 

To evaluate this hypothesis and to accomplish the main study’s goal, the 

following tasks constitute integral parts of this thesis: 

a) Gather, quality control, and parameterize a host of hurricane spatiotemporal 

attributes, water quality parameters, and impacted basins characteristics. 

b) Develop and evaluate methods to identify and record temporal signatures in water 

quality parameters before, during, and after individual events. 

c) Quantification of potential direct relationship between individual controlling factors, 

individual response variable, and controlling factors and response variables. 



3 

 

d) Development and evaluation of machine learning-based predictive models for 

estimation of water quality impacts using hurricane attributes and basic 

characteristics. 

e) Description of study findings, the importance of key controlling factors, uncertainties 

in this study, and opportunities for future enhancement of models’ performance.   
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CHAPTER II 

METHODS 

Study Site 

The study area is based in the eastern seaboard of the United States and the Gulf 

of Mexico. This large geographic area offers an opportunity capture a broad range of 

spatiotemporal conditions, as this study is an attempt to be as broad and generalizable as 

possible. The spatial extent of this study is defined as all U.S. Geological Survey (USGS) 

water quality stations within the wind swathes of every hurricane examined as 

determined by National Oceanic and Atmospheric Administration (NOAA) (Figure 1).  

The storms examined in this study are all hurricanes (category 1-5) through the 

years of 2008 to 2018 (Table 1). These temporal limits are due to the widespread 

availability of USGS and NOAA data after 2008. Tropical storms and tropical 

depressions are not included in this study. 

In order to investigate the impact of storms on key water quality indicators, data 

on hurricane attributes, watershed physical and climatic characteristics, and water quality 

indicators are collected, quality controlled, parametrized, and used to develop stochastic 

models describing their relationship. It is therefore important to obtain two categories of 

data: controlling factors and response variables. Controlling factors here are defined as 

those factors that might have an influence on water quality in the context of a hurricane. 

Soil type, for example, is a factor which falls into this category, as some soils may be 

more easily erodible than others and contribute to the resultant turbidity. Response 

variables here were defined as the parameters of water quality to monitor. Turbidity, for 

example, is a variable that falls into this category, being a measurement of water quality. 
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Figure 1. Map of the study area (defined by the extent of the wind swaths) showing the 

locations of USGS stations as well as hurricane tracks and their combined wind swaths. 
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Table 1.  Storms used to investigate the relationship between water quality parameters 

and hurricanes. 

 

Hurricane Category Landfall Date Location 

Gustav 4 9/1/2008 Louisiana 

Ike 4 9/13/2008 Texas 

Ida 2 11/10/2009 Alabama 

Irene 3 8/27/2011 North Carolina 

Isaac 1 8/28/2012 Texas 

Sandy 3 10/29/2012 New Jersey 

Arthur 2 7/4/2014 North Carolina 

Hermine 1 9/2/2016 Florida 

Matthew 5 10/8/2016 South Carolina 

Harvey 4 8/25/2017 Texas 

Irma 5 9/10/2017 Irma 

Nate 1 10/8/2017 Louisiana 

Michael 5 10/10/2018 Florida 

Florence 4 9/14/2018 North Carolina 

 

Controlling Factors 

Controlling factors consist of factors related either to the physical station site or 

the storm itself. Storm strength, wind speed, the distance to the storm track, the distance 

to the point of storm landfall, the total storm precipitation, total precipitation over each 
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USGS station, and the total precipitation over each contributing area are all controlling 

factors belonging to each storm. The distance to the coast, contributing area size, climate 

zone, water body type, land use, mean slope of contributing area, and soil are all 

controlling factors unique to each USGS station. 

Storm Strength 

 Storm strength is obtained by using the respective hurricanes’ Saffir–Simpson 

Hurricane Wind Scale values (from 1 to 5). The value used is the storm’s maximum 

category, applied to all stations covered by the storm regardless of the actual strength at 

the time the storm reached an individual station. Therefore, this controlling factor acts as 

a measure of the storm’s maximum size and maximum strength, not local strength (which 

is represented by the next factor, wind speed). Data is obtained from NOAA (National 

Oceanic and Atmospheric Administration)’s NHC (National Hurricane Center) published 

hurricane data.  

Wind Speed 

 Wind speed is obtained in knots, with the given values for each station being the 

estimated maximum ground wind speeds at the location of each USGS station. Estimated 

wind speed values range between 0 and 64 knots, with discrete values of 0, 32, 50, and 64 

knots for each individual storm (Figure 2). This controlling factor allowed for local wind 

conditions to have an effect on the model. The wind data was obtained from NOAA NHC 

published hurricane data. 
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Figure 2. Map of wind speed data for hurricane Irma. 

 

Distance to Storm Track 

 The distance to storm track is calculated as the linear distance in kilometers from 

each USGS station to the closest point along the central path of the storm. This data 

allows for the model to take the proximity of the storm into account. The storm path data 

is obtained from NOAA NHC published hurricane data. 

Distance to Storm Landfall 

 The distance to storm track is calculated as the linear distance in meters from each 

USGS station to the point where the storm track intersected the contiguous US’s 
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coastline. In general, hurricanes typically weaken upon making landfall. Thus, this 

controlling factor allows for the model to take into account the proximity of each station 

to this phenomenon. In the case where a hurricane track intersects with the shoreline 

multiple times, the first such intersection is used. The storm path data is obtained from 

NOAA NHC published hurricane data while the coastline data is obtained from NOAA 

from their Medium Resolution Shoreline project. 

Distance to Coast 

 The distance to coast is calculated as the linear distance in meters from each 

USGS station to the nearest line segment of NOAA’s Medium Resolution Shoreline 

(Figure 3). This data allows the model to take into account the continental vs littoral 

nature of the station in spatial terms. Data is obtained from NOAA from their Medium 

Resolution Shoreline project. 
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Figure 3. Map of the distance function used to generate distance data—in this case, 

distance to the coastline. 

 

Total Storm Precipitation 

 Total Storm precipitation is calculated by summing the total daily rainfall over 

land of each hurricane from the day it achieved category 1 on the Saffir–Simpson 

Hurricane Wind Scale until the storm dissipated (defined as the exit of hurricane 

precipitation from the contributing area of the USGS stations affected by that storm). 

This total precipitation value takes into account the entire rainfall of the hurricane, and 

thus allows a measure of the hurricane’s strength within the model which is not solely 
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based on its wind speed. The data used for all precipitation factors is derived from the 

PRISM Climate Group’s daily precipitation raster grids.  

 

 

Figure 4. Map of the total calculated precipitation for Irma. 

 

Total Precipitation Over USGS Station 

 Total precipitation over each USGS station is tallied by summing the total daily 

precipitation over each station using the methods and data described in Total Storm 

Precipitation. Here, however, the data summed is only that localized over each station. 
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This allows the model to take into account a spatially discrete level of precipitation 

individual to each USGS station. This acts as a local indication of local storm strength. 

 

 

Figure 5. Map of the total calculated precipitation over each USGS station for Irma. 

 

Total Precipitation Over Contributing Area 

 Total precipitation over the contributing area is obtained by summing the total 

daily precipitation within the associated contributing area of each station (see 

Contributing Area for a description of how contributing areas were calculated) using the 

methods and data described in Total Storm Precipitation. This controlling factor goes 
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beyond a measure of local storm strength, as the precipitation deposited within each 

USGS station’s contributing area supplies the flow of water through that station (Figure 

6). Thus, while the other precipitation factors can be helpful for understanding the 

strength of the storm, this factor is one of the primary drivers of water quality levels. 

 

 

Figure 6. Map of the total calculated precipitation over each contributing area for Irma. 

 

Contributing Area 

 Contributing areas for each USGS station are obtained by three separate methods, 

all resulting in the station’s contributing area being reported in square meters. Out of 457 

USGS stations, 278 have contributing areas published by the USGS as part of their USGS 
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Streamgage NHDPlus Version 1 Basins 2011 dataset. Where available, this data was 

used.  

A further 80 contributing areas are delineated using the USGS’s StreamStats tool. 

This tool is the method recommended to the author in correspondence with the USGS. 

StreamStats data is not available in all states, with Florida, Mississippi, Louisiana, and 

Texas unavailable. 

A further 69 contributing areas are able to be calculated using HUC12s delineated 

by the USGS’s Watershed Boundary Dataset (Data Model v2.3). Each HUC12 provided 

by the model is linked to those HUC12s upstream of it. These upstream HUC12s are all 

combined to the HUC12 where the USGS station was located, with the assumption that 

all water flowing through that HUC12 passes through the USGS station within the 

HUC12’s watershed. While this introduces some error, results are checked against 

existing stream network data of the USGS’s National Streamflow Network. It is found 

this method introduces minimal error (most USGS stations are located at the outlet of the 

various HUC12s. In the most egregious case, that of a station within the Delaware River 

basin, the contributing area size is erroneous by approximately +20%). With these three 

methods, 427 contributing areas are obtained (Figure 7).  

The contributing areas of the remaining 30 stations are unable to be satisfactorily 

calculated using these methods. In some cases, the watersheds are too small and the 

resolution of available data precluded their use. Significantly, all stations along the 

Mississippi River are unused, as their contributing areas are roughly 40% that of the 

contiguous United States. This large watershed would have introduced unacceptable 

levels of noise in the form of up-river processes independent of hurricane conditions. 
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Without a satisfactory method for isolating the effects of hurricanes in the large 

contributing area of the Mississippi River, the stations are thus excluded from analysis. 

 

 

Figure 7. Map of contributing areas. 

 

Climate Zone 

 Climate zones for each station is determined using existing Köppen climate 

classifications (Figure 8). Each USGS station is assigned the climate zone it resides in. 

This data allows for overall climate to be taken into account as a factor effecting water 

quality during storms. In order to analyze this data, it is divided into binary categories for 



16 

 

each different Köppen climate classification, with a value of 1 being assigned to the 

climate type the station was located in, and 0 being assigned to all other values. This is 

necessary as the data is nominal data. This study used the Koppen Climate Classification 

for the Conterminous United States from the University of Idaho. 

 

 

Figure 8. Map of climate zones. 

 

Water Body Type 

 Each USGS station is assigned a water-body type based on the water body the 

station is installed in (Figure 9). Categorizing each station by water body type allows the 

model to take into account the differences in response between flowing bodies of water 
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and more static ones. There is a total of four categories: stream, lake, estuary, ocean. 

Classification is accomplished by dividing each class into a separate entry and assigning 

a binary truth value to that entry. This is necessary to avoid assigning a ratio to this 

nominal data. Water body type data is from the USGS’s Water Quality Data for the 

Nation program. 

 

 

Figure 9. Map of each USGS station’s water body type. 

 

Land Use 

Land use is determined by aggregating particular land use classes and producing 

four separate percentages of land use within each station’s contributing area for input into 
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the model. The four categories used are urban, agricultural, wetland, and forest. Land use 

data is collected from the USGS’s NLCD (National Land Cover Database 2016). Each 

category is an amalgamation and reclassification of NLCD land use types: Urban land is 

defined as a combination of the developed open space, developed low intensity, 

developed medium intensity, and developed high intensity classes. Agricultural land was 

defined as a combination of the pasture/hay and cultivated crops classes. Wetland is 

defined as a combination of the woody wetlands and emergent herbaceous wetlands 

classes. Forest is defined as a combination of the deciduous forest, evergreen forest, and 

mixed forest land use classes (Figure 10).  
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Figure 10. Map of each land use category. 

 

Mean Slope of Contributing Area 

 The average slope of each contributing area is calculated by taking the mean slope 

within each USGS station’s contributing area (Figure 11). This mean slope is a rough 

indicator of how flat or undulating each station’s watershed is, and may be an important 

controlling factor for water quality parameters such as turbidity, which are influenced by 

erosion. The slope raster within each area consists of a 30m resolution raster obtained 

using the geodesic method of Esri’s slope geoprocessing tool in concert with a 30m 

resolution DEM of the eastern United States. DEM data is obtained from ALOS Global 
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Digital Surface Model "ALOS World 3D - 30m, provided by the Japan Aerospace 

Exploration Agency. 

 

 

Figure 11. Digital elevation model used to calculate slope for each contributing area. 

 

Soil Depth and Sand, Silt, and Clay Content in Contributing Area 

 Soil data is divided into four parameters: Soil depth, % sand, % silt, and % clay 

within the contributing area of each USGS station. All four parameters are calculated as 

the mean of that respective data within each contributing area. The inclusion of soil depth 

(Figure 12) and percentage information allows the model to account for soil’s impact on 
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erosivity and sediment supply.  Soil data is obtained from the USDA’s SSURGO (Soil 

Survey Geographic database) 

 

 

Figure 12. Map of the average soil thickness, one of the soil factors applied to each 

contributing area. 

 

Response Variables 

Response variables are measures of water quality used as targets for model 

development. Seven types of response variables are considered: discharge, gauge height, 

dissolved oxygen, pH, nitrates/nitrites, and turbidity.  This data is further divided into two 
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categories per response variable: magnitude difference and duration. Magnitude 

difference is defined as the difference between the mean pre-hurricane value and 

hurricane value of the response variable. Duration is defined as the number of days 

during which the response variable’s value remains outside of the first standard deviation 

of the pre-hurricane values. 

USGS Data 

A total of 1,037 individual USGS stations are within the study area. These 

stations possess a variety of instrumentation and some of these stations contain gaps of 

data for the corresponding period of hurricane activity. After an initial removing of 

superfluous stations without temporally useful data, 457 USGS stations remain to be used 

in the study. Of these 457, many stations were struck by multiple hurricanes and allowed 

for the collection of additional data. Each station affected by multiple hurricanes is 

therefore used several times, raising the number of instances with useful data to 815.  

The time periods considered include 20 years of USGS daily data collected for 

each station from a starting date of 1990-01-01 to an ending date of 2019-05-19. After 

inspection, it is found that data availability was limited before 2008, but the earlier data is 

still retained for assistance in establishing seasonal trends. 

Data Preprocessing 

The USGS station data comes in the form of daily data on a per station basis. This 

daily data consists of three values per instrument: the mean value measured for that day, 

the maximum, and the minimum. These data are often incomplete with gaps present for 

various reasons. A station’s instrument may have failed on a particular day and took 

months to repair. In other cases, the USGS stations were knocked offline by the very 
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hurricanes themselves. Data is sometimes fragmentary in these cases, sometimes with 

minimum and maximum values being reported without mean values. Additionally, some 

data are in different units (imperial vs metric). Therefore, several preprocessing steps are 

required. 

First, where imperial data and metric data overlaps, imperial data is converted to 

metric units. These data are then merged. Second, the mean, maximum, and minimum 

values are incorporated to provide an adjusted mean for analysis in the following way: 

where a mean value is available for a day, that value is used. Daily data in which a mean 

value does not exist, the average of the maximum and minimum values is used. In 

situations where the mean nor the maximum existed, the minimum value is used. In cases 

where the mean nor the minimum exists, the maximum value is used. Finally, in cases in 

which none existed, the entry is marked with the no data code (no_data). 

Data Processing and Interpretation  

It is necessary to detrend this new combined dataset to isolate hurricane impacts 

from seasonal variation. A yearly approach for detrending is used, with the data fit to a 

sinusoidal function and that function then subtracted from the data.  

A custom algorithm is developed to de-trend, identify signatures, and create the 

final data products of magnitude difference and temporal duration of anomalous water 

quality. This is accomplished by first establishing a baseline with the detrended data. The 

algorithm is given the landfall date of each hurricane. Due to the size and velocity of 

hurricane storm systems, as well as the large spatial distribution of USGS stations, it is 

inadvisable to use the hurricane’s landfall date as the division for pre and post hurricane 

windows. Therefore, the algorithm is programed to search for the onset of deviation from 
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the water preexisting water quality parameters within a 6-day window around the 

inputted landfall date. This is accomplished by looking at the second derivative of the 

water quality data and setting a large spike in that second derivative (analogous with 

acceleration in positional data) as the established estimated date of storm effect. The 

algorithm then recorded the proceeding 5 days from that established estimated date of 

storm effect, the pre-hurricane window, recording a mean and standard deviation for the 

proceeding conditions. Upon the landfall date, the algorithm then measured the peak 

value of the response variable. This peak value is subtracted from the previously 

established mean to provide a magnitude difference. Where the peak value, or lack 

thereof, falls within the bounds of the pre-effect window standard deviation, a zero value 

result is recorded. 

Obtaining the temporal duration of anomalous water quality is accomplished by 

defining normal conditions as being those conditions within the standard deviations of the 

pre-hurricane window. However, sometimes the water quality parameter does not return 

to the pre-effect window. Therefore, several conditions are defined. In a natural scenario 

where the water quality parameter returns to within the standard deviation of the pre-

effect window, the number of days the water quality parameter is outside the standard 

deviation is taken as the temporal duration of the event. In these cases, the metadata is 

marked with a “natural” (Figure 13).  
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Figure 13. Data interpretation algorithm assigning a natural termination. 

 

In some cases, data presents interpretive challenges. In the case that the 

instrument failed before the water quality parameter could return to the within the 

standard deviation of the pre-effect window, the number of days the water quality 

parameter is outside the standard deviation up until the cut-off is taken as the temporal 

duration of the event. In these cases, the metadata is marked with a “dropout” (Figure 

14). In the case that the water quality parameter never left the standard deviation of the 

pre-effect window, the temporal duration is taken to be 0. In these cases, the metadata is 

marked with a “nan” (Figure 15). In a minority of cases, the water quality parameter does 

not return to the standard deviation due to the intervention of other storms. To distinguish 

these special cases, the algorithm always looks to see if the first derivative of the data in 

the post-effect window possesses a positive first derivative (indicating that the water 
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quality parameter is halting its return towards mean conditions, possibly influenced by an 

external event). If the existence of a positive first derivative that occurs after the recorded 

peak value persists for longer than 3 days, the algorithm forces a termination. This is 

accomplished by extrapolating the slope of the data from the last day before the existence 

of a positive first derivative. The temporal duration is taken to be the number of days the 

data is outside of the standard deviation, including the extrapolated data. In these cases, 

the metadata is marked with a “forced” (Figure 16). The forced data is manually 

reviewed afterward and the method found to be a good fit for all affected stations. 

 

Figure 14. Data interpretation algorithm assigning a dropout termination. 
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Figure 15. Data interpretation algorithm assigning a zero value. 

 

Figure 16. Data interpretation algorithm assigning a forced termination. 
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Data Analysis 

With the proceeding work accomplished, we are left with a master dataset 

containing all contributing factors and all response variables associated with each USGS 

station. Not all USGS stations has instrumentation of all types. Out of the 815 stations 

there were 312 stations with discharge data, 188 stations with dissolved oxygen data, 226 

stations with gauge height data, 15 stations with nitrates/nitrites data, 151 stations with 

pH data, and 121 stations with turbidity data. The mean of each parameter is taken, as 

well as a distribution of values to provide a description of water quality responses. After 

this, analysis proceeds to correlations and machine learning. 

Data Correlation 

 Pearson’s correlation coefficient is calculated between controlling factors and 

response factors. Most important of these are the correlations between controlling factors 

and response variables. Performing a correlation between each factor gives a better 

insight into which controlling factors are most important to each response variable. 

Additionally, each controlling factor and response variable’s R values are squared and 

summed together. This sum of Pearson correlation coefficient values for each parameter 

offers a comparable measure of importance, with larger values corresponding to more 

correlation with the other parameters. 

Machine Learning 

 A shallow neural network is employed to build a predictive model with 

controlling factors as inputs and response variables as outputs. MATLAB’s shallow 

neural network fitting application is used to accomplish this. This function works by 

taking the inputs and targets, normalizing them, and sending the inputs through a network 
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of neurons with varying weights. With the correct weights, the inputs should match the 

outputs when put through the network. This matching ability is measured by a 

performance parameter (goodness of fit).  

 Data is arranged in rows, with each row representing an instance with a USGS 

station during a particular storm event and its respective controlling factors and response 

variables. Models are developed considering all controlling factors and one response 

variable at the time. A total of 10 models are developed (5 response variables for 

magnitude plus 5 response variables for duration in days). Those datasets are divided into 

two groups chosen randomly, with a training dataset consisting of 85% of instances and a 

test dataset consisting of the remaining 15% of instances. Bayesian regularization is used 

to train the neural network due to its suitability for small and noisy datasets, at the 

expense of computational efficiency. Due to the use of Bayesian regularization, no 

validation dataset is required. This is because Bayesian regularization uses a form of 

backpropagation that is used in place of validation data, having its own form of validation 

(MATLAB, 2020). 

 An analysis to consider the number of neurons is performed before the neural 

networks were built. The discharge daily data (the response variable with the second 

lowest correlation to its controlling factors, 0.31 being the sum of its R squared value) 

and the turbidity daily data (the response variable with the second highest correlation to 

its controlling factors, 1.49 being the sum of its R squared value) are used to perform this 

analysis. A neural network with n × 5 neurons is run using the parameters described 

above with the value of n ranging from 1 (5 neurons) up to 12 (60 neurons). It is found 

that the highest performance is offered at a neural network size of 50 neurons. Thus, 50 
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neurons are used for the neural networks in this study (Figure 17). A total of 10 neural 

networks are created, one for each response variable excluding nitrates and nitrites (due 

to poor sample size). Performance values are then reported for each neural network. 

 

 

Figure 17. Neural Network (generated with MATLAB). 
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CHAPTER III 

RESULTS AND DISCUSSION 

Evaluation of Response Variables 

The analysis and quality control of response variables in this study have given 

insights on important characteristics and relations. On average, most parameters do not 

persist for longer than a week (Table 2), the exception to this being discharge with a 

mean duration of 15 days and elevated water levels with a mean duration of 24 days. 

Additionally, a surprising result is the lowering of nitrate/nitrite levels on average. While 

the reason for this negative reaction is not investigated in this study, a reason that could 

be put forward is a potential ‘flushing effect’, where so much fresh water in the form of 

precipitation is dumped on an area that the surface pollutants are diluted and washed 

downstream. All response variables show a skewed distribution of the duration (Figure 

18). While most stations did see a return to normal conditions within a week, both pH and 

turbidity at specific stations persisted for up to two weeks. This may be explained by 

those stations being located in areas of reduced water movement such as lakes or 

estuaries.  Mean magnitude differences were calculated ranges between maximum 

hurricane conditions and pre-hurricane conditions while mean duration is the number of 

days to return to pre-hurricane conditions (Table 2). Most results are within expected 

ranges, however, results for DO conflict with previous studies, which show lowered DO 

levels after hurricanes (Hagy et al., 2006; Mallin et al., 1999; Pardue et al., 2005); though 

it should be noted these studies were limited in geographic scale and temporal scope. 

Additionally, it is important to note that these differences from the pre hurricane 

mean and duration vary significantly depending on the size of the contributing area, how 
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much precipitation it received, and many other factors. A correlative analysis and/or 

machine learning-based predictive model can quantify the relationship between these 

contributing factors and the response variables. These mean values are a useful 

benchmark, establishing expected courses of action for each water quality parameter after 

a storm. However, without accounting for the different setting of each individual station, 

one should interpret isolated parameters cautiously.  

 

Table 2. Response variables. Mean response is listed in units above/below pre-hurricane 

conditions. Mean duration is the number of days to return to pre-hurricane conditions. 

Statistics 

  

Discharge 

(cfs) 

DO 

(mg/L) 

GH 

(ft) 

N/N 

(mg/L) 

pH 

  

Turb 

(FNU) 

Mean difference 6600 0.74 4.1 -0.12 -0.36 100 

Std dev of dif. 18356.9 0.9 6.6 0.2 0.5 130.3 

Mean duration 15 3.4 24 3.5 7.2 5.5 

Std dev of dur. 18.8 4.8 147.9 6.1 19.4 5.1 

Sample Size 312 188 226 15 151 121 
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Figure 18. Histogram for the duration of elevated gauge height levels in days for every 

station. 
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Correlation of Controlling Factors and Response Variables 

Person’s correlation coefficient was calculated for all controlling factors and 

response variables are correlated with one another (Table 3). Lower correlation 

coefficient values can be attributed to there being a large number of contributing factors 

that influence each response variable. Therefore, the correlations should be interpreted 

liberally, keeping in mind that each controlling factor accounts for a percentage of 

influence upon each response variable.  

In addition to the correlation coefficients themselves, each controlling factor’s 

and each response variable’s correlation coefficients are summed, giving combined 

controlling factors and combined response variables values respectively (Table 4). For 

contributing factors, each of these values represent the relative ‘importance’ of each 

factor in terms of how well correlated they are overall. For example, we can see that the 

local precipitation over the USGS station has the highest relative ‘importance’ among 

contributing factors. This implies it is the most influential factor in determining the 

overall result of a hurricane in terms of the response variables studied here. For response 

variables, they can be interpreted somewhat differently: they are a measure of how well 

these correlations work to predict each response variable. In the case of high values, such 

as T Dur (the duration of turbidity outside the pre-hurricane mean), it implies that the 

chosen controlling factors do a good job of describing the response variable.  

It is important to remember that this is a two-dimensional analysis. It is helpful in 

that it highlights direct correlations between controlling factors and response variables. 

However, response dependent on a particular combination of several factors (such as 

turbidity levels where the slope and soil parameters combine with high precipitation 
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values to creative a particularly erosive environment) may not be obvious in this analysis. 

This multidimensional analysis is best performed using machine learning. Additionally, 

while correlative analysis is performed using the nitrates and nitrites data, its 

geographically limited scope and sample size of 15 precludes any statistically significant 

conclusions from that data. 

 

Table 3. Definition of terms used in tables 4 and 5. 

 

 

 

 

 

Term Definition Term Definition

Cs waterbody class, stream Lw land use, wetland

Cl waterbody class, lake S mean slope

Ce waterbody class, estuary Sd soil depth

Co waterbody class, ocean Ssa soil sand content

Dt distance to hurricane track Ssl soil silt content

Dl distance to hurricane landfall Sc soil clay content

Dc distance to coastline CRV combined response variables

SC storm category D Dif discharge magnitude difference

W windspeed D Dur discharge duration

Pa precipitation, total storm precipitation DO Dif dissolved oxygen magnitude difference

Pb precipitation, total over USGS station DO Dur dissolved oxygen duration

Pc precipitation, total over contributing area G Dif gauge height magnitude difference

KAw Aw Köppen climate class G Dur gauge height duration

KCfa Cfa Köppen climate class N Dif nitrates/nitrites magnitude difference

KDfa Dfa Köppen climate class N Dur nitrates/nitrites duration

KDfb Dfb Köppen climate class pH Dif pH magnitude difference

CA contributing area pH Dur pH duration

Lu land use, urban T Dif turbidity magnitude difference

La land use, agriculture T Dur turbidity duration

Lf land use, forest CCF combined controling factors
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Table 4. This table shows the correlation coefficients of controlling factors and response 

variables. Values are color coded based on their relative intensity, with green for the 

mean R2 values and blue and red for correlation coefficients. Controlling factors and 

response variables have been abbreviated. 

 

 

The response variables themselves show strong correlations between some water 

quality parameters (Table 5). These correlations can be helpful to determine which water 

quality response variables might be proxies for others. For instance, elevated levels of 

nitrates and nitrites are correlated (0.69) with a long duration of elevated turbidity. This 

enables the duration of elevated turbidity to be inferred if a USGS station is equipped 

D Dif D Dur DO DifDO Dur G Dif G Dur N Dif N Dur pH Dif pH Dur T Dif T Dur CCF

Cs 0.00 0.04 0.04 0.02 0.14 0.04 -0.18 0.16 0.26 -0.24 0.01 -0.37 1.51

Cl N/A N/A -0.05 -0.07 -0.05 -0.01 N/A N/A -0.53 0.45 0.13 0.51 1.80

Ce 0.00 -0.04 -0.07 -0.10 -0.10 -0.03 0.18 -0.16 0.10 -0.05 -0.13 0.03 1.00

Co N/A N/A 0.08 0.19 -0.08 -0.02 N/A N/A N/A N/A N/A N/A 0.37

Dt -0.11 -0.21 -0.02 0.03 -0.08 0.01 -0.03 -0.35 0.01 0.02 0.12 -0.17 1.18

Dl -0.16 -0.20 -0.13 0.01 -0.25 -0.10 0.01 0.10 0.04 -0.07 0.12 -0.33 1.53

Dc -0.15 -0.15 -0.20 -0.05 -0.18 -0.10 -0.20 -0.03 0.03 -0.09 0.21 -0.33 1.72

SC -0.07 -0.07 0.11 0.07 -0.07 -0.01 0.31 0.00 -0.09 -0.01 -0.01 -0.21 1.03

W 0.06 0.18 0.19 0.02 0.06 0.00 0.00 0.30 -0.18 0.01 -0.08 0.23 1.34

Pa -0.12 -0.05 -0.03 -0.03 -0.14 -0.05 0.04 0.16 -0.02 -0.02 -0.03 0.01 0.72

Pb 0.37 0.25 0.23 0.06 0.70 0.10 0.22 0.20 -0.30 0.33 0.06 0.53 3.36

Pc 0.53 0.09 0.13 -0.02 0.38 -0.02 0.33 -0.27 -0.17 0.43 0.07 0.46 2.90

KAw -0.04 0.14 N/A N/A -0.07 0.00 N/A N/A N/A N/A -0.12 -0.05 0.42

KCfa 0.05 -0.07 0.18 0.12 0.08 0.02 0.51 0.03 -0.19 0.06 0.04 -0.02 1.37

KDfa 0.01 -0.02 -0.12 -0.09 -0.05 -0.02 -0.51 -0.03 0.18 -0.09 -0.20 0.04 1.37

KDfb -0.06 0.08 -0.19 -0.14 -0.01 -0.01 N/A N/A 0.03 0.04 0.34 -0.04 0.93

CA 0.51 0.02 -0.11 -0.21 0.16 0.12 0.27 -0.23 0.09 0.04 -0.10 0.02 1.88

Lu -0.20 -0.16 0.25 0.33 -0.06 -0.07 -0.39 0.34 0.03 -0.09 0.09 -0.07 2.08

La 0.12 0.17 -0.10 -0.23 0.22 0.09 0.05 0.11 -0.05 0.08 0.15 0.26 1.62

Lf 0.13 0.01 -0.29 -0.22 0.03 0.04 -0.12 -0.06 0.15 0.04 -0.07 -0.17 1.33

Lw -0.01 0.09 0.24 0.12 -0.06 0.01 0.32 -0.31 -0.10 0.01 -0.21 0.04 1.51

S -0.02 -0.07 -0.20 -0.07 -0.12 -0.04 -0.20 -0.17 0.06 -0.07 0.01 -0.23 1.26

Sd 0.06 0.12 0.14 0.01 0.09 0.07 0.39 0.25 -0.17 0.08 -0.01 0.25 1.64

Ssa 0.03 0.03 0.13 -0.05 0.10 0.01 0.27 0.23 -0.09 0.13 -0.09 0.05 1.20

Ssl 0.00 -0.05 -0.14 0.03 -0.03 0.04 -0.32 -0.15 0.25 -0.08 0.09 -0.01 1.21

Sc -0.04 -0.17 -0.02 0.11 -0.07 -0.06 -0.37 -0.12 0.25 -0.14 0.04 -0.22 1.61

CRV 2.88 2.48 3.40 2.39 3.39 1.09 5.22 3.76 3.38 2.67 2.53 4.66
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with a nitrate/nitrite instrumentation, even if that station lacks the ability to measure 

turbidity. It also allows future predictions to be made, for peak levels of nitrate and 

nitrites now correlate with a duration of turbidity in the future. 

 

Table 5. This table shows the correlation coefficients between response variables. Values 

are color coded based on their position between -1 and 1. This table uses the same 

naming scheme for response variables as Table 4. 

 

 

Discussion of Correlation Results 

Precipitation seems to play a major role in nearly all response variables based on 

its sum of R2 values. That two types of precipitation dominate as a controlling factor is 

not surprising for a host of reason; large quantities of precipitation beget discharge, 

flooding, erosion, and more. What is surprising, however, is that while Pb (precipitation 

over the USGS station) and Pc (precipitation over the contributing area) show this, Pa 

(total precipitation of the storm) has nearly no correlation with other factors. Total storm 

precipitation is more a measure of storm strength than precipitation affecting the station: 

D Dif D Dur DO Dif DO Dur G Dif G Dur N Dif N Dur pH Dif pH Dur T Dif T Dur

D Dif 1.00

D Dur 0.22 1.00

DO Dif -0.02 0.16 1.00

DO Dur -0.12 0.05 0.75 1.00

G Dif 0.85 0.21 0.08 -0.07 1.00

G Dur 0.19 0.57 0.34 0.07 0.09 1.00

N Dif 0.24 -0.56 N/A N/A -0.14 -0.30 1.00

N Dur -0.17 0.62 N/A N/A 0.26 0.79 -0.43 1.00

pH Dif -0.19 -0.07 0.09 0.14 -0.19 -0.25 -0.41 0.25 1.00

pH Dur 0.27 0.13 -0.05 -0.10 0.27 0.28 0.62 -0.39 -0.44 1.00

T Dif 0.08 -0.01 -0.15 -0.03 0.12 0.06 0.38 -0.15 -0.23 0.14 1.00

T Dur 0.21 0.28 0.28 0.07 0.15 0.14 0.69 -0.46 -0.29 0.44 0.12 1.00
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It represents the total quantity of precipitation generated by the storm over its lifetime. 

Combined with the similar low sum of correlations related to SC (storm category), this 

this implies that the general strength of the hurricane plays a minor, if any, role in 

contrast to more local factors.  

Both the duration and magnitude difference of pH show a moderate correlation 

with Cl (stations located in lakes), showing a correlation of -0.53 for magnitude 

difference and 0.45 for duration. This is in contrast with pH’s correlation with Cs 

(stations located in streams) which has a correlation of 0.25 for magnitude difference and 

-0.24 for duration. This indicates that pH levels fall further and remain lowered in lakes, 

while in streams they have a limited drop and limited persistence. This is possibly due to 

the layered nature of some lakes, where water circulation to lower layers of the water 

body can be limited. These lower layers may be influenced by the increased flow of a 

storm event, with low pH water mixing with areas of limited circulation. After the storm 

has passed, these areas of limited circulation then may cause the lowered pH values to 

persist. In contrast, streams’ rapid flow may cause pH levels to return to normal quicker, 

and for their impact to be lower.  

Turbidity duration shows a similar correlation as pH when measured in lakes and 

streams. A similar affect may cause turbidity to become ‘trapped’ in lakes, while 

circulating rapidly through streams. Interestingly, the magnitude difference of turbidity 

does not share this effect; only turbidity’s duration does. Turbid waters may be dispersed 

within lacustrine settings, or perhaps they settle out more easily in calm waters. That the 

duration of turbid waters is longer in lakes works to discredit this second proposition. 
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Machine Learning 

A neural network is created for each response variable, both in terms of 

magnitude difference and duration of effects. A neural network for Nitrates and Nitrites, 

however, is not developed due to their small sample size of 15. All other parameters are 

run and then evaluated by performing a correlation analysis between their training and 

testing datasets (Figure 19).  

 

 Figure 19. Neural network correlation results for turbidity duration. Training data is 

used by the network and compared with separate test data for a measurement of accuracy.  
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In general, the parameters with high combined response variable sums and high 

sample sizes did the best. Resulting R2 values for each neural network were obtained 

(Table 6). Regression plots of each neural network are available in Appendix A.  

 

Table 6. Neural network R2 values. 

 

 

Discussion of Machine Learning Results 

The neural networks developed for discharge magnitude difference, gauge height 

magnitude difference, and turbidity in general perform the best. This is likely due to the 

high sample size of these response variables. The poor performance of the gauge height 

duration neural network does show that sample size is not the only factor for the 

successful deployment of a neural network though. Aside from gauge height duration and 

pH duration, the rest of the neural networks do show the ability to account for some 

factors. Theoretical shortcomings, detailed in Limitations, as well as noise in the data 

may account for these results, with the R2 value of 0.79 seeming to be the currently 

attainable maximum for even the best performing neural networks. 

Model Training R2 Value Testing R2 Value

Discharge Difference 0.99 0.78

Discharge Duration 0.59 0.50

DO Difference 0.27 0.27

DO Duration 0.21 0.26

Gauge Difference 0.77 0.71

Gauge Duration 0.11 0.10

pH Difference 0.47 0.43

pH Duration 0.49 0.09

Turbidity Difference 0.86 0.79

Turbidity Duration 0.58 0.61
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The impact of future hurricanes on water quality can be predicted using this 

machine learning technique if we know the physical and climate characteristics of a 

region. This can be helpful in water quality management and hazard preparedness. A city 

using this model (or a similar model) can predict the effect of a hurricane on its water 

resources short and long term. Predictions can be made about how long an area’s fresh 

water supply may be impacted, as well as to what degree. If there are limits or thresholds 

for water treatment plants and water supplies, this allows those stakeholders to come up 

with contingencies such as stockpiling of enough resources to last through a predicted 

duration of lowered water quality.  

Limitations 

Limitations for this study are mostly based on the data used. There is a 

proliferation of noise in the water quality data from sources such as broken 

instrumentation, incorrect readings, and gaps in the record. Some of these limitations 

with data availability, such as that of stations being knocked out by the hurricane as it 

passes, are unavoidable. Smaller gaps in the data can be accounted for using interpolation 

but doing so risks the introduction of further noise or the introduction of incorrect data. 

This is especially the case where this interpolation is made during or immediately after a 

storm’s passage, possibly missing peak measurements. 

Another limitation in this study was in the algorithm used to interpret the USGS 

station data to derive a magnitude difference and duration of response variables. The 

neural networks of the magnitude differences all outperformed their response variable’s 

duration neural networks. This suggests that the algorithm has difficulties in evaluating 

long term trends. The algorithm used was accurate for short term trends and determining 
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peak values of water quality parameters after a hurricane. However, the algorithm was 

less successful at defining long term effects, with the algorithm unable to differentiate 

between effects wrought by the storms studied and the effects of local rainfall, resulting 

in the forced termination of the post hurricane window in these situations. Additionally, 

the algorithm is only able to ascertain a peak value in one direction (positive or negative). 

The previous studies of dissolved oxygen after hurricanes (Hagy et al., 2006; Mallin et 

al., 1999; Pardue et al., 2005) concluded that DO levels are significantly lowered after a 

hurricane, in contradiction with the results of this study. This discrepancy could be 

explained as there being two peaks for DO values after a hurricane: a first positive peak 

occurring due to the aeration of the water surface when droplets of precipitation fall upon 

it, and then a second negative peak somewhere later, after waters have calmed and 

circulation within water is limited. The algorithm used in the study would only be able to 

detect the first positive peak in such a scenario. A similar situation may apply to 

nitrate/nitrite levels as well, as studies have shown those levels being elevated when in 

lacustrine and estuarian settings (Steward et al., 2006). An improvement could be made 

by enhancing the capacity to evaluate long term trends by either refinement of the 

algorithm used or another method entirely.  
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CHAPTER IV 

CONCLUSIONS 

This study produced three major contributions: the evaluation of each response 

variable, the correlations between controlling factors and response variables, and neural 

networks modeling the relationship between these data. The evaluation of each response 

variable is of significant value due to the sample size, geographical, and temporal 

destruction of measurements. They represent ten years’ worth of hurricane influence on 

the eastern coast of the United States. These evaluations can be interpreted as the 

generalized effects of hurricanes upon water quality parameters. Thus, hurricanes, in 

general, result in an initial rise in DO levels, an initial lowering of nitrate/nitrite levels, a 

lowering of pH levels, and an elevation of turbidity levels. 

The correlation of these response variables with each other and each controlling 

factor goes further than simply mapping the general response, and provides a measure of 

the influence of each faction upon the other. They highlight the roll of lacustrine 

environments contributing to prolonged bouts of lowered pH levels and persistent 

turbidity levels. They also show that local precipitation levels dominate over nearly all 

other controlling factors.  

The neural network in this study can be used to predict future impacts on water 

quality. Hurricane characteristics can be input for a known location, and water quality 

impacts can be predicted for hurricanes of different intensity. While the accuracy of these 

neural networks acts as a limit on that predictive capability, the discharge neural 

networks, gauge different neural network, and turbidity neural networks are about to 

make predictions on a reasonable level (R2 > 0.50). The accuracy of these models can be 
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improved with future work. That future work should focus on refining USGS data and 

improving the method for data preprocessing and interpretation. Such avenues of research 

should be pursued. These predictions are useful for stakeholders such as disaster response 

agencies and water treatment facilities, allowing them to quantify and plan for future 

outages. In a changing climate, this capability may save lives, resources, and prove 

invaluable.  
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APPENDIX A  

Neural Network Regression Plots 

 

Figure A1. Discharge magnitude difference. 
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Figure A2. Discharge duration. 
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Figure A3. DO magnitude difference. 
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Figure A4. DO duration. 
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Figure A5. Gauge height magnitude difference. 
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Figure A6. Gauge height duration. 
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Figure A7. pH magnitude difference. 
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Figure A8. pH duration. 
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Figure A9. Turbidity magnitude difference. 
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Figure A10. Turbidity duration. 

 


