
LEFT RIGHT PLANARITY TESTING AND MAXIMAL PLANAR

SUBGRAPH

by

Ibrahim Gurgil

A Dissertation Submitted in Partial Fulfillment

of the Requirements for the Degree of

Doctor of Philosophy in Computational Sciences

Middle Tennessee State University

December 2019

Dissertation Committee:

Prof. Chris Stephens, Chair

Prof. Dong Ye

Prof. Xiaoya Zha

Prof. Suk Jai Seo

Acknowledgements

I would like to thank Dr. John Wallin for his support and guidence. I would

like to give my thanks to Dr. David Christopher Stephens for his patience and

directions. I would lik to thank my committee members Dr. Dong Ye, Dr. Xiaoya

Zha, and Dr. Suk Jai Seo. I would like to thank my long-term advisor Dr. Ismail

Gok from Ankara University.

I would like to thank the Turkish Ministry of National Education for giving me

this oppurtunity.

I would like to thank my friends, especially Yusuf Helvali and Harun Resit Kaya

for being there for me whenever I need.

I would like to thank my best friend, my wife and mother of my child, Suzan

Odabasi Gurgil, for being everthing for me. I would like to thank Arya Ipek Gurgil

for being my sunshine.

ii

Abstract

According to our best knowledge, the Left-Right(LR) algorithm offers the fastest

speed for planarity testing. We show that in finding the Kuratowski (K5) graph,

the LR algorithm fails in some cases. We have revised the LR algorithm for the

Kuratowski graph with 5 vertices. We further added some features to the LR

algorithm to extract the Kuratowski subgraphs. We will discuss the additions to

the LR approach and its possible usages.

It is proven that the LR approach is one of the fastest algorithms to find if

a graph is planar. We updated the algorithm of LR to extract the Kuratowski

subgraphs efficiently. A maximal planar subgraph G′ of G is a graph with the same

vertex set of G and with a minimal set of missing edges from G such that if any

removed edge is added to G′, the graph becomes non-planar again. If G is planar,

then the maximum (maximal) planar subgraph is itself. Otherwise we will discuss

how to find the minimum set of edges to be removed to make a graph planar using

the updated LR approach.

iii

TABLE OF CONTENTS

Section Page

1 INTRODUCTION 1

1.1 Planarity Testings . 6

1.2 Left Right Planarity testing . 7

2 LEFT RIGHT PLANARITY TESTING 10

2.1 Original Left Right planarity testing 10

2.1.1 Depth First Search algorithm 10

2.1.2 Tremaux tree . 11

2.1.3 Definitions of LR testing 12

2.1.4 Linear time testing and algorithm 13

2.2 A counter example for Left Right testing 15

2.3 Filling the missing part of Left Right testing 16

2.3.1 A new procedure for Left Right algorithm 16

2.3.2 The computational complexity 18

3 MAXIMAL PLANAR SUBGRAPH QUESTION 19

3.1 Patterns . 19

3.2 Left right testing for maximal planar subgraph question 21

3.2.1 Dividing the left right testing 21

3.2.2 Finding all Kuratowski subgraphs with back edges 22

3.2.3 3.2.3 Adding tree edges . 23

3.2.4 Calculating the maximal planar subgraph 23

iv

4 COMPUTATIONAL COMPLEXITY 27

4.1 Tremaux tree complexity . 27

4.2 Left Right table complexity . 27

4.3 LR testing and pattern search complexity 27

4.4 Adding tree edge complexity . 28

4.5 Calculating the maximal planar subgraph complexity 28

5 CONCLUSIONS AND FUTURE WORK 29

5.1 Conclusions . 29

5.2 Future work . 30

6 APPENDIX 37

REFERENCES 44

v

List of Figures

1 Two different drawings of same implementation 1

2 A circuit layout . 2

3 Figures for adding edges to K3,3 7

4 α and β in different and same partitions 8

5 α and β in different and same partitions 9

6 Kuratowski graphs with DFS, and DFS tree. 11

7 A graph for definitions . 13

8 DFS procedure . 14

9 LR testing . 14

10 Comparing K3.3 with K5 . 15

11 Missing part of LR testing . 16

12 New LR testing . 17

13 Same problem which causes contradiction. 17

14 Patterns for Kuratowski subgraps 20

15 MPS partitioning procedure . 21

16 Changes of processing at tables. 22

17 MPS extraction procedure . 23

18 K6 without (6,4),with the idea of sectioning and lowpoint. 24

19 This is deleting the edge (6,1) from relevance matrix. 25

20 Reflections of patterns . 31

21 Partitioning procedure . 32

22 Delays function . 33

23 Kuratowski extraction . 34

vi

24 Pattern2 and Pattern3 algorithms 35

25 Pattern4 algorithm . 36

26 Adding a Type[iii] to a Type[iii] 41

27 Adding a Type[ii] to a Type[iii] . 42

vii

1

Chapter 1

INTRODUCTION

Nice drawings of sparse non-planar graphs can be achieved by determining a

maximum planar subgraph (MPS) and then an augmenting of this graph [19]. The

MPS question has been studied extensively in computer science research, and has

some applications [21, 25] in circuit layouts. Facility layout problems also have

strong connections with MPS question. Turan has proposed the minimum crossing

question for complete bipartite graphs, which can be achieved with MPS.

Figure 1: Two different drawings of same implementation

2

Figure 2: A circuit layout needs to have minumum crossing, which can be achieved
by MPS question. [28]

The first implementation (on the left) is introduced in a paper about automatic

graph drawing by Tamassia, Di Battista and Batini [27] and the number of crossings

has been decreased to 9 (by removing 4 edges out of 62, then adding them back)

by M.Junger and P.Mutzel[19] using the branch and cut technique.

The Left Right (LR) approach was introduced by [9]. They originally used an

idea from [26]. The LR approach was improved in [10] and [11]. H. de Fraysseix

and P. Ossona de Mendez have published a series of papers in [8, 6, 12] to simplify

the approach, and they used the LR approach to isolate the Kuratowski subdivi-

3

sion if the graph is not planar. Otherwise there seem to have been no significant

improvements in the LR approach.

Most of the developments in the field of planarity testing have been made in the

vertex-addition, edge-addition, and path-addition approaches.

The vertex-addition approach was proved in the mid 1960s to have polynomial

timing [20]. In 1976 the approach was improved to linear timing in the number of

edges[15] .

The edge-addition approach was inspired by the PQ-tree implementation of the

vertex-addition method[1] .

The path-addition approach was first published by [18]. In the mid 1990s, LEDA

was introduced based on path-addition; see [24, 23, 22].

In 2012, the original authors of the LR algorithm published a new approach

based on the LR approach [7]. The 2012 paper simplified the planarity-testing

algorithm, and simplified the extracting of the Kuratowski subgraph. The LR

algorithm is, according to our best knowledge, the simplest algorithm. It is the

fastest algorithm to test for planarity [2] and can be used to extract the Kuratowski

subgraph.

One reason the LR algorithm is not popular is the absence of an easy proof of the

algorithm. Most other algorithms depend on Kuratowski subgraphs; therefore their

correctness is tied to the well-known characterization of planarity from textbooks,

and their implementations are easier to understand. To address this issue, the

original LR authors corrected some minor issues and even created a third approach

to attack planarity testing [12]. Their second approach is also derived from the LR

approach and can be found at PIGALE [5].

For the maximal planar subgraph problem, we know [16] that finding the min-

imum set of edges to be removed from a graph to get a planar subgraph is an

NP-hard problem. In this project we attack the problem with respect to edge re-

moval; however, there are also some investigations along the lines of vertex removal

[13]. A similar approach to ours has been used by [14], by adding edges one by

4

one to the Depth-First Search (DFS) tree. His approach finds the maximal planar

subgraph with approximation in linear time and also finds only one maximal sub-

graph at a time. There is also a comparison between different approaches (by edge

removal) in [3]. Chimani, Mutzel, and Schmidt [4] used the method of Boyer and

Myrvold [1] to extract multiple Kuratowski. By the conclusion of [17], Kuratowski

subdivision methods are better than methods of simulating facial walks and total

orders.

First, in contrast to the edge-addition, vertex-addition, and path-addition meth-

ods, which are mainly focused on Kuratowski extraction, the LR method focuses

on planarity alone. While LR planarity testing is found to be the fastest among

these, its usage is limited. The LR method has inherently a missing piece, such

that by adding it we can make the LR method more useful. Planarity testing is

important for planar drawing. One can understand by planarity testing whether a

graph can be drawn in the plane. Our first main goal for this project is to correct

the algorithm, and thereby allow the LR approach to become more widespread.

Our first question is why the LR approach is not used by researchers. What is the

main problem behind this absence? While it is just a planarity testing algorithm,

where can we use the LR approach in a meaningful way?

Our second question is to find all maximal planar subgraphs. Moreover, we wish

to find all maximal planar subgraphs by using a mixture technique mainly based

on the LR approach with the fixed DFS tree.The LR approach is the fastest known

amongst the planarity testing approaches. By doing this we hope to benefit the

Kuratowski extraction methods.

For a given undirected and simple graph G=(V,T ∪ B), where T is the set of

edges appear at depth-first-search step and other edges in set B, the LR approach

asks the question if the set of edges could be divided into two group, left and right.

The idea behind the LR algorithm is , if every edge of B , can connect its endpoints.

Since the algorithm looks to the edges one by one, when we find the contradiction

(crossing), we stop the algorithm.While other algorithms result in a Kuratowski

5

subgraph and their result in planarity builted in this way, their computational load

is more than the LR algorithm.

Planarity testing in linear time has been known for some time and has been

used to solve many contemporary issues. While the LR approach is also a planarity

testing algorithm, since its main goal is planarity (whereas other approaches have

mostly used the Kuratowski theorem), other than the original LR authors, not

many people have focused on it (even though the proof is easier than those of the

other approaches).

With our updates, we hope to fill that gap. This approach is the fastest amongst

known planarity tests. All approaches have linear time, but the LR produces the

fastest results.

In terms of storage space, the LR approach is interested in a whole graph at

a time. Therefore it needs more space than other approaches because other ap-

proaches focus on the part of the graph that they just added. For some bigger

graphs or some special graphs (for example, very dense or very sparse graphs), all

the algorithms still have some problems.

Second, the maximal planar subgraph problem is a question which has been

studied for a long time. There are many methods using heuristic approaches, and

lately researchers have focused on the Integer Linear Programs (ILP) which give the

exact solutions at the cost of time. ILP approaches mostly used branch-cut tech-

niques. To the best of my knowledge, they get only one maximum planar subgraph

at first; then to get other maximum planar subgraphs, the input (or the procedure

that controls the input) must be manipulated and the program must be re-run. If

the graph is not very well-known (for instance, if the graph is anything other than

complete or complete bipartite), getting all the maximum planar subgraphs most

of the time is not even possible.

6

1.1 Planarity Testings

There are two popular definition of planar graph, and we have also focused on

these two:

1. A graph is planar if it can be drawn in a plane without crossings of its edges

except the endpoints.

2. A graph is planar, if and only if there is no Kuratowski subgraph of that

graph.

Theorem 1: (Kuratowski’s theorem) A graph is planar if and only if there is no

subgraph is a division of K5 or K3,3

Theorem 2: (Wagner’s theorem) A graph is planar if and only if it does not

contain a minor that is isomorphic to K5 or K3,3

Euler’s Formula: If a graph G=(V,E) and has a f faces, then n-m+f=2, where

n and m are number of vertices and edges , respectively.

If a graph is planar, with the n vertices and m edges, then m ≤ 3n− 6. It is a

well-known result of Euler’s formula and has been used in the planarity testings at

the very beginning, if there is any need to test it or not.

For a given simple and undirected graph G=(V,E), deciding the planarity of a

graph has been researched for the last decades. While there are other definition of

planar graphs, mostly these two has been used.

7

1.2 Left Right Planarity testing

While the proof of the all planarity testings are very hard and includes many

implementations before hand, the LR has a very basic idea behind its proof.

For a given graph G with it’s corresponding Depth-First-Search tree, if every

vertex in the DFS tree could be closed by left or right. If a vertex v is closed from

left and right from vertices vi to vj, then there can not be any vertex connects the

vertex v to any other vertex higher than the highest of vi and vj(or lower than the

lowest of vi and vj) . As we see in the figure 3, since vertex number 3 has been

closed from left and right in both (3a) and (3b) by vertex 5 (also vertex 4 but as

we see 5 is higher than 4 in the DFS tree), there can not be an edge between vertex

6 and vertex 3, which yields to conradiction if we have an edge from vertex 6 to

vertex 3. Please note that (3a) and (3b) in the figure 3 are both K3,3 without the

(6,3).

1

2

3

4

5

6

(1)

1

2

3

4

5

6

(2a)

1

2

3

4

5

6

(2b)

1

2

3

4

5

6

(3a)

1

2

3

4

5

6

(3b)

Figure 3: Figures for adding edges to K3,3

8

Type(ii): [α, β]εD

v−(α) < v−(β) < v+(α) < v+(β)βα

Type(i): [α, β]εS

whenever there exists βεB such that

v−(β) < v−(α) < v+(α) < v+(β)

βα

v

Type(iii): [α, β]εD

if there exist a e,fε T and

βε B such that

αε B(e) and β, β′ε B(f) with

v−(β′) < v−(α) < v−(β) < v−(e) = v−(f)

fe

β′βα

v

Type(iv): [α, β]εS

if there exist a e,fε T and

βε B such that

α, α′ε B(e) and βε B(f) with

v−(β) < v−(α′) ≤ v−(α) < v−(e) = v−(f)

fe

β

α′

α

v

Type(v): [α, β]εD

if there exist a e,fε T and β′, α′ε B such that

α, α′ε B(e) and ββ′ε B(f) with

v−(α′) = v−(β′) < v−(α) = v−(β) < v−(e) = v−(f)

fe

β′α′ α β

Figure 4: α and β in different and same partitions .

These five types of graphs have been introduced by the original authors in the

paper of 1982. They are investigated later, and resulted in similar results with

having the three graphs in figure 4.

Later on these 3 graphs have been put into one algorithmic formula.

9

Afterwards, Left Right planarity testing is usually formulized as:

• All return edges of e1 strictly higher than lwp(e2) belong to one partition.

• All return edges of e2 strictly higher than lwp(e1) belong to other partition.

If the edge set can be divided into the two partitions, then it is planar; otherwise

it is non-planar.

β′

α β Type(i): [α, β]εS

if there exist a β′ε B and

α, βε B such that

v−(β′) < v−(α), v−(β) < v+(β′) < v+(α), v+(β)

Type(ii): [α, β]εD

if there exist a α′ε B and

α, βε B such that

v−(α′) < v−(α) < v−(β) < v+(α) < v+(β), v+(β′)α′α

β

Type(iii): [α, β]εD

if there exist a α′, β′ε B and

α, βε B such that

v−(α′) = v−(β′) < v−(α) = v−(β) < v+(α′), v+(β′)

α′

α β

β′

Figure 5: α and β in different and same partitions

10

Chapter 2

LEFT RIGHT PLANARITY TESTING

In this section, we will look into the LR testing in details. For this, we will

introduce some definitions.

2.1 Original Left Right planarity testing

As we mentioned earlier, LR testing is invented by Fraysseix and Mendez at

1982. And they defined the testing with respect to angles of the edges at the Depth-

First-Search tree. After that, authors changed the definition based on angles to a

definition based on the edges.

2.1.1 Depth First Search algorithm

DFS on a graph G gives us a tree T, which starts from a random vertex of G

and visits edges of G, searching for new edges to visit from the last vertex visited

to an unvisited vertex, until we have visited all vertices of G or run out of edges to

unvisited vertices. When we get the end we do backtracking until there is no vertex

left unvisited.

11

1 3 5

2 4 6

1

2

3

4

5

6

1

2

3 4

5

1

2

3

4

5

K3,3
K3,3 with DFS tree K3,3 with DFS tree

with one crossing

K5 K5 with DFS tree K5 with DFS tree
with one crossing

Figure 6: Kuratowski graphs with DFS, and DFS tree.

2.1.2 Tremaux tree

Tremaux tree, also called as DFS tree, is a tree with a directed edges discovered

in DFS procedure and addition of rest of the edges.

For a graph G and with its responding DFS procedure. We call any visited

edge, during the DFS procedure, e=(u,v) a tree edge and orient e from the first

visited vertex of e to the second. The remaining edges are called cotree edges or

back edges, and we orient them from the later visited vertex to the earlier visited

vertex. For detailed information, see [9] or [7].

12

2.1.3 Definitions of LR testing

We always consider a finite, simple, connected, undirected and unweighted graph

G=(E,V) with edge set E and vertex set V. The number of edges will be |E| = m,

and number of vertices |V | = n.

Definition 1: The height of a vertex with respect to the DFS tree is its distance

(in terms of the number of edges) to the first vertex of the DFS tree. We show the

height of vertex v as height(v).

Definition 2: (Low order) For u,vεV, if height(u) is less than height(v), and they

share the DFS tree path of vertex u, then we say u is lower than v, written as u<v.

We also say vertex v is higher than vertex u.

Definition 3: The low point of an edge is defined differently for tree edges and

cotree edges, as follows.

• The low point of a cotree edge e=(u,v) (where e is directed from u to v) is v.

• The low point of a tree edge e=(u,v) (where e is directed from u to v) is defined

to be x such that for a vertex x ≤ y, there is a cotree edge e’=(y,x) and x < u . In

other words, there is a cycle which starts from x, then goes through e=(u,v) and

ends at x again. We write it as low(e)= x.

Definition 4: The return edge of a cotree edge is itself, and the return edge of a

tree edge e=(u,v) to be e’=(y,x) where x<u, and v≤y

Definition 5: (Fork) An outgoing cotree edge e* from a vertex v is called a back

edge (or cotree edge). All back edges of a vertex v will be considered as one set,

while all tree edges going out from vertex v are considered as a set individually. If

there is more than one such set from a vertex v, we call that vertex a fork.

Definition 6: The lowest point of a set E is the lowest of the low points of its

members. We will denote this as lwp(E).

13

v1

v2

v3

v4

v5 v6

v7

β2β1β

α α′

f e

g

Figure 7: A graph for definitions

In the figure 7,

Tree edges are : e, f and g;

Back (cotree) edges are : β, β1, β2, α, andα
′;

Low order : v4 < v5 and v4 < v6 but v5 and v6 can not be comparable;

low(e)={v2, v3} ,low(f)=v1 and low(α)=v3;

lwp(e)=v2

return(e)={α, α′}

Outgoing edges of the vertex v4 are e, f, and the set {β1β2}. Since there is more

than one outgoing edge, we call v4 a fork. v6 is also a fork since it has g and α as

outgoing edges.

2.1.4 Linear time testing and algorithm

After these preliminaries, we are ready to give the definition. For a given fork

v, assume e and f are the two outgoing edges, then:

All the return edges of e, which are higher than the lowest point of f belongs

to one partition;

14

All the return edges of f , which are higher that the lowest point of e belongs to

the other partition.

If we can divide all back edges (that satisfy these two conditions) to two par-

titions after processing all the forks, than the graph G is planar. Otherwise, G is

non-planar.

DFS procedure and linear time algorithm follows as:

% Start with a random vertex , root’s main edge is empty.
DFS(v)

e = main edge(v) % for the lowpoints of the tree edges.
while there is an not-oriented, outgoing edge {v, w} of E

orient {v, w} as (v, w)
lwpt((v, w)) = v % assign the lowpoint.
if height(w) ==∞ % tree edge

main edge(w) = (v, w) % assign the main edge.
height(w) = height(v) + 1 % calculate the height
DFS(w) % first go to a leaf,than back

else % back edge
lwpt((v, w)) = w % change the lowpoint

end
if lwpt((v, w)) < lwpt(e)

lwpt(e) = lwpt((v, w)) % update the lowpoint

Figure 8: DFS procedure

% if there is more than one outgoing edge from v,E+(v)
for ∀ pair (ei, ej) ε E

+(v)
for ∀ b ε E+(ei) % b is a back edge from ei

if lwpt(b) < v and lwpt(b) > lwpt(ej)
if flag(ej) == 0

if sign(b)==-1; then flag(ei) = −1; flag(ej) = 1;
else (if sign(b)==1 | 0) flag(ei) = 1; flag(ej) = −1;

else
if sign(b) == 0 then; sign(b) == flag(ei);
else if sign(b) ∗ flag(ei) == −1 then;

contradiction

Figure 9: LR testing

15

2.2 A counter example for Left Right testing

While working on some other questions, we needed a simple and fast planarity

testing to implement our problem. We started to work on the LR algorithm, and we

got incorrect results. When we looked deeper into the algorithm and papers again,

we discovered that almost all graphs that had been used to check the algorithm are

similar. While the algorithm works for these type of graphs, it has inheredently a

missing part. Here is the example:

1

2

3

4

5

6 L R

(5,2)
(6,3)
(5,2)X (6,3)7

1

2

3

4

5 L R

(4,2)
(5,2)
(4,2)X (5,2)7

K3,3 K5-(5,3)

Figure 10: Comparing the K3,3 with K5 minus an edge. As we expected K3,3 has a
contradiction; but K5-(5,3) also has an unexpected contradiction.

We know that both graphs are Kuratowski graphs which are non-planar. For

K3,3, we get the desired result with these original two conditions. For the K5, we

should not hit non-planarity until the end, but if one looks at the LR table, (4,2)

and (5,2) have been put in the left side, and for the next fork, (4,2) has been put

in the left side. By these conditions we should put the (5,2) on the right side, but

since (5,2) is already in the left side it is a contradiction. This is similar to the

situation for K3,3, in which (5,2) and (6,3) have to be in the same partition for one

fork, and different partition for the other fork so there is a contradiction. Thus for

K3,3 ,the LR testing stops and produce a non-planar result.

16

2.3 Filling the missing part of Left Right testing

When we look into this, we see that while equality has been managed by a graph

in the theory (see Figure 5, Type[iii]) if there is more than one outgoing tree edge

from our fork, if there is one tree edge and a back edge(s) from the fork, equality

has not been considered.

β′αα′ β

Set of vertices

one vertex

one edge

set of edges

Figure 11: Missing part of LR testing

To overcome this counter example, we add an extra condition and with that

condition, we have corrected the algorithm.

2.3.1 A new procedure for Left Right algorithm

To overcome this issue, I have added the following step:

• If the one of the sets is formed by cotree edges (say E1) , and if the

lwp(e1)=lwp(e2) and low(ei)=low(ej) where ei is from E1, and ej is from E2 and

also low(ei) > lwp(e2) and low(ej) > lwp(e1), they do not cause a contradiction.

• If there is a second edge at the partition of E2, say ek , and the first step is

also there if low(ek) > low(e1) then it is a contradiction, even if ek did not appear

at the partition of e1.

17

% if there is no back edges from fork, do original!!
% if there is more than one outgoing edge (ei, ej)ε E

+(v) and eiεB(v)
for ∀ pair (ei, ej) ε E

+(v)
for ∀ b ε E+(ei) % b is a back edge from ei

if lwpt(b) < v && lwpt(b) > lwpt(ej)
if flag(ej) == 0

if sign(b)==-1; then flag(ei) = −1; flag(ej) = 1;
else (if sign(b)==1 | 0) flag(ei) = 1; flag(ej) = −1;

else
if sign(b) == 0 then; sign(b) == flag(ei);

if sign(b) ∗ flag(ei) == −1 then;
if lwpt(b) > lwpt(bm) and high(b) > v

contradiction
else crit(ei)=1;

else if crit(ei)==1 then
if lwpt(b) > lwpt(bm) and high(b) > v

contradiction

Figure 12: New LR testing

Note that this issue appears only if one side of the fork is coming from back

edges (or for each fork one). Consider the next figure;

1

2

3

4

5 67

e1e2e3

L R

(5,2)(e1, e3)

(e1, e2)

(e2, e3)

(6,2)

(7,2)

(5,2)X

(6,2)X

(7,2)7

Figure 13: Same problem which causes contradiction.

18

Consider the sets of (5, 6, 7) and (1, 2, 4) vertices , so the graph has a K3,3

subgraph, so it is non-planar.Because, none of the (e1, e2, e3) is a back edge. Also

note that, to have a contradiction, one fork is enough.

2.3.2 The computational complexity

Since the LR testing algorithm has been introduced as linear timing respect to

edges, although there is a new procedure in the test, the procedure is still based

on the number of edges if the ”fork” has back edge(s). If ”fork” does not have a

back edge, then original program holds. So timing is still linear respect to number

of edges.

19

Chapter 3

MAXIMAL PLANAR SUBGRAPH QUESTION

Since Maximal Planar Subgraph(MPS) has been studied for a while, and al-

though there has been some algorithms presented but not any of them used the LR

approach. For MPS question, there are two mainstreams are focused. First by edge

adding/removing edges with heuristic methods, since this way has faster, it does

not guarante the finding optimal solution. Second method is focused in Kuratowski

subgraphs, called ILP, and they are using the planarity testing based on Kuratowski

subgraphs, then by removing Kuratowski subgraphs, they aim to find MPS. Their

success is for sure, but they only focus on one (or a few) MPS and their timing is

worse than first mainstream mentioned.

Our goal is here is to combine the two mainstreams with using LR approach.

Our heuristic method is based in the Kuratowski subgraph patterns that showed

up in the LR partitioning. By using the idea behind the ILP methods, we aim to

get MPS and also possible solutions for maximum planar subgraph question.

3.1 Patterns

Since the LR approach have not been studied very deeply, we have realized that

there are some patterns repeats during the Kuratowski subgraph trials. Then we

expand our research to this area and see that we have 4 basic patterns (and their

20

reflections) that responds to Kuratowski subgraphs. With the help of Kuratowski

theorem,we aimed the removing all Kuratowski subgraphs to reach planarity with

the minumum number of edge removal.

L R
e1

e2

e1 e2

e1 � e2

L R
e1

e2

e1 e2

e3

{ }e2 6� e1

e3 � e1

L R
e1

e2

e1 e3

e2

e3

{ }e3 � e1

e2,e3 ε F

L R
e1

e2

e1 e3

e2 e4

e3 e4

{ }e4 � e3 � e1

e4 � e3

Figure 14: Patterns for Kuratowski in the LR partitioning, see figure 20 for detailed
reflections.

21

3.2 Left right testing for maximal planar sub-

graph question

The first step for the DFS is the same; see figure 8.

3.2.1 Dividing the left right testing

The LR approach directly focuses on the planarity at the same time of partitioning

after the DFS. Because of this reason finding Kuratowski subgraphs is little tricky. After

DFS , we do the LR partitioning without testing the planarity. We add the lowpoints

to the partitioning table to make the extracting Kuratowski subgraphs, easier. Then

instead of testing planarity, we are looking for the patterns that have showed up in the

LR partitioning table. For detailed pseudo code see figure 21 .

% Use the same DFS as the original LR
Partition(G)

for ∀ fork vε V
for ∀ (ei, ej)ε E

+(v)
for ∀ bε B(ei)

if low(b) > lowpoint(ej)
if flag(ei) 6= 1

flag(ei) = −1; flag(ej) = 1;
if high(e1) == v then; t = 1; else t = 2;
L(d1, 1 : 3) = [v b t];

else

R(d2, 1 : 3) = [v b t];
if high(e1) == v then; t = 1; else t = 2;

% I also added the lowpoints of ej to corresponding L or R
% if we are able to add an back edge, where I used t=0 to track them.
% Please note that t=1 if ei is formed of back edges.

Figure 15: MPS partitioning procedure

22

1

2

3

4

5

6

L R
(5,2)
(6,3)
(5,2) (6,3)

Processing all cotree edges

L R
(4,1) (6,1),(5,2)
(5,2)
(6,3)
(6.1) (5,2)
(5,2) (6,3)

Processing the lowpoints

1

2

3

4

5 67

e1e2e3
L R

(e1, e3)
(e1, e2)
(e2, e3)

(5,2) (6,2)
(7,2) (6,2)

(7,2)(5,2)

Non-planar with only one fork

This is why we have fixed the same ends for only if cotree edges involved

L R
(e1, e3)

(e1, e2)

(e2, e3)
(5,2)
(6,1)

(6,2)
(5,1)

(7,2) (6,2)
(6,1) (7,1)

(7,2)(5,2)
(5,1)(7,1)

Figure 16: Changes of processing at tables.

3.2.2 Finding all Kuratowski subgraphs with back edges

Now we have the LR table with lowpoints added, and our goal is to find all Kuratowski

subgraphs with the an fixed DFS tree. (Changing order of the vertices in the DFS, might

result in finding new Kuratowski subgraphs in the graph.) For a detailed pseudo code

please see figure 23.

23

% Use the same MPS as the original LR

Extraction(G)

for ∀ e1 ε L, (at section si)

for ∀ e2 ε L (at si)

if 3e1ε L− {si} (at sj)

if 3 e2εR at sj
if (e1 � e2) || (e2 � e1)

C=[e1, e2, lwpts of si, lwpts of sj]

% check if C is not found before

% check if there is repeated vertices at C

else if 3 e3εR at sj

contradiction

if e3 � e1

else
for ∀e3εR at sj && e3 � e1

if (e2, e3)εL(or R) at sk
contradiction

Figure 17: MPS extraction procedure

3.2.3 3.2.3 Adding tree edges

Since there are only two Kuratowski subgraph and all the back edges found in the K5

or K3,3, then only thing left is to sum the number of edges for every vertex that has been

showed up in the Kuratowski subgraph. If a tree edge can be removed without losing

the Kuratowski subgraph, than we are going to remove that edge. This algorithm is still

under revision, so overall results at the program will be only back edges.

3.2.4 Calculating the maximal planar subgraph

After finding all the Kuratowski subgraphs, we are making a matrix (called relevance

matrix) , to see which edge has been showed up in which Kuratowski subgraphs.

When we have the relevance matrix, we are to remove an edge, means removing the all

Kuratowski subgraphs that that edge has been. When we do this until get the zero matrix

as relevance matrix. Then as we do in the DFS, we backtrack to remove all possible edges

that makes the relevance matrix is a zero matrix.

24

After building the partition tables with low-points, we perform the updated LR testing

with pattern search. For the testing phase, we are not interested in the low-points; we use

them to track down all possible Kuratowski extractions and to store them. It may happen

that we find the same Kuratowski subgraphs, or use the same edge again in the same

Kuratowski subgraph as a lowpoint. In this case, removing the duplicated information is

not difficult. In a stored Kuratowski subgraph, there are 4 low-points (there might be 6

or 8 with an inheritance property) and 2 to 4 back edges (which also can be low-points, as

in K3,3) so removal of repetitions are not that expensive time-wise. Removal of repeated

Kuratowski subgraphs depends on the number of the Kuratowski subgraphs that been

discovered.

1

2

3

4

5

6 L R
(3,1) (4,1),(5,1)

(6,1)

(4,2)

(5,2)

(6,2)

(5,1),(6,1)(4,1),(4,2)

(4,2)(5,2)

(6,2)

(5,3)

(6,3)
(5,1),(5,2)

(5,3)
(6,1),(6,2)

(6,2)

(6,3)

(5,2)

(5,3)

Figure 18: K6 without (6,4),with the idea of sectioning and lowpoint.

25

These are the Kuratowski extractions from K6-(6,4);

(3,1) (4,1) (6,1) (4,2) (5,2) (5,3)

(3,1) (4,1) (6,1) (4,2) (6,2) (5,3)

(3,1) (4,1) (5,1) (4,2) (5,2) (5,3)

(3,1) (4,1) (5,1) (4,2) (6,2) (5,3)

(3,1) (4,1) (5,1) (4,2) (5,2) (6,3)

(3,1) (4,1) (6,1) (4,2) (6,2) (6,3)

(3,1) (5,1) (6,1) (5,2) (6,2) (6,3)

(4,1) (6,1) (5,2) (6,3)

(3,1) (5,1) (4,2) (6,2) (6,3)

Contradictions

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

(6,1) 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0

(5,1) 0 0 1 1 1 0 1 0 1 0 0 1 1 1 0 0 0 1

(4,1) 1 1 1 1 1 1 0 1 0 0 0 1 1 1 0 0 0 0

(3,1) 1 1 1 1 1 1 1 0 1 0 0 1 1 1 0 0 0 1

(6,2) 0 1 0 1 0 1 1 0 1 0 0 0 1 0 0 0 0 1

(5,2) 1 0 1 0 1 0 1 1 0 0 0 1 0 1 0 0 0 0

(4,2) 1 1 1 1 1 1 0 0 1 0 0 1 1 1 0 0 0 1

(6,3) 0 0 0 0 1 1 1 1 1 0 0 0 0 1 0 0 0 1

(5,3) 1 1 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0

Figure 19: This is deleting the edge (6,1) from relevance matrix.

As we see in the second part of Figure 19, removal of (6,1) lefts 3rd, 4th, 5th and 9th

coloumns non-zero only, means they are still causing contradictions.

Since there are only 4 Kuratowski subgraphs left out of original 9 Kuratowski sub-

graphs, deleting any of (5,1),(3,1), (4,2) makes the graph(K6-(6,4)) planar can easily be

seen. Also, deleting the sets of (6,2),(5,2) and (6,3),(5,3) also makes the graph planar.

In this case, with deleting (6,1), one of 3 edges, or one of the two sets, makes the graph

planar, so we have three MPS, and 2 maximal planar subgraph. (Note: For K6, the

minimum number of edges to be removed to get a planar graph is 3.) (Note 2: I have

26

dashed (6,3) and (5,3) in the figure such that removing them makes the graph planar;

and if one looks at the relevance matrix, the values of (6,3) and (5,3) complement each

other.)

27

Chapter 4

COMPUTATIONAL COMPLEXITY

4.1 Tremaux tree complexity

Tremaux tree, also known as DFS tree, algorithm has been published in a linear time

algorithm in the number of edges. We have not change or add anything on this issue. So,

this part is still linear.

4.2 Left Right table complexity

While the LR testing is linear on the number of edges, this part is also linear. Also,

adding the lowpoints(they are discovered at the DFS) has still linear timing.

4.3 LR testing and pattern search complexity

In this algorithm, we are looking for the edges that appears in the same part of the

partition and comparing them to the other parts of partition.

For the first pattern, ei, there can be maximum of n− 2 number of edges in the same

part of partition, and for the worst case we need to compare them in the another part of

the partition, With this we get the linear timing. It is also the essantial of the original

LR testing.

28

For the second pattern, we are looking if the first pattern fails, and looking for another

edge in the same part of the second edge, so it is still linear (because, we have this

condition means, we have not look for the worst case scenerio in the first pattern, means

still linear.)

For the third pattern, this means we could not locate the second edge that we are

looking for and found the third edge that greater than first edge, means we need to look

to the table again to see if second and third edges appears in another part of the partition.

This makes the algorithm quadritic, in the worst case scenerio.

For the forth pattern, this means we have the third and forth edges, that has been

appeared in the partition, finding them seperatly has linear timing, but looking for if the

third and forth edge is in the same part of the partition, makes the timing quadratic

again.

While there are reflections in the patterns, at the worst case scenerio, timing is O(m2)

on the number of edges.

4.4 Adding tree edge complexity

This section is under revision, but in the theory, it is linear on the number of tree

edges, since we are to count and compare it to the Kuratowski subgraphs.

4.5 Calculating the maximal planar subgraph com-

plexity

The relevance matrix has been made of number of edges and number of Kuratowski

subgraphs. Since number of Kuratowski subgraphs is related to density of a graph, while

we can calculate how many Kuratowski subgraphs we will have bedfore run the program,

we can approximate the number of output with the density(D) of program.

29

Chapter 5

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

In this work, we tried to fill an important gap in the Left-Right approach and its cor-

responding algorithm. We have added a new procedure to original linear time algorithm

without losing the linear timing.

In addition to deciding the planarity with the updated version of the left right algo-

rithm, we have noticed that without the cost of extra time, we can divide the approach to

two parts. At first part, we do the partitioning, where puting all the edges to the left side

or the right. Then we can do the left right planarity testing with same efficiency com-

paring the worst case scenerio of the original algorithm. By this, we were able to extract

the Kuratowski subgraphs more efficiently because they show up in the partition in four

main patterns and their reflections with the fixed DFS tree. Since DFS tree itself never

causes a contradiction, we get all the crossings in the form of back edges. By constracting

the relevance matrix and removing the rows by one by until having the zero relevance

matrix, we are getting a Maximal Planar Subgraph. This approach may also result in a

maximum planar subgraph, but we need to all combinations of DFS tree to get a definite

answer.

30

5.2 Future work

Since, we get this approach to find MPS while looking for a efficient way for two-

planarity question(removing vertices one plane to other such that both graphs in the

both planes should be planar) our first goal is to find a efficient way to solve that question

by using updated LR approach.

Also, we think that this program can get faster results with the help of some heuristic

approachs in the relevance matrix step.

31

if e1,e2ε P1L, e1ε P2L, e2ε P2R, e2 � e1 or e1 � e2

if e1,e2ε P1L, e1ε P2R, e2ε P2L, e2 � e1 or e1 � e2

if e1,e2ε P1R, e1ε P2L, e2ε P2R, e2 � e1 or e1 � e2

if e1,e2ε P1R, e1ε P2R, e2ε P2L, e2 � e1 or e1 � e2

if e1,e2ε P1L, e1ε P2L, e2, e3ε P2R, e3 � e1 & e2 6� e1

if e1,e2ε P1L, e1ε P2R, e2, e3ε P2L, e3 � e1 & e2 6� e1

if e1,e2ε P1R, e1ε P2L, e2, e3ε P2R, e3 � e1 & e2 6� e1

if e1,e2ε P1R, e1ε P2R, e2, e3ε P2L, e3 � e1 & e2 6� e1

if e1,e2ε P1L, e1, e3ε P2L, e2ε P2R, e3 � e2 & e1 6� e2

if e1,e2ε P1L, e1, e3ε P2R, e2ε P2L, e3 � e2 & e1 6� e2

if e1,e2ε P1R, e1, e3ε P2L, e2ε P2R, e3 � e2 & e1 6� e2

if e1,e2ε P1R, e1, e3ε P2R, e2ε P2L, e3 � e2 & e1 6� e2

if e1,e2ε P1L, e1ε P2L, e3ε P2R, e2, e3εP3L, e3 � e1 & e2, e3εF
if e1,e2ε P1L, e1ε P2L, e3ε P2R, e2, e3εP3R, e3 � e1 & e2, e3εF
if e1,e2ε P1L, e1ε P2R, e3ε P2L, e2, e3εP3L , e3 � e1 & e2, e3εF
if e1,e2ε P1L, e1ε P2R, e3ε P2L, e2, e3εP3R , e3 � e1 & e2, e3εF
if e1,e2ε P1R, e1ε P2L, e3ε P2R, e2, e3εP3L , e3 � e1 & e2, e3εF
if e1,e2ε P1R, e1ε P2L, e3ε P2R, e2, e3εP3R , e3 � e1 & e2, e3εF
if e1,e2ε P1R, e1ε P2R, e3ε P2L, e2, e3εP3L, e3 � e1 & e2, e3εF
if e1,e2ε P1R, e1ε P2R, e3ε P2L, e2, e3εP3R, e3 � e1 & e2, e3εF
if e1,e2ε P1L, e1ε P2L, e3ε P2R, e2, e3εP3L,e4εP3R, e4 � e3 & e3 � e1

if e1,e2ε P1L, e1ε P2L, e3ε P2R, e2, e3εP3R,e4εP3L, e4 � e3 & e3 � e1

if e1,e2ε P1L, e1ε P2R, e3ε P2L, e2, e3εP3L,e4εP3R, e4 � e3 & e3 � e1

if e1,e2ε P1L, e1ε P2R, e3ε P2L, e2, e3εP3R,e4εP3L, e4 � e3 & e3 � e1

if e1,e2ε P1R, e1ε P2L, e3ε P2R, e2, e3εP3L,e4εP3R, e4 � e3 & e3 � e1

if e1,e2ε P1R, e1ε P2L, e3ε P2R, e2, e3εP3R,e4εP3L, e4 � e3 & e3 � e1

if e1,e2ε P1R, e1ε P2R, e3ε P2L, e2, e3εP3L,e4εP3R, e4 � e3 & e3 � e1

if e1,e2ε P1R, e1ε P2R, e3ε P2L, e2, e3εP3R,e4εP3L, e4 � e3 & e3 � e1

Figure 20: Reflections of patterns

In the LR partitioning: e1εP1L means, left side of the first part that we are looking

for, P2 means the any part after P1, and P3 means the any part after P2

32

for ∀fork f
for ∀ e, fεE+(f)

s1:= return edges of e

s2:= return edges of f

lwp1:= lowestpoint of e

lwp2:= lowestpoint of f

for i=1:size(s1)

if s1(i)<f && lwp1<s1(i)

if flag1==1; putinto L; do delays; flag2=2;

elseif flag1==2; putinto R; do delays; flag2=1;

elseif s1(i)εL ; flag1=1; flag2=2; putinto L; do delays;

elseif s1(i)εR ; flag1=2; flag2=1; putinto R; do delays;

else putinto delays1

for i=1:size(s2)

if s2(i)<f && lwp2<s1(2)

if flag2==1; putinto L; flag1=2;do delays;

elseif flag2==2; putinto R; flag1=1; do delays;

elseif s2(i)εL ; flag1=2; flag2=1; putinto L; do delays;

elseif s2(i)εR ; flag1=1; flag2=2; putinto R; do delays;

elseif i==size(s2); putinto R; do delays; % worst case

else putinto delays2

Figure 21: Partitioning procedure

33

function delays

if flag1==1

for i=1:size(delays1); putinto L;

else
for i=1:size(delays1); putinto R;

if flag2==1

for i=1:size(delays2);putinto L;

else
for i=1:size(delays2);putinto R;

Figure 22: Delays function

34

function PatternSearch
do Pattern1(L,L,R)

do Pattern1(L,R,L)

do Pattern1(R,L,R)

do Pattern1(R,R,L)

function Pattern1(A,C,D)

for i=1:size(A)

if A(i,4)==0; do lowpoints;% since there can be more than one lowpoints, consider them all at once

if A(i,4)>0

e1=A(i,1:2);

s:= other edges in this part, called P1;

while(j<size(s)

e1=A(s(j),1:2);

for k=1:size(C)

if e1ε C

for k=1:size(D)

if e2εD

if e2 � e1

contradiction
do Pattern2(A,C,D)

do Pattern3(A,C,D)

Figure 23: Kuratowski extraction

35

function Pattern2(A,C,D)

if e2 6� e1 & e2εP2D

for t=1:size(D)

if D(t,4)>0;e3=D(t,1:2);

if e3 � e1

contradiction
for t=1:size(C)

if C(t,4)>0;e3=C(t,1:2);

if e3 � e2

contradiction

function Pattern3(A,C,D)

if e2 6 εP2D

for t=1:size(D)

if D(i,4)>0; e3= D(t,1:2);

if e3 � e1

for i=1:size(C)

if e2εC; flag1=1;

if e3εC;flag2=1;

if flag1==1 && flag2==1

if C(i,4)==2

contradiction

else
do pattern4(A,D)

for i=1:size(D)

if e2εD; flag1=1;

if e3εD;flag2=1;

if flag1==1 && flag2==1

if D(i,4)==2

contradiction

else
do pattern4(A,C)

Figure 24: Pattern2 and Pattern3 algorithms

36

function Pattern4(A,X)

for i=1:size(X)

if X(i,4)>0

if X(i,3)==P3

if e4 � e3

contradiction

For ei=(ui, vi) and ej=(uj , vj) , ei � ej means ui > uj and vi > vj

Figure 25: Pattern4 algorithm

37

Chapter 6

APPENDIX

Theorem 1: For a given graph G, and the partition of LR , every pattern of ours ends

up a Kuratowski subgraph.

Proof:

Case 1: For the first pattern, we need two edges in one section at the same side and

in the other section in the different parts, where e1 >> e2 or they are not comparable.

if e1, e2εSi then there has to a return edge (u1, v1) that ends lower than low(e1), low(e2)

and that return edge also should be an back edge, means u1 := fork. Now from this

section we know that,where e1 = (x1, y1), e2 = (x2, y2)

{x1, x2} > u1 > {y1, y2} > v1 (1)

For second section, e1 >> e2 means x1 > x2 and y1 > y2. And with the assumption

of e2 is the lowest return point of back edges for e1 to be part of that section, then we

also need a lowest point of back edges for e2 to be part of that section, call (u2, v2) where

y2 > v2.With the (1) equation we get;

x1 > x2 > u1 > y1 > y2 > {v1, v2} (2)

with the addtion of DFS tree to (2), we have a Kuratowski subgraph.

If they are not comparable, then x1 and x2 must be in the different brances at DFS

after second fork f.

If they have the same endpoints, then there has to be two return edges as lowpoints,

so they both can be at same section. (u3, v3) and (u4, v4) where f > y1 = y2 > {v3, v4}.

With the (1) equation, we get,

{(x1, u3), (x2, u4)} > f > u1 > y1 = y2 > {v1, v3, v4} (3)

38

with the addtion of DFS tree, we have a Kuratowski subgraph.

If they have different endpoints, assume y1 > y2, then e2 can be a return edge for e1

to be in that section, and we need only one return edge that can be a lowpoint for e2.Call

that return edge (u5, v5) where x1 and u5 has same direction after fork f, and y2 > v5.

With the help of (1) equation, we get;

{(x1, u5), x2} > f > u1 > y1 > y2 > {v1, v5} (4)

Since we also get a Kuratowski subgraph at equation (4), then our first pattern results

in only Kuratowski subgraph. The other patterns has the same idea behind it, so we will

skip it for.

39

Theorem 2: Every contradiction at the LR algorithm yields one of our patterns.

Proof :

We will use the characteristics of DFS tree to get a contradiction. If we have a

contradiction for edge e1, it means e1 is discovered at both left side and right side at

two different section. To have this kind of property, there are e2 with the same side and

different side with the e1 in the both section, there are e2 at one section at opposite side

and e3 is at the other section with the opposite side, with no option of switching sides,

means e2 and e3 is also at opposite sides. If dont get a contradiction, it means the graph

is planar. We added a table for corresponding graphs.

Case 1: Consider we have a Type[iii] characteristic as a subgraph. Then we have 4

back edges, e1, e
′
1 at one side and e2, e

′
2 at other side.

Case 1.1 If we have another Type[iii] characteristic with e1, we have tree options.Where

e1 and e3 at different sides.

Case 1.1.1 Second fork can be after first fork, which implies e2 and e3 can not be

comparable. This implies that , e1 and e3 is at the same side for first fork, while e2 in

the different side, where for the second fork, e1 and e3 are at different sides. This means

that it is a contradiction and, without e2 , it is one of our patterns.

Case 1.1.2 There could be three brancing at first fork. This means, for the first couple

e1 and e2 at different sides, for second couple e1 and e3 at different sides, for the third

couple e2 and e3 at different sides, it means we have a contradiction, and it is also one of

our patterns.

Case 1.1.3 Second fork can be before first fork. Since second fork comes before first

fork, if we do comparision, e1 and e2 at the same side, while e3 at the other side for send

fork. And since e1 and e2 is also different sides for first fork, it implies that we have a

contradiction, and without e3, it is one of our patterns.

Case 1.2 If we have another Type[ii] .

Case 1.2.1 Assume e1 and e3, e
′
3 to be different sides. Than it means {x3, x

′
3} > x1

and y3 > y1 > y′3

Case 1.2.1.1 if y3 ≥ f1 , if y′3 ≤ x′1 than we have no contradiction,

40

Case 1.2.1.2 if y3 ≥ f1 and y′3 > x′1 than for the first fork, e1 and e′3 are at the same

side while e2 on the other side. For the x1, e3 and e′3 are the same side while e1 in the

other side. Without e2 and e3 this yields a contradiction and it is oone of our patterns.

Case 1.2.1.3 if y3 < f1, for the first fork, e1 and e3 are the same side while e2 at other

and for the x1 , e1 and e3 are at different sides, it yields a contradiction, and without e2

it is one of our patterns.

Case 1.2.2 Assume e1 and e3 to be different sides and {x1, x
′
1} > x3 and y1 > y3 > y′1

Case 1.2.2.1 if x3 > f1, for the first fork, we have e1 and e3 at the same side, while

e2 at other side, and for the x3, we have e1 and e3 are at the different sides, it yields a

contradiction, and without e2 it is one of our patterns.

Case 1.2.2.2 if x3 = f1 , it yields a similar result for case 1.1.2.

Case 1.2.2.3 if x3 < f1, it also have a similar result with case 1.1.3.

Case 1.3 if we have Type[i] for e1 and e3 to be same side. Since there are quite a few

case, and they end up in similar results, we are not going to show each of them.

Case 1.4 if we have Type[iv] for e1 and e3 . Then there is three cases,

Case 1.4.1 if x3 > f1 which is not a contradiction.

Case 1.4.2 if x3 = f1 which is not a contradiction.

Case 1.4.3 if x3 < f1 which yields a contradiction with using e1 and e2.

For Case 2, we have choosen Type[ii], with subcases, for Case 3 we have choosen Type

[iii] with subcases, and finally for Case[iv] we have choosen Type [iv] with subcases. Since

they are all results in one of our patterns or planarity, one can use this steps to go further

in the proof easily.

41

y′1

y1

f1

x1 x2

(Case 1)
[y1 = y2] and [y′1 = y′2]

e′2e′1

e2e1

y′1

y1

f1

f2 x2

x1 x3

(Case 1.1.1)

e′1
e′2

e2

e1 e′3

e3

y′1

y1

f1

x1 x2

x3

(Case 1.1.2)

e′3

e′2

e2

e3

e′1

e1

y′1

y1

f2

f1

x2x1

x3

(Case 1.1.3)

e′1 e′2

e2e1

e′3

e3

Figure 26: Adding a Type[iii] to a Type[iii]

42

y′1

y1

f1

x1 x2

x3

y3

(Case 1.2.1.1)

e′2e′1

e2e1

e′3

e3

y′1

y1

f1

x1 x2

x3

y3

y′3

(Case 1.2.1.2)

e′2e′1

e2e1

e′3

e3

y′1

y1

f1

x1 x2

x3

y3

(Case 1.2.1.3)

e′2e′1

e2
e′3

e3

e1

y′1

y1

f1

x3

x2

x1

y3

(Case 1.2.2)

e′1 e′2

e2
e1

e3

Figure 27: Adding a Type[ii] to a Type[iii]

43

Theorem : If there is Kuratowski Subgraph, then we can discover it by our algorithm.

Proof:

Assume there is a Kuratowski subgraph that our algorithm did not discover with back

edges, it means the graph G is planar because we are using a planarity testing algorithm.

But by Kuratowski’s theorem, a graph is planar if and only if there is no subgraph that

subdivsion of Kuratowski subgraph. It is a contradiction.

Assume there is a Kuratowski subgraph that has no back edges discovered at DFS

procedure. It means, there is no cycle at Kuratowski subgraph, which is again a contra-

diction.

44

Bibliography

[1] Boyer, J., & Myrvold, W. (2004).On the Cutting Edge: Simplified O(n) planarity by

edge addition. Journal of Graph Algorithms and Applications, 8(3), 241-273.

[2] Boyer, J., Cortese, P., Patrignani, M., & Di Battista, G. (2003). Stop minding your P’s

and Q’s: implementing a fast and simple DFS-based planarity testing and embedding

algorithm. International Symposium on Graph Drawing, 25-36.

[3] Chimani, M., Klein, K., & Wiedera, T. (2016). A note on the practicality of maxi-

mal planar subgraph algorithms. Appears in the Proceedings of the 24th International

Symposium on Graph Drawing and Network Visualization(GD 2016), (p. 1609.02443).

[4] Chimani, M., Mutzel, P.,& Schmidt, J. (2007). Efficient extraction of multiple Kura-

towski subdivisions. Graph Drawing, 15th International Symposium, Sydney, Australia.

[5] de Fraysseix, H., & de Mendez, P. (2002). Pigale: Public implementation of a graph

algorithm library and editor. Software project at pigale.sourforge.net (GPL licence),

599-620.

[6] de Fraysseix, H., & de Mendez, P. (2003). On cotree-critical and DFS cotree-critical

graphs. J. Graph Algorithms Appl., 7(4), 411-427.

[7] de Fraysseix, H., & de Mendez, P. (2012). Tremaux trees and planarity. European

Journal of Combinatorics, 33, 279-293.

[8] de Fraysseix, H., & Ossona de Mendez, P. (2001). A characterization of DFS cotree

critical graphs. International Symposium on Graph Drawing, 84-95.

[9] de Fraysseix, H., & Rosenstiehl, P. (1982). A depth-first-search characterization of

planarity. Annals of Discrete Mathematics, 13, 75-80.

45

[10] de Fraysseix, H., & Rosenstiehl, P. (1983). Système de reference de Tremaux D’une

representation plane D’Un graphe planaire. North-Holland Mathematics Studies, 293-

302.

[11] de Fraysseix, H., & Rosenstiehl, P. (1985). A characterization of planar graphs by

trémaux orders. Combinatorica, 5(2), 127-135.

[12] de Fraysseix, H., de Mendez, P., & Rosenstiehl, P. (2006). Depth-first search and

planarity. Int. J. Found. Comput. Sci., 17(5), 1017-1030.

[13] Djidjev, H. (1984). On some properties of nonplanar graphs. C.R. Acad. Bulgare

Sci., 37, 1183-1184.

[14] Djidjev, H. (2006). A linear-time algorithm for finding a maximal planar subgraph.

Siam J. Discrete Math., 20(2), 444-462.

[15] Even, S., & Tarjan, R. (1976). Computing an st-numbering. Theoretical Qmputer

Science, 2, 339-344.

[16] Garey, M., & Johnson, S. (1979). Computers and Intractability: A guide to the

theory of NP-completeness. Freeman&Co. San francisco.

[17] Hedtke, I. (2017). Minimum genus and maximum planar subgraph: Exact algorithms

and general limits of approximation algorithms. Ph.D. Thesis Osnabrück University.

Retrieved from repositorium.ub.uos.de/handle/urn:nbn:de:gbv:700-2017082416212.

[18] Hopcroft, J., & Tarjan, R. (1974). Efficient planarity testing. Journal of the Asso-

ciation for Computing Machinery, 21(4), 549-568.

[19] Jugner, M., & Mutzel, P. (1996). Maximum planar subgraphs and nice embeddings:

Practical layout tools. Algorithmica, 16, 33-59.

[20] Lempel, A., Even, S., & Cederbaum, I. (1967). An algorithm for planarity testing of

graphs. In: Rosenstiehl, P. , Theory of Graphs, Gordon and Breach, 215-232.

[21] Marek-Sadowska, M. (1979). Planarization algorithm for integrated circuits engineer-

ing. In Proceedings of the IEEE International Symposium on Circuits and Systems (pp.

919-923). Piscataway,NJ: IEEE Press.

46

[22] Mehlhorn, K., & Mutzel, P. (1996). On the embedding phase of the Hopcroft and

Tarjan planarity testing algorithm. Algorithmica, 16(2), 233-242.

[23] Mehlhorn, K., & Näher, S. (1995). LEDA: A library of efficient data types and

algorithms. Communications of the ACM, 38(1), 96-102.

[24] Mehlhorn, K., Mutzel, P., & Näher, S. (1993). An implementation of the Hopcroft

and Tarjan planarity test and embedding algorithm. Technical Report MPI-I Max-

Planck-Institut für Informatik, Saarbrücken, 93-151.

[25] Pasedach, K. (1976). Criterion and algorithms for determination of bipartite sub-

graphs and their application to planarization of graphs. in Graphen-Sprachen und Al-

gorithmen in Graphen, 175-183.

[26] Wu, W. (1955). On the realization of complexes in Euclidean space I. Acta Mathe-

matica Sinica, 5, 505-552.

[27] Tamassia, R., G. Di Battista, and C. Batini(1988). Automatic graph drawing and

readability of diagrams. IEEE Transactions on Systems, Man and Cybernetics, 18,

61-79.

[28] Thomas Lengauer(1990). Combinatorial Algorithms for Integrated Circuit Lay-

out.(pp. 7-8) Hoboken,NJ: John Wiley & Sons Ltd.

