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ABSTRACT

In Reinforcement Learning, Markov Decision Processes (MDPs) enable agents to learn
complex behavior by following simple algorithms and receiving sparse feedback from the
environment. MDPs have a drawback, which is that due to their sequential nature, they
lock an agent into operating at a particular time scale. Environments may then have signals
that they can only express across a different time scale requiring the agent to have some
mechanism, such as an episodic memory, to extract this information over multiple steps of
an MDP. We humans do this easily, and it is believed that the hippocampus in our brains
and those of living things is responsible for managing such information. In this work we
propose and analyze a method to create a constant-length episodic memory trace we call
a Holographic Frequency Trace (HFT) that can be calculated and used in real time during

Reinforcement Learning processes.
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CHAPTER L.
INTRODUCTION

Trying and failing is an important part of any learning process. The closer we get to
success, the more meaningful (and sometimes difficult) each failure becomes. And often,
as we get closer to succeeding, the attempts we make become more and more precise.
Each attempt we make is more like the last, but we know it is also inherently distinct from
every previous attempt, otherwise we would have no reason to try. We, as humans, have
a clear sense of now and we know that it is different from every other moment we have
ever experienced, even if it feels like we have done something a thousand times before. In
this paper, we introduce a similar sense of novelty into a machine learning environment by
folding up the history of a sequence of steps into a constant-length trace that is very sensitive

to small changes in the past.

We take distributed representations of states in an environment and rotate them in the
frequency domain in such a way that when they are used in the AND-like vector operation
of circular convolution, they have a reduced impact on the result. By repeating this at each
step throughout a machine learning process we maintain a fading trace of past history which
can be used by an agent to treat separate but highly-similar series of events as distinct. It has
been proposed [2] that the hippocampal region of the brain may perform similar functions

of creating context-dependent memories and/or acting as a novelty detector.

To formalize the learning process, we use Reinforcement Leaning. In the field of Rein-
forcement Learning, Markov Decision Processes are a powerful tool that allow agents to
learn complex behavior in a large variety of situations [7]. These processes are sequential in
nature, and force the agent following the process to be restricted to a specific time scale. By
being forced into a specific time scale, however, any information that is transmitted over a

different time scale must either be encoded or lost. In our daily lives we seem to be able



to process information at multiple time scales, which would require processing multiple
different MDPs simultaneously. To overcome this limitation, in [7], Sutton proposed using
an MDP operating at a very small time scale, and enabling an agent to plan at a higher level
incorporating a varying number of these small time steps [7]. In this paper, we explore a
different and novel method to take a non-Markovian process and encode the history of an

episode in such a way as to make it appear Markovian to the agent.



CHAPTERIIL.

BACKGROUND

Neural Networks
An artificial neural network is a type of function approximator that is inspired by the
highly parallel activity of neurons in the nervous systems of living things [3, 7]. Given some
input data, it performs some nonlinear transformation on it to yield a meaningful output.
This nonlinear transformation is performed in a series of steps through neural layers, each
layer being a linear transformation followed by some nonlinear activation function [1]. A
large portion of modern machine learning research is dedicated to investigating how to
create artificial neural networks for different applications, but the general purpose remains
constant: ”Given some knowledge we have about the world X, tell us Y.” The more relevant
and informative the input X is, the easier it should be for the network to make a claim about
Y. For example, if someone was told “the bouncing ball is red,” and then was asked what
color the bouncing ball is, they should feel pretty confident that the correct answer is “red.”
But if instead they were asked what color blimp the ball was dropped from, they could only
guess. The provided information is simply not rich enough. Similarly, when given a hundred
details about a situation with only one or two that are relevant, one has to sort through all of
the unnecessary distractions in order to give the right answer. A neural network, too, can
suffer from the lack of relevant information or excess of unnecessary information [5], and as

such we want the input for a neural network to be as relevant as possible.

A neural network learns how to mimic a function through an iterative training process.
The process is useful because it does not require information about the function itself past
knowing the inputs and outputs. Specifically, a neural network can learn to approximate a
function from sample data alone, which is often either in abundance or can be generated

easily.



The learning process proceeds as follows. The network is provided with some input X
and produces some predicted output ¥,,.4. This output is compared to the known (from
the sample data) actual value of the function Y,,,; for that input. This produces an error
value which is used to slightly update the parameters of the network, a process called back-
propagation, in an attempt to minimizes the error over time. The idea is that by minimizing
the error, it becomes less wrong and therefore more right. In order to train, and hence create,
an artificial neural network there must be a function to approximate and some error that
represents how far the network’s predictions are from this function. Because neural networks
use nonlinear transformations that map from one finite-dimensional space to another, the
input and output sizes for a neural network are of fixed length. Care must then be taken

when working with neural networks that all inputs generated must be of the exact same size.

Reinforcement Learning

In Reinforcement Learning, an agent, often incorporating a neural network, makes
decisions at discrete time steps about the action it should take given the current state of its
environment [7]. The environment is then updated based on the action that was taken, if
any. Changes to the environment can be deterministic, stochastic, or a mix of both. Perhaps
the agent moved and is in a new position, or something came into the agent’s view, or
some other random event occurred. In most cases, much like the world we live in, the
agent does not know everything about its environment and must learn about it over time
through experiencing small pieces of it. Reinforcement Learning enables learning in such
environments by allowing the agent to make predictions at each time step about the reward
it expects to receive for each action available to it [7]. The agent can then take the action
that it expects will maximize its long-term future rewards, and compare it to the reward it
actually receives. The difference between this actual reward and the expected reward is an

error value which is something that a neural network can try to minimize [7].



When calculating these predicted long-term rewards over a possibly infinite number of
steps, it is necessary to guarantee that the value of a state is not an infinite sum, because
assigning values to states can be viewed as a function that maps states to values. If the value
of a state is infinite it is then impossible to make a meaningful comparison between it and
another state. To solve this, we apply a discount factor gamma, y= {x|x € R, 0.0 <x < 1.0},
to the reward at each time step [7]. This has the added benefit of making a reward received
sooner appear more valuable than a the same reward received later. A value of ¥ = 0.0
would mean that an agent is only concerned with rewards it receives at the next time step,
and a value of ¥ = 1.0 would mean that an agent is concerned with all rewards it receives
in the future without care for how long it takes, which again, is an undefined value that a
function cannot produce and cannot be meaningfully compared. [7]. These functions give
rise to different algorithms for determining which state an agent should try to move to based
on the value of the states. The algorithm that the agent follows throughout a Reinforcement
Learning process is called the policy 7, and the policy that the agent is trying to learn is

called the optimal policy.

Markov Decision Processes

An important concept in Reinforcement Learning is the Markov Decision Process (MDP).
Figure 1 shows the flow of information in an MDP as an agent sequentially takes actions
and receives feedback from the environment which it then uses to choose a new action at
the next time step. The process repeats until the agent arrives in a special terminating state
that ends the episode. In an MDP, when an agent interacts with its environment it moves
between states that are independent of all previous states. This way, at any time ¢ the state
S;+1 that results from the agent taking an action A; depends only on the action taken and
any stochastic processes of the environment, not on previous states. An environment that

has this quality is said to have the Markov Property [7].
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Figure 1: A Markov Decision Process where the agent interacts with it’s environment by
taking actions and then receiving a new state and reward at each time step.

In the real world, our environment is not a true MDP because we experience the world in
continuously and do not move between states that are independent from all previous states.
Another reason is that our world is partially observable, meaning we do not see everything
at any given time, and so the things we experience can be due to past events we have yet
to see the effects of. That is, the relevant information from the environment might only be

deduced from past states, and is therefore not Markovian.

Q-Learning
Q-Learning is an offline Reinforcement Learning algorithm, meaning the policy function
7 that the agent tries to approximate (i.e. the optimal behavior in an environment) is not
the same as the one that it actually follows during training. Often, (and as is the case in this
work) the policy that the agent follows is an €-greedy policy that allows for a small chance
e ={x|x€R,0.0<x<1.0} of making a random exploratory step instead of greedily

choosing the action it thinks is best at each time step. This is useful because without any



form of exploration, the agent will learn a likely-suboptimal policy and treat it as ”good

enough” with the possibility of never exploring better alternatives.

In Q-Learning, the agent learns a function ¢, often called the Q-function, which is a
function of both the state the agent is in and the action being considered. This Q-function
returns the agent’s perceived value of taking a certain action a in a certain state s if it were
to follow a certain policy 7 from then on. So, gz (s,a) is "the value of taking action a in

state s under policy 7 [7].

Eligibility Traces

An eligibility trace is a measure calculated during each step of training that assigns
past states a fading amount of credit for the reward currently received. The inspiration for
this is that if state S4 led to state Sp led to a reward at state Sc, all three states are partially
responsible for the reward. State S¢ more so than Sp which again more so than S4. An
eligibility trace can be calculated by storing the trace (which starts as a vector of zeros) from
the previous time step, multiplying it by some value lambda, A = {x|x € R, 0.0 < x < 1.0},
and then adding the representation of the current state, as shown in Figure 2. Because A is
applied at every time step, past states receive exponentially decreasing amounts of credit for
the current reward. These resulting representations, shown on the right side of each box in
Figure 2, are used as the input vectors during training of a neural network, so that multiple
past states are given credit when the weights are updated. These representations are OR-like
because, due to addition, either constituent representation can be partially seen in the output,
as opposed to an AND-like representation in which the output would represent the unique
case in which both constituent representations are present. This method requires constant

space and constant time at each time step to calculate an arbitrarily long trace.
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Figure 2: Visual representation of an eligibility trace. The trace starts as the zero vector
(left), is multiplied by some small value A and added to the representation of the current
state. This trace is then used on the next time step (right), again being reduced and added to
the representation of the new state, yielding a new vector

Distributed Representation

When working with neural networks, the inputs are represented as a vector where each
value in the vector corresponds to a feature of that input. This is useful because it allows
us to use a fixed number of features to describe an arbitrarily large number of things by
saying how much of each feature that thing has. For example, if something is spherical,
bouncy, and black and white, there is a good chance that it is a soccer ball. If we have
even 100 well-selected features, we can describe far more than 100 different objects. An
alternative method for representing different concepts as vectors, which is often used for
categorization tasks, is a one-hot encoding, in which the input vector is filled with Os except
for a single element which has the value 1. In this way, a vector of length 10 can represent up
to 10 different things. Encoding information in this way is useful when there is no overlap

between features because each of these vectors is orthogonal to each other, which allows a



neural network to treat them as completely different entities.

Orthogonality and Dot Products

In the case of one-hot encoding it is easy to see how a neural network will be able to
treat two different vectors differently because the network will use an entirely different
set of weights at the first layer. It is important though that it’s the orthogonality of these
vectors that is actually responsible for this ability. In the remainder of this paper, the term
orthogonality will not be used to refer to whether two vectors are perfectly orthogonal (i.e
have a dot product of 0), but instead to refer to how close two vectors are to being orthogonal
(e.g. two vectors with a very low dot product are highly orthogonal).

In relation to an MDP a highly orthogonal encoding is useful to represent different states
because each state in an MDP does not depend on any other state, and should be viewed as

a completely different entity.

Holographic Reduced Representations

One-hot encoding has some undesirable properties, one of which is that in order to
represent N things, the length of the vector must be at least N. This can cause problems,
for example, if it is ever necessary to represent a variable number of things the vectors and
network must be designed to overestimate that number, which is also wasteful of all the
unused weights. Further, if it is ever necessary to represent combinations of features in an
AND-like way, which is an integral part of this research, the number of necessary one-hot
encodings explodes multiplicatively, as does their length.

A better method of encoding combinations of information into a fixed-length array is to
use Holographic Reduced Representations (HRRs) [6]. HRRs are highly orthogonal vectors

of very small values centered around zero that are distributed in such a way that performing
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Figure 3: Circular convolution as a compressed outer product of two vectors ¢ and X of
length 3. The operation yields a new vector Y that is also length 3. When ¢ and ¥ are
HRRs,  will also be an HRR.

a circular convolution of two HRRs yields a new HRR that has a near-zero dot product with
either of its constituent HRRs. Figure 3 shows how a circular convolution is calculated. It is
effectively a compressed outer-product of two vectors in which each element of the outer
product contributes equally to the result. The process shown in Figure 3 is an expensive
operation, but it can be computed efficiently in O(nlogn) using a fast Fourier transformation.
Because the resulting composite HRR is also an HRR, this process can be repeated with
any number of HRRs, each one yielding a new HRR that will be highly orthogonal to the
others. Further, by normalizing the base HRRs to have a unit length, we can guarantee that
the repeated convolution will also yield unit-length HRRs and thus, no HRRs will dominate

the others and unfairly drive learning.

With respect to circular convolution of HRRs, there is a notion of a convolutive power
which is the result of performing circular convolution between an HRR and itself. Raising
an HRR to the convolutive power of 2, we would effectively square the HRR, as seen in

Figure 4. By raising it to the convolutive power of 1, it remains unchanged, and by raising it
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Figure 4: The colors represent small random values distributed around 0. An HRR raised to
the convolutive power 0 yields the identity HRR (left), an HRR raised to the convolutive
power 1 yields itself (middle), and an HRR raised to the convolutive power 2 yields a new
HRR that is highly orthogonal to the original HRR (right).

to the convolutive power of 0, it becomes the identity HRR, which is a vector with 1 as the
first element, and then O for all the rest. The identity HRR has the special property that any

HRR convolved with the identity HRR yields the original HRR, unchanged.

Episodic Memory
Episodic memories are the kind of memories that store a particular past event or episode.
If you can remember two different times you went to the same place and did the same thing,
those are two separate episodic memories that, despite being very similar, you can recall
distinctly given the proper prompting. Another example of episodic memory is remembering
where you parked your car in the morning. There is a lot of overlapping information from
parking each day, especially if you park in the same parking lot at the same time of day, and

yet we have the ability to ignore the past memories based on small differences. Research
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Figure 5: Two states of a linear maze of length 10. The green marker is the current location
of the agent, and the gold star is the goal state. The gray markers show the the resulting
location if the agent were to take the action indicated by the arrow.

has shown that the hippocampus is highly involved in the creation and retrieval of episodic
memories and is also closely tied with spatial reasoning [2], of which we use both concepts
in this work. We use episodic memory in the context of training models over many episodes,

and spatial reasoning within the context of Reinforcement Learning inside a linear maze.

Linear Maze Problem

A useful example of a Reinforcement Learning task is the linear maze problem, shown
in Figure 5, in which an agent is placed at a random location in an array, and has to walk to
the goal location, by moving either left or right at every time step. The maze is cyclic, such
that if the agent moves off the end of the array it reappears at the position on the opposite
end. In the simplest version of this task there is a single goal location that does not change
across episodes, and the function is considered learned when the agent takes the shortest
path to the goal from any starting state. This base task has been used, along with several

variants, in other research [8, 4].
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Limitations of Markov Decision Processes

As previously outlined, MDPs have properties that are useful in a Reinforcement Learn-
ing environment, but they have a drawback that in many situations, like the real world,
information is received at different rates and so it becomes unclear where one state should
end and another begin. In a task that requires the agent to make many frequent actions, it
could easily be the case that the environment can only provide a certain piece of important
information at a slower rate, spanning many time steps. One way to approach this problem
would be to keep an infinite record of past events, but this would be costly in terms of space
complexity. It would be useful to have a different way to encode past information that is not

so space-reliant.
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CHAPTER III.
METHODS
Eligibility Traces in the Frequency Domain
If we take inspiration from the concept of an eligibility trace, which due to using vector
addition creates a fading OR-like representation, and its ability to fold up past information
using constant space, perhaps we can find a similar method that provides a fading AND-like
representation of past states. Figure 6 shows the analogy between OR-like operations and
AND-like operations in different domains, and should illustrate how deeply important both
types of operations are in each domain. By having an AND-like representation of the past,
we would have a way to treat a moment in time completely differently depending on the

current state AND the past sequence of events.

If we use HRRs for our state and action representations, we can use a convolutive power
zeta between 0 and 1 to decay an HRR towards the identity HRR. This can be seen as an
AND-like decay (towards the multiplicative identity 1) in the same way that multiplication
by A is an OR-like decay in an eligibility trace (towards the additive identity 0). This novel
combination of ideas has not been explored in the literature. The full process can be seen
in Figure 7. State information (which in the case of the flashing light maze problem is the
convolved position and light HRRs) is convolved with the decayed trace, which creates a
new trace for the next time step. The trace is then convolved with the HRR representing the
action being considered, creating the input HRR for the neural network. In this paper, we
explore it’s potential use as a method to encode AND-like episodic memories with constant

space complexity.

We call this eligibility trace that holds a fading representation in the frequency domain
a Holographic Frequency Trace (HFT). To compute the convolutive power of an HRR

representing a state, we calculate the fast Fourier transform of it, rotate it by some ratio, zeta,
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Figure 6: The binary notions of AND and OR have different but equivalent operations in
different domains. For instance, the bit-wise operation of OR is equivalent to the scalar
operation of addition, while the bit-wise operation AND is equivalent to the scalar operation
of multiplication. If we extend these notions of OR and AND into the domain of HRRs, we
get vector addition and circular convolution respectively.

towards 1 in the frequency domain, so that it decays to the identity HRR and then convert
it back to the time domain. Circular convolution is then performed on this decayed HRR
and the HRR of the new state. Doing this gives us a deterministic way to encode a series
of steps into a single vector that will be orthogonal to other similar history vectors given a

large enough HRR length and a value of zeta that is not too close to 0.

The first experiment we perform is a simple test of viability in a linear maze. We train
models on a simple linear maze of length 20, with a single goal position. We test both
one-hot encoded vectors and HRRs, and we test them with both eligibility traces calculated
in the time domain and eligibility traces calculated in the frequency domain to confirm that
an agent can make use of the information in each of these simple cases. If this appears

viable we want to further explore the qualities of these frequency domain traces.
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Figure 7: Full HFT encoder. State information (convolved position and light HRRs) is
convolved with the decayed trace, creating the new trace for the next time step. That trace is
then convolved with the HRR representing the action being considered, creating the input
HRR for the neural network, which has an AND-like, fading episodic memory of past states.

Flashing Light Maze Problem

This research is interested in exploring reinforcement learning tasks in partially observ-
able environments in which the state seen by the agent at any given time step is insufficient
to determine the optimal behavior. Said another way, we are interested in tasks which do not
have the Markov Property so that we can test whether encoding episodic memories in the
form of HFTs is robust whether or not the Markov assumption holds.

This work introduces a modified version of the linear maze problem that satisfies this
constraint, called the flashing light maze problem, in which the frequency of a flashing
light is what indicates the goal location within the linear maze. The light is represented by
an HRR, and is either on or off at every time step. In this problem, there is not sufficient
information at any single moment in time for the agent to determine the location of the goal

state. Past information about the episode, specifically the frequency at which the light is
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Figure 8: Two examples of the agent as it traverses the maze in the flashing light task. Left:
the light blinks with a period of 2, indicating to the agent that the goal is be in state 7. Right:
the light blinks with a period of 3, indicating that the goal is in state 0. The behavior of the
agent in neither episode is optimal.



18

flashing, must be incorporated into the encoding for the agent to solve the problem. In Figure
8 we follow an agent over two episodes (left and right) attempting to solve the flashing
light maze. At each time step, the agent sees the state it is in and the current state of the
light, and makes a decision about which action to take (L/R). This example illustrates the
non-Markovian nature of the task. We can see that at 7y, 74 and 75 of both episodes, the
environment looks identical to the agent. At Ty of both episodes, the agent is in position P
and the light is off. Because it is the start of the episode and there is no past information to
use, the agent cannot know where the goal is located. Conversely, at T4 of both episodes, the
agent is in position Ps and the light is off. Even though the agent receives the exact same
information from the environment in both situations, if the agent has saved past information,

it can differentiate where the goal is located.

Encoders

Different methods for encoding past state information are explored in this work, and
they satisfy the following constraints. Firstly, the encodings generated should be constant-
size HRRs, so that they retain their useful qualities. Secondly, the encoding process
should be biologically plausible so we may be able to glean insight into how living things
achieve similar tasks, though a direct comparison between the methods and actual biological
processes is outside the scope of this work. Thirdly, they should be calculable in real time,
in an on-line learning environment. And lastly, the encoding methods should be calculation
driven not storage driven, they should aim to minimize the space required to generate the

encodings and rely on computation over explicit storage for scalability.

The 5 encoders tested can be seen in Algorithms 1 to 5. In Algorithm 1, we see the basic
HFT encoder. The trace it stores folds in all state information, specifically the light and

position, at each time step. This is a flexible encoder because it treats all input from the
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environment identically. It does not require additional information about the domain of the
problem in order to be used. This encoder as well as those outlined in Algorithms 2 and
3 use the zeta parameter, Z, explained previously, as a means to decay the trace over time

towards the identity HRR.

In Algorithm 2 the basic HFT encoder is adapted by using the knowledge that the
frequency of the light is what indicates the location of the goal. This encoder keeps only
the light information in its trace, not the position information. This causes fewer possible
trace values which may make it more useful because the input space used by the agent may

provide richer information.

For Algorithm 3 not only all state information is folded into the trace but also the HRRs
that represent the actions taken. This additional information could be useful because it
makes arriving in a state from one direction appear completely different than arriving from
the other direction. If the agent moves continuously in the same direction, the action HRR is
effectively convolved in multiple times and a useful pattern could emerge that is useful to

the agent.

Algorithm 4 has its own internal HRR representation for each task. It uses a naive
approach of simply convolving state and action information together without maintaining a
trace. Once the light has been seen by the agent twice, it switches modes and additionally
convolves the task representation into its output. This encoder should perform as best as we
can expect out of the other encoders but because it requires significant outside knowledge,

we use it as a metric of comparison for the others, it is not of much interest itself.

The approach in Algorithm 5 always naively returns the convolved position action and
light HRRs. This encoder should perform the worst of all encoders because it does not create

an episodic memory and cannot provide the information necessary to solve the problem.
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Each encoder is analyzed in two primary ways. First, the qualities of the encodings
produced, such as the dot-product similarity, are analyzed with no actual training being
performed. Second the encodings are empirically tested in a Reinforcement Learning
environment by using them as the input during training of agents in the flashing light maze

task.

Algorithm 1 HFT Encoder

Initialization:
Hirace; , < Hi > Trace starts as the identity HRR
Z+—{x|xeR,0<x<1}

Every Step:
Hpos, Hiights Hacr <— Environment > HRRs for state at time 7
0j_1 < ANGLE(FFT (Htmcejfl ) > Angle in frequency domain
Hirace;_y,rot <~ REAL(IFET(EXP(i*6;-1%Z))) > Trace after zeta decay

Htracej — Hpos ® Hlight ® Htracej,l ,rot
return H,., ® Htrace_,-

Algorithm 2 HFT Encoder (Light Only)

Initialization:
H,mcejf1 <+ H; > Trace starts as the identity HRR
Z+—{x|xeR,0<x<1}

Every Step:
Hyos, Hijgnes Hacr <— Environment > HRRs for state at time 7}
0j_1 <~ ANGLE(FFT (H,mcejf1 ) > Angle in frequency domain
Hirace;_y,rot < REAL(IFFT(EXP(i*0j_1%Z))) > Trace after zeta decay

Htracej — Hlight @Htracej_] ,rot
return Hpos ® Haer ® Hirace;

Encoder Dot-Product Similarity
In order to evaluate the effectiveness of an encoder outside of empirical trials its perfor-

mance is tested under two situations. The first is when the agent moves at random, which is
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Algorithm 3 HFT Encoder (Action Included)

Initialization:
Htracej_l — HI
Z+{x|xeR,0<x<1}
Every Step:
Hyos, Hiights Haer <— Environment
0j—1 < ANGLE(FFT(Hirace;_,))
leacej,l,rot — REAL(IFFT(EXP(i* 9]'_1 *Z)))
leacei,- — Hpos ®Hlight ®Hact @Htracej,l,rot
return H qce;

> Trace starts as the identity HRR

> HRRs for state at time 7
> Angle in frequency domain
> Trace after zeta decay

Algorithm 4 Optimal Encoder

Prior to start of training

for each task do
H; s < new HRR

end for

Every Step:

Hyos, Hiight, Hacr < Environment

if light has been seen two or more times then
return Hpos ® Hlight ® Hyer ® Hygsk

else
return Hpos ® Hlight & Hacr

end if

> HRR to represent each task

> HRRs for state at time 7}

Algorithm 5 Naive Encoder

Every Step:

Hposy Hiight, Hacr < Environment
return H, pos ®H, ight & Hacr

> HRRs for state at time 7}
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the expected behavior of the agent at the beginning of training. The second situation is when
the agent moves optimally, which is the expected behavior at the end of training. In both
cases, the ideal outputs produced by an encoder would be orthogonal to each other based on
the current state of the environment, the action the agent is considering, and the frequency
the light is flashing at. To collect these encodings, the agent is simulated moving through

multiple episodes of the flashing light maze.

For both the random behavior and optimal behavior, the output of the encoder is tracked
for every position-action-task triplet over many episodes, until every position-action-task
has been considered at least 100 times. The most recent 100 outputs are then taken from
every triplet and their dot products are compared in three ways.

Firstly, the 100 outputs from every position-action in one task are compared to the 100
outputs from the same position-action in the second task. This information reveals if the
agent is able to consider the same position-action differently for the two tasks. This is called
the inter-task evaluation, and ideally, these dots products will be low. High dot products
for this measurement would indicate an inability for the agent to contextualize based on
task information, and therefore an inability to solve the task. This is because the optimal
behavior may conflict for the same location in different tasks, and the network would need
to map the same input to two different outputs.

Secondly, the outputs from every position-action in one task are compared to every
other position-action in the same task. Ideally, this metric will also be low, because the
position-actions within a specific task should not interfere with each other. This will be
referred to as the intra-task evaluation. A high dot product here would indicate an inability
for the agent to differentiate between locations. For example, being in location 4 would have
almost the same representation as being in location 3 even though they should represent
unrelated states.

Lastly, the 100 values of each state-action-task are compared with the other 99 from the
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same position-action-task. This is the intra-state comparison, and the agent could benefit if
these dot products are higher than the other metrics because the behavior of the agent for
the same position-task should be the same. A high dot product here indicates that the agent
perceives being in the exact same position (and solving the same task) very similarly, and a
low dot product indicates that being in the exact same position (and solving the same task)
appears novel. Even if this is low, the task can still be learned, but the agent will need to

map multiple different inputs to the same area of the output space.

All of these dot products are collected for varying values of zeta for every encoder and
then plotted as both a pdf, to show the distribution of the dot products as zeta is varied, and
as a cdf to compare the relationship between the three inter-task, intra-task, and intra-state,

metrics above.

Encoding for Q-Learning in a Flashing Light Maze

In order to evaluate how well the encoders enable learning in a non-Markovian envi-
ronment, their performance is empirically tested in a flashing light maze. A task (i.e. a
frequency for the light and corresponding goal state) and starting position in the maze
are randomly chosen. Then, the Q-Learning algorithm is used in conjunction with the
encoder being tested to train a neural network to solve the task. At every time step, the
state, action, and light information is passed through an encoder to yield the input vector (an
HRR) for the neural network to use to approximate the Q-function. We expect the different
encoders to enable learning to varying degrees and at different rates, and the naive encoder
and the optimal encoder are used as guides for the expected upper and lower estimates of

performance.
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In order to measure performance, the number of suboptimal steps made by the agent
during each episode are tracked over the course of training. The number of suboptimal
steps is calculated as simply the total number of steps made by the agent minus the optimal
number of steps the agent could have made. This metric was chosen over some more
sophisticated measurements that might account for the earliest moment at which the agent
could possibly disambiguate which task it should perform, or for the fact that any single step
in the wrong direction must be undone, causing a total of two suboptimal steps. The optimal
number of steps is the minimum distance between the starting state and the goal state. The
minimum is specified because the maze is cyclic and there are always two distances to the

goal, one distance by moving only left and one by moving only right.

For each encoder multiple models are trained in this way. For each model the number of
suboptimal steps per episode varies greatly because each episode is randomly initialized.
To smooth this data, a sliding window of length 100 is used to find the average number of
suboptimal steps localized around an episode number. Once this smoothed data for every
model is generated, the confidence intervals of +1.96¢ are calculated for the suboptimal
steps of each encoder for each episode. This provides a graph that will show how well
the encoders perform over time on average as well as whether or not the differences are

significant.

The same test can be performed again to see the effects of tweaking different hyperpa-
rameters, specifically the zeta value for the HFT's or the HRR lengths for all encoders, on
the learning speed and performance of the models. The zeta value of the HFT encoders are
particularly interesting because it is a new hyperparameter introduced by the HFT algorithm.
Because the zeta value represents the ratio of how much of the history is kept at every time
step, it would be interesting to know which encoders are more robust to changes in zeta.

In order to find this, the average performance of the models towards the end of training is
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recorded for different values of zeta and it is observed which of the encoders performed

better over large spans of zeta values.

Maze and Model Specifications
For the experiments conducted, unless otherwise noted, the following specifications and
hyperparameters are used. For the maze, a flashing light maze of length 30 is used with
two goal locations at 11 and 20 corresponding to the two light frequencies of once every 2
steps and once every 3 steps. An optimistic, mixed reward scheme is used with a reward
of 1.0 for finding the goal state and a reward of —0.1 for every time step otherwise. This
reward scheme for the pragmatic reason that it seemed to converge quickly in the simple

linear maze task.

In the experiments neural networks with an input layer of length 1024 were used, corre-
sponding to the length of the HRRs used, and a single hidden layer of size 1024. Biases were
not allowed in the weight updates for fear that, while they may help jump-start convergence,
they might not play well with the natural distributions of HRRs, as each value in an input
vector is not an independent feature. The hyperbolic tangent activation function was used
in the hidden layer to allow for nonlinear positive and negative values. The output layers
had length 1 and used a linear activation function, a mean-squared-error loss function, and
stochastic gradient descent with learning rate 0.01. For the Q learning algorithm € = 0.1

and Y= 0.5 was used.
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Figure 9: The behaviors learned by agents using eligibility traces calculated in the frequency
and time domains and either HRRs or one-hot encodings. Agents were trained for 400
episodes in a maze of length 20 (x-axis), with a single goal at position 11. The reward
scheme in this test was 1.0 for reaching the goal state and O for arriving in any other state.
The orange line represents the agents perceived value of taking the right” action and the
blue line represents the perceived value of taking the "left” action.
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CHAPTER IV.
RESULTS

We first test to see if the notion of an eligibility trace in the frequency domain, which
again, we call a Holographic Frequency Trace (HFT), can be used by an agent to solve
a simple linear maze. In Figure 9, an agent was trained in each of 4 situations, a regular
time-domain eligibility trace with one-hot encoding or HRR encoding, and the novel HFT
with one-hot or HRR encoding. We can see that all 4 models were easily able to learn the
optimal behavior around the goal state, but struggled in states more distant from the actual
reward. We can also see that the agent was able to create a smooth curve (which is closer
to the actual Q-function) more quickly for the time-domain eligibility trace using one-hot

encoding than the other methods.

Dot-Product Comparisons

Now that we’ve confirmed that using HFTs is a viable encoding scheme, we start to
examine the qualities of the outputs of potential encoders. As previously stated, we would
like for the encoders to generate representations that are unique for each state-action-task
the agent will be considering. In Figures 10 and 11 we see the CDF for the distribution of
dot products between different states, actions, and tasks. The light blue is the intra-task
dot products, and it shows that the PDF has a normal distribution around 0.0 because of
the shape of the CDF as it quickly reaches 1.0. This makes sense because as the HFT is
calculated over the course of an episode, it will be nearly orthogonal to the representation at
the previous time step due to the nature of circular convolution and the unlikelihood that
any two random HRRs will be highly similar. The light green (inter-task) is the dot-product
comparison of each state-action in one task to the same state-action in the other task. We can
see that in the random movement simulation of Figure 10 that represents the beginning of

training, the inter-task comparison hovers slightly above the intra-state comparisons (shows
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Figure 10: Cumulative density functions of the HFT encoder at 3 values of zeta during
random movement throughout a flashing light maze. Random movement is the expected
behavior of an agent towards the start of the training process. The light blue are the intra-task
comparisons, the light green are the inter-task comparisons, and the red (appearing dark
green because alpha values are applied) are the intra-state comparisons.
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Figure 11: Cumulative density functions of the HFT encoder at 3 values of zeta during
optimal movement throughout a flashing light maze. Optimal movement is the expected
behavior of an agent toward the end of training, assuming it is able to learn the function. The
light blue are the intra-task comparisons, the light green are the inter-task comparisons, and
the red (appears dark green because alpha values are applied) are the intra-state comparisons.
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Figure 12: Multimodal PDF for the HFT Encoder (with actions). The light blue are the
intra-task comparisons, the light green are the inter-task comparisons, and the red are the
intra-state comparisons (dark green is overlapping inter-task and intra-state.)

in red, with alpha applied, so it appears dark green) and, for reasonable values of zeta, the
gap increases for the optimal behavior simulation in Figure 11. This gap shows us that
the dot products for the same state-action are generally lower between tasks than the same
state-action in the same task. This tells us that with proper zeta values as the agent learns

the correct behavior the current task becomes easier to distinguish, as well.

As zeta approaches 1.0 all PDFs approach the same normal distribution around 0.0 that the
intra-task distribution has. This is because a zeta value of 1.0 corresponds to not decaying the

trace and holding onto all past information at every time step. As zeta approaches 0.0 more
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and more past information is thrown away, and the encoder behaves more and more like the
naive encoder. A zeta value slightly higher than zero will throw away almost all information,
but because a small amount of information is kept, many of the dot products are near 1.0
because the vectors are very close to the identity HRR. As zeta varies throughout the middle
values, the inter-task and intra-state dot product distributions have varied multi-modal PDFs

which can be seen clearly in Figure 12.

Q-Learning Performance

One of the more interesting things we can test in the HFTs is the effects of the value of
the zeta, Z, parameter. Remember that zeta is the ratio of past history we should keep in the
frequency domain at each time step. It effectively controls how much of the past we want
to use in orthogonalizing our current state. A large value of zeta, near 1.0 will be highly
orthogonal, while a value of zeta near 0.0 will yield a vector very close to the identity HRR.
In Figure 13 we trained many models for each zeta value and see the average suboptimal
steps towards the end of training for each. We can see that the HFT and HFT-with-actions
encoders had similarly wide troughs in comparison with the light-only encoder. These
troughs indicate a wider acceptable value for zeta. All three encoders reached a similar
peak performance level around 13 suboptimal steps, and without a more fine-grained search
across zeta it is hard to say which has the highest potential for performance. Still, in many
ways, the trough mentioned before is a more practical measure of the quality of an encoder.
The light-only encoder had a peak performance at a much higher zeta value than the other
two, and we were not able to discern why this might be the case. Another notable feature of
this graph is that toward Z = 0.0 all three encoders experienced a second improvement in

performance which may not be trivial.
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Sensitivity to Changes in Zeta
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Figure 13: 64 models were trained at several zeta values for each of the three HFT encoders.
Each model was trained for 4000 episodes and the average number of suboptimal steps over
the last 100 episodes was calculated. We can see that each of the HFT encoders reached a
similar peak level of performance at around 13 suboptimal steps per episode, but they did so
at different values of zeta. The HFT encoder with actions has the widest trough, showing
that it is the most robust to changes in zeta.

After calculating that Z = 0.25 was a fitting value for the HFT and HFT-with-actions
encoders and that Z = 0.75 was fit for the HFT-light-only encoder, we use those values to
compare these three encoders with the naive and optimal implementations in Figure 14.
We can see that while all three HFT encoders perform significantly better than the naive
encoder, they do not approach the performance of the optimal encoder. Additionally, while
the HFT-with-actions encoder seemed to perform best, all three encoders have overlapping
confidence intervals, represented in gray, at most points of training.

By far, (with the obvious exceptions of using the oracle or optimal encoder) HRR length
has the most direct impact on performance of these models, as we can see in Figure 15
and Figure 16. At the end of training, the 3 HFT encoders had slowed down learning

considerably, but seem to still be improving for all but the smallest length HRRs. The
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Figure 14: 128 models were trained for each encoder, with the HFT encoders using their
approximate respective best zeta values (found experimentally in Figure 13). Each model
was trained in a maze of length 30 with two possible goal locations. The gray error bars
represent the 95% confidence interval for each encoder around that episode of training. We
can see that the models using the oracle encoder were able to completely learn the function.
However, the optimal encoder levels off at about 9 suboptimal steps.



33

optimal encoder achieved a peak performance of about 7 suboptimal steps per episode.
Because of how we choose to calculate the number of suboptimal steps, if the agent takes a
wrong step at the start of training, it needs to switch direction once the light disambiguates
the goal location, causing a total of two suboptimal steps. In this case, the number of
suboptimal steps will always be even. Additionally, because the maze is cyclic and has an
even length, if the agent takes the wrong path around the maze, the total steps and optimal
steps will either both be even or both be odd, meaning that, again the suboptimal steps will
always be even. This means that on average, the agent using the optimal encoder takes 3
or 4 steps in the wrong direction every episode. With periods of 2 and 3 for the flashing
light, the task is disambiguated at some point between ¢ = 3 and ¢ = 6. This means that the
optimal encoder itself did not achieve truly optimal performance because we can expect that
on average it would choose the correct direction 50% of the time if it guessed randomly, and
perhaps more than 50% if it strategized its early moves based on potential goal locations.
We are uncertain the cause of this result because the agent needs simply to learn three
representations of each position-action pair, one for task 0, one for task 1, and one for no

task, which should be attainable intuitively, and requires further investigation.

For the HFT encoders, exponentially increasing the HRR length yielded roughly linear
improvements in the average number of suboptimal steps per episode. This makes sense,
intuitively, because doubling the length of the HRR roughly doubles the number of states
it can represent, and each time step within an episode doubles the number of possible

representations there can be.

Because the agent has two options at each of up to 30 time steps, and there are roughly 2°
starting positions, the total number of representations that could exist are roughly 23°. In
practice however, the number the agent needs to consider should be much smaller because

when the agent has learned the proper behavior it will only be experiencing a tiny subset of
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Figure 15: For each encoder, 64 models were trained with 7 different exponentially increas-
ing HRR lengths, which resulted in roughly linear improvement in the average number
of suboptimal steps per episode for the HFT encoders. The optimal encoder achieved an
average of around 7 suboptimal steps per episode at best.

the total possible representations.

As we can see in Figure 17, the time required run to a single HFT model with HRRs of

length 16384 was on the order of 10 hours and when running the hundreds of models required

for statistical significance time quickly became a limiting factor in further exploration,

despite yielding the most promising results.
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Encoder Performance by HRR Length
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Figure 16: A snapshot of the average performance for each encoder for each HRR length
during the last 100 episodes of training. This is a different view of some of the same data in
Figure 15.
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Effects of HRR Length on Run Time
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Figure 17: Because the FFT algorithm is O(nlogn) we expect the time to increase super-
linearly. While that is not clearly what we see here, the times shown are the wall-clock
time and there are many other factors that influence the results. An unknown factor is also
responsible for the behavior of the light-only HFT encoder as it increases from length 8192
to 16384, we suspect it is due to our implementation which saves previously calculated
circular convolutions and that the light-only encoder experiences all possible traces relatively
quickly, effectively becoming a constant-time lookup table.
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CHAPTER V.
CONCLUSIONS

In order to contextualize a state, we can fold up the history of a sequence of steps into
an episodic memory. This provides a sense of novelty to a state based on the steps that
let to that state. A mechanism that does this is required to solve the flashing lights maze
problem. While the HFT encoders we tested did not allow the agents to learn at the same
level as the optimal encoder, they did make progress from the naive encoder which was
unable to learn an effective policy at all. Further, when given sufficiently large HRRs, they
would be capable of representing every possible path through the maze, and may be able to
completely learn the optimal behavior. That said, the size of the HRRs would need to be

prohibitively large even for a small task such as a flashing light maze of length 30.

Still, this process of being able to orthogonalize an episode based on the sequence of
past steps in an on-line fashion may be useful. In this research we tried to use these
encodings as standalone inputs to a neural network. However, because the representations
are distributed in a way such that the network has no dedicated weights for processing
other useful information such as agent position, the model has no direct way of tracking
its location independently of the light value. We thought that perhaps the light-only HFT
encoder would help resolve this, but because the representations resulting from the circular
convolution of the trace and position are linearly independent from both, the model still has
no sense of its location that is independent of the trace of the light. Said another way, it
knows its location in space and time together, but not independently. This could be remedied
by concatenating the position-action pair and light trace before being passed to the neural
network. Testing encoders such as these are a promising prospect for future work, to use the

HFTs as a tool to enrich already existing input instead of as standalone input.
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We would also like to further explore the low values of zeta in Figure 13 at a very fine
grain. It could be the case that a very small zeta value is actually more useful than the mid
range values, as hinted at by the sharp dips in the graphs. We may simply need to search
the space more thoroughly to see the actual potential of those values. A very small zeta
value could apply just enough orthogonality to differentiate between tasks while keeping the

representation of the position-action pair at the forefront.

The encoders explored show improvement in solving this task from a naive approach
but do not completely solve to problem. Still, the test suite used in the evaluation of these

encoders provides useful analysis of future encoders that seek to solve these kind of tasks.
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