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ABSTRACT

We first present a model of working memory that affords generalization. By separating

stimuli in such a way that filler representations may flow through the model based on the

state of gates, which are opened or closed in response to role signals, an action selection

network is afforded the ability to learn a response to fillers that is independent of the roles in

which they were encountered. Next, we present n-task learning, an extension of temporal

difference learning that allows for the formation of multiple policies based around a common

set of sensory inputs. In order to allow for state inputs to take on multiple values, they are

joined with an arbitrary input called an abstract task representation. Task performance is

shown to converge to optimal for a dynamic categorization problem in which input features

are identical across all tasks.
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CHAPTER I.

INTRODUCTION

Working memory, which plays a fundamental role in learning, language comprehension,

goal planning, and fluid general intelligence, continues to be the subject of extensive study,

and the progress made in the last several decades has greatly increased our understanding

of how it can play such a key role in those behaviors we typically think of as distinctly

human. Much of today’s research attempts to define the structure of mental representations,

the mechanisms by which these mental representations are manipulated within working

memory, and the limits such a neural architecture might impose.

In this paper we present two computational models, each addressing a different function

that working memory is known to subserve. The ability to generalize to new scenarios

based on previously learned information remains a difficult challenge for machine learning

models, with relatively few solutions. Our first work (Chapter II) provides a framework

to accomplish role-filler binding that is inspired by the biological mechanisms of working

memory gating. Additionally, temporal difference learning models perform poorly when

optimal policy cannot be determined solely by sensory input. Converging evidence from

studies of working memory suggest that humans form abstract mental representations that

align with significant features of a task, allowing such conditions to be overcome. In our

second work (Chapter III), we present n-task learning, an algorithm that utilizes abstract

representations to form multiple policies based around a common set of sensory inputs.
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CHAPTER II.

GENERALIZATION AND SYMBOL-BINDING USING WORKING MEMORY

GATES

Introduction

Humans display a remarkable ability to act appropriately when encountering novel

situations. The ability to understand a familiar concept when that concept is encountered

in a new context allows us to make sense of a world which would otherwise present an

overwhelming array of feature combinations. We use these faculties of generalization, for

example, when learning a new card game, finding onions at an unfamiliar grocery store, or

understanding a strange grammatical phrasing when reading a book. The creative scientific

insight and the artistic vision that become manifest in the mind come from generativity, the

manipulation of familiar mental structures to create new ones.

Because role-filler bindings serve as the first step to building full fledged structured

representations [5], a neural architecture that is able to generalize must have a way to

bind roles to fillers. In this paper we examine the implications of two working memory

architectures that use gates to control the flow of representations into and out of the model.

Background information on the biological mechanisms that underlie working memory gating

is provided in the following section. We repeat the sentence presentation task from Kriete et

al. (2013), contrasting our model and results with this study. Finally, we derive conclusions

about the limitations and affordances of the various model architectures, and consider the

biological implications of each.

Working Memory Gates

Study of the brain components involved in working memory, specifically the interactions

between the prefrontal cortex (PFC) and basal ganglia (BG), offers many insights into

how we might model temporally extended reinforcement learning problems. Models in

which the BG act as a critic to control updating of PFC contents (input or maintenance
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gating) have been shown to successfully mimic human performance [7, 21, 22]. More recent

models show that the BG can be used to control output gating from the PFC, driving action

selection and solving the problems of temporal and structural credit assignment for complex

tasks [13, 14, 17, 18]. Chatham, Frank, and Badre offer additional human evidence for both

kinds of gating, using PET and fMRI data to support this theory [3, 4].

Anatomical studies of the PFC show isolated stripes of neurons with strong inter-stripe

neural connectivity but weak intra-stripe connectivity [13, 14, 17, 18]. These PFC stripes

are connected to distinct regions of the BG in a circuital pattern. When no interference is

present, working memory neurons retain their activation states through patterns of recurrent

neural firing. In response to changes in dopamine levels, the BG may open pathways that

cause the PFC stripes to be influenced by external stimuli, updating the contents of working

memory. Likewise, the contents of PFC stripes can be selectively released to affect activity

elsewhere in the brain. This selective updating and releasing of representations is critical to

the performance of complex tasks, as shown in the works of O’Reilly et al., cited above.

The work presented in this paper parallels the work of Kriete et al. (2013) both in its aim

to reinforce theories of generalization based on output gating and to explore the limitations

of various gate-based architectures when applied to different generalization scenarios. While

Kriete et al. attempt to implement a neural architecture that is biologically accurate, however,

we have greatly abstracted and simplified the model. In their work, for example, each brain

component of the working memory system is implemented with its own set of neurons,

and neural activity within the system is used to control gates. Representations are also in

the form of distributed patterns of neural activity, and learning is accomplished through

the PVLV [9] algorithm. In this work the PFC stripes act as containers that hold an exact

copy of external stimuli representations, and temporal difference learning is used to train

the various gates. Biologically inspired functional components of working memory are

preserved, while unneeded biological implementation details have been removed. The utility
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of such an approach has been shown in prior work where complex task scenarios can be

handled well by models without intricate knowledge of the underlying neurobiology, and

particular interest has been demonstrated within the field of robotics [2, 6, 8, 21, 22, 29].

Methods

Sentence Presentation Task

Experiment design reflects the sentence presentation and query task from [13]. A three

word sentence was presented one word at a time (designated as “store” trials), then queried

with a sentential role (the “query” trial). Each episode, therefore, consisted of four timesteps:

three stores and a query. Table 1 shows the inputs for one example sentence. The query trial

was considered correct if the chosen word (filler) for this trial matched its assigned role in

the sentence. To form the sentences, words were chosen for each of the three roles at random

from a set of ten with replacement. From the set of possible sentences (as constrained by the

testing protocols below), 200 unique sentences were chosen for training and 100 different

sentences for testing. In each epoch the model was first trained on the training set, then the

percent accuracy was measured against the test set. Epochs were repeated as many times as

needed until the model achieved an accuracy of 95% on the test set. Four protocols, the first

three of which were taken from Kriete et al. (2013), were used to determine generalization

capability:

• Standard Generalization For this test, each word was used in each sentential

role during training. This test measures the ability of the model to interpret novel

combinations of previously experienced role-filler pairs.

• Spurious Anticorrelation Anticorrelations, in which a pair of words never appear in

the same sentence, were introduced to the training set. Each word from the first half

of the set was paired with a word from the second half to make five anticorrelations

from the ten words in the set (e.g. “boy” was never paired with “ball”). The test set

was then constructed to include a pair of these anticorrelated words in each sentence.
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Traditional machine learning techniques, such as neural networks, can sometimes fail

when anticorrelations are introduced because the network uses previously learned

correlations to predict an output.

• Full Combinatorial To test the performance of the model when encountering novel

role-filler pairs, two words were never used in the “agent” sentential role during

training. The test set always included one of these two words in the agent role, and

this role was always queried.

• Novel Filler Humans are faced with many scenarios in which the role can be identi-

fied, but the filler of this role is unfamiliar. When reading a paper, for example, we

have no difficulty pointing out the author, even if we have never before seen the name.

In this test, we withhold two of the fillers from the testing set. These two fillers are

then presented and queried at each trial of testing.

Models

All tests were run using three models, shown in Figure 1: one with only an input gating

mechanism (IG model) and two with both input and output gating (IGOG and IGOG-AA

models). All models have a working memory maintenance layer, wmm. The IGOG models

have an additional working memory output layer, wmo. Both IG and IGOG make use of

a single layer multiclass perceptron neural network with a linear activation function and

a softmax output to map working memory input to an action choice. The temperature for

the softmax function was set to 0.125. These networks were trained at each timestep using

the delta rule for learning. For “store” trials, the network was trained to select the action

corresponding to the filler that was presented.

The contents of the working memory layers are used by the various models to arrive at

an action selection decision. In the IGOG models, working memory is represented by the

disjunction of all stripes. In order for the action selection layer to determine a mapping of
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stripe contents to a particular stripe in IG, each stripe’s contents is conjunctively joined with

a unique stripe identifier, denoted below by sid:

The decision whether to open or close is made by each gate independently based on

internal input, as shown in Table 1. The SARSA form of temporal-difference learning

was used to choose a gating action, a. Q values were approximated using a single layer

perceptron neural network:

wmigog
o = so

1∨ so
2∨ ...∨ so

n (1)

wmig
m = (sm

1 ∧ sid1)∨ (sm
2 ∧ sid2)∨ ...∨ (sm

n ∧ sidn) (2)

External Input

Model Output

Input Gates

Working Memory Maintenance

Output Gates

Working Memory Output

Action Selection

external input

model output

IG Model

external input

model output

IGOG Model

external input

model output

IGOG-AA Model

b*

a*

Figure 1: This diagram shows the architectures for the three working memory models.
Rectangles represent working memory stripes, which can either be empty or contain an
external (PFC) input representation. Flow of external inputs through the model is controlled
by the gating layers. Input and output gates can be in either an open or closed state, as
indicated by solid or broken lines respectively. The action selection layer (rounded rectangle)
is a neural network that maps input to an action choice. a∗: In the IG model, the contents of
each stripe is conjunctively joined with a unique stripe identifier when used as input to the
action selection layer. b∗: The IGOG-AA model does not explicitly model action selection.
In this case the success reward is given in the case that working memory output contains
only the external input filler that correctly answers the given role query.
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In the above equations, wm represents contents of a working memory layer, either m for

maintenance or o for output. The model is indicated by ig for IG or igog for both IGOG and

IGOG-AA. Contents for a working memory stripe is indicated by s, with a subscript for the

stripe index and superscript to indicate working memory layer. All experiments in this work

use three stripes.

Since the action selection network learns to map fillers to actions during training, at

testing time the network will have no experience with any fillers that were not present in the

training set. To accommodate scenarios in which a novel filler is associated with a known

role we have included the IGOG-AA (Assumed Action) model. Here it is assumed that the

mapping of a filler in working memory to the selection of the action corresponding to that

filler is already learned. In this model the “query” trial was considered correct if one of the

stripes contained a representation for the appropriate filler and all other stripes were empty.

a = argmax
c∈C

((op∧ role∧ c) ·w+b) (3)

External Input

Input Gates

Working Memory Maintenance

Output Gates

Working Memory Output

tig

dog

walksgirl

tog

walksgirl dog

ta

dog

Figure 2: This figure shows how external representations move through the model for
a single timestep of the IGOG model. At tig the filler “dog” is presented, and the third
input gate opens in response to the internal input. The first two stripes in working memory
maintenance retain their current contents, but the contents of the third stripe are replaced
with the external input representation. At tog the third output gate opens in response to the
same internal input, allowing “dog” to flow through to the working memory output layer.
At ta the action selection network selects a response based on the contents of the working
memory output stripes.
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In the above equation, the op (store or query) and role (sentential role) are joined with an

action candidate c from the set C = {open,close}. Because of the network architecture,

values are a simple dot product of this representation and a weight vector w that is specific

to one particular gate, plus a bias term. Additionally, an ε-greedy approach ensured that non

greedy actions were chosen a small proportion of the time (ε = .025).

Temporal credit for input and output gating actions (opening and closing of the gates)

was assigned using eligibility traces. A correct “query” trial resulted in a global reward of

1.0. For incorrect query responses, and for all “store” trials, the reward was zero. We have

set the γ parameter to 1.0 so that future rewards are not discounted, and a relatively high λ

value of 0.9 ensures that reward for the final trial is distributed almost equally to all prior

timesteps. Each sentence presentation is considered an episode. The bias term, b, for all

neural networks used in this work (both for the gating Q function and for action selection)

was set to 1.0 and held constant throughout training, and all networks used a learning rate of

0.1.

The flow of filler representations from one layer to the next is governed by the input and

output gates. Each timestep can be broken down into three substeps, as shown in Figure

2. Working memory stripes in all layers start off empty at the beginning of each sentence

presentation. At substep tig, any stripe in wmm with an input gate in the open state will

have its current representation replaced with the external representation. If the external

representation is null, as in the case of the “query” trial, the stripe would then be emptied. If

the state of the input gate is closed then the stripe retains its current representation. These

representations may likewise flow from wmm to wmo at substep tog depending on the state

of the output gates. Each stripe in the output layer is connected only to its corresponding

stripe in the maintenance layer, so there can never be contamination from representations

in other stripes. The IG model simply omits the tog substep, and input to action selection

comes from wmm rather than wmo. Finally, action selection occurs at substep ta.
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Table 1: Model Inputs

t1 t2 t3 t4

External / Working Memory girl walks dog
Internal / Gate store ∧ agent store ∧ verb store ∧ patient query ∧ agent

Unitary holographic reduced representations (HRRs) [23] of length 1024 were used to

encode all inputs. Conjunction was accomplished by circular convolution, and disjunction

by normalized addition of vectors.

The separation of inputs into two groups, internal and external, plays a crucial part in the

ability of the model to perform the given task. In our experiments the words are considered

external inputs and the sentential roles are considered internal inputs. Although both the

fillers and the roles with which they are associated are needed to solve the tasks, only the

representations for the fillers are stored in working memory stripes. The stripes themselves

come to correspond to the roles. This is possible because the input and output gates for the

stripes utilize role information when determining whether an open or closed state is most

beneficial.

Results

Generalization results for each test are shown in Figure 3. For the standard generalization

and spurious anticorrelation result sets, all models were able to achieve an accuracy on

the test set that was close to the the 95% training accuracy. In the full combinatorial set,

however, the IG model only reached a level of accuracy that would be obtained by guessing a

response at random. Only the model that did not use an action selection network, IGOG-AA,

was able to perform near training level accuracy for the novel filler test.

In order to respond appropriately to the query following each three word sentence

presentation, the models must be able to encode six pieces of information - the fillers along

with their roles - using only three working memory stripes. Because external representations
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are not used to make gating decisions, each stripe comes to represent a single role. In other

words, each of the neural networks that control the gating actions is able to learn a policy in

which the “open” action is selected only when the role with which it identifies is presented

to it. This role identification is accomplished entirely through reinforcement learning. The

performance limitations of each model can by understood by examining the contents of the

final working memory output layer of each model.

In the IG model, an action is selected using the contents of wmig
m , shown in Equation 2,

as input. By associating the contents of each stripe with a sid, the contents are effectively

mapped to a particular stripe. This allows for external representations to take on different

meanings based on spacial location: a filler in the first stripe can mean something different

from a filler in the third stripe. As long as all role/filler combinations are experienced at any

point in training, as in the first two testing protocols, these combinations will be understood

in the test set. Since all of wmm is presented to the action selection layer, the policy learned

here involves choosing a correct action in the presence of two distracting representations,

one from each of the other stripes. This model fails, however, when it encounters a novel

role/filler combination. Although the external representation is gated into the working

Standard
Generalization

Spurious
Anticorrelation

Full
Combinatorial

Novel
Filler

A
ve

ra
ge

 A
cc

ur
ac

y

0
20

40
60

80
10

0

IG
IGOG
IGOG−AA

Figure 3: Results of the generalization tests for each model, with error bars to show a 95%
confidence interval. One-hundred tests were run for each testing protocol.
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memory stripe that is identified with the appropriate role, the action selection network has

no experience with the resulting sid/filler representation.

The IGOG model allows for the contents of wmm to be filtered by another gating layer

before action selection takes place. This eliminates the need for the sids. A policy is learned

whereby only a single output gate (and no input gates) is opened on query trials. The action

network then learns to map each filler to its corresponding action. As with the IG model,

poor performance on the novel filler test is due not to a bad gating policy, but to the action

selection network’s inexperience with novel representations.

To overcome issues resulting from an inexperienced action selection mechanism, we

have used the assumed action scheme, IGOG-AA, described in the methods section. From

the results of all four tests, we see that a role-based gating policy can be formed when reward

is provided in response to correct representations in wmo.

Discussion

This work provides evidence for an account of generalization ability that is based on

working memory gating. Each gate’s decision to open or close does not depend on the state

of other gates, and gates within each layer open or close in parallel. All gates are trained in

response to a global reward signal. In both the IG and IGOG models, each stripe becomes

tightly coupled with a role. This coupling is possible because role information is used to

control gates, and filler information, which later drives action selection, moves separately

through the model based on the state of the gates.

Alternative neural network architectures that attempt to model sequence processing do

not provide an explanation for the types of behavior found in humans. Simple recurrent

networks (SRNs) have been used in cases where data are structured and componential.

While we do not compare directly with a SRN, it is shown in Kriete et al. (2013), that a

SRN performs worse than the model with indirection on sentence presentation task.

We propose that the working memory representation in IG, which uses sids to associate
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stripe contents with a stripe, aligns with theories of neural representation in which fillers

for a particular role are encoded by varying patterns of activity over a fixed population of

neurons. In this view, learning of role/filler combinations is constrained in such a way that

nothing can be learned about a particular filler outside the context of a role. We see from

the results that this model performed poorly when a familiar filler was encountered in an

unfamiliar role.

In this work, as in the indirection model from Kriete et al. (2013), learned gating policies

are used as part of the role-filler binding mechanism. A critical difference between IGOG

and the indirection model is that IGOG does not make use of pointers. Output working

memory stripes in IGOG are not bound to any type of role identifier, and because the wmo

representation does not communicate spacial information of component stripe contents,

there is nothing to identify which stripe the fillers come from (as with the sids in IG). It is for

this reason that we do not need a model with explicit pointers to achieve good generalization

results. In IGOG, the output representation for the word “dog” is the same regardless of

which stripe it is stored in, whereas in the indirection model the distributed representation

of wmo would change depending on the stripe in which it was stored. We see this not as

evidence counter to a theory of generalization based on indirection, but as an abstraction

consistent with the encodings and mechanisms used in our model. The underlying idea is

that we can gain experience with a filler in a way that is independent of a role context, so

that when we encounter this filler in a novel role the neural representation for the filler does

not look completely new.

The IGOG-AA model shows that the learning of role bindings can be accomplished

through only the use of a reward signal which is achieved in response to isolated output of a

single working memory representation. Although we have described the fillers as novel in

that they represent an unexperienced combination of stimuli, as with a name that we have

never encountered, we believe that the neural representation for such a filler would likely be
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represented as a composite of the underlying familiar stimuli, as with the letters or phonemes

that comprise the unfamiliar name. In other words, the failure of IGOG to generalize well

in the novel filler test does not discredit the viability of a dual-gating working memory

architecture. The findings presented in Kriete et al. (2013) and reiterated in this work offer

one account of how learned representations can be combined in novel ways to accommodate

“novel filler” scenarios.

Hummel et al. present a model of role-binding in which the recall of roles is ac-

complished via comparison of working memory with long term memory representations

[5, 10, 11]. This type of scheme can be used to extend or offer further explanations for the

work presented in this paper. For example, we have explicitly provided role information to

the working memory gating system. Contextual cues in working memory could provide a

basis for recognition and recall of these roles.

Because the contents of working memory were not required to solve the tasks in this

work, these contents were not provided to the gates. This lack of working memory input to

inform gating decisions would, however, prevent the current IGOG model from efficiently

solving hierarchical problems, in which a remembered context cue must be used to solve

a task (e.g. AX-CPT). In future research we seek to study the means by which neural

representations flow into the BG, in order to more accurately model the type of information

that is used to control gating.

In these experiments, each sentence presentation constituted one temporal difference

learning episode, and forgetting of stripe contents was only possible on the “query” trial.

Future work may explore the effects of a continuous sentence presentation task (where there

may be more than one agent, for example, from different sentences), and may include a

forgetting mechanism in order to more accurately model human performance.

Finally, while the approach outlined in this paper does allow for binding of fillers to a

role, it does not allow for rebinding of these fillers. Often times our thinking about role-filler
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bindings may change with the addition of new context. Further research into role-filler

rebinding based on pointer swapping could provide insight into the neural mechanisms

underlying this capability.

The models presented here offer a simplified and abstracted model of working memory

input and output gating functionality. Because of the ease with which these types of models

can be built and scaled, they can potentially save both time and computing resources as

compared to models that use architectures aligning with strict biological constraints. Abstract

models like these are ideal for working memory protyping and conceptual development.

Working memory forms the basis for a biological agent’s ability to solve complex

problems. Abstracted models of working memory have been shown to aid robotic agents

in overcoming many of the issues associated with temporally extended tasks. A model of

working memory that allows for generalization can be used to further increase the capabilities

of machine learning agents by enabling them to understand known fillers when encountered

in unfamiliar roles. In the near future, it is not hard to imagine that generativity, the mental

(or virtual in this case) binding of roles and fillers that have never before been experienced

together, may also be used to influence an agent’s action choices.
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CHAPTER III.

N-TASK LEARNING: SOLVING MULTIPLE OR UNKNOWN NUMBERS OF

REINFORCEMENT LEARNING PROBLEMS

Introduction

Functionality typically associated with human and animal working memory has been

emulated successfully in several computational models [7, 13, 14, 16–19, 21, 22, 25], which

make use of temporal difference (TD) learning algorithms. While these algorithms can

perform well in both static and dynamic environments, their success is contingent upon the

ability of the state signal to contain all relevant information for assessing the value of future

states (the Markov property) [27]. Even when the state signal meets this criterion there

is frequently information surrounding the task that cannot be encoded in state. Frequent

changes to the optimal policy that are driven by hidden information can confound learning

in TD models [1].

These types of problems frequently occur in the daily activities of humans. To take a

simple example, imagine that you are searching for a coworker, and you know that during

work hours this coworker is usually either in her office or in the meeting room next door. As

you stand in the hallway looking at the two closed doors, nothing that you perceive from the

building environment gives you any information that would help you to know her current

whereabouts. You must simply try one of the doors. If you fail to find your coworker, the

reward you desire, you would then open the other door. In your mind you have switched

between two policies that have lead to this reward in the past - one which involves opening

the office door, and the other opening the door to the meeting room.

In this paper we describe n-task learning (nTL), a biologically inspired algorithm that

serves as an extension to any of the TD family of learning algorithms. nTL allows the

base algorithm to better handle scenarios in which the agent is required to switch between

several tasks with different optimal policies. We show how the model uses abstract task
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representations (ATRs) to identify and separate the tasks, increasing the efficacy of the base

TD learning model. We also demonstrate how the algorithm is able to learn the number of

tasks using only the feedback from the critic.

Background

Biological Precedents for the Model

We draw much of the inspiration for our model from work that explores the trade-offs

and affordances of both activation based memories and weight based memories. Having

multiple mechanisms for storage affords great flexibility in meeting memory demands, and

we believe that many of the current computational learning models could benefit from these

dual roles.

The nTL algorithm utilizes ATRs to inform policies. These ATRs can be thought of as a

kind of filter through which the agent currently perceives the environment. Throughout this

section we provide evidence for a biological analog to these ATRs, along with other details

relevant to the model.

Representation Learning In multidimensional environments, dimensional attention helps

to reduce complexity by facilitating the formation of more simplified representations based

on a subset of the original dimensions. Niv et al. present evidence that humans engage

in representation learning, homing in on task relevant features in an attempt to reduce

complexity of a state representation [16]. Of the models tested against human performance,

they found the closest match to be a type of “feature reinforcement learning” (fRL), in which

the value of a stimulus, S, is calculated as the sum of the weights of its component features,

W ( f ):

V (S) = ∑
f∈S

W ( f ) (4)

Weights for the component features are then updated at each step according to the standard
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temporal difference update, with weights for irrelevant features eventually decaying to zero.

fMRI images showed that the frontoparietal attention control network of the brain was active

toward the beginning of a task, when subjects were entertaining different alternatives for the

relevant dimension. Later in learning, when subjects concentrated on a single feature, this

region showed less activity.

We find the nTL model to be similar to the fRL model from Niv et al. in that the stimulus

values that make up the state signal are combined disjunctively before being passed into

the value function (in our case the Q function for SARSA). In this way each component

feature contributes to the estimated value, and the error for the trial is distributed among the

state features. Trials that share one or more state features with a previous trial will have an

estimated value that has been adjusted by the outcome of this previous trial.

Top-down Support in Working Memory O’Reilly et al. give support for the argument

that working memory is responsible for flexibly updating goals [19]. The authors argue that

perceptual processing and action selection are influenced by representations that are held in

working memory, providing what they describe as “top-down support” or “biasing”. The

inability to rapidly switch actively maintained representations results in perseveration on

previous learning, as learning must then be accomplished through slower weight based up-

dates. In the same study the authors attempt to show that actively maintained representations

in the prefrontal cortex (PFC) are organized by level of abstraction. They cite as evidence

behavior exhibited by human patients with frontal damage and experiments performed on

monkeys with lesions in this region in the brain.

A later work by Rougier et al. expands on this idea by attempting to provide a model

based on PFC-midbrain interaction that develops “abstract rule-like PFC representations”

[25]. This model was trained on multiple tasks where stimuli comprised of features from

several dimensions were presented, and reward for each task was determined by a single

dimension. The model was contrasted with others lacking various anatomical structures and
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mechanisms. The authors showed that units in the “full PFC” network came to represent all

of the features that made up a particular dimension, while other networks tended to form a

representation for each stimulus.

Dynamic Gating We have previously discussed the benefits of being able to actively

maintain memories; just as critical is the ability to update concepts that are currently held

in memory. It is theorized that this is accomplished in the brain via a system in which the

PFC exhibits active maintenance of memory representations and the basal ganglia act as

a gate, allowing representations in the PFC to be updated [3, 4, 7, 13, 14, 25]. It has been

shown that working memory is updated when levels of the neurotransmitter dopamine are

phasically elevated [3, 7, 14, 16, 24, 25]. When a reward is expected but not delivered, the

resulting negative error signal prompts an update to working memory contents [19]. In

addition to flushing retained memory representations and allowing working memory to store

new external stimuli, learning is believed to be limited in the presence of a large negative

error signal [3,17], as can be modeled by the gain parameter to a sigmoidal neural activation

function [7, 18].

Relation to Machine Learning Models

Although the model in this work has some aspects in common with models from other

machine learning domains, nTL has a unique property that sets apart from these - the ability

to self-monitor and react appropriately based only on reward feedback. The problem that

nTL intends to address is one in which contextual cues offer no information that can be

used to determine an appropriate action selection policy, such as the Wisconsin Card Sorting

Test. While we see this type of experiment used frequently in psychological literature, we

have seen no machine learning models that attempt to solve this problem. In this section we

contrast our algorithm with related machine learning works.

Hierarchical reinforcement learning (HRL) bares the most similarity to nTL. As an

example we use Sutton et al. (1999), in which “options” are used as a form of temporal
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abstraction [28]. In this case an option is selected and influences action choices for all

timesteps until a goal state is reached or the option expires after a predifined number of

timesteps. An ATR is an outer abstraction that effects the policy over actions. However, in

nTL there is no explicit definition of this outer abstraction within the algorithm; initiation

and termination of an ATR are contingent upon task performance rather than predifined

states. The ability to learn tasks without the use of defined goals is the main contribution of

this work.

Option-based HRL models have performed well on complex tasks, but these models are

not suited for scenarios in which state representations offer no cues for choosing among

options, i.e. when the function for selecting an option is independent of state input. HRL is

typically used to improve performance on temporally extended tasks with sparse rewards by

dividing them into sub-tasks. nTL, in contrast, is appropriate when multiple episodic tasks

are periodically “shuffled”, and nothing in the environment is indicative of the task type or

duration.

Another related reinforcement learning model is multi-objective reinforcement learning

(MORL) (see [30] for example). MORL algorithms work best when there are multiple

rewards for competing objectives. Because there is only one objective at any given time in

our task, these algorithms would not be a good fit. However, nTL could be used to remap

the objective weighting in a dynamic way, allowing MORL to be applied to the task studied

here.

Methods

Experimental Protocol

Our experiment is similar to the dimension selection task described in [25]. The agent is

presented with a stimulus consisting of f features, selected at random from d dimensions, and

is prompted to select one of the features. Feedback is given after each action selection based

on whether or not the selected feature matches a categorization rule. The rule corresponds
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to one of the five dimensions from which the features are drawn, and no cues are given

to indicate what this rule is. Correct answers are rewarded by a constant amount, rg = 1.

Incorrect answers incur no penalty, rd = 0 . After a predetermined number of consecutive

correct responses, l, the round is considered learned, and the rule changes (in the style of a

Wisconsin Card Sorting Task). The rule is selected at random, and always differs between

two consecutive rounds. Figure 4 shows an example round, and all parameter values are

given in Table 2.

It is important to note that the distinguishing feature of this problem is that is composed

square
x

red blue cross
x

square
x

green red green

Figure 4: Shown here is an example round of the experiment with l set to three using stimuli
composed of three features drawn from three dimensions: color, shape, and fill. The round
consists of eight trials. The stimuli are shown in the top row, and the selected action is
shown in the middle row. The bottom row designates a correct trial with a checkmark, and
an incorrect trial with an “x”. The rule for this round was set to “color”.

Table 2: Parameter Descriptions and Values

Name Value Description
l 8 Number of consecutive correct trials needed

to complete a round
d 5 Number of dimensions for the task stimuli
f 5 Number of features in each dimension
n 1024 Size of HRR vectors
b 1 Bias value for Q and A function networks
rg 1 Reward for a goal state (correct action)
rd 0 Reward for a non-goal state (incorrect action)
ε 0.005 Probability that the SARSA algorithm will

make a non-greedy action choice
αq 0.05 Learning rate for the Q function update
αa 0.0075 Learning rate for the A function update
αt 0.002 Learning rate for the t threshold update
a 0.5 Task add threshold for dynamic nTL (5 tasks)
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of several tasks which each must be learned without the use of environmental cues and then

remembered while completing the other tasks for success. If something in the environment

is present to help the agent determine which rule is currently in effect then the problem

becomes a contextual bandit problem. If the tasks are never repeated then the problem

becomes a non-stationary bandit problem. Without a way to associate learning with a task

representation, the agent sees the problem as a non-stationary armed bandit problem, and

performance suffers due to perseveration after rule changes (as is later shown).

The decision to directly align categorization rules with the dimensions of the stimuli

was made in order to more easily draw conclusions from existing cognitive science research.

Categorization rules represent the set of action choices that lead to reward, and may be

chosen arbitrarily.

Key Terms

In order to remove any ambiguity concerning the testing protocol, here we define some

key terms:

• We define a task to be any policy that consistently leads to reward under some set of

conditions. Our experiment, therefore, may have up to five tasks, as each dimension

of the stimuli may serve as the categorization rule that determines reward.

• In a particular experiment some dimensions may never be used for the rule, and serve

only as distractors. We refer to the number of distinct rules that are used throughout

the experiment as the number of external tasks.

• A trial consists of one presentation of a stimulus to the agent, the choosing of an action

by the agent, and a reward value given to the agent by the critic. This is equivalent to

a single time step in the reinforcement learning framework.

• A round consists of all of the trials completed by the subject over the course of a

single rule, from the time a new rule is put into effect to the time the subject has
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completed l consecutive correct trials.

• When the model substitutes an ATR that is in working memory with one that is not in

working memory we call this a task switch.

• When we wish to denote a rule change, the completing of one round and beginning of

another, we use the term external task switch.

• Incorrect trials are also referred to as sub-optimal moves.

Holographic Reduced Representations

Unitary holographic reduced representations (HRRs) [23] are used in our experiments

to encode state and action inputs. With HRRs features are distributed over the width of

an entire vector of n elements rather than tied to a particular position or index in a vector.

Conjunction and disjunction of input features is accomplished mathematically by circular

convolution and addition of vectors respectively. As a result, relationships between concepts

are represented without increase in dimensionality.

Although we use an HRR framework for encoding in this work we do not believe

the results obtained are a direct result of this choice, and we see no reason why alternate

encodings such as vectors [15], tensors [20], or spatio-temporal encodings [10] could not

produce similar results.

Working Memory Computational Model

In this section we describe the working memory model as it functioned prior to the

addition of ATRs, which are described in the following subsection. The state (the feature

set that comprises the current trial) is in the form of a single HRR, which is the result of

disjunctively combining the feature vectors for components of the stimuli. In our experiments

the action choices correspond directly to the features in the environment. To differentiate

between a particular feature in the state role (e.g. “seeing red”) and the same feature in the

action role (“selecting red”), the state and action sets are comprised of different HRRs.
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At each trial the model updates the assessed value of choosing a particular action while

in a particular state through use of the SARSA algorithm. The Q function for SARSA

is approximated using a single-layer perceptron neural network with a linear activation

function. Because of this architecture, the output for the network is simply the dot product

of the input HRR and a weight vector plus a scalar bias term, b, as shown in Equation 7.

The weight vector is initialized in the same way as HRRs, and a bias term is set to the

reward level that will be received upon reaching the goal state. Setting the bias in this way
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Figure 5: Static nTL - Shown here are the average number of sub-optimal moves taken at
each round. Mean values for 1000 runs are shown by the solid lines, with shading to show a
95% confidence interval. The number of external tasks, N, is three. Optimal performance
will converge to (∑N−1

j j)/(N−1) sub-optimal moves per round.
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shading to show a 95% confidence interval. The number of external tasks for this experiment
was three.
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has the effect of encouraging exploration via optimistic initial values (“optimistic critic”).

To counter the eventual decrease in exploration that comes from overcoming the initial

optimism we also implement an ε-soft policy that makes non-greedy decisions a small

fraction (ε) of the time.

An action is selected by forming the conjunct representation of state with each candidate

action representation for the trial, and using the resultant representations as inputs into the Q

function. The action that yields the greatest value, m, is then chosen. This can be formulated

as:

m = argmax
c∈C

((s∧ c) ·Wq +b) (5)

where s is the current state representation, C is the set of all candidate action choices for the

current trial, and Wq is the weight vector for the Q function neural network. At each trial the

reward is used to update weights for the Q function. In order to make learning more stable a

log-modulus transformation [12] is applied to the error during updates to the Q function, A

function (introduced in the next section), and t threshold (introduced in next section). This

transformation mitigates learning instability due to relatively large errors (data not shown):

∆wi = αq[sgn(δ )∗ log(|δ |+1)∗ (s∧m)i] (6)

In the above equation, wi indicates the value of the weight vector at index i, αq is the

learning rate, δ is the error, and (s∧m)i is the value of the HRR input vector (the eligibility

trace) at index i. Although we are using SARSA to learn a policy for action selection, the

experiment does not model a temporally extended task. Since all feedback is relevant to

only a single trial, we have set the λ and γ TD parameters to zero, and all updates are treated

as goal state updates.
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n-task Learning Algorithm

As mentioned earlier, nTL can be viewed as an extension to a standard TD learning

algorithm, which we will call the base algorithm. We have used SARSA as the base algorithm

for our experiments, but we believe other TD learning algorithms could be substituted. At

the heart of this approach is the idea that any input can be bound to a task by forming

the conjunct of the original input and another input that uniquely identifies an ATR. The

ATR inputs are created arbitrarily, and encoded in the same way as the input features. The

algorithm requires a function, A, to keep keep track of the value of each ATR. For this we

simply maintain and update a vector of values that are mapped to the ATRs. If desired, a

neural network could also be used to model the ATR values.

Before any input is fed into the base algorithm the input is conjunctively joined with the

current ATR representation, atr. In this way the same input, when bound to two separate

ATRs, is seen as two distinct concepts by the base algorithm, and consequently produces two

distinct values. No alterations to the base algorithm are required in order for this approach

to work. Our action selection equation now becomes:

m = argmax
c∈C

((s∧ c∧atr) ·Wq +b) (7)

The weight update is modified in a similar manner; where before in Equation 6 we had only

s∧m to represent the state / action input to SARSA, now we must include the selected ATR.

The new input is s∧m∧atr.

Reward feedback from each trial is used to update the value of the current ATR. The

error used for this update is simply the TD error for the ATR value function. In the below

equation, A is the function determining the ATR values, αa is the learning rate for ATRs,

and δ is r−A(atr). Note that in our experiments, the A function also uses optimistic initial

values, so all ATRs start with a value equal to the goal state reward:
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A(atr)← A(atr)+αa[sgn(δ )∗ log(|δ |+1)] (8)

Trials that result in a task switch do not incur an update to the A function. In this way

the current ATR is not penalized for a task change that is external to the agent. Although

we do not give data here, this adaptation leads to A values that are more stable (show less

fluctuation) and that converge to the average reward values for the external tasks.

The model determines when to switch to a new ATR via a threshold, t. When the TD

error (δ = r−Q(s,m)) is less then t, this signals to the model that the current ATR is not

well suited to handle current input, and the next sequential ATR is subbed in for the current

one. This t value is first initialized to negative one times the reward for the goal state, and is

updated at each trial using the TD error from the Q function, where αt is the learning rate

for t , and δ is the TD error:

t← t−αt [sgn(δ )∗ log(|δ |+1)] (9)

Static vs Dynamic n-task Learning In the case that the number of tasks is known ahead

of time, the number of ATRs can be set explicitly; we refer to this as static nTL. In many

cases the number of tasks is unknown, or changes with time. In dynamic nTL the number of

ATRs is set automatically based on task performance. To accomplish this an additional task

add threshold, a, is needed to determine the number of ATRs to maintain. Whenever a task

switch occurs A values for all ATRs are averaged. If this mean value falls below a then a

new ATR is added, and both A and t are reinitialized. Unlike t, the a threshold is constant.

Although we find it likely that any biological analog for this threshold would be dynamic,

we have not yet found a satisfactory way to model this behavior.

The model always starts with a single ATR in dynamic nTL. The decision to start with

one ATR and grow toward the optimal number aligns with research showing that humans
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and animals assume a simple task structure in dynamic categorization tasks in which reward

is determined by a single dimension, and move on to more complex hypotheses only after

exhausting all simple ones [16, 26].

Additional Details for Experiment Setup

A list of all parameter values is provided in Table 2. All experiments were conducted

using R version 3.4.0. The source code used for these experiments can be downloaded freely

from: urlredactedforanonymity

Results

Two experiments were conducted, both using the previously described protocol. In the

first experiment the appropriate number of ATRs is known a priori, so we use static nTL. In

the second, the number of ATRs is learned using dynamic nTL.

Experiment 1 - Static n-task Learning

By setting the number of ATRs to one, we simulate the behavior of an agent that is not

capable of learning dimensional representations. This is equivalent to standard TD learning.

We would expect such an agent to perseverate on previously learned features when a task

1.0

0.5

0.0

Feature

D
im

en
si
on

Figure 7: Shown here are values for feature selection among features present in the entire
stimuli set. a and b show results from trials that were taken from the static nTL experiment
using a single ATR to learn three external tasks. In a, which corresponds to a trial at the
beginning of a round, we see that dimensional representations from a previous round have
begun to form along dimension 3. By b, a trial later in the same round, no dimension appears
to be more valuable than any other. c and d show feature selection values after 5000 trials
for two of three ATRs that are used to complete the same task. c has come to represent
dimension 1 and d has come to represent dimension 3.
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switch occurs, and the results confirm that perseveration occurs. When only one ATR is

available, many more sub-optimal moves are taken in each round (see Figure 5). When an

external task switch occurs, action choices that were valuable in the previous round are tried

first (see Figure 7a). Only after a period of unlearning the previous external task (see Figure

7b) does the model begin to select new actions.

Figure 5 shows how task performance changes as a function of the number of ATRs

being used. Although a statistically significant difference is shown, we see that having too

few ATRs is much more detrimental to performance than having too many. When compared

to the case when the number of ATRs was equal to the number of external tasks (3 ATRs),

having one too few (2 ATRs) resulted in 3043% more sub-optimal moves per round after

100 rounds, whereas having one too many (4 ATRs) resulted in only 97% more sub-optimal

moves per round.

From Figure 6 we see that values for the A function converge to the goal state reward for

all ATRs only when the number of ATRs is equal to the number of external tasks. Again we

see that having too many ATRs has less impact on mean ATR value than having too few.

To obtain the results shown in Figure 7 a neural network was trained using the same
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error value that was used to update the A function. Input consisted of the selected action

for the trial conjunctively joined with the current ATR. While this network was not used

directly in the nTL algorithm, it allows us to see how the ATRs influence the perceived value

of selecting each feature in the state space. We see from Figure 7c and 7d that when the

number of ATRs is equal to the number of external tasks, each ATR comes to represent the

dimension for one external task. This is because after the initial learning and exploration

period each ATR is used only for the subset of trials that correspond to an external task. If

an ATR is used on a trial that results in a task switch, no weight updates take place.

Experiment 2 - Dynamic n-task Learning

For this experiment we illustrate dynamic nTL functionality with an example using five

external tasks (see Figure 8). The trials where t drops to the starting value of negative one

indicate that the mean ATR value exceeded a, and an ATR was added. When five ATRs were

present, the mean ATR value remained above a during initial exploration, and eventually

converged to the value of the goal state reward. Because the first experiment provided much

of the data needed to compare against models lacking a mechanism for the formation of

ATRs, no additional groups were used for comparison in this experiment.

Discussion

Discussing the nTL model in terms of a human actor allows us to more easily connect to

previously discussed biological models. When the agent expects to receive a reward and

none is given, the resulting negative error signal cues the agent to try a new strategy (switch

to a new ATR), and no learning takes place. There is initially a period of rapid task switching

as the agent gives many incorrect responses due to exploration and lack of learning. After a

time the estimated feature selection values that are associated with each ATR stabilize, and

internal task switching occurs only in response to a true external task switch. This period

of rapid task switching could correspond to frontoparietal attentional control in the brain,

which was shown in [16] to occur when task representations were not fully formed.
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The ATRs influence the agent’s thinking about the current trial through a mechanism of

top-down support [19]. If we take a single trial (state and action) and associate it with two

different ATRs, the agent will have a different assessment of value for each. Let us suppose

that the agent is presented with a small red circle as stimulus, and the action candidate

“select red”. When the first ATR is present in working memory this action may have a

high value, but when the second ATR is in working memory the value is low. We can then

conclude that the first ATR has come to represent a task in which selecting red when seeing

these stimuli leads to reward, and the second to represent a task in which seeing red does

not lead to reward (this second ATR may have been used for a shape or size categorization

task). In this way the switching of ATRs effectively becomes a filter for possible actions.

The agent attends to a different subset of actions with each successive trial, iterating through

hypotheses that lead to prior success as it attempts to find one that fits the task.

We have shown that an agent with only a single ATR will perseverate when an external

task switch occurs. In this case there is a period during which the previously learned task is

unlearned, followed by a period in which the new task is learned. This scenario simulates

learning without activation based memories, where all learning must be accomplished

through weight updates [19].

When the number of ATRs matches the number of external tasks, the mean of the agent’s

estimated values for the ATRs (the A function) converges to the goal reward value of the

external tasks. When too few ATRs are present this mean declines to a value that is below

the goal reward. Using these two observations, we can set a threshold (a) that acts as a

cutoff point for overall ATR performance. When the mean value falls below this threshold

the agent increases the complexity of its thinking by adding another ATR, until the number

of ATRs is equal to the number of external tasks.

One notable deviation from human-like thinking in the dynamic nTL model is that all

previous learning is discarded when an ATR is added. The reason for “resetting” when we



31

reach this point is to keep the task switch threshold, t, in a range that will cause ATRs to be

switched appropriately. If previous Q learning is retained (by leaving intact the Q neural

network) and t is reset, then t will remain too low, resulting in too few task switches for

ATRs to effectively represent the external tasks. If previous Q learning is retained and t is

not reset, then t will climb too high, resulting in a task switch for every trial. It is for this

reason that we both reinitialize the Q weight vector and reset the task switch threshold when

tasks are added.

While we believe nTL can be used to great benefit for dynamic categorization tasks

such as the one used in this experiment, we recognize that it is not appropriate for all

reinforcement learning scenarios. Specifically, we have only tested the algorithm in the

case where reward is constant and able to be achieved at each time step, the external

task distribution is uniformly stochastic, the number of external tasks does not change,

and features are used for a single categorization rule at most. A model that is able to

accommodate variable/probabilistic rewards, temporally extended tasks, adversarial task

distributions, and the introduction and removal of tasks could be extremely useful. We

would be interested to see more research on the means by which humans come to learn the

number of tasks present in a given scenario, both to provide biological inspiration for further

work and to assess plausibility of the current model.

Future work could also leverage environmental information for task switching decisions.

Task switching currently proceeds serially, which was appropriate in this work because state

information offers no information that could help the agent decide which task it is trying to

solve. We can imagine many scenarios where environmental features could be indicative

of an external task, as in associative search tasks, and where previous learning may help to

speed up learning on new but similar tasks, as in transfer learning.

We noticed that greater task complexity (features per task) and a higher number of

external tasks both lead to more instability in the value of ATRs. Another line of work could
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attempt to define limits to the task complexity and number of tasks that this model is able to

accommodate.
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CHAPTER IV.

CONCLUSION

The significance of the brain’s ability to selectively update and sustain mental represen-

tations is difficult to overstate. Conscious targeted attention to a feature or idea provides

the foundation for executive decision making, and very likely for the learning of structured

representations. In the pursuit of a complete and functionally accurate model of working

memory, we have explored ways in which gate-based architectures can be used to afford

the types of generalization capabilities found in humans. We have also implemented an

algorithm that accommodates scenarios in which multiple tasks must be performed under

conditions where an external task cue is not provided.

This thesis work has combined two lines of study that are tied together by a common

goal, to extend functionality for abstracted computational models of working memory. We

have followed in the interdisciplinary tradition whereby advances in the understanding of

human biology lead to questions that can be explored by abstract computational models.

These models, in turn, offer new hypotheses for biologists. Although the models in this

work implement mechanisms that are tightly coupled with current evidence from the field

of cognitive neuroscience, they are by nature a working memory for an artificial agent.

Working memory models have been used with robotic agents to great effect, and we suspect

that these models or a derivation thereof can be used to improve upon existing functionality.
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