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ABSTRACT 

 

 

 Methods of numerical integration in the Runge-Kutta family are parametrized 

by several arrays of coefficients used in the integration process. These coefficients can 

take any value and still form a valid integration method, so long as they are properly 

normalized. This makes them well-suited to optimization by evolutionary algorithms. 

A program named deltaRK is introduced which uses an evolutionary algorithm to 

produce an integrator specialized for simulating a single differential equation. deltaRK 

currently only supports differential equations with an associated conserved quantity 

such as energy or angular momentum. Integrators produced by deltaRK are more 

accurate on the trained system than standard Runge-Kutta integrators with no loss in 

speed. 
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I.  INTRODUCTION 

 

A. Computer Modeling 

Modeling, including computer modeling, is a powerful tool for physicists to 

understand the universe. Programming a computer to simulate a physical system using 

what is known about that system is a convenient and useful way of learning about 

phenomena which are difficult or impossible to observe directly, but for which a solid 

theoretical basis exists. Computer modeling is used in nearly all branches of physics, 

including fluid dynamics, solid-state physics, and particle physics, but one discipline 

in which it is very prominently used is astrophysics. 

By the nature of astrophysics, we cannot perform experiments on our objects of 

study, and for all but a handful of celestial objects, our ability to gather data is limited 

to the power of our telescopes. For example, we have only recently become able to 

discover exoplanets which are not gas giants. Hence we turn to simulation, and in 

particular numerical integration. Numerical integration is a method of approximating 

the solution to a differential equation, which essentially works by splitting the 

independent variable into discrete chunks rather than continuous values. It is especially 

useful for differential equations which have no closed-form solution. This work will 

consider only numerical integration with time as the independent variable, but this 

restriction is not universal.  

There are many methods for numerical integration, or integrators, all of which 

have the effect of advancing state variables such as position and velocity forward in 

time by one discrete time step. The error associated with this step, known as truncation 
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error, is larger for larger time steps, but some integrators have smaller error than others 

for a given time step. As such, an area of applied mathematics has come into existence 

which concerns itself with developing integrators which minimize truncation error. It 

should be noted that truncation error is distinct from the round-off error that results 

from storing numbers in a digital system. 

 

B.  Runge-Kutta Methods 

One set of integrators is called the Runge-Kutta methods. This group includes many of 

the most commonly-known integrators, such as Euler’s method, Heun’s method, and 

the midpoint method. The integrator most commonly known as ‘Runge-Kutta’ was 

developed by German mathematicians Carl Runge and Martin Kutta circa 1900. All the 

information needed to apply a specific Runge-Kutta method can be represented in a 

graphical format called a Butcher tableau [1]. 
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a 

c 

b 

 

 

 

 

TABLE 1: The Butcher tableau representing the original fourth-order Runge-

Kutta method. Blank spaces are elided zeros. 

 

The Butcher tableau is composed of three elements. The large triangular matrix 

is a, or the Runge-Kutta matrix. The row vector along the bottom is b, also called the 

weights, and the column vector on the left is c, also called the nodes. A single Runge-

Kutta method is parametrized by these three sets of coefficients [1]. These coefficients 

must obey two normalization conditions. The sum of each row in a must equal the 

corresponding element of c, and the sum of b must equal 1. That is, 

∑ 𝑎𝑖𝑗𝑗 = 𝑐𝑖 and ∑ 𝑏𝑖𝑖 = 1. 

Any set of coefficients that satisfies these two conditions represents a valid Runge-

Kutta method. 

 

 

 

      

 1/2  1/2    

 1/2  0  1/2   

 1  0  0  1  

  1/6  1/3  1/3  1/6 



4 

 

C.  Evolutionary Algorithms 

Evolutionary algorithms are a form of heuristic optimization which apply 

evolution through artificial selection on an array of potential solutions to a problem. 

The algorithm is analogous to real-life artificial selection. From a starting population, 

the algorithm chooses the best candidates using some criterion, called a fitness function. 

It then combines the candidates such that their desirable properties are preserved, 

analogous to reproduction, and deletes the less-fit individuals. The new population then 

undergoes the same process [2]. This iterative algorithm is a form of machine learning 

which, given sufficient time, can develop unexpected and creative solutions to 

problems. While evolutionary algorithms are most often applied to engineering 

problems such as the development of walking robots, they can be applied to any 

problem involving optimizing the inputs to a function. That function simply becomes 

the fitness function, and potential inputs become the population. Evolutionary 

algorithms are best suited to high-dimensional optimization problems; that is, problems 

with many independent variables [2]. However, there are tradeoffs to be considered. 

By choosing an evolutionary algorithm over more mathematically rigorous means, 

such as gradient descent, one sacrifices reproducibility and the guarantee of a good 

solution for improved speed and the ability to optimize many variables simultaneously. 
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D.  Evolving Integrators 

Given that evolutionary algorithms are best used to optimize systems of many 

variables, it follows that these algorithms could optimize the coefficients of a 

Runge-Kutta integrator. To this end, Martino and Nicosia created EVO-RUNGE-

KUTTA [5], which uses a genetic algorithm to optimize for numerical stability, i.e. the 

ability to simulate chaotic systems without losing accuracy. This created integrators 

with favorable overall properties. Conversely, my project optimizes for the ability to 

simulate a single target differential equation without losing accuracy, creating highly 

specialized integrators for one application. 
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II.  DELTARK 

 

 

A.  Concept 

 I developed a Python program, called deltaRK, so named because it modifies 

Runge-Kutta integrators. deltaRK uses an evolutionary algorithm to optimize the 

coefficients of a Runge-Kutta integrator for integrating a certain differential equation. 

The program generates a random initial population of Butcher tableaux of a given size, 

then applies one of several evolutionary algorithms to the population. deltaRK features 

a generalized Runge-Kutta integrator for second-order differential equations, support 

for storing and retrieving tableaux in the commonly-used JSON data interchange 

format, and a modular, structured configuration mechanism.  

 

B.  Supported Evolutionary Algorithms 

 There are currently three evolutionary algorithms available in deltaRK: simple, 

mu comma lambda (μ , λ), and mu plus lambda (μ + λ). In the following descriptions, 

‘best’ and ‘worst’ refer to evaluation via the fitness function, and ‘individual’ refers to 

a single candidate integrator. 

 The simple algorithm first replaces the worst individuals in the population with 

clones of the best individuals. This increases the overall fitness of the population. It 

then varies the population by applying a probability to either combine two individuals 

(crossover) or modify one individual randomly (mutation). This process repeats for 

each generation [3]. 
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 The remaining two algorithms, (μ , λ) and (μ + λ), each take two integer 

parameters, μ and λ. Both start by varying the entire population, only applying 

crossover or mutation, never both, to an individual. This yields a pool of offspring of 

size λ. The (μ , λ) algorithm then selects μ of the best individuals from the offspring, 

while (μ + λ) selects from both the offspring and the original population. This process 

repeats for each generation [3]. 

 

C.  Fitness Functions 

 Evaluating the performance of an integrator is not trivial. There are many 

potential metrics for accuracy and robustness, much like an athlete’s strength, speed, 

and stamina are all separate but desirable qualities. Any of these metrics can be used as 

a fitness function, and as such several fitness functions are available in deltaRK.  

 The deltaRK fitness function which has produced the most useful results when 

tested against systems with known exact solutions is one which calculates the standard 

deviation over time of a conserved quantity, named ConsStdev. That is, at every point 

during the simulation, the function calculates the value of the conserved quantity; then 

when the run is finished, it calculates the standard deviation of those stored values. A 

perfect simulation would of course have zero variation in any conserved quantity, so a 

lower standard deviation implies being closer to reality and yields a higher fitness 

score. 

 When the conserved quantity provided is energy, deltaRK will produce pseudo-

symplectic integrators, so named because the energy error of true symplectic integrators 
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is bounded [9]. One drawback is that this fitness function applies only to systems which 

have a conserved quantity, i.e. closed systems. Fortunately, many physical systems 

conserve energy or angular momentum, including n-body systems where several 

objects all interact with each other. 

 Another fitness function is PseudoOrder, which takes an array of time steps 

as a parameter. It then runs an entire simulation for each time step and curve fits 

ConsStdev(Δ𝑡) = 𝑎(Δ𝑡)𝑏, 

where ConsStdev(Δ𝑡) represents evaluating the given tableau using Δ𝑡 as the time 

step. b then becomes the fitness value. This process does not calculate the actual order 

of the integrator, but it does yield a number which governs how error changes as the 

time step changes, hence pseudo-order.  

 

D.  Robustness 

 Yet another desirable quality for integrators is robustness, a measure of an 

integrator’s ability to use a larger time step without introducing much additional error. 

A larger time step means fewer steps taken overall and thus a simulation that takes less 

real time. It is possible to use deltaRK to create integrators which retain accuracy with 

very large time steps. Just like real evolution, the population will adapt to its 

environment. Thus, by changing the training parameters so that Δt is large, the 

integrators produced will naturally be able to handle large time steps. There is of course 

a limit to the size of the time step. For periodic systems, e.g. planets orbiting a star, 
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once the time step comes within an order of magnitude of the period of motion, even 

true symplectic integrators struggle to remain stable. 

 

E.  Performance 

 In theory, deltaRK supports any number of objects in any number of dimensions 

with any equation of motion. However, the time required to advance the simulation by 

one time step increases with the number of objects, since the acceleration and energy 

functions become slower with every object and dimension added. 

 For a simple system such as an undriven undamped pendulum, both 

acceleration and energy are simple formulae which can be calculated in constant time. 

But for gravitational interaction between N objects, computing the acceleration on 

every object and computing the total energy are both O(N2) operations; that is, the time 

taken to compute these two quantities increases proportionally with N2. This is because 

the energy between every possible pair of objects must be calculated. For example, 

consider adding a tenth object to a 9-body system. N increases by a factor of 10/9 or 

11%, while the number of calculations to compute acceleration and energy increases 

by a factor of 90/72 or 25%. Since there are many steps in a single n-body simulation, 

many simulations in a single generation of evolution, and many generations in the 

overall evolutionary algorithm, this small slowdown will be greatly magnified.
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III. RESULTS 

A. Comparison to Other Integrators 

 Integrators produced by deltaRK accumulate a smaller energy error on the 

trained system than the classic Runge-Kutta method. Unlike truly symplectic 

integrators, however, deltaRK’s pseudo-symplectic integrators still accumulate error 

over time. This is because the evolutionary algorithm is not an exact process and is 

governed mostly by random chance, making it statistically impossible to produce a 

perfect symplectic integrator. 

 

FIGURE 1: Energy drift for both the classic Runge-Kutta method and a 

pseudo-symplectic integrator produced by deltaRK, using a two-

dimensional 2-body simulation of Jupiter and the Sun as a test. 

The time step is set to 1 day. The evolved integrator was trained 

on a time period of 1 year, while the final simulation was run for 

100 years. 
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 Using the robustness training method detailed in section 2.D, deltaRK also 

produced integrators which remained stable even with large time steps. 

FIGURE 2: Energy drift for both the classic Runge-Kutta method and 

another pseudo-symplectic integrator produced by deltaRK. The 

DE and parameters used to produce the integrator are the same 

as in Figure 1, with the exception that the time step is set to 7 

days as opposed to 1. 

 

 This robustness training produces integrators which perform better than 

standard Runge-Kutta at any time step, but which paradoxically perform better with 

larger time steps. 
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FIGURE 3: The squared error averaged over simulation time for 

varying time steps. Each data point represents a simulation. The 

DE being simulated is a simple harmonic oscillator, allowing 

exact error measurements. Note the log scale on the vertical 

axis. 

 

 While deltaRK-produced integrators outmatch classic Runge-Kutta methods, 

they are still Runge-Kutta methods. As such, they have a large amount of intrinsic 

error, and cannot compete with state-of-the-art methods such as the 15th-order IAS15 

or the 11th-order symplectic WHFast algorithms [6, 7, 8] in accuracy. However, there 

likely exists a range of desired accuracy for which deltaRK is the most performant 

option. 
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FIGURE 4: A hypothetical plot of real time required vs. accuracy 

desired for various integration methods. The black vertical lines 

denote the range of accuracy for which deltaRK would be 

optimal. This plot is not based on real data, but is meant to 

convey the tradeoffs associated with choosing an integration 

method. 

 

 

B.  Limitations 

 Evolutionary algorithms can only optimize so many variables at a time. For 

integrators with more than 6 or 7 stages, there are too many coefficients to optimize, 

and the algorithm becomes unstable and produces nonsensical results, often 

overflowing the floating-point numbers used to store the coefficients. This can be 

solved by limiting the number of stages and thus the size of the Butcher tableau. 
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In addition, the ConsStdev fitness function does not capture every aspect of 

the system. In particular, the frequency of periodic systems will erroneously and 

nonphysically slow over time, though the overall motion remains the same. 

 

C.  Conclusions 

 deltaRK creates Runge-Kutta methods to simulate a single physical system. 

Measurements of accuracy and robustness show that these generated methods 

outperform standard RK methods. While the program is limited by tableau size, number 

of generations, and performance, results suggest that optimizing for a specific system 

is a viable way of producing new Runge-Kutta methods. While not as accurate as 

modern methods, deltaRK may still be a reasonable option for certain applications. 

 

D.  Future Work 

 The fitness functions introduced in this work can be combined [3] with previous 

[5] and future fitness functions to create a hybrid method. There are also more potential 

fitness functions which optimize for a specific system. It should also be possible to 

evolve other types of integrators, including a class of truly symplectic methods [4].
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IV. APPENDIX: CONFIGURATION 

 Configuration is accomplished through a user-edited Python file. This file uses 

nested Python classes to allow users to specify the differential equation, conserved 

quantity, initial conditions, training parameters, and evolution parameters in an 

intuitive and structured way. 

from cfg_classes import * 
from math import pi 
 
de, cons = Gravity( 
    G = 4*pi**2, 
    masses = [1, 1e-3] 
) 

 
rk_steps = 4 

 
training = NbodyStdev( 
    q0 = [ [0, 0], 
           [5, 0] ], 
    v0 = [ [0, 0], 
           [0, 2.7] ], 
    dt = 1/365, 
    tf = 1, 
) 

 
evolution = MuCommaLambda( 
    popsize = 50, 
    ngen = 100, 
    mu = 50, 
    lambda_ = 75, 
    crossover = Crossover( 
        cxpb = .75, 
        alpha = .04 
    ), 
    mutation = Mutation( 
        outerpb = .01, 
        innerpb = .08, 
        stdev = .04 
    ), 
    selection = Tournament(tournsize=4) 
) 

LISTING 1: An example rkconfig.py, which sets up a simulation of Jupiter 

orbiting the Sun with a time step of 1 day, with a population of 50 to be 

evolved for 100 generations using the (μ , λ) algorithm. Any units can 

be used; this example uses Keplerian units (A.U. / years / solar masses).  
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