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Abstract 

This thesis explores the process of developing and testing of a containerized Lightweight 

Directory Access Protocol (LDAP) server using a cloud-based resource model to 

successfully authenticate users as part of a high-performance computing (HPC) workflow 

for Middle Tennessee State University (MTSU). In industry, it is commonplace to have 

an HPC workflow, but not have the orchestration capabilities provided by a cloud 

computing resource model. As a result, the work done for this thesis serves as a 

functional prototype to the creation of a containerized LDAP server on a HPC cloud 

computing cluster. Future work can be done by MTSU to establish a workflow that will 

package all the development tools students use during their time at the university.   
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I. INTRODUCTION 

Over the last several years, software containerization has become the industry 

standard for developers and researchers in the computer science (CS) field to implement 

and test software applications across multiple hardware and software configurations. 

Software containerization bundles the necessary files and software dependencies of an 

operating system (OS) and other applications into a centralized package. Software 

containerization is possible by utilizing containerization software, like Docker [1], and 

container orchestrating services, like Kubernetes [2]. Through this framework, 

containerized applications can be deployed and updated across the internet. From its 

inception, the workflow assumes a cloud-computing resource model. This architecture 

can scale the workflow to utilize additional hardware to provide the workflow with 

additional computational resources to aid in the computation. Some assumptions must be 

made in how to allocate these resources, but these assumptions typically are incompatible 

with traditional high-performance computing (HPC) workflows used by scientific 

computing applications. However, this architecture grants users the ability to deploy, test 

and decommission applications in different work environments quickly without leaving 

residual effects on the computational resources of the host systems. 

A Docker container houses all the necessary components of an application and 

does not require software components to be installed individually on host systems, 

therefore providing end-users with massive productivity gains. Additionally, a container 

isn't computationally straining on its hosted system because of its intentionally scalable 

architecture. Therefore, containerization grants the end-user an environment for testing 

and developing of software applications across multiple combinations of hardware and 
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software while still not exerting all of a single machine's computational resources to do 

so.  

Students use multiple applications for their classes in the Middle Tennessee State 

University (MTSU) Computer Science Department. Technologies and languages, such as 

JupyterLab, Linux, Python, and C++, are all used throughout a student's tenure at the 

university. These applications may be used independently, but more complicated 

workflows, such as HPC applications, are challenging to install and configure on a host 

computer systems. Therefore, developing an orchestrated, container-based workflow for 

HPC applications would provide a significantly improved learning experience for 

students and teaching experience for faculty. In the chapters which follow, the 

development and testing of one of the initial components for providing students with a 

centralized, customizable, and lightweight HPC work environment for students through a 

cloud-based resource model is described. The primary goal of this thesis is to construct a 

Lightweight Directory Access Protocol (LDAP) server that could authenticate users as 

part of an orchestrated, containerized HPC workflow which packages all the necessary 

developmental tools for students. The LDAP serves as an authenticator for each 

containerized component of a scalable HPC cluster that the architecture is deployed on. 
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II. BACKGROUND 

A. Virtual Machines  

In the simplest form, a virtual machine (VM) is merely a process (or program) 

running with special privileges on a host machine on top of a virtual disk image. With 

that in mind, a VM can be thought of as a virtualized computer. A VM is just like a 

physical computer because it needs an OS and other computational resources to function 

correctly. The VM is given a disk partition by the OS kernel on the host's device to 

provide the VM with the necessary operational requirements for storage, memory, and 

central processing unit (CPU) purposes. Virtualization is the technology that allows an 

application to divide computational resources on a physical machine among multiple 

VMs. Computational resources are either hardware or software components on a device 

that allow for a computer to run software applications. CPU usage, memory/storage 

usage, and network/internet usage are a few examples of computational resources.  Lack 

of computational resources can be detrimental to the running and processing of software 

applications for a machine. Therefore, managing computational resources efficiently is 

pertinent in the computing world because mismanagement of resources can hinder an 

application's ability to run correctly and efficiently. 

The hypervisor, also called virtual machine monitor (VMM), serves as the divider 

from the host's computational resources from the virtual machines' computational 

resources. Hypervisors create and run VMs by managing physical computational 

resources on the host's machine. The hypervisor can manage multiple VMs 

simultaneously on a single physical device [3].  
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Hypervisors must be installed on a physical device, such as a desktop or a server, 

therefore, taking up physical space on that host machine. The resource requirement for 

VMs orchestrated by hypervisors is a hindrance for the host machine and the VM itself 

because of the system's inability to be scaled to multiple physical devices. The hypervisor 

architecture is limited to a sole physical host machine, thus setting a physical limit to the 

computational resources that the VM can utilize to run software applications. 

 

 

B. Cloud Clusters 

 This section highlights the key components necessary to create a virtualized 

containerization cluster that is hosted as a service on a cloud. Docker, Kubernetes, and 

Helm work closely together to enable the cloud architecture for this thesis. Cloud 

computing technologies are workflows capable of sharing computational resources 

amongst worker nodes within the so-called cloud network across the internet. A cloud 

network is an IT infrastructure that allows nodes (physical host machines) to share data 

and computational resources amongst one another to create a more scalable and efficient 

work environment compared to its virtualization alternative.  

1) Docker: Virtual containerization has gained widespread support in recent years 

because of services like Docker and Kubernetes. Docker is a software containerization 

service that creates containers from images configured through a Dockerfile. Docker 

describes a container as: 

A standard unit of software that packages up code and all its dependencies, so the 

application runs quickly and reliably from one computing environment to another. 

A Docker container image is a lightweight, standalone, executable package of 
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software that includes everything needed to run an application: code, runtime, 

system tools, system libraries, and settings. [4] 

 

Thus, containers through Docker provide an accessible medium for users to deploy 

applications in a standard, lightweight, and secure manner [4]. Docker containers allow 

users to create images on their machines to provide a test environment for different 

operating systems while still maintaining a non-computationally heavy workflow 

compared to VMs orchestrated by hypervisors. However, containers and virtual machines 

run by hypervisors differ in how scalable and portable each system is. While VMs and 

containers are similar in use-cases, their main differences lie in their effect on their host 

machines and their capabilities of hosting cloud computing technologies. A VM is an 

emulation of another, entirely different computer, virtually.  The VM packages the OS, 

the CPU, and the memory of its emulated device onto the physical hardware where it is 

being hosted. In comparison, a container just runs within the OS of another machine. 

Because of this crucial difference, the VM is a much more computationally expensive 

application than a container. Therefore, VM is less capable of maintaining and scaling 

cloud computing workflows compared to containers. For developers, the focus for their 

application is to test whether their application will function properly on various OSs; 

therefore, it is more beneficial and applicable to try that application through a container 

because of the lightweight, scalable characteristics that they possess. Figure 1 [5] 

visualizes how a traditional deployment, virtualized deployment, and a containerized 

deployment operate. As seen from Figure 1, traditional deployments build applications on 

an OS built upon the host machine’s hardware. When using the conventional deployment 

method to construct applications, there are limitations to how flexible and scalable the 

application can be because of the limited computational resources available to the 
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machine that the application is built upon. Also, a traditional deployment does not 

possess a method to divide resources between an application and the physical device 

hosting the application. Traditional deployments typically do not function as efficiently 

for HPC workflows due to the physical limitations of computational resources available 

to the application. However, one key advantage for the traditional deployment is the ease 

of use for users to create simple applications designed for the specific architecture they 

are developing their application on.   

 

 

Figure 1: Comparison of Traditional Deployments, Virtualized Deployments, and 

Container Deployments 

Source: Adapted with permission from [5] 

  

In contrast to a traditional deployment, a virtualized deployment requires a 

hypervisor to manage the computational resources of the VMs that will run the 

applications that are being developed. Therefore, VMs are deployed onto a hypervisor so 

that the VMs can compute multiple applications in parallel to one another. Each VM 

utilizes the computational resources allocated to serve as a separate machine from the 
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physical device. As seen in Figure 1, the hypervisor and VMs used for this architecture 

are built upon the host machine’s OS and hardware. Virtualized deployments are more 

efficient than traditional deployments due to the separation of different VMs that run 

multiple applications simultaneously. Through utilizing multiple VMs, the virtualized 

deployment is more capable of computing HPC workflows more than a traditional 

deployment. While a virtualized deployment is better suited to run HPC applications than 

a traditional deployment, one drawback is that the VMs and the hypervisor require 

computational resources to operate; therefore, hindering the resources readily available to 

the application being run. 

A container deployment possesses a different combination of attributes between 

traditional deployments and virtualized deployments. As observed from Figure 1, a 

container deployment builds the containers that run applications directly onto the host 

machine’s OS and hardware, comparable to a traditional deployment. A containerized 

deployment utilizes containers constructed directly onto the OS to run HPC applications, 

similar to how virtualized deployments use VM to run HPC applications. Given that 

containerized deployments don’t require a hypervisor or VMs to compute HPC 

applications, they are the most suitable for running HPC applications compared to 

traditional and virtualized deployments due to their lightweight footprint on 

computational resources.   

 To use Docker, it must first be downloaded and installed onto the host machine. 

During that installation, Docker Desktop is downloaded and installed on the host machine 

as well. Docker Desktop is the centralized application needed to control the setting of 

Docker that runs on the host machine’s command line or terminal. Upon registering for 
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an account through Docker, users are permitted to use Docker Hub. Docker Hub is an 

open-source cloud-based platform that stores images for containers. Through Docker 

Hub, users have a widespread open-sourced platform to pull and run different Docker 

images that other users create. Therefore, users are not necessarily required to create their 

own containers’ images. Users can utilize Docker Hub to help develop their versions of 

container images that other users built on Docker Hub, pre-built images. 

 

 2) Kubernetes: Kubernetes is an orchestrator for numerous Docker containers. 

Kubernetes serves a wide range of use-cases for the architecture of this thesis. Load 

balancing, storage management, secret regulation, and the distribution and management 

of containers on the cluster are all different functionalities Kubernetes provides to a 

cluster. 

 Load balancing for a Kubernetes cluster is necessary to not overload a single node 

on the cluster with an application that may be too computationally expensive for a single 

node. The load-balancing characteristic of Kubernetes will distribute the workload of an 

application across all the nodes on a cluster to even the amount of computing for which 

each node is responsible. Therefore, each node performs an evenly distributed amount of 

computing to limit the probability of a single node failing due to being overworked.  

Mounting files for a cluster gives the cluster access to a file already created on a host 

machine, or it stores a file created on the cluster to the host machine to allow the host 

machine to access that mounted file or data.  

 A secret on a Kubernetes cluster is sensitive information that the system’s 

administrator can only access and manage. The secrets on a cluster are used to provide 
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the entire cluster with shared data that can be used for many different reasons. LDAP 

credentials, OAuth tokens, or SSH keys are all common uses for secrets on a cluster. 

 Kubernetes is responsible for the deployment of a cluster of containers. With this 

comes the responsibility to update, add, or delete containers when needed. It is 

Kubernetes' responsibility to ensure the cluster continues to operate when any one of 

these actions is required. Kubernetes allows for these actions to occur while maintaining 

the overall health of the cluster. Kubernetes does not need the complete disposal of the 

cluster to perform any one of these actions to a single container. However, suppose the 

desired action is to perform any one of these tasks to the entire cluster. In that case, a 

newer separate cluster will need to be deployed with the updated containers’ image. Then 

the older cluster can be torn down and edited as desired. 

 There are multiple ways Kubernetes can be installed onto a host’s system. One 

option is to use the Kubernetes client/server application called ‘kind,’ packaged into the 

Docker Desktop application.  To do this, download and install Docker onto a host’s 

machine, and this will install Docker, Docker Desktop, and Kubernetes. Another option is 

to separately download and install Kubernetes as a standalone option called ‘minikube.’  

 

 3.) Helm: Helm is a package manager for Kubernetes applications. Helm is 

responsible for the running and deployment of multiple Kubernetes .yaml files. Helm can 

be thought of as the orchestrator for multiple Kubernetes deployments, similar to how 

Kubernetes is the orchestrator for numerous Docker containers. Helm coordinates the 

installation of deployments (multi-container services) on a Kubernetes cluster. Because 

of Helm, installing, upgrading, and deleting Kubernetes applications can be achieved 
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while maintaining the state of the overall Helm deployment if desired.  Helm can be 

installed onto a host’s machine through scripts, the command line, or package managers, 

such as Chocolatey or Homebrew. 

 

C. High-Performance Computing Clusters  

 Cloud architectures can potentially become HPC workflows by balancing 

computational resources more effectively than a virtualization architecture. An HPC 

cluster is multiple servers/applications/nodes that compute applications significantly 

quicker than traditional computing methods. An HPC cluster is broken down into three 

main components that make the cluster's functionality: computing, storage, and 

communication between nodes. HPC workflows are capable of hosting Message Passing 

Interface (MPI) applications. MPI applications are software that possesses the ability to 

utilize parallel processing. Parallel processing is leveraged inside an MPI application to 

enable the program to distribute work across computational resources to create more 

efficient software. Additionally, parallel processing allows a machine to utilize multiple 

cores on a CPU to compute a given application. Slurm, LDAP, network file system 

(NFS), and Singularity [6] are additional applications that can potentially be used by HPC 

environments.   

1.) Slurm: Slurm is an open-source job scheduler used in HPC workflows because 

it allows users to submit a script to run across available compute node. A compute node 

grants administrative or non-administrative access to users using the workflow. Also, 

Slurm "Provides a framework for starting, executing, and monitoring work (normally a 

parallel job) on the set of allocated nodes" [7]. Typically, Slurm communicates through 
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munge and then application communicate using MPI. Lastly, if multiple jobs need to be 

run, Slurm is responsible for queuing jobs to ensure that the jobs are computed in the 

first-in-first-out order. This serves as a computational resource manager for the nodes on 

the cluster. Queuing jobs on the workflow is essential so that the nodes on the system 

aren't overloaded with jobs at any given moment. 

 

2.) Lightweight Directory Access Protocol: An LDAP server is a virtual protocol, 

similar to a database, that houses user information as an ordered structure for storage and 

retrieval. The LDAP is the centralized location for the storage of permissions and 

accesses for users on the cluster. An LDAP is necessary for a cluster to authenticate users 

to their accounts and for nodes to authenticate into the cluster. Typically, LDAPs are 

deployed to HPC clusters to manage users' accounts. For nodes to communicate with one 

another in a cluster, the workflow must have the means to authenticate nodes to the 

centralized system; therefore, an LDAP is essential for users of the cluster and is vital to 

the operation of the cluster itself. When a user or node attempts to authenticate into a 

system or website using specified credentials, the user or node will send a token request 

to the LDAP server; next, the LDAP authenticates the provided credentials with the 

directory's stored entries to give the user or node the appropriate accesses the cluster has 

assigned to them. Lastly, the response message is sent to the requester from the LDAP, 

either granting or denying service permission for the requested application. 

 

3.) Network File System: A NFS is a client/server architecture that allows users to 

share files across a network. An NFS is an essential component of an HPC workflow 
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because it grants users the ability to store files on the server and access those files as 

though they were stored locally to their host machine.  Also, an NFS authorizes the HPC 

workflow to share files and data between multiple users on the cluster. An NFS is 

responsible for making all or just a portion of the files on the server accessible to all users 

on the cluster or just a subsection of users on the cluster. For this reason, the NFS grants 

users the ability to have personal files that are only accessible to them. 

 

4.) Singularity: Singularity is similar to Docker in the sense that both are 

containerization applications. However, Singularity allows for the creation of containers 

locally in user space. This means that, unlike Docker, users do not need administrator 

permissions on the system or cluster to deploy containers to the host machine 

(administration permissions are usually needed to create Docker images). Through 

Singularity, MPI is achievable on a single host's system with the assistance of Slurm to 

schedule jobs on the machine. Currently in industry, Singularity is utilized on physical 

HPC clusters; however, it is presently not integrated into the cloud computing 

architecture with Docker and/or Kubernetes. 

 

D. High-Performance Cloud Computing Clusters 

 Given that cloud computing applications can potentially host the components of 

HPC clusters and applications, it is now possible for the two paradigms to be combined to 

create a high-performance cloud computing cluster. While both cloud computing 

applications and HPC applications are current technology in the industry, the 

combination of the two allows for the workflow to be orchestrated as a cloud computing 
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resource while still maintaining the MPI characteristics of an HPC cluster. Adding, 

deleting, and updating user information and nodes becomes attainable through the HPC 

applications being deployed across a cloud computing network. As a result, this creates a 

workflow that allows end-users to easily attain MPI applications while still granting the 

system administrator the controls needed to maintain the overall cluster for the 

framework. 
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III. METHODOLOGY 

A. Cloud Computing Team 

The 2020 S-STEM Summer Research Experience (SRE) was a four-week team-

based internship program created at MTSU to provide students with an opportunity to 

develop unique skills that were not in the university's academic requirements. The 

program gives students a chance to become familiar with modernized technologies, e.g., 

Docker, Kubernetes, and Helm. Additionally, the experience teaches students how to 

collaborate with other teammates; also, the experience teaches students how to present 

one's progress on work in a professional environment. The internship began in mid-May 

of 2020 and continued through late July of 2020. According to the S-STEM Scholarship 

Program in Computer Science [8], "Working as a student on a summer research 

experience project will be a part-time appointment for two months (~150 hours total)".  

For the internship, the "Cloud Computing Infrastructure" Research Team's 

(CCRT) goal was to offer students an opportunity to gain experience in cloud computing 

platforms capable of virtualizing applications. In addition, participants were to test and 

deploy virtualized applications of MTSU's current workflow to enhance the user 

experience for CS students at the university. The program's initial research began by 

creating a functioning MPI-enabled Kubernetes deployment that could run a 

containerized scientific application, Gromacs [9]. Gromacs is software used to simulate 

molecular dynamics and is widely used in the field of theoretical biophysics. The work 

conducted in this study demonstrated the positive capabilities that HPC can have in 

specific test environments. To illustrate the performance gain that an HPC cluster has to 
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offer, each team member conducted computationally intensive tests for Gromacs 

simulations both with and without the utilization of HPC. 

After completing the internship (September of 2020), the CCRT applied as a 

collective unit for an MTSU Undergraduate Research Experience and Creative Activity 

(URECA) Grant. The CCRT applied for the grant to continue the research they had 

previously established during the summer internship. The application process for the 

URECA Grant entails each student to write a two-page max essay that proposes the topic 

to be researched by the group and by the team members individually. 

Upon the application's review from the URECA organization, the organization 

notified the CCRT that they had been awarded a Silver level URECA grant for the Fall of 

2020 and the Spring of 2021. A Silver level URECA grant provides funds to each team 

member to conduct one hundred hours of research over the topic introduced during the 

application process per semester of research.  

The CCRT's research topic for the URECA program was to deploy a container-

within-container workflow that the university could eventually administer on their current 

infrastructure.  The goal of the CCRT's proposed research topic was to develop a cloud 

architecture that packages the developmental tools needed as a CS student at MTSU for 

HPC application development and testing. The CCRT divided the project into designated 

components to build the proposed architecture.  

 

B. LDAP Development 

 While other project components will be discussed in sections, the main 

contribution to the CCRT's research focus in this thesis was to develop a containerized 
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Lightweight Directory Access Protocol (LDAP) server over a Kubernetes cluster. The 

construction process began with researching and testing how to establish a base Docker 

container used to house the LDAP's base configuration. To create a Docker container, the 

user must download and install the Docker Desktop [10] application to use Docker on the 

command line or terminal window. Following installation, the user must carefully 

construct a Docker image to create a Docker container configured to the user's needs. A 

Docker image is a series of commands built by a Dockerfile. The image acts as the base 

configuration for the constructed Docker container.  

The construction of a Kubernetes container is similar to how a user would create a 

Docker container. The user begins the container construction process by first 

downloading and installing Kubernetes. Next, the user must configure a .yaml file with 

the desired specification of the Kubernetes container. The configured .yaml file will serve 

as the configuration. Once the .yaml file is error-free, Kubernetes can deploy the 

Kubernetes container. Fortunately, the time spent researching how to create a base image 

in Kubernetes and Docker was relatively minimal to the scope of this thesis because of 

the prior knowledge gained from the 2020 S-STEM SRE. Therefore, during this period, 

the research for this thesis allocated most of the time spent in the research phase learning 

how an LDAP server works and how to configure a functioning LDAP for the CCRT's 

workflow properly.   

There are several different approaches to building a containerized LDAP server. 

One option includes constructing both a Docker/Kubernetes image from scratch or 

without the assistance of previous work in the field, while another option is to employ a 

pre-built image. A pre-built image is a Docker/Kubernetes image developed by a 
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company or an individual constructed to meet his or her needs for the container. Creating 

an image from scratch requires the researcher to identify the necessary components of a 

Dockerfile (for Docker). This process can be tedious and time-consuming to locate 

similarities in functioning LDAPs. Finding specific components to configure an LDAP 

isn't necessarily difficult because of the wide range of resources across the internet to 

help guide the process. However, the task can become significantly more challenging 

when building the configuration into an image due to how containers operate. The design 

of an LDAP server on a physical machine differs from that of an LDAP server configured 

to be inside a container. Traditionally, LDAPs created on a physical machine can vary 

from their containerized counterpart in a wide range of different ways. For example, 

handling firewall access and handling access rights for users are two separate ways in 

how the two architectures might operate differently. Another option to construct a 

containerized LDAP server for the project would be to utilize a pre-built image to fit into 

the scope of the project. 

Initially, time was allocated to learning the high-level concepts of how an LDAP 

server is configured and functions for a workflow. A large portion of time was also 

allocated for identifying the necessary .yaml file configurations needed to build a 

functioning containerized LDAP server. A careful comparison and contrasting of 

different LDAP configurable values between functioning and nonfunctioning servers was 

performed. By identifying similarities in LDAP files, the required environment variables, 

and dependencies that the Kubernetes image needed to build a containerized LDAP 

server that functioned correctly could be understood. After this initial phase, it was 

determined that utilizing a configurable, pre-built image for deploying a containerized 
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LDAP server, along with slight modifications, could decrease the production time needed 

for the containerized server. So, by trial-and-error testing of different pre-built images, a 

functional proof of concept LDAP was created to authenticate with an Ubuntu client and 

verify authentication with a Jupyterlab client.  The bitnami/openldap Docker image by 

Bitnami [11] incorporates the base functionalities needed for the scope of the project. The 

decision to utilize Bitnami's image was decided upon quickly because of the 

customization and configuration capabilities that the image offers to system 

administrators. Once the pre-built Docker image was integrated, the next step was to 

configure a Kubernetes configuration file (.yaml) to control and use the base Docker 

image. The process to configure a Kubernetes image built upon a Docker image is similar 

to configuring a Docker image. The configuration of the Kubernetes image requires that 

the researcher configure the dependencies, hooks, and environment variables accordingly 

to achieve the desired objective. Alternatively, the CCRT's workflow could potentially 

utilize a pre-built Helm deployment as well but none was found to be currently available. 

The researcher initially began by locating the necessary components to build a 

Kubernetes image that would orchestrate Bitnami's Docker image. However, just like 

with a Docker image, locating the necessary parts can be tedious and monotonous, so the 

researcher concentrated on finding a pre-built Kubernetes image instead.  

Campuzano's article from 2020 [12] teaches readers how to build a containerized 

OpenLDAP server using a pre-built Docker image on Kubernetes. The tutorial says 

"OpenLDAP is the open-source solution for LDAP (Lightweight Directory Access 

Protocol). It is a protocol used to store and retrieve data from a hierarchical directory 

structure such as in databases" [12]. Campuzano's tutorial was notably different from 
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other works in the field because he successfully built an OpenLDAP system via 

Kubernetes, not just on a single physical machine. By creating the OpenLDAP server on 

a Kubernetes cluster, the system administrator can have the entire workflow be managed 

by a central across the cluster node while balancing the overall computational resource 

consumption of the service. Also, Kubernetes allows the system administrator to manage 

the containerized applications, i.e., an OpenLDAP server, as a cloud service. Through the 

steps in the article, a containerized LDAP server could now be deployed in the cloud. 

Multiple entries for user credentials were created for the server in the form of secrets. A 

secret is specific data on a Kubernetes cluster kept confidential and utilized by the entire 

cluster. 

After employing Campuzano's tutorial, the next objective was to verify that the 

LDAP server could authenticate a user from a worker node in the cluster. Verifying user 

authentication requires the LDAP server to be deployed to the workflow's cluster before 

being instantiated by a client user. Also, the cluster's secret must be created before the 

instantiation of a user node. 

First, the "Authentication and Authorization'' documentation by Jupyterhub for 

Kubernetes [13] was used to construct a Jupyterhub client container that could 

authenticate as a user node LDAP server that runs from the workflows cluster. Jupterhub 

is a development platform that packages some of the software development tools that CS 

students at MTSU use in classes; therefore, Jupyterhub is an ideal indicator as to whether 

the LDAP was functioning correctly or not.  By utilizing the guide provided by 

Jupyerhub, the researcher constructed a Jupyterhub image. Once the Jupyterhub image is 

running, the IP and port number to the LDAP server must be configured. Next, a pop-up 
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box will appear, then the user can enter authentication credentials (username and 

password) on the server. Once access is granted, it is clear that the containerized LDAP 

server is functioning correctly. 

Once a JupyterHub client could authenticate as a user on the LDAP server, 

development of an Ubuntu [14] container that could authenticate as a user on the LDAP 

server was performed. The Ubuntu client serves as an alternate means of validation that 

the LDAP can adequately authenticate a user's credentials. Through two different 

validation methods, one can safely assume that the service does function as intended. So, 

to create a base Ubuntu image, Downey's guide to Creating a Simple Kubernetes Debug 

Pod [15] was followed. Once the base Ubuntu image was up and running, the following 

Ubuntu packages were downloaded: libnss-ldap, libpam-ldap, and ldap-utils. After 

downloading the necessary packages, the dependencies of the downloaded packages were 

directed to the location of the LDAP's cluster. All that is required once the packages are 

configured, the last step to validating an Ubuntu client could authenticate as a user on the 

LDAP server was to switch accounts from the terminal window. Upon inputting the client 

credentials of one of the entries on the LDAP, one can validate through two different 

methods that the LDAP is functioning correctly. 

Each of the other members on the CCRT was responsible for developing their 

components of the workflow. Daniel Cox constructed the Slurm scheduler for the 

CCRT's project. The Slurm scheduler acts as the HPC job scheduler. The scheduler in an 

HPC workflow controls the computational resources utilized in the workflow to allow for 

MPI applications to run, such as Singularity. The Slurm scheduler was developed by 

configuring a Dockerfile with the necessary configurations for a SLURM scheduler. 



21 

 

  

Next, a base Docker image was created that a Kubernetes container would run on the 

Kubernetes cluster. Once functioning correctly, an MPI application is directed to the 

scheduler by a containerized Singularity service.  

Hannah Williams developed the containerized version of Singularity in a 

Kubernetes container, similar to how Daniel developed the SLURM scheduler. The 

containers created inside the cluster would have message passing interface (MPI) 

capabilities; therefore, allowing containers to handle parallel processing for desired 

applications or jobs. During the developmental process of the CCRT's project, Daniel 

collaborated closely with Hannah to create a test environment to have a SLURM 

scheduler send an MPI application from a pre-configured Singularity image. The 

collaborative efforts between team members played a vital role in ensuring that their 

respective components of the CCRT's project were functioning correctly because the two 

applications work so closely with one another. 

Jessica Wijaya designed the network file system (NFS) to aid in constructing the 

CCRT's project. A network file system is necessary for HPC clusters because they NFS 

allows nodes to share files amongst one another. Furthermore, an NFS server is 

responsible for managing files (updating, storing, or deleting) files inside a remote 

machine. The NFS allows the user to modify or store files located on the cluster. By 

providing the capabilities to store information from inside a container to the host system, 

the user can create a working version of their work and then keep the file on the host 

machine and know with certainty that the file works for the test environment. 

Once each component in the team project was complete and functioning correctly, 

the only necessary step for completing the workflow was to merge the separate parts of 
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the project. Each component (LDAP, SLURM, Singularity, and NFS) plays a vital role in 

the overall functionality of the CCRTs project. While each element of the project 

operates correctly separately, the CCRT's collaborative efforts created a more beneficial 

deployment that the university could utilize for its students with more fine-tuning and 

development. 

 

 

Figure 2: Schema of Workflow for CCRT’s Project 

 

 The CCRTs project, when combined, can be visualized in Figure 2. As seen in the 

diagram, a user instantiates the HPC cluster by providing login credentials to the LDAP 

container. From there, the LDAP either grants or denies access to the rest of the cluster. 

Upon entering approved login credentials, the user is given a container with access to the 

files on the cluster and has storage capabilities due to the persistent storage provided by 

the NFS server. Additionally, users can utilize the Slurm and Singularity containers 

provided on the cluster to create worker nodes that can run parallel through MPI to 

compute HPC applications. The Slurm and Singularity containers are responsible for 

maintaining the physical computing resources needed to run applications on the cluster. 
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 For the development of the CCRT’s project, each team member was responsible 

for ensuring the other members of the team were informed with the progress that was 

made on their specific component to the project. To accomplish this, each team member 

created a Github repository. The team members’ repositories acted as a version history 

for the work that they had done on their specific components. Additionally, the repository 

allowed the team members to share files between one another for the development and 

integration for the combining of individual components to create a centralized 

functioning prototype of the team’s overall project. The README.md file in the team’s 

shared repository teaches users how to build a simple Singularity/MPI application to run 

on the team’s deployment. The Github repository for each team member as well as the 

CCRT’s repository is listed below: 

• Terryn Seaton - https://github.com/tseaton2/thesis 

• Daniel Cox – https://github.com/danielJC06/Slurm_cluster 

• Jessica Wijaya - https://github.com/jcwijaya/nfs-server 

• Hannah Williams - https://github.com/hnw2y/HPC 

• Joshua L. Phillips (faculty mentor) - https://github.com/mtsu-cs-summer-

research/cloud-infrastructure-2020 
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IV. RESULTS 

The knowledge gained from the SRE proved invaluable for completing this thesis 

work. During this experience, the CCRT learned some of the base functionalities of the 

Docker and Kubernetes applications. In the early weeks of this program, the CCRT 

dedicated the most time to learning how Docker and Kubernetes operate. Additionally, 

the researchers discovered how Docker and Kubernetes aided the development process. 

Each team member spent multiple hours completing one Gromacs simulation workflow 

without HPC resources. In the following team meeting, the group discussed how their 

Gromacs simulation process went and how long each simulation took to complete. The 

consensus from the CCRT was that each test took multiple hours to add. During the 

meeting, the CCRT conducted the same simulations as previously tested, but now with 

the assistance of an HPC cluster. When performing the Gromacs simulations on an HPC 

cluster, each simulation that had once taken hours to complete without an HPC cluster 

can now take just a few minutes. The CCRT conducted all the same simulations as 

previously tested before during the length of the one-hour meeting that day. Additionally, 

the SRE program taught students how to collaborate to complete the desired project while 

doing so in a professional environment. For this work, the team members discussed and 

cooperated to conduct the tedious task of simulating molecular dynamics both with and 

without HPC technologies. 

Initial attempts to create the LDAP container component of the project focused on 

the development of the required container image. This work did not necessarily produce a 

functional image but did provide insights into the relevant software configuration needed 

to deploy such a container. As such, a pre-built LDAP image was subsequently found to 
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provide the required functionality for the purposes of the project. For example, full 

customization of all user account information is possible and necessary if accounts are to 

persist over time. However, since cloud-based deployments are often created, used, and 

then disposed, the need for persistent user account data is removed. Instead, these 

deployments only require a containerized authentication mechanism for all of the HPC-

related containers in the deployment. The Bitnami pre-built images proved sufficient to 

meet these requirements. Still, all HPC containers need to also be configured to utilize 

this centralized resource and therefore most of the effort was spent on integration of the 

LDAP server with the other cluster components.  It would have been more beneficial to 

utilize an already configured Docker and Kubernetes container at the beginning of this 

research phase to increase the time available for this thesis implementation and testing. 

However, during that time, there was no way of knowing the challenges that would arise 

while creating a Docker and Kubernetes container from scratch. When creating new 

components for deployments, careful consideration of the needs and use-cases of the 

deployment can aid in understanding whether pre-built or custom images will suffice, but 

even then it can still be the case that certain considerations are overlooked and result in a 

change of plans. 

While creating the containerized LDAP server without the assistance of a pre-

built image during the implementation and testing phases of this thesis, multiple 

unforeseen challenges occurred. Because of this, there were several key takeaways during 

this time. A containerized LDAP is merely just a .yaml file that can be properly 

configured to host a server on a cloud architecture. With that said, to properly configure 

the container, the correct configurations must first be identified to create the bare 
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minimum configurations of the server. The comparing and contrasting of different 

already configured LDAP can aid in the development of the containerized model. 

However, upon doing so, it can be found that the required base configurations of non-

containerized LDAPs and containerized LDAP are not a one-to-one comparison because 

of differences in network infrastructure between the two architectures. Some environment 

variables that are required by the containerized LDAP were not required by its non-

containerized counterpart.   

Even though the base requirements for the containerized LDAP server and the 

non-containerized LDAP server weren’t verbatim, the experience provided insight into 

how to use a pre-built image to suit the use-cases of the project. Through the testing of 

different configurations between the two models, a better understanding of how to set and 

configure the required components of the pre-built image was gained. Additionally, the 

experience gained through comparing the two architectures provided sound knowledge of 

what was being asked by the environment variables that needed to be set when using the 

pre-built image.  

Another critical idea learned during the implementation and testing phase was that 

a host machines' OS could often affect the overall installation of the Docker application 

with the standalone Kubernetes service.  While testing, Kubernetes would at times be 

inconsistent with its service. There were multiple instances where Kubernetes would 

completely stop functioning. During these instances, Kubernetes would provide very 

minimal output to help debug the issue. The most common bug with the Kubernetes 

service typically made itself evident after a Kubernetes container had already been 

created and destroyed. The problem would occur after the destruction of one container 
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and creating a second Kubernetes container. Upon doing so, Kubernetes would create the 

container appropriately; however, when trying to connect to the internet in the container, 

connection issues would begin to arise for the container. This prevented the Kubernetes 

container from updating and retrieving the necessary information to remain up to date. 

Once the container was created and could not be corrected, several hours might be spent 

debugging different workflow components. Eventually, after testing the individual parts 

of the workflow, completely uninstalling, and reinstalling the Docker application with the 

Kubernetes standalone service was necessary. After that, the Kubernetes container was 

restarted to find that the container was fully functioning after removing the Docker 

application from the host machine. While the issues seemed like they were corrected, the 

same problems continued to arise during the implementation and testing phases. 

However, when the bugs reappeared, additional testing was conducted on the Docker 

Desktop application to find any glaring issues. Through this, it was determined that the 

Docker component of the application was functioning correctly. The Kubernetes 

standalone service for the Docker Desktop, through further testing, was determined to be 

the culprit for what had been causing the connection issues for the containers. 

Unfortunately, the problem with the Kubernetes standalone server/client could not be 

resolved. 

A key benefit to of this work is that MTSU's Computer Science Department now 

has the foundation of a workflow that will bundle all of the HPC developmental tools a 

student will need into one package. While the HPC workflow isn't production-ready, the 

groundwork of the project has been completed by this thesis and the CCRT's research 

project. Currently, the workflow can authenticate a user’s account through a Jupyterhub 
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client or an Ubuntu client. Meaning, a user can authenticate with their credentials to their 

account on the school’s LDAP server by deploying an Ubuntu Kubernetes container or 

by deploying a Jupyterhub client container. Upon submitting their credentials, the LDAP 

will verify that the user’s credentials are correct and then either grant the user access to 

their specific permissions on the server or deny the user access because of an invalid 

username or password. Also, the HPC cluster can be managed and orchestrated through 

Docker/Kubernetes as a cloud-based architecture. Additionally, the HPC cluster allows 

for users to create personalized work environments to test and run HPC applications on 

the cluster. Also, users can edit, save, or share files stored in the HPC cluster. 
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V. DISCUSSION 

 A containerized, cloud-based LDAP server can serve multiple functions. One 

important use case is allowing users to authenticate their credentials through the server to 

log into the services hosted on a HPC Kubernetes deployment. Additionally, the LDAP 

server acts as the centralized authenticator for containers and services in the HPC cluster 

to facilitate HPC applications. The work described above contributes to the development 

of a Kubernetes workflow that users can deploy, quickly and efficiently, to create a 

complete HPC environment for debugging and testing parallel applications across various 

hardware and software combinations. 

 The results indicate progress made toward developing a workflow that the 

university can utilize to provide students and faculty with a more streamlined approach 

for deploying the necessary HPC development environment and tools throughout their 

time at the university. While the current workflow developed by the Cloud Infrastructure 

CCRT doesn’t provide a production model of the desired workflow, the current workflow 

does serve as a functional prototype for the desired end goal. As a result, it can serve as a 

good foundation for continued development work to provide students and faculty with a 

more efficient and effective way to manage their developmental tools. For example, the 

work will allow faculty in the department to spend less time going over the software 

installation and setups in their classrooms. This is accomplished by the development tools 

being all packaged into stand-alone, orchestrated deployments. If students are taught how 

to use the packaging applications (Docker/Kubernetes) at the beginning of their academic 

career at the university then potentially any such deployments may be deployed using the 
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same skills as for all others. After the initial learning phase of the application, students 

would be free to obtain their necessary development tools through the application. 

The current model built by the CCRT hasn’t been extensively tested to rid the 

workflow of any security holes. Therefore, in the future, additional testing will be needed 

to provide a secure workflow for the university. Also, while all the components of the 

desired end goal have been constructed, the individual HPC applications that will be ran 

on the system will need to be stored in an accessible repository to provide all the 

packaged applications to students in a centralized location.  

During the development process, the CCRT faced numerous issues surrounding 

the Docker/Kubernetes applications with regards to how the deployment ran on their 

personal machines. Oftentimes, the application would break and supply little to no 

feedback as to what was causing the issues. These issues were persistent throughout the 

project. The only consistent solution for these issues was the uninstalling and reinstalling 

of the Docker/Kubernetes application. With that in mind, future work surrounding these 

issues could be addressed. While the issue is potentially due to variations in different 

operating systems, a consistent solution will need to be discovered to provide these HPC 

workflow models with a more reliable and stable version of themselves.  
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