

High-Performance Scientific Computing as a Service in the Cloud

by

Terryn Seaton

A thesis presented to the Honors College of Middle Tennessee State

University in partial fulfillment of the requirements for graduation from

the University Honors College

Summer 2021

Thesis Committee:

Dr. Joshua L. Phillips, Thesis Director

Dr. Ennio Piano, Thesis Committee Chair

High-Performance Scientific Computing as a Service in the Cloud

by Terryn Seaton

APPROVED:

Dr. Joshua L. Phillips, Thesis Director

Associate Professor, Computer Science

Dr. Ennio Piano, Thesis Committee Chair

Associate Professor, Economics and University Honors

College

iii

Dedication

I dedicate this thesis to my family and loved ones, with special gratitude to my parents,

Terri Seaton and Joel Seaton; my sisters, Destiny Seaton and Jayden Seaton; and my

grandmothers, Whitney Seaton and Deamie Priest, who instilled the values of education

and hard work within me. Additionally, this thesis is dedicated to my cousins, Canaan

Seaton and Charley Clanton, who supported me throughout my time at MTSU. Lastly, to

my partner Alex Conyers, who has always loved and supported me through every

endeavor. All my goals and accomplishments could not have been possible without their

support.

iv

Acknowledgements

I would like to acknowledge all of the faculty and staff of the MTSU Honors

College, especially Judy Albakry, for their support during my time at MTSU. I am

sincerely grateful for the opportunity to have been a student within this prestigious

institution. Additionally, I would like to thank my thesis advisor, Dr. Joshua Phillips, for

guiding me through the writing process of this thesis. Lastly, thank you to my research

team, Daniel Cox, Hannah Williams, and Jessica Wijaya, for holding me accountable

and aiding me through our research project over the last year.

v

Abstract

This thesis explores the process of developing and testing of a containerized Lightweight

Directory Access Protocol (LDAP) server using a cloud-based resource model to

successfully authenticate users as part of a high-performance computing (HPC) workflow

for Middle Tennessee State University (MTSU). In industry, it is commonplace to have

an HPC workflow, but not have the orchestration capabilities provided by a cloud

computing resource model. As a result, the work done for this thesis serves as a

functional prototype to the creation of a containerized LDAP server on a HPC cloud

computing cluster. Future work can be done by MTSU to establish a workflow that will

package all the development tools students use during their time at the university.

vi

Table of Contents

LIST OF FIGURES ...vii

LIST OF SYMBOLS AND ABBREVIATIONS ……………………..viii

I. INTRODUCTION ………………………………………………. 1

II. BACKGROUND………………………………………………… 3

A. VIRTUAL MACHINES ……………………………….. 3

B. CLOUD CLUSTERS ... 4

C. HIGH-PERFORMANCE COMPUTING CLUSTERS… 10

D. HIGH-PERFORMANCE CLOUD COMPUTING

CLUSTERS .. 12

III. METHODOLOGY .. 14

A. CLOUD COMPUTING TEAM 14

B. LIGHTWEIGHT DIRECTORY ACCESS PROTOCOL

 DEVELOPMENT .. 15

IV. RESULTS .. 24

V. DISCUSSION ... 29

REFERENCES .. 31

vii

List of Figures

Figure 1: Comparison of different deployment types 6

Figure 2: Schema of workflow the Cloud Computing Research Team

developed .. 22

viii

List of Symbols and Abbreviations

1. Cloud Computing Research Team: CCRT

2. Computer Science: CS

3. Central Processing Unit: CPU

4. High-Performance Computing: HPC

5. Lightweight Directory Access Protocol: LDAP

6. Message Passing Interface: MPI

7. Network File System: NFS

8. Operating System: OS

9. S-STEM Summer Research Experience: SRE

10. Virtual Machine: VM

1

I. INTRODUCTION

Over the last several years, software containerization has become the industry

standard for developers and researchers in the computer science (CS) field to implement

and test software applications across multiple hardware and software configurations.

Software containerization bundles the necessary files and software dependencies of an

operating system (OS) and other applications into a centralized package. Software

containerization is possible by utilizing containerization software, like Docker [1], and

container orchestrating services, like Kubernetes [2]. Through this framework,

containerized applications can be deployed and updated across the internet. From its

inception, the workflow assumes a cloud-computing resource model. This architecture

can scale the workflow to utilize additional hardware to provide the workflow with

additional computational resources to aid in the computation. Some assumptions must be

made in how to allocate these resources, but these assumptions typically are incompatible

with traditional high-performance computing (HPC) workflows used by scientific

computing applications. However, this architecture grants users the ability to deploy, test

and decommission applications in different work environments quickly without leaving

residual effects on the computational resources of the host systems.

A Docker container houses all the necessary components of an application and

does not require software components to be installed individually on host systems,

therefore providing end-users with massive productivity gains. Additionally, a container

isn't computationally straining on its hosted system because of its intentionally scalable

architecture. Therefore, containerization grants the end-user an environment for testing

and developing of software applications across multiple combinations of hardware and

2

software while still not exerting all of a single machine's computational resources to do

so.

Students use multiple applications for their classes in the Middle Tennessee State

University (MTSU) Computer Science Department. Technologies and languages, such as

JupyterLab, Linux, Python, and C++, are all used throughout a student's tenure at the

university. These applications may be used independently, but more complicated

workflows, such as HPC applications, are challenging to install and configure on a host

computer systems. Therefore, developing an orchestrated, container-based workflow for

HPC applications would provide a significantly improved learning experience for

students and teaching experience for faculty. In the chapters which follow, the

development and testing of one of the initial components for providing students with a

centralized, customizable, and lightweight HPC work environment for students through a

cloud-based resource model is described. The primary goal of this thesis is to construct a

Lightweight Directory Access Protocol (LDAP) server that could authenticate users as

part of an orchestrated, containerized HPC workflow which packages all the necessary

developmental tools for students. The LDAP serves as an authenticator for each

containerized component of a scalable HPC cluster that the architecture is deployed on.

3

II. BACKGROUND

A. Virtual Machines

In the simplest form, a virtual machine (VM) is merely a process (or program)

running with special privileges on a host machine on top of a virtual disk image. With

that in mind, a VM can be thought of as a virtualized computer. A VM is just like a

physical computer because it needs an OS and other computational resources to function

correctly. The VM is given a disk partition by the OS kernel on the host's device to

provide the VM with the necessary operational requirements for storage, memory, and

central processing unit (CPU) purposes. Virtualization is the technology that allows an

application to divide computational resources on a physical machine among multiple

VMs. Computational resources are either hardware or software components on a device

that allow for a computer to run software applications. CPU usage, memory/storage

usage, and network/internet usage are a few examples of computational resources. Lack

of computational resources can be detrimental to the running and processing of software

applications for a machine. Therefore, managing computational resources efficiently is

pertinent in the computing world because mismanagement of resources can hinder an

application's ability to run correctly and efficiently.

The hypervisor, also called virtual machine monitor (VMM), serves as the divider

from the host's computational resources from the virtual machines' computational

resources. Hypervisors create and run VMs by managing physical computational

resources on the host's machine. The hypervisor can manage multiple VMs

simultaneously on a single physical device [3].

4

Hypervisors must be installed on a physical device, such as a desktop or a server,

therefore, taking up physical space on that host machine. The resource requirement for

VMs orchestrated by hypervisors is a hindrance for the host machine and the VM itself

because of the system's inability to be scaled to multiple physical devices. The hypervisor

architecture is limited to a sole physical host machine, thus setting a physical limit to the

computational resources that the VM can utilize to run software applications.

B. Cloud Clusters

 This section highlights the key components necessary to create a virtualized

containerization cluster that is hosted as a service on a cloud. Docker, Kubernetes, and

Helm work closely together to enable the cloud architecture for this thesis. Cloud

computing technologies are workflows capable of sharing computational resources

amongst worker nodes within the so-called cloud network across the internet. A cloud

network is an IT infrastructure that allows nodes (physical host machines) to share data

and computational resources amongst one another to create a more scalable and efficient

work environment compared to its virtualization alternative.

1) Docker: Virtual containerization has gained widespread support in recent years

because of services like Docker and Kubernetes. Docker is a software containerization

service that creates containers from images configured through a Dockerfile. Docker

describes a container as:

A standard unit of software that packages up code and all its dependencies, so the

application runs quickly and reliably from one computing environment to another.

A Docker container image is a lightweight, standalone, executable package of

5

software that includes everything needed to run an application: code, runtime,

system tools, system libraries, and settings. [4]

Thus, containers through Docker provide an accessible medium for users to deploy

applications in a standard, lightweight, and secure manner [4]. Docker containers allow

users to create images on their machines to provide a test environment for different

operating systems while still maintaining a non-computationally heavy workflow

compared to VMs orchestrated by hypervisors. However, containers and virtual machines

run by hypervisors differ in how scalable and portable each system is. While VMs and

containers are similar in use-cases, their main differences lie in their effect on their host

machines and their capabilities of hosting cloud computing technologies. A VM is an

emulation of another, entirely different computer, virtually. The VM packages the OS,

the CPU, and the memory of its emulated device onto the physical hardware where it is

being hosted. In comparison, a container just runs within the OS of another machine.

Because of this crucial difference, the VM is a much more computationally expensive

application than a container. Therefore, VM is less capable of maintaining and scaling

cloud computing workflows compared to containers. For developers, the focus for their

application is to test whether their application will function properly on various OSs;

therefore, it is more beneficial and applicable to try that application through a container

because of the lightweight, scalable characteristics that they possess. Figure 1 [5]

visualizes how a traditional deployment, virtualized deployment, and a containerized

deployment operate. As seen from Figure 1, traditional deployments build applications on

an OS built upon the host machine’s hardware. When using the conventional deployment

method to construct applications, there are limitations to how flexible and scalable the

application can be because of the limited computational resources available to the

6

machine that the application is built upon. Also, a traditional deployment does not

possess a method to divide resources between an application and the physical device

hosting the application. Traditional deployments typically do not function as efficiently

for HPC workflows due to the physical limitations of computational resources available

to the application. However, one key advantage for the traditional deployment is the ease

of use for users to create simple applications designed for the specific architecture they

are developing their application on.

Figure 1: Comparison of Traditional Deployments, Virtualized Deployments, and

Container Deployments

Source: Adapted with permission from [5]

In contrast to a traditional deployment, a virtualized deployment requires a

hypervisor to manage the computational resources of the VMs that will run the

applications that are being developed. Therefore, VMs are deployed onto a hypervisor so

that the VMs can compute multiple applications in parallel to one another. Each VM

utilizes the computational resources allocated to serve as a separate machine from the

7

physical device. As seen in Figure 1, the hypervisor and VMs used for this architecture

are built upon the host machine’s OS and hardware. Virtualized deployments are more

efficient than traditional deployments due to the separation of different VMs that run

multiple applications simultaneously. Through utilizing multiple VMs, the virtualized

deployment is more capable of computing HPC workflows more than a traditional

deployment. While a virtualized deployment is better suited to run HPC applications than

a traditional deployment, one drawback is that the VMs and the hypervisor require

computational resources to operate; therefore, hindering the resources readily available to

the application being run.

A container deployment possesses a different combination of attributes between

traditional deployments and virtualized deployments. As observed from Figure 1, a

container deployment builds the containers that run applications directly onto the host

machine’s OS and hardware, comparable to a traditional deployment. A containerized

deployment utilizes containers constructed directly onto the OS to run HPC applications,

similar to how virtualized deployments use VM to run HPC applications. Given that

containerized deployments don’t require a hypervisor or VMs to compute HPC

applications, they are the most suitable for running HPC applications compared to

traditional and virtualized deployments due to their lightweight footprint on

computational resources.

 To use Docker, it must first be downloaded and installed onto the host machine.

During that installation, Docker Desktop is downloaded and installed on the host machine

as well. Docker Desktop is the centralized application needed to control the setting of

Docker that runs on the host machine’s command line or terminal. Upon registering for

8

an account through Docker, users are permitted to use Docker Hub. Docker Hub is an

open-source cloud-based platform that stores images for containers. Through Docker

Hub, users have a widespread open-sourced platform to pull and run different Docker

images that other users create. Therefore, users are not necessarily required to create their

own containers’ images. Users can utilize Docker Hub to help develop their versions of

container images that other users built on Docker Hub, pre-built images.

 2) Kubernetes: Kubernetes is an orchestrator for numerous Docker containers.

Kubernetes serves a wide range of use-cases for the architecture of this thesis. Load

balancing, storage management, secret regulation, and the distribution and management

of containers on the cluster are all different functionalities Kubernetes provides to a

cluster.

 Load balancing for a Kubernetes cluster is necessary to not overload a single node

on the cluster with an application that may be too computationally expensive for a single

node. The load-balancing characteristic of Kubernetes will distribute the workload of an

application across all the nodes on a cluster to even the amount of computing for which

each node is responsible. Therefore, each node performs an evenly distributed amount of

computing to limit the probability of a single node failing due to being overworked.

Mounting files for a cluster gives the cluster access to a file already created on a host

machine, or it stores a file created on the cluster to the host machine to allow the host

machine to access that mounted file or data.

 A secret on a Kubernetes cluster is sensitive information that the system’s

administrator can only access and manage. The secrets on a cluster are used to provide

9

the entire cluster with shared data that can be used for many different reasons. LDAP

credentials, OAuth tokens, or SSH keys are all common uses for secrets on a cluster.

 Kubernetes is responsible for the deployment of a cluster of containers. With this

comes the responsibility to update, add, or delete containers when needed. It is

Kubernetes' responsibility to ensure the cluster continues to operate when any one of

these actions is required. Kubernetes allows for these actions to occur while maintaining

the overall health of the cluster. Kubernetes does not need the complete disposal of the

cluster to perform any one of these actions to a single container. However, suppose the

desired action is to perform any one of these tasks to the entire cluster. In that case, a

newer separate cluster will need to be deployed with the updated containers’ image. Then

the older cluster can be torn down and edited as desired.

 There are multiple ways Kubernetes can be installed onto a host’s system. One

option is to use the Kubernetes client/server application called ‘kind,’ packaged into the

Docker Desktop application. To do this, download and install Docker onto a host’s

machine, and this will install Docker, Docker Desktop, and Kubernetes. Another option is

to separately download and install Kubernetes as a standalone option called ‘minikube.’

 3.) Helm: Helm is a package manager for Kubernetes applications. Helm is

responsible for the running and deployment of multiple Kubernetes .yaml files. Helm can

be thought of as the orchestrator for multiple Kubernetes deployments, similar to how

Kubernetes is the orchestrator for numerous Docker containers. Helm coordinates the

installation of deployments (multi-container services) on a Kubernetes cluster. Because

of Helm, installing, upgrading, and deleting Kubernetes applications can be achieved

10

while maintaining the state of the overall Helm deployment if desired. Helm can be

installed onto a host’s machine through scripts, the command line, or package managers,

such as Chocolatey or Homebrew.

C. High-Performance Computing Clusters

 Cloud architectures can potentially become HPC workflows by balancing

computational resources more effectively than a virtualization architecture. An HPC

cluster is multiple servers/applications/nodes that compute applications significantly

quicker than traditional computing methods. An HPC cluster is broken down into three

main components that make the cluster's functionality: computing, storage, and

communication between nodes. HPC workflows are capable of hosting Message Passing

Interface (MPI) applications. MPI applications are software that possesses the ability to

utilize parallel processing. Parallel processing is leveraged inside an MPI application to

enable the program to distribute work across computational resources to create more

efficient software. Additionally, parallel processing allows a machine to utilize multiple

cores on a CPU to compute a given application. Slurm, LDAP, network file system

(NFS), and Singularity [6] are additional applications that can potentially be used by HPC

environments.

1.) Slurm: Slurm is an open-source job scheduler used in HPC workflows because

it allows users to submit a script to run across available compute node. A compute node

grants administrative or non-administrative access to users using the workflow. Also,

Slurm "Provides a framework for starting, executing, and monitoring work (normally a

parallel job) on the set of allocated nodes" [7]. Typically, Slurm communicates through

11

munge and then application communicate using MPI. Lastly, if multiple jobs need to be

run, Slurm is responsible for queuing jobs to ensure that the jobs are computed in the

first-in-first-out order. This serves as a computational resource manager for the nodes on

the cluster. Queuing jobs on the workflow is essential so that the nodes on the system

aren't overloaded with jobs at any given moment.

2.) Lightweight Directory Access Protocol: An LDAP server is a virtual protocol,

similar to a database, that houses user information as an ordered structure for storage and

retrieval. The LDAP is the centralized location for the storage of permissions and

accesses for users on the cluster. An LDAP is necessary for a cluster to authenticate users

to their accounts and for nodes to authenticate into the cluster. Typically, LDAPs are

deployed to HPC clusters to manage users' accounts. For nodes to communicate with one

another in a cluster, the workflow must have the means to authenticate nodes to the

centralized system; therefore, an LDAP is essential for users of the cluster and is vital to

the operation of the cluster itself. When a user or node attempts to authenticate into a

system or website using specified credentials, the user or node will send a token request

to the LDAP server; next, the LDAP authenticates the provided credentials with the

directory's stored entries to give the user or node the appropriate accesses the cluster has

assigned to them. Lastly, the response message is sent to the requester from the LDAP,

either granting or denying service permission for the requested application.

3.) Network File System: A NFS is a client/server architecture that allows users to

share files across a network. An NFS is an essential component of an HPC workflow

12

because it grants users the ability to store files on the server and access those files as

though they were stored locally to their host machine. Also, an NFS authorizes the HPC

workflow to share files and data between multiple users on the cluster. An NFS is

responsible for making all or just a portion of the files on the server accessible to all users

on the cluster or just a subsection of users on the cluster. For this reason, the NFS grants

users the ability to have personal files that are only accessible to them.

4.) Singularity: Singularity is similar to Docker in the sense that both are

containerization applications. However, Singularity allows for the creation of containers

locally in user space. This means that, unlike Docker, users do not need administrator

permissions on the system or cluster to deploy containers to the host machine

(administration permissions are usually needed to create Docker images). Through

Singularity, MPI is achievable on a single host's system with the assistance of Slurm to

schedule jobs on the machine. Currently in industry, Singularity is utilized on physical

HPC clusters; however, it is presently not integrated into the cloud computing

architecture with Docker and/or Kubernetes.

D. High-Performance Cloud Computing Clusters

 Given that cloud computing applications can potentially host the components of

HPC clusters and applications, it is now possible for the two paradigms to be combined to

create a high-performance cloud computing cluster. While both cloud computing

applications and HPC applications are current technology in the industry, the

combination of the two allows for the workflow to be orchestrated as a cloud computing

13

resource while still maintaining the MPI characteristics of an HPC cluster. Adding,

deleting, and updating user information and nodes becomes attainable through the HPC

applications being deployed across a cloud computing network. As a result, this creates a

workflow that allows end-users to easily attain MPI applications while still granting the

system administrator the controls needed to maintain the overall cluster for the

framework.

14

III. METHODOLOGY

A. Cloud Computing Team

The 2020 S-STEM Summer Research Experience (SRE) was a four-week team-

based internship program created at MTSU to provide students with an opportunity to

develop unique skills that were not in the university's academic requirements. The

program gives students a chance to become familiar with modernized technologies, e.g.,

Docker, Kubernetes, and Helm. Additionally, the experience teaches students how to

collaborate with other teammates; also, the experience teaches students how to present

one's progress on work in a professional environment. The internship began in mid-May

of 2020 and continued through late July of 2020. According to the S-STEM Scholarship

Program in Computer Science [8], "Working as a student on a summer research

experience project will be a part-time appointment for two months (~150 hours total)".

For the internship, the "Cloud Computing Infrastructure" Research Team's

(CCRT) goal was to offer students an opportunity to gain experience in cloud computing

platforms capable of virtualizing applications. In addition, participants were to test and

deploy virtualized applications of MTSU's current workflow to enhance the user

experience for CS students at the university. The program's initial research began by

creating a functioning MPI-enabled Kubernetes deployment that could run a

containerized scientific application, Gromacs [9]. Gromacs is software used to simulate

molecular dynamics and is widely used in the field of theoretical biophysics. The work

conducted in this study demonstrated the positive capabilities that HPC can have in

specific test environments. To illustrate the performance gain that an HPC cluster has to

15

offer, each team member conducted computationally intensive tests for Gromacs

simulations both with and without the utilization of HPC.

After completing the internship (September of 2020), the CCRT applied as a

collective unit for an MTSU Undergraduate Research Experience and Creative Activity

(URECA) Grant. The CCRT applied for the grant to continue the research they had

previously established during the summer internship. The application process for the

URECA Grant entails each student to write a two-page max essay that proposes the topic

to be researched by the group and by the team members individually.

Upon the application's review from the URECA organization, the organization

notified the CCRT that they had been awarded a Silver level URECA grant for the Fall of

2020 and the Spring of 2021. A Silver level URECA grant provides funds to each team

member to conduct one hundred hours of research over the topic introduced during the

application process per semester of research.

The CCRT's research topic for the URECA program was to deploy a container-

within-container workflow that the university could eventually administer on their current

infrastructure. The goal of the CCRT's proposed research topic was to develop a cloud

architecture that packages the developmental tools needed as a CS student at MTSU for

HPC application development and testing. The CCRT divided the project into designated

components to build the proposed architecture.

B. LDAP Development

 While other project components will be discussed in sections, the main

contribution to the CCRT's research focus in this thesis was to develop a containerized

16

Lightweight Directory Access Protocol (LDAP) server over a Kubernetes cluster. The

construction process began with researching and testing how to establish a base Docker

container used to house the LDAP's base configuration. To create a Docker container, the

user must download and install the Docker Desktop [10] application to use Docker on the

command line or terminal window. Following installation, the user must carefully

construct a Docker image to create a Docker container configured to the user's needs. A

Docker image is a series of commands built by a Dockerfile. The image acts as the base

configuration for the constructed Docker container.

The construction of a Kubernetes container is similar to how a user would create a

Docker container. The user begins the container construction process by first

downloading and installing Kubernetes. Next, the user must configure a .yaml file with

the desired specification of the Kubernetes container. The configured .yaml file will serve

as the configuration. Once the .yaml file is error-free, Kubernetes can deploy the

Kubernetes container. Fortunately, the time spent researching how to create a base image

in Kubernetes and Docker was relatively minimal to the scope of this thesis because of

the prior knowledge gained from the 2020 S-STEM SRE. Therefore, during this period,

the research for this thesis allocated most of the time spent in the research phase learning

how an LDAP server works and how to configure a functioning LDAP for the CCRT's

workflow properly.

There are several different approaches to building a containerized LDAP server.

One option includes constructing both a Docker/Kubernetes image from scratch or

without the assistance of previous work in the field, while another option is to employ a

pre-built image. A pre-built image is a Docker/Kubernetes image developed by a

17

company or an individual constructed to meet his or her needs for the container. Creating

an image from scratch requires the researcher to identify the necessary components of a

Dockerfile (for Docker). This process can be tedious and time-consuming to locate

similarities in functioning LDAPs. Finding specific components to configure an LDAP

isn't necessarily difficult because of the wide range of resources across the internet to

help guide the process. However, the task can become significantly more challenging

when building the configuration into an image due to how containers operate. The design

of an LDAP server on a physical machine differs from that of an LDAP server configured

to be inside a container. Traditionally, LDAPs created on a physical machine can vary

from their containerized counterpart in a wide range of different ways. For example,

handling firewall access and handling access rights for users are two separate ways in

how the two architectures might operate differently. Another option to construct a

containerized LDAP server for the project would be to utilize a pre-built image to fit into

the scope of the project.

Initially, time was allocated to learning the high-level concepts of how an LDAP

server is configured and functions for a workflow. A large portion of time was also

allocated for identifying the necessary .yaml file configurations needed to build a

functioning containerized LDAP server. A careful comparison and contrasting of

different LDAP configurable values between functioning and nonfunctioning servers was

performed. By identifying similarities in LDAP files, the required environment variables,

and dependencies that the Kubernetes image needed to build a containerized LDAP

server that functioned correctly could be understood. After this initial phase, it was

determined that utilizing a configurable, pre-built image for deploying a containerized

18

LDAP server, along with slight modifications, could decrease the production time needed

for the containerized server. So, by trial-and-error testing of different pre-built images, a

functional proof of concept LDAP was created to authenticate with an Ubuntu client and

verify authentication with a Jupyterlab client. The bitnami/openldap Docker image by

Bitnami [11] incorporates the base functionalities needed for the scope of the project. The

decision to utilize Bitnami's image was decided upon quickly because of the

customization and configuration capabilities that the image offers to system

administrators. Once the pre-built Docker image was integrated, the next step was to

configure a Kubernetes configuration file (.yaml) to control and use the base Docker

image. The process to configure a Kubernetes image built upon a Docker image is similar

to configuring a Docker image. The configuration of the Kubernetes image requires that

the researcher configure the dependencies, hooks, and environment variables accordingly

to achieve the desired objective. Alternatively, the CCRT's workflow could potentially

utilize a pre-built Helm deployment as well but none was found to be currently available.

The researcher initially began by locating the necessary components to build a

Kubernetes image that would orchestrate Bitnami's Docker image. However, just like

with a Docker image, locating the necessary parts can be tedious and monotonous, so the

researcher concentrated on finding a pre-built Kubernetes image instead.

Campuzano's article from 2020 [12] teaches readers how to build a containerized

OpenLDAP server using a pre-built Docker image on Kubernetes. The tutorial says

"OpenLDAP is the open-source solution for LDAP (Lightweight Directory Access

Protocol). It is a protocol used to store and retrieve data from a hierarchical directory

structure such as in databases" [12]. Campuzano's tutorial was notably different from

19

other works in the field because he successfully built an OpenLDAP system via

Kubernetes, not just on a single physical machine. By creating the OpenLDAP server on

a Kubernetes cluster, the system administrator can have the entire workflow be managed

by a central across the cluster node while balancing the overall computational resource

consumption of the service. Also, Kubernetes allows the system administrator to manage

the containerized applications, i.e., an OpenLDAP server, as a cloud service. Through the

steps in the article, a containerized LDAP server could now be deployed in the cloud.

Multiple entries for user credentials were created for the server in the form of secrets. A

secret is specific data on a Kubernetes cluster kept confidential and utilized by the entire

cluster.

After employing Campuzano's tutorial, the next objective was to verify that the

LDAP server could authenticate a user from a worker node in the cluster. Verifying user

authentication requires the LDAP server to be deployed to the workflow's cluster before

being instantiated by a client user. Also, the cluster's secret must be created before the

instantiation of a user node.

First, the "Authentication and Authorization'' documentation by Jupyterhub for

Kubernetes [13] was used to construct a Jupyterhub client container that could

authenticate as a user node LDAP server that runs from the workflows cluster. Jupterhub

is a development platform that packages some of the software development tools that CS

students at MTSU use in classes; therefore, Jupyterhub is an ideal indicator as to whether

the LDAP was functioning correctly or not. By utilizing the guide provided by

Jupyerhub, the researcher constructed a Jupyterhub image. Once the Jupyterhub image is

running, the IP and port number to the LDAP server must be configured. Next, a pop-up

20

box will appear, then the user can enter authentication credentials (username and

password) on the server. Once access is granted, it is clear that the containerized LDAP

server is functioning correctly.

Once a JupyterHub client could authenticate as a user on the LDAP server,

development of an Ubuntu [14] container that could authenticate as a user on the LDAP

server was performed. The Ubuntu client serves as an alternate means of validation that

the LDAP can adequately authenticate a user's credentials. Through two different

validation methods, one can safely assume that the service does function as intended. So,

to create a base Ubuntu image, Downey's guide to Creating a Simple Kubernetes Debug

Pod [15] was followed. Once the base Ubuntu image was up and running, the following

Ubuntu packages were downloaded: libnss-ldap, libpam-ldap, and ldap-utils. After

downloading the necessary packages, the dependencies of the downloaded packages were

directed to the location of the LDAP's cluster. All that is required once the packages are

configured, the last step to validating an Ubuntu client could authenticate as a user on the

LDAP server was to switch accounts from the terminal window. Upon inputting the client

credentials of one of the entries on the LDAP, one can validate through two different

methods that the LDAP is functioning correctly.

Each of the other members on the CCRT was responsible for developing their

components of the workflow. Daniel Cox constructed the Slurm scheduler for the

CCRT's project. The Slurm scheduler acts as the HPC job scheduler. The scheduler in an

HPC workflow controls the computational resources utilized in the workflow to allow for

MPI applications to run, such as Singularity. The Slurm scheduler was developed by

configuring a Dockerfile with the necessary configurations for a SLURM scheduler.

21

Next, a base Docker image was created that a Kubernetes container would run on the

Kubernetes cluster. Once functioning correctly, an MPI application is directed to the

scheduler by a containerized Singularity service.

Hannah Williams developed the containerized version of Singularity in a

Kubernetes container, similar to how Daniel developed the SLURM scheduler. The

containers created inside the cluster would have message passing interface (MPI)

capabilities; therefore, allowing containers to handle parallel processing for desired

applications or jobs. During the developmental process of the CCRT's project, Daniel

collaborated closely with Hannah to create a test environment to have a SLURM

scheduler send an MPI application from a pre-configured Singularity image. The

collaborative efforts between team members played a vital role in ensuring that their

respective components of the CCRT's project were functioning correctly because the two

applications work so closely with one another.

Jessica Wijaya designed the network file system (NFS) to aid in constructing the

CCRT's project. A network file system is necessary for HPC clusters because they NFS

allows nodes to share files amongst one another. Furthermore, an NFS server is

responsible for managing files (updating, storing, or deleting) files inside a remote

machine. The NFS allows the user to modify or store files located on the cluster. By

providing the capabilities to store information from inside a container to the host system,

the user can create a working version of their work and then keep the file on the host

machine and know with certainty that the file works for the test environment.

Once each component in the team project was complete and functioning correctly,

the only necessary step for completing the workflow was to merge the separate parts of

22

the project. Each component (LDAP, SLURM, Singularity, and NFS) plays a vital role in

the overall functionality of the CCRTs project. While each element of the project

operates correctly separately, the CCRT's collaborative efforts created a more beneficial

deployment that the university could utilize for its students with more fine-tuning and

development.

Figure 2: Schema of Workflow for CCRT’s Project

 The CCRTs project, when combined, can be visualized in Figure 2. As seen in the

diagram, a user instantiates the HPC cluster by providing login credentials to the LDAP

container. From there, the LDAP either grants or denies access to the rest of the cluster.

Upon entering approved login credentials, the user is given a container with access to the

files on the cluster and has storage capabilities due to the persistent storage provided by

the NFS server. Additionally, users can utilize the Slurm and Singularity containers

provided on the cluster to create worker nodes that can run parallel through MPI to

compute HPC applications. The Slurm and Singularity containers are responsible for

maintaining the physical computing resources needed to run applications on the cluster.

23

 For the development of the CCRT’s project, each team member was responsible

for ensuring the other members of the team were informed with the progress that was

made on their specific component to the project. To accomplish this, each team member

created a Github repository. The team members’ repositories acted as a version history

for the work that they had done on their specific components. Additionally, the repository

allowed the team members to share files between one another for the development and

integration for the combining of individual components to create a centralized

functioning prototype of the team’s overall project. The README.md file in the team’s

shared repository teaches users how to build a simple Singularity/MPI application to run

on the team’s deployment. The Github repository for each team member as well as the

CCRT’s repository is listed below:

• Terryn Seaton - https://github.com/tseaton2/thesis

• Daniel Cox – https://github.com/danielJC06/Slurm_cluster

• Jessica Wijaya - https://github.com/jcwijaya/nfs-server

• Hannah Williams - https://github.com/hnw2y/HPC

• Joshua L. Phillips (faculty mentor) - https://github.com/mtsu-cs-summer-

research/cloud-infrastructure-2020

24

IV. RESULTS

The knowledge gained from the SRE proved invaluable for completing this thesis

work. During this experience, the CCRT learned some of the base functionalities of the

Docker and Kubernetes applications. In the early weeks of this program, the CCRT

dedicated the most time to learning how Docker and Kubernetes operate. Additionally,

the researchers discovered how Docker and Kubernetes aided the development process.

Each team member spent multiple hours completing one Gromacs simulation workflow

without HPC resources. In the following team meeting, the group discussed how their

Gromacs simulation process went and how long each simulation took to complete. The

consensus from the CCRT was that each test took multiple hours to add. During the

meeting, the CCRT conducted the same simulations as previously tested, but now with

the assistance of an HPC cluster. When performing the Gromacs simulations on an HPC

cluster, each simulation that had once taken hours to complete without an HPC cluster

can now take just a few minutes. The CCRT conducted all the same simulations as

previously tested before during the length of the one-hour meeting that day. Additionally,

the SRE program taught students how to collaborate to complete the desired project while

doing so in a professional environment. For this work, the team members discussed and

cooperated to conduct the tedious task of simulating molecular dynamics both with and

without HPC technologies.

Initial attempts to create the LDAP container component of the project focused on

the development of the required container image. This work did not necessarily produce a

functional image but did provide insights into the relevant software configuration needed

to deploy such a container. As such, a pre-built LDAP image was subsequently found to

25

provide the required functionality for the purposes of the project. For example, full

customization of all user account information is possible and necessary if accounts are to

persist over time. However, since cloud-based deployments are often created, used, and

then disposed, the need for persistent user account data is removed. Instead, these

deployments only require a containerized authentication mechanism for all of the HPC-

related containers in the deployment. The Bitnami pre-built images proved sufficient to

meet these requirements. Still, all HPC containers need to also be configured to utilize

this centralized resource and therefore most of the effort was spent on integration of the

LDAP server with the other cluster components. It would have been more beneficial to

utilize an already configured Docker and Kubernetes container at the beginning of this

research phase to increase the time available for this thesis implementation and testing.

However, during that time, there was no way of knowing the challenges that would arise

while creating a Docker and Kubernetes container from scratch. When creating new

components for deployments, careful consideration of the needs and use-cases of the

deployment can aid in understanding whether pre-built or custom images will suffice, but

even then it can still be the case that certain considerations are overlooked and result in a

change of plans.

While creating the containerized LDAP server without the assistance of a pre-

built image during the implementation and testing phases of this thesis, multiple

unforeseen challenges occurred. Because of this, there were several key takeaways during

this time. A containerized LDAP is merely just a .yaml file that can be properly

configured to host a server on a cloud architecture. With that said, to properly configure

the container, the correct configurations must first be identified to create the bare

26

minimum configurations of the server. The comparing and contrasting of different

already configured LDAP can aid in the development of the containerized model.

However, upon doing so, it can be found that the required base configurations of non-

containerized LDAPs and containerized LDAP are not a one-to-one comparison because

of differences in network infrastructure between the two architectures. Some environment

variables that are required by the containerized LDAP were not required by its non-

containerized counterpart.

Even though the base requirements for the containerized LDAP server and the

non-containerized LDAP server weren’t verbatim, the experience provided insight into

how to use a pre-built image to suit the use-cases of the project. Through the testing of

different configurations between the two models, a better understanding of how to set and

configure the required components of the pre-built image was gained. Additionally, the

experience gained through comparing the two architectures provided sound knowledge of

what was being asked by the environment variables that needed to be set when using the

pre-built image.

Another critical idea learned during the implementation and testing phase was that

a host machines' OS could often affect the overall installation of the Docker application

with the standalone Kubernetes service. While testing, Kubernetes would at times be

inconsistent with its service. There were multiple instances where Kubernetes would

completely stop functioning. During these instances, Kubernetes would provide very

minimal output to help debug the issue. The most common bug with the Kubernetes

service typically made itself evident after a Kubernetes container had already been

created and destroyed. The problem would occur after the destruction of one container

27

and creating a second Kubernetes container. Upon doing so, Kubernetes would create the

container appropriately; however, when trying to connect to the internet in the container,

connection issues would begin to arise for the container. This prevented the Kubernetes

container from updating and retrieving the necessary information to remain up to date.

Once the container was created and could not be corrected, several hours might be spent

debugging different workflow components. Eventually, after testing the individual parts

of the workflow, completely uninstalling, and reinstalling the Docker application with the

Kubernetes standalone service was necessary. After that, the Kubernetes container was

restarted to find that the container was fully functioning after removing the Docker

application from the host machine. While the issues seemed like they were corrected, the

same problems continued to arise during the implementation and testing phases.

However, when the bugs reappeared, additional testing was conducted on the Docker

Desktop application to find any glaring issues. Through this, it was determined that the

Docker component of the application was functioning correctly. The Kubernetes

standalone service for the Docker Desktop, through further testing, was determined to be

the culprit for what had been causing the connection issues for the containers.

Unfortunately, the problem with the Kubernetes standalone server/client could not be

resolved.

A key benefit to of this work is that MTSU's Computer Science Department now

has the foundation of a workflow that will bundle all of the HPC developmental tools a

student will need into one package. While the HPC workflow isn't production-ready, the

groundwork of the project has been completed by this thesis and the CCRT's research

project. Currently, the workflow can authenticate a user’s account through a Jupyterhub

28

client or an Ubuntu client. Meaning, a user can authenticate with their credentials to their

account on the school’s LDAP server by deploying an Ubuntu Kubernetes container or

by deploying a Jupyterhub client container. Upon submitting their credentials, the LDAP

will verify that the user’s credentials are correct and then either grant the user access to

their specific permissions on the server or deny the user access because of an invalid

username or password. Also, the HPC cluster can be managed and orchestrated through

Docker/Kubernetes as a cloud-based architecture. Additionally, the HPC cluster allows

for users to create personalized work environments to test and run HPC applications on

the cluster. Also, users can edit, save, or share files stored in the HPC cluster.

29

V. DISCUSSION

 A containerized, cloud-based LDAP server can serve multiple functions. One

important use case is allowing users to authenticate their credentials through the server to

log into the services hosted on a HPC Kubernetes deployment. Additionally, the LDAP

server acts as the centralized authenticator for containers and services in the HPC cluster

to facilitate HPC applications. The work described above contributes to the development

of a Kubernetes workflow that users can deploy, quickly and efficiently, to create a

complete HPC environment for debugging and testing parallel applications across various

hardware and software combinations.

 The results indicate progress made toward developing a workflow that the

university can utilize to provide students and faculty with a more streamlined approach

for deploying the necessary HPC development environment and tools throughout their

time at the university. While the current workflow developed by the Cloud Infrastructure

CCRT doesn’t provide a production model of the desired workflow, the current workflow

does serve as a functional prototype for the desired end goal. As a result, it can serve as a

good foundation for continued development work to provide students and faculty with a

more efficient and effective way to manage their developmental tools. For example, the

work will allow faculty in the department to spend less time going over the software

installation and setups in their classrooms. This is accomplished by the development tools

being all packaged into stand-alone, orchestrated deployments. If students are taught how

to use the packaging applications (Docker/Kubernetes) at the beginning of their academic

career at the university then potentially any such deployments may be deployed using the

30

same skills as for all others. After the initial learning phase of the application, students

would be free to obtain their necessary development tools through the application.

The current model built by the CCRT hasn’t been extensively tested to rid the

workflow of any security holes. Therefore, in the future, additional testing will be needed

to provide a secure workflow for the university. Also, while all the components of the

desired end goal have been constructed, the individual HPC applications that will be ran

on the system will need to be stored in an accessible repository to provide all the

packaged applications to students in a centralized location.

During the development process, the CCRT faced numerous issues surrounding

the Docker/Kubernetes applications with regards to how the deployment ran on their

personal machines. Oftentimes, the application would break and supply little to no

feedback as to what was causing the issues. These issues were persistent throughout the

project. The only consistent solution for these issues was the uninstalling and reinstalling

of the Docker/Kubernetes application. With that in mind, future work surrounding these

issues could be addressed. While the issue is potentially due to variations in different

operating systems, a consistent solution will need to be discovered to provide these HPC

workflow models with a more reliable and stable version of themselves.

31

REFERENCES

[1] “Empowering App Development for Developers,” Docker.

https://www.docker.com/ (accessed June 10, 2020).

[2] “Production-Grade Container Orchestration,” Kubernetes. https://kubernetes.io/

(accessed January 23, 2021).

[3] “What is a Hypervisor?” Red Hat.

https://www.redhat.com/en/topics/virtualization/what-is-a-hypervisor (accessed July 1,

2021).

[4] “What is a Container?” Docker. https://www.docker.com/resources/what-

container (accessed June 19, 2020).

[5] “What is Kubernetes?” Kubernetes.

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/ (accessed October 10,

2020).

[6] “Singularity,” Singularity.io. https://sylabs.io/singularity/ (accessed May 17,

2021).

[7] “Slurm Workload Manager,” SchedMD.

https://slurm.schedmd.com/overview.html (accessed May 14, 2021).

[8] Z. Dong.“S-STEM Scholarship Program in Computer Science,” Middle

Tennessee State University. https://www.cs.mtsu.edu/~s-stem/research.php (accessed

May 23, 2020).

[9] “Gromacs,” Gromacs. https://www.gromacs.org/ (accessed June 17, 2020).

32

[10] “Docker Desktop,” Docker. https://www.docker.com/products/docker-desktop

(accessed June 15, 2020).

[11] Bitnami. “bitnami/openldap,” Docker Hub.

https://hub.docker.com/r/bitnami/openldap (accessed March 10, 2021).

[12] R. Campuzano. “Create An OpenLDAP server with Bitnami Containers on

Kubernetes,” Bitnami by VMWare. https://docs.bitnami.com/tutorials/create-openldap-

server-kubernetes/ (accessed March 10, 2021).

[13] “Authentication and Authorization,” Jupyterhub for Kubernetes. https://zero-to-

jupyterhub.readthedocs.io/en/latest/administrator/authentication.html (accessed April 2,

2021).

[14] “Ubuntu,” Ubuntu. https://ubuntu.com/ (accessed April 12, 2021).

[15] T. Downey. “Creating a Simple Kubernetes Debug Pod,” Downey.

https://downey.io/notes/dev/ubuntu-sleep-pod-yaml/ (accessed April 12, 2021).

	Acknowledgements

