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ABSTRACT

It was conjectured by Hoffman-Ostenhof that the edge set of every cubic graph

can be decomposed into a spanning tree, a matching, and a family of cycles. This

conjecture was verified for many graphs such as the Peterson graph, prisms over cycles,

and Hamiltonian graphs. Later the conjecture was also verified for 3-connected cubic

graphs on the plane and protective plane by Kenta Ozeki and Dong Ye. In this paper

we will verify the conjecture for 3-connected cubic graph on the torus and Klein

bottle.
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CHAPTER 1

INTRODUCTION

1.1 Definitions

First we will go over some basic graph theory definitions that we will see throughout

the paper.

A graph G consists of a set E(G) whose elements are edges of the graph and a set

V (G) whose elements are vertices of G. A walk in a graph is sequence of alternating

vertices and edges, beginning and ending with vertices, where each edge’s endpoints

are the preceding and following vertices in the sequence. So a cycle is a walk which,

without repeating edges, ends at the same vertex which it begins and a path is a

walk, without repeating edges, but does not end at the same vertex. So we have that

an edge is a cut edge if and only if the edge is not contained in any cycle. A tree is

graph with no cycles or acyclic. A spanning tree is a subgraph of G which contains

all vertices of G and is acyclic. A graph G is connected if for any two vertices of G,

there is path joining them. For instance we can have a graph that is consist of three

vertices and one edge. Then one vertex will not be connected, or disconnected, to any

other vertex. If a part of G is disconnected then G has components. For example if

G is disconnected into 2 parts then G has two components.
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Figure 1: This graph is disconnected because of vertex 6. However the graph is

simple.

All graphs in this paper are simple and connected, which means that between

any vertex there is at most one edge. We start off with a 3-edge-connected graph,

which means that we will have to delete a minimum of 3 edges to to disconnected

the graph. In other words we can delete 2 edges and the graph still be connected.

Similarly 3-vertex-connected means we can remove 2 vertices and the graph will be

still connected. A subgraph H, of a graph, G, is a graph whose vertices are a subset

of the vertex set of G, and whose edges are a subset of the edge set of G.

A vertex incident with an edge if it is an endpoint of the edge. For example if

v1, v2 ∈ V (G) such that an edge e ∈ E(G) connects v1 to v2 then both v1 and v2 are

incident with e moreover we can define e = v1v2. Similarly two edges are adjacent if

they share a vertex. The degree of the vertex is the number of edges that are incident

with each vertex. So a graph is called cubic if every vertex has degree 3. A bridge or

a cut-edge is an edge whose deletion increases the number of connected components.
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Figure 2: Both of the later two graphs demonstrate a spanning trees of the original

graph to the left

A decomposition of G consists of edge disjoint subsets whose union is G. Note that

union of graphs is with respect to their respective vertex and edge set. A matching is

set of edge disjoint edges. For two edges to be disjoint, one edge is not adjacent with

the other edge. A perfect matching, sometimes called a 1-factor, means that every

vertex of the graph is incident to exactly one edge of the matching. A 2-factor is a

collection of cycles that spans all vertices of the graph.

Figure 3: An example of a decomposition of K4 into K1,3 and a triangle K3

A graph can be called Kn if it is a complete graph. In other words every vertex is

connected to every other vertex. The ”n” part of is the number of vertices the graph

has. A graph can be called Km,n if it is a complete bipartite graph. So one part has

m vertices that is connected every vertex of the part that hasn vertices and there are
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no odd cycles. For example in Figure 3, the middle graph is K1,3 so vertex a is the 1

vertex connected to the 3 vertice {b, d, c}, however {b, c, d} are not connected to each

other.

Now we will look at some topology and definitions regarding the surface of the

graph we are dealing with.

A graph is called planar if it can be drawn on the Euclidean plane, a flat piece

of paper, such that none of the graph’s edges cross. For example the graph K4 is

planar, however the graph K3,3 is not planar. To embed a graph into a plane means

we draw the graph on the plane with no edges crossing. So a planar graph is a graph

embedded in the Euclidean plane. Note that while K3,3 is not planar, K3,3 can be

drawn into a torus with no edges crossing.

A torus is a surface or solid formed by rotating a closed curve, especially a circle

around a line that lies in the same plane but does not intersect it. An ordinary torus,

which is what we looking at in this paper usually it is described as a doughnut. Also an

ordinary torus is a surface of genus one. A genus of a connected, orientable surface is

an integer representing the maximum number of cuttings along non-intersecting closed

simple curves without rendering the resultant manifold disconnected. For example,

an object of genus zero is a sphere. However the definition of a genus changes for

non-orientable surfaces. In layman terms an orientable surface is a surface where you

can consistently make a direction for a circle and it will always go in that direction.

In other words you make a circle go clockwise and wherever it is on the surface it will

still go clockwise. A non orientable surface means you cannot chose a direction for

a loop and consistently stay going that direction. A Klein bottle is an example of a

non orientable surface. A Klein bottle is a closed surface with only one side, formed

by passing one end of a tube through the side of the tube and joining it to the other
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end. To have a cycle embedded on a graph to be non-contractible means that the

cycle cannot be continuously shrunk to one point. A non-separating is a cycle that

when taken out does not separate the graph or the surface into two parts.

Figure 4: Here is an example of a torus, licensed under Public Domain via Commons,

to the left and a Klein bottle, licensed under CC BY-SA 3.0 via Commons, to the

right.

1.2 Background

There has been many results for decomposing graphs into certain subgraphs. In

particular as it applies to graph coloring.Many interesting problems can be formulated

as a decomposition problem of a graph. For example Carsten Thomassen proposed

the following well-know conjecture.

Conjecture 1.1 [14] Every cyclically 4-edge-connected cubic graph has a dominate

cycle.

This conjecture is the same as saying that every 4-edge-connected cubic graph has

a decomposition into a cycle and a forest with components isomorphic to K1,3 and

K2. As a consequence of Thomassen’s result [15] the above conjecture holds for plane
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4-edge-connected cubic graphs. Another interesting question on the decomposition

of cubic graphs is the following conjecture proposed by Mazzuoccolo [11], which is

closely related to the well known Berge-Fulkerson Conjecture, which proposes that

any bridgeless cubic graph has six perfect matchings such that each edge is in exactly

two.

Conjecture 1.2 [11] For every bridgeless cubic graph, there are two perfect match-

ings such that the complement of their union is a bipartite graph.

Which in terms of decomposing graphs, Conjecture 1.2 says that every bridgeless

cubic graph can be decomposed into a bipartite, a matching, and a family of even

cycles.

Balogh, Kochol, Pluhar, and Yu [3] proved that every plane graph has a decom-

position into 3 forest and one of them has maximum degree 8. Further more they

derived upper bounds on the game chromatic number and the game coloring number

of planar graphs with girth conditions. Goncalves [5] proved a conjecture by Balogh,

et al ..., that every plane graph can be decomposed into 3 forest and one of them has

max degree 4. There are also solved problems with certain decomposition with spares

graphs.

How about the decomposition of cubic graphs into certain subgraphs? We already

have Thomassen’s result [15] for a 4-edge-connected cubic graphs. Note though, a

cubic graph does not have a decomposition into a forest and a matching because of

degree condition, however the Peterson Theorem implies that a 2-connected cubic

graph has a decomposition into a forest and a family of cycles. However instead of

forest we can look at spanning tress, in particular a homeomorphically irreducible

spanning tree (HIST). A spanning tree is a HIST if it does not contain a vertex of
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degree two [7]. Hoffmann-Ostenhof and Ozeki provided the necessary condition for

the existence of a HIST in cubic [7], however Douglas proved that it is NP-complete

to determine whether a plane cubic graph has a HIST [4].

Going in a slightly different direction, Malkevitch asked which 3-connected plane

cubic graphs have a decomposition into a spanning tree and a family of cycles[10].

Later Lemke proved that it is NP-complete to determine whether a given cubic graph

has the decomposition or not[9]. Furthermore the following is a conjecture by Hoffman

- Ostenhof [6]

Conjecture 1.3 Let G be a connected cubic graph. Then G has a decomposition into

a spanning tree, a matching, and a family of cycle.

This conjecture was verified to be true for many graphs such as Peterson graph,

prisms over cycles, and Hamiltonian graphs [2]. Below is an example of a decomposi-

tion of Peterson graph, where the yellow edges are the edges placed in either a cycle

or a matching.

Figure 5: The decomposition of Peterson’s Graph
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In particular Ozeki and Ye proved the conjecture true for 3-connected plane graphs

and projective plane graphs [13].

Theorem 1.4 [13] Let G be a 3-connected cubic graph embedded in the plane or

projective plane. Then G has a decomposition into a spanning tree, a matching and

a family of cycles.

The above theorem serves as the departure point of this thesis. The following is

our major result.

Theorem 1.5 Let G be a 3-connected cubic graph embedded in the Torus or Klein-

bottle. Then G has a decomposition into a spanning tree, a matching, and a family

of cycles.

In the next chapter, we will prove main theorem and discuss further interesting

problems.
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CHAPTER 2

MAIN THEOREM

We will denote the outer boundary of our graph as ∂2 and the inner boundary of

the graph as ∂1. A face f is said to be boundary adjacent face if f shares at least one

edge with either boundary and f 6= ∂1 or ∂2. A face f is called 2-boundary-adjacent

if f shares an edge with both boundaries. A vertex of degree one is called a leaf. A

vertex v is called a tree-attachment if v in incident with a cut edge e such that G− e

has two components, where on of them contains v. A block B is a minimal subgraph

separated by a 2-edge-cut S ⊆ ∂1∪∂2 such that B is a connected component of G−S.

We will restate Richter and Vitrary [16] proposition in terms more fitting with

our Lemma in the next section.

2.1 Cutting the Surfaces

Proposition 2.6 [16] Let G be a 2-connected graph embedded in a surface Σ. Either

G contains a non-contractible cycle or G is planar.

Lemma 2.7 Let G be a 3-connected toroidal cubic graph. Then G has a non-contractible

non-separating cycle.

Proof of Lemma By the above proposition, G contains a non-contractible cycle. If G

contains a non-contractible non-separating cycle, then we are done. So assume that

every non-contractible cycle is separating. Choose C to be a such cycle that G−E(C)

has the smallest number of components. Let Q1, Q2, ..., Qk be the components of

G− E(C).
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If one of these components is contained in an open disc D of the torus Σ, say Q1,

let v1, ..., vα (α ≥ 3) be the attachments of Q1 on C in clockwise order. Let P be

path of Q1 joining v1 and vα such that P together with a segment S from C joining

v1 and vα together bound a disc containing Q1. Let C ′ := (C − S) + P . Since P ∪ S

is a contractible cycle, then C ′ is non-contractible.

Figure 6: Here we have an example what a component Q might look like.

Claim: The number of components of G−E(C ′) is less than the number of compo-

nents of G− E(C).

Proof of Claim. Note that the segment S contains attachments of Qi for some i 6= 1.

Otherwise, the edges from C∩C ′ incident with v1 and vα form a 2-edge-cut separating

Q1 ∪ S from the remaining subgraph, a contradiction to 3-connectivity of G. So

(Q1 ∪ S) − E(P ) is connected, then Qi and (Q1 ∪ S) − E(P ) will be a connected

component, and hence then number of components of G−E(C ′) is reduced by 1. So

the claim follows. Therefore we may assume that (Q1 ∪ S)−E(P ) is not connected.

Then (Q1 ∪ S) − E(P ) has a component with all attachments u1, ..., uβ on P in
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clockwise order. Let S ′ be the segment of P from u1 to uβ. So the two edges incident

with u1 and uβ from P−E(S ′) form a 2-edge-cut, a contradiction to the 3-connectivity

of G. The contradiction completes the proof of the claim. �

By the choice of C and Claim, we can conclude that none of these components

Qi is contained in an open disc of Σ. Then Q1 intersects the left neighborhood of C

and also the right neighborhood of C. Let v1, ..., vα be the attachments of Q1 on C

in clockwise order. Note that the segment S of C from v1 to vα (α ≥ 3) containing

all attachments of Q1 does not contain attachments of other component Qi. Then

the two edges incident with v1 and vα from C − E(S) form a 2-edge-cut of G, a

contradiction. This completes the proof.

Lemma 2.8 Let G be a 3-connected Klein-bottle cubic graph. Then G has a non-

contractible non-separating cycle C.

Let AB and CD be the boundary of the Klein-bottle such that they both are

going in the same direction. Then boundary AD is in opposite direction from BC.

Let vertices x and y be in the embedded graph G such that the edge xy crosses AB

and CD.

Figure 7: This Klein bottle is drawn with boundaries AB and CD
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Proof of Lemma: Let E0 be the edges crossing the boundary. Then choose an em-

bedding of G such that E0 is minimal. Then G− E0 is connected.

If G − E0 is not connected then let Q be a component of G − E0. Then Q has

some edges say b, c, d that, with out loss of generality, cross AD. Then we can shift

the boundary until the edges b, c, d do not cross AD, then call this E ′0. However

|E ′0| < |E0| since b, c, d no longer cross the boundary. So E ′0 is smaller than E0 a

contradiction to E0 is minimum. Therefore G− E0 is connected.

Figure 8: Here is the Klein bottle with its boundary shifted so Q is no longer discon-

nected.

Since G−E0 is connected there is a path P joining x and y in G−E0. Then P +xy is

a non-contactable cycles crossing the boundary once. Now choose one of such cycles

C such that

(1) G− E(C) has minimum number of components

(2) the smallest component of G− E(C) is as small as possible

Claim: G− E(C) is connected.
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Proof of Claim: If not, choose the smallest component Q of G − E(C). Since G is

3-connected, there is at least 3 attachments of Q on C in order x1, x2, ..., xk. Then

there are edges joining the vertices in the segment S of C containing x1, x2, ..., xk to

G−E(C)−Q, otherwise {x1, x2} is a 2-edge-cut separating S∪Q from the remaining

subgraph a contradiction to the 3-connectivity of G. Let K be the path of Q joining

x1 and xk such that K together S that bound a disk containing Q. Let now we can

find a new cycle C ′ such that C ′ = (C − S) + K. Since K ∪ S is non contractible,

then C ′ is non contractible.

Then we have that (Q ∪ S)− E(K) is connected. Then Q and (Q ∪ S)− E(K) will

be a connected component, therefore the number of components of G−E(C ′) will be

reduced by 1. Then the claim follows.

So assume (Q∪ S)−E(K) is no connected. Then (Q∪ S)−E(K) has a component

with all attachments in order u1, u2, ..., um on K. Let S ′ be the segment of K from u1

to um. Then the two edges incident with u1 and um from K−E(S ′) form a 2-edge-cut,

a contradiction to the 3-connectivity of G. Therefore G− E(C) is connected. �

2.2 Minimum Counterexamples

Let G be a connected cubic graph embedded on the torus. Assume that G is a

minimum counterexample to Hoffman-Ostenhof’s Conjecture 1.3.

Conjecture 1.3 Let G be a connected cubic graph. Then G has a decomposition into

a spanning tree, a matching, and a family of cycle.

ThenG does not have a decomposition into a spanning tree and cycles and a matching.

Lemma 2.9 Let G be a minimum counterexample to Hoffman-Ostenhof’s Conjec-

ture. Then G is triangle-free.
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Proof of Lemma: Assume D is a triangle of G with V (D) = {v1, v2, v3} and let ei

be the edge incident with vi but ei /∈ E(D) (i = 1, 2, 3). Let G/D be the graph

obtained from G by contracting all edges in D and deleting all loops. Then G/D

is a still a connected cubic graph, and let v be the new vertex corresponding to the

contracted triangle D. Since G is a minimum counterexample, G/D is smaller than G

and therefore is not a counterexample to the conjecture. So G/D has a decomposition

{T ′, F ′,M ′}. Note that v ∈ T ′.

If v is a degree 3 vertex in T ′, then let T = (T ′− v)∪ {e1, e2, e3} ∪ v1v2v3, F = F ′

and M = M ′ ∪ {v2v3}. Then {T, F,M} is a decomposition of G, contradiction to

that G is a counterexample.

If v is a degree 2 vertex in T ′, without loss of generality, T ′ contains the edges e1

and e2. Then let T = (T ′ − v) ∪ {e1, e2} ∪ v1v3v2, F = F ′ and M = M ′ ∪ {v2v3}.

Then {T, F,M} is a decomposition of G, a contradiction.

So assume that v is a vertex of degree 1 in T ′. Without loss of generality, say

T ′ contains e1. Then e2 and e3 will be contained in a cycle C ′ ∈ F ′. Then let

C = (C ′− v)∪ {e2, e3, v2v3}, which is a cycle of G. Let T = (T ′− v)∪ {e, v1v2, v1v3},

F = (F ′\{C ′}) ∪ {C} and M = M ′. Again, {T, F,M} is a desired decomposition of

G, a contradiction, which completes the proof.
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Figure 9: The decomposition of triangles

In the figure 9 the yellow edges represent the edges placed in the spanning tree,

while the blue are the edges placed in the matching or cycle.

2.3 A Technical Lemma

By Lemma 2.7, a 3-connected cubic graph on the torus contains a non-contractible

non-separating cycle C. So G−E(C) is a planar graph with two faces which are not

bounded by cycles. We may call the graph G−E(C) is cylindrical. For convenience,

the two face boundaries are also called the boundaries of the graph G−E(C), denoted

by ∂1 and ∂2. Furthermore recall the definitions given in the last section, in particular

tree-attachment, 2-boundary adjacent face, and a block. In the following, we are going

to prove that G−E(C) has a decomposition into a spanning tree T , a family of cycles

H and a matching M . Note that many of the claims follow directly from Ozeki and

Ye technical lemma, which is the following.
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Lemma 2.10 [13] Let G be a connected plane graph with maximum degree at most

3. Suppose that

(1) all cut-edges of G are contained in ∂G, and

(2) for all 2-edge-cuts S. both edges are contained in ∂G

Then G has decomposition {T,M,H} such that T is a spanning tree in G, M is

matching and H is a family of facial cycles.

Note that Lemma 2.10 gives us a decomposition when we have one boundary, or in

other words when ∂1 = ∂2. Generally, we prove the following technical lemma.

Lemma 2.11 Let G be a connected plane graph with maximum degree at most 3.

Assume that G has exactly two faces which are not bounded by cycles, and their

boundaries are denoted by ∂1 and ∂2. Suppose that

(1) All cut edges appear on one of the two boundaries, ∂1 and ∂2;

(2) For any 2-edge cut S, both edges in S are contained in ∂1 or ∂2 or both;

(3) An edge incident with a vertex of degree at most 2 is either a cut-edge of G or

on ∂1 ∩ ∂2;

(4) If ∂1 ∩ ∂2 6= ∅, then G contains a block or ∂1 ∩ ∂2 contains two consecutive

tree-attachments.

Then, for any given 2-edge-cut S = {e1, e2} of G, G has a decomposition {T,H,M}

such that T is a spanning tree containing e1, H is a family of facial cycles, and M is

a matching containing e2.
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So note we have two cases for G. Case 1 where we have ∂2 ∩ ∂1 = ∅ and case 2

where we have ∂2 ∩ ∂1 6= ∅. Note that when we start decomposing case 1 we will

eventually get case 2. When we get to case 2 we then can open up the graph so we

have one boundary thus can use Lemma 2.10 to finish the decomposition. In general

we decompose G for each case and show that we get a smaller graph that still satisfies

the conditions in Lemma 2.11.

Case 1: ∂2 ∩ ∂1 = ∅

If there are no 2-boundary adjacent faces then we without loss of generality we can

start on ∂2 and use Ozeki and Ye decomposition until we get where ∂2 meets ∂1 and

then use Case 1. So assume there is at least one 2-boundary adjacent face.

Figure 10: To the left is a simple example of Case 1 and to the right is an example

of Case 2

Case 2: ∂2 ∩ ∂1 6= ∅

We must have at least one block in this case, if not the ∂2 ∩ ∂1 is a cycle so we are

done. So assume we have at least one block B. Furthermore in general all edges that

lie on the intersection ∂2 ∩ ∂1 will be contained in the spanning tree T . Later we will

go over a special case of where this is not the case.
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Remark. Let G be a graph as stated in Lemma 2.11, and let v be a vertex of degree-

2. Then at least one of the edges incident with v must be contained in T . This implies

that no cycle in f can pass through v and hence every facial cycle in f consists of

edges joining two vertices of degree 3. Furthermore, if an edge incident with v is a

cut edge, then it is easy to see that both of the edges incident with v are contained

in T . Also note if G has no cycle then assume that the lemma does not hold and let

G be a minimum counterexample with respect to |V (G)|+ |E(G)|. If G has no cycle

then we have {G, ∅, ∅} as a decomposition.

Next we will introduce a small lemma that also serves as a example of both how

the decomposition works and how we will prove by minimum counter example. In

particular we will have a special case of G be from Case 1 where G has all two-

boundary adjacent faces.

Lemma 2.12 Let G be a graph satisfying (1)-(4) of Lemma 2.11 where every face

is a 2-boundary adjacent face containing at least one tree-attachment. The G has a

decomposition into a spanning tree, a matching, and a family of cycles.

Proof of Lemma: Let G be as described above and be a minimum counter example to

Lemma. If G has at least one face that contain tree-attachments on both sides. Then

let let t1 be the tree-attachment on ∂1 and t2 be the tree-attachment on ∂2. Then

we can place an edge e1 incident to t1 and an edge e2 incident to t2 in a matching.

Then since f was 2-boundary adjacent we now have that ∂1 = ∂2, therefor we can

use Ozeki and Ye’s Lemma 2.10 [13] to decompose G − {e1, e2} into a a spanning

tree T , and matching M , and a family of cycles H. So the final decomposition of G

is {T,M ∪ {e1, e2}, H} which is a contradiction to the fact that G was a minimum

counterexample.
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Figure 11: In the second graph the red line shows where we placed the edges in the

matching and now have one boundary.

Now let G be such that all the tree-attachments are on one of the boundaries, say

∂2. Then we can place every other edge along partial2 into the matching M . Next

we can pick any one edge say e on ∂1 and place the edge into the matching. Now we

have connected to two boundaries, therefor we use Lemma 2.10 [13] to decompose the

graph with {T,M ∪{e}, H}. A contradiction to G being a minimum counterexample.

Figure 12: The first graph is an example of G with all tree-attachments on one

boundary. The second graph where we placed edge e in the matching.

Now consider now consider when G has alternating tree-attachments on each bound-

ary. Then with out loss of generality, consider ∂2 first. Place every other edge that is
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adjacent to a tree-attachment into the matching M . Similarly on ∂1 we will place an

edge adjacent to each tree-attachment in the matching. However G has alternating

tree-attachments we can choose each edge next the tree-attachments on ∂1 such that

we have an edge e that is not adjacent to any edge in the matching. Now we have at

least one edge e on ∂2 can can be placed into the matching. Now ∂1 = ∂2 so we can use

Lemma 2.10 [13] to decompose the graph into a spanning tree T , a matching M ′, and

a family of cycles H. So we will have a final decomposition of {T,M ∪M ′ ∪ {e}, H}.

A contradiction to G being a minimum counterexample.

Figure 13: For the case of alternating tree-attachments, the red highlighted edges are

the edges where we have a degree of choice. In this case the yellow edge is the one

that can be placed in the matching.

Thus if G is a graph satisfying (1)-(4) of Lemma 2.11 where every face is a 2-

boundary adjacent face containing at least one tree-attachment. The G has a decom-

position into a spanning tree, a matching, and a family of cycles. �

Now we are going to prove Lemma 2.11 through a use of several claims. Some claims

can be generalized to both cases, so it will be remarked whether or note the claim

has to do with a single case or both.
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Proof of Lemma 2.11

Let G be a minimum counter example to Lemma 2.11. Now we will show several

claims.

The following claim can be generalized to both cases.

Claim 1. The graph G does not contains a non-trivial cut-edge.

Proof of Claim 1. Suppose to the contrary that G or B has a cut-edge e = v1v2.

Without loss of generality let us use B. Let D1 and D2 be components of B − e

such that vi ∈ Di where i = 1, 2. Note that |Di| < |B| and Di is a connected

plane graph with maximum degree at most 3 and satisfies conditions (1)-(4). Since

B is a minimum counterexample, Di has a decomposition, say {Ti,Mi, Hi}. Then

T is a spanning tree of B where T = T1 ∪ T2 ∪ {v1v2}. Moreover, M1 ∪ M2 is a

matching of G and H1 ∪H2 is a family of cycles of G. So G has the decomposition

{T,M1 ∪M2, H1 ∪H2}, a contradiction. �

The following claim can be generalized to bath cases.

Claim 2. If G has a boundary-adjacent facial cycle f , then f contains a 2-edge-cut

of G.

Proof of Claim 2. Without loss of generality assume we are working with the graph

G. Suppose to the contrary that there exists a boundary adjacent cycle F of G such

that F does not contain a 2-edge-cut of G. Let G′ = G− E(F ).

We first show that G′ is connected. If not, let D′1 and D′2 be two components of

G′. Let D1 = D′1 − V (F ) and D′2 = D′2 − V (F ). If there is only one edge e1 in G

such that e1 connects D1 and F. Then e1 is a cut-edge of G, contradicting Claim 1.

Then there are at least two edges ei and fi in G between Di and F for i ∈ {1, 2}.
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Let u1 be the end vertex of e1 such that u1 is contained in F . By the planarity of

G and symmetry we can choose such edges e1 and f1 such that the path F [u1, v1]

contains all end vertices of the edges connecting D1 and F , but does not contain any

vertices connecting D2 and F . Let hu and hv be two edges in F so that the edges hu

is incident with u1 and hv is incident with v1 and the two edges are not contained in

E(F [u1, v1])). However F is a facial cycle so by the way we choose hu and hv that

{hu, hv} separates the vertices of D′1 from the other part which contradicts that F

doeas not contain a two-edge-cut. ThereforeG′ is connected.

So now we have that G′ is connected with a maximum degree at most 3. Since

F is boundary adjacent, the facial walk ∂iG − E(F ) for i = {1, 2}, together with

F ′ − E(F ) over all facial cycles of F ′ of G sharing edges with F . Hence we can see

that G′ statifies the properties (1)-(4). So G′ has the decomposition {T ′,M ′, H ′}.

However an cyles in H ′ and F are edge-dijoint. Hence, H ′ ∪ {F} is a family of edge-

disjoint facial cycles in G. So G has a decomposition {T ′,M ′, H ′∪F}, a contradiction.

�

By Claim 2, every boundary-adjacent facial cycle f contains at least one 2-edge-cut

S.

Claim 3. There is no two adjacent tree attachments.

Proof of Claim 3. Assume that G has two tree attachments v1 and v2 such that

v1v2 ∈ E(G). By Claim 1, v1v2 is not a bridge. So G − v1v2 still satisfies the

properties (1)-(4). We have that G − v1v2 satisfies (1) since both edges incident to

v1 and v2, which form a cut edges are still on the boundary of G. Then G − v1v2

satisfies (2) since v1 and v2 are still contained in 2-edge cuts, thus no new 2-edge

cuts were created. Condition (3) is satisfied because v1 and v2 are new degree 2
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vertices however are incident with cut-edges. Also condition (4) is true because we

have not. Then G− v1v2 is smaller and therefore has a decomposition {T,M,H}. So

{T,M ∪ {v1v2}, H} is a desired decomposition of G, a contradiction.

Case 1. ∂1 ∩ ∂2 = ∅. Then every 2-edge-cut S of G satisfies that S ⊆ E(∂1) or

S ⊆ E(∂2).

By Claim 2, a facial cycle adjacent to either ∂1 or ∂2 contains a 2-edge-cut. A facial

cycle adjacent to both ∂1 and ∂2 may contain two 2-edge-cuts.

Claim 4. G has a matching M0 such that every boundary adjacent facial cycle

contains one edge in M0.

Proof of Claim 4. Let F be a facial cycle adjacent to ∂1. Then F contains a 2-

edge-cut SF . If ∂1 contains no 2-edge-cut of F , then SF ⊆ E(∂2) by (2). Then F

is adjacent to both ∂1 and ∂2. Consider all facial cycles F adjacent to ∂1 with a

2-edge-cut SF ⊆ E(∂1). Assume SF = {e1(F ), e2(F )}. Consider the cyclic order of

these edges in these two edge-cuts on ∂1. Since G is a plane graph, for different two

facial cycles F1 and F2, SF1 and SF2 is not crossing the the cyclic order (i.e., appearing

as e1(F1)e1(F2)e2(F1)e2(F2) in the cyclic order). Then along the cyclic order of these

edges, choose every other edges and let M1
0 be the set of chosen edges.

Similarly, we can choose edges from 2-edge-cuts SF of all facial cycles F adjacent

to ∂2 such that SF ⊆ E(∂2) except facial cycles F adjacent to both ∂1 and ∂2 and

M1
0 ∩ E(F ) 6= ∅. And let M2

0 be the set of chosen edges.

Let M0 = M1
0 ∪ M2

0 . Then M0 is a matching satisfying the property. This

completes the proof of Claim 4. �

Note that G−M0 satisfies (1) and (2). In the following, we are verifying that G−M0

also satisfies (3) and (4). Before verify (3) and (4), we prove the following claim.
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Claim 5. The boundaries ∂i for i = 1, 2 does not contain a 2-edge-cut S = {e1, e2}

such that both e1 and e2 are not incident with a tree-attachment.

Proof of Claim 5. Suppose on the contrary that ∂1 does contain a such 2-edge-cut

S = {e1, e2} which separates a subgraph Q and G−Q, where ∂2 ⊆ G−Q.

Consider G/Q and add a leaf joining to the new vertex q. Let G′ be the new graph.

Clearly G′ satisfies the properties (1)-(4). Then G′ has a decomposition {T,M,H}

such that e1 ∈ M . Note that Q has only one boundary and satisfies the properties

(1)-(2) in Lemma 2.10. Then Q has a decomposition {T ′,M ′, H ′} such that both

edges adjacent to e1 in G belong to T (which could be guaranteed by Claim 4). Then

{T ∪ T ′,M ∪M ′, H ∪H ′} is a decomposition of G. �

Figure 14: This is an example of how we would contract the edges and which edges

belong to the matching.

By Claim 5, all 2-edge-cuts of G incident with a tree-attachment. Now, we are

going to verify (3) and (4). For (3), all old degree-2 vertices still satisfy (3). Let v

be a vertex such that degG(v) = 3 but degG−M0
(v) = 2. Without loss of generality,

assume v is on ∂1. That means there is an edge e in M0 incident with v. Let f be the

∂1-adjacent face containing v but not containing e. If f contains a tree attachment
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on ∂1, then v is a degree-2 vertex incident with a cut-edge. So assume that f does

not contains a tree-attachment on ∂1. By Claim 2, f must contain a 2-edge-cut on

∂2. Then M0 must contain an edge from the 2-edge-cut. Therefore, v is on the

intersection of two boundaries of G−M0. This completes the verification of (3).

For (4), assume that G −M0 has two boundaries intersect. If G −M0 does not

contain any blocks, then every face of G is adjacent to both boundaries and contains

at least one tree-attachment, note that in we took care of the case if a face has two

tree attachments one on each boundary. So assume we have a face f with a tree

attachment on ∂1 and a face h with a tree attachment on ∂2 sharing and edge e.

When choosing edges for M0 let us pick the edges to the left for the tree attachments

on ∂1 and the edges to the right of each tree attachment for the tree attachments on

∂2. Then in G−M0 we have two consecutive leaf attachments connected by e where

e is not adjacent to any edge in the matching. So we can place e in the matching.

Then G has a decomposition {T,M0 ∪ e,H}.

Therefore assume that G−M0 satisfies (1) to (4). Then G−M0 has a decomposi-

tion {T,M,H}. Note that M0 is a matching. So {T,M ∪M0, H} is a decomposition

of G. This completes the proof of Case 1.

Case 2. ∂1 ∩ ∂2 6= ∅.

If ∂1 ∩ ∂2 contains two consecutive tree-attachments, let e be the edge joining them.

Then G−e satisfies (1) and (2) in Lemma 2.10, G−e has a decomposition {T,M,H}.

So G has a decomposition {T,M ∪ {e}, H}. In the following, we assume that G

contains a block.

Claim 6: A block B has more than one face.
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Figure 15: Example of a block with one face with and with out the matching

Proof of Claim 6: Let that G is a minimal counter example to Hoffman-Ostenhof’s

Conjecture and has a block B. Then assume that B has one face F . Note that

since B has one face then f must be two boundary adjacent. Furthermore since G is

triangle free, B has two non consecutive tree attachments u1 and u2. With out loss

of generality let u1 be on ∂1 and u2 be on ∂2. Then let v1 be the cut vertex on one

side of B andv2 the cut vertex on the other. Then we can place edge v1u1 and v2u2

in a matching M0.Now we have that G has a decomposition {T,M ∪M0, H} which

is a contradiction to G be a minimal counterexample. �

So assume that B contains more than one face by Claim 6. If B has a face f which

contains a 2-edge-cut S = {e1, e2} but not tree-attachments, let Q1 and Q2 be two

components of B−S. Let Q′i be the graph obtained from B by contracting Qi into a

vertex qi and attaching a pendant edge qiq
′
i to qi. Note that both Q′1 and Q′2 satisfy

the properties (1)-(4). As G is a minimum counterexample, both Q′1 and Q′2 are

smaller than G, and therefore both of them have a decomposition {T1,M1, H1} and

{T2,M2, H2} respectively, such that T1 and T2 contain e1, and M1 and M2 contain
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e2. Then {(T1\{q′1})∪ (T2\{q′2}),M1 ∪M2, H1 ∪H2} is a desired decomposition of G,

a contradiction. So, in the following, assume that B does not contain such faces. In

other words, every boundary-adjacent face contains a tree-attachment.

Figure 16: The yellow edges indicate the original 2-edge-cut that has no tree attach-

ments. The red edges show the edges that are placed in the matching from Qi. The

green edge corresponds to the red edges when Qi in contracted to Q′1

Now suppose that B contains a non-boundary-adjacent face h. Then, by Claim 4,

find a matching Mi from ∂i ∩B for i = 1, 2. Then G−M1 ∪M2 still contains a block

with at least one face h. Note that G −M1 ∪M2 satisfies (1), (2) and (4). Note

that, every face of B contains a tree-attachment. It is not hard to get that the new

degree-2 vertices appears only on the face of B containing a vertex in ∂1∩∂2 or if h is

next to a 2-boundary-adjacent face (see Figure 15). Then the new degree-2 vertices

are on the intersection of two boundaries of G −M1 ∪M2. Note that G −M1 ∪M2

is smaller and therefore has a decomposition {T,M,H}. So G has a decomposition

{T,M ∪M1 ∪M2, H}, a contradiction.
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Figure 17: Here the red vertices show the new degree two vertices. Note that the

green are not new degree two vertices. The green vertices indicate tree-attachments,

or a chain of vertices that can be contracted to a tree-attachment.

So the only case left is that every face of B is boundary-adjacent face containing a

tree-attachment.

Assume that G has all 2-boundary adjacent faces, with each face containing one leaf

attachment. Then by Claim 4 we can choose a matching M along both boundaries.

Let M1 be the matching along ∂1 and M2 the matching along ∂2. Clearly G −M

satisfies (1)-(3). Now we need to verify (4). If all the tree attachments are on one

boundary then G−M now has two consecutive tree attachments (see Figure 16) so

G has a decomposition.

Figure 18: This graph shows an example a block with all tree-attachments on one

side. The red edge indicates an edge joining two tree attachments.
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Now assume there is a at least one face f that has a tree attachment on ∂2 adjacent

to a face h that has a tree attachment on ∂1 and share an edge e. Without loss of

generality then we can pick M1 such that we pick all the edges to the left of each tree

attachment along ∂1 and pick M2 such the edges chosen are to the right of each tree

attachment along ∂2. Then in G−{M1,M2} we have two consecutive leaf attachments

connected by e where e is not adjacent to any edge in the matching.

Figure 19: This is an example of a block with alternating tree attachments. The red

edge is an edge connecting two tree-attachments, furthermore we can place that edge

into the matching. Note that we also could have chosen the green edge.

This finishes our proof of Case 2.

This completes our proof of Lemma 2.11 �

Proof of Theorem 1.5 : By Lemma 2.7 and Lemma 2.7 if we have 3-connected cubic

on the torus or Klein bottle then we can find a non-separating, non-contractible cycle

C such that G − E(C) is a planar graph with two faces which are not bounded by

cycles. Then by Lemma 2.11 G has a decomposition into a a spanning tree T , a

matching M , and family of cycles H. So the proof of Theorem 1.5 is complete. �
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CHAPTER 3

FUTURE RESEARCH

Now we are able to decompose a 3-connected cubic on the torus and klein bottle

into a spanning tree, a matching, and a family of cycles.

3.1 HIST Decomposition

However it might be more useful to see if we can decompose such that we get a HIST

instead of just a spanning tree, or certain other subgraphs. While Douglas proved

it is NP-Complete [4] to determine if a plane cubic graph has a HIST. What about

cubic graphs in general? Hoffmann-Ostenhof and Ozeki [7] have been able to provide

the necessary condition for existence of a HIST in cubic graphs, however could we

decompose a cubic graph on the torus so that we have no degree 2 vertices in the

spanning? This seems like a difficult problem given that degree 2 vertices showed up

in all of our proofs for the decomposition. However the number of graphs can give

this sort of decomposition should be low, considering the graph would have to have

no tree-attachments when we place the graph into the plane after placing the cycle

from the torus or Klein bottle in to the family of cycles. If the graph did have a tree-

attachment then if the graph had any 2-boundary-adjacent faces a degree 2 vertex

would show up, which would placed in the spanning tree. So that means when the

graph is embedded in the plane it must have all facial cycles on the two boundaries.

However even then we are not guaranteed to have no degree 2 vertices.

However this leads us to a different question, which graphs in particular can

be embedded on the torus that gives us certain decomposition. While there are

know limitations how can or cannot be embedded on the torus, we do not know
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the decomposition of each graph. Perhaps we can get a HIST if we lowered our

connectivity, or raised it.

3.2 Other Surfaces

Furthermore we could also look at embedding cubic graph into other surfaces. While

there be some restrictions in the surfaces, in particular one would have be able to

embed K3,3 and be able decompose the graph such that K3,3 would not be present

when placing the decomposition into the plane. For instance K3,3 can also be embed-

ded in a Mobius strip, however are we guaranteed to be able to decompose it into a

spanning tree, family of cycles, and a matching? Also perhaps there some surfaces

which we can decompose more graphs on than others. Which in our case we are able

to decompose 3-connected cubic on both the torus and Klein bottle, the torus which

is orientable and the Klein bottle which is not. Could we embed more graphs on

orientable surfaces that give us our desired decomposition? While there is nothing in

this paper that would led us to believe so we have only looked at one of each type of

surface.

We can also look at polygons. While it is well know that we can decompose a

dodecahedral into a spanning tree, family of cycles, and a matching, we could look

at other polygons which are almost 3-connected cubic graphs when embedded on the

plane. For example a rhombic dodecahedron or trapezoid-rhombic dodecahedron.

Both of which have a combination degree 2 vertics and degree 4 vertices, however

perhaps we could deal with the degree 4 vertices by placing cycles into the family of

cycles and force the graph down to at most degree 3 vertices. If we can a method to

decompose the polygons with some degree 4 vertices, we cold extend the method to

some 3-connected graphs which some degree 4 vertices.
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