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ABSTRACT 

The Electron Density (ED) of a molecular structure can only be observed for large 

ensembles of molecules packed tightly in crystal structures in the solid state. Even then it 

cannot truly be observed, instead experimental measurements are taken via X-Ray 

Diffraction (XRD) and the resulting data is fitted to a theoretical ED model describing the 

probability of finding an electron inside an infinitesimal volume element. 

The atoms (made up of negatively charged electrons orbiting a positively charged 

nucleus), which are bound together by electrostatic forces to form the molecule, are 

constantly in vibrational motion. Even at very low temperatures, quantum effects cause the 

nuclei to maintain vibration in approximately harmonic oscillations. This nuclear motion 

takes place on a much faster time scale than the XRD experiment which yields a thermally 

averaged view of the molecule in the XRD data. 

A topological analysis of the static ED (the ED with non-vibrating nuclei centered 

at mean positions from the observations) are invaluable to chemistry as it yields many 

chemical properties of the molecule under observation. It is thus important to partition the 

observed (thermally averaged, dynamic) ED into contributions from the static ED and 

contributions from nuclear thermal smearing. This partitioning involves an approximation 

in which the atomic ED is believed to rigidly follow the motion of the nuclei and the 

resulting dynamic ED is expressed as the convolution between the static ED and the 

probability of nuclear displacements. The process of fitting parameters to the observed 

XRD data involves continually refining static and dynamic parameters (the parameters 

defining the static ED and the nuclear motion, respectively). 
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In this computational study, the refinement process is simulated and various aspects 

of the process are evaluated. Among others, important aspects under evaluation include the 

accuracy of the convolution approximation, the representation and expression of dynamic 

parameters, the uncertainty of the refinement parameters, and the expression of the static 

ED. 
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1. Introduction1 

The static Electron Density (ED) of a chemical system is the probability density 

function (PDF) defining the probability of finding an electron in an infinitesimal volume 

element of space for a stationary nuclear configuration. The topology of this PDF can be 

used to strictly define many static and reactive properties of a molecule. Fundamental 

concepts in chemistry such as bonding, stability and even the very definition of an atom 

are now able to be described quantitatively through a topological analysis of this scalar 

field. 

Though the concepts of atoms and molecules have been around for centuries, many 

properties of individual molecules are not directly observable through experiment. A large 

ensemble of molecules in crystals, however, can be examined by an experimental technique 

known as X-Ray diffraction to observe the average of all molecular properties in the crystal 

sample. An atom is composed of negatively charged electrons and a positively charged 

nucleus (which is a combination of protons and neutrons). A molecule, which is composed 

of more than one atom bound together by electrostatic forces, will vibrate due to atomic 

motion “governed” by both internal and external degrees of freedom according to the laws 

of quantum mechanics (QM).  

Important to QM is the notion that a molecule can be uniquely defined by the 

position of its nuclei and the number of its electrons. As a result, there is a delicate interplay 

between the nuclei and the electrons; the distribution of the electrons and the geometric 

                                                 
1 Portions of this introduction also appear in The Journal of Mathematical Chemistry [79]. 
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positions of nuclei are highly correlated. The interdependence of this relationship between 

electrons and nuclei is used to solve the Schrödinger equation by assuming a stationary 

nuclear geometry as initial conditions in the calculations, resulting in an electronic wave 

function, Ψ({𝒓𝒊}; 𝑹), implicitly dependent upon a given nuclear geometry, 𝑹. 

These initial conditions are due to the Born-Oppenheimer Approximation [1] in 

which it is assumed that the electronic and nuclear motion can be separated, Ψ({𝒓𝒊}; 𝑹) =

ψ({𝒓𝒊};  𝑹)Φ(𝑹). Physically, this is validated due to the mass difference between nuclei 

and electrons - the contribution of nuclear motion comes from classical mechanics which 

the electronic motion is due to QM. The quantum nature of the electrons allows for an 

instantaneous rearrangement around the nuclei for any small nuclear displacement. 

Because the electrons are able to adapt to any arrangement of nuclei, the electronic wave 

function and related energy can be calculated for any nuclear structure. This allows for 

calculation of the ‘equilibrium’ geometry, the nuclear structure for which there are no more 

forces acting on the nuclei. This equilibrium structure is found by iteratively calculating 

the forces on the nuclei and rearranging them to minimize the energy. The potential energy 

for nuclear motion is a function of nuclear positions and has a global minimum at the 

equilibrium geometry. This potential energy surface can be used to calculate nuclear 

vibration amplitudes and frequencies by taking a quadratic approximation to the minimum 

of the energy surface. The resulting quadratic approximation expresses the internal motion 

of the molecule as harmonic oscillations of the nuclei. 

Modeling X-Ray diffraction, an experimental technique which is used to observe 

the average ED of atoms and or molecules in crystals, is a non-trivial procedure. The static 

ED associated with the molecule and the thermal vibrations of nuclei both contribute to the 
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distribution of the observed diffraction pattern. The difficulty of deriving the static ED 

from the data which is least biased by the thermal motion is addressed in this study. 

The treatment of thermal motion is a far from trivial exercise and continues to be 

of interest today [2, 3]. First-principle modeling of the static ED itself [4, 5, 6] along with 

analysis of experimental errors associated with the measurement [7, 8] continues to be 

improved upon in the current era of charge density research. When the uncertainty of 

topological properties of the static ED is analyzed, only the uncertainty of those parameters 

which contribute to the construction of the static density are considered. These ‘static 

parameters’ do not include the parameters which describe the motion of the nuclei. Since 

there is a correlation between these ‘dynamic parameters’ and the static parameters, any 

uncertainty quantification which considers only the static parameters is incomplete. 

In this study, we develop a computational framework for estimating nuclear thermal 

motion effects on the molecular ED. This framework allows us to create a thermally 

averaged ED and evaluate standard uncertainties in the parameters of the static ED. By 

doing this, we are able to perform uncertainty quantification of topological properties in 

the static ED using not only static parameters, but dynamic parameters as well. 

 

1.1 Scientific Background 

The (static) Electron Density of a molecule with M positively charged nuclei and 

N negatively charged electrons gives the probability of finding an electron in the 

infinitesimally small space 𝑑𝒓𝒙 at the point 𝒓𝒙 = (𝑥, 𝑦, 𝑧): 

𝜌(𝒓𝒙) =  𝑁 ∫Ψ(𝒓𝒙, 𝒓𝟐, … , 𝒓𝑵; 𝑹)Ψ∗(𝒓𝒙, 𝒓𝟐, … , 𝒓𝑵; 𝑹)𝑑𝒓𝟐 …𝑑𝒓𝑵            (1.1) 
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where Ψ is the spinless ground-state ‘wave function’ for the N electrons, distributed in the 

field of nuclei with fixed positions (given by the 3M vector 𝑹). The standard definition of 

a wave function is a complex valued function which contains all possible information about 

the system, however it cannot be physically observed. The ED, on the other hand, is an 

everywhere positive, real valued, physically observable function which integrates over all 

space to the number of electrons in the molecule [9, 10]. 

The ground-state wave function is an eigenfunction of the stationary Hamiltonian 

operator (�̂�) with the eigenvalue being the lowest allowed energy of the molecule. The 

corresponding Schrödinger equation is given by: 

�̂�Ψ = EΨ                                                              (1.2) 

�̂� = �̂�𝑁(𝑹) + �̂�𝑒({𝒓𝒊}) + �̂�𝑒𝑁({𝒓𝒊}, 𝑹) + �̂�𝑁𝑁(𝑹) + �̂�𝑒𝑒({𝒓𝒊})                        (1.3) 

where 𝑹 and {𝒓𝒊} represent the 3M nuclear and 3N electronic coordinates, respectively. �̂� 

and �̂� are the Kinetic and Potential Energy operators which operate on either nuclei (N), 

electrons (e) or a combination of the two. The only term in Eqn. 1.3 which includes both 

nuclear and electronic variables is the �̂�𝑒𝑁 (electron-nucleus interaction potential energy 

operator) which prevents the separation of the wave function into a product of nuclear and 

electronic functions [11]. 

In order to solve the Schrödinger equation, it is customary to invoke the Born-

Oppenheimer Approximation which states that the true wave function, Ψ({𝒓𝒊}, 𝑹), may be 

approximated by ϕ({𝒓𝒊}; 𝑹)χ(𝑹) where ϕ({𝒓𝑖}; 𝑹) is now a parametric function of nuclear 

coordinates 𝑹 with independent electronic coordinate variables {𝒓𝒊}. Conceptually, this is 

a valid approximation because the electrons are much less massive and move much faster 
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than the nuclei, so that the nuclei are almost fixed in relation to the motion of the electrons. 

This is mathematically validated by truncating the Taylor Series expansion of the 

Hamiltonian to the zeroth order where the motion of the nuclei does not exist [1, 11]. 

Using this approximation, the electronic wave function is often approximated for a 

fixed configuration of 𝑹∗ to obtain ϕ({𝒓𝒊}, 𝑹
∗) for which we can find the related electronic 

energy, 𝐸𝑎(𝑹
∗). By adjusting the coordinates of the nuclei, a minimum value for 𝐸𝑎 can 

be obtained. The optimized nuclear positions are referred to as the equilibrium molecular 

configuration. In this standard process, the forces acting on the nuclei are continually 

calculated and used to re-adjust the positions of the nuclei until the energy is minimized. 

The importance of the wave function to chemistry is without parallel, as it uniquely 

defines all physical properties of the molecule including bond order, atomic boundaries, 

and energy of a system. The importance of the ED to quantum physics, then, is equally 

important as it allows the physical information in the 3𝑁 variable function, Ψ({𝒓𝑖}), to be 

expressed as a 3 dimensional function, 𝜌(𝒓), which makes the computational aspect of 

topological properties much easier. 

We measure the ED by using “X-Ray Diffraction” (XRD) in the course of which 

closely packed molecules in the crystal lattice are bombarded with X-Ray photons. The 

distribution of the scattered photon intensity is determined by the periodic crystalline ED 

because electrons are better at scattering X-Rays than the nuclei [9, 12]. Diffraction 

methods are necessary tools for studying the ED because unless the molecules are closely 

packed and interacting (as they are in the solid state), it is virtually impossible to 

experimentally observe the ED of individual, isolated molecules.  



6 

 

 

Because the molecules form a tightly packed lattice in a crystal (the ED exhibits 

translational symmetry), constructive and destructive interference occurs, as described by 

Bragg’s Law, which gives rise to discrete, observable intensities. These observable 

intensities, 𝐼ℎ𝑘𝑙, are each a result of coherent scattering with a crystal plane defined by 

“Miller Indices” 𝒉 = (ℎ, 𝑘, 𝑙). The intensity is measured and, along with the phase, 𝜙ℎ𝑘𝑙, 

is related to the Bragg “Structure Factor” (SF), 𝐹ℎ𝑘𝑙, which is the FT of the average ED in 

the unit cell. Since the SFs are measured only for a discrete set of scattering vectors, (𝑯), 

the average ED is the inverse FT summation of the SFs 

< 𝜌(𝒓) >= ∑ 𝐹ℎ,𝑘,𝑙𝐸𝑥𝑝[−2𝜋𝑖 (ℎ𝑥 + 𝑘𝑦 + 𝑙𝑧)]

∞

ℎ,𝑘,𝑙

                         (1.4) 

where 𝒓 = 𝑥𝒂 + 𝑦𝒃 + 𝑧𝒄. The unit cell is the smallest space element from which the 

crystal can be built by repeated translations along the lattice vectors (𝒂, 𝒃, 𝒄). The scattering 

vector, (𝑯), is a function of the volume of the unit cell, 𝑉, the lattice vectors, and the miller 

indices 𝑯 =
1

𝑉
{ℎ(𝒃 × 𝒄) + 𝑘(𝒄 × 𝒂) + 𝑙(𝒂 × 𝒃)}. 

Unfortunately the average ED cannot fully be retrieved in this way for several 

reasons. First, the SFs are only related to the observed intensities by 𝐼 ∝ 𝐹2. Other physical 

effects such as background radiation, absorption, extinction, and thermal diffuse scattering 

must be taken into account in order to extract the Bragg SFs from the intensity [13]. 

Because these phenomena are not trivial to explicitly account for, they manifest themselves 

as systematic experimental errors giving rise to uncertainties in the estimates of ED 

parameters [9, 14]. 
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In addition, only a finite number of SFs are available from Bragg diffraction 

experiments. Furthermore, only the amplitudes of the SFs and not their phases can be 

measured. All of these problems (that the SFs carry more information than we would like, 

that we are attempting to perform a finite FT, and that we do not have the phases of the FT) 

mean that we will always be dealing with an incomplete data set which is why we must 

rely on a model to ‘fill in the gaps’ given that we are attempting to solve an ill-posed inverse 

problem. 

1.2 Theoretical Electron Density from a Wave Function 

 In the absence of experimental data, an ab initio ED will be constructed to study its 

topological properties by finding the equilibrium geometry, 𝑹, and accompanying 

electronic wave function, Ψ({𝒓𝒊}; 𝑹), so that the ED can be calculated at a point (Eqn. 1.1). 

The molecular structure defined by 𝜌 containing 𝑁 nuclei is parameterized by the location 

of the nuclei as defined in the previous section. Assuming that an equilibrium geometry 

has been found, the nuclei are represented as a 𝑁 × 3 vector 𝑹 and the related ED can be 

written as 𝜌(𝑥, 𝑦, 𝑧) where it is understood that the nuclei are stationary. 

 A common practice, and the one implemented by the Gaussian [15] software 

package, is to describe [16] the many electron wave function, Ψ, as an antisymmetric linear 

combination of one-electron Molecular Orbitals (MO), Ψ𝑖, each of which is described by 

a linear combination of Atomic Orbitals (AO), 𝜙𝑗.  

Finally, each AO is expanded in Gaussian Type Orbitals (GTO), 𝑔𝑘, centered at a 

nucleus such that  

𝑔𝑘(𝑥, 𝑦, 𝑧) = (𝑥 − 𝑋𝑘)
𝑛𝑘(𝑦 − 𝑌𝑘)

𝑚𝑘(𝑧 − 𝑍𝑘)
𝑙𝑘𝐸𝑥𝑝[−𝛼𝑘 |𝒓 − 𝑹𝑘|

2]         (1.5) 
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giving rise to the expressions for AOs and MOs as 

𝜙𝑗(𝒓) = ∑𝑑𝑗𝑘

𝑘

𝑔𝑘(𝒓)                                                   (1.6) 

Ψ𝑖(𝒓) = ∑𝑐𝑗𝑖
𝑗

𝜙𝑗(𝒓)                                                   (1.7) 

The final ED can be then be expressed as 

𝜌(𝒓) = ∑𝑃𝜇𝜈

𝜇,𝜈

𝜙𝜇(𝒓)𝜙𝜈(𝒓)                                              (1.8) 

where 𝑃𝜇𝜈 is the ‘Density Matrix’ described by 𝑃𝜇𝜈 = 2∑ 𝑐𝜇𝑘𝑐𝜈𝑘𝑘  for closed shell systems. 

Combination of Eqns. (1.5, 1.6, 1.8) yield an expression of the ED involving products of 

GTOs which may have different centers. This expression will become important in Chapter 

4 when taking a convolution of non-nucleus centered Gaussian functions as a result of 

products of GTOs. 

 The advantage of a mathematical description of the ED is that the theoretical 

aspects of the atom can be obtained using computer systems. Many aspects of chemical 

bonding including bond strength and bond order can be calculated by analysis of the ED 

as described in Eqn. 1.7. Even the atom can be defined by boundaries of atomic basins via 

calculation of points, 𝒓𝑠, on 𝑆, the surface of zero-flux [10]  

∇𝜌(𝒓𝑠) ∙ 𝒏(𝒓𝑠) = 0                                                      (1.9) 

where 𝒏(𝒓𝑠) is the normal vector to a point on 𝑆. 

 The current discussion, and the Gaussian software package, make use of theoretical 

wave function based models, but Jayatilaka and others [17, 18, 19, 20] have been using 

wave function based models to fit experimental data to a desired ED formalism. This is 

not, however the only method of fitting an ED model to experimental data. 
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1.3 The Multipole Model of the Electron Density 

In order to express the static ED as an analytical function, it is customary to 

introduce a model, M, which is a function of a set of parameters, 𝜶, and attempt to 

reconstruct the diffraction data, 𝑫, (with standard uncertainties 𝝈) [4]. Having an analytic 

expression (a scattering model), all SF’s can be predicted and compared with those 

observed from experiment. We wish to find the unbiased estimates for the parameters in 

the least-squares (LS) sense, so that the mean-square error 

𝜒2 = ∑
(𝐷𝑖 − 𝑀𝑖(𝜶))

2

𝜎𝑖
2

𝑖

                                                (1.10) 

is minimized. 

The thermally averaged ED in the unit cell is taken to be the superposition of 

(thermally averaged) nucleus centered density units. This is equivalent to taking the 

convolution (⊛) of the atomic densities with the delta functions at the location of each 

atom’s center. In the following equations, a superscript of 𝑎𝑡 is used to signify that the 

superscripted density is an atom centered density unit, while its absence signifies that it is 

not. 

𝜌𝑈𝐶(𝒓) = ∑𝜌𝑗
𝑎𝑡(𝒓 − 𝑹𝑗)

𝑗

= ∑𝜌𝑗
𝑎𝑡(𝒓) ⊛

𝑗

𝛿(𝒓 − 𝑹𝑗)                      (1.11) 

When the molecular structure is near its geometry of thermal equilibrium, the total 

molecular vibration can be described as a combination of atomic vibrations [1]. The motion 

of each atom can then be described by a harmonic oscillation, 𝑝𝑗(𝒓
′), which defines the 

probability of finding atom 𝑗 at a displacement of 𝒓′ from its equilibrium position 𝑹𝑗. These 
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Gaussian PDFs aid in the representation of the thermally averaged atomic ED by means of 

a convolution between them and the static atomic ED: 

𝜌𝑗
𝑎𝑡(𝒓) = 𝜌𝑗

𝑎𝑡,𝑠𝑡𝑎𝑡𝑖𝑐(𝒓) ⊛ 𝑝𝑗(𝒓)                                          (1.12) 

Considering the way the SFs relate to the ED as well as the fact that the FT of a convolution 

is a product of FTs, it follows that  

𝐹(𝑯) = 𝐹𝑇[𝜌𝑈𝐶(𝒓)] = ∑𝑓𝑗(

𝑗

𝑯)𝑇𝑗(𝑯)𝐸𝑥𝑝[−2𝜋𝑖 𝑯. 𝑹𝑗]                   (1.13) 

where 𝑓𝑗(𝑯) is the ‘atomic structure factor’ and 𝑇𝑗(𝑯) is called the ‘atomic temperature 

factor’ or Debye-Waller factor. These forms represent the PDFs in Fourier space: 

𝑓𝑗(𝑯) = ∫𝜌𝑗
𝑎𝑡,𝑠𝑡𝑎𝑡𝑖𝑐(𝒓)𝐸𝑥𝑝[2𝜋𝑖𝑯. 𝒓]𝑑𝒓                                (1.14) 

𝑇𝑗(𝑯) = ∫𝑝𝑗(𝒓)𝐸𝑥𝑝[2𝜋𝑖𝑯. 𝒓]𝑑𝒓                                     (1.15) 

We are thus able to calculate the SFs, 𝐹𝑐𝑎𝑙𝑐(𝑯), relating to the model which is 

determined to fit the observed SFs, 𝐹𝑜𝑏𝑠(𝑯), according to the parameters defined in the 

model and the least squares problem becomes ∑ {𝑤𝑯𝑯 (|𝐹𝑐𝑎𝑙𝑐(𝑯)| − |𝐹𝑜𝑏𝑠(𝑯)| )2} where 

the weighting factor is determined by the uncertainty of the intensity data [21]. 

 

 

When we assume that the model to be used has been predetermined, the problem 

turns into finding the ‘unbiased’ estimates of the parameters for the model which best fit 

the data. Some of these parameters include locations of nuclei and basis functions, basis 

function populations, and those determining the size and shape of the temperature factors. 
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The formalism we choose is called the “Pseudoatom” (PA) model [6, 22, 23]. The 

ED is defined to be a superposition of nucleus centered basis functions over the domain of 

real (density normalized) spherical harmonics. 

𝜌(𝒓) = ∑𝜌(𝑗)(𝒓 − 𝑹𝑗)

𝑗

                                              (1.16) 

𝜌(𝑗)(𝒓) = ∑ ∑ 𝑃𝑙𝑚𝜌𝑙𝑚(

𝒍

𝒎=−𝒍

𝑳

𝒍=𝟎

𝑟)𝑦𝑙𝑚(𝜃, 𝜙)                                (1.17) 

Each atomic density, 𝜌(𝑗)(𝒓), is expanded over real spherical harmonics, 𝑦𝑙𝑚(𝜃, 𝜙) 

expressed in nucleus-centered local frames. The exponentially decaying radial part, 

𝜌𝑙𝑚(𝑟), is normalized so that the ‘populations’, of the (𝑙,𝑚) multipole is contained in the 

𝑃𝑙𝑚 term. Chapter 2 explores our contributions to the expression of the PA model and 

quantifiable results for improving accuracy of model. 

1.4 The Convolution Approximation 

 The key property for interpreting X-Ray Bragg scattering is the coherent elastic SF, 

the Fourier Transform of the thermal average (T-dependent canonical ensemble average 

over vibration states) of the crystalline ED (referred to here as the dynamic ED): 

⟨𝜌⟩𝑇 = ∑ 𝑤𝑛𝜌𝑛
𝑛

                                                              (1.18) 

where 𝑤𝑛 and 𝜌𝑛 are the Boltzmann factor and ED, respectively, associated with the 𝑛𝑡ℎ 

state of the system in thermal equilibrium with its surroundings. To reduce this expression 

to a closed analytic form applicable of SF data fitting, the harmonic convolution 

approximation is invoked which includes a hierarchy of approximations [24]: (a) the states 

accessible by the system (molecule or crystal) are restricted to vibration states (no 
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electronic transition occurs during the scattering); (b) the adiabatic approximation that 

implicitly assumes the physical observability of the stationary ED corresponding to the 

equilibrium nuclear geometry (represented by a 3𝑁-row vector 𝑹0 for 𝑁 nuclei); (c) the 

stationary ED is supposed to be expressed as a superposition of partial distributions each 

assigned to a specific center; (d) even less feasibly, each density unit is defined to rigidly 

follow the motion of its center as the nuclei vibrate about their equilibrium positions in a 

harmonic potential. 

 The normal mode analysis of the system of 𝑁 vibrating nuclei in thermal 

equilibrium leads to a  3𝑁-multivariate normal distribution of nuclear displacements 

relative to their equilibrium positions (𝒖 = 𝑹 − 𝑹0): 

𝑃(𝒖) = (2𝜋)−
3𝑁
2 |𝑼|−

1
2𝐸𝑥𝑝 [−

1

2
𝒖𝑼−𝟏𝒖𝑇]                                        (1.19) 

where 𝒖𝑇 represents the transpose of 𝒖 and the covariance matrix is the Mean Square 

Displacement Amplitude (MSDA) matrix (𝑼) associated with the expectation values of 

Cartesian nuclear displacement products (second moments): 

𝑼 = ⟨𝒖𝑇𝒖⟩𝑇                                                                   (1.20) 

 

 

The temperature dependence of 𝑼 is embedded in the MSDAs of the normal modes, in its 

eigenvalues (𝜹 = (𝛿𝑖=1,3𝑁): 

𝑼 = 𝑳𝜹𝑳𝑇                                                                      (1.21) 

𝛿𝑗 =
ℎ

8𝜋2𝜈𝑗
coth(

ℎ𝜈𝑗

2𝑘𝐵𝑇
)                                                       (1.22) 
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where 𝜈𝑗 is the frequency of the 𝑗𝑡ℎ normal mode [25, 26]. 

 In the simplest versions of the Bragg SF formalism, that relies on the one-center 

ED models (such as the conventional isolated-atom or the pseudoatom; nucleus-centered 

multipole expansion [22, 23], the correlations between nuclear vibrations are ignored. In 

other words, the density units centered on a given nucleus (𝜌𝑎(𝒓𝑎), 𝒓𝑎 = 𝒓 − 𝑹𝑎) are 

smeared (convoluted) by a trivariate normal distribution of that nuclear center (marginal 

PDF: 𝑃𝑎).  This means that the 3𝑁 multivariable normal distribution is taken as a product 

of 𝑁 trivariate normal distributions, giving rise to the smeared ED 

⟨𝜌(𝒓)⟩𝑇 = ∑ ∫ 𝜌𝑎(𝒓𝑎 − 𝒖)𝑃𝑎(𝒖)𝑑𝒖
∞

−∞𝑎
                                         (1.23) 

Note that the Fourier Transform of a marginal PDF (𝑃𝑎) is the Debye-Waller (DW) factor 

routinely used in scattering models to dampen the scattering power of an atom due to 

nuclear vibrations [27, 28]. If the convolution approximation is to be applied to the ED 

within the LCAO-MO approach, new considerations arise because it is not immediately 

apparent how to calculate the ADPs of non-nuclear sites at which two-center orbital 

products are centered. Approximations of practical relevance have been suggested 

previously to estimate the variance / DW factor of these centers as a linear combination of 

experimental nuclear ADPs [29] / DW factors [30, 31, 32], but without providing the exact 

solution given below. 
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1.5 Expression of Nuclear Motion 

Adapting Eqn. 1.14 to each nucleus, the atomic smearing function (as it appears in 

Eqn. 1.18) is 

𝑃𝑗(𝒖𝑗) = (2𝜋)−
3
2|𝑼𝑗|

−
1
2𝐸𝑥𝑝 [−

1

2
𝒖𝑗𝑼𝑗

−1𝒖𝑗
𝑇
 ]                            (1.24) 

where 𝒖𝑗 is the displacement of the 𝑗𝑡ℎ nucleus from its equilibrium position and 𝑼𝑗 is the 

symmetric 3x3 symmetric tensor which represents the variance-covariance of the nuclear 

PDF. 

 Since during an XRD experiment, atoms in molecules as well as molecules in the 

crystal visit different vibration states, the scattering intensity is related to the thermal 

average (canonical ensemble average) of the ED. The vibration states depend on the 

internal (intra-molecular) and external (intermolecular) forces. The ultimate goal is to 

derive the static ED, since in the QTAIM treatment of atoms in molecules, TPs of the static 

ED are used to reveal important chemical features of the molecular systems. 

 Upon proper deconvolution of thermal motion from the observed reflexions, the 

static ED is modeled using the equilibrium structure which is believed to be the space-time 

average of all structures observed in the crystal sample. A natural, though naive, conclusion 

might be that the TPs of the static model are also representative of the average of TPs from 

all structures in the ensemble. In this computational study, we find that this is not the case 

and show how the TPs of the structure changes as the molecule undergoes thermal 

vibrations. 
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One of the most widely used computer program packages for fitting SFs is ‘XD2006’ 

[33] which allows the user to refine, among others, the following parameters: 

(1) The populations, 𝑃𝑙𝑚, for each multipole in the expansions of the atomic densities. 

(2) The Anisotropic Displacement Parameters (ADP), which make up the 𝑼𝑗 matrix 

used in the temperature factors. These ADPs represent the likelihood for the nucleus 

to be displaced in given directions. These symmetric 3x3 matrices are the variance-

covariance in 𝒖𝑗 = (𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗) for each nucleus 𝑗. 

Once the parameter estimates have been found for a given set of diffraction data, we 

can use the fitted Model Density to calculate topological properties (TP) of the ED. A 

topological analysis of the ED includes an analysis of both scalar and non-scalar properties 

of the ED. Some of the scalar properties may include the value of the ED, 𝜌(𝒓), or it’s 

Laplacian, ∇2𝜌(𝒓) at certain points while some of the non-scalar properties may include 

the location of Bond Critical Points (BCP) as well as other integrated properties. 

The importance of the static ED is paramount because it reveals many important 

properties of the system in question. The concept of the atom in a molecule, while used 

throughout history, has only recently been explored with charge density studies and relies 

heavily upon the topology of the ED. Even physical properties which many chemists take 

for granted, such as bond types and bond strengths, can be examined by studying the 

topology of the ED of a molecule. Not only are static properties like bond order revealed 

through an examination of the ED, but reactive properties can be explored by the static ED 

as well. The Laplacian of the ED, for example, reveals a charge concentration or depletion 

depending on the sign. When a molecule with a site of charge depletion meets a molecule 

with a site that has charge concentration, they are attracted to one another and a reaction 
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ensues. For this reason it is incredibly important to be able to accurately assess the 

uncertainty with which we predict topological properties of the ED.  

Chapter 3 will explore the effects of nuclear motion on the ED by statistically analyzing 

the way in which scalar and non-scalar properties are affected by perturbations to the 

nuclear positions resulting from thermal motion. It is important to note that this analysis 

does not invoke the convolution approximation. Chapter 4 then uses these results to assess 

the accuracy and validity of the convolution approximation by comparing dynamic ED 

resulting from statistical treatment of motion to the dynamic ED resulting from a treatment 

of motion by convolution. 

1.6 Uncertainty Quantification of Topological Properties 

We fit the model parameters to the data by taking a first order Taylor Series 

expansion to the model with respect to each parameter and perform a Linear Least Squares 

estimate. If the parameters are non-linear, as is the case with the ADPs, then we can do this 

repeatedly - “refining” the parameters until convergence is attained [21]. By doing this, we 

can easily construct the variance-covariance matrix (VCM) of the parameter estimates so 

that we may quantify their uncertainty. 

The parameter uncertainties will also cause uncertainties in the evaluated TPs so 

we need to quantify the uncertainty in the TPs due to the uncertainty in the model 

parameters. It is a rather trivial process to quantify the uncertainty in scalar properties (𝜌, 

∇2𝜌) of the ED due to linear parameters (𝑝𝑙𝑚) by means of Error Propagation [34]. It is not 

simple, however, simple to find the uncertainty in non-scalar ‘properties’ of the ED such 

as location of a BCP between two atoms. 
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The BCP between two atoms is the point along the bond path (the path of maximum 

density connecting two nuclei) where the gradient of the ED vanishes and the Hessian has 

two negative and one positive eigenvalues [10]. A small variation in any of the model 

parameters will result in a minor deviation of the calculated location of the BCP from that 

of the established parameters. Unfortunately, because finding a BCP is an iterative, non-

linear process, it is difficult if not impossible to find the uncertainty in the location of the 

BCP due to the uncertainty in the model parameters using methods of error propagation. 

There is an even more subtle problem - the way in which we treat (or don’t treat) 

the uncertainty in dynamic parameters in the PA model. When we are finding properties of 

the ED, it is implicitly understood that we are speaking about properties of the static ED. 

Recall that the dynamic parameters (the ADPs) are used only to deconvolute the smearing 

in the data which results from thermal motion. After we have removed this smearing and 

are working with the static ED, the variance / covariance of these dynamic parameters are 

ignored. For this reason, the VCM which we use in error propagation does not contain any 

of the ADPs, or at least, those parts of the VCM are not used because the ADPs do not 

show up in the static model. Indeed, the ADPs are used explicitly to deconvolute the 

thermal motion in the refinement process and are ignored completely when dealing with 

the properties of the static density. 

The relationship between the ADPs and the static model parameters, however, 

cannot be ignored. In fact, if the ADPs are held constant during the refinement process, the 

effect would be seen in other parameters which would ‘mimic’ thermal smearing. 

Likewise, the ADPs alone can be used, at least in part, to account for the static ED 

asphericity which shows the interdependence and correlations which can be “as high as 80-
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90%” [35], especially when moving beyond the Harmonic Approximation and into the 

Gram-Charlier expansion [36]. 

Chapter 5 explores these issues and assesses the effect that the uncertainty in the 

ADPs has on the uncertainty in the static ED. This is done via a mixture of error 

propagation and stochastic sampling in such a way that it is possible to compare the 

uncertainties of the ED resulting from both including and ignoring the uncertainties in the 

ADPs.   

  



19 

 

 

2. A New Approach to the Pseudoatom Expansion 

2.1 The Standard Pseudoatom Expansion 

 Within the basic PA Multipole Model, the total molecular ED, 𝜌𝑡𝑜𝑡(𝒓), is expressed 

as a sum of nucleus centered density units, 

𝜌𝑡𝑜𝑡(𝒓) = ∑𝜌𝑎(𝒓 − 𝑹𝑎)

𝑎

                                                     (2.1) 

𝜌𝑎(𝒓) = ∑ ∑ 𝜌𝑙𝑚(𝑟)𝑑𝑙𝑚(𝜃, 𝜙)

𝑙

𝑚=−𝑙

𝐿𝑚𝑎𝑥

𝑙=0

                                            (2.2) 

where 𝑑𝑙𝑚 are density normalized Real Spherical Harmonics (RSH) [37] (the 

normalization coefficients for which have been precalculated up to 𝑙 = 40 [38]). Because 

the angular basis functions are predetermined, the only part of the expansion left to find 

are the Radial Density Functions (RDF), 𝜌𝑙𝑚(𝑟). 

 A widely used version of the PA expansion is the “Hansen-Coppens” (HC) 

formalism [23]. In this expansion, the radial term is m-independent so the PA density for 

each atom (which we will denote as 𝜌 rather than 𝜌𝑎) is 

𝜌(𝒓) = ∑ 𝑅𝑙(𝜅𝑙𝑟)

𝐿𝑚𝑎𝑥

𝑙=0

∑ 𝑃𝑙𝑚𝑑𝑙𝑚(𝜃, 𝜙)

𝑙

𝑚=−𝑙

                                         (2.3) 

where 𝑅𝑙 is normalized so that 𝑃𝑙𝑚 defines the multipole population. 

The monopole (𝑙 = 0) RDF is defined differently than for the higher poles (𝑙 > 0). 

For the monopole, the RDF is defined as the sum of a ‘core’ RDF (which does not scale 

with 𝜅) and a ‘valence’ term (which does scale with 𝜅) such that 𝑅0(𝜅0𝑟) = 𝜌𝑐(𝑟) +

𝑃00𝜌(𝜅0𝑟). Both the core and the valence monopole radial functions are obtained from the 

Hartree-Fock (HF) wave function of the ground-state isolated atom [4, 39]. 
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 According to the HC formalism, the higher order poles (𝑙 > 0) have RDFs which 

are simple “Slater functions” [40] 

𝑅𝑙(𝜅𝑙𝑟) =
(𝛼𝑙𝜅𝑙)

𝑛𝑙+3

(𝑛𝑙 + 2)!
𝑟𝑛𝑙𝐸𝑥𝑝[−𝛼𝑙𝜅𝑙𝑟]                                           (2.4) 

leading to an ‘m-independent’ (MI) Multipole Model; the RDFs of the higher-order poles 

are dependent only upon 𝑙 but not on 𝑚. The standard HC expansion is typically terminated 

at the hexadecapolar level (𝐿𝑚𝑎𝑥 = 4). 

As discussed in [6], it is advantageous to build upon the HC model by including m-

dependent (MD) terms. The referenced work performs an analysis with the 𝛼-glycine 

molecule using numerical and analytical RDFs which involve a time consuming genetic 

evolutionary algorithm for fitting the analytical RDFs (aRDF) to the derived numerical 

RDFs (nRDF). Currently, we perform the same type of analysis on the formamide 

molecule, showing the advantages of the convergent m-dependent expansion, but using a 

new, computationally efficient, fitting protocol. 

2.2 The Improved Expansion 

The ways in which we seek to improve upon the HC formalism is three fold. 

(1) We seek to increase the expansion from the often used 𝐿𝑚𝑎𝑥 = 4 to any arbitrary 

number. Currently the analysis up to 𝐿𝑚𝑎𝑥 = 16 shows promising results, though 

that level is not feasible in treatment of XRD data. 

(2) We use MD RDFs which involves a unique RDF for each combination of (𝑙,𝑚) of 

a given atom. 
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(3) We implement a higher sized basis set for the higher order poles. That is, instead 

of using a single Slater function for 𝑙 > 0, the size of the basis set is increased to 

10. 

The final expression of our aRDFs takes the following form: 

𝑅𝑙𝑚(𝑟) = 𝑁𝑙𝑚 ∑𝑑𝑖𝑆𝑖(𝑟)

𝑀

𝑖=0

                                                  (2.5) 

𝑆𝑖(𝑟) = ∑𝐶𝑖,𝑗𝑟
𝑗+𝑙𝐸𝑥𝑝[−𝛼𝑙𝑚𝑟]

𝑀

𝑗=0

                                           (2.6) 

The combination of (2.5) and (2.6) yields the following comparison of the new vs. old 

formulations of the analytic RDFs: 

𝑅𝑙𝑚(𝑟) = 𝑁𝑙𝑚 ∑𝑐𝑖
′𝑟𝑖+𝑙𝑒−𝛼𝑙𝑚𝑟

𝑀

𝑖=0

                                           (𝑛𝑒𝑤) 

𝑅𝑙𝑚(𝑟) = 𝑁𝑙𝑚𝑟𝑛𝑙𝑒−𝛼𝑙𝑟                                                     (𝑜𝑙𝑑) 

Eqns. 2.5 and 2.6 lead to an efficient optimization since both 𝑑𝑖 and 𝐶𝑖𝑗 are uniquely 

determined by a choice of 𝛼𝑙𝑚 - meaning that the optimization is in one dimension. For 

many cases, the choice of 𝛼𝑙𝑚 can even be predetermined and the same level of accuracy 

can be achieved simply by extension of the basis set (𝑀). This does, however, increase the 

computational complexity of the evaluation of topological properties. 
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2.3 Numerical Radial Functions 

To test this formalism, the program ‘Radfun’ [41] creates numerical RDFs (nRDF) 

which numerically projects a target ab-initio ED (𝜌Ψ) onto RSHs to create a grid based 

radial density by making use of the Stockholder partitioning scheme [42]: 

𝜌𝑎
𝑠𝑡𝑜𝑐𝑘(𝑟) = 𝑤(𝑟)𝜌Ψ(𝑟) =

𝜌𝑎
0(𝑟)

∑ 𝜌𝑏
𝑂(𝑟)𝑏

𝜌Ψ(𝑟)                                      (2.7) 

where 𝜌𝑎
𝑂(𝑟) is the isolated atomic density (spherical, since it is not affected by bonding). 

The importance of investigating the extent to which we can reconstruct a target ED with 

nRDFs is paramount as it directly shows the error in the resulting aRDFs due to a finite 

truncation of 𝐿𝑚𝑎𝑥, as opposed to the error introduced in an imperfect fit.  

Projection of the target ED into RSHs takes place in two steps as outlined in [6]. 

First, the fuzzy partitioning of the Stockholder atoms are determined as defined in Eqn. 

2.7. Second, the fuzzy atom is projected onto RSH yielding a radial density function of the 

distance from the nucleus, 𝑟𝑎 

𝑅𝑙𝑚
(𝑎)(𝑟𝑎) =

∫ 𝜌𝑎
𝑠𝑡𝑜𝑐𝑘(𝒓)𝑑𝑙𝑚(𝛀𝑎)𝑑𝛀𝑎

∫𝜌𝑎
𝑠𝑡𝑜𝑐𝑘(𝒓)𝑑𝑙𝑚(𝛀𝑎)𝑑𝐫𝑎

                                           (2.8) 

The projection onto RSH is performed numerically in the Radfun application. The results 

are MD nRDFs defined on a fine grid, (𝑟𝑖, 𝜒𝑖), which can perfectly reproduce the target 

ED, 𝜌Ψ, given a high enough expansion in 𝐿𝑚𝑎𝑥. 

2.4 Analytical Radial Functions 

 The process of fitting the aRDFs is performed in a program called ‘eFit’ which fits 

a single aRDF (Eqn. 2.5) to each nRDF for each combination of (𝑎𝑡, 𝑙, 𝑚) as demonstrated 

in Figure 2.1. The procedure makes use of an orthonormal set of functions {𝑆𝑖} as described 
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in Eqn. 2.6 where, for a given 𝛼𝑙𝑚, the 𝐶𝑖𝑗 can be chosen such that ⟨𝑆𝑖|𝑆𝑗⟩ = 𝛿𝑖𝑗. This is 

accomplished by diagonalizing the overlap matrix 𝐺 = ⟨𝑔𝑖|𝑔𝑗⟩ where 𝑔𝑖 is a primitive 

Slater function. Upon successful creation of {𝑆𝑖}, the mixing coefficients are found by 

projecting the nRDFs onto the orthonormal functions so that 𝑑𝑖 = ⟨𝑆𝑖|𝜒⟩. This, again, 

uniquely defines 𝑑𝑖 as a function of 𝛼𝑙𝑚 resulting in a one variable search for optimization. 
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Figure 2.1 nRDFs on a fine grid (black, open circles) with fitted aRDFs (solid red lines) 

for the carbon atom with (𝑙, 𝑚) = (2,0). (a, top) the ED (𝑒/Å3) and (b,bottom) the Laplacian (𝑒/Å5) 

along a radial grid (Å). 
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This search is performed by sampling a reasonable number of points (50-100) in 𝛼 

and then successive parabolic interpolation in (𝛼, 𝐶𝑜𝑠𝑡) is performed where  

𝐶𝑜𝑠𝑡 = 𝛽
⟨𝜌|𝜒⟩

⟨𝜒⟩
+ (1 − 𝛽)

⟨∇2𝜌|∇2𝜒⟩

⟨∇2𝜒⟩
                                            (2.9) 

giving the user the option of fitting the Laplacian as well as the actual ED by input 

parameter 𝛽. This search is performed, independently, for each combination of (𝑎𝑡, 𝑙,𝑚) 

which lends the program to virtually linear speedup for parallelism as Figure 2.2 shows. 

 

 

 
 

 

 

Figure 2.2 Actual speedup for the eFit application on 4 cores plotted against 

a perfect linear speedup for comparison. 
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2.5 Accuracy of Formamide Reconstruction 

 The PA formalisms, thus far, have been described as either nRDFs or aRDFs, the 

latter of which is also broken down into MD and MI types. Note that the nRDFs are MD 

and all forms discussed rely on the Lmax parameter. As such, the PA type densities will be 

referred to as 𝜌𝐿 while the target ED, an ab-initio ED of formamide generated at the 

B3LYP/6-311G** [43] level of theory in Gaussian09 [15], will be referred to as 𝜌Ψ. The 

purpose is to project 𝜌Ψ onto 𝜌𝐿 (with either nRDFs or aRDFs) to quantitatively estimate 

the error related to the one-center PA representations of the ED. 

To simulate the HC model, the basis size for the monopole is 20 and only 1 Slater 

function for the higher order-poles, indicated by the expression MI-aRDF(20,1) whereas 

the MD formulation will use 10 for higher order poles, indicated by MD-aRDF(20,10). The 

higher order RDFs of the MI model are constructed by Principal Component Analysis of 

the MD functions, yielding the ‘best possible’ reconstruction of the target density while 

keeping with the MI RDFs and small (1 Slater) basis functions of higher order terms.  

2.5.1 Topological Properties at Bond Critical Points 

 The ability for the nRDF to accurately reconstruct the target ED, 𝜌Ψ, is apparent 

from Table 2.1 which reports the percent error in reconstructing the ED and Laplacian at 

the BCPs. These numbers can be compared with those obtained for the 𝐶=𝑂 BCP by the 

MI-aRDF(20,1) model which exhibits a 4.923% and 40.643% error for the ED and 

Laplacian, respectively, at Lmax = 16. The situation is worse at the standard cutoff value 

of Lmax = 4 with ED and Laplacian errors of 3.963% and 110.414%. Even in the case of 

the MD-aRDF(20,10) model, the error due to fitting is noticeable. While all other BCPs 

exhibit no higher than a 2.66% error (for either 𝜌 or ∇2𝜌) at 𝐿𝑚𝑎𝑥 = 16, the 𝐶=𝑂 BCP for 
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the MD-aRDF(20,10) model shows ED and Laplacian errors of 0.177% and 30.292% 

respectively. 

 

 
Table 2.1 Percent error of 𝜌Ψ − 𝜌𝐿 (top) and ∇2𝜌Ψ − ∇2𝜌𝐿 (bottom) at the given 

BCPs where 𝜌𝐿 represents the nRDF construction up to 𝐿𝑚𝑎𝑥. 

 

 Lmax = 0 Lmax = 4 Lmax = 8 Lmax = 12 Lmax = 16 

𝐻1-𝐶2 30.556 

87.034 

0.326 

3.263 

0.037 

0.357 

0.027 

0.659 

0.006 

0.120 

𝐶2-𝑁3 16.662 

81.520 

0.024 

6.670 

0.208 

2.612 

0.037 

0.992 

0.006 

0.269 

𝐶2=𝑂6 18.602 

356.727 

0.563 

112.137 

0.328 

49.102 

0.062 

14.025 

0.002 

0.426 

𝑁3-𝐻4 22.370 

78.905 

1.152 

12.073 

0.170 

2.541 

0.025 

0.519 

0.000 

0.114 

𝑁3-𝐻5 22.211 

78.401 

1.138 

12.607 

0.176 

2.643 

0.025 

0.540 

0.001 

0.101 

 

 
 

2.5.2 Topological Properties Along the Bond Path 

 The fitting protocol minimizes the Mean Square Residual (MSR) of the nRDFs to 

the fitted aRDFs. A side effect of is that the fitted aRDFs tend to oscillate about the related 

nRDFs in the Laplacian as Figure 2.3 shows. The Laplacian is evaluated along the bond 

profile of 𝐶=𝑂 (top) and 𝐶-𝑁 (bottom) for 𝜌Ψ, nRDF, MD-aRDF(20,10), and MI-

aRDF(20,1) and the three PA approximations are compared to the target ED, ∇2𝜌Ψ − ∇2𝜌𝐿.  
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Figure 2.3 Errors in reconstructing ∇2𝜌(𝒓) (𝑒/Å5) in the profile of 𝐶=𝑂 (top) and 𝐶-𝑁 (bottom). ∇2𝜌Ψ −
∇2𝜌𝐿 is shown with Lmax = 4 (left) and Lmax = 16 (right) for the nRDF (black), MD-aRDF(20,10) (red), 

and MI-aRDF(20,1) (blue). The black vertical line shows where the BCP is in relation to the profile. 
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2.5.3 Topological Properties in the Plane  

 To show that the non-convergent nature of the MI model is not simply due to a 

smaller basis set for higher order poles, we also analyze the MI-aRDF(20,10) model (with 

10 Slaters for higher order poles) so that it is the exact same as the MD-aRDF(20,10) model 

in all but the dependence upon m. The difference ED maps, 𝜌Ψ − 𝜌𝐿, are shown in Figure 

2.4 for varying values of Lmax and different forms of 𝜌𝐿. Figures 2.4 (a) and (b), which 

display the errors in MI-aRDF(20,1) and MI-aRDF(20,10) respectively, show very little 

improvement as Lmax increases from left to right, indicating that there is no convergence. 

Furthermore, while there is qualitative differences between Fig. 2.4a and Fig. 2.4b, the MI-

aRDF model with 10 Slaters (a) does not show significant improvement over the single 

Slater (b) model. 

 The MD-aRDF model, also compared to 𝜌Ψ in Fig. 2.4c, does show signs of 

improvement as Lmax increases. The largest differences are near to the nuclei which is 

partly because the ED has extremely sharp peaks at the nucleus, and also because the aRDF 

model is using Slater functions to model a Gaussian peak of the target ED. Finally, the 

nRDF comparison (Fig. 2.4d) shows a very accurate approximation to the target ED, 

indicating that the m-dependent multipole expansion is truly convergent. 
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Figure 2.4 The convergence of 𝜌Ψ − 𝜌𝐿 in the plane with Lmax values are (4,8,16) from left to right  

(a) MI-aRDF with 1 Slater for higher order poles (b) MI-aRDF with 10 Slaters for higher order poles  

(c) MD-aRDF with 10 Slaters for higher order poles (d) MD-nRDF. Contours are 

 ±{1,2} × {10−1, 10−2, 10−3} 𝑒/Å3 with positive / negative contours in red / blue.  

a 

b 

c 

d 
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3. Statistical Treatment of Dynamic Topological Properties 

3.1 Relationships Between Topological Properties and Bond Lengths 

Analysis of the relationship between TPs at the BCPs and the bond length has been 

studied in detail by Gibbs and others [44, 45, 46, 47] based on various molecules containing 

chemically analogous bonds (formed by the same pair of atoms but exhibiting different 

bond lengths). It has been found that the average ED at a BCP and the bond length are 

related via the power-law equation 𝑅 = 1.60 × ⟨ 𝜌(𝒓𝒄)⟩
−0.23 [45]. This analysis is 

extended in the current work by comparing the bond lengths and associated TPs at 𝒓𝒄 for 

a specific molecule undergoing nuclear vibrations rather than for a set of molecules, each 

at equilibrium position. 

For smearing a two-centered ED (see Eqn. 1.8), it becomes necessary to describe 

the motion of not only the nuclei, but the off-nucleus centered basis function products as 

well (a GTO product is a GTO centered between the nuclei). Scheringer et. al. [48, 29] 

have proposed a method for approximating the ADPs of inter-nuclear density units. We 

build on their model by applying an adapted method to represent the motion of not only 

inter-nuclear density units, but of the BCPs themselves. 

3.2 Objectives 

In this numerical experiment, we generate a large ensemble of wave functions, 

consistent with harmonic vibrations, for the formamide molecule. Performing a topological 

analysis on each member of the ensemble allows for a statistical treatment of thermally 

averaged topological properties. Of particular interest in this experiment are the 
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Topological Properties (TP) of the ED at the BCPs and the motion of the BCPs as they are 

“carried by the ED” while the nuclei are in thermal motion. 

3.3 Methods 

Performing an optimization of formamide (CH3NO) using Gaussian09 [15] leads 

to the static representation of the formamide molecule, whose molecular structure is shown 

in Figure 3.1, at the B3LYP/6-311G** level of theory. Normal mode analysis [49] of the 

molecule at the equilibrium geometry allows for the creation of the MSDA matrix (Section 

1.4) which can be represented, in Cartesian Space, as a 3𝑁 × 3𝑁 matrix or, in internal 

coordinates, as a (3𝑁 − 6) × (3𝑁 − 6) diagonal matrix. The block diagonal elements of 

the Cartesian MSDA represent the Anisotropic Displacement Parameters (ADP) for each 

nucleus and can be used to define probability ellipsoids such as those used in the ORTEP 

program [50]. By invoking the harmonic approximation, we generate a large ensemble of 

500,000 nuclear geometries which are consistent with thermal motion. 
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Figure 3.1 Molecular geometry of formamide 

 

 

Each of these geometries is expressed as linear combinations of nuclear 

displacements added to the equilibrium geometry. For each normal mode of vibration, we 

have the unit displacements in Cartesian coordinates as well as the amplitude of 

displacement (which we regard as the standard deviation of a normal distribution). To 

create one of these perturbed geometries 𝑿𝒊 (which is to be considered as one of many 

members in the ensemble {𝑿𝑖} exemplifying harmonic oscillations about the equilibrium 

geometry, 𝑿𝑒𝑞, such that 𝜇({𝑿𝑖}) = 𝑿𝑒𝑞, 𝜎2({𝑿𝑖}) = 𝑼), the normal modes can be 

sampled independently. 

The perturbed geometry, 𝑿𝑖, is the sum of independent displacements from the 

equilibrium geometry by 3𝑁 − 6 normal modes, each of which has a normalized vector of 

displacement and related mean square amplitude, (𝒅𝑗 , 𝜎𝑗
2). The perturbed geometry can 
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then be expressed as a sum over these normal modes, 𝑿𝑖 = 𝑿𝑒𝑞 + ∑ 𝑟𝜎
(𝑗)

𝒅𝑗
3𝑁−6
𝑗=1  where 𝑟𝜎

(𝑗)
 

is a random variable coming from the Normal distribution 𝑁(0, 𝜎𝑗). By doing this for each 

normal mode, the perturbed geometry can be regarded as coming from a large sample 

which is normally distributed about 𝑿𝑒𝑞. This technique is employed to create each 

geometry yielding the large ensemble which is consistent with harmonic vibrations. 

For each perturbed molecular geometry, a wave function is calculated in 

Gaussian09 (without optimization) and a thorough topological analysis is performed with 

Denprop [51]. By taking the covariance of the large ensemble of BCPs, the ADPs for each 

BCP is found and a method is described for efficiently approximating ADPs of BCPs by 

using only the information from its bonding atoms. It is shown that the displacements of 

each BCP are normally distributed about the equilibrium position of each BCP, but that the 

distribution of TPs are not normally distributed about the TPs of the molecule in its 

equilibrium position. 

3.4 Results and Discussion 

3.4.1 Validation 

To prove that the geometries are truly representative of harmonic vibrations, it is 

sufficient to show that the mean of the ensemble returns the equilibrium geometry and that 

the covariance of all geometries return the MSDA calculated from normal mode analysis. 

Table 3.1 shows the distance between the locations of the thermally averaged nuclei and 

the locations of the equilibrium positions. 
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Table 3.1 Distance from equilibrium (Eq) and average (Avg) nuclear positions. 

 

Nucleus ‖𝑋𝐸𝑞 − 𝑋𝐴𝑣𝑔‖ in Å 

𝐻1 4.462e-04 

𝐶2 2.939e-05 

𝑁3 3.369e-05 

𝐻4 3.671e-04 

𝐻5 1.707e-04 

𝑂6 2.886e-05 

 

The locations of the thermally averaged nuclei are found by taking the algebraic 

mean of the ensemble. By taking the standard deviation of this large dataset it is possible 

to show that the distribution of atomic displacements indeed follow a normal distribution. 

Figure 3.2 displays the data plotted along with the fitted Gaussian distributions for X,Y,Z 

coordinates of the 𝑁3 and 𝑂6 nuclei. The error for all coordinates of both fits remain under 

0.5%. 
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Figure 3.2 Cartesian displacements in Å (X,Y,Z = R,B,G) binned and plotted alongside 

Gaussian distributions (black) for 𝑁3 (top) and 𝑂6 (bottom) atoms. 
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Finally, it becomes necessary to make sure the MSDA is preserved. Having 

previously calculated the MSDA of the equilibrium structure it is possible compare the 

covariance of the ensemble of geometries and the two should be similar. Comparison of 

the covariance of the ensemble with the MSDA from normal mode analysis reveals that 

the largest error is 9.15e-05 Å2 which occurs with the covariance between the Y and Z 

coordinates of the H5 nucleus. It is not possible to evaluate the percent error in the H5(Y,Z) 

case because the associated MSDA element is zero, but the largest difference between 

covariance and MSDA which is not targeting a zero valued MSDA element is only 2.70e-

05 Å2. This element represents the correlated motion of the H4 and H5 atoms along the Z 

axis (with a percent error of only 0.147%). 

3.4.2 Normal Distribution of Critical Points 

Each member of the ensemble has its own set of 5 CPs and, as such, it is possible 

to choose a specific CP and perform a statistical analysis on its properties throughout the 

ensemble. The distribution of the BCP locations can be shown to be Normal in much the 

same way that the distribution of nuclear positions was validated. The equilibrium and 

Mean positions of the BCPs are compared in Table 3.2 where it is again apparent that the 

Mean BCP locations are the same as the equilibrium BCP locations. 

  



38 

 

 

Table 3.2 Distance from equilibrium (Eq) and average (Avg) BCP locations. 

Bond ‖𝑋𝐸𝑞 − 𝑋𝐴𝑣𝑔‖ in Å 

𝐻1-𝐶2 1.155e-03 

𝐶2-𝑁3 6.780e-03 

𝐶2=𝑂6 1.452e-03 

𝑁3-𝐻4 3.347e-03 

𝑁3-𝐻5 5.090e-03 

 

 

 

The standard deviations of these displacements are again found, binned, and each 

fitted to a univariate Gaussian to show that they are Normally distributed. The largest 

percent error (0.77%) is found for the X coordinate in the 𝐶2-𝑁3 BCP location, while all 

other sum of squares of errors are below 0.17%. Figure 3.3 shows the fitted Gaussians to 

the 𝐶2-𝑁3 and the 𝐶2=𝑂6 BCPs. 
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Figure 3.3 Cartesian displacements in Å (X,Y,Z = R,B,G) binned and plotted alongside 

Gaussian distributions (black) for 𝐶2-𝑁3 (top) and 𝐶2=𝑂6 (bottom) BCPs. 
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3.4.3 Reconstruction of Critical Point ADPs 

As part of the validation of harmonicity of the nuclear motion, a comparison 

between the covariance of the nuclear positions with the MSDA was made and it was 

concluded that the two were nearly identical. The same method can be applied to the large 

ensemble of BCPs to construct the MSDA of BCPs. Presently the ability to construct the 

ADPs of BCPs requires substantial computational resources to generate a large ensemble 

of wave function based densities. As such, an effort is made to find a simple analytic 

approximation to the ADPs of BCPs to be compared with the available data. 

To predict the unknown ADPs of a BCP from the known ADPs o nuclei in the bond, 

we developed a method similar to that of Scheringer [29, 48]. We construct the unknown 

BCP ADP, 𝑈∗, as a linear combination of nuclear ADPs, 𝑈𝑖,𝑖, and their correlations, 𝑈𝑖,𝑗, 

(these are all symmetric second rank tensors, 𝑈𝑖,𝑖 representing the ADPs of the 𝑖𝑡ℎ nucleus 

and 𝑈𝑖,𝑗 representing the correlation between the 𝑖𝑡ℎ and 𝑗𝑡ℎ nucleus). 

We approximate the 𝑈∗ tensor as 

𝑈∗ = ∑∑𝛼𝑖𝛼𝑗𝑈
𝑖,𝑗

𝑁

𝑗=1

𝑁

𝑖=1

                                                  (3.1) 

subject to the constraint that ∑ 𝛼𝑖
𝑁
𝑖=1 = 1 where 𝑁 = 2 corresponding to the two nuclei 

taking part in bonding. The percent error for a tensor approximation is calculated as  

𝐸𝑟𝑟𝑜𝑟 = 100 ∗
∑(𝑈𝑖,𝑗

∗ − 𝑈𝑖,𝑗
𝐶𝑃)

2

∑(𝑈𝑖,𝑗
𝐶𝑃)

2                                           (3.2) 

and is used to compare the results of different methods for finding 𝛼𝑖. 

We analyze four methods for approximating the ADPs of these BCPs and assess 

their accuracy. Each method involves finding a single parameter, 𝛼1, since 𝛼2 = 1 − 𝛼1. 
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Method 1 utilizes the generated ensemble data to find a best fit for 𝛼1 to show the potential 

accuracy for the model. Method 2 defines 𝛼1 as the percentage of the distance from nucleus 

1 to the bond length,  𝛼1 =
| 𝑋𝐶𝑃−𝑋1|

|𝑋2−𝑋1|
. Method 3 defines 𝛼1 to be the same as in method 2, 

but ignores correlation in the construction of 𝑈∗. The difference between method 2 and 3 

will show the necessity for including off diagonal elements of the MSDA in the 

construction of 𝑈∗. Finally, method 4 keeps 𝛼1 = 0.5 as a comparison to a rudimentary 

model where an average between the two nuclear ADPs [30]. Table 3.3 lists the calculated 

errors for each method. 

 

 

Table 3.3 Errors for reproduction of thermal parameters of BCPs using various methods. 

 

Bonds Method 1 Error Method 2 Error Method 3 Error Method 4 Error 

𝐻1-𝐶2 3.22 % 4.75 % 10.02 % 12.66 % 

𝐶2-𝑁3 7.79 % 17.05  % 9.23 % 27.68 % 

𝐶2=𝑂6 2.12 % 3.43 % 22.20 % 35.43 % 

𝑁3-𝐻4 0.26 % 0.37 % 2.06 % 33.76 % 

𝑁3-𝐻5 0.09 % 0.18 % 1.56 % 33.52 % 

 

 

  



42 

 

 

3.4.4 Thermally Averaged Topological Properties 

In the current work, we analyze how the bond TPs of the formamide molecule are 

affected by internal nuclear vibrations. To a given maximal value of probability of nuclear 

displacements, thermal ellipsoids can be constructed for each nucleus [50]. An ellipsoid is 

defined as �⃗⃗� 𝑇 𝑈−1�⃗⃗� = 𝑐2 where �⃗⃗�  is the displacement vector, 𝑼, is the 3 × 3 symmetric 

ADP tensor and 𝑐 = 1.5382 for a probability of 50%. In general, the probability of finding 

an atom inside an ellipsoid can be found by [50] 

Pr(𝑐) = (
2

𝜋
)
1 2⁄

∫ 𝑟2Exp[−𝑟2 2⁄ ] 𝑑𝑟
𝑐

0

= √
2

𝜋
(−𝑐𝑒−

𝑐2

2 + √
𝜋

2
Erf (

𝑐

√2
))    (3.3) 

One manner of quantifying the distribution of TPs resulting from nuclear vibrations 

is to compare this distribution to the accompanying distribution of bond lengths resulting 

from the same nuclear vibrations. In Figure 3.4 the distribution of ED (top) and Laplacian 

(bottom) at the 𝐶=𝑂 BCP closely resembles experimental results by Gibbs et. al. [44] (a 

power law of decay). To get a better idea of the distributions, it is beneficial to classify 

each member of the ensemble into one of three groups based on the number of 

configurations for which the nuclei involved in bonding stay inside the 50% thermal 

ellipsoids.  
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Figure 3.4 Distributions of TPs (𝜌(𝒓𝒄);  𝑒/Å
3  and ∇2𝜌(𝒓𝒄); 𝑒/Å

5 ) for the 𝐶=𝑂 bond in the ensemble. 

Vertical and horizontal lines represent the bond distance and TP of the associated static ED. 
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Figure 3.5 plots the TPs for the 𝐶=𝑂 BCP again with each point (member of the 

ensemble) designated by one of the three groups. Group 1 (red) has both nuclei located 

outside of their 50% ellipsoids, group 2 (green) has exactly one nucleus inside and one 

nucleus outside of their respective ellipsoids, and group 3 (blue) has both nuclei inside their 

ellipsoids.  
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Figure 3.5 Distributions of TPs (𝜌(𝒓𝒄 );  𝑒/Å
3 and ∇2𝜌(𝒓𝒄 ); 𝑒/Å

5 ) for the 𝐶=𝑂 bond in the ensemble. 

Each member of the ensemble is plotted in either Red, Green or Blue depending 

on how many nuclei are inside their 50% probability ellipsoids. 
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The bond TP change is due, primarily, to bond stretching as evidenced by Figure 

3.6. The effect of stretching the bond, alone, is plotted by the black dotted line and it is 

obvious that this trend is the main cause of the distribution. The ‘width’ of the distribution 

is markedly different for the 𝐶=𝑂 and 𝐶-𝑁 bonds; the 𝐶-𝑁 TPs seem to have much higher 

variance than do the 𝐶=𝑂 TPs.  
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Figure 3.6 Distributions of 𝜌(𝒓𝒄) (left) and ∇2𝜌(𝒓𝒄) (right) for 𝐶=𝑂 (top) and 𝐶-𝑁 (bottom) BCPs in the 

ensemble. Each point represents one of the 500,000 members of the ensemble and is classified by how 

many (0 - Red, 1 - Green, 2 - Blue) of the nuclei are inside the associated 50% probability ellipsoid. The 

black dotted line shows the effect that stretching the bond, alone, has on the TP. 
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The characteristic difference between the 𝐶=𝑂 bond and the 𝐶-𝑁 bond in this 

molecule is that the bond TPs of the former are primarily affected by only one normal mode 

whereas those for the latter are affected by many normal modes. Figure 3.7 shows this 

difference by plotting the affect that each normal mode, acting in isolation, has on the 

distribution of TPs. 
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Figure 3.7 Distributions of 𝜌(𝒓𝒄) (left) and ∇2𝜌(𝒓𝒄) (right) for 𝐶=𝑂 (top) and 𝐶-𝑁 (bottom) BCPs in the 

ensemble. Each point represents one of the 500,000 members of the ensemble and is classified by how 

many (0 - Red, 1 - Green, 2 - Blue) of the nuclei are inside the associated 50% probability ellipsoid. The 

black dotted lines shows the effect that each normal mode, in isolation, has on the TPs. 
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Visual inspection of the distributions above leads to the conclusion that the TPs are 

not normally distributed about the mean TP.  To demonstrate this quantitatively, the first 

four statistical moments (mean, variance, skewness, kurtosis of the centered data) as well 

as the error for fitting the binned data to a Gaussian distribution are listed in Table 3.4. 

 

 

Table 3.4 First statistical moments of distributions and % error for  

fitting the binned data to a Normal distribution. 

 

 Mean Variance Skewness Kurtosis % Error 

(𝐻1,𝐶2)             ED 

Laplacian 

-0.022 

-0.059 

0.094 

53.111 

0.550 

-0.987 

3.511 

4.281 

1.670% 

6.356% 

(𝐶2,𝑁3)             ED 

Laplacian 

0.006 

0.946 

0.031 

3.438 

0.236 

0.928 

3.169 

4.566 

0.303% 

4.811% 

(𝐶2,𝑂6)             ED 

Laplacian 

0.002 

0.657 

0.042 

50.013 

0.372 

0.577 

3.283 

3.503 

0.740% 

1.645% 

(𝑁3,𝐻4)             ED 

Laplacian 

-0.107 

2.64 

0.158 

229.692 

0.601 

-1.161 

3.744 

4.980 

1.811% 

8.550% 

(𝑁3,𝐻4)             ED 

Laplacian 

-0.160 

4.327 

0.169 

228.254 

0.494 

-1.146 

3.631 

4.956 

1.294% 

7.989% 

 

From this statistical treatment of the TPs, we can easily conclude that the 

distributions are not Normal. Mathematically, this can be validated by combination of two 

facts: the distribution of the nuclei (and by extension the bond distances) are not normally 

distributed, and the TPs vary with bond distance according to a power law. The 

combination of these two statements indicates that the TPs are non-linear functions of a 

normal distribution which means that they cannot, themselves, be normally distributed.  
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4. Validation of the Convolution Approximation2 

4.1 Applications of Convolution to Experimental Data 

 Analysis of high-resolution single-crystal X-Ray diffraction data has become a 

routine procedure to elucidate the ED of solids [52, 53]. This experimental route is 

considered by many investigators to be complementary or even alternative to the 

theoretical one offered by computational quantum chemistry, despite the vague link 

between the models as well as the driving principles utilized in the two methods. 

Nevertheless, for the lion’s share of the experimental reports the focus has chiefly been on 

validation of the results accomplished by comparing theoretical and experimental EDs, 

commonly in terms of BCP properties [10]. This collation is conceivable in two 

substantially different ways. In the usual course of modern X-Ray studies an analytic SF 

model (dominantly the rigid pseudoatom model [22, 23]) is called upon that explicitly 

accounts for thermal smearing (density deformation due to nuclear vibrations) and whose 

static and dynamic parameters are jointly adjusted to the observed data using the standard 

least-squares (LS) protocol. Such a fitting procedure allows for a technically straight 

forward and apparently satisfactory, yet intractable, decoupling of thermal smearing effects 

from bonding effects [54, 55]. In other words, the ‘experimental’ static ED and the ADPs 

obtained through such an analysis is unavoidably biased due to the failure of the applied 

scattering formalism to explicitly and adequately account for the physics underlying the 

coupling between electronic and nuclear motion. 

                                                 
2 The contents of this chapter also appears in The Journal of Mathematical Chemistry [79]. 
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A far less common method nowadays, but critically reflected on by the pioneers of 

the field [56, 57], is to evaluate the vibration average of the theoretical ED using 

experimental ADPs. The efforts have been hampered by a number of issues / uncertainties; 

(a) the experimental ADPs have a limited physical significance, not only for the above 

mentioned reason, but also because these parameters are likely to absorb systematic errors 

and are affected by disorders (static and dynamic structural fluctuations); (b) internuclear 

correlations (vibration couplings) are not accessible from Bragg diffraction; (c) the lack of 

rigorous treatment of the vibration smearing of internuclear (two-center) density units. The 

last issue has been an indisputable source of bias in density matrix fitting [30, 58, 59] and 

wave function supported refinements (two-center ED models) of X-Ray data [17]. 

It is to be emphasized that both approaches (that is, decoupling the thermal motion 

from the experimental or smearing the theoretical ED) rely on the harmonic-convolution 

approximation which is at the heart of modeling coherent elastic diffraction [60], but fails 

to comply with the Born-Oppenheimer (BO) approximation [1], which, on the other hand, 

is at the heart of molecular quantum chemistry. This contradiction provokes the plain 

questions: are the theoretical and ‘experimental’ EDs comparable at all and what can we 

reasonably expect to learn from their agreement / disagreement after all? 

Assessment of the convolution approximation has been the subject matter of 

computational studies on small molecules [61, 62] as well as temperature dependent 

diffraction analyses [63, 64]. The temperature independence of experimental static BCP 

properties has often been used to infer the ‘thermal-decoupling capability’ of a scattering / 

static ED model used for the analysis of the diffraction data [65]. 
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In this study we evaluate the theoretical dynamic molecular ED derived as the exact 

convolution of the nuclear PDF for harmonic internal vibrations with the static molecular 

ED given within the LCAO-MO formalism in terms of Gaussian basis functions. The 

convoluted dynamic ED is compared with the mean ED obtained within the adiabatic 

approximation [66] as the average over a large number of static EDs corresponding to 

nuclear configurations consistent with harmonic vibrations. Both the electronic and nuclear 

distributions are derived according to standard computational chemistry protocols with the 

aid of the Gaussian09 program suite [15] and locally developed computer codes [51]. 

4.2 Convolution of Two-Center Gaussian Basis Products 

 Within the LCAO-MO approach, the ED can be expressed as a linear combination 

of basis function products: 

𝜌(𝒓) = ∑ 𝐶𝑖𝑗𝑔𝑖(𝒓)𝑔𝑗(𝒓)

𝑁𝑝𝑟𝑖𝑚𝑠

𝑖,𝑗

                                                   (4.1) 

𝑔𝑖(𝒓) = (𝑥 − 𝑋𝑖)
𝑛𝑖(𝑦 − 𝑌𝑖)

𝑚𝑖(𝑧 − 𝑍𝑖)
𝑙𝑖𝐸𝑥𝑝[−𝛼𝑖 |𝒓 − 𝑹𝑖|

2]                        (4.2) 

where 𝑔𝑖(𝒓) is a (non-normalized) primitive Gaussian Type Orbital (GTO) centered at 

𝑹𝑖 = (𝑋𝑖, 𝑌𝑖, 𝑍𝑖). The product of two primitive GTOs centered at (𝑋𝑎, 𝑌𝑎, 𝑍𝑎) and 

(𝑋𝑏, 𝑌𝑏 , 𝑍𝑏) is also a GTO centered between the two [67]. 
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Let 𝒂 = (𝑎𝑥, 𝑎𝑦, 𝑎𝑧) = (𝑥 − 𝑋𝑎, 𝑦 − 𝑌𝑎, 𝑧 − 𝑍𝑎) have a normal trivariate PDF with 

zero expectation value (⟨𝒂⟩ = (0,0,0)) and covariance 𝑼𝑎𝑎 = {𝐶𝑜𝑣(𝑎𝑖, 𝑎𝑗) = ⟨𝒂𝑇𝒂⟩} 

(where 𝑖, 𝑗 range over 𝑥, 𝑦, 𝑧), a 3 × 3 symmetric tensor, the ADPs of nucleus 𝑹𝑎. If 𝒃 is 

likewise defined with 𝑼𝑏𝑏, then the displacement vector of the GTO at 𝒄 defined by the 

product of GTOs at 𝒂 and 𝒃 is 

𝒄 =
𝛼𝒂 + 𝛽𝒃

𝛼 + 𝛽
                                                                   (4.3) 

where 𝛼 and 𝛽 are the exponents of the respective primitive GTOs of the product. The 

covariance matrix of center 𝒄 is 

𝑼𝑐𝑐 = ⟨𝒄𝑇𝒄⟩ =
𝛼2⟨𝒂𝑇𝒂⟩ + 𝛼𝛽(⟨𝒂𝑇𝒃⟩ + ⟨𝒃𝑇𝒂⟩) + 𝛽2⟨𝒃𝑇𝒃⟩

(𝛼 + 𝛽)2
 

=
𝛼2𝑼𝑎𝑎 + 𝛼𝛽(𝑼𝑎𝑏 + 𝑼𝑏𝑎) + 𝛽2𝑼𝑏𝑏

(𝛼 + 𝛽)2
                               (4.4) 

where 𝑼𝑏𝑎 = (𝑼𝑎𝑏)
𝑇 are the off diagonal blocks of 𝑼 representing correlation between the 

vibration of nuclei 𝒂 and 𝒃. Eqn. 4.4 provides an exact representation for the ADPs of a 

product of primitive GTOs. To reproduce a situation in which the off diagonals may be 

unknown, it is sufficient to set both 𝑼𝑎𝑏 and 𝑼𝑏𝑎 to zero. The methods described in this 

section are implemented in the current version of the Denprop [51] software package. 

4.3 Results and Discussion 

 The convolution formalism detailed above is applied to the LCAO-MO EDs of the 

formamide and octasulfur molecules at the B3LYP/6-311G** [43] and MP2/cc-PVTZ [68] 

levels of theory, respectively, calculated at the equilibrium geometries using the 

Gaussian09 program suite [15]. The MSDAs corresponding to a temperature of 23 K were 
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derived from the harmonic vibration frequencies and normal modes at the same levels of 

theory. The optimized geometries were obtained using the ‘very tight’ convergence criteria 

leading to small frequencies for the external modes. For the sake of simplicity, we imposed 

planarity for formamide, as this structure has been the subject of a vibration smearing study 

[69] based on Fourier expansion and external ADPs. The lowest frequency (highest 

amplitude) mode is the 𝑁𝐻2 wagging (𝜔(𝑁𝐻2)) which displaces all three atoms out of the 

molecular (𝑋𝑌) plane. Since we consider only internal modes of vibration, the MSDA 

matrix has a rank of 3𝑁 − 6. Nevertheless, the block diagonal matrices (the ADPs) are 

positive definite (with condition number greater than 8) thus defining valid trivariate 

normal PDFs. 

Two alternative dynamic EDs are evaluated for formamide. One is also a 

convoluted ED but without correlations in the nuclear vibrations, that is, only the block 

diagonal elements of the total MSDA matrix are included in the convolution 

(⟨𝜌(𝒓)𝑏𝑙𝑜𝑐𝑘⟩𝑇). This approach closely resembles the formalism used to model Bragg 

diffraction data from which no covariance information can be retrieved. The other one is 

obtained as an average over a large ensemble of static EDs (sample size; 𝑀 = 5 ∙ 105) 

generated by sampling the nuclear configuration space (using the nuclear PDFs due to the 

B3LYP/6-311G** normal modes) and mapping each member of this ensemble onto an 

equivalent set of single-point electronic wave functions. The sample mean of the 

corresponding EDs (𝜌(𝒓) = 𝑀−1 ∑𝜌𝑖(𝒓, 𝑹𝑖)) can be considered as the ‘correct’ thermal-

average ED (within the time independent BO approach), since its evaluation does not rely 

on the convolution approximation; each member of the ED set is consistent with one and 

only one nuclear configuration [70]. 
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 One of the striking results of this simulation is that the static and related dynamic 

EDs exhibit an overall fair agreement, except for the 𝑁𝐻2 group of the formamide 

molecule. Figure 4.1 displays difference ED contour maps ((𝜌(𝒓)) − ⟨𝜌(𝒓)⟩𝑇) in the 

molecular plane of formamide (1a) and in the plane defined by three consecutive S-atoms 

of the octasulfur molecule (1b) whose molecular structure is displayed in Figure 4.2. These 

maps well demonstrate the effect of nuclear vibrations; charge migrations from near-

nuclear regions toward internuclear regions. The BCP properties of the two EDs (Table 

4.1) are very close in value. Even the largest differences, obtained for the positive 

eigenvalues of the Hessian at the BCP (𝜆3), remain below 10% for bonds formed between 

massive atoms. However, no BCP is found for any of the 𝑁-𝐻 bonds on the dynamic EDs; 

neither for the convoluted (⟨𝜌(𝒓)⟩𝑇 , ⟨𝜌(𝒓)𝑏𝑙𝑜𝑐𝑘⟩𝑇) nor for the averaged (𝜌). These results 

are consistent with those found for the ‘experimental’ ED of trialanine [71] by the 

maximum entropy method which reconstructs the dynamic ED from diffraction data 

without having resource to any thermal smearing and static ED model. 
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Figure 4.1 Difference ED (𝜌(𝒓) − ⟨𝜌(𝒓)⟩𝑇) contour maps: (a, top) formamide in the molecular plane, 

(b, bottom) octasulfur in the plane defined by three S-atoms. Contour levels are 

±(0.01, 0.05, 0.25, 1.25) 𝑒/Å3, red / blue lines are postive / negative contours. 
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Figure 4.2 Molecular geometry of octasulfur in Å 

 

 

 

On Figure 4.3a the difference density (⟨𝜌(𝒓)𝑏𝑙𝑜𝑐𝑘⟩𝑇 − ⟨𝜌(𝒓)⟩𝑇) in the plane of the 

formamide molecule reveals that the independent nuclear vibration model (block diagonal 

representation) is in a close agreement with that obtained by the correlated model using the 

full MSDA. The maximum error is only 0.015 𝑒/Å3, which occurs at the location of the 

Nitrogen nucleus. Figure 4.3b shows the difference in (𝜌(𝒓) − ⟨𝜌(𝒓)⟩𝑇) where a 

quantitative comparison highlights that the maximum absolute error for formamide is only 

1.45 𝑒/Å3 found at the nucleus of the oxygen atom. 
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Table 4.1 Topological Properties at BCPs of Static and Dynamic EDs. 

Comparison of 𝜌 (𝑒/Å3; top line),  ∇2𝜌 (𝑒/Å5; second line) 

and 𝜆𝑖 (𝑒/Å
5; lines 3-5)  for  BCPs in formamide and octasulfur. 

 

Bond  Static Convolution Average 

 𝜌 1.861 1.791 1.798  

 

𝐶-𝐻 
∇2𝜌 

𝜆1 

𝜆2 

𝜆3 

-22.582 

-18.003 

-17.570 

12.991 

-22.903 

-16.553 

-16.290 

9.939 

-23.387  

-16.867  

-16.572  

10.052  

  𝜌 2.128 2.119 2.132  

 

𝐶-𝑁 
∇2𝜌 

𝜆1 

𝜆2 

𝜆3 

-21.090 

-16.376 

-14.910 

10.196 

-20.069 

-16.220 

-14.825 

10.976 

-20.152  

-16.371  

-15.106  

11.325  

 𝜌 2.796 2.785 2.797  

 

𝐶=𝑂 
∇2𝜌 

𝜆1 

𝜆2 

𝜆3 

-5.200 

-25.971 

-24.254 

45.025 

-2.894 

-25.760 

-24.180 

47.046 

-2.629  

-25.978  

-24.395  

47.744  

 𝜌 0.995 0.988   

 

𝑆-𝑆 
∇2𝜌 

𝜆1 

𝜆2 

𝜆3 

-2.693 

-4.043 

-4.000 

5.350 

-2.777 

-3.983 

-3.931 

5.136 
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Figure 4.3 The differences (a, top; ⟨𝜌(𝒓)𝑏𝑙𝑜𝑐𝑘⟩𝑇 − ⟨𝜌(𝒓)⟩𝑇) and (b, bottom; 𝜌(𝒓) − ⟨𝜌(𝒓)⟩𝑇) for 

formamide in the plane. Contour levels are {±2𝑛}𝑛=1,2,3{10−𝑚}𝑚=1,2,3 𝑒/Å
3 

expressed by red / blue lines for positive / negative values. 
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Figure 4.4 compares the Laplacian of the static ∇2𝜌(𝒓) and dynamic (∇2⟨𝜌(𝒓)⟩𝑇) 

EDs along the 𝐶=𝑂 (4.4a) and S-S (4.4b) bond paths. While a surprisingly good agreement 

is found in the near-BCP region for both bonds, the residual functions (∇2⟨𝜌(𝒓)⟩𝑇 −

∇2𝜌(𝒓)) exhibit pronounced differences in the vicinity of the valence-shell charge 

concentrations (VSSC), especially for the polar 𝐶=𝑂 bond. These findings correlate well 

with the experimental irreproducibility of the profiles of 𝐶=𝑂 bonds [52]  which might 

suggest incomplete decoupling of thermal smearing effects and static density topology 

from X-Ray structure factors [55]. 
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Figure 4.4 The dynamic Laplacian with reference to that of the static (∇2⟨𝜌(𝒓)⟩𝑇 − ∇2𝜌(𝒓)) 

along (a, top) the 𝐶=𝑂 bond for the formamide molecule and (b, bottom) the 𝑆-𝑆 bond in the 

octasulfur molecule. Units are 𝑒/Å3. 
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5. The Effect of Dynamic Parameters on the Static Electron Density 

5.1 Parameter Estimates of the Electron Density 

 Due to the Least Squares method in the X-Ray Diffraction refinement program XD 

[35] and the fact that the refined parameters are highly correlated, their standard 

uncertainties can affect the resulting model density. As the model density is used to glean 

physical information about the underlying chemical structure, the uncertainties in the 

model parameters will implicitly cause uncertainties in the related topological structure. 

For this reason it is important to quantify the uncertainty in the TPs of the ED due to the 

uncertainties in the model parameters. 

 Recall that there are primarily two types of model parameters under investigation. 

The dynamic parameters (‘thermal parameters’; ADPs) account for the thermal smearing 

of the ED and thus the observed experimental data, but they are not seen again in the 

analysis of the static TPs. The static parameters (‘populations’; 𝑃𝑙𝑚s, parameters of the 

RDFs and the nuclear mean positions) are explicitly involved in the static representation 

of the molecular ED and have a direct effect on the related topological analysis. There is, 

however, an implicit connection between the dynamic and static parameters of the PA 

model since their least squares estimates are unavoidably correlated. 
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To analyze the standard uncertainty of a function, error propagation [34, 35, 72] 

can be implemented to map the uncertainties from the independent variables of the function 

to the function value itself. The standard uncertainty (SU) of a function 𝑓(𝑥1, … , 𝑥𝑛) can 

be expressed in terms of the SUs of its variables {𝑥𝑖} as [34] 

𝜎2(𝑓) = 𝒈𝑇𝑽𝒈                                                           (5.1) 

where 𝑔𝑖 =
𝜕𝑓

𝜕𝑥𝑖
 and 𝑉𝑖𝑗 is the covariance between parameters 𝑥𝑖 and 𝑥𝑗. This method is 

primarily invoked [35] to monitor the SU of the static PA ED. Implicit in this method of 

error propagation is the fact that only the SUs of the static parameters are involved (the 

reason for this is clear: the dynamic parameters are not, formally, included in the expression 

of the static ED and thus, 
𝜕𝑓

𝜕 𝑈𝑖𝑗
= 0 so the related elements in the vector 𝒈 from Eqn. 5.1 

are also zero). 

 Error propagation (Eqn. 5.1) can exactly reproduce the SU of a function with linear 

dependence on parameters (and linearization can be employed to work with functions 

including dependence upon non-linear parameters). In the expression of scalar TPs 

(𝜌(𝒓), ∇2𝜌(𝒓)), the above error propagation can perfectly model the uncertainty in the ED 

due to the linear parameters, such as multipole populations. This naïve approach cannot, 

however, accomplish two fundamental things.  

First, it cannot show how the SUs of the dynamic parameters affect the SUs of the 

TPs (due, again, to the fact that these 𝑈𝑖𝑗s are not formally included in the expression of 

the static ED). Secondly, it can only model the SU of scalar properties. An important aspect 

of computing the TP at a CP is finding the ‘exact’ location of the CP. Because finding a 

CP is a numerical iterative process, the location of a CP cannot be expressed concisely in 
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terms of the static parameters and thus the error propagation scheme above cannot properly 

assess the uncertainty in the location of the CP. 

In the current work, we implement methods to perform uncertainty quantification 

(UQ) on scalar and non-scalar properties of the ED which incorporate both static and 

dynamic parameters. 

5.2 Methods 

 Upon successful refinement of experimental XRD data using the XDLSM program 

suite, the user is presented with a set of refined parameters, 𝑿, and the covariance matrix, 

𝑽, both of which are involved when performing UQ on the resulting model density. Details 

for the refinement process will be given in more depth in section 5.3, but for now it is 

sufficient to describe the two types of parameters being refined: the static parameters, 𝑃𝑙𝑚s, 

and the dynamic parameters, 𝑈𝑖𝑗s.  

The resulting parameter-estimate vector 𝑿 is thought of as a 𝑁-vector which can be 

blocked into 𝑁𝑑 and 𝑁𝑠 sized vectors: 𝑿 = [𝑿𝑑: 𝑿𝑠], where the number of total parameters 

refined, 𝑁, is then the sum of the number of dynamic, 𝑁𝑑, and static parameters, 𝑁𝑠. The 

covariance matrix can be blocked accordingly:  

𝑽 = [
𝑽𝑑 𝑽𝑑𝑠

(𝑽𝑑𝑠)
𝑇 𝑽𝑠

]                                                     (5.2) 

We perform UQ by three different ways: Error Propagation (EP), Static Parameter 

Sampling (SPS), and Dynamic Parameter Sampling (DPS).  

 To simulate the analysis of experimental XRD data, dynamic SFs were calculated 

based on the Gaussian smearing approach described in Chapter 4. Accurate reconstruction 

of TPs at BCPs, as described in section 5.3, will be further validation that the model 
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employed for convolution accurately represents a dynamic system in the harmonic 

approximation. 

5.2.1 Error Propagation 

In the EP method, we are reproducing methods which are currently employed for 

UQ of scalar properties of the ED. We perform this method to find the SU of 𝜌(𝒓) and 

∇2𝜌(𝒓) at various points in the plane of formamide involving only 𝑿𝑠 and 𝑽𝑠 to perform 

the analysis. 

5.2.2 Static Parameter Sampling 

 In the SPS method we still take only 𝑿𝑠 and 𝑽𝑠, but we use them to create a 25,000 

member ensemble of densities, {𝝆𝑖}, sampled from the multivariate normal distribution 

𝑁(𝑿𝑠, 𝑽𝑠 ). This method is similar to the method invoked in previous chapters to analyze 

thermal motion effects, but it is now being employed to consider the effects of parameter 

uncertainties on the static ED. The SPS method should duplicate the results of the EP 

method but can also estimate the uncertainty in the location of BCPs, which the EP method 

cannot.  

5.2.3 Dynamic Parameter Sampling 

 Finally, the DPS method takes into account the full 𝑿 and 𝑽 parameter sets to 

manifest uncertainties of the dynamic parameters in the static ED. The 25,000 member 

ensemble for the DPS data set is constructed differently than the SPS data set and consists 

of two phases in the construction. 

In Phase 1, (𝑿𝑑 , 𝑽𝑑) is used to sample 250 sets of dynamic parameters from the 

normal distribution 𝑁(𝑿𝑑, 𝑽𝑑 ) yielding an ensemble of dynamic parameters, {𝑫𝑗}. For 

each 𝑫𝑗, a LS refinement is performed on the static parameters yielding (𝑿𝑠, 𝑽𝑠)
𝑗 which 
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are static parameters and their covariance for a specific set of dynamic parameters, 𝑫𝑗. In 

Phase 2, SPS is performed on (𝑿𝑠, 𝑽𝑠)
𝑗 with an ensemble size of 100. The resulting 

ensemble {𝝆𝑖
𝑗
}, the cardinality of which is 25,000, now includes SUs from both static and 

dynamic parameters. 

5.3 Results and Discussion 

 The refinement is performed on theoretical SFs generated by the Gaussian smearing 

method established in Chapter 4. Theoretical SFs are generated up to 𝑆𝑖𝑛(𝜃)/𝜆 = 1.2 such 

that (−40 ≤  ℎ ≤ 40, 0 ≤ 𝑘 ≤ 40, 0 ≤  𝑙 ≤ 40) yielding 15,343 reflexions, giving the 

number of reflexions, 𝑁𝑟𝑒𝑓, relative to the number of variables, 𝑁𝑣, as 𝑁𝑟𝑒𝑓/𝑁𝑣 =

151.9. The process consists of refining a series of independent parameter sets with the final 

refinement carried out on non-zero (symmetry allowed) 𝑃𝑙𝑚𝑠 up to 𝐿 = 4 for all atoms and 

𝑈𝑖𝑗s of heavy atoms simultaneously yielding a very reasonable goodness of fit parameter 

(R-value) at 𝑅 = 0.13%. As evidenced by Table 5.1, the refined 𝑈𝑖𝑗s reflect the true 

nuclear motion derived from normal mode analysis. 
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Table 5.1 True (top) vs refined (bottom) ADPs (Å2 × 106) for nuclei in formamide. 

 

 

 
𝑈11 𝑈22 𝑈33 𝑈12 

𝑂6               True 

Refined 

567 

579 

403 

379 

125 

92 

236 

242 

𝑁3              True 

Refined 

710 

681 

348 

340 

1081 

1037 

200 

200 

𝐶2               True 

Refined 

592 

543 

997 

942 

693 

665 

-72 

-72 

𝐻1              True 

Refined 

10401 

9812 

7150 

4157 

10636 

6085 

1993 

3163 

𝐻4              True 

Refined 

14315 

11681 

5750 

6529 

30386 

22164 

3475 

2180 

𝐻5              True 

Refined 

5334 

7408 

12758 

10730 

52542 

37554 

1920 

1512 

 

 

 

 

Furthermore, the total ED defined by refined parameters, 𝜌𝑅𝐸𝑆, reproduces the 

target ED, 𝜌Ψ, reasonably well as the difference map in Figure 5.1, 𝜌Ψ − 𝜌𝑅𝐸𝑆, reveals. 

The largest absolute error, occurring at the site of the Nitrogen nucleus, is 13.81 𝑒/Å3 

which is only a 1.13% error. The largest contribution to this error is due to the fact that 𝜌Ψ 

is expressed with GTOs and the refined ED, 𝜌𝑅𝐸𝑆, utilizes Slater functions which exhibit 

much sharper peaks at the nucleus. 
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Figure 5.1 Difference map of 𝜌Ψ − 𝜌𝑅𝐸𝑆 for the formamide molecule in the plane. Contour lines are 

{±2𝑛}𝑛=1,2,3{10−𝑚}𝑚=1,2,3  𝑒/Å3 with positive / negative values expressed as red / blue contours. 

 

 

 

 

5.3.1 Contributions of Uncertainty 

The final refinement parameters and covariance matrix (𝑿, 𝑽) were involved in the 

UQ according to the methods above. Not surprisingly, EP and SPS methods show almost 

indistinguishable SUs. What is quite surprising however, is that the DPS method agrees 

with the two former methods to a remarkably high degree. The remaining part of this 

discussion compares and contrasts results from the three methods and show that they are 

all in agreement. 

 Recall that the SUs of the parameters are used for sampling and the resulting 

distribution of TPs is involved in the UQ. The reason for the agreement between the EP 

and SPS methods seems to be obvious; the EP method exactly represents the SU of a linear 
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function while the SPS method measures the SU in the distribution of a function which is 

comprised normally distributed linear parameters, so they should (and do) agree. What 

remains to be explained is why the DPS and SPS methods agree. The reason for this is due 

to the fact that the SU of the static parameters are orders of magnitudes larger than the SU 

of the dynamic parameters; dynamic parameters have a (max, mean) SU of (2.9 ×

10−6, 2.1 × 10−6) while static parameters have an (max, mean) SU of (2.7 × 10−3, 6.6 ×

10−4 ) indicating that the SU of the static parameters “washes out” any SU due to dynamic 

parameters.  

Much of the reasoning behind the larger SUs of the 𝑃𝑙𝑚s comes from the high 

correlation between the parameters in the LS fitting procedure. An analysis of the 

correlation matrix shows that the largest 12 (𝑃𝑙𝑚, 𝑃𝑙𝑚) correlations all have an absolute 

correlation coefficient of |𝑟| > 0.5, the highest of which is between 𝑂6(𝑃3,3) and 𝑁3(𝑃3,3) 

at 𝑟 = 0.949. On the contrary, the largest (𝑈𝑖𝑗, 𝑈𝑖𝑗) correlation is only the 25th largest in 

the entire parameter set at 𝑟 = −0.482, the second largest is the 90th in the entire parameter 

set at 𝑟 = −0.315. 

5.3.2 Uncertainty of Topological Properties 

 The target ED, the ED used in the Gaussian smearing creation of SFs, is a wave 

function (WFN) representation optimized with Gaussian and is then fitted in direct space 

by the numerical projection methods and fitting protocol described in Chapter 2 resulting 

in a 𝐿 = 4 m-dependent PA representation (FPR). These parameters are included as initial 

values in the refinement and the resulting (RES) density is used in the UQ. To measure the 

accuracy of the EP method (as well as to validate the SPS method), the uncertainty of 𝜌 
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and ∇2𝜌 were evaluated at known BCP locations according to RES expression. Table 5.2 

shows the SU of the two TPs using the EP, SPS, and DPS methods evaluated at the BCP 

locations according to the RES model. The striking similarities between the SUs of 

different methods show that the EP is quite useful in classifying uncertainties of scalar 

properties of the ED, even if thermal parameters are ignored. 

 

 

 

Table 5.2 Standard Uncertainty of ED (× 102, top) and Laplacian (bottom) at each BCP location. 

 

 EP SPS DPS 

(𝐻1,𝐶2)          ED 

Laplacian 

0.281 

0.178 

0.280 

0.179 

0.281 

0.179 

(𝐶2,𝑁3)          ED 

Laplacian 

0.641 

0.232 

0.631 

0.228 

0.641 

0.232 

(𝐶2,𝑂6)          ED 

Laplacian 

0.558 

0.161 

0.552 

0.160 

0.559 

0.161 

(𝑁3,𝐻4)         ED 

Laplacian 

0.805 

1.988 

0.802 

1.987 

0.795 

1.970 

(𝑁3,𝐻4)         ED 

Laplacian 

0.373 

1.967 

0.369 

1.964 

0.374 

1.960 

 

 

 

To quantify the uncertainty of the fitted model due to the location of BCP, a 

topological analysis was performed on each member of the SPS and DPS data sets. Table 

5.3 compares the TPs evaluated at the BCP location by contrasting the WFN, FPR, and 

RES models as well as the mean and SU of TPs evaluated at BCP locations for each 

member of the SPS and DPS data sets. One important aspect to note here is that the RES 

model is competitive with the FPR model for representing the target WFN properties, 

especially at the 𝐶=𝑂 BCP location where the FPR Laplacian struggles to accurately 

represent the target WFN value. 
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Table 5.3 ED (𝑒/Å3) and Laplacian (𝑒/Å5) for WFN, FPR, and RES models. Averaged properties are 

given for the SPS and DPS methods. SUs are listed in parentheses with SU for ED scaled by × 102. 

 

 WFN FPR RES SPS DPS 

(𝐻1,𝐶2)        ED 

Laplacian 

1.861 

-22.582 

1.852 

-21.872 

1.878 

-23.702 

1.878         (0.28) 

-23.701     (0.20) 

1.878         (0.28) 

-23.694     (0.20) 

(𝐶2,𝑁3)        ED 

Laplacian 

2.128 

-21.090 

2.126 

-19.302 

2.170 

-23.200 

2.170         (0.63) 

-23.193     (0.44) 

2.170         (0.64) 

-23.172     (0.45) 

(𝐶2,𝑂6)        ED 

Laplacian 

2.796 

-5.200 

2.770 

-1.109 

2.819 

-4.760 

2.819         (0.55) 

-4.760       (0.18) 

2.818         (0.56) 

-4.765       (0.19) 

(𝑁3,𝐻4)       ED 

Laplacian 

2.280 

-39.197 

2.249 

-33.445 

2.216 

-35.881 

2.216         (0.81) 

-35.738     (0.59) 

2.215        (0.81) 

-35.736     (0.57) 

(𝑁3,𝐻4)       ED 

Laplacian 

2.297 

-39.134 

2.266 

-33.250 

2.221 

-32.009 

2.219         (0.50) 

-31.754     (2.80) 

2.219        (0.51) 

-31.918     (2.70) 

 

 

 

 

The difference between the data presented in Table 5.2 and the SUs presented in 

Table 5.3 is that the former is related to the TPs evaluated at a specific location (the actual 

BCP location of the RES model) whereas the latter is representative of the distribution of 

TPs according to the BCP location of each member in the SPS and DPS datasets. It is to be 

mentioned that the direct space fit (FPR) and the reciprocal space fit (RES) seem to perform 

equally well in reconstructing the target TPs at the BCP locations. For example, the FPR 

parameters seem to reconstruct the 𝐶-𝑁 BCP very well, but the RES parameters do a much 

better job at estimating the properties at the 𝐶=𝑂 BCP.  

The major differences between the data presented in Table 5.2 and that of Table 5.3 

appear for the SUs of TPs at the 𝑁-𝐻 BCPs. This is largely due to the SU in the Cartesian 

coordinates of the BCPs. Table 5.4 lists the Cartesian coordinates of the BCPs for each 

model and the sampling methods for UQ along with SUs. Once again, it is to be noted that 
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the reciprocal space fit (RES) seems competitive with the direct space fit (FPR) as 

evidenced by the approximated BCP locations.  

 

 

 

Table 5.4 Cartesian Coordinates of BCP locations (Å) for WFN, FPR, and RES models. Mean BCP 

locations are reported for SPS and DPS methods of UQ with standard deviations (reported in parentheses). 

Z coordinates are omitted because there is no deviation from zero in any of the models due to the planarity 

of the molecule. 

 

 WFN FPR RES SPS DPS 

(𝐻1,𝐶2)        X 

Y 

-0.303 

1.067 

-0.300 

1.054 

-0.302 

1.065 

-0.302   (5.4e-04) 

1.065    (1.1e-03) 

-0.302   (5.4e-04) 

1.065    (1.1e-03) 

(𝐶2,𝑁3)        X 

Y 

-0.346 

0.054 

-0.338 

0.065 

-0.340 

0.057 

-0.340   (1.1e-03) 

0.057    (1.9e-03) 

-0.340   (1.1e-03) 

0.057    (1.9e-03) 

(𝐶2,𝑂6)         X 

Y 

0.410 

0.352 

0.407 

0.353 

0.408 

0.352 

0.408    (1.1e-04) 

0.352    (1.0e-03) 

0.408    (1.1e-04) 

0.352    (1.0e-03) 

(𝑁3,𝐻4)        X 

Y 

-0.716 

-1.277 

-0.720 

-1.269 

-0.734 

-1.246 

-0.734   (2.2e-03) 

-1.246   (6.9e-03) 

-0.734   (2.2e-03) 

-1.247   (6.8e-03) 

(𝑁3,𝐻5)        X 

Y 

-1.657 

-0.417 

-1.650 

-0.419 

-1.602 

-0.437 

-1.602   (1.3e-02) 

-0.437   (2.9e-03) 

-1.603   (1.3e-02) 

-0.436   (3.0e-03) 

 

  

The SUs listed in Table 5.4 can be a bit misleading because they do not include any 

information about chemical connectivity. To properly demonstrate how the SUs in BCP 

locations have an effect on the TPs at the BCPs, each member of the SPS and DPS data 

sets were projected into a local coordinate system to find the SU along and perpendicular 

to the bond in which the CP exists. Table 5.5 lists these uncertainties showing that in all 

but the 𝐶=𝑂 bond, the SU of the BCP location in the direction of the bond path is greater 

than it is in a direction perpendicular to the bond path. 
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Table 5.5 Standard Uncertainties of BCP locations parallel and perpendicular to the bond path in question. 

 

 SPS DPS 

(𝐻1,𝐶2)            Parallel 

Perpendicular 

1.184e-03 

2.695e-04 

1.182e-03 

2.700e-04 

(𝐶2,𝑁3)            Parallel 

Perpendicular 

2.077e-03 

7.690e-04 

2.097e-03 

7.731e-04 

(𝐶2,𝑂6)            Parallel 

Perpendicular 

1.315e-04 

1.018e-03 

1.319e-04 

1.022e-03 

(𝑁3,𝐻4)            Parallel 

Perpendicular 

7.174e-03 

9.180e-04 

7.116e-03 

9.259e-04 

(𝑁3,𝐻5)            Parallel 

Perpendicular 

1.366e-02 

1.302e-03 

1.373e-02 

1.317e-03 
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6. Conclusion3 

 An improvement to the standard PA model is found to more accurately reproduce 

a target ED by means of higher expansion in Lmax for multipoles, increased size of the 

basis function for higher order multipoles and most importantly, introduction of m-

dependent functions for higher order multipoles. 

 The isolated atom is spherical but becomes deformed upon bonding which makes 

RSHs a natural choice for describing the deformation and properly redistributes the charge 

density to account for bonding effects. The RSHs form a complete orthogonal basis on the 

surface of the unit sphere so that any function can be expressed as their linear combination 

in this 2-dimensional space: 

𝑓(𝜃, 𝜙) = ∑ ∑ 𝑐𝑙𝑚𝑑𝑙𝑚(𝜃, 𝜙)

𝑙

𝑚=−𝑙

∞

𝑙=0

                                         (6.1) 

When the radial dimension is added to describe a function in 3-space, the mixing 

coefficients, 𝑐𝑙𝑚, become functions of 𝑟 

𝜌(𝑟, 𝜃, 𝜙) = ∑ ∑ 𝑐𝑙𝑚(𝑟)𝑑𝑙𝑚(𝜃, 𝜙)

𝑙

𝑚=−𝑙

∞

𝑙=0

                                   (6.2) 

which are manifested as Radial Density Functions, 𝜌𝑙𝑚(𝑟) = ⟨𝜌𝑡𝑜𝑡|𝑑𝑙𝑚⟩Ω, in the PA 

model. Even in the 2-dimensional case, they form a complete basis only in the infinite 

expansion so any set of basis functions which are truncated too soon introduce non-

negligible error. Finally, the terms which describe the deformation are quite complex and 

cannot be accurately described with a single Slater function. 

                                                 
3 Portions of this conclusion also appear in The Journal of Mathematical Chemistry [79]. 
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 A new formalism has been put forward [6] to account for these inadequacies and 

the sources of error (the finite expansion in Lmax m-dependence and the inability to 

perfectly fit with analytic functions) has been analyzed to partition/evaluate the error. It is 

shown that m-dependent RDFs are necessary and can, in the infinite limit of the expansion, 

perfectly reconstruct any target ED but that great care must be taken in fitting these m-

dependent RDFs with analytic functions so as not to introduce further artificial error. 

 While the above seeks to amend issues in representation of the static ED, a 

computational framework has been built for the analysis of thermal motion effects resulting 

in the dynamic ED. The nuclear ADPs are used to approximate the ADPs of bond critical 

points and show that the approximations are very sensitive to correlation effects between 

atoms. From these computational experiments we see that the location of BCPs are 

normally distributed (much like the nuclear coordinates) but that the topological properties 

are not normally distributed. Moreover, we find that the thermally averaged topological 

property is not necessarily the same as the static topological property and that any 

discrepancy may be caused by the sensitivity of the property to more than one normal mode 

of vibration. 

 A straightforward formalism is also presented to calculate the dynamic molecular 

ED from that of the stationary ED within the harmonic convolution approximation and the 

LCAO-MO formalism utilizing Gaussian basis functions. In spite of its simplicity, the 

method turns out to provide a very accurate estimation of the thermally smeared ED (𝜌) 

obtained by a more rigorous and computationally much more demanding procedure that 

involves averaging over a large ensemble of single-point static EDs. This is well 

substantiated by the closeness of the BCP values obtained for the two dynamic EDs in 
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Table 4.1. Even more surprisingly, the static and convoluted dynamic EDs are found to 

exhibit a high degree of similarity in terms of BCP properties. However, for molecules 

containing hydrogen atoms, the two EDs do not necessarily reveal a topological 

equivalence. The convoluted ED for the formamide molecule, for example, exhibits no 

BCP for the 𝑁-𝐻 bonds because the hydrogen density peaks (the (3,+3) critical points of 

the static ED) are completely ‘washed out’ by thermal vibrations (became saddle points) 

even at such low temperature as 23 K at which only the ground vibration states are 

populated. This result is of significance to the reliability of X-Ray charge density based 

topological analysis of hydrogen bonds. The majority of these studies rely on higher-

temperature diffraction data (typically around 100K) and the data interpretation utilizes 

either isotropic temperature factors for the H-atoms [73, 74] or (preferably) ADPs from 

independent observations / calculations [75, 76], making thus the experimental static ED 

for both covalent and non-covalent interactions involving H-atoms decisively model 

dependent. While this issue is quite widely recognized, the invisibility of the 𝑁-𝐻 bond 

path for the convoluted theoretical ED, as shown in this study, indirectly implies that the 

results of topological analysis of experimental EDs of bonding involving H-atoms is not 

just simply supported, but entirely settled by the choice of H-atom ADPs and mean 

positions. To be more precise, the ‘experimental static’ topology of H-bonding is a direct 

manifestation of parameters not observable by X-Ray diffraction. To reach this conclusion 

one should just consider what it would take to solve the inverse problem, that is, to 

reconstruct fine topological details of the static ED for the 𝑁-𝐻 bonds from that of the 

convoluted dynamic ED for formamide. 
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 It is to be emphasized that our analysis is restricted to internal (intra-molecular) 

vibrations of relatively high frequencies and thus low amplitudes. The inclusion of external 

modes (translation and rotation within the molecular mean field model [77]) or acoustic 

modes (within lattice dynamics [3]) is most likely to further demolish characteristic 

features of the static topology. A more general conclusion is that smearing the theoretical 

ED to compare it with the experimental ED deserves more attentions than it has received 

during the most recent X-Ray charge density era. After all, the molecular static ED is not 

a direct observable. 

 In the practice of fitting a static ED model to observed dynamic SFs, it is standard 

procedure in the modern era of Charge Density analysis to invoke the method of error 

propagation. Error propagation is applied to static parameters of the multipole model to 

quantify uncertainty of TPs of the static ED. It has not been investigated, until now, what 

effect the SUs of the dynamic parameters of the associated dynamic ED play in the SU of 

the static ED. The contribution of the SU of the dynamic parameters to the static ED has 

been almost impossible to diagnose as the dynamic parameters do not appear in the static 

ED. 

 The only way to elucidate the effect of the dynamic parameters on the static ED is 

to perform a computational experiment where dynamic parameters are sampled from their 

standard uncertainties and their effect seen in the static parameters. Upon successful 

completion of the experiment it is found that, indeed, the uncertainty of the dynamic 

parameters can be ignored in the UQ of the static ED. 
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7. Contributions and Achievements 

The research presented in this dissertation made extensive use of computational 

software to achieve results which would not have been possible in the absence of a High 

Performance Computing (HPC) framework. In the course of this research substantially 

high cost computation were involved which pushed the available hardware to their limits. 

This hardware includes a personal laptop (“Flexo”) which boasts a quad core Intel i7 2.4 

GHz cpu with 20 GB of 1600 MHz RAM, 2 TB of HD space (7200 RPM) and an Nvidia 

GeForce 770M GPU with 3 GB GDDR5 RAM which was primarily used for prototyping 

Fortran, Python, and C / C++. 

Upon successful compilation and prototyping, the source code was executed on a 

desktop (“Pauli”) which includes a 6 core 3.0 GHz AMD Phenom II cpu, and 8 GB of 

RAM. When the source code required it, parallelism was employed via “Supernode” on 

the Babbage cluster which utilizes a 48 core 2.2 GHz AMD Opteron cpu and 256 GB RAM, 

as well as “MrWhite” on the Rainbow cluster which has available a hyperthreading 16 core 

3.1 GHz Intel Xeon cpu and 64 GB of RAM. 

As ongoing research in this field continues at the university others will continue to 

make use of algorithms, source code, and discoveries from those who have gone before 

them. Contributions to source code undergoing development at the university are listed 

here. 

7.1 Efit 

 The Efit application (which fits aRDFs to nRDFs as described in Chapter 2) is a 

standalone program written in Fortran (5,000 lines of code) which makes use of the output 
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of a previously written program ‘Radfun’ (written by Dr. Anatoliy Volkov and others). The 

Efit application performs an efficient search in parallel and writes fitted aRDFs to a file in 

a format which can be read by Denprop. 

7.2 Denprop 

 Denprop has many contributing authors and in recent years additions have been 

made to further the analysis of static and dynamic EDs. The current version of Denprop’s 

source code is 171,000 lines of which 110,000 have been contributed for the sake of the 

research discussed in this dissertation. 

7.2.1 Normalization Coefficients for Real Spherical Harmonics 

 As described in [23, 37], density normalized Spherical Harmonics are needed for 

utilizing normalized basis functions in the PA expansion since the RDFs are only radial in 

nature and rely on (normalized) RSHs for accurate description of the static ED. 

Normalization coefficients for RSHs have been computed numerically using Mathematica 

[78] as well as in Fortran using a Gauss-Legendre quadrature scheme for pre-calculation 

of coefficients up to 𝐿𝑚𝑎𝑥 = 40. These coefficients, in collaboration of Dr. Anatoliy 

Volkov, were written to subroutines used by Denprop contained in the 

‘Ylm_JRM_lmax06.f90’ and ‘Ylm_JRM_lmax20.f90’ Fortran files which together 

comprise about 95,000 lines of code. 

7.2.2 Electron Density Calculations via Numerical Radial Functions 

The projection of a target ED onto RSHs yielding nRDFs takes place in a program 

called ‘Radfun’ which has been written in Fortran by Dr. Anatoliy Volkov and others. The 

output file of this program expresses nRDFs on a fine grid. New subroutines, contained in 

the file name ‘nradfun.f90’, have been written to calculate the ED and related TPs from 
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these grid based RDFs by interpolation and are now a part of the Denprop package. These 

subroutines use cubic spline interpolation to compute the ED between predefined 

numerical gridpoints. For points outside the domain of the radial grid, linear extrapolation 

is used. Cubic spline interpolation involves the calculation of numerical derivatives which 

are calculated with 𝑂(ℎ4) accuracy. 

7.2.3 Dynamic Electron Density Calculations 

 A new input file containing information about the MSDA of a molecular structure 

is needed to calculate the dynamic ED of a wave function based ED model. Via 

implementation of methods described in Chapter 4, the Gaussian basis functions are 

smeared so as to yield a dynamic ED which Denprop is then able to perform a thorough 

topological analysis on. These methods are also applied to analytic calculation of 

theoretical SFs which can then be used in the XD program suite. The files which are 

involved in these calculation include ‘dynamic.f90’ and ‘g_grad.f90’, containing a 

combined 12,000 lines of source code, which make use of precalculated derivatives of 

thermally smeared GTOs as computed analytically by Mathematica. 

7.2.4 Uncertainty Quantification 

 Upon input of a new file containing information about the covariance matrix of the 

𝑃𝑙𝑚s for the PA model, error propagation is implemented in Denprop so that SUs of 𝜌 and 

∇2𝜌 can be printed. Currently the SUs are printed for calculation at a point and for a BCP 

search, but subroutines in ‘uncertainty.f90’ include the ability to calculate the SUs for any 

point. As such, further development can make use of this subroutine so as to print SUs for 

any type of search (profile, 2d / 3d grid calculations, etc). 
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7.2.5 Fourier Space Convolution 

 Denprop is able to produce Structure Factors (SF) analytically when a GTO based 

model density is desired. The new methods described in Chapter 4 are implemented in the 

software both for direct and reciprocal space dynamic density within the convolution 

approximation. To validate that the convoluted dynamic SFs, ⟨𝐹ℎ𝑘𝑙⟩⊛, are representative 

of the statistical average, a separate Fortran program, “smear_SFs”, was written to calculate 

the statistical dynamic SFs, ⟨𝐹ℎ𝑘𝑙⟩𝜇, as the average magnitudes over all 500,000 members 

of the ensemble for a given reflection, ℎ𝑘𝑙, along with their standard uncertaintites. 

 We wish to calculate the Sum of Squares Error (SSE) for the difference between 

⟨𝐹ℎ𝑘𝑙⟩⊛ and ⟨𝐹ℎ𝑘𝑙⟩𝜇 where the summation takes place over reflections, ℎ𝑘𝑙. For a given 

reflection ⟨𝐹⟩𝜇 ∶= ⟨𝐹ℎ𝑘𝑙⟩𝜇 is not uniquely defined by the members of the ensemble {𝑭𝑖} 

since ⟨𝐹⟩𝜇 can be regarded as the average over magnitudes 𝐹1 = 𝑀−1 ∑𝐹𝑖 or as the 

magnitude of the average complex number 𝐹2 = 𝑀−1√(∑𝐴𝑖)2 + (∑𝐵𝑖)2  which are not 

equal. As it turns out, the SSE is smaller for 𝐹2 (0.11), than it is for 𝐹1 (186.5) but the 

generation of 𝐹1, 𝐹2, and their standard uncertainties are computationally intensive. 

 For each of the 500,000 members in the ensemble of direct space EDs, {𝜌𝑖}, the 

analytic SFs were calculated with Denprop. The resulting reciprocal space ensemble, {𝑭𝑖}, 

was 1.2 TB of HD space as there were 13,943 reflections needed in the analysis. 

Extrapolation on a naïve implementation of the smear_SFs application showed that the 

generation of 𝐹2 would take 88 years. The bottleneck in the application was file I/O, so 

data reduction on the reciprocal space ensemble reduced the hard disk space to 350 GB. 

Babbage’s “Supernode” has 256 GB of RAM available, so the internal floating point 
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variables were converted from double to single precision, reducing the volatile memory 

footprint to only 105 GB resulting in only a 79 hour execution time. 

7.3 Publications and Presentations 

7.3.1 Gordon Research Conference 

 June, 2013: Les Diablerets, Switzerland 

Oral Presentation: “A Topological Analysis of Thermally Averaged Density” 

7.3.2 European Charge Density Meeting 

 September, 2012: High Tatras, Slovakia 

 Poster Presentation: “Direct Space Reconstruction of Electron Density” 

7.3.3 Synchrotron Charge Density School 

 March, 2013: Argonne National Labe, Lemont, IL 

 Oral Presentation: “Radfun and Efit: A Convergent Expansion” 

7.3.4 Tennessee Academy of Science Meeting 

 November, 2013: Tullahoma, TN 

 Poster Presentation: “A Novel Approach to the Pseudoatom Expansion” 

7.3.5 Publications  

J. R. Michael and T. Koritsanszky, “Validation of convolution approximation to 

the thermal-average electron density,” J. Math. Chem., 2014. DOI: 10.1007/s10910-014-

0425-y [79] 

J. R. Michael and T. Koritsanszky, “Computational Study of Uncertainties of 

Topological properties of the Thermally Smeared Molecular Electron Density,” Acta 

Cryst. (to be published) [70] 

J. R. Michael and A. Volkov, “Density and wavefunction normalized spherical 

harmonics in Cartesian frame for  0 ≤ 𝑙 ≤ 20”, Acta Cryst. (to be published) [80]  
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