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ABSTRACT

The systems of non-linear time-dependent space-fractional differential equations

have been employed to model important physical phenomena in many fields of engi-

neering and science. The analytical solutions of most of these systems are unknown,

and evaluating an analytical solution for some fractional differential equations is com-

plicated and difficult to calculate because it is in the trigonometric series form. Thus,

developing numerical solutions for such nonlinear systems is essential. There have

been growing interests recently to develop efficient and robust numerical schemes for

solving the nonlinear systems of fractional differential equations.

In this study, several novel numerical schemes are proposed to solve the systems of

multidimensional non-linear space-fractional reaction-diffusion equations efficiently.

The non-local nature of the fractional operator adds new features to the mathemat-

ical models but also introduces additional difficulties in their implementation where

large, dense matrices are required at each time step. To overcome this challenge,

the Fourier spectral approach is applied to discretize the fractional Laplacian. This

approach gives a diagonal representation of the fractional operator while achieving

spectral convergence and the implementation to multi-dimensions is similar to one-

dimensional problems. Since this approach lacks capability to implement on non-

homogeneous boundary conditions, a second-order matrix transfer technique (MTT)

for non-homogeneous boundary conditions is used for the space discretization. A

fourth-order MTT based on a compact scheme is also employed for the discretization

of the fractional Laplacian.

To deal with the nonlinearities, exponential time differencing schemes (ETD) are

employed for the reason that while the approaches achieve the expected accuracy,

solving nonlinear systems at each time step is no longer needed. The Fourier spectral

approach is combined with two second-order ETD schemes to solve space-fractional

reaction-diffusion equations with non-smooth initial data and is also combined with

a forth-order ETD scheme to provide highly efficient solutions for multidimensional

v



systems. The second-order MTT is combined with the forth-order ETD scheme to

solve problems with non-homogeneous boundary conditions. Moreover, the fourth-

order compact scheme MTT is combined with forth-order ETD schemes to show the

effectiveness of the L-stable scheme when the initial data is non-smooth and to illus-

trate that the A-stable scheme is not reliable for some time steps. A novel reliability

constraint is introduced to avoid the oscillations present in the solutions when the

A-stable scheme is employed.

Theoretical and numerical investigation of the convergence and stability of the numer-

ical schemes have been discussed. Extensive numerical experiments are performed on

wide well-known systems of time-dependent space-fractional reaction-diffusion equa-

tions to demonstrate the reliability, efficiency and accuracy of the developed schemes.
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4.3.3 The ETD-Padé(2,2) algorithm . . . . . . . . . . . . . . . . . . 73

4.4 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4.1 Test Problem 1: the Allen-Cahn equation . . . . . . . . . . . . 74

4.4.2 Test Problem 2: the 1D Brusselator system . . . . . . . . . . . 76

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

CHAPTER 5: FOURTH-ORDER MTT-ETD SCHEMES . . . . . . . . . . 78

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2 MTT with homogeneous boundary conditions . . . . . . . . . . . . . 80

5.3 Fourth-order ETD schemes . . . . . . . . . . . . . . . . . . . . . . . . 83
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CHAPTER 1

INTRODUCTION

Fractional calculus indicates the generalization of integrals and derivatives of the

integer-order to rational-order [1]. In 1695, the possibility of the fractional derivative

was first discussed in a letter from Leibniz to L’Hôpital [2, 3, 4], in which it was

asked what the derivative of dny/dxn is when n = 1/2. Later, Leibniz mentioned the

derivative of the general order in a letter to J. Bernoulli. Euler and Lagrange et al.

provided some relevant observations on this problem. In 1812, Laplace introduced

a definition of fractional derivative based on the concept of integral, and Lacroix

proposed a definition by employing the gamma function that is consistent with the

fractional derivative of Riemann-Liouville. Fourier, in 1822, introduced the definition

of fractional derivative through the Fourier transform. In 1930, Liouville generalized

the order of the derivative into an arbitrary order, the reader is referred to [5].

Researchers have been investigating fractional calculus for developing advanced math-

ematical models which can depict complicated anomalous systems accurately [6]. Un-

der the effect of various force fields, the elementary particles execute complex motion

and the particles’ trajectories create geometrical objects of complex structure [7].

Since the Gauss’ distribution cannot explain the possibility that the particles will be

at a specific time at given spatial points, it can no longer be modeled by the diffusion

equation dependent on the Fickian equation (classical Fick’s law) [8]. For complex

situations, it was demonstrated that the density of probability distribution of the

migrating particles could be depicted by equations that contain fractional derivatives

[9, 10, 11, 12, 13, 14, 15]. The fractured porous medium is considered as fractal due

to its complicated structure. The material particles execute complex motion while

departing through fractures. Under the effect of various force fields, the equations

of anomalous diffusion of the elementary particles motion will be similar to the dif-

fusion equation in the porous medium, see [8]. Anomalous diffusion phenomena are
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common in many complex dynamical systems in the natural sciences. These systems

consist of a large variety of elementary units with strong interactions between them.

Hence, as time advances, the anomalous evolution is non-predictable. Fractional ki-

netic equations are used as an effective technique to depict these complex systems

such as diffusion, diffusive convection, and Fokker-Planck of fractional differential

equations [5].

Definition 1.1. Mean squared displacement
(
MSD,

〈
(∆x)2

〉)
is the measure of the

deviation of the position of a particle regarding a reference position over time. It is

defined as

MSD =
〈
(x− x0)2

〉
= 1

N

∑N
n=1(xn(t)− xn(0))2,

where N represents the number of particles to be averaged, xn(0) = x0 is the reference

position of each particle, xn(t) is the position of each particle in determined time t

[16].

Randomness diffusion occurs in a space with the following classification:

〈 (∆x)2〉 ∝ tα =



α < 1, sub-diffusion,

α = 1, diffusion,

α > 1, super-diffusion.

Recently, fractional differential equations have gained a lot of popularity in many ap-

plications such as the mathematical modeling of transport processes in the spatially

heterogeneous medium. Many researchers have shown that the partial differential

equations, including fractional derivatives, are more useful for understanding spatial

heterogeneity and non-locality than the corresponding integer-order. The fractional

derivatives have been utilized in hydrology [17], image denoising [18], anomalous dif-

fusion [19], turbulence [20], elasticity [21], finance [22, 23, 24, 25], soft matter [26],

and numerous applications for problems across disciplines such as physics, biology,

and chemistry [15, 27, 28, 29, 30]. For instance, Baeumer et al. [30] used the frac-
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tional reaction-diffusion equation that captured the realistic spreading behavior of

invading species. In finance, Wang et al. [25] implemented a circulant precondi-

tioning technique for barrier options pricing using the fully implicit scheme with the

shifted Grünwald approximation. In groundwater hydrology, the transport of pas-

sive tracers carried by fluid flow in a porous medium was modeled by the fractional

advection-dispersion equation [31, 32]. In water resources, the transport of chemical

and pollutant through heterogeneous aquifers was described by the fractional models

[33, 34, 35].

The fractional generalizations of the model equations have been considered for space-

fractional derivatives, for example, in quantum mechanics [36], plasma physics [37],

and contaminant dispersion [38]. They also have been considered for time-fractional

derivatives, for example, in viscoelasticity [39], porous media [40], and diffusion prob-

lems in biological systems [41]. The fractional Laplacian has been intensively consid-

ered among different fractional operators in the recent literature. The integer-order

Laplacian has been replaced by the fractional Laplacian in many applications of frac-

tional models including reaction-diffusion [42], Schrödinger [43], quasi-geostrophic [44]

and porous medium [45]. The fractional Laplacian is defined in many different ways,

for example, Riesz potential operator [46], Fourier multiplier [47], and hypersingular

integral [48]. These definitions are shown to be equivalent in Rd, where d = 1, 2, 3, un-

der certain assumptions. Nevertheless, when a bounded domain Ω ⊂ Rd is considered,

the associated boundary conditions produce various operators and the equivalence no

longer holds [49].

1.1 Fractional Laplacian

The fractional Laplacian is defined as [49, 50]

(−∆)
α
2 u(x) := cα,d P.V.

∫
Rd

u(x)− u(y)

|x− y|α+d
dy,
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where P.V. stands for the Cauchy principal value integration, and

cα,d =
2αΓ(d+α

2
)

πd/2|Γ(−α
2

)|
.

In this study, we mainly focus on the utilization of the fractional Laplacian on a

bounded domain. We discuss three common definitions of the nonlocal operator on

the bounded domain.

• Integral fractional Laplacian

The fractional Laplacian of u(x), x ∈ Ω is defined by extending u(x) to a

function in Rd

ũ(x) =


u(x) x ∈ Ω,

0 x ∈ Ωc,

then the usual fractional Laplacian definition is used

−(−∆)
α
2
I u(x) := −(−∆)

α
2 ũ(x).

It is also defined by the Fourier transform as

−(−∆)
α
2
I u(x) := F−1(|u|αF ũ).

• Spectral fractional Laplacian

The fractional Laplacian is defined by using the spectral definition

−(−∆)
α
2
S u(x) :=

∑
i∈N

uiλ
α
2
i ϕi(x),

where λi and ϕi are the eigenvalues and eigenfunctions of the standard Laplace

operator ∆ in Ω with homogeneous Dirichlet boundary data, and ui is the

projection of u in the direction ei
−∆ϕi = λiϕi in Ω,

ϕi = 0 on ∂Ω.
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• Regional fractional Laplacian

This definition is obtained through restricting the integration domain to Ω

−(−∆)
α
2
Ru(x) := cα,d

∫
Ω

u(x)− u(y)

|x− y|α+d
dy.

The non-locality of fractional operators represents an important qualitative feature

of the mathematical models, but introduces additional challenges to their numerical

implementation. Several discretization schemes have been proposed in the literature

to deal with this issue [51, 52, 53, 54, 55]. A thorough review of the finite difference

methods, Galerkin finite element methods, and the spectral methods for the fractional

partial differential equations can be found in [56]. We discuss in brief some of the

second-order spatial discretizations and mention some related critical definitions and

lemmas.

1.1.1 Basic definitions and lemmas

Definition 1.1.1.1. ([47, 57]). The Riesz fractional operator for n− 1 < α ≤ n on

a finite interval 0 ≤ x ≤ L is defined as

∂α

∂|x|α
u(x, t) = −Cα(0Dx + xDL)u(x, t),

where

Cα = 1
2 cos(πα/2)

, α 6= 1,

0Dxu(x, t) = 1
Γ(n−α)

∂n

∂xn

∫ x
0

u(ξ,t)
(x−ξ)α+1−ndξ,

xDLu(x, t) = (−1)n

Γ(n−α)
∂n

∂xn

∫ L
x

u(ξ,t)
(ξ−x)α+1−ndξ.

Definition 1.1.1.2. ([58]). Let the Laplacian (−∆) have a complete set of orthonor-

mal eigenfunctions ϕn corresponding to eigenvalues λ2
n on a bounded region Ω with

the homogeneous boundary conditions, then
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(−∆)
α
2 f =



(−∆)mf, α = 2m, m = 0, 1, 2, . . . ,

(−∆)
α
2
−m(−∆)mf, m− 1 < α

2
< m, m = 1, 2, . . . ,

∑∞
n=1 λ

α
n〈f, ϕn〉ϕn, α < 0.

Lemma 1.1.1.3. [59]. For a function u(x) defined on the infinite domain −∞ <

x <∞, the following equality holds

−(−∆)α/2u(x) = − 1

2 cos
(
πα
2

)[
−∞D

α
xu(x) +x D

α
∞u(x)

]
=

∂α

∂|x|α
u(x).

1.1.2 Riesz derivative approximation

As discussed in [60], utilizing the fractional centered difference proposed by Or-

tigueira [61], the symmetric Riesz derivative of fractional-order α is approximated by

H
(α)
M . The left-sided Riemann-Liouville derivative −∞D

α
xu(x, t) and the right-sided

Riemann-Liouville derivative xD
α
∞u(x, t) are approximated by the upper triangular

strip matrix B
(α)
M and the lower triangular strip matrix L

(α)
M [62], respectively, such

that

[
u

(α)
M u

(α)
M−1 . . . u

(α)
1 u

(α)
0

]T
= B

(α)
M

[
u

(α)
M u

(α)
M−1 . . . u

(α)
1 u

(α)
0

]T
,[

u
(α)
M u

(α)
M−1 . . . u

(α)
1 u

(α)
0

]T
= L

(α)
M

[
u

(α)
M u

(α)
M−1 . . . u

(α)
1 u

(α)
0

]T
,
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where

B
(α)
M =

1

hα



ω
(α)
0 ω

(α)
1

. . . . . . ω
(α)
M−1 ω

(α)
M

0 ω
(α)
0 ω

(α)
1

. . . . . . ω
(α)
M−1

0 0 ω
(α)
0 ω

(α)
1

. . . . . .

. . . . . . . . .
. . . . . . . . .

0 . . . 0 0 ω
(α)
0 ω

(α)
1

0 0 . . . 0 0 ω
(α)
0


,

and

L
(α)
M =

1

hα



ω
(α)
0 0 0 0 . . . 0

ω
(α)
1 ω

(α)
0 0 0 . . . 0

ω
(α)
2 ω

(α)
1 ω

(α)
0 0 . . . 0

. . . . . . . . . . . . . . . . . .

ω
(α)
M−1

. . . ω
(α)
2 ω

(α)
1 ω

(α)
0 0

ω
(α)
M ω

(α)
M−1

. . . ω
(α)
2 ω

(α)
1 ω

(α)
0


,

ω
(α)
j = (−1)j

(
α
j

)
, j = 0, 1, 2, ...,M , in which x = jh (j = 0, 1, 2, ...,M) where h is

the spatial step size.

H
(α)
M =

1

hα



ω
(α)
0 ω

(α)
1 ω

(α)
2 ω

(α)
3 . . . ω

(α)
M

ω
(α)
1 ω

(α)
0 ω

(α)
1 ω

(α)
2 . . . ω

(α)
M−1

ω
(α)
2 ω

(α)
1 ω

(α)
0 ω

(α)
1 . . . ω

(α)
M−2

. . . . . . . . . . . . . . . . . .

ω
(α)
M−1

. . . ω
(α)
2 ω

(α)
1 ω

(α)
0 ω

(α)
1

ω
(α)
M ω

(α)
M−1

. . . ω
(α)
2 ω

(α)
1 ω

(α)
0


,

where

ω
(α)
j =

(−1)jΓ(α + 1) cos(απ/2)

Γ(α/2− j + 1)Γ(α/2 + j + 1)
, j = 0, 1, 2, ...,M.

1.1.3 Matrix Transfer Technique (MTT)

As mentioned in [55], if the fractional Laplacian (−∆)α/2 is discretized with a uniform

mesh of step size h by using the MTT suggested by Ilic et al. [58], then the following
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form is obtained

(−∆)α/2u ≈ Aα/2

hα
u.

The matrix Aα/2

hα
is generated from the matrix representation of the standard Laplace

operator using the eigenvalues and eigenvectors, thus Aα/2

hα
= HΛα/2H−1

hα
where Λ and

H are the eigenvalues and eigenfunctions of the matrix A
h2

.

A = tridiag{−1, 2,−1},

Λ = diag(λ1, λ2, λ3, . . . , λM−1), λj = 4 sin2
(
jπ
2M

)
, j = 1, 2, . . . ,M − 1,

andH = (ξ1, ξ2, ξ3, . . . , ξM−1), ξj =
(

sin
(

1jπ
M

)
, sin

(
2jπ
M

)
, sin

(
3jπ
M

)
, . . . , sin

(
(M−1)jπ

M

))T
.

We discuss in detail discretizing the fractional Laplacian by using the Fourier spec-

tral approach, second-order MTT for non-homogeneous boundary conditions, and

fourth-order MTT in Chapters 2, 4, and 5, respectively.

1.2 Exponential Time Differencing (ETD) Schemes

To develop a better understanding of some phenomena related to the systems of non-

linear time-dependent fractional partial differential equations (FPDEs), accurate and

efficient numerical schemes are required. Many efforts have been directed in recent

years for developing reliable numerical schemes due to the complexities in evaluating

an analytical solution of the nonlinear FPDEs. The method of lines is one of the most

common approaches to solve such systems [63, 64]. After the space-fractional deriva-

tive of the nonlinear FPDEs is discretized with either finite difference, finite element

or any other approximation, a system of ordinary differential equations (ODEs) in

time is obtained. Then, the numerical solution to the FPDEs can be obtained by em-

ploying any time stepping method. The ETD schemes are well-known efficient time

integration schemes which can be combined with any spatial approximation to get a

numerical solution for semi-linear FPDEs. These ETD schemes were considered for

partial differential equations in the 1960s by Certaine [65]. They have some special

features including the exact treatment of the linear part and the explicit treatment
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of the integral part by polynomial approximations. They also avoid solving nonlin-

ear systems at each time step which makes them efficient compared to other time

stepping methods. For the integer-order derivatives, Cox and Mathews [66] derived

Runge-Kutta based ETD schemes utilizing polynomial formulas. When the linear

term is a non-diagonal matrix, the implementation of the ETD schemes suffers with

some computational challenges such as efficiency and accuracy. Efficient numerical

evaluation of functions of the form ez−1
z

and higher order generalizations thereof are

computationally challenging where the cancellation errors have to be avoided [67, 68].

Thus developing these schemes is necessary, Kassam and Trefethen [68] modified the

ETD schemes by introducing a method based on contour integration to address the

computational difficulties. As in [69], the contour in their approach varies from prob-

lem to problem which makes it problem dependent. Additionally, it has to encircle

the spectrum of the discretization matrix, which is usually unbounded and unknown

for more finer discretization. The serious and challenging issue in both schemes is

computing the matrix exponential, if a matrix is large. They utilized Matlab’s expm

function with O(n3) complexity which makes their approach computationally im-

practical and inefficient for large problems with multi-dimensions. These issues were

solved by applying Padé approximations that prevented direct computing of the ma-

trix exponential function and utilized partial fraction decomposition, see Khaliq et

al. [69].

1.2.1 Rational Approximation

Let Rr,s(z) denote the (r, s)-Padé approximation, the (r + s)th order rational Padé

approximation to e−z is defined as in [70]

Rr,s(z) =
Pr,s(z)

Qr,s(z)
,
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where

Pr,s(z) =
r∑
j=0

(s+ r − j)!r!
(s+ r)!j!(r − j)!

(−z)j,

Qr,s(z) =
s∑
j=0

(s+ r − j)!
(s+ r)!j!(s− j)!

(z)j.

Definition 1.2.1.1. [71, pp. 233]. A rational approximation Rr,s(z) of ez is said to be

A-acceptable if |Rr,s(z)| < 1, whenever Re(z) < 0 and L-acceptable if it is A-acceptable

and, in addition, |Rr,s(z)| → 0 as Re(z)→ −∞.

• A-acceptable if r = s.

• L-acceptable if r = s− 1 or r = s− 2 .

1.3 Time-Dependent Space-Fractional Reaction-Diffusion Equa-

tions

We consider the space-fractional reaction-diffusion equation

∂u(x, t)

∂t
= −κα(−∆)α/2u(x, t) + f(u, t), 0 ≤ t ≤ T, 1 < α ≤ 2, (1)

subject to the initial condition given by

u(x, 0) = u0(x), x ∈ Ω ⊂ Rd, where d = 1, 2, 3. (2)

with homogeneous and non-homogeneous Dirichlet or Neumann boundary conditions,

Ω is bounded in R, κα represents the diffusion coefficient, (−∆)
α
2 is the fractional

Laplacian of order α (1 < α ≤ 2) [59, 72, 73, 74, 75], and f represents the nonlin-

ear reaction term. As in [76], to ensure that (1) with specified initial and boundary

conditions possesses a unique solution, we suppose that f is a sufficiently smooth

function of u and t, and fu ≥ −L, where L > 0 is a constant. In order to avoid any

blow-up in the solutions, we assume that fu ≥ −L. For the blow-up phenomena of
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the solutions, see for example [77, 78].

Time-dependent fractional models have also been considered. Contrary to the local

partial differential equations, the näıve application of the semi-implicit Euler inte-

gration schemes can be inefficient, as the fully dense matrix equations have to be

solved at each time step. Several space discretization techniques have been discussed

in [72, 79, 80] to tackle this issue. Also, there have been proposed several fast integra-

tion techniques based on the effective preconditioning [81], the Krylov scheme [82],

and the rational approximation using the Gauss-Jacobi rule [83]. Other schemes such

as the Sinc-Legendre collocation method, meshless element-free Galerkin, local dis-

continuous Galerkin, and variational multiscale element-free Galerkin methods have

been considered in [84, 85, 86, 87]. Additionally, the Fourier spectral approach was

employed by Bueno-Orovio et al. in [52] and Lee in [88]. However, the backward Euler

scheme which was used for the temporal discretization in [52] is only first-order accu-

rate and the operator-splitting scheme in [88] is applicable only for two-dimensional

equations.

1.4 Reaction-Diffusion System

In this study, we consider systems of nonlinear time-dependent FPDEs for variant

applications of mathematical modeling of some physical, biological, and chemical

problems. We investigate the performance of the proposed time stepping schemes on

several numerical experiments of pattern formations and examine their properties.

Reaction-diffusion systems are one of the most common systems that have been the

subject of intensive study during the last few decades because of their sophisticated

dynamic attitude [89, 90]. They consist of two terms: the diffusion term that is

connected with the random motion of each constituent, and the reaction term that

depicts the interaction between the physical and biological species [91]. Among others,

we discuss the following reaction-diffusion models:
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• FitzHugh-Nagumo model

FitzHugh and Nagumo introduced a model to simulate the signal observed in

living organism’s excitable cells. The FitzHugh-Nagumo model is a simpler

version of the Hodgkin-Huxley model [92], it is used as a generic model for de-

scribing the waves propagation in the excitable media. The non-linear reaction

term describes the action potential propagation on an axon membrane.

∂u

∂t
= −κα(−∆)α/2u+ u(1− u)(u− a)− v,

∂v

∂t
= ε(βu− γv − δ),

where κα is the diffusion tensor, β, a, ε, γ, and δ are the constant parameters

that characterize the model attitude, u is the fast variable that describes the

membrane potential of the cell and v is the slow variable that joins by an inverse

ratio with the medium conductivity.

The FitzHugh-Nagumo model has been used a lot in the auto-oscillatory process.

For instance, spiral waves in the 2D system and scroll waves in the 3D system,

which are used for arrhythmic activities in mammalian hearts [93, 94, 95, 96].

It has also been used as a basis for cardiac electrophysiology models [97], and

to illustrate impulse propagation in nerve membranes [98, 99].

• Gray-Scott model

The Gray-Scott is an irreversible model that rules the two chemical reaction

equations in a gel reactor

U + 2V → 3V ,

V → P ,

where P is the inert product and V catalyzes its reaction with U , both U and

V are removed from the feed process [100, 101].

The Gray-Scott model shows a wide discipline of new patterns such as pulses in

one-dimensional self replicate [102], and spots in two-dimensional self replicate
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[103], that have been noticed in a ferrocyanide-iodate-sulfite reaction [104]. The

diffusivities κu and κv of U and V could be any non-negative numbers. For

instance, the pulse splitting, in the 1D simulations, was observed at κu = 1 and

κv = 0.01 [105], and the spot replication, in the 2D simulations, was observed

at κu = 2κv = 2× 10−5 [106].

Let u and v indicate the concentrations of U and V , respectively, then the

space-fractional reaction-diffusion system is given as:

∂u

∂t
= −κu(−∆)α/2u− uv2 + F (1− u),

∂u

∂t
= −κv(−∆)α/2v + uv2 −Bv,

where F is the rate such that U is fed to the reactor from the reservoir, the

concentration of V in the reservoir is zero, and B is the sum of F and the con-

stant rate κ that equals the rate when V is converted to an inert product [102].

This model has important applications in the autocatalytic chemical reaction

to investigate the morphogenesis and pattern formation. For example, Lefévre

and Mangin [107] proposed using the Gray-Scott model as a phenomenological

model that is based on reaction-diffusion mechanisms including Turing mor-

phogens for the differential growth of the sulci and gyri which are the bottom

and top of folds.

• Brusselator model

The Brusselator model has also been referred to the trimolecular model [108]. It

is a sophisticated model in the cooperative processes of chemical kinetics study

[109], it exhibits the non-linear oscillations of the chemical reaction-diffusion

mechanism [90]. It has been used in laser physics between certain modes in

multiple couplings, in plasma, in enzymatic reactions, and in a trimolecular

reaction step that appears by atomic oxygen in the formation of ozone through
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a triple collision [109].

∂u

∂t
= −κu(−∆)α/2u+B + u2v − (C + 1)u,

∂v

∂t
= −κv(−∆)α/2v + Cu− u2v,

where κu and κv are the diffusion coefficients, B and C are the constant con-

centrations of the input reagents, and u and v are the chemical concentrations

of the reaction products.

• Schnakenberg model

The Schnakenberg model is one of the reaction models that demonstrates Turing

pattern formation [110]. Schnakenberg developed his kinematic reaction model

[111] to search for a minimal that exhibits so-called limit-cycle behavior. Such

an idea came from studies on biological areas including the ecological cycles of

population densities and metabolic regulation.

∂u

∂t
= −κu(−∆)α/2u+ γ(a− u+ u2v),

∂v

∂t
= −κv(−∆)α/2v + γ(b− u2v),

κu and κv are the diffusion coefficients, γ, a, and b are constants.

The Schnakenberg model has been used to investigate the spatiotemporal pat-

tern formation like oscillatory behavior and spatial patterns because of its al-

gebraic simplicity [112, 113].

The motivation of this study is to formulate second and fourth-order A-stable and

L-stable ETD schemes using rational approximations and partial fraction decompo-

sition. The schemes are combined with three different discretizations of the frac-

tional Laplacian which are the Fourier spectral approach, second-order MTT for non-

homogeneous boundary conditions, and MTT based on the compact fourth-order

finite difference approximation to solve systems of nonlinear reaction-diffusion equa-

tions with smooth and non-smooth initial data. Moreover, one of the most challenging
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problems in numerical analysis is the computational challenge of large matrix expo-

nential functions such as in a system that is defined on high dimensional spatial

domains [114]. We tackle these difficulties by implementing accurate and efficient

second-order and fourth-order ETD schemes for solving multidimensional systems of

nonlinear FPDEs.

1.5 Contents of the dissertation

In Chapter 2, we propose two numerical schemes for problems with non-smooth initial

data based on using (1,1)-Padé and (0,2)-Padé approximations to the matrix expo-

nential. The schemes are combined with the Fourier spectral approach in space to

alleviate the numerical inefficiency caused by the non-locality of the fractional oper-

ator. We extend them in Chapter 3 to an ETD scheme with fourth-order accuracy in

time. We introduce modified versions of the ETDRK4 scheme combined with MTT

for non-homogeneous boundary conditions in Chapter 4, and MTT for homogeneous

boundary conditions with non-smooth initial data in Chapter 5. Moreover, a relia-

bility constraint on the choice of the time step is proposed when the A-stable scheme

is applied with irregular initial data to avoid the unwanted oscillations due to high

frequency components in the solutions. We examine the stability analysis and show

the ability of the L-stable schemes to damp the unwanted oscillations in the solutions.

We investigate the performance of the developed schemes on several test problems

of well-known mathematical models. The numerical experiments and CPU time are

based on computations via Matlab R2018a platforms ran on an Intel Core i5 2.5 GHz

workstation. Finally, a summary of the dissertation is included in Chapter 6.
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CHAPTER 2

FOURIER SPECTRAL SECOND-ORDER ETD SCHEMES

2.1 Introduction

In this chapter, we propose two numerical schemes for solving the space-fractional

reaction-diffusion equations, which are based on a Fourier spectral approach in space

and ETD schemes in time. The advantages of the approaches are that they attain

spectral convergence, produce a full diagonal representation of the fractional operator,

and the extension to multiple spatial dimensions is the same as the one-dimensional

space. These approaches can overcome the constraints associated with many of the

numerical schemes for these equations such as the computational efficiency caused by

the non-locality of the fractional operator, which results in full, dense matrices. More-

over, the proposed schemes are second-order convergent in time, unconditionally sta-

ble, and highly efficient due to the predictor-corrector feature when comparing them

with the existing scheme. It is observed that the scheme based on using (1,1)-Padé

approximations to the matrix exponential introduces oscillations with non-smooth

initial data due to high frequency components present in the solution for some time

steps, which diminish as the fractional-order decreases. However, the scheme based on

(0,2)-Padé approximations to the matrix exponential is oscillation-free for any time

step. Numerical experiments for well-known models from the literature are performed

to show the reliability and effectiveness of the proposed schemes.

The space-fractional reaction-diffusion equation is given as

∂u(x, t)

∂t
= −κα(−∆)α/2u(x, t) + f(u, t), 0 ≤ t ≤ T, 1 < α ≤ 2, (3)

subject to the initial condition given by

u(x, 0) = u0(x), x ∈ Ω ⊂ Rd, where d = 1, 2, 3, (4)
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with homogeneous Dirichlet or Neumann boundary conditions.

Most approaches for solving space-fractional diffusion problems involve applying the

finite volume, finite element, or finite difference discretization of the fractional oper-

ator. Several numerical schemes involve some constraints such as the computational

efficiency caused by the non-locality of the fractional operator, that leads to full, dense

matrices. Meerschaert and Tadjeran [115] proposed numerical approaches for solving

the Caputo space-fractional advection-dispersion equation using the finite difference

scheme. Ilic et al. [58] presented the MTT to solve the space-fractional diffusion

equations.

For the Riesz space-fractional derivatives, Yang et al. [59] proposed three numerical

methods, which are the standard/shifted Grünwald method, L1/L2-approximation

method, and the matrix transform method. Ortigueira [61] suggested the fractional

centered derivative, Çelik and Duman [116] followed his approach by applying the

Crank-Nicolson scheme for solving the fractional diffusion equation in a finite do-

main. Space and time fractional Bloch-Torrey equations in 2D were considered with

both the Riesz derivative form and the fractional Laplacian [117, 118]. Yang et al.

considered the 2D Riesz space-fractional diffusion equation on irregular convex do-

main [119].

Aceto and Novati [83] introduced the rational approximation to the integral repre-

sentation of the fractional Laplacian using the Gauss-Jacobi quadrature rule. Li and

Chen [56] gave a comprehensive review of several numerical methods such as the

Galerkin finite element methods, finite difference methods, and spectral methods for

space-fractional, time-fractional, and space-time-fractional partial differential equa-

tions. Some other numerical schemes for non-integer order differential systems based

on using Riemann-Liouville and Caputo derivatives with numerical analysis to pattern

formations can be found in [120, 121]. A finite volume method with preconditioned

Lanczos method was proposed for solving 2D space-fractional reaction-diffusion equa-

tions [122], numerical methods related to fractional partial differential equations were
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also considered with analysis results in [123].

Bueno-Orovio et al. [52] presented the Fourier spectral approach for the integration

of the fractional Laplacian which is used to describe the space-fractional reaction-

diffusion equations. However, this method is based on the backward Euler for the

time discretization, which is just first-order accurate in time. Lee [88] followed their

approach and proposed a second-order operator splitting method which is only appli-

cable for 1D and 2D problems.

We introduce the numerical integration of the fractional differential equations us-

ing the Fourier transform that yields to a system of fractional ordinary differential

equations in Fourier space, which are then solved by the fractional ETD schemes.

We apply the second-order unconditionally stable ETD-CN (or ETD-Padé(1,1)) and

ETD-Padé(0,2) schemes for the temporal discretization in a predictor-corrector man-

ner which avoids solving nonlinear systems. Although the schemes are unconditionally

stable, the ETD-CN scheme produces solutions with unwanted oscillations when the

initial data is non-smooth for some time steps due to the high frequency components

of the growth factor of the discretized problem. Whereas the ETD-Padé(0,2) scheme

produces solutions without the oscillations and achieves the second-order accuracy in

time.

2.2 Spatial discretization

Assume the Laplacian (−∆) have a complete set of orthonormal eigenfunctions ϕn,

ϕn,m or ϕn,m,l satisfying standard boundary conditions on a bounded region Ω ⊂ Rd,

with corresponding eigenvalues λn, λn,m, or λn,m,l respectively, i.e.,

(−∆)ϕn = λnϕn, if d = 1,

(−∆)ϕn,m = λn,mϕn,m, if d = 2,

(−∆)ϕn,m,l = λn,m,lϕn,m,l, if d = 3,

for n,m, l = 0, 1, 2, . . . , on Ω, and let



19

u1 =
∞∑
n=0

ûnϕn, ûn = 〈u1, ϕn〉,
∞∑
n=0

|ûn|2|λn|α <∞,

u2 =
∞∑
n=0

∞∑
m=0

ûn,mϕn,m, ûn,m = 〈u2, ϕn,m〉,
∞∑
n=0

∞∑
m=0

|ûn,m|2|λn,m|α <∞,

u3 =
∞∑
n=0

∞∑
m=0

∞∑
l=0

ûn,m,lϕn,m,l, ûn,m,l = 〈u3, ϕn,m,l〉,
∞∑
n=0

∞∑
m=0

∞∑
l=0

|ûn,m,l|2|λn,m,l|α <∞.

Then,

(−∆)
α
2 u1 =

∞∑
n=0

ûnλ
α
2
n ϕn, (5)

(−∆)
α
2 u2 =

∞∑
n=0

∞∑
m=0

ûn,mλ
α
2
n,mϕn,m, (6)

(−∆)
α
2 u3 =

∞∑
n=0

∞∑
m=0

∞∑
l=0

ûn,m,lλ
α
2
n,m,lϕn,m,l. (7)

The space-fractional reaction-diffusion equation is obtained by replacing the standard

Laplace operator by its fractional correspondent. Hence, the spectral decomposition

of the fractional Laplacian (−∆)
α
2 has the same interpretation as the spectral de-

composition of the standard Laplace operator. The eigenvalues and eigenvectors of

the standard Laplace operator depend on the specified boundary conditions. For the

homogeneous Dirichlet boundary conditions with x ∈ Ω = (a, b)d, d = 1, 2, 3, the

eigenvalues and eigenvectors are

λη1,...,ηd =

ηd∑
n=η1

(
(n+ 1)π

b− a

)2

,

ϕη1,...,ηd =

(√
2

b− a

)d ηd∏
n=η1

sin

(
(n+ 1)π(xn − a)

b− a

)
, ηi = 0, 1, 2, . . . ,

respectively, whereas for the homogeneous Neumann boundary conditions, the eigen-

values and eigenvectors are

λη1,...,ηd =

ηd∑
n=η1

(
nπ

b− a

)2

,
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ϕη1,...,ηd =

(√
2

b− a

)d ηd∏
n=η1

cos

(
nπ(xn − a)

b− a

)
, ηi = 0, 1, 2, . . . ,

respectively. The reader is referred to [124] for periodic boundary conditions.

If we consider a finite number of the orthonormal trigonometric eigenfunctions ϕn,

then the fractional Laplacian is approximated by a truncated series

(−∆)
α
2 u ≈

Nx−1∑
n=0

ûnλ
α
2
n ϕn. (8)

The following is the representation of (3) in Fourier space when d = 1 by using the

definition of the fractional Laplacian and applying the Fourier transform [125]

d

dt
F [u(x, t)] = −AF [u(x, t)] + F [f(u, t)], (9)

where A = κα(λ2)α/2, for the homogeneous Dirichlet boundary conditions

λi =
(i)π

b− a
, (10)

xi = a+ ih, h = (b− a)/(Nx + 1),

and for the homogeneous Neumann boundary conditions

λi =
(i− 1)π

b− a
, (11)

xi = a+ (i− 1)h+
h

2
, h = (b− a)/Nx,

i ∈ {1, Nx}, h is the spatial step size and Nx is the number of the internal points [52].

We compute the coefficients ûn and the inverse reconstruction of u, in physical space,

by using efficient algorithms (Discrete Sine or Cosine transforms and their inverses)

based on the specified homogeneous boundary conditions [126, 127].

2.3 Time discretization

The following system of nonlinear differential equations is obtained by approximat-

ing the fractional-order spatial derivative in (3) with the Fourier spectral approach
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mentioned above

ût = −Aû+ F̂ (u, t), (12)

where û = F [u], F̂ (u, t) = F [f(u, t)] and A as in (9).

Let tn+1 = tn + k, k be the temporal step size, then the exact solution of (12) is the

following recurrence formula

û(tn+1) = e−kAû(tn) + k

∫ 1

0

e−kA(1−τ)F̂ (u(tn + τk), tn + τk)dτ, (13)

Eq. (13) is the basis of the ETD schemes, which can be obtained by using different

approximations to the matrix exponential and the integral involving the nonlinear

reaction term. The simplest approximation to the integral term in (13) is by approx-

imating F̂ (u(tn), tn) by F̂ (un, tn), which yields the first-order accurate

ûn+1 ≈ e−kAûn + ke−kA
∫ 1

0

ekAτdτF̂ (un, tn)

= e−kAûn + A−1(1− e−kA)F̂ (un, tn). (14)

To get the second-order accurate scheme of Runge-Kutta type, we let (14) to be an

intermediate prediction of û(tn+1)

ân = e−kAûn + A−1(1− e−kA)F̂ (un, tn). (15)

Now, we approximate the nonlinear term F̂ (u(tn), tn) in (13) by averaging over two

intervals [128]

F̂ (u(tn), tn) ≈ F̂ (un, tn) + (t− tn)
F̂ (ân, tn + k)− F̂ (un, tn)

k
, t ∈ [tn, tn+1] (16)

where ân as in (15), using (16) in (13) yields

ûn+1 = e−kAûn + ke−kA
∫ 1

0

ekAτ
(
F̂ (un, tn) + kτ

F̂ (ân, tn + k)− F̂ (un, tn)

k

)
dτ

= ân +
A−2

k
(e−kA − 1 + kA)(F̂ (ân, tn + k)− F̂ (un, tn)). (17)
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Eq. (17) represents the second-order ETDRK [66]. We want to compute A−1(1−e−kA)

and A−2

k
(e−kA − 1 + kA) in (15 ) and (17) efficiently by approximating the matrix

exponential by diagonal and sub-diagonal Padé approximations. Here, we employ the

second-order ETD-CN (ETD-Padé(1,1)) and ETD-Padé(0,2) schemes, where their

derivations for the integer order are given in [128] and [129], respectively.

2.3.1 The second-order ETD schemes

The rational approximations (1,1)-Padé and (0,2)-Padé to e−z are given by

R1,1(z) = (2− z)(2 + z)−1,

R0,2(z) = 2(2 + 2z + z2)−1.

In Fig. 1, we show the behavior of the exponential function (e−z) and the Padé ap-

proximation R1,1(z), and the behavior of the exponential function (e−z) and the Padé

approximation R0,2(z) for real values of z, where z ∈ [0, 20]. In Fig. 2, we show

the behavior of the Padé approximations R1,1(z) and R0,2(z) for z = x + iy, where

x ∈ [0, 20] and y ∈ [−10, 10].

Figure 1: Behavior of e−z and R1,1(z), e−z and R0,2(z) for z ∈ [0, 20].
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Figure 2: Behavior of R1,1(z) and R0,2(z) for z ∈ [0, 20]× [−10, 10].

2.3.1.1 The ETD-CN scheme

By replacing the matrix exponential (e−kA) in (17) with the Padé approximation

R1,1(kA), we obtain the ETD-CN scheme [130]

v̂n+1 = b̂n +
A−2

k
(R1,1 − 1 + kA)(F̂ (b̂n, tn + k)− F̂ (vn, tn))

= b̂n + k(2 + kA)−1[F̂ (b̂n, tn + k)− F̂ (vn, tn)], (18)

where

b̂n = R1,1(kA)v̂n + A−1(1−R1,1(kA))F̂ (vn, tn)

= R1,1(kA)v̂n + 2k(2 + kA)−1F̂ (vn, tn),

with

R1,1(kA) = (2− kA)(2 + kA)−1.

2.3.1.2 The ETD-Padé(0,2) scheme

Similarly, replacing the matrix exponential (e−kA) in (17) by the Padé approximation
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R0,2(kA), we obtain the ETD-Padé(0,2) scheme [130]

v̂n+1 = b̂n +
(−A)−2

k
(R0,2(kA)− 1 + kA)(F̂ (b̂n, tn + k)− F̂ (vn, tn))

= b̂n + k(2 + 2kA+ (kA)2)−1(1 + kA)[F̂ (b̂n, tn + k)− F̂ (vn, tn)]

= b̂n + kP1(kA)[F̂ (b̂n, tn + k)− F̂ (vn, tn)], (19)

where

b̂n = R0,2(kA)v̂n + A−1(1−R0,2(kA))F̂ (vn, tn)

= R0,2(kA)v̂n + k(2 + 2kA+ (kA)2)−1(2 + kA)F̂ (vn, tn)

= R0,2(kA)v̂n + kP2(kA)F̂ (vn, tn),

with

R0,2(kA) = 2(2 + 2kA+ (kA)2)−1,

P1(kA) = (2 + 2kA+ (kA)2)−1(1 + kA),

P2(kA) = (2 + 2kA+ (kA)2)−1(2 + kA).

2.4 Stability analysis

We study the linear stability of the ETD-CN and ETD-Padé(0,2) schemes by plotting

their stability regions. We consider the following nonlinear ODE

ût = −cû+ F̂ (u). (20)

Assume that there exists a fixed point û0 such that −cû0 +F̂ (û0) = 0, after linearizing

we obtain

ût = −cû+ λû, (21)
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where û is the perturbation of û0 and λ = F̂ ′(û0), cf. [66].

For all λ, the fixed point û0 is stable if Re(λ−c) < 0. Let y = −ck and x = λk, where

k is the time step. We introduce the amplification factor by applying the ETD-CN

scheme to (21)

r(x, y) =
ûn+1

ûn
= c0 + c1x+ c2x

2, (22)

where

c0 =
2 + y

(2− y)
,

c1 =
2 + y

(2− y)2
+

1

(2− y)
,

c2 =
2

(2− y)2
.

Similarly, by applying the ETD-Padé(0,2) scheme to (21), we get the following am-

plification factor

r(x, y) =
ûn+1

ûn
= c0 + c1x+ c2x

2, (23)

where

c0 =
2

(2 + 2y + y2)
,

c1 =
4 + 4y + y2

(2 + 2y + y2)2
,

c2 =
2 + 3y + y2

(2 + 2y + y2)2
.

If y = 0, then the amplification factors in (22) and (23) become

r(x, 0) = 1 + x+
1

2
x2,

which represents the amplification factor of the second-order Runge-Kutta scheme.

In order to get the stability regions, we assume that r(x, y) < 1. By choosing x to be

a complex number with some fixed negative values of y, the stability regions can be

seen in Figs. 3a and 3b for the ETD-CN and ETD-Padé(0,2) schemes, respectively.



26

According to Beylkin et al. [131], for the method to be useful, it is important that

the stability regions grow as |y| becomes larger. Figs. 3a and 3b indicate the stability

of the ETD-CN and ETD-Padé(0,2) schemes since the stability regions become larger

as y → −∞ [66].

2.5 The ETD-CN algorithm

Algorithm 1 ETD-CN three-dimensional algorithm with Neumann boundary con-

ditions

1: Given: L = (b− a), α, Nx, k, κα, u, and T .

2: Compute λ = (((0 : Nx− 1)π/L)2 + ((0 : Ny − 1)π/L)2 + ((0 : Nz − 1)π/L)2)
α
2 . .

Nx = Ny = Nz.

3: Let h = L
Nx

, compute x, y, and z such that x = y = z = a+ (0 : Nx − 1)h+ h
2
.

4: Set a1 = (2 + kκαλ) and a2 = (2− kκαλ). . ETD-CN coefficients.

5: for n = 1, 2, . . . , round(T/dt), do

6: udct = dctn(u).

7: t = nk.

8: Compute f(un, tn) as fn using the given u. . reaction term.

9: bn = idctn((a2udct + 2k dctn(fn))/a1).

10: Compute f(bn, tn + k) as fn+1 using bn.

11: u = idctn(dctn(bn) + (k dctn(fn+1 − fn))/a1).

12: end for
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2.6 The ETD-Padé(0,2) algorithm

Algorithm 2 ETD-Padé(0,2) three-dimensional algorithm with Neumann boundary

conditions

1: Given: L = (b− a), α, Nx, k, κα, u, and T .

2: Compute λ = (((0 : Nx− 1)π/L)2 + ((0 : Ny − 1)π/L)2 + ((0 : Nz − 1)π/L)2)
α
2 . .

Nx = Ny = Nz.

3: Let h = L
Nx

, compute x, y, and z such that x = y = z = a+ (0 : Nx − 1)h+ h
2
.

4: Set a1 = (2 + 2kκαλ+ (kκαλ)2) and a2 = (1 + kκαλ). . ETD-Padé(0,2)

coefficients.

5: for n = 1, 2, . . . , round(T/dt), do

6: udct = dctn(u).

7: t = nk.

8: Compute f(un, tn) as fn using the given u. . reaction term.

9: bn = idctn((2udct + k(2 + kκαλ)dctn(fn))/a1).

10: Compute f(bn, tn + k) as fn+1 using bn.

11: u = idctn(dctn(bn) + (k a2 dctn(fn+1 − fn))/a1).

12: end for

Remark. In the case of using the homogeneous Dirichlet boundary conditions, λ =

(((1 : Nx)π/L)2 + ((1 : Ny)π/L)2 + ((1 : Nz)π/L)2)
α
2 , h = L

Nx+1
, dctn and idctn

are replaced by dstn and idstn1, respectively. 1D and 2D (Discrete Sine/Cosine

1dstn/dctn represent the Discrete Sine/Cosine Transforms for n arbitrary deminsions, and id-

stn/idctn are their inverses.
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Transforms and their inverses) are also discussed in details for the scheme proposed

by Bueno-Orovio et al. [52].

(a) ETD-CN (b) ETD-Padé (0,2)

Figure 3: Stability regions at some fixed negative values of y.

2.7 Numerical experiments

This section discusses the results obtained by applying our schemes to different widely

used space-fractional reaction-diffusion models. Numerical experiments include a 2D

heat equation with a source term, the FitzHugh Nagumo model which arises in the

excitable media study [98, 99], the Schnakenberg model that includes oscillatory be-

havior and depicts an auto-catalytic chemical reaction [111], the Brusselator model

which appears in the study of the formation of ozone by atomic oxygen via a triple col-

lision [109], a 3D enzyme kinetics reaction-diffusion problem of the Michaelis-Menten

type [132], and finally, the 2D Allen-Cahn equation with non-smooth initial condition,

that describes the domain coarsening kinetics in alloys, and other systems developing

formation and motion of phase boundaries [81, 133].
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2.7.1 Test Problem 1: a 2D heat equation

We consider the 2D space-fractional heat equation with a source term [52]

∂u

∂t
= −κα(−∆)α/2u+ f(u, t), (24)

where

f(u, t) = tα
κα
16

4∑
i=1

(
1 + λ

α/2
i

)
vi + αtα−1 sin3(πx) sin3(πy)− καu,

and

v1 = 9 sin(πx) sin(πy), λ1 = 2π2,

v2 = −3 sin(πx) sin(3πy), λ2 = 10π2,

v3 = −3 sin(3πx) sin(πy), λ3 = 10π2,

v4 = sin(3πx) sin(3πy), λ4 = 18π2,

subject to the initial condition u(x, y, 0) = 0 and homogeneous Dirichlet boundary

conditions, (x, y) ∈ [0, 1]2. The exact solution is

u(x, y, t) = tα sin(3πx) sin(3πy).

We selected this problem as a benchmark test problem with an exact solution to verify

that the proposed schemes achieve the second-order accuracy in time as expected. The

numerical and exact solutions of (24) are demonstrated in Fig. 4 at κα = 10, Nx =

128, and k = 0.0025 for α = 2 and α = 1.5, the simulations run up to T = 1.0.

The L∞ error, and order of convergence for the proposed schemes and for the

Bueno-Orovio et al. scheme (using the fixed point iteration M = 1 for treating the

nonlinear term) are listed in Tables 1 and 2 at T = 1, and Nx = 128 with the fractional

power α = 2 and 1.5. The computed rates of convergence agree with the expected

rates of the proposed schemes which are second-order accurate in time, while the
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α = 2

α = 1.5

(a) ETD-CN (b) ETD-Padé(0,2) (c) Exact solution

Figure 4: Numerical and exact solutions of (24).

Bueno-Orovio et al. scheme is just a first-order accurate in time. When the exact

solution is known, the order of convergence in time is computed by

order of convergence =
log10

( ∥∥u− ukj∥∥∞ /∥∥u− ukj+1

∥∥
∞

)
log10(kj/kj+1)

,

where u is the exact solution, ukj and ukj+1
are the numerical solutions with the time

step size kj and kj+1, respectively. Fig. 5 visualizes the time rates of convergence of

the schemes with Log-Log scale graph.
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α = 2

α = 1.5

(a) ETD-CN (b) ETD-Padé(0,2) (c) Bueno-Orovio scheme

Figure 5: Time rates of convergence.

2.7.2 Test Problem 2: the FitzHugh-Nagumo model (FHN)

We consider the 2D FitzHugh-Nagumo model, which exhibits excitability [98, 99],

with homogeneous Neumann boundary conditions

∂u

∂t
= −κα(−∆)

α
2 u+ u(1− u)(u− a)− v,

∂v

∂t
= ε(βu− γv − δ), (25)

where a = 0.1, ε = 0.01, β = 0.5, γ = 1, and δ = 0. The domain of interest is [0, 2.5]2

and the diffusion coefficient κα = 10−4. The initial state (u, v) = (0, 0) was perturbed
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Table 1: α = 2.

ETD-CN ETD-Padé(0,2) Bueno-Orovio et al. scheme
k L∞ error order L∞ error order L∞ error order

0.00250 1.9380e-05 - 3.1475e-05 - 1.6309e-04 -
0.00125 5.7744e-06 1.7469 8.5540e-06 1.8796 8.1588e-05 0.9992
0.00063 1.6211e-06 1.8327 2.1950e-06 1.9624 4.0805e-05 0.9996
0.00031 4.3490e-07 1.8982 5.4466e-07 2.0108 2.0405e-05 0.9998

Table 2: α = 1.5.

ETD-CN ETD-Padé(0,2) Bueno-Orovio et al. scheme
k L∞ error order L∞ error order L∞ error order

0.00250 1.7857e-05 - 2.4822e-05 - 2.5681e-04 -
0.00125 4.8957e-06 1.8669 6.1472e-06 2.0136 1.2844e-04 0.9996
0.00063 1.2896e-06 1.9246 1.5017e-06 2.0333 6.4228e-05 0.9998
0.00031 3.3158e-07 1.9595 3.6825e-07 2.0278 3.2116e-05 0.9999

by setting the lower-left quarter of the spatial domain to u = 1 and the upper half

part to v = 0.1, causing the initial data to curve and rotate clockwise creating the

spiral waves. Fig. 6 shows the spiral waves of this model at the choice of T = 2000,

k = 1, and Nx = 256. It can be observed from Figs. 6b, 6c, 6e, and 6f that the width

of the wavefront is reduced as α decreases and also the same to the wavelength, which

allows the domain to accommodate a larger number of wavefronts for a small value

of α.

Fig. 7 shows the effect of decreasing the diffusion coefficient in the solution profiles

of the model. In Figs. 7a - 7f we have the same choice of the parameters as those

for Fig. 6a except for the diffusion coefficient κα, and we notice that the width of

the wavefront in Figs. 7b, 7c, 7e, and 7f are approximately the same as that in Figs.

6b, 6c, 6e, and 6f, respectively, but with a larger wavelength of the system in the

fractional diffusion case, see [52, 134]. Table 3 shows the efficiency of the ETD-CN

and ETD-Padé(0,2) schemes compared with the scheme introduced by Bueno-Orovio

et al. [52].
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ETD-CN

(a) α = 2 (b) α = 1.7 (c) α = 1.5

ETD-Padé(0,2)

(d) α = 2 (e) α = 1.7 (f) α = 1.5

Figure 6: Spiral waves of the FHN (25) at different values of α.

Table 3: Time in seconds for solving (25) at α = 1.8 and T = 100.

Nx ETD-CN ETD-Padé(0,2) Bueno-Orovio et al. scheme

64 0.4224 0.7583 0.8528
128 1.1236 1.3261 2.1251
256 5.4989 6.0402 8.8458
512 25.1288 25.9283 36.2416
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ETD-CN

(a) κα = 5× 10−5 (b) κα = 3× 10−5 (c) κα = 10−5

ETD-Padé(0,2)

(d) κα = 5× 10−5 (e) κα = 3× 10−5 (f) κα = 10−5

Figure 7: Spiral waves of the FHN (25) at different values of κα.

2.7.3 Test Problem 3: the 2D Schnakenberg model

We consider the 2D space-fractional Schnakenberg model [111] with homogeneous

Neumann boundary conditions on 0 < x, y < 1. The model is considered as a

simplified version of the Brusselator model [90]

∂u

∂t
= −κu(−∆)

α
2 u+ γ(a− u+ u2v),

∂v

∂t
= −κv(−∆)

α
2 v + γ(b− u2v), (26)
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the initial conditions are given as

u(x, y, 0) = 0.919145 + 0.0016 cos(2π(x+ y)) + 0.01
8∑
j=1

cos(2πjx),

v(x, y, 0) = 0.937903 + 0.0016 cos(2π(x+ y)) + 0.01
8∑
j=1

cos(2πjx),

where u and v represent the chemical products concentrations. The parameters are

constants and are selected similar to that in [135] as follows: κu = 1, κv = 10,

a = 0.126779, b = 0.792366, and γ = 1000.

The concentrations of u and v are depicted in Figs. 8 and 9 at T = 1 for both of the

derived schemes. As shown in the figures, when the fractional-order decreases, the

observed peaks are thinner and greater in number. Table 4 shows the comparison of

the ETD-CN, ETD-Padé(0,2) schemes, and the scheme introduced by Bueno-Orovio

et al. [52] regarding the CPU(s).

Table 4: Time in seconds for solving (26) at α = 1.9 and T = 0.02 using the time

step k = 0.0001.

Nx ETD-CN ETD-Padé(0,2) Bueno-Orovio et al. scheme

64 0.8723 0.8702 1.7735
128 2.3072 2.3856 4.4085
256 10.5086 11.0750 19.8865
512 52.8898 55.2367 95.3377

2.7.4 Test Problem 4: the 3D Brusselator model

The 3D space-fractional Brusselator model [136] is considered with homogeneous Neu-

mann boundary conditions

∂u

∂t
= −κu(−∆)

α
2 u+B + u2v − (C + 1)u,

∂v

∂t
= −κv(−∆)

α
2 v + Cu− u2v, (27)
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u

v

(a) α = 2 (b) α = 1.8 (c) α = 1.6

Figure 8: The concentration profiles of (26) as obtained by the ETD-CN scheme at

k = 0.001 and Nx = 128.

the initial conditions for u and v are

u(x, y, z, 0) = B + cos(2πx) cos(2πy) cos(2πz),

v(x, y, z, 0) =
C

B
+ cos(2πx) cos(2πy) cos(2πz),

0 ≤ x, y, z ≤ 10, κu = 2, κv = 10, B = 5, and C = 12.

In Figs. 10 and 11 interesting isosurfaces of u = B are shown at different values of

α and T , similar isosurfaces of v = C/B can be obtained. In Table 5, we observe

a much better performance for the ETD-CN and ETD-Padé(0,2) schemes than the

scheme employed by Bueno-Orovio et al. in [52] for a large Nx in particular.
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u

v

(a) α = 2 (b) α = 1.8 (c) α = 1.6

Figure 9: The concentration profiles of (26) as obtained by the ETD-Padé(0,2) scheme

at k = 0.001 and Nx = 128.

Table 5: Time in seconds for solving (27) at α = 1.8 and T = 1 using the time step

k = 0.01.

Nx ETD-CN ETD-Padé(0,2) Bueno-Orovio et al. scheme

20 1.8560 1.8617 3.6178
64 37.0119 36.7273 69.1401
100 144.6593 144.7999 264.9958
128 279.4489 285.5881 519.6427
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(a) α = 2 (b) α = 1.8 (c) α = 1.6

Figure 10: Isosurfaces of u = B with the ETD-CN at T = 5, 10, and 100 (first, second,

and third row, respectively), k = 0.01 and Nx = 21.
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(a) α = 2 (b) α = 1.8 (c) α = 1.6

Figure 11: Isosurfaces of u = B with the ETD-Padé(0,2) at T = 5, 10, and 100 (first,

second, and third row, respectively), k = 0.01 and Nx = 21.

2.7.5 Test Problem 5: a 3D scalar problem

We consider the 3D analogue of a 1D enzyme kinetics reaction-diffusion problem of

the Michaelis-Menten type [132] with the homogeneous Dirichlet boundary conditions

∂u

∂t
= −κα(−∆)

α
2 u−

(
u

1 + u

)
, (28)
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the initial condition is given as follows

u(x, y, z, 0) = 1,

and the domain is [0, 1]3.

ETD-CN

(a) α = 2 (b) α = 1.8 (c) α = 1.6

ETD-Padé(0,2)

(d) α = 2 (e) α = 1.8 (f) α = 1.6

Figure 12: The solution profiles of u(:, :, 3) at T = 1, k = 0.01, κα = 0.2, and Nx = 40.

A discontinuity in the biochemistry problem in (28) between the initial and bound-

ary conditions introduces spurious oscillations in the solution. It is observed that in

Fig. 12a the solution obtained by the A-stable scheme (ETD-CN) has oscillations

near the boundary when α = 2 while the solution obtained by the damping L-stable



41

scheme (ETD-Padé(0,2)) in Fig. 12d at the same value of α is oscillations-free. As

the fractional-order decreases in Figs. 12b and 12c the oscillations in the solutions

obtained by the ETD-CN scheme diminish at α = 1.8, and 1.6, respectively. Also

Figs. 13a, 13b, and 13c use several values of α to show that the oscillations in the

solutions produced by the ETD-CN scheme increase as κα and α increase and that

the solutions produced by the ETD-Padé(0,2) scheme remain oscillations-free even

though κα increases as in Figs. 13d, 13f, and 13e at different values of α.

ETD-CN

(a) α = 2 (b) α = 1.5 (c) α = 1.3

ETD-Padé(0,2)

(d) α = 2 (e) α = 1.5 (f) α = 1.3

Figure 13: The solution profiles of u(:, :, 3) at T = 1, k = 0.01, κα = 2, and Nx = 40.

The L2, L∞ errors, and the order of convergence of the ETD-CN and ETD-
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Padé(0,2) schemes with T = 1, Nx = 20, k = 0.01 and κα = 0.2 are reported in

Tables 6 and 7 at α = 2 and α = 1.6, respectively. Since the exact solution of the

problem is unknown, the order of convergence in time is computed as

order of convergence =
log10

(
Ek/Ek/2

)
log10 (2)

,

where Ek = ‖uk − u2k‖ and Ek/2 =
∥∥uk/2 − uk∥∥, and ‖.‖ represents the L2 and L∞

norms.

In Figs. 14 and 15, we compare the efficiency of the ETD-CN, ETD-Padé(0,2) schemes

and the scheme introduced by Bueno-Orovio et al. [52] utilizing the Log-Log graph

of CPU time and L2 errors, and the Log-Log graph of CPU time and L∞ errors

at α = 2 and α = 1.6, respectively. With the same CPU time, the ETD-CN and

ETD-Padé(0,2) schemes produce small errors, which indicates better efficiency.

Table 6: α = 2.

ETD-CN ETD-Padé(0,2)
k L2 error order L∞ error order L2 error order L∞ error order

0.01000 - - - - - - - -
0.00500 2.8401e-05 - 4.0789e-06 - 4.9699e-05 - 7.1379e-06 -
0.00250 7.1379e-06 1.9924 1.0251e-06 1.9924 1.2703e-05 1.9680 1.8245e-06 1.9680
0.00125 1.7867e-06 1.9982 2.5660e-07 1.9982 3.2098e-06 1.9846 4.6101e-07 1.9846
0.00063 4.4675e-07 1.9997 6.4161e-08 1.9997 8.0631e-07 1.9931 1.1581e-07 1.9931

Table 7: α = 1.6.

ETD-CN ETD-Padé(0,2)
k L2 error order L∞ error order L2 error order L∞ error order

0.01000 - - - - - - - -
0.00500 8.6494e-05 - 1.1722e-05 - 1.6268e-04 - 2.2222e-05 -
0.00250 2.1620e-05 2.0002 2.9300e-06 2.0003 4.1046e-05 1.9867 5.5996e-06 1.9886
0.00125 5.4040e-06 2.0003 7.3236e-07 2.0003 1.0305e-05 1.9939 1.4047e-06 1.9950
0.00063 1.3508e-06 2.0002 1.8307e-07 2.0002 2.5813e-06 1.9972 3.5172e-07 1.9978
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Figure 14: A comparison of the errors vs CPU time at α = 2, T = 1, k = 0.01,

κα = 0.2, and Nx = 20.

Figure 15: A comparison of the errors vs CPU time at α = 1.6, T = 1, k = 0.01,

κα = 0.2, and Nx = 20.
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2.7.6 Test Problem 6: the 2D Allen-Cahn equation with non-smooth data

Finally, we consider the 2D Allen-Cahn equation with the homogeneous Dirichlet

boundary conditions and non-smooth initial data

∂u

∂t
= −κα(−∆)

α
2 u+

(
u3 − u

)
, (x, y) ∈ [0, 1]2, (29)

subject to the following initial condition [137], see Fig. 16,

u(x, y, 0) =


x3
(
1− x3

)
y(1− y), x ∈ [0, 0.5],

7
16
x(1− x)y(1− y), x ∈ (0.5, 1].

(30)

Figure 16: The non-smooth initial condition (30).

Fig. 17 shows the solutions of (29) with non-smooth initial condition (30) for

Nx = 30 and k = 1/5. It is observed that the ETD-CN scheme produces solutions with

unwanted oscillations, these oscillations diminish as the fractional-order decreases.

The ETD-Padé(0,2) scheme is oscillation-free for any value of the fractional-order

and with any time step.
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ETD-CN

(a) α = 2 (b) α = 1.7 (c) α = 1.5

ETD-Padé(0,2)

(d) α = 2 (e) α = 1.7 (f) α = 1.5

Figure 17: The solution profiles of (29) using the initial condition (30) at T = 1 and

κα = 0.65.

2.8 Conclusion

In this chapter, two numerical schemes of the space-fractional reaction-diffusion equa-

tions have been introduced. We have used the Fourier spectral approach in space,

that can remove the stiffness related to the higher order of the spatial derivative,

and second-order ETD schemes in time. The linear stability analysis was discussed.

Numerical experiments were performed on multidimensional space-fractional reaction-
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diffusion systems for problems of practical interest to validate the effectiveness and

reliability of the derived schemes. Their orders of convergence were demonstrated

computationally. It was shown that the ETD-CN scheme produced spurious oscil-

lations on problems with non-smooth data, whereas the ETD-Padé(0,2) scheme has

been found to produce reliable results without unwanted oscillations.
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CHAPTER 3

FOURIER SPECTRAL HIGH-ORDER ETD SCHEME

3.1 Introduction

This chapter introduces a high-order time stepping scheme, which is based on using

the Fourier spectral in space and a fourth-order diagonal Padé approximation to the

matrix exponential function for solving multidimensional space-fractional reaction-

diffusion equations. The resulting time stepping scheme is developed based on an

ETD approach which alleviates solving a large non-linear system at each time step

while maintaining the stability of the scheme. The non-locality of the fractional op-

erator in some other numerical schemes for these equations leads to full and dense

matrices. This scheme is able to overcome such computational inefficiency due to

the full diagonal representation of the fractional operator. It also attains spectral

convergence for multiple spatial dimensions. The stability of the scheme is discussed

through the investigation of the amplification symbol and plotting stability regions,

which provides an indication of the stability of the scheme. The convergence analysis

is performed empirically to show that the scheme is fourth-order accurate in time, as

expected. Numerical experiments on reaction-diffusion systems with application to

pattern formation are discussed to show the effect of the fractional-order in space-

fractional reaction-diffusion equations and to validate the effectiveness of the scheme.

We employ a high-order ETD Runge-Kutta scheme for multidimensional systems

of space-fractional reaction-diffusion equations. The original ETDRK4 scheme was

developed by Cox and Matthews in [66] for the integer-order reaction-diffusion equa-

tions. It requires inversion of the matrix polynomial which can be computationally

inefficient and inaccurate. These issues were avoided for integer-order equations by

employing rational Padé approximations (see for example, Khaliq et al. [69]). In this

work, we extend this approach to fractional partial differential equations. For the
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spatial discretization, we use the Fourier approximation, which provides the spectral

convergence and allows the non-local fractional operator to be diagonalized.

3.2 Fourth-order time stepping scheme

The fractional Laplacian is discretized by using the Fourier spectral approach dis-

cussed in Chapter 2. Eq. (9) can be rewritten by multiplying it with the integrating

factor eAt and integrating the equation from tn to tn+1

û(tn+1) = e−Akû(tn) + e−Ak
∫ k

0

eAτ F̂ (u(tn + τ), tn + τ)dτ, (31)

where k is the time step, û(tn+1) = F [u(tn+1)], û(tn) = F [u(tn)], and F̂ (u(tn+τ), tn+

τ) = F [f(u(tn + τ), tn + τ)].

We let ûn, ûn+1, and F̂n denote the numerical solutions of û(tn), û(tn + 1), and

F̂ (un, tn), respectively. Eq. (31) is exact and considered as the basis of the ETD

schemes. Depending on the approximations to the matrix exponential functions and

the integral term, different ETD schemes are obtained. If F̂ is supposed to have the

constant value F̂n between tn and tn+1, i.e., F̂ = F̂n +O(k), then (31) is given by

ûn+1 = e−Akûn −
F̂n
A

(e−Ak − 1). (32)

The above equation is considered as the simplest approximation to the integral in

(31), with a local truncation error k2F̂ ′/2. Rather, if we assume a higher-order

approximation then

F̂ (t) = F̂n + (t− tn)
F̂n − F̂n−1

k
, t ∈ [tn, tn+1] (33)

and (31) becomes

ûn+1 = e−Akûn +
F̂n((1− Ak)e−Ak − 1 + 2Ak)− F̂n−1(e−Ak − 1 + Ak)

A2k
, (34)
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which has a local truncation error 5k3F̂ ′′/12 [66].

We utilize a fourth-order time stepping scheme as proposed by Khaliq et al. [69],

which is based on the (2,2)-Padé approximation by replacing the matrix exponential

functions in the ETDRK4 given below [66]. In [138], it was noticed that Khaliq et al.

[69] alleviated the numerical instabilities of the ETDRK4 which appear from issues

such as having A = 0 for some modes, or having kA too small.

ûn+1 = e−Akûn +
1

k2
(−A)−3

(
F̂ (un, tn)[−4 + kA+ e−Ak(4 + 3kA+ (kA)2)]

+ 2(F̂ (ân, tn + (k/2)) + F̂ (b̂n, tn + (k/2)))[2− kA+ e−Ak(−2− kA)]

+ F̂ (ĉn, tn + k)[−4 + 3kA− (kA)2 + e−Ak(4 + kA)]

)
,

(35)

where

ân = e−Ak/2ûn − A−1(e−Ak/2 − 1)F̂ (un, tn),

b̂n = e−Ak/2ûn − A−1(e−Ak/2 − 1)F̂ (ân, tn + (k/2)),

ĉn = e−Ak/2ân − A−1(e−Ak/2 − 1)[2F̂ (b̂n, tn + (k/2))− F̂ (un, tn)].

The Padé approximations are known rational approximations. In particular, the

(2,2)-Padé approximation to e−z is given by

R2,2(z) = (12− 6z + z2)/(12 + 6z + z2). (36)

Fig. 18 (left) shows the behavior of the exponential function (e−z) and R2,2(z) for

real values of z, where z ∈ [0, 20]. Fig. 18 (right) shows the behavior of R2,2(z) for

z = x+ iy ∈ [0, 20]× [−10, 10].
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Figure 18: Behavior of e−z and R2,2(z) for z ∈ [0, 20], and R2,2(z) for z ∈ [0, 20] ×

[−10, 10].

We plug (36) in (35) to obtain the ETD-Padé(2,2) scheme [139]

ûn+1 = R2,2(kA)ûn + P1(kA)F̂ (un, tn)

+ P2(kA)[F̂ (ân, tn + (k/2)) + F̂ (b̂n, tn + (k/2))] + P3(kA)F̂ (ĉn, tn + k),

(37)

where

ân = R2,2(kA/2)ûn + P (kA)F̂ (un, tn),

b̂n = R2,2(kA/2)ûn + P (kA)F̂ (ân, tn + (k/2)),

ĉn = R2,2(kA/2)ân + P (kA)[2F̂ (b̂n, tn + (k/2))− F̂ (un, tn)],

with

R2,2(kA) = (12− 6kA+ (kA)2)/(12 + 6kA+ (kA)2),

R2,2(kA/2) = (48− 12kA+ (kA)2)/(48 + 12kA+ (kA)2),
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P (kA) = 24k/(48 + 12kA+ (kA)2),

P1(kA) = k(2− kA)/(12 + 6kA+ (kA)2),

P2(kA) = 4k/(12 + 6kA+ (kA)2),

P3(kA) = k(2 + kA)/(12 + 6kA+ (kA)2).

Now, Eq. (37) is fully diagonal, which alleviates related numerical difficulties for the

treatment of singular Laplacians such as in the case of the homogeneous Neumann

boundary conditions [52, 140].

3.3 Stability regions

This section demonstrates the linear stability of the scheme, by using the general

approach for stability analysis of a numerical method that uses different methods

for the linear and nonlinear parts of the equation, which was suggested by Cox and

Matthews in [66]. We consider the following nonlinear autonomous ODE

ût = −cû+ F̂ (u). (38)

We assume that there exists a fixed point û(t0) = û0, such that −cû0 + F̂ (û0) = 0.

Linearizing about the fixed point û0, we obtain

ût = −cû+ λû, (39)

where û is the perturbation of û0, and λ = F̂ ′(u). The fixed point û0 is stable if

Re(λ− c) < 0 for all λ. Both c and λ are allowed to be complex-valid. The stability

region of the ETD-Padé(2,2) scheme is four-dimensional and hence hard to represent

[66]. However, the two-dimensional stability region can be obtained if both of the

parameters c and λ are purely real or purely imaginary [141], or if c is fixed and real

and λ is complex [131].
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To get the stability region of our scheme, we apply the ETD-Padé(2,2) scheme in

(37) to (39). If we let r = ûn+1/ûn, y = −ck and x = λk, then we have the following

amplification symbol

r(x, y) = c0 + c1x+ c2x
2 + c3x

3 + c4x
4, (40)

where

c0 =
(12 + 6y + y2)

(12− 6y + y2)
,

c1 =
(2 + y)

(12− 6y + y2)
+

8(48 + 12y + y2)

(48− 12y + y2)(12− 6y + y2)
+

(2− y)(48 + 12y + y2)2

(48− 12y + y2)2(12− 6y + y2)
,

c2 =
96

(48− 12y + y2)(12− 6y + y2)
+

96(48 + 12y + y2)

(48− 12y + y2)2(12− 6y + y2)

+
72(2− y)(48 + 12y + y2)

(48− 12y + y2)2(12− 6y + y2)
− 24(2− y)

(48− 12y + y2)(12− 6y + y2)
,

c3 =
2304

(48− 12y + y2)2(12− 6y + y2)
+

1152(2− y)(48 + 12y + y2)

(48− 12y + y2)3(12− 6y + y2)
,

c4 =
27648(2− y)

(48− 12y + y2)3(12− 6y + y2)
.

Fig. 19 shows the stability regions of the ETD-Padé(2,2) scheme where |r(x, y)| = 1

in the complex x-plane, which represents the case when c is fixed and real and λ is

complex. We select several real non-positive values of y where the axes are imaginary

and real parts of x. It is observed that as y → 0, the stability region tends to the

stability region of the scheme of the fourth-order Rung-Kutta. According to Beylkin

et al. [131], for the method to be useful, it is important that stability regions grow

as y → −∞. The stability regions as shown in Fig. 19 indicate the stability of the

ETD-Padé(2,2) scheme since they grow larger as y → −∞.

3.4 The ETD-Padé(2,2) algorithm
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Algorithm 3 ETD-Padé(2,2) three-dimensional algorithm with Neumann boundary

conditions

Given: L = (b− a), α, Nx, k, κα, u, and T .

Compute λ = (((0 : Nx − 1)π/L)2 + ((0 : Ny − 1)π/L)2 + ((0 : Nz − 1)π/L)2)
α
2 . .

Nx = Ny = Nz.

Let h = L
Nx

, compute x, y, and z such that x = y = z = a+ (0 : Nx − 1)h+ h
2
.

Set the coefficients:

r1 = (48 + 12 k κα λ+ (k κα λ)2), r2 = (48− 12 k κα λ+ (k κα λ)2).

r3 = (12 + 6 k κα λ+ (k κα λ)2), r(2,2) = (12− 6 k κα λ+ (k κα λ)2).

p = (24 k), p1 = k(2− k κα λ).

p2 = (4 k), p3 = k (2 + k κα λ).

for n = 1, 2, . . . , round(T/dt), do

udct = dctn(u).

t = nk.

Compute f(un, tn) as fun using the given u.

an = idctn((r2 udct + p dctn(fun))/r1).

Compute f(an, tn + k) as fan using an.

bn = idctn((r2 udct + p dctn(fan))/r1).

Compute f(bn, tn + k) as fbn using bn.

cn = idctn((r2 dctn(an) + p dctn(2 fbn − fun))/r1).

Compute f(cn, tn + k) as fcn using cn.

u = idctn((r(2,2) udct + p1 dctn(fun) + p2 dctn(fan + fbn) + p3 dctn(fcn))/r3).

end for



54

Figure 19: Stability regions of the ETD-Padé(2,2) scheme in the complex x-plane.

3.5 Numerical experiments

This section includes several numerical problems to demonstrate the effectiveness of

the proposed scheme. We consider a 2D heat equation with a source term, the Gray-

Scott model and the Brusselator problem (both of which are 2D systems), and finally

the 3D Schnakenberg system. In these test problems, we consider both homogeneous

Dirichlet and Neumann boundary conditions. In the numerical tests, we perform

some computational convergence analysis. The accuracy of the approach is measured

using the discrete L2 norm error and the maximum norm error L∞ defined as

L2 =
√
h〈ej, ej〉,

L∞ = max
j
|ej|,

where ej = uj−Uj, uj and Uj are the jth exact and numerical solutions, respectively.

The rate of convergence in time can be computed as

rate of convergence =
log10

( ∥∥(u− ukj)
∥∥ /∥∥(u− ukj+1

)
∥∥ )

log10(kj/kj+1)
, (41)
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where u is the exact solution, ukj and ukj+1
are the numerical solutions with the time

step size kj and kj+1, respectively.

3.5.1 Test Problem 1: a 2D benchmark problem

The following problem is the space-fractional heat equation in two space dimensions

with a source term [52]

∂u

∂t
= −κα(−∆)α/2u+ f(u, t), (42)

where

f(u, t) = tα
κα
16

4∑
i=1

(1 + λ
α/2
i )vi + αtα−1 sin3(πx) sin3(πy)− καu,

and

v1 = 9 sin(πx) sin(πy), λ1 = 2π2,

v2 = −3 sin(πx) sin(3πy), λ2 = 10π2,

v3 = −3 sin(3πx) sin(πy), λ3 = 10π2,

v4 = sin(3πx) sin(3πy), λ4 = 18π2,

with the initial condition u(x, y, 0) = 0 and homogeneous Dirichlet boundary condi-

tions, (x, y) ∈ [0, 1]2. The exact solution is given by

u(x, y, t) = tα sin(3πx) sin(3πy).

We selected this problem as a benchmark test problem with an exact solution to verify

that the proposed scheme achieves the fourth-order accuracy in time, as expected.

The numerical and exact solutions of (42) are demonstrated in Fig. 20 for κα =

10, Nx = 51, k = 0.01, α = 1.6 and the simulations run up to T = 1.0. To present

the performance of the derived scheme, the numerical experiment was carried out up

to T = 1.0 with α = 1.5. We also used temporal step sizes starting with k = 0.01 and
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a large space step with Nx = 60, whereas the step size is given by using Nx = 150 for

the scheme proposed by Bueno-Orovio et al. [52]. The results such as the maximum

error, rates of convergence, and CPU time are listed in Table 8. Despite the higher-

order of the ETD-Padé(2,2) scheme, it achieves better performance in terms of the

computational efficiency. The L2 norm error, maximum error (L∞ norm error), rate

of convergence, and CPU time for the ETD-Padé(2,2) scheme are listed in Table 9 at

T = 1, Nx = 40, and k = 0.001 for various fractional powers α. The computed rates

of convergence agree with the expected rate of the proposed scheme. Fig. 21 shows

the log-log graphs of the L2 and L∞ errors vs. the time step to visualize the rate of

convergence of the scheme using different values of α at Nx = 40 and k = 0.001.

Figure 20: The solution obtained by the ETD-Padé(2,2) (left) and the exact solution

of (42) (right).
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Table 8: A comparison in terms of the errors, rate of convergence, and CPU(s).

k
ETD-Padé(2, 2) Bueno-Orovio et al.

L∞ error order CPU(s) L∞ error order CPU(s)

0.00100 2.08× 10−9 - 7.50 2.53× 10−6 - 53.37
0.00050 1.45× 10−10 3.84 15.40 1.26× 10−6 1.00 154.00
0.00025 9.59× 10−12 3.92 29.24 6.32× 10−7 1.00 352.83
0.00013 6.17× 10−13 3.96 59.76 3.16× 10−7 1.00 763.02
0.00006 4.98× 10−14 3.63 121.24 1.58× 10−7 1.00 1547.45

Table 9: Errors, convergence rates in time and CPU(s).

α k L2 error order L∞error order CPU(s)

2

0.00100 1.6022e-08 - 8.8929e-09 - 2.9496
0.00050 1.4611e-09 3.4549 8.1198e-10 3.4531 5.6273
0.00025 1.1078e-10 3.7213 6.1363e-11 3.7260 11.0524
0.00013 7.6334e-12 3.8592 4.2086e-12 3.8659 21.9122

1.8

0.00100 7.2614e-09 - 4.0632e-09 - 3.0059
0.00050 5.7213e-10 3.6658 3.1943e-10 3.6691 5.5985
0.00025 4.0195e-11 3.8313 2.2390e-11 3.8346 11.1008
0.00013 2.6602e-12 3.9174 1.4752e-12 3.9239 22.1343

1.6

0.00100 2.8492e-09 - 1.5990e-09 - 2.9363
0.00050 2.0506e-10 3.7965 1.1488e-10 3.7990 5.8309
0.00025 1.3752e-11 3.8983 7.6905e-12 3.9009 11.4474
0.00013 8.8223e-13 3.9624 4.8650e-13 3.9826 22.3631

1.4

0.00100 9.9190e-10 - 5.5513e-10 - 2.8237
0.00050 6.7557e-11 3.8760 3.7778e-11 3.8772 5.6050
0.00025 4.4027e-12 3.9397 2.4575e-12 3.9423 11.0941
0.00013 2.7373e-13 4.0076 1.3223e-13 4.2161 21.9620
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α = 2.0

α = 1.8

α = 1.6

α = 1.4

Figure 21: Time rates of convergence of the scheme.
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3.5.2 Test Problem 2: the Gray-Scott model

We consider the space-fractional version of the Gray-Scott model with homogeneous

Neumann boundary conditions [142, 143]

∂u

∂t
= −κu(−∆)

α
2 u− uv2 + F (1− u),

∂v

∂t
= −κv(−∆)

α
2 v + uv2 − (F + κ)v, (43)

which corresponds to the two reactions [106]

U + 2V → 3V,

V → P.

The diffusion coefficients (κu and κv), dimensionless feed rate F , and dimensionless

depletion rate κ are all positive constants, with κu
κv

> 1. Depending on the values

of F and κ, different patterns can be obtained. The domain is taken to be [0, 1]2.

We chose κu = 2 × 10−5, κu
κv

= 2, F = 0.03 and κ = 0.055 based on that in [52].

The system was placed in the initial state (u, v) = (1, 0), and then, (32 × 32) mesh

points from the center of the grid were perturbed to (u, v) = (0.5, 0.25). The initial

disturbance propagates from the center outward until the entire grid is influenced by

the initial perturbation.

Fig. 22 shows the pattern formations of the Gray-Scott model that are obtained by

applying the ETD-Padé(2,2) scheme for different values of α using Nx = 400 and

k = 1 at T = 1000, 2000, 6000, and 8000, corresponding to the first, second, third,

and fourth columns, respectively.

When α = 2, the model represents the negative solutions in the steady-state field. As

the fractional power decreases to α = 1.7, the velocity of propagation of the initial

perturbation reduces. A finer granulation can be observed as α decreases and T grows

to reach the final steady-state field [52].
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α = 2.0

α = 1.7

α = 1.5

Figure 22: Solution profiles of the Gray-Scott model (43) at different values of α.

3.5.3 Test Problem 3: the 2D Brusselator model

We consider the 2D space-fractional Brusselator system of two equations, on [0, 1]2

[144, pp. 248-252]

∂u

∂t
= −κα(−∆)

α
2 u+B + u2v − (C + 1)u,

∂v

∂t
= −κα(−∆)

α
2 v + Cu− u2v, (44)
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subject to homogeneous Neumann boundary conditions and the following initial con-

ditions

u(x, y, 0) = 0.5 + y,

v(x, y, 0) = 1 + 5x.

Computations are performed using κα = 2×10−3, B = 1, C = 3.4, and carried out up

to T = 10. The solution profiles of the concentrations u and v for α = 2, 1.8, and 1.6,

Nx = 100, and k = 0.1 are shown in Fig. 23.

In Tables 10 and 11, the L2, L∞ errors, rates of convergence and CPU(s) for both

the u and v components are computed based on (45) for a sequence of temporal

steps starting with k = 0.05. We also set Nx = 64, T = 5, and α = 2, and 1.7.

Since the exact solution is unknown for this nonlinear problem, then the error is

calculated between the consecutive solutions as the time step k is halved, and the

rate of convergence in time can be computed as

rate of convergence =
log10(Ek/Ek/2)

log10(2)
, (45)

where Ek = ‖uk − u2k‖ and Ek/2 =
∥∥uk/2 − uk∥∥ are the L2 or L∞ norm errors at k

and k/2.

Table 10: Errors, convergence rates in time and CPU(s) for u.

α k L2 error order L∞error order CPU(s)

2

0.05000 - - - - 0.6297
0.02500 3.4140e-04 - 4.8167e-04 - 1.1647
0.01250 2.4525e-05 3.7991 3.4662e-05 3.7966 2.4769
0.00625 1.6482e-06 3.8952 2.3277e-06 3.8964 4.4538
0.00313 1.0689e-07 3.9467 1.5077e-07 3.9485 8.6909

1.7

0.05000 - - - - 0.7571
0.02500 5.2202e-04 - 8.0601e-04 - 1.1982
0.01250 3.5260e-05 3.8880 5.6652e-05 3.8306 2.3498
0.00625 2.2985e-06 3.9392 3.7449e-06 3.9191 4.4212
0.00313 1.4676e-07 3.9692 2.4098e-07 3.9579 8.7474
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Table 11: Errors, convergence rates in time and CPU(s) for v.

α k L2 error order L∞error order CPU(s)

2

0.05000 - - - - 0.6046
0.02500 5.2376e-04 - 6.0522e-04 - 1.1618
0.01250 3.5881e-05 3.8676 4.3577e-05 3.7958 2.2414
0.00625 2.3790e-06 3.9148 2.9271e-06 3.8960 4.5707
0.00313 1.5341e-07 3.9549 1.8963e-07 3.9482 9.3587

1.7

0.05000 - - - - 0.7382
0.02500 7.1002e-04 - 9.3479e-04 - 1.2476
0.01250 4.7016e-05 3.9166 6.5755e-05 3.8295 2.3908
0.00625 3.0492e-06 3.9466 4.3579e-06 3.9154 4.4764
0.00313 1.9427e-07 3.9723 2.8023e-07 3.9590 8.7510

3.5.4 Test Problem 4: the Schnakenberg model

We consider the system of 3D space-fractional Schnakenberg model [112, 145]

∂u

∂t
= −κu(−∆)

α
2 u+ γ(a− u+ u2v),

∂v

∂t
= −κv(−∆)

α
2 v + γ(b− u2v), (46)

with homogeneous Neumann boundary conditions, and the initial conditions are given

by

u(x, y, z, 0) = 1− exp(−10((x− 0.5)2 + (y − 0.5)2 + (z − 0.5)2)),

v(x, y, z, 0) = exp(−10((x− 0.5)2 + 2(y − 0.5)2 + (z − 0.5)2)).

The parameters used in the numerical experiments are: κu = 1, κv = 12, a = 0.1,

b = 0.9 and γ = 10. The numerical simulation of this model results in interesting

isosurfaces which illustrate the emergence of pattern formations dependent on the

values of T and the fractional power α as can be seen in Figs. 24 and 25.
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α = 2.0

α = 1.8

α = 1.6

Figure 23: Solution profiles of the Brusselator model (44) (u (left column) and v

(right column)).
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α = 2.0

T = 2

T = 5

T = 10

Figure 24: Isosurfaces of u (left column) and v (right column) for the 3D Schnakenberg

model (46) with α = 2, Nx = 21, and k = 0.1 at different values of the final time.
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α = 1.5

T = 2

T = 5

T = 10

Figure 25: Isosurfaces of u (left column) and v (right column) for the 3D Schnakenberg

model (46) with α = 1.5, Nx = 21, and k = 0.1 at different values of the final time.
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3.6 Conclusion

We have developed a high-order time stepping scheme in combination with the Fourier

spectral approach. The scheme was able to remove the stiffness related to the high-

order spatial derivative of the space-fractional reaction-diffusion equations. Moreover,

the scheme was implemented efficiently on large systems of multidimensional space-

fractional reaction-diffusion equations. The stability of the scheme was investigated

by plotting its stability regions, which gave an explanation of its behavior. Numerical

experiments were performed on multidimensional systems, and the results showed the

reliability and stability of the scheme. The rate of convergence of the scheme was

examined computationally and shown to be fourth-order accurate in time.
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CHAPTER 4

FOURTH-ORDER ETD SCHEME WITH NON-HOMOGENEOUS

BOUNDARY CONDITIONS

4.1 Introduction

In this chapter, we develop a fourth-order scheme for space-fractional reaction-diffusion

equations with non-homogeneous boundary conditions. For the spatial discretization,

a modified MTT is used to handle the non-homogeneous boundary conditions and is

combined with a fourth-order time integration based on the ETD approximation. The

partial fraction splitting technique is applied to reduce the computational complexity

of the scheme to be the same as that for the backward Euler. Numerical experiments

are performed to illustrate the reliability and accuracy of the scheme.

Developing numerical solutions for the fractional equations is essential since there

is no effective technique to obtain the exact solution of these equations. Ilic et al.

[72] proposed numerical solution of the space-fractional diffusion equation based on

the MTT with homogeneous boundary conditions, Yang et al. [82] followed this ap-

proach to solve the 2D time-space fractional diffusion equation. Most of the numerical

schemes were considered with homogeneous boundary conditions for solving nonlin-

ear space-fractional equations, see for instance [146, 147]. Ilic et al. [58] extended the

MTT with non-homogeneous boundary conditions for the fractional diffusion equa-

tion.

We develop a fourth-order scheme in time using (2,2)-Padé approximations to the

matrix exponential combined with the MTT for non-homogeneous boundary condi-

tions. The scheme avoids solving nonlinear systems at each time step. Moreover, it

is computationally efficient for solving systems of space-fractional reaction-diffusion

equations due to the utilization of the partial fraction decomposition which only re-

quires Euler-type solvers.
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4.2 MTT with non-homogeneous boundary conditions

We consider the space-fractional reaction-diffusion equation

∂u(x, t)

∂t
=− κα(−∆)

α
2 u(x, t) + f(u, t), 1 < α ≤ 2, t > 0,

u(x, 0) = u0(x), x ∈ Ω = (a, b) ⊂ R,

u(a, t) = g1(t) and u(b, t) = g2(t),

(47)

the fractional Laplacian (−∆)
α
2 is defined via the spectral decomposition of the stan-

dard Laplacian (−∆).

Ilić et al. [72] introduced the MTT for approximating the fractional Laplacian with

homogeneous boundary conditions on a uniform mesh of step size h as

(−∆)
α
2 u ≈ h−αM

α
2 u,

the matrix representation of the fractional Laplacian is generated from the matrix rep-

resentation of the standard Laplace operator using the eigenvalues and eigenvectors,

thus

M
α
2 = PΛ

α
2 P−1,

where Λ is the eigenvalues matrix and P is the eigenvectors matrix,

Λ = diag(λ1, λ2, λ3, . . . , λm−1), λi = 4 sin2
(
iπ
2m

)
, i = 1, 2, . . . ,m− 1,

and P = (ξ1, ξ2, ξ3, . . . , ξm−1), ξi =
(

sin
(

1iπ
m

)
, sin

(
2iπ
m

)
, sin

(
3iπ
m

)
, . . . , sin

(
(m−1)iπ

m

))T
.

The matrix representation of the standard Laplace operator utilizing the finite differ-

ence method with imposed non-homogeneous boundary conditions becomes

(−∆)u ≈ h−2(Mu+ e1g1(t) + em−1g2(t)),

where e1 and em−1 are the 1st and (m− 1)th canonical basis vectors in Rm−1, then

(−∆)
α
2 u = (−∆)

α
2
−1(−∆)u

≈ (h−2M)
α
2
−1(h−2(Mu+ e1g1(t) + em−1g2(t)))

= h−αM
α
2 u+ h−αM

α
2
−1(e1g1(t) + em−1g2(t)).
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If we consider the standard space reaction-diffusion equation

∂u(x, t)

∂t
=− κα

(
− ∂2

∂x2

)
u(x, t) + f(u, t), t > 0,

u(x, 0) = u0(x), x ∈ Ω = (a, b) ⊂ R,

u(a, t) = g1(t) and u(b, t) = g2(t),

(48)

and the space derivative is approximated by utilizing the finite difference method,

then we obtain

du(xi, t)

dt
=− κα

h2
(−u(xi−1, t) + 2u(xi, t)− u(xi+1, t)) + f(u(xi, t), t), i = 1, 2, . . . ,m− 1,

u(xi, 0) = u0(xi), i = 1, 2, . . . ,m− 1,

u(x0, t) = g1(t) and u(xm, t) = g2(t).

We rewrite the above equation in a matrix form as

du

dt
=− κα

h2
Mu+

κα
h2

(e1g1(t) + em−1g2(t)) + f(u, t),

u(x, 0) = u0(x),

where M = tridiag{−1, 2,−1}. Utilizing the MTT as in [58], the space-fractional

reaction-diffusion equation is approximated as

du

dt
=− κα

hα
M

α
2 u+

κα
hα
M

α
2
−1(e1g1(t) + em−1g2(t)) + f(u, t),

u(x, 0) = u0(x).

4.3 ETD with non-homogeneous boundary conditions

The following system of ODEs is obtained by using the above mentioned MTT with

non-homogeneous boundary conditions

du

dt
= −A

α
2 u+ F (u, t), (49)
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where u(0) = u0, A
α
2 = κα

hα
M

α
2 , F (u, t) = κα

hα
M

α
2
−1(e1g1(t) + em−1g2(t)) + f(u, t),

u(t) = [u1(t), u2(t), u2(t), . . . , um−1(t)]T ,

and f(u, t) = [f(u1(t), t), f(u2(t), t), f(u3(t), t), . . . , f(um−1(t), t)]T .

Let k = tn+1 − tn be the time step size such that tn = nk, n = 0, 1, 2, . . . and

un =: u(tn). Then the exact solution of (49) is obtained by the recurrence formula as

u(tn+1) = e−kA
α
2 u(tn) + k

∫ 1

0

e−kA
α
2 (1−τ)F (u(tn + τk), tn + τk)dτ. (50)

Cox and Mathews [66] developed the higher-order approximation ETDRK4 scheme

of Runge-Kutta type

un+1 = e−kA
α
2 un +

1

k2

(
− A

α
2

)−3
(
F (un, tn)

[
− 4I + kA

α
2 + e−kA

α
2
(
4I + 3kA

α
2 +

(
kA

α
2

)2)]
+ 2

(
F

(
an, tn +

k

2

)
+ F

(
bn, tn +

k

2

))[
2I − kA

α
2 + e−kA

α
2
(
− 2I − kA

α
2

)]
+ F (cn, tn + k)

[
− 4I + 3kA

α
2 −

(
kA

α
2

)2
+ e−kA

α
2
(
4I + kA

α
2

)])
,

(51)

where

an = e−
kA

α
2

2 un − A−
α
2

(
e−

kA
α
2

2 − I
)
F (un, tn),

bn = e−
kA

α
2

2 un − A−
α
2

(
e−

kA
α
2

2 − I
)
F

(
an, tn +

k

2

)
,

cn = e−
kA

α
2

2 an − A−
α
2

(
e−

kA
α
2

2 − I
)[

2F

(
bn, tn +

k

2

)
− F (un, tn)

]
.

The matrix A
α
2 is non-diagonal, hence implementing the matrix exponential directly

may experience numerical instability since it is necessary to compute the inverses and

powers.

We propose a modified version of (51) by using the fourth-order (2,2)-Padé approxi-

mation to the matrix exponential e−kA
α
2 , which is given as

R2,2

(
kA

α
2

)
=

12− 6
(
kA

α
2

)
+
(
kA

α
2

)2

12 + 6
(
kA

α
2

)
+
(
kA

α
2

)2 . (52)
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4.3.1 The ETD-Padé(2,2) scheme

By plugging (52) in (51), we get the following scheme

un+1 = R2,2

(
kAα/2

)
un + P1

(
kAα/2

)
F (un, tn)

+ P2

(
kAα/2

) [
F

(
an, tn +

k

2

)
+ F

(
bn, tn +

k

2

)]
+ P3

(
kAα/2

)
F (cn, tn + k),

(53)

where

R2,2

(
kAα/2

)
=
(
12I − 6kAα/2 +

(
kAα/2

)2)(
12I + 6kAα/2 +

(
kAα/2

)2)−1
,

P1

(
kAα/2

)
= k
(
2I − kAα/2

)(
12I + 6kAα/2 +

(
kAα/2

)2)−1
,

P2

(
kAα/2

)
= 4k

(
12I + 6kAα/2 +

(
kAα/2

)2)−1
,

P3

(
kAα/2

)
= k
(
2I + kAα/2

)(
12I + 6kAα/2 +

(
kAα/2

)2)−1
,

and

an = R̃2,2

(
kAα/2

)
un + P̃

(
kAα/2

)
F (un, tn),

bn = R̃2,2

(
kAα/2

)
un + P̃

(
kAα/2

)
F

(
an, tn +

k

2

)
,

cn = R̃2,2

(
kAα/2

)
an + P̃

(
kAα/2

) [
2F

(
bn, tn +

k

2

)
− F (un, tn)

]
,

with

R̃2,2

(
kAα/2

)
=
(
48I − 12kAα/2 +

(
kAα/2

)2)(
48I + 12kAα/2 +

(
kAα/2

)2)−1
,

P̃
(
kAα/2

)
= 24k

(
48I + 12kAα/2 +

(
kAα/2

)2)−1
.
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4.3.2 The partial fraction splitting technique of the scheme

The scheme considered above contains inverses of higher-order matrix polynomials,

which would produce computational inaccuracies as a result of high condition numbers

and roundoff error while computing the power of the matrices. To avoid these difficul-

ties, we employ the partial fraction decomposition proposed by Gallopoulos and Saad

[148], and Khaliq et al. [149]. This approach is able to alleviate ill-conditioning issues

since only implicit Euler-type solvers are needed. It is a parallel algorithm which can

use four different implicit Euler-type linear solvers concurrently at each time step on

a computer with at least two processors.

To compute un+1 in (53), we consider the following partial fraction forms of R2,2 and

Pi

R2,2(z) = (−1)2 +

q1∑
j=1

wj
z − cj

+ 2

q1+q2∑
j=1+q1

<
(

wj
z − cj

)
,

Pi(z) = k

q1∑
j=1

wij
z − cj

+ 2k

q1+q2∑
j=1+q1

<
(

wij
z − cj

)
, i = 1, 2, 3,

where {cj} is the complex pole of R2,2 with q1 + 2q2 = 2, and wj and wij are the

corresponding weights.

To compute an, bn, and cn, we apply

R̃2,2(z) = (−1)2 +

q1∑
j=1

w̃j
z − c̃j

+ 2

q1+q2∑
j=1+q1

<
(

w̃j
z − c̃j

)
,

P̃ (z) = k

q1∑
j=1

Ω̃j

z − c̃j
+ 2k

q1+q2∑
j=1+q1

<
(

Ω̃j

z − c̃j

)
,

where {c̃j} is the complex pole of R̃2,2 with q1 + 2q2 = 2, and w̃j and Ω̃j are the

corresponding weights.

To implement the partial fraction form of the fourth-order scheme, poles and corre-

sponding weights were computed as

c1 = −3.0 + i1.73205080756887729352,

w1 = −6.0− i10.3923048454132637611,
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w11 = −0.5− i1.44337567297406441127,

w21 = −i1.15470053837925152901,

w31 = 0.5 + i0.28867513459481288225,

c̃1 = −6.0 + i3.4641016151377545870548,

w̃1 = −12.0− i20.78460969082652752232935,

Ω̃1 = −i3.46410161513775458705.

4.3.3 The ETD-Padé(2,2) algorithm

For i = 1, . . . , q1 + q2, where q1 = 0, and q2 = 1.

Algorithm 4 ETD-Padé(2,2) algorithm with non-homogeneous boundary conditions

1: Efficiently precompute B1 =
(
kAα/2 − c̃iI

)−1
, and B2 =

(
kAα/2 − ciI

)−1
.

2: for m = 1, 2, . . . ,M = T/k, do

3: Step 1: solve Rai = B1(w̃iun + kΩ̃iF (un, tn)), and compute an as an = un +
q1∑
i=1

Rai + 2

q1+q2∑
i=1+q1

Re(Rai).

4: Step 2: solve Rbi = B1(w̃iun + kΩ̃iF (an, tn + k/2)), and compute bn as bn =

un +

q1∑
i=1

Rbi + 2

q1+q2∑
i=1+q1

Re(Rbi).

5: Step 3: solve Rci = B1(w̃ian+kΩ̃i(2F (bn, tn+k/2)−F (un, tn))), and compute

cn as cn = an +

q1∑
i=1

Rci + 2

q1+q2∑
i=1+q1

Re(Rci).

6: Step 4: solve Rui = B2(wiun + kw1iF (un, tn) + kw2i(F (an, tn + k/2) +

F (bn, tn + k/2)) + kw3iF (cn, tn + k)), and compute un+1 as un+1 = un +

q1∑
i=1

Rui +

2

q1+q2∑
i=1+q1

Re(Rui).

7: end for
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4.4 Numerical experiments

We consider two test problems with non-homogeneous boundary conditions to demon-

strate the effectiveness of the developed scheme. The convergence analysis of the

scheme is shown via calculating the order of convergence. When the analytical solu-

tion is unknown, the errors and order of convergence in time are computed as

order of convergence =
log10(Ek/Ek/2)

log10(2)
,

where Ek = ‖uk − u2k‖ and E k
2

=
∥∥∥u k

2
− uk

∥∥∥ are the L2 or L∞ norm errors at k and

k/2.

4.4.1 Test Problem 1: the Allen-Cahn equation

We consider the 1D space-fractional Allen-Cahn equation with non-homogeneous

Dirichlet boundary conditions

∂u

∂t
= −κα(−∆)

α
2 u+ u− u3,

u(x, 0) = 0.53x+ 0.47 sin(−1.5πx),

u(−1, t) = −1, u(1, t) = 1,

(54)

−1 ≤ x ≤ 1, 0 ≤ t ≤ 100 and κα = 0.01. The solutions around steady states u = +−1

display flat areas separated by interfaces of increasing sharpness as κα decreases to

zero, and the solutions around the unstable state u = 0 coalesce over a long period

of time. This phenomenon is known as metastability [125]. Fig. 26a shows that the

initial data develops to unstable equilibrium, which is followed by a quick evolution to

a one interface of the solution up to the final time. The unstable interface’s lifetime

is largely prolonged as in Fig. 26b when α decreases, and a stable solution can be

observed in Fig. 26c because of the long-tailed impact of the process of the fractional

diffusion [52]. Table 12 reported the results obtained by applying our scheme at
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(a) α = 2 (b) α = 1.8 (c) α = 1.6

Figure 26: Numerical solutions of (54) with h = 0.025 and k = 1 at different values

of α.

h = 0.1 including the L2, L∞ errors, rate of convergence and CPU(s). The scheme

achieves the expected fourth-order accuracy in time.

Table 12: Errors, convergence rates in time and CPU(s).

α k L2 order L∞ order CPU(s)

2

0.10000 - - - - 0.0227
0.05000 1.50e-07 - 2.03e-07 - 0.0245
0.02500 9.19e-09 4.03 1.22e-08 4.06 0.0281
0.01250 5.70e-10 4.01 7.52e-10 4.02 0.0328
0.00625 3.55e-11 4.01 4.68e-11 4.01 0.0485

1.8

0.10000 - - - - 0.0243
0.05000 1.87e-07 - 2.59e-07 - 0.0263
0.02500 1.14e-08 4.04 1.56e-08 4.05 0.0295
0.01250 7.04e-10 4.02 9.60e-10 4.03 0.0342
0.00625 4.37e-11 4.01 5.95e-11 4.01 0.0498

1.6

0.10000 - - - - 0.0305
0.05000 2.23e-07 - 3.14e-07 - 0.0325
0.02500 1.36e-08 4.04 1.88e-08 4.06 0.0365
0.01250 8.36e-10 4.02 1.15e-09 4.03 0.0414
0.00625 5.19e-11 4.01 7.12e-11 4.02 0.0570
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4.4.2 Test Problem 2: the 1D Brusselator system

We consider the 1D space-fractional Brusselator system of two equations with non-

homogeneous Dirichlet boundary conditions

∂u

∂t
= −κα(−∆)

α
2 u+B + u2v − (C + 1)u,

∂v

∂t
= −κα(−∆)

α
2 v + Cu− u2v,

(55)

with the following initial and boundary conditions

u(x, 0) = 1 + sin(2πx), v(x, 0) = 3,

u(0, t) = u(1, t) = 1, v(0, t) = v(1, t) = 3,

0 ≤ x ≤ 1 and 0 ≤ t ≤ 10.

u

v

(a) α = 2 (b) α = 1.7 (c) α = 1.5

Figure 27: The concentration profiles of (55) at h = 0.025 and k = 0.125.
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Fig. (27) illustrates the solution profiles of the system at κα = 1/50, B = 1, and

C = 3, which are chosen similar to that in [136], using different values of α.

4.5 Conclusion

In this chapter, we introduced an efficient numerical solution for the space-fractional

reaction-diffusion equation with non-homogeneous boundary conditions. The scheme

is obtained by using the MTT for the spatial discretization and the (2,2)-Padé approx-

imation for integrating in time. The order of convergence is performed computation-

ally in some mathematical models. The scheme achieved the expected fourth-order

accuracy in time.



78

CHAPTER 5

FOURTH-ORDER MTT-ETD SCHEMES

5.1 Introduction

In this chapter, we propose two high-order schemes for space-fractional reaction-

diffusion equations. The schemes are based on a fourth-order MTT for the spatial

discretization and a fourth-order ETD Runge-Kutta (ETDRK) for the temporal dis-

cretization. The ETDRK schemes are based on diagonal and sub-diagonal Padé

approximations to the matrix exponential functions. It is observed that the A-stable

scheme incurs unwanted oscillations due to high-frequency components present in the

solution. These oscillations diminish as the order of the space-fractional derivative

decreases. We propose a reliability constraint, which is dependent on the order of the

space-fractional derivative, to avoid these oscillations. However, the L-stable scheme

is oscillation-free for any time step. The partial fraction splitting technique is used

to compose computationally efficient versions of the schemes. The amplification fac-

tor of the schemes is investigated by plotting their stability regions. The convergence

analysis is performed on numerical experiments to demonstrate the fourth-order accu-

racy of the developed schemes in space and time. Numerical experiments were made

on multidimensional space-fractional reaction-diffusion equations to demonstrate the

reliability, efficiency and stability of the schemes.

We consider the space-fractional reaction-diffusion equation

∂u(x, t)

∂t
=− κα(−∆)

α
2 u(x, t) + f(u, t), 1 < α ≤ 2, t > 0,

u(x, 0) = u0(x), x ∈ Ω ⊂ Rd, d = 1, 2, 3,

(56)

with either homogeneous Dirichlet or homogeneous Neumann boundary conditions.

The solutions of the nonlinear equations for fractional Laplacians are discussed in

[150, 151, 152, 153] in terms of existence and uniqueness.
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Several numerical approximations for the fractional diffusion and advection-diffusion

equations have been proposed, where solving a system of equations which involves a

matrix with fractional powers is required at each time step. Different methods have

been employed including finite difference [115, 154], finite element [146, 155], and

finite volume methods [156]. The Fourier spectral approach [52, 157, 158], Krylov

methods [82], and fast numerical integrations in conjunction with effective precon-

ditioners [81] also have been used for fractional equations. Farquhar et al. [159]

presented an efficient algorithm on GPU using the contour integration method for

the spatial discretization and the exponential Euler method for the time discretiza-

tion to compute the matrix function vector products.

ETD schemes have been utilized with integer-order reaction-diffusion equations in

[160, 161]. These schemes handle the non-smooth initial data, optimize the compu-

tational time due to the parallel implementation, and achieve higher-order accuracy

while maintaining the stability. Moreover, they avoid the iteration treatment for the

nonlinear part by using constants integral formula. Utilizing ETDRK schemes, de-

veloped by Cox and Matthews [66], requires inverting the matrix polynomials, which

cause some computational difficulties such as inefficiency and instability. These issues

were solved by employing the Padé approximations and partial fraction decomposi-

tion.

We develop two fourth-order schemes for solving space-fractional reaction-diffusion

equations. The schemes are A-stable and L-stable, which are obtained by applying

(2,2)-Padé and (1,3)-Padé approximations, respectively. For some time steps, the

solutions of the A-stable scheme suffer from unwanted oscillations when the initial

data are non-smooth. To avoid these oscillations, we propose a reliability constraint

to estimate the choice of the time step. However, for any time step the L-stable

scheme is oscillation-free and maintains the fourth-order accuracy even though the

initial data are non-smooth. The schemes are discretized spatially by utilizing the

fourth-order compact scheme MTT developed by Ding and Zhang [162].
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5.2 MTT with homogeneous boundary conditions

Definition 5.2.1. Assume the Laplacian (−∆) have a complete set of orthonormal

eigenfunctions ϕl corresponding to the eigenvalues λl on a bounded region Ω, i.e., for

l = 0, 1, 2, . . . ,

(−∆)ϕl = λlϕl,

in Ω;B(ϕ) = 0 on ∂Ω, where B(ϕ) is the homogeneous Dirichlet or Neumann bound-

ary conditions. Let

u =
∞∑
l=0

clϕl such that
∞∑
l=0

|cl|2|λl|α <∞,

then

(−∆)
α
2 u =

∞∑
l=0

clλ
α
2
l ϕl.

As mentioned in Chapter 2, for homogeneous Dirichlet boundary conditions with

x ∈ Ω = (a, b)d, i, d = 1, 2, 3, the eigenvalues and eigenvectors are

λη1,...,ηd =

ηd∑
j=η1

(
(j + 1)π

b− a

)2

,

ϕη1,...,ηd =

(√
2

b− a

)d ηd∏
j=η1

sin

(
(j + 1)π(xm − a)

b− a

)
, ηi = 0, 1, 2, . . . ,

(57)

respectively, whereas for homogeneous Neumann boundary conditions the eigenvalues

and eigenvectors are

λη1,...,ηd =

ηd∑
j=η1

(
jπ

b− a

)2

,

ϕη1,...,ηd =

(√
2

b− a

)d ηd∏
j=η1

cos

(
jπ(xm − a)

b− a

)
, ηi = 0, 1, 2, . . . ,

(58)

respectively. For other definitions of the fractional Laplacian, see for example [6, 48,

163].



81

By using the MTT developed by Ding and Zhang [162] for discretizing the fractional

Laplacian (−∆)
α
2 with a uniform mesh of step size h, we get

(−∆)
α
2 u(t) ≈ h−αM

α
2 u(t). (59)

The matrix (h−αM
α
2 ) is generated from the matrix representation of the standard

Laplace operator (h−2M) using the eigenvalues and eigenvectors.

For 1D problems, we use the fourth-order approximation

∂xx ≈ −
1

h2

(
1 +

1

12
δ2
x

)−1

(δ2
x) +O(h4), (60)

where δ2
x is the second-order central difference operator. For m grid points, the matrix

representation of the second-order operator in (60) is M = A−1B, where A and B are

tridiagonal matrices

A =



5
6

1
12

0 . . . 0 0

1
12

5
6

1
12

0 . . . 0

0 1
12

5
6

1
12

0 . . .

...
. . . . . . . . .

...

. . . 0 1
12

5
6

1
12

0

0 . . . 0 1
12

5
6

1
12

0 0 . . . 0 1
12

5
6



,

and

B =



2 −1 0 . . . 0 0
−1 2 −1 0 . . . 0
0 −1 2 −1 0 . . .
...

. . . . . . . . .
...

. . . 0 −1 2 −1 0
0 . . . 0 −1 2 −1
0 0 . . . 0 −1 2


.

The MTT approximates the fractional Laplacian by

(−∆)α/2 ≈ h−αMα/2 = h−α
(
PΛα/2P−1

)
, (61)
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where Λ is the eigenvalues matrix and P is the eigenvectors matrix. For the homoge-

neous Dirichlet boundary conditions

Λ = diag(σ1, σ2, . . . , σm−1),

P = (ξ1, ξ2, . . . , ξm−1),

(62)

where

σi =
4 sin2

(
iπ
2m

)
1− 1

3
sin2

(
iπ
2m

) ,
ξi =

(
sin

(
1iπ

m

)
, sin

(
2iπ

m

)
, . . . , sin

(
(m− 1)iπ

m

))T
, i = 1, 2, . . . ,m− 1.

For the homogeneous Neumann boundary conditions

Λ = diag(σ0, σ1, . . . , σm),

P = (ξ0, ξ1, . . . , ξm),

(63)

where

σi =
4 cos2

(
iπ
2m

)
1− 1

3
cos2

(
iπ
2m

) ,
ξi =

(
cos

(
0iπ

m

)
, cos

(
1iπ

m

)
, . . . , cos

(
miπ

m

))T
, i = 0, 1, . . . ,m.

For more details about the approach in the diffusion equation, the reader is referred

to [162].

Lemma 5.2.2. The eigenvalues for multidimensional problems with homogeneous

Dirichlet boundary conditions:

σi,j =
4 sin2

(
iπ
2m

)
1− 1

3
sin2

(
iπ
2m

) +
4 sin2

(
jπ
2m

)
1− 1

3
sin2

(
jπ
2m

) , i, j = 1, 2, . . . ,m− 1 if d = 2,

σi,j,l =
4 sin2

(
iπ
2m

)
1− 1

3
sin2

(
iπ
2m

) +
4 sin2

(
jπ
2m

)
1− 1

3
sin2

(
jπ
2m

) +
4 sin2

(
lπ
2m

)
1− 1

3
sin2

(
lπ
2m

) , i, j, l = 1, 2, . . . ,m− 1,

if d = 3,
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and with homogeneous Neumann boundary conditions

σi,j =
4 cos2

(
iπ
2m

)
1− 1

3
cos2

(
iπ
2m

) +
4 cos2

(
jπ
2m

)
1− 1

3
cos2

(
jπ
2m

) , i, j = 0, 1, . . . ,m if d = 2,

σi,j,l =
4 cos2

(
iπ
2m

)
1− 1

3
cos2

(
iπ
2m

) +
4 cos2

(
jπ
2m

)
1− 1

3
cos2

(
jπ
2m

) +
4 cos2

(
lπ
2m

)
1− 1

3
cos2

(
lπ
2m

) , i, j, l = 0, 1, . . . ,m,

if d = 3.

5.3 Fourth-order ETD schemes

By using the above mentioned fourth-order (MTT) to approximate the fractional

Laplacian (−∆)
α
2 in (56), we get the system of ODEs

du

dt
= −A

α
2 u+ f(u, t), u(0) = u0, (64)

where A
α
2 = κα

hα
M

α
2 . For the homogeneous Dirichlet boundary conditions,

u(t) = [u1(t), u2(t), u2(t), . . . , um−1(t)]T ,

and

f(u, t) = [f(u1(t), t), f(u2(t), t), f(u3(t), t), . . . , f(um−1(t), t)]T .

We let un =: u(tn) and tn = nk, n = 0, 1, 2, . . . where k is the temporal step size.

Then, the following formula is the exact solution of (64) using a variation of the

constant formula

u(tn+1) = e−kA
α
2 u(tn) + k

∫ 1

0

e−kA
α
2 (1−τ)f(u(tn + τk), tn + τk)dτ. (65)

Cox and Mathews derived time stepping schemes which give Runge-Kutta type higher-

order approximations [66]. Here, we consider the ETDRK4 scheme
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un+1 = e−kA
α
2 un +

1

k2

(
− A

α
2

)−3
(
f(un, tn)

[
− 4I + kA

α
2 + e−kA

α
2
(
4I + 3kA

α
2 +

(
kA

α
2

)2)]
+ 2

(
f

(
an, tn +

k

2

)
+ f

(
bn, tn +

k

2

))[
2I − kA

α
2 + e−kA

α
2
(
− 2I − kA

α
2

)]
+ f(cn, tn + k)

[
− 4I + 3kA

α
2 −

(
kA

α
2

)2
+ e−kA

α
2
(
4I + kA

α
2

)])
,

(66)

where

an = e−
kA

α
2

2 un − A−
α
2

(
e−

kA
α
2

2 − I
)
f(un, tn),

bn = e−
kA

α
2

2 un − A−
α
2

(
e−

kA
α
2

2 − I
)
f

(
an, tn +

k

2

)
,

cn = e−
kA

α
2

2 an − A−
α
2

(
e−

kA
α
2

2 − I
)[

2f

(
bn, tn +

k

2

)
− f (un, tn)

]
.

The computation of the matrix exponential is costly. Even if a matrix itself is sparse,

its exponential may not be. When the linear operator is a non-diagonal matrix,

implementing this scheme directly may experience numerical instability if A
α
2 has

eigenvalues that are close to zero since computing (−Aα
2 )−1, (−Aα

2 )−3, e−kA
α
2 , and

e−kA
α
2 /2 are needed.

In this chapter, we propose a modified version of (66) by using fourth-order (2,2)-

Padé and (1,3)-Padé approximations to the matrix exponential e−z. We consider the

rational (2,2)-Padé and (1,3)-Padé approximations for e−z

R2,2(z) =
12− 6z + z2

12 + 6z + z2
, (67)

R1,3(z) =
1− z

4

1 + 3
4
z + z2

4
+ z3

24

. (68)

R2,2(z) is A-acceptable and R1,3(z) is L-acceptable. Fig. 28 shows the behavior of the

exponential function (e−z), R2,2(z) and R1,3(z) approximations to e−z for z ∈ [0, 20].

Fig. 29 shows the behavior of R2,2(z) and R1,3(z) for z = x+ iy ∈ [0, 20]× [−10, 10].
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Figure 28: Behavior of the functions e−z, R2,2(z) and R1,3(z) for z ∈ [0, 20].

Figure 29: Behavior of R2,2(z) and R1,3(z) approximations of e−z for z ∈ [0, 20] ×

[−10, 10].

By plugging (67) and (68) in (66), we obtain the following two schemes.
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5.3.1 A-stable scheme (ETD-Padé(2,2))

Using the (2,2)-Padé approximation in (67) to e−kA
α/2

in (66), we get the ETD-

Padé(2,2) scheme [164]

un+1 = R2,2

(
kAα/2

)
un + P1

(
kAα/2

)
f(un, tn)

+ P2

(
kAα/2

) [
f

(
an, tn +

k

2

)
+ f

(
bn, tn +

k

2

)]
+ P3

(
kAα/2

)
f(cn, tn + k),

(69)

where

R2,2

(
kAα/2

)
=
(
12I − 6kAα/2 +

(
kAα/2

)2)(
12I + 6kAα/2 +

(
kAα/2

)2)−1
,

P1

(
kAα/2

)
= k
(
2I − kAα/2

)(
12I + 6kAα/2 +

(
kAα/2

)2)−1
,

P2

(
kAα/2

)
= 4k

(
12I + 6kAα/2 +

(
kAα/2

)2)−1
,

P3

(
kAα/2

)
= k
(
2I + kAα/2

)(
12I + 6kAα/2 +

(
kAα/2

)2)−1
,

and

an = R̃2,2(kAα/2
)
un + P̃

(
kAα/2

)
f(un, tn),

bn = R̃2,2

(
kAα/2

)
un + P̃

(
kAα/2

)
f

(
an, tn +

k

2

)
,

cn = R̃2,2

(
kAα/2

)
an + P̃

(
kAα/2

) [
2f

(
bn, tn +

k

2

)
− f(un, tn)

]
,

with

R̃2,2

(
kAα/2

)
=
(
48I − 12kAα/2 +

(
kAα/2

)2)(
48I + 12kAα/2 +

(
kAα/2

)2)−1
,

P̃
(
kAα/2

)
= 24k

(
48I + 12kAα/2 +

(
kAα/2

)2)−1
.
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5.3.2 L-stable scheme (ETD-Padé(1,3))

Similarly, using the (1,3)-Padé approximation in (68) to e−kA
α/2

in (66), we get the

ETD-Padé(1,3) scheme [164]

un+1 = R1,3

(
kAα/2

)
un + P1

(
kAα/2

)
f(un, tn)

+ P2

(
kAα/2

) [
f

(
an, tn +

k

2

)
+ f

(
bn, tn +

k

2

)]
+ P3

(
kAα/2

)
f(cn, tn + k),

(70)

where

R1,3

(
kAα/2

)
=
(
24I − 6kAα/2

)(
24I + 18kAα/2 + 6

(
kAα/2

)2
+
(
kAα/2

)3)−1
,

P1

(
kAα/2

)
= k
(
4I − kAα/2

)(
24I + 18kAα/2 + 6

(
kAα/2

)2
+
(
kAα/2

)3)−1
,

P2

(
kAα/2

)
= 2k

(
4I + kAα/2

)(
24I + 18kAα/2 + 6

(
kAα/2

)2
+
(
kAα/2

)3)−1
,

P3

(
kAα/2

)
= k
(
4I + 3kAα/2 +

(
kAα/2

)2)(
24I + 18kAα/2 + 6

(
kAα/2

)2
+
(
kAα/2

)3)−1
,

and

an = R̃1,3

(
kAα/2

)
un + P̃

(
kAα/2

)
f(un, tn),

bn = R̃1,3

(
kAα/2

)
un + P̃

(
kAα/2

)
f

(
an, tn +

k

2

)
,

cn = R̃1,3

(
kAα/2

)
an + P̃

(
kAα/2

) [
2f

(
bn, tn +

k

2

)
− f(un, tn)

]
,

with

R̃1,3

(
kAα/2

)
= 24

(
8I − kAα/2

)(
192I + 72kAα/2 + 12

(
kAα/2

)2
+
(
kAα/2

)3)−1
,

P̃
(
kAα/2

)
= k
(
96I + 12kAα/2 +

(
kAα/2

)2)(
192I + 72kAα/2 + 12

(
kAα/2

)2
+
(
kAα/2

)3)−1
.
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5.3.3 The partial fraction form of ETD schemes

The schemes considered above contain inverses of higher-order matrix polynomials,

which would produce computational challenges such as inaccuracies as a result of

roundoff error and high condition numbers while computing the power of these ma-

trices. To avoid these difficulties, we employ the partial fraction decomposition pro-

posed by Gallopoulos and Saad [148], and Khaliq et al. [149]. This approach is able

to alleviate ill-conditioning issues since only implicit Euler solvers are needed.

5.3.3.1 The efficient version of the ETD-Padé(2,2) scheme

To compute un+1 in (69), we consider the following partial fraction forms of R2,2 and

Pi

R2,2(z) = (−1)2 +

q1∑
j=1

wj
z − cj

+ 2

q1+q2∑
j=1+q1

<
(

wj
z − cj

)
,

Pi(z) = k

q1∑
j=1

wij
z − cj

+ 2k

q1+q2∑
j=1+q1

<
(

wij
z − cj

)
, i = 1, 2, 3,

where {cj} is the complex pole of R2,2 with q1 + 2q2 = 2, and wj and wij are the

corresponding weights.

In order to compute an, bn, and cn, we apply

R̃2,2(z) = (−1)2 +

q1∑
j=1

w̃j
z − c̃j

+ 2

q1+q2∑
j=1+q1

<
(

w̃j
z − c̃j

)
,

P̃ (z) = k

q1∑
j=1

Ω̃j

z − c̃j
+ 2k

q1+q2∑
j=1+q1

<
(

Ω̃j

z − c̃j

)
,

where {c̃j} is the complex pole of R̃2,2 with q1 + 2q2 = 2, and w̃j and Ω̃j are the

corresponding weights.

In order to implement the partial fraction form of the fourth-order schemes, poles

and corresponding weights were computed as

c1 = −3.0 + i1.73205080756887729352,

w1 = −6.0− i10.3923048454132637611,



89

w11 = −0.5− i1.44337567297406441127,

w21 = −i1.15470053837925152901,

w31 = 0.5 + i0.28867513459481288225,

c̃1 = −6.0 + i3.4641016151377545870548,

w̃1 = −12.0− i20.78460969082652752232935,

Ω̃1 = −i3.46410161513775458705.

5.3.3.2 The ETD-Padé(2,2) algorithm

For i = 1, . . . , q1 + q2, where q1 = 0, and q2 = 1.

Algorithm 5 ETD-Padé(2,2) algorithm

1: Efficiently precompute B1 =
(
kAα/2 − c̃iI

)−1
, and B2 =

(
kAα/2 − ciI

)−1
.

2: for m = 1, 2, . . . ,M = T/k, do

3: Step 1: solve Rai = B1(w̃iun + kΩ̃if(un, tn)), and then compute an as an =

un +

q1∑
i=1

Rai + 2

q1+q2∑
i=1+q1

Re(Rai).

4: Step 2: solve Rbi = B1(w̃iun + kΩ̃if(an, tn + k/2)), and then compute bn as

bn = un +

q1∑
i=1

Rbi + 2

q1+q2∑
i=1+q1

Re(Rbi).

5: Step 3: solve Rci = B1(w̃ian + kΩ̃i(2f(bn, tn + k/2) − f(un, tn))), and then

compute cn as cn = an +

q1∑
i=1

Rci + 2

q1+q2∑
i=1+q1

Re(Rci).

6: Step 4: solve Rui = B2(wiun+kw1if(un, tn)+kw2i(f(an, tn+k/2)+f(bn, tn+

k/2)) + kw3if(cn, tn + k)), and then compute un+1 as un+1 = un +

q1∑
i=1

Rui +

2

q1+q2∑
i=1+q1

Re(Rui).

7: end for
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5.3.3.3 The efficient version of the ETD-Padé(1,3) scheme

To compute un+1 in (70), we consider the following partial fraction forms of R1,3 and

Pi

R1,3(z) =

q1∑
j=1

wj
z − cj

+ 2

q1+q2∑
j=1+q1

<
(

wj
z − cj

)
,

Pi(z) = k

q1∑
j=1

wij
z − cj

+ 2k

q1+q2∑
j=1+q1

<
(

wij
z − cj

)
, i = 1, 2, 3,

where {cj}2
j=1 are the complex poles of R1,3 with q1 + 2q2 = 3, and wj and wij are the

corresponding weights.

In order to compute an, bn, and cn, we apply

R̃1,3(z) =

q1∑
j=1

w̃j
z − c̃j

+ 2

q1+q2∑
j=1+q1

<
(

w̃j
z − c̃j

)
,

P̃ (z) = k

q1∑
j=1

Ω̃j

z − c̃j
+ 2k

q1+q2∑
j=1+q1

<
(

Ω̃j

z − c̃j

)
,

where {c̃j}2
j=1 are the complex poles of R̃1,3 with q1 + 2q2 = 3, and w̃j and Ω̃j are the

corresponding weights.

In order to implement the partial fraction form of the fourth-order schemes, poles

and corresponding weights were computed as

c1 = −2.6258168189584667160,

c2 = −1.6870915905207666420− i2.5087317549248805108,

w1 = 5.5407990186788211678,

w2 = −2.7703995093394105839− i0.1591864442851235025,

w11 = 0.92346650311313686128,

w12 = −0.46173325155656843064− i0.026531074047520583750,

w21 = 0.38305077592917562056,

w22 = −0.19152538796458781028 + i0.47027336073401897817,

w31 = 0.42055591813817669094,

w32 = 0.28972204093091165453− i0.18298527878713726274,
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c̃1 = −5.2516336379169334320,

c̃2 = −3.3741831810415332840− i5.0174635098497610217,

w̃1 = 11.081598037357642334,

w̃2 = −5.5407990186788211672− i0.31837288857024700490,

Ω̃1 = 2.1101239731096647932,

Ω̃2 = −0.55506198655483239660 + i0.73103036863338010983.

5.3.3.4 The ETD-Padé(1,3) algorithm

For i = 1, . . . , q1 + q2, where q1 = 1, and q2 = 1.

Algorithm 6 ETD-Padé(1,3) algorithm

1: Efficiently precompute B1 =
(
kAα/2 − c̃iI

)−1
, and B2 =

(
kAα/2 − ciI

)−1
.

2: for m = 1, 2, . . . ,M = T/k, do

3: Step 1: solve Rai = B1(w̃iun + kΩ̃if(un, tn)), and then compute an as an =
q1∑
i=1

Rai + 2

q1+q2∑
i=1+q1

Re(Rai).

4: Step 2: solve Rbi = B1(w̃iun + kΩ̃if(an, tn + k/2)), and then compute bn as

bn =

q1∑
i=1

Rbi + 2

q1+q2∑
i=1+q1

Re(Rbi).

5: Step 3: solve Rci = B1(w̃ian + kΩ̃i(2f(bn, tn + k/2) − f(un, tn))), and then

compute cn as cn =

q1∑
i=1

Rci + 2

q1+q2∑
i=1+q1

Re(Rci).

6: Step 4: solve Rui = B2(wiun + kw1if(un, tn) + kw2i(f(an, tn + k/2) +

f(bn, tn + k/2)) + kw3if(cn, tn + k)), and then compute un+1 as un+1 =

q1∑
i=1

Rui +

2

q1+q2∑
i=1+q1

Re(Rui).

7: end for



92

Remark. To lessen the computational efforts, we precompute the inverse of the ma-

trices
(
kAα/2 − c̃iI

)−1
, and

(
kAα/2 − ciI

)−1
once outside the ”for loop” then at each

time step implement four matrix-vector multiplications which only require O(n2) op-

erations.

5.4 Reliability and stability analysis

When discontinuities exist between the initial and boundary conditions, unwanted

finite oscillations are observed. For example, using the (1,1)-Padé approximation to

e−z, the A-stable scheme (Crank-Nicolson) is known to produce oscillations since as

z becomes large, R1,1 = (4(2 + z)−1 − 1) approaches (−1). In order to avoid these

oscillations, Lawson and Morris [165] found out that the oscillations diminish as the

highest frequency components, which are the oscillatory components, decay to zero

faster than the lowest frequency components, which are the primary components.

Khaliq et al. [55] provided an estimate on the choice of the time step for the CN

scheme using the second-order MTT for discretizing the fractional Laplacian. More-

over, this estimate is extended in [55] to diagonal Padé approximations, which is

similar to the estimates given in Lawson and Morris [165] and Khaliq et al. [149] for

the corresponding integer-order PDEs.

5.4.1 Reliability Constraint

Here, we provide an estimate on the choice of the time step for the ETD-Padé(2,2)

scheme (69) using the fourth-order compact scheme MTT for the space discretization.

Theorem 5.4.1.1. [164]. Oscillations are guaranteed to dampen in the solution of

the ETD-Padé(2,2) scheme (69) if

k < 1.73
1

κα

(
h

d

√
12X2 − (πh)2

72π2

)α/2

, where X = (b− a)d, d = 1, 2, 3. (71)
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Proof. Let R2,2(z) denote the (2,2)-Padé approximation of ez. Then, by Theorem 1

in [149], for w < v < 0, wv < min
1≤j≤2

|cj|2, where cj are the roots of the (2,2)-Padé

approximant, we have

|R2,2(w)| < |R2,2(v)|. (72)

If d = 1, let v = kκα(σ1
h2

)
α
2 , and w = kκα(σm−1

h2
)
α
2 where σ1 and σm−1 are given in (62).

For large m,

v ≈ kκα

(
1

h2

4 (π/2m)2

1− (1/3)(π/2m)2

)α/2
, (73)

w ≈ kκα

(
1

h2

4

1− (1/3)

)α/2
.

Thus, (72) is true if

wv = k2κ2
α

(
1

h2

72π2

12(mh)2 − (πh)2

)α/2
< min

1≤j≤2
|cj|2.

This implies that

k <
√

12
1

κα

(
h

√
12X2 − (πh)2

72π2

)α/2

≈ 1.73
1

κα

(
h

√
12X2 − (πh)2

72π2

)α/2

.

Following the same steps, the results for d = 2 and 3 are obtained.

5.4.2 Linear stability analysis

Next, we discuss the linear stability of the proposed schemes by plotting their stability

regions as in [66]. We consider the nonlinear ODE

ut = −cu+ f(u). (74)

Here, u is a complex valued function and f(u) is the nonlinear part. We assume that

there exists a fixed point u0 such that −cu0 + f(u0) = 0. Then, by linearizing about
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u0, we get

ut = −cu+ λu, (75)

where u is the perturbation of u0, and λ = f ′(u0). The fixed point u0 is stable if

Re(λ− c) < 0 for all λ.

Let y = −ck and x = λk, where k is the time step size. The amplification symbol

for the A-stable scheme is obtained in Chapter 3 by applying (69) to (75) and letting

r(x, y) = un+1

un
.

Similarly, by applying (70) to (75) we obtain the following amplification symbol for

the L-stable scheme

r(x, y) =
un+1

un
= c0 + c1x+ c2x

2 + c3x
3 + c4x

4, (76)

where

c0 =
(24 + 6y)

(24− 18y + 6y2 − y3)
,

c1 =
(4 + y)

(24− 18y + 6y2 − y3)
+

96(4− y)(8 + y)

(24− 18y + 6y2 − y3)(192− 72y + 12y2 − y3)

+
576(8 + y)2(4− 3y + y2)

(24− 18y + 6y2 − y3)(192− 72y + 12y2 − y3)2
,

c2 =
2(96− 12y + y2)(4− y)

(24− 18y + 6y2 − y3)(192− 72y + 12y2 − y3)

+
48(96− 12y + y2)(4− y)(8 + y)

(24− 18y + 6y2 − y3)(192− 72y + 12y2 − y3)2

+
72(96− 12y + y2)(4− 3y + y2)(8 + y)

(24− 18y + 6y2 − y3)(192− 72y + 12y2 − y3)2

− (96− 12y + y2)(4− 3y + y2)

(24− 18y + 6y2 − y3)(192− 72y + 12y2 − y3)
,

c3 =
2(96− 12y + y2)2(4− y)

(24− 18y + 6y2 − y3)(192− 72y + 12y2 − y3)2

+
48(96− 12y + y2)2(4− 3y + y2)(8 + y)

(24− 18y + 6y2 − y3)(192− 72y + 12y2 − y3)3
,

c4 =
2(96− 12y + y2)3(4− 3y + y2)

(24− 18y + 6y2 − y3)(192− 72y + 12y2 − y3)3
.
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Figure 30: Stability regions of the ETD-Padé(2,2)(left) and ETD-Padé(1,3) (right)

in the complex x-plane.

The curves of r(x, y) = 1 are shown in Fig. 30 for a complex value of x and some

negative values of y. According to Beylkin et al. [131], for the scheme to be useful,

the stability regions should grow as y → −∞. It is observed that when y = 0, the

stability regions of the schemes correspond to the ETDRK4 scheme in [66]. Fig. 30

shows that the stability regions for the ETD-Padé(2,2) and ETD-Padé(1,3) schemes

grow larger as y → −∞, which assert the stability of the schemes.

5.5 Numerical experiments

This section has several numerical test problems with smooth and non-smooth initial

data. We consider a benchmark test problem with smooth initial data to verify the

fourth-order accuracy of the schemes in space and time. We also consider some other

problems with non-smooth data to validate our theoretical analysis. In the following,

we use ‖.‖ to denote either the L2 or L∞ norms. When the exact solution is known,

the order of convergence in space and time is computed as

order =
log10

(
Eh,k/Eh/2,k/2

)
log10(2)

,
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where Eh,k = ‖(u− uh,k)‖ and Eh/2,k/2 =
∥∥(u− uh/2,k/2)∥∥, u is the exact solution and

uh,k is the numerical solution with space step size h and time step size k. When the

exact solution is not known or available, the order of convergence in time with fixed

space step size h is computed as

order =
log10

(
Eh,k/Eh,k/2

)
log10(2)

,

where Eh,k =
∥∥(uh,k − uh,2k)∥∥ and Eh,k/2 =

∥∥(uh,k/2 − uh,k)∥∥ , uh,k and uh,2k are the

numerical solutions with time step size k and 2k, respectively.

5.5.1 Test Problem 1: a benchmark problem with an exact solution

We consider the following space-fractional reaction-diffusion equation with an exact

solution [157] to validate the fourth-order accuracy of our ETD schemes

∂u

∂t
= −κα(−∆)

α
2 u+ f(x, t, u), 1 < α ≤ 2, 0 < x < 1, (77)

u(x, 0) = 0,

u(0, t) = u(1, t) = 0, t > 0,

where

f(x, t, u) =
κα
4
tα{3[1+(2π)α] sin(2πx)− [1+(6π)α] sin(6πx)}+αtα−1 sin3(2πx)−καu,

and κα > 0. The exact solution to (77) is

u(x, t) = tα sin3(2πx).

The problem in (77) is chosen with an exact solution and smooth data to validate that

our developed schemes exhibit the fourth-order accuracy in space and time. Fig. 31

shows the solutions up to T = 1 obtained via the ETD-Padé(2,2) and ETD-Padé(1,3)

vs. the exact solution at h = k = 0.01, κα = 1 and various values of α. Due to the

smoothness of the initial data, the constraint (71) is not applicable for this problem.
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Figure 31: Numerical solutions of (77) as obtained by the ETD-Padé(2,2) (left) and

ETD-Padé(1,3) (right) vs. the exact solution.

Thus, the solutions of the A-stable scheme are expected to be oscillation-free for any

reasonable choice of h and k. The L2, L∞ errors, order of convergence and CPU(s)

are listed in Tables 13 and 14 for a sequence of temporal and spatial steps starting

at k = 0.1 and h = 0.1; both of them are halved for each subsequent sequence.

5.5.2 Test Problem 2: a problem from biochemistry

The following problem has a discontinuity between its initial and boundary conditions

∂u

∂t
= −κα(−∆)

α
2 u− u

1 + u
, x ∈ [0, 1], (78)
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Table 13: Errors, convergence rates in space and time and CPU(s) for the ETD-

Padé(2,2).

α h = k L2 error order L∞error order CPU(s)

2

0.10000 1.0838e-02 - 1.4294e-02 - 0.0171
0.05000 6.2221e-04 4.1225 9.0360e-04 3.9836 0.0261
0.02500 3.8628e-05 4.0097 5.5754e-05 4.0185 0.0350
0.01250 2.2569e-06 4.0972 3.2453e-06 4.1027 0.0542

1.8

0.10000 9.6407e-03 - 1.2729e-02 - 0.0584
0.05000 5.4477e-04 4.1454 7.9213e-04 4.0063 0.0694
0.02500 3.2731e-05 4.0569 4.7515e-05 4.0593 0.0791
0.01250 1.9296e-06 4.0843 2.8002e-06 4.0848 0.1011

1.6

0.10000 8.4201e-03 - 1.1122e-02 - 0.0244
0.05000 4.7226e-04 4.1562 6.8752e-04 4.0159 0.030
0.02500 2.8352e-05 4.0581 4.1279e-05 4.0579 0.0352
0.01250 1.7236e-06 4.0399 2.5099e-06 4.0397 0.0499

1.4

0.10000 7.2018e-03 - 9.5150e-03 - 0.0266
0.05000 4.0460e-04 4.1538 5.8926e-04 4.0132 0.0328
0.02500 2.4479e-05 4.0468 3.5671e-05 4.0461 0.0379
0.01250 1.5111e-06 4.0179 2.2022e-06 4.0177 0.0519

u(x, 0) = 1,

u(0, t) = u(1, t) = 0.

Fig. 32 shows the time evolution graphs of both of the proposed schemes for 0 ≤

t ≤ 1 and κα = 1 using h = 0.01 and k= 0.01. When the A-stable scheme is used,

unwanted oscillations are observed near the boundaries as the constraint (71) is not

satisfied when α = 2, 1.8, and 1.6. These oscillations diminish as the fractional-order

decreases. No oscillation is observed in the solution when α = 1.4 since the reliability

constraint (71) is met. However, the solutions obtained by the L-stable scheme are

shown to be oscillation-free for any value of α.
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Table 14: Errors, convergence rates in space and time and CPU(s) for the ETD-

Padé(1,3).

α h = k L2 error order L∞error order CPU(s)

2

0.10000 1.0702e-02 - 1.4156e-02 - 0.0340
0.05000 5.9643e-04 4.1654 8.6103e-04 4.0392 0.0452
0.02500 3.5428e-05 4.0734 5.0858e-05 4.0815 0.0779
0.01250 1.9187e-06 4.2067 2.7503e-06 4.2088 0.2771

1.8

0.10000 9.5434e-03 - 1.2622e-02 - 0.0328
0.05000 5.3179e-04 4.1656 7.7111e-04 4.0329 0.0439
0.02500 3.1342e-05 4.0847 4.5414e-05 4.0857 0.1396
0.01250 1.7967e-06 4.1247 2.6065e-06 4.1229 0.2593

1.6

0.10000 8.3689e-03 - 1.1065e-02 - 0.0336
0.05000 4.6663e-04 4.1647 6.7851e-04 4.0274 0.0464
0.02500 2.7797e-05 4.0693 4.0446e-05 4.0683 0.0771
0.01250 1.6836e-06 4.0453 2.4513e-06 4.0444 0.2458

1.4

0.10000 7.1796e-03 - 9.4898e-03 - 0.0299
0.05000 4.0234e-04 4.1574 5.8569e-04 4.0182 0.0400
0.02500 2.4308e-05 4.0489 3.5412e-05 4.0478 0.0636
0.01250 1.5019e-06 4.0166 2.1885e-06 4.0162 0.2316

The L2, L∞ errors, order of convergence in time and CPU(s) for the A-stable and

L-stable schemes are listed in Tables 15 and 16. In order to see the effect of the

reliability constraint (71) in our numerical test, we fix h and vary the time steps k.

We observe that the accuracy of the A-stable scheme is deteriorated for α = 2, 1.8

and 1.6 when the reliability constraint is violated but becomes better with α = 1.4.

The L-stable scheme maintains the expected fourth-order accuracy in time for all

values of α.
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Table 15: Errors, convergence rates in time and CPU(s) for the ETD-Padé(2,2).

α h k L2error order L∞error order CPU(s)

2

0.25000 0.25000 - - - - 0.0165
0.25000 0.12500 1.23e-02 - 1.74e-02 - 0.0255
0.25000 0.06250 7.41e-06 10.70 9.24e-06 10.88 0.0281
0.25000 0.03125 4.56e-08 7.34 6.45e-08 7.16 0.0311
0.25000 0.01562 2.76e-09 4.05 3.90e-09 4.05 0.0392

1.8

0.25000 0.25000 - - - - 0.0137
0.25000 0.12500 3.28e-03 - 4.58e-03 - 0.0277
0.25000 0.06250 2.01e-06 10.67 2.78e-06 10.69 0.0302
0.25000 0.03125 1.16e-07 4.12 1.64e-07 4.09 0.0333
0.25000 0.01562 7.03e-09 4.04 9.94e-09 4.04 0.0442

1.6

0.25000 0.25000 - - - - 0.0142
0.25000 0.12500 4.49e-04 - 5.34e-04 - 0.0224
0.25000 0.06250 3.34e-06 7.07 4.73e-06 6.82 0.0250
0.25000 0.03125 1.96e-07 4.09 2.77e-07 4.09 0.0282
0.25000 0.01562 1.20e-08 4.04 1.69e-08 4.04 0.0367

1.4

0.25000 0.25000 - - - - 0.0127
0.25000 0.12500 8.01e-05 - 1.03e-04 - 0.0213
0.25000 0.06250 4.06e-06 4.30 5.75e-06 4.16 0.0235
0.25000 0.03125 2.41e-07 4.07 3.42e-07 4.07 0.0282
0.25000 0.01562 1.48e-08 4.03 2.09e-08 4.03 0.0382
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Table 16: Errors, convergence rates in time and CPU(s) for the ETD-Padé(1,3).

α h k L2 error order L∞error order CPU(s)

2

0.25000 0.25000 - - - - 0.0232
0.25000 0.12500 7.14e-06 - 1.01e-05 - 0.0370
0.25000 0.06250 6.60e-07 3.44 9.33e-07 3.44 0.0401
0.25000 0.03125 4.97e-08 3.73 7.02e-08 3.73 0.0445
0.25000 0.01562 3.42e-09 3.86 4.83e-09 3.86 0.0563

1.8

0.25000 0.25000 - - - - 0.0181
0.25000 0.12500 2.30e-05 - 3.25e-05 - 0.0298
0.25000 0.06250 1.85e-06 3.63 2.62e-06 3.63 0.0328
0.25000 0.03125 1.34e-07 3.80 1.89e-07 3.80 0.0375
0.25000 0.01562 8.99e-09 3.89 1.27e-08 3.89 0.0495

1.6

0.25000 0.25000 - - - - 0.0273
0.25000 0.12500 4.56e-05 - 6.46e-05 - 0.0393
0.25000 0.06250 3.44e-06 3.73 4.86e-06 3.73 0.0428
0.25000 0.03125 2.39e-07 3.84 3.39e-07 3.84 0.0496
0.25000 0.01562 1.58e-08 3.92 2.24e-08 3.92 0.0665

1.4

0.25000 0.25000 - - - - 0.0161
0.25000 0.12500 6.40e-05 - 9.06e-05 - 0.0274
0.25000 0.06250 4.60e-06 3.80 6.51e-06 3.80 0.0304
0.25000 0.03125 3.12e-07 3.88 4.42e-07 3.88 0.0351
0.25000 0.01562 2.04e-08 3.94 2.89e-08 3.94 0.0469
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α = 2.0

α = 1.8

α = 1.6

α = 1.4

Figure 32: Solution profiles of (78) as obtained by the ETD-Padé(2,2) (left) and

ETD-Padé (1,3) (right).
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5.5.3 Test Problem 3: a problem with step initial condition

We consider the following problem with homogeneous Dirichlet boundary conditions

and step initial condition

∂u

∂t
= −κα(−∆)

α
2 u, x ∈ [0, 1], (79)

u(x, 0) =



0, 0 < x < 1
4
,

1, 1
4
≤ x < 3

4
,

0, 3
4
≤ x < 1.

u(0, t) = u(1, t) = 0.

The exact solution is

u(x, t) =
∞∑
n=1

4

nπ
sin

(
nπ

2

)
sin

(
nπ

4

)
sin(nπx) exp(−κα(nπ)αt).

Fig. 33 shows the comparison between the exact solution and the solutions obtained

by the A-stable and L-stable schemes at T = 1, h = 0.025, k = 0.025 and κα =

1. Spurious oscillations are observed near the discontinuity points in the solutions

when the A-stable scheme is employed. The unwanted oscillations diminish when α

decreases. With α = 1.6 and 1.4, the constraint (71) is satisfied and the solution

is oscillation-free. No oscillations are present in the solutions when the L-stable is

applied.



104

α = 2.0

α = 1.8

α = 1.6

α = 1.4

Figure 33: Solution profiles of (79) as obtained by the ETD-Padé(2,2) (left) and

ETD-Padé(1,3) (right).
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5.5.4 Test Problem 4: the Gray-Scott model (Pulse splitting)

We consider the system of the Gray-Scott model [100, 102, 106]

∂u

∂t
= −κu(−∆)

α
2 u− uv2 + F (1− u),

∂v

∂t
= −κv(−∆)

α
2 v − (F + κ)v, (80)

with mismatched initial and boundary conditions

u(x, 0) = 1− 1

2
sin100(πx),

v(x, 0) =
1

4
sin100(πx),

u(0, t) = u(1, t) = v(0, t) = v(1, t) = 0,

where κu and κv are the diffusion coefficients, and x ∈ (0, 1). Different patterns can

be obtained depending on the values of F and κ. Figs. 34 and 35 show the time

evolution of u and v for both of the derived schemes. The simulations ran up to

T = 10 using κu = 10−3, κv = 10−5, h = 0.001, k = 0.625, F = 0.024 and κ = 0.06,

where F and κ were chosen similar to [166]. Oscillations close to the boundaries

can be seen in the solutions obtained by the ETD-Padé(2,2) at α = 2, decrease at

α = 1.7 and 1.5, and are killed off at α = 1.3, whereas no oscillations are present in

the solutions when the ETD-Padé(1,3) is employed.
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α = 2.0

α = 1.7

α = 1.5

α = 1.3

Figure 34: Solution profiles of the Gray-Scott model (80) as obtained by the ETD-

Padé(2,2) (u left column and v right column) at T = 10.
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α = 2.0

α = 1.7

α = 1.5

α = 1.3

Figure 35: Solution profiles of the Gray-Scott model (80) as obtained by the ETD-

Padé(1,3) (u left column and v right column) at T = 10.
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5.5.5 Test problem 5: the 2D Fisher’s equation

The following problem is the 2D space-fractional Fisher’s equation

∂u

∂t
= −κα(−∆)

α
2 u+ u(1− u), 0 < x, y ≤ 2, (81)

κα = 1, with homogeneous Dirichlet boundary conditions and the following initial

condition

u(x, y, 0) = sin

(
πy

2

)
.

The initial and boundary conditions of (81) are mismatched. The solution for the 2D

problem is shown in Fig. 36 at T = 1, h = 0.05 and k = 0.25. It is observed that

the oscillations in the solution obtained by the ETD-Padé(2,2) scheme diminish with

slow diffusion when α decreases, and the solutions produced by the ETD-Padé(1,3)

scheme are oscillation-free.

In Table 17, we compare the L2 error, order of convergence in time and CPU time

of the ETD-Padé(2,2), ETD-Padé(1,3) and ETDRK4 with h = 0.125, α = 1.4 and

κ = 3. It is observed that the ETDRK4 scheme consumes more CPU time than the

proposed schemes. Tables 18 and 19 show the L2, L∞ errors, order of convergence in

time and CPU(s) of the A-stable and L-stable schemes at T = 1 and κα = 2. It is

shown that the L-stable scheme provides better accuracy than the A-stable scheme.

When α decreases to 1.5, the A-stable scheme maintains the expected order of accu-

racy at each time step.

Table 17: A comparison of errors, convergence rates in time and CPU(s).

ETD-Padé(2,2) ETD-Padé(1,3) ETDRK4
k L2error order CPU(s) L2error order CPU(s) L2error order CPU(s)

0.12500 - - 0.0645 - - 0.0763 - - 1.1205
0.06250 5.46e-05 - 0.1780 4.50e-05 - 0.2186 3.32e-06 - 2.6696
0.03125 2.27e-06 4.59 0.3920 3.56e-06 3.66 0.5185 3.93e-07 3.08 5.2742
0.01562 1.36e-07 4.06 0.8753 2.76e-07 3.69 1.0553 4.47e-08 3.14 9.7653
0.00781 8.32e-09 4.03 1.7524 2.01e-08 3.78 2.1504 3.78e-09 3.57 17.4680
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ETD-Padé(2,2)

α = 2.0 α = 1.5

ETD-Padé(1,3)

α = 2.0 α = 1.5

Figure 36: Solution profiles of the 2D Fisher’s equation (81) at T = 1.

Table 18: Errors, convergence rates in time and CPU(s) for the ETD-Padé(2,2).

α h k L2error order L∞error order CPU(s)

2

0.25000 0.25000 - - - - 0.0065
0.25000 0.12500 1.17e-02 - 5.74e-03 - 0.0119
0.25000 0.06250 2.85e-05 8.68 1.50e-05 8.58 0.0246
0.25000 0.03125 1.73e-06 4.04 8.67e-07 4.12 0.0460
0.25000 0.01562 9.99e-08 4.12 5.00e-08 4.12 0.0849

1.5

0.25000 0.25000 - - - - 0.0150
0.25000 0.12500 4.20e-04 - 2.30e-04 - 0.0248
0.25000 0.06250 2.20e-05 4.25 1.07e-05 4.42 0.0389
0.25000 0.03125 1.37e-06 4.00 6.73e-07 3.99 0.0577
0.25000 0.01562 8.71e-08 3.98 4.28e-08 3.98 0.0922
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Table 19: Errors, convergence rates in time and CPU(s) for the ETD-Padé(1,3).

α h k L2error order L∞error order CPU(s)

2

0.25000 0.25000 - - - - 0.0196
0.25000 0.12500 3.89e-04 - 1.94e-04 - 0.0327
0.25000 0.06250 3.47e-05 3.49 1.73e-05 3.49 0.0436
0.25000 0.03125 3.08e-06 3.49 1.53e-06 3.49 0.0680
0.25000 0.01562 2.66e-07 3.53 1.32e-07 3.53 0.1396

1.5

0.25000 0.25000 - - - - 0.0244
0.25000 0.12500 3.47e-04 - 1.66e-04 - 0.0408
0.25000 0.06250 2.94e-05 3.56 1.40e-05 3.56 0.0559
0.25000 0.03125 2.25e-06 3.71 1.07e-06 3.71 0.0949
0.25000 0.01562 1.58e-07 3.83 7.54e-08 3.83 0.1787

5.5.6 Test problem 6: the 3D Fisher’s equation

The following problem is the 3D space-fractional Fisher’s equation

∂u

∂t
= −κα(−∆)

α
2 u+ u(1− u), 0 < x, y, z ≤ 1, (82)

κα = 1/6, with homogeneous Dirichlet boundary conditions and the following initial

condition

u(x, y, z, 0) = sin

(
πy

2

)
sin

(
πz

2

)
.

The initial and boundary conditions of (82) are mismatched. The solution for the

3D problem is shown in Fig. 37 at T = 1, h = 0.05 and k = 0.5. It is shown that

the ETD-Padé(1,3) scheme is able to damp the oscillations due to the high frequency

components in the solution. On the other hand, due to mismatched boundary and

initial conditions, the ETD-Padé(2,2) scheme suffers with spurious oscillations near

the boundary. The spurious oscillations diminish as α decreases.
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ETD-Padé(2,2)

α = 2.0 α = 1.5

ETD-Padé(1,3)

α = 2.0 α = 1.5

Figure 37: Solution profiles of the 3D Fisher’s equation (82) at T = 1.

5.6 Conclusion

Two fourth-order schemes have been developed for solving space-fractional reaction-

diffusion equations. The schemes are based on the fourth-order MTT in space and the

fourth-order ETD in time. It is shown that when the initial data is non-smooth, the

A-stable scheme produces spurious oscillations and is thus unreliable. On the other

hand, the L-stable scheme is reliable for any time step and maintains its expected

fourth-order accuracy. Numerical examples demonstrated the fourth-order accuracy

in space and time, and showed the efficiency, accuracy and reliability of the developed

schemes.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In this dissertation, we have investigated several efficient numerical approximations

for solving multidimensional space-fractional reaction-diffusion systems. We have

developed and analyzed second-order ETD schemes of approximating the matrix ex-

ponential by (1,1)-Padé and (0,2)-Padé approximations, which are combined with the

Fourier spectral approach to solve space-fractional partial differential equations with

non-smooth initial data. A fourth-order ETD scheme of approximating the matrix

exponential by the (2,2)-Padé approximation is also developed in combination with

the Fourier spectral approach. Since the Fourier spectral approach, which is used

for discretizing the fractional operator, can not handle the non-homogeneous bound-

ary conditions, we consider using the MTT with homogeneous and non-homogeneous

boundary conditions. Fourth-order ETD schemes were developed and combined with

the MTT for solving the nonlinear multidimensional systems where the partial frac-

tion decomposition is used to alleviate the difficulty due to ill-conditioning. When

the A-stable schemes were applied with non-smooth initial data, unwanted oscilla-

tions were observed due to high frequency components. These oscillations diminished

as the fractional-order decreased, we have proposed a novel reliability constraint to

avoid the oscillations present in the solutions. Thus, the L-stable schemes are shown

to be more reliable than the A-stable schemes when the initial data is non-smooth.

The stability of the schemes was analyzed by plotting the stability regions. The error

analysis, convergence, and stability of the schemes have been examined on several

numerical experiments of well-known mathematical models, which exhibited the reli-

ability, accuracy and efficiency of the schemes compared with some other numerical

schemes in the literature. Our future work will include developing highly efficient

numerical approximations to the time-space-fractional partial differential equations

with non-homogeneous Neumann and Robin boundary conditions.
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