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Abstract 

With the availability of modern sophisticated game engines, it has never been easier 

to create a game for implementing and analyzing machine learning (ML) algorithms. 

Game engines are useful for academic research because they can produce ideal 

environments for rapid simulation and provide ways to implement Artificial Intelligence 

(AI) in Non-Player Characters (NPCs). Unreal Engine 4 (UE4) is a great choice for ML 

simulation as it contains many useful tools. These tools include Blueprint Visual 

Scripting that can be converted into performant C++ code, simple-to-use Behavior Trees 

(BT) for setting up traditional AI, and more complex tools such as AIComponents and 

the Environment Query System (EQS) for giving an agent the ability to perceive its 

environment. These built-in tools were used to create a simple, extensible, and open-

source environment for implementing ML algorithms in hopes that it will reduce the 

barrier of entry for using these algorithms in academic and industry-focused research. 

Experimental results indicate that reinforcement learning (RL) algorithms implemented 

in Blueprint can lead to learning a successful policy in very short training episodes.  
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Chapter 1: Introduction 

The universal goal of game developers when writing AI is to create believable and 

compelling non-player characters (NPC) that challenge the player, while not being 

invincible; otherwise, the entertainment value is decreased [1]. Some of the most 

successful and influential games in terms of well-implemented AI are F.E.A.R, Half-Life, 

and Halo. Unfortunately, a very strong emphasis on multiplayer modes has slowed the 

pace of improvements in game AI, as players prefer to be challenged by other human 

players rather than by AI characters. 

Many implementations of NPC AI in video games are currently based on dated finite 

state machines (FSMs), or behavior trees (BT). FSMs are used to organize a program’s 

(or NPC’s) execution flow. FSMs are composed of a series of NPC states such as “idle,” 

“attack,” or “flee,” where only one state can be active at a time. A change in state is 

triggered when predefined conditions are met. FSMs are extremely common in video 

games, but are often regarded as outdated, as they can be difficult to modify and extend. 

BTs are trees of hierarchical nodes that determine the flow of decision making for an 

NPC. The leaves of the tree are commands that make the NPC execute something. The 

nodes along the path from that leaf to the root are nodes with conditions that were 

satisfied for the flow to reach the leaf. While these solutions were satisfactory in the past, 

games have become more complex. Therefore, the importance of high-quality AI 

solutions has increased. This is especially true when a winning strategy requires 

hierarchical goal planning and real-time adjustment to a human player’s actions [2]. 

Very few game studios have experimented with learning algorithms. In turn, this has 

led to stale and predictable NPCs. In the game studios’ defense, there has not been a 
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substantial amount of research into the pursuit of making learning algorithms easier to 

implement in modern game engines. The goal of this research project is to begin an open-

source environment for creating and testing ML agents in UE4. UE4 contains a suite of 

useful tools, such as Blueprint Visual Scripting that can be converted into performant 

C++ code, simple-to-use BTs for setting up traditional AI, and more complex tools such 

as AIComponents and EQS for giving an agent the ability to perceive its environment. 

Additionally, UE4 is much more extensible than other game engines because its complete 

source code is available for anyone to use and modify at 

https://github.com/EpicGames/UnrealEngine. UE4 is also a popular and proven AAA 

game engine. It has been used to create many blockbuster games, such as Kingdom 

Hearts III, Shardbound, Unreal Tournament, Final Fantasy VII Remake, and the Gears of 

War franchise. These financial successes make it an industry-leading engine where the 

presented research could prove more useful. 
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Chapter 2: Background 

Machine Learning (ML) in Computer Science was defined in 1959 by pioneering 

computer scientist Arthur Samuel, who stated it to be a “field of study that gives 

computers the ability to learn without being explicitly programmed.” This feat was 

achieved by constructing algorithms that could learn from, and make decisions based on, 

available data. ML is used extensively in areas where explicit algorithms are not feasible, 

such as implementing search engines or spam filters. These algorithms may be 

implemented in three classifications: supervised learning (SL), unsupervised learning 

(USL), and reinforcement learning (RL). In SL, the machine is given an input (problem), 

and output (answer), and through the guidance of a “teacher,” learns to map inputs to 

outputs. On the other hand, USL is only provided with an input and must determine the 

correct output without guidance. Lastly, RL is inspired by behavioral psychology and 

teaches an intelligent agent by rewarding correctness.  

There are many different ML algorithms. However, the two most often used in video 

game research are RL and genetic algorithms (GAs), a type of USL. GAs mimic the 

process of natural selection and can produce a high-quality solution in any search space. 

Specifically, they thrive in very simple environments. This is accomplished by providing 

the NPC with a few goals whose achievement results in a higher fitness score. The agents 

with the highest fitness score at the end of a generation are then bred to produce a more 

suitable agent. This technique has been used very effectively in simple games, such as 

Super Mario World and Flappy Bird. However, in more complex environments, they 

require longer processing times [3].  
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On the other hand, multiple RL algorithms have proven successful in complex 

domains. In the First Person Shooter (FPS) genre, a multiple reinforcement learner 

architecture using the tabular SARSA algorithm proved successful in its ability to learn 

quickly and defeat FSM bots that come included in Unreal Tournament 2004[4]. Inverse 

RL algorithms have shown that it is possible to create more human-like AI while 

outperforming FSM bots in map exploration [5]. When tabular implementations of RL 

algorithms have become unfeasible due to extremely large state spaces, hierarchical RL 

algorithms that break complex learning tasks into multiple smaller subtasks can still learn 

quickly and solve very large and complex problems [6]. In addition to FPS games, RL 

has also proven an appropriate implementation of adaptive game AI in commercial 

roleplaying games [7]. For these reasons, I chose to implement the first ML NPC in this 

collection with RL. 
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Chapter 3: Methodology 

 This research project was completed in two phases. The first phase involved building 

the environment for testing different implementations of NPC AI. The setup of this 

environment included creating an arena to conduct simulations, attaching weapons to 

each NPC, creating a laser projectile that spawns from the NPC’s weapon barrel when the 

character chooses to fire, and much more. The simulation environment created for this 

thesis was designed for solo Deathmatch gameplay between a BT NPC and an RL NPC. 

These two competitors are mirrors of each other. They both have the same abilities in 

terms of being able to see and hear. They also share the same three actions—one for 

exploring the environment, one for attacking, and one for running away. The primary 

difference between the two bots is how they select which action to use. The first phase 

concluded with the setup of the BT NPC, which is explicitly programmed to use specific 

actions depending on what it perceived in its environment.  

The second phase involved implementing and testing the performance of the RL 

NPC. Unlike the BT NPC, the RL NPC is not told what to do. Instead, it is given a set of 

states, S, a set of actions, A, and set of rewards that it aims to maximize through its 

learning algorithm. For the RL NPC, a tabular-implementation of the Q-learning 

algorithm was used [8]. Tabular Q-learning is implemented via a table of values that 

correspond to the expected reward value for every possible state-action combination that 

the agent can perform. An agent’s state is determined by what it senses from its 

environment. The RL NPC contains 5 flags that make up its state. These flags are 

SeeEnemy, HearEnemy, TakingDamage, DealingDamage, and CriticalHealth. Its 3 

actions are Explore, Attack, and Flee. The Attack and Flee actions are unavailable unless 
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the RL NPC can see or hear the BT NPC. This makes for a table of expected values for 

80 state-action pairs. The underlying data structure of the RL NPC’s table is a map of 

strings to floating-point values. The RL NPC accesses expected reward values in its table 

by indexing it with a string implementation of its current state and action. For each of the 

flags that make up its state, if the flag is activated, it is represented as a “1.” If it is not 

activated, it is represented as a “0.” For example, if the agent can see the enemy, hear the 

enemy, is taking damage, is dealing damage, and is not at critical health, its state can be 

represented as the string “11110.” At this state, each flag is activated except for the 

CriticalHealth flag. The agent must then decide what action it should perform based on 

the expected reward values in its table. We represent Explore as “0”, Attack as “1”, and 

Flee as “2.” The state-action strings are formed by appending one of these characters 

onto the state string. In turn, the state-action strings that the agent uses to determine the 

best action are “111100,” “111101,” and “111102.” Initially, each reward value is set to 

0. The Q-learning algorithm updates what this expected reward value should be for each 

state-action string in the table. The algorithm is as follows: 

𝑄(𝑠, 𝑎)  = 𝑄(𝑠, 𝑎) +  𝛼(𝑟 +  𝛾(𝑄(𝑠′, 𝑎′)) − 𝑄(𝑠, 𝑎)), 

where 𝑄(𝑠, 𝑎) is the expected reward value for the current state-action of the RL NPC, 𝛼 

is the learning rate of the algorithm, 𝑟 is the reward attained for being in this state-action, 

𝛾 is the discount factor, and 𝑄(𝑠′, 𝑎′) is the expected reward for being in the next state-

action.  

The learning rate represents the extent to which the agent should replace old 

information with new information. If 𝛼 is 0, the agent will not learn anything. If 𝛼 is 1, it 

will completely apply the new information at each iteration of the algorithm.  
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The discount factor represents the extent to which the agent should value future 

rewards. If 𝛾 is 0, the agent is said to be “myopic” in that it only considers current 

rewards. As 𝛾 approaches 1, the agent becomes more interested in long-term rewards.  

Lastly, the RL NPC contains one more variable in its behavior, the variable ε, or the 

randomness factor. The randomness factor is the chance that the RL NPC will not use its 

machine learning algorithm to find the next expected best action but will instead 

randomly choose between available actions. This is done in order to allow the agent to 

discover possibly better actions that aren’t immediately supported by the table entries. If 

ε is 0, the agent will never randomly choose an action. If ε is 1, the agent will always 

choose random actions and never use its learning algorithm. 

UE4 includes all artificial intelligence tools used to complete this project. The tools 

highlighted here are Blueprint, Behavior Tree, Blackboard, AIController, AIComponents 

(AIPerception, Pawn Noise Emitter, and Pawn Sensing), and the Environment Query 

System (EQS).  

3.1 Blueprint Visual Scripting 

There are two ways to code behaviors in UE4: C++ and Blueprint. Blueprint is UE4’s 

visual scripting system. It comes with a much lower learning curve than UE4’s C++ 

libraries, even if one is already familiar with C++. Blueprint is popular in the video game 

industry for fast prototyping. Its visual node-based design is functionally faster to work 

with and easier to debug. Blueprint classes can also be converted into native C++ classes, 

which optimize runtime performance. More information regarding Blueprint can be 

found at https://docs.unrealengine.com/latest/INT/Engine/Blueprints/. In this project, 

https://docs.unrealengine.com/latest/INT/Engine/Blueprints/
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Figure 1: Q-learning algorithm implementation in Blueprint for the RL NPC. 

Blueprint was used to script all behaviors for both the BT NPC and the RL NPC. This 

includes the implementation of the tabular Q-learning algorithm below. 

 

 

 

 

 

 

 

The figure shows the Blueprint implementation of the Q-learning algorithm for the 

RL NPC. The variable State Table represents the table for the RL NPC that stores the 

expected reward values of each possible state-action string. The Find node takes as inputs 

this State Table and the current state-action string of the RL NPC and returns a floating-

point value of the expected reward. This value is then subtracted from the resulting value. 

The Add node takes as inputs the State Table, the current-state action string, and the new 

floating-point value to update its existing entry in the table. 

 3.2 AI Tools in UE4  

UE4 contains an abundance of AI tools. Some of the basic and essential ones 

mentioned in this research were used to implement the BT NPC. These tools included 

Behavior Tree, Blackboard, and AIController. BTs in UE4 are accompanied by 

Blackboards, which act as an agent’s memory in the form of Blackboard Keys. BTs use 

this memory to make decisions about which action it should perform. More information 

regarding BTs and Blackboards can be found at 
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https://docs.unrealengine.com/latest/INT/Engine/AI/BehaviorTrees/. In this project, a BT 

was used to define the behavior of the BT NPC. Figure 1 below shows the decision-

making processes of this agent: 

 

 

 

 

 

 

 

 

 

 

 

 

 

The left column of steps represents the Flee action. This action is triggered when the 

Blackboard Keys for CriticalHealth and EnemyHeard is set but CanSeeRLCharacter is 

not set. The middle column of steps represents the Attack action. This action is triggered 

when the Blackboard Keys for CanSeeRLCharacter or EnemyHeard is set. The final and 

right-most column of steps represents the Explore action. This action is triggered when 

the Blackboard Keys for CanSeeRLCharacter and EnemyHeard is not set.  

Figure 2: The Behavior Tree for the BT NPC. 

https://docs.unrealengine.com/latest/INT/Engine/AI/BehaviorTrees/
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AIControllers determine how the agents are controlled without explicit player input. 

More information regarding AIController can be found at 

https://docs.unrealengine.com/latest/INT/Gameplay/Framework/Controller/AIController/. 

For the BT NPC, an AIController was used to assign the BT to the BT NPC since the BT 

could control the BT NPC from there. For the RL NPC, an AIController was used for 

executing all actions. 

 

 

 

3.3  AIComponents 

UE4 contains 3 tools for enabling agents to receive sensory-like data from their 

environment. These are AIPerception, Pawn Noise Emitter, and Pawn Sensing. More 

information regarding these three components can be found at 

https://docs.unrealengine.com/latest/INT/Engine/Components/AI/. In this project, 

AIPerception was used to give both agents visual input. Figure 3 shows the Blueprint 

code for how to toggle the Blackboard Key for CanSeeRLCharacter.  

 

 

Figure 3: An AIController assigns a behavior tree to the BT NPC. 

https://docs.unrealengine.com/latest/INT/Gameplay/Framework/Controller/AIController/
https://docs.unrealengine.com/latest/INT/Engine/Components/AI/
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The AIComponent PawnSensing was used to give both agents auditory input. When 

noise is heard, the Blueprint function OnHearNoise is called, which toggles the 

Blackboard Key for EnemyHeard.  

 

 

  

 

 

 

 

Figure 5: Blueprint code that allows BT NPC to hear ML NPC. 

Figure 4: Blueprint code that allows the BT NPC update its blackboard with information regarding 

whether it can or cannot see the RL NPC. 



12 

 

The final AIComponent used, called Pawn Noise Emitter, allows both agents to broadcast 

noise whenever their feet hit the ground. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Assigning the function PlayStepSound whenever either of ML NPC’s or BT NPC’s feet hit 

the ground. 

Figure 7: Blueprint code that broadcasts noise whenever PlayStepSound is triggered. 
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3.4 Environment Query System 

UE4’s EQS allows an agent to collect data from its environment and run tests on this 

data to determine the best result. More information regarding EQS can be found at 

https://docs.unrealengine.com/latest/INT/Engine/AI/EnvironmentQuerySystem/. In this 

project, the Flee action that is shared between both agents uses an EQS Query to query 

the environment for the best hiding spots from the enemy based on current enemy vision 

and closest matching area that does not fall within this line of vision. This query and the 

resulting figure below is from UE4’s Quickstart for EQS: 

https://docs.unrealengine.com/latest/INT/Engine/AI/EnvironmentQuerySystem/QuickSta

rt/12/ 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: The FindHidingSpot Query used in this project from UE4’s EQS QuickStart 

https://docs.unrealengine.com/latest/INT/Engine/AI/EnvironmentQuerySystem/
https://docs.unrealengine.com/latest/INT/Engine/AI/EnvironmentQuerySystem/QuickStart/12/
https://docs.unrealengine.com/latest/INT/Engine/AI/EnvironmentQuerySystem/QuickStart/12/
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Chapter 4: Experimental Results 

I conducted many simulations to assess the RL NPC’s ability to learn to defeat the BT 

NPC and the results are contained in the table below. This was accomplished by 

rewarding the RL NPC 1 point for killing the BT NPC and 0.1 point for damaging the BT 

NPC. The RL NPC was given a punishment of -1 for dying to the BT NPC and a 

punishment of -0.1 for being damaged by the BT NPC. A simulation ended when the 

combined kill score between the RL NPC and BT NPC summed to 10. Simulations were 

viewable from 3 cameras within UE4 and these angles are shown in the figures below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: A top down view of the simulation environment. 
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Figure 10: A view of the simulation from the perspective of the RL NPC. 

Figure 11: A view of the simulation from the perspective of the BT NPC. 
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All 3 angles show the same diagnostic information for the simulation. The 5 flags for 

the RL NPC are shown directly below RL Score, and a blue box indicates that the flag is 

activated. The 3 actions are shown directly below these flags, and a red box indicates the 

selected action. Below the actions lie the current state-actions expected reward value and 

a box that will turn blue when the Q-learning algorithm was bypassed in selecting the 

next action and instead a random action was selected. 

The table below shows the average kill scores of the RL NPC and the BT NPC over 

10 simulations for different learning rate values.  

Table 1: Performance of the NPCs with varying Learning Rates. 

RL BT Learning Rate Discount Factor Randomness Factor 

2.9 7.1 1 1 0.1 

3.2 6.8 0.6 1 0.1 

3.4 6.6 0.5 1 0.1 

3.1 6.9 0.4 1 0.1 

 

The table below shows the average kill scores of the RL NPC and the BT NPC over 

10 simulations for different discount factor values.  

Table 2: Performance of the NPCs with varying Discount Factors. 

RL BT Learning Rate Discount Factor Randomness Factor 

2.8 7.2 1 0 0.1 

1.9 8.1 1 0.33 0.1 

2.3 7.7 1 0.66 0.1 

2.9 7.1 1 1 0.1 

 

The table below shows the average kill scores of the RL NPC and the BT NPC over 

10 simulations for 4 pairs of parameters. In each pair, the only difference between the 

sets of parameters are that one has a randomness factor value of 0.1 (meaning a random 
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action will be chosen every 1 out of every 10 actions) and the other has a randomness 

factor of 0.2 (1 out of every 5).  

Table 3: Performance of the NPCs with varying Randomness Factors. 

RL BT Learning Rate Discount Factor Randomness Factor 

2 8 0.6 0.9 0.2 

2.9 7.1 0.6 0.9 0.1 

3.2 6.8 0.4 1 0.2 

3.1 6.9 0.4 1 0.1 

3.3 6.7 0.6 1 0.2 

3.2 6.8 0.6 1 0.1 

2.7 7.3 1 1 0.2 

2.9 7.1 1 1 0.1 

 

The table below compares the best performing variant of the RL NPC with a variant 

of the RL NPC where learning was disabled. Average kill scores of the RL NPC and the 

BT NPC were recorded over 30 simulations for the two variants.  

Table 4: Performance of the best RL NPC vs the RL NPC with learning disabled. 

RL BT Learning Rate Discount Factor Randomness Factor 

3.83333333 6.16666667 0.4 0.8 0.1 

0.8 9.2 1 1 1 

 

Our experimental analysis shows that the performance of the RL NPC was 

significantly better with its learning algorithm enabled than without. While we could not 

find a variant of the RL NPC that could defeat the BT NPC, the best variant of the RL 

NPC that we found and tested performed at 63% of the performance of the BT NPC 

without being explicitly programmed. This is good given that the learning episodes were 

very short—reaching a combined kill score of 10 gives very few opportunities to receive 

large positive or negative rewards—and the state-action space was very small with the 

table being composed of only 80 state-action pairs. Additionally, with such a small state-
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action space to work with, it was easy to implement the BT NPC with perhaps the most 

optimal policy for winning. 

 Our results also indicate that the algorithm was not significantly affected by different 

values of learning rate, discount factor, or randomness factor. Once again, this could be 

due to the small state-action space and simplistic level design. In a more complex 

environment with a larger state-action space, one could expect these variables to have a 

larger impact on performance. 
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Chapter 6: Conclusion 

 This thesis has described an implementation for applying ML to NPCs using UE4’s 

AI tools and Blueprint visual scripting system. While the RL NPC did not outperform the 

BT NPC as the environment and state-action space were too simple, the experiments 

show that the RL NPC is capable of learning very quickly. This project provides an 

environment that makes RL algorithms easier to implement in academic research. To our 

knowledge, this is the first Blueprint implementation of an RL algorithm. With 

Blueprint’s gentle learning curve, this will help lower the barrier of entry for testing ML 

algorithms in academia, industry, and the gaming community. 

6.1 Future Work 

While this paper successfully presented an environment for quickly implementing and 

testing ML algorithms in UE4 with Blueprint (C++ implementations can also be added to 

the project), there is a lot of opportunity for future work. Creating a more complex 

environment for this RL NPC, implementing an ML NPC with a different RL (or other 

kind of ML) algorithm, or conducting simulations against a human player, are all avenues 

that can be explored next given the groundwork laid by this thesis. This work is entirely 

viewable and modifiable under the GNU General Public License at 

https://github.com/reecealanboyd/RL4NPCs. 
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Appendix 

ML – Machine Learning 

AI – Artificial Intelligence 

NPC - Non-Player Character 

UE4 – Unreal Engine 4 

BT – Behavior Tree 

EQS – Environment Query System 

RL – Reinforcement Learning 

FSM – Finite State Machine 

SL – Supervised Learning 

USL – Unsupervised Learning 

GA – Genetic Algorithm 

FPS – First Person Shooter 

 

 

 

 

 

 

 


