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ABSTRACT

In this thesis we explore the mathematical theory of some epidemiological models

that represent infectious disease and try to establish the mathematical properties of

the differential equations representing the models. We describe the SEIR models we

study with time varying transmission and recovery coefficients and constant latency

and vaccination rates. We prove that the models satisfy the requirements such as

existence and uniqueness of solutions and the continuous dependence of solutions on

initial conditions. Using these properties we derive the long term behavior and the

condition for an outbreak to occur of the solutions. This helps us to understand the

biological implications and the control measures that can be applied. We also develop

an implicit discrete formulation for the numerical algorithms to use data and verify

that the model can be used on the COVID-19 data.
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CHAPTER 1

INTRODUCTION

Mathematical modeling has been increasingly recognized as an important research

tool for infectious diseases control. The objective of a mathematical model of an

infectious disease is to describe the transmission process of the disease. When the

disease spreads quickly to many people, it is an epidemic. When a disease spreads

quickly, mathematical modeling tries to help the public health authorities to answer

the following questions.[1]

1. How severe will the epidemic be?

2. How long will it last? When will it peak? What will be its time course?

3. How effective will quarantine or vaccination be?

4. What could be the control measures?

5. What amount of vaccines and drugs are required?

Since the onset of COVID-19 global pandemic there has been an increased interest

in comparing the data of infection to the various mathematical models to find which

model the data matches well. Therefore, we try to apply the theory of the models

that we develop to the data published by the state of Tennessee and CDC of the

United States.

There have been various models proposed ever since Kermack and McKendrick

have introduced their epidemiological SIR model [7] in 1927. However the main

questions each model tries to answer remains the above. We aim to study the com-

partmental epidemic models similar to the SIR model in this thesis. We describe

models with time dependent parameters in their implicit discrete form for numerical

calculations.
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1.1 Compartmental Epidemic Models

In the compartmental epidemic models, the host population is divided into compart-

ments which are mutually exclusive groups of population. For a simple infectious

disease, a simple model assumes the the compartments to be, S : susceptible hosts,

I : infectious hosts and R : recovered hosts. The disease transmission process can

be illustrated using transfer diagrams to show the movement of individuals from a

compartment to another. Mathematical models track the number of individuals in a

compartment as a function of time.

new susceptibles
S

removal

new infections
I

removal

recovery
R

removal

loss of immunity

The arrows in the diagram indicate the direction of movement of individuals. The

transfer diagram given above can be modeled by equations as follows. At time t, let

S (t) , I (t) and R (t) be the number of individuals in each compartment. Supposing

that new individuals are being added to the susceptible compartment and on recov-

ery some of the individuals become susceptible again, and deaths or removals happen

from all the three compartments , we consider a small interval of time [t, t+ ∆t] and

write the change in the number of individuals in the compartments during this inter-

val as,

∆S (t) = new susceptibles + transfer from R - new infections - removal from S .

∆I (t) = new infections - transfer into R - removal from I .

∆R (t) = transfer from I - transfer into S - removal from R .

The model then proceeds to derive the differential equations by taking the limit
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∆t→ 0, of the change in the number of individuals in each compartment.

lim
∆t→0

S (t+ ∆t)

∆t
= S

′
(t) .

lim
∆t→0

I (t+ ∆t)

∆t
= I

′
(t) .

lim
∆t→0

R (t+ ∆t)

∆t
= R

′
(t) .


(1.1)

The differential equations representing this simple mathematical model consists of

a system of equations representing S
′
(t) , I

′
(t) and R

′
(t) in terms of the populations

in the compartments.

1.1.1 Exponential Probability Distribution

N (t)
rN (t)

The proportional transfer rates from a general compartment as described in [1],

says that if the total population in a compartment C at time t is N (t) and the pro-

portional rate of transfer from the compartment is rN (t) , the change of population

satisfies the differential equation

dN (t)

dt
= −rN (t) . (1.2)

If N0 is the population in the compartment at time t = 0,

N (t) = N0e
−rt. (1.3)

The survival function defined as the probability of surviving t units of time which

gives the fraction of individuals remaining in the compartment is, e−rt . Therefore,

the associated probability distribution function is given by F (t) = 1−e−rt ; t ≥ 0.
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The probability density function of the distribution of F (t) is,

f (t) =
dF (t)

dt
= re−rt ; t ≥ 0. (1.4)

The mean residence time in the compartment is given by,∫ ∞
−∞

tf (t) dt = 1/r. (1.5)

1.1.2 SIR model

S
λIS

I
γI

R

A simplistic SIR model was first described by Kermack and McKendrick in 1927 .

The basic assumptions of the Kermack-McKendrick Model as stated in [1] are,

1. Transmission occurs horizontally through direct contact between hosts.

2. Mixing of individual hosts is homogeneous and thus the Law of Mass Action

holds.

3. There is no latency period after getting infected and becoming infectious.

4. The rate of transfer from a compartment is proportional to the total population

in the compartment at the time.

5. There is no loss of immunity and no possibility of reinfection.

6. There is no input of new susceptibles and no removal from any compartments.

Therefore the total population remains a constant.

Based on these assumptions, the change of population equations in each compart-

ment as,

∆S (t) = - new infections

∆I (t) = new infections - transfer into R
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∆R (t) = transfer from I

In addition to these assumptions, we also state that the coefficients of transmission,

λ and γ, in the differential equations we derive shortly, are constants in this model.

This means that the recovery rate as well as the mean time spend as infectious is a

constant for the disease at all time. Similarly, the transmission rate is also a constant

for the disease at all time. We note that a modified model with time dependent

transmission coefficients is presented in [2].

1.1.3 SEIR model

For some diseases, there is a latency period after a host becomes infected and before

the individual can be contagious or infectious. In such diseases, we include a latent

compartment to which the individuals move from the susceptible compartment upon

infection. Once the latent period is over, the individuals could spread the infection

and they move to the infectious compartment. [1]

S
λIS

E
εE

I
γI

R

The change of population equations in this case when there is no removal from

any compartment and no influx of susceptibles are written as,

∆S (t) = - new infections

∆E (t) = new infections - latency completed individuals

∆I (t) = latency completed individuals - transfer into R

∆R (t) = transfer from I
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1.2 Deriving Model Equations

1.2.1 Rate of incidence

The incidence term is derived based on the Law of Mass Action for chemical kinetics.

If M and N are the quantities of the two substances that interact, the substitution

force is equal to αMaN b , where α, a, b are constants that depend only on the nature

of the substances.

Incidence term modeled after mass action, called simple mass-action incidence or

bilinear incidence is derived as follows[1]. The disease spreads due to the contact of

infectious individuals and susceptible individuals. The rate of incidence, same as the

rate of change of susceptible individuals, S
′
(t) is then proportional to the product

of the total number of susceptible individuals and the total number of infectious

individuals . Let S (t) be susceptible and I (t) be the number of infectious populations

at time t . Then,

S
′
(t) = −λS (t) I (t) . (1.6)

We consider the incidence form with λ being a positive constant. The basic

assumptions for law of mass action according to [1] are, homogeneous mixing, law

reactant densities and conservation of total mass. In the case of compartment models,

these corresponds to homogeneous contact of individuals, lower population density

and the total population being constant.

1.2.2 Rate of Infection and Rate of Recovery

We now proceed to derive the differential equations for the Infected and Recovered

compartments and the mean residence time in these compartments. The incidence

rate or the rate at which individuals move out of the susceptible compartment into

the infectious compartment. Assuming the conditions for the Law of Mass Action,

for the interaction between a susceptible individuals and infectious individuals, the
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rate of change of susceptibles does not get modified by probability.

λS (t) I (t)G (t) . (1.7)

Suppose that the residence time in the compartment I follows a general probability

distribution, P (t) . Then, the associated survival function in the I compartment is

given by, G (t) = 1 − P (t). For any given time τ > 0, G (t− τ) is the fraction of

individuals who become infected at time τ > 0 and are still infectious at time t > τ .

Therefore, the population infected at time τ and remain infectious at time t is,[1]

λS (t) I (t)G (t) . (1.8)

When P (t) = 1−e−γt, for t ≥ 0 and P (t) = 0,for t < 0, the survival function follows

the exponential distribution, e−γt. Let I (0) be the number of individuals in the I

compartment at time τ = 0 and let I0 (t) be the number of individuals infected at time

τ = 0 and remain infected at time t. Since the residence time in the compartment

follows the exponential probability distribution, G (t), I0 (t) = I (0) e−γt. The number

of individuals accumulated in the I compartment at time t since τ = 0 is ,

I (t) = I (0) e−γt +

∫ t

0

λS (τ) I (τ) e−γ(t−τ)dτ. (1.9)

Differentiating with respect to t,

I
′
(t) = −γI0 (t) + λS (t) I (t)− γ

∫ t

0

λS (τ) I (τ) e−γ(τ)dτ

= −γI0 (t) + λS (t) I (t)− γ (I (t)− I0 (t)) = λS (t) I (t)− γ (I (t)) . (1.10)

Thus, I
′
(t) = λS (t) I (t) − γI (t) is the differential equation corresponding to the

transfer to and from the I compartment when the survival function in the compart-

ment follows the exponential probability distribution.

Since the residence time in the compartment I follows the probability distribution,

P (t) = 1− e−γt, The mean residence time in the compartment is given by,∫ ∞
0

t
dP (t)

dt
dt = 1/γ. (1.11)
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To derive the equation for the rate of change of recovered individuals, we note that,

when G (t) is the survival function in the I compartment, 1 − G (t) is the survival

function in the recovered compartment because the individuals get transferred from

I to R compartment upon recovery. Then the equation for R (t), the number of

recovered individuals at time t is,

R (t) = R (0)
(
1− e−γt

)
+

∫ t

0

λS (τ) I (τ)
(
1− e−γ(t−τ)

)
dτ. (1.12)

Differentiating with respect to t,

R
′
(t) = R (0)

(
1− e−γt

)
− γR0 (t) + λS (t) I (t)− γ

∫ t

0

λS (τ) I (τ) e−γ(τ)dτ

= γI (t) . (1.13)

Thus, R
′
(t) = γI (t) is the differential equation for the transfer to the R compart-

ment. The SIR model that assumes exponentially distributed infectious period, can

be thus described in terms of the ODEs,

S
′
(t) = −λS (t) I (t) ,

I
′
(t) = λS (t) I (t)− γI (t) ,

R
′
(t) = γI (t)


(1.14)

In the case of SEIR [1] model, the differential equation for the rate of change

of susceptibles remain the same. That is, S
′
(t) = −λS (t) I (t). The susceptible

individuals, on infection move to the latent compartment instead of being infectious

immediately. Suppose we denote the latency period by ε. Then general probability

distribution representing the residence time in the E compartment is P (t) = 1−e−εt,

for t ≥ 0 and P (t) = 0, for t < 0, the survival function follows the exponential

distribution, e−εt in the E compartment. Let E (0) be the number of individuals in

the E compartment at time τ = 0 and let E0 (t) be the number of individuals infected
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at time τ = 0 and remain infected at time t. Then, E0 (t) = E (0) e−εt. The number

of individuals accumulated in the E compartment at time t since τ = 0 is,

E (t) = E (0) e−εt +

∫ t

0

λS (τ) I (τ) e−ε(t−τ)dτ. (1.15)

Differentiating with respect to t,

E
′
(t) = −εE0 (t) + λS (t) I (t)− ε

∫ t

0

λS (τ) I (τ) e−ε(τ)dτ

= −εE0 (t) + λS (t) I (t)− ε (E (t)− E0 (t)) = λS (t) I (t)− εE (t) . (1.16)

The rate of change of individuals in the I compartment could be similarly derived,

I
′
(t) = εE (t)− γ (I (t)) . (1.17)

The differential equation representing the rate of change in the R compartment is

the same as that in the SIR model,

R
′
(t) = γI (t) . (1.18)

The system of ODEs representing the SEIR model [1] therefore is,

S
′
(t) = −λ (t) S (t) I (t) ,

E
′
(t) = λ (t) S (t) I (t)− εE (t) ,

I
′
(t) = εE (t)− γ (t) I (t) ,

R
′
(t) = γ (t) I (t)


(1.19)

1.3 Mathematical Background

The theory developed in this thesis tries to find the following properties in the models.
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1. Boundedness and nonnegativity : Whether the solutions to the system of ODE

remain bounded in the region of existence? Are the solutions non negative since

the solutions are number of individuals and need to be non negative.

2. Existence and uniqueness of solutions in the positive axes.

3. What is the long term behavior of the system.

4. Is the system well-posed?

To develop the theory given in this thesis, we depended on the following mathe-

matical background; already known definitions and theorems.

Definition 1.1 ([2])The supremum norm of a continuous function f : [a, b] → R in

an arbitrary time interval [a, b] is defined in [2] as || f (t) ||∞:= supt∈[a,b] | f (t) |

Definition 1.2 ([1])

Let E be an open set in Rd. A function f (y, z) = f
(
y1, ..., yd, z1, ..., ze

)
defined

on the (y, z) set E, where y ∈ Rd,is said to be uniformly Lipschitz continuous on E

with respect to y if there exists a constant L satisfying

| f (x, z)− f (y, z) | ≤ L | x− y |

for all (x, z) , (y, z) ∈ E. Any constant L satisfying this condition is called a Lipschitz

constant for f on E. Further, we could chose a suitable norm on the corresponding

Euclidean space Rd , so that for the Lipschitz constant for f on E.

|| f (x, z)− f (y, z) ||Rd2 ≤ L || x− y ||Rd

for all (x, z) , (y, z) ∈ E.

Definition 1.3 ([2]) Let U ⊂ Rd1 be open. Let F : U → Rd2 .F is locally Lipschitz

continuous if for every point x0 ∈ U , there exists a neighborhood V of x0 such that

the restriction of F to V is Lipschitz continuous on V .
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We state the Gronwall’s Inequality in R here.

Lemma 1.4 Gronwall’s Inequality : ([4]) Suppose f is non-negative and continuous

on R , and suppose there exist positive constants C and K such that ,

f (t) ≤ C +K

∫ t

0

f (s) ds

for all t ∈ [0, a] . Then f (t) ≤ CeKt for all t ∈ [0, a].

We apply the following theorem [2] to prove the global existence of solutions for the

differential equations, that is a direct consequence of Gronwall’s Inequality.

Theorem 1.5 ([2]) If G : Rn → Rn is locally Lipschitz continuous, and if there exist

nonnegative real constants B and K such that,

|| G (t, z (t)) ||Rn ≤ K || z (t) ||Rn +B

holds for all z (t) ∈ Rn, then the solution of the initial value problem (2) exists for all

time t ∈ R and, moreover, it holds,

|| z (t) ||Rn ≤ || z0 (t) ||Rn +
B

K

(
eK|t| − 1

)
.

To prove the dependence on initial conditions, we use the inequality named after

Gronwall as stated below.

Theorem 1.6 ([2, Theorem 3] ) Let I := [a, b]. Let u, f : I → [0,∞] be continu-

ous and nonnegative functions. Let g : I → (0,∞) be a continuous, positive, and

nondecreasing function. If the inequality

u ≤ g (t) +

∫ t

a

f (s)u (s) ds (1.20)

holds for all t ∈ I, then we obtain

u ≤ g (t) e
∫ t
a f(s)ds (1.21)

for all t ∈ I.
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We first state a simple definition of well-posedness given in [4]

Definition 1.7 ([4]) An initial value problem x
′
= f (x) x (0) = x0

is called well-posed if each of the following criteria is satisfied.

i) Existence: The problem has at least one solution.

ii) Uniqueness: The problem has at most one solution.

iii) Dependence on Initial Conditions: A slight change in initial conditions does not

profoundly impact the solution.

To prove global uniqueness in time, we need Banach’s fixed point theorem which

we recall below.

Theorem 1.8 [2, Theorem 2] Let (X,Q) be a complete metric space with the metric

mapping, Q : X×X → [0,∞). Let T : X → X be a contraction , that is, there exists

a constant K ∈ [0, 1) such that Q (Tx, Ty) ≤ Q (x, y) holds for all x, y ∈ X. Then

the mapping T has a unique fixed point.

1.3.1 Basic Reproduction Number

Based on the monotonicity properties and the boundedness of S, I and R, we can

draw the following biological conclusions for the SIR model.[1]

1. Some number of susceptibles always escape the infection at the end of the

epidemic.

2. The epidemic ends not because the susceptibles are exhausted.

3. The disease eventually dies out and the infectious population tends to zero after

a long period of time.

4. Since the infectious population increases initially, there must be a period of time

after which the change in I becomes negative. In other words, the epidemic first

rises, the declines after reaching the maximum.
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We further explore properties 1 and 2 here. The basic reproduction Number,

denoted by R0 [1] measures the average number of secondary infections caused by

a single infectious individual in an entirely susceptible population during the mean

infectious period.

We can interpret, R0 as, [average number of effective contacts of a single infectious

host] . [initial susceptible population]. [mean infectious period]

In the context of Kermack - McKendrik model, the basic reproduction number,

at the beginning of the infection,

R0 = λS0
1

γ
.

The significance of R0 is in determining whether an epidemic outbreak will occur

or not, given the constants λ and γ and the total susceptible population at the begin-

ning of the infection. If the parameters λ and γ are constants, the basic reproduction

number depends only on the value of S0. From the assumptions λ, γ ≥ 0, since

S0 ≥ 0 , we observe that, R0 := λS0
1
γ
≥ 0 for all t ≥ 0.

Theorem 1.9 ([2]) I (t) steadily decreases with t when R0 < 1 . In other words,an

epidemic does not occur if the basic reproduction number R0 < 1.

Proof. From equation 1.14, I (t) = I0e
λ
∫ t
0 S(τ)dτe

∫ t
0 −γdτ .

From the monotonicity of S (t) , we know that λ
∫ t

0
S (τ) dτ ≤ λS0t .

I (t) < I0 if λ
∫ t

0
S (τ) dτ <

∫ t
0
γdτ . That is, when λS0 < γ or, when R0 < 1 .

An epidemic occurs when, R0 > 1, since I (t) = I0eλ
∫ t
0 S(τ)dτ e

∫ t
0 −γdτ > I0 in this case.
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CHAPTER 2

PROPERTIES OF THE MODELS

In this chapter, we discuss the properties of the differential equations associated

with the SEIR model. We discuss the well-posedness property in detail and also

examine the effect of perturbations on the model equations. We discuss the modified

SEIR model with time continuous transmission coefficient and recovery rate and the

time discrete model as given in [2]. Since we consider that the total population

remains a constant over all time t ≥ 0, we have ,

N (t) = S (t) + E (t) + I (t) +R (t) . (2.1)

2.1 SEIR model with time varying coefficients

In this section we examine the SEIR model with time dependent transmission, and

recovery coefficients. We first state the assumptions of the model below.

1. The total population N is fixed over time.

2. The total population is divided into homogeneous groups, with S (t) represent-

ing Susceptible population, E (t) Latent population, I (t) Infectious population

and R (t) Recovered population at time t. Since the total population is a con-

stant, N (t) = S (t) + E (t) + I (t) +R (t) for all time t ∈ [0,∞).

3. the time varying transmission coefficient λ (t) is Lipschitz continuous and is

continuously differentiable for all t ∈ [0,∞). It holds that 0 < λmin ≤ λ (t) ≤

λmax , for all t ∈ [0,∞) , where λmin is the lowest and λmax is the highest value

λ achieves.

4. the latency period remains a constant and is independent of time.
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5. the time varying recovery coefficient γ (t) is Lipschitz continuous and is contin-

uously differentiable for all t ∈ [0,∞). It holds that 0 < γmin ≤ γ (t) ≤ γmax

, for all t ∈ [0,∞) , where γmin is the lowest and γmax is the highest value γ

achieves.

2.1.1 SEIR model equations

Since the total population remains a constant over all time t ≥ 0,

we have , N (t) = S (t) + E (t) + I (t) +R (t).

The differential equations for the SEIR model with time varying transmission and

recovery rates are,

S
′
(t) = −λ (t) S (t) I (t) ,

E
′
(t) = λ (t) , S (t) I (t)− εE (t)

I
′
(t) = εE (t)− γ (t) I (t) ,

R
′
(t) = γ (t) I (t) ,

N (t) = S (t) + E (t) + I (t) +R (t)



(2.2)

The initial conditions for the system of equations are,

N (t) := N0 = N

S (0) := S0 > 0, I (0) := I0 > 0, E (0) := E0 ≥ 0, R (0) := R0 ≥ 0

2.1.2 Nonnegativity and boundedness

We first find the feasible region for the solutions of the system of differential equations

2.2. Our aim is to prove that each of S,E, I, R are non negative functions of t.

Lemma 2.10 Each solution of the system given by 2.2 is bounded below by 0.
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Proof

1. We use separation of variables and write the S equations as,

S
′
(t)

S (t)
= −λ (t) I (t) (2.3)

Integrating,

ln

(
S (t)

S (0)

)
= −

∫ t

0

λ (τ) I (τ) dτ

S (t) = S (0) e−
∫ t
0 λ(τ)I(τ)dτ . (2.4)

Where S (0) is the initial condition on S (t) , corresponding to the initial popu-

lation in the S compartment. Since S (0) ≥ 0 , we see that S (t) ≥ 0 at all time

t ≥ 0.

2. Now we divide the E equation by E (t) and write,

E
′
(t)

E (t)
=
λ (t) S (t) I (t)

E (t)
− ε (2.5)

We replace E (t) with N−(S (t) + I (t) +R (t)) on the right hand side to obtain,

E
′
(t)

E (t)
=

λ (t) S (t) I (t)

N − (S (t) + I (t) +R (t))
− ε

Integration yields,

ln

(
E (t)

E (0)

)
=

∫ t

0

(
λ (τ) S (τ) I (τ)

N − (S (τ) + I (τ) +R (τ))
− ε

)
dτ

Therefore,

E (t) = E0. exp .

[∫ t

0

(
λ (τ) S (τ) I (τ)

N − (S (τ) + I (τ) +R (τ))
− ε

)
dτ

]
. (2.6)

Since E0 ≥ 0 , E (t) ≥ 0 for all t ≥ 0.
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3. We divide the I equation by I (t) and write,

I
′
(t)

I (t)
=
εE (t)

I (t)
− γ (t) (2.7)

We replace I (t) with N−(S (t) + E (t) +R (t)) on the right hand side to obtain,

I
′
(t)

I (t)
=

εE (t)

N − (S (t) + E (t) +R (t))
− γ (t)

Integration yields,

ln

(
I (t)

I (0)

)
=

∫ t

0

(
εE (t)

N − (S (τ) + E (τ) +R (τ))
− γ (t)

)
dτ

Therefore,

I (t) = I0. exp .

[∫ t

0

(
εE (t)

N − (S (τ) + E (τ) +R (τ))
− γ (t)

)
dτ

]
. (2.8)

Since I0 ≥ 0 , I (t) ≥ 0 for all t ≥ 0.

4. Since R
′
(t) = γ (t) I (t), integration yields,

R (t) = R0 +

∫ t

0

γ (τ) I (τ) dτ. (2.9)

SinceI (t) ≥ 0 and γ (t) > 0 , R (t) ≥ 0 for all t ≥ 0.

We now state the boundedness theorem for the solutions.

Theorem 2.11 For each solution of the system given by 1.19,

1. 0 ≤ S (t) ≤ N

2. 0 ≤ E (t) ≤ N

3. 0 ≤ I (t) ≤ N

4. 0 ≤ R (t) ≤ N

For all t ≥ 0.
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2.1.3 Global existence of solutions

We define the solution vector,

z (t) = (S (t) , E (t) , I (t) , R (t))

z (0) = z0 = (S (0) , E (0) , I (0) , R (0))

and z
′
(t) = G (t, z (t)).

We state the global existence of solutions as follows.

Theorem 2.12 ([1], [2]) At least one solution to the differential equations 2.2 exist

for all time t ∈ [ 0,∞).

Proof.

We define a function G (t, z (t)) : [0,∞)× R3 → R3 as


−λ (t) S (t) I (t)

λ (t) S (t) I (t)− εE (t)
εE (t)− γ (t) I (t)

γ (t) I (t)

.

We first prove that G is Lipschitz continuouous using the property that the upper

bounds of S, E, I and R are N and λmax, γmax exist.

Consider z1 (t) = (S1 (t) , E1 (t) , I1 (t) , R1 (t)) and z2 (t) = (S2 (t) , E2 (t) , I2 (t) , R2 (t))
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| G (t, z1 (t))−G (t, z2 (t)) |

=



|λ2 (t)S2 (t) I2 (t)− λ1 (t)S1 (t) I1 (t)|

|λ1 (t)S1 (t) I1 (t)− λ2 (t)S2 (t) I2 (t)− (εE2 (t)− εE1 (t))|

|εE1 (t)− εE2 (t)− (γ1 (t) I1 (t)− γ2 (t) I2 (t))|

|γ1 (t) I1 (t)− γ2 (t) I2 (t)|



≤



|λ2 (t)S2 (t) I2 (t)− λ1 (t)S1 (t) I1 (t)|∣∣∣∣λ1 (t)S1 (t) I1 (t)
E1 (t)

E1 (t)
− λ2 (t)S2 (t) I2 (t)

E2 (t)

E2 (t)

∣∣∣∣− |εE1 (t)− εE2 (t)|

∣∣∣∣εE1 (t)
I1 (t)

I1 (t)
− εE2 (t)

I2 (t)

I2 (t)

∣∣∣∣− |γ1 (t) I1 (t)− γ2 (t) I2 (t)|

|γ1 (t) I2 (t)− γ2 (t) I2 (t)|



≤ | λmax + γmax + ε |



| N | | S1 (t)− S2 (t) |

| N | | E1 (t)− E2 (t) |

| N | | I1 (t)− I2 (t) |

| N | | R1 (t)−R2 (t) |



= N (λmax + γmax + ε)


| S1 (t)− S2 (t) |
| E1 (t)− E2 (t) |
| I1 (t)− I2 (t) |
| R1 (t)−R2 (t) |


= N (λmax + γmax + ε) | z2 (t)− z1 (t) . | (2.10)
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Thus G is Lipschitz continuouous in z (t).

Now we consider the supremum norm,

|| G (t, z (t)) ||∞

= sup
t∈[0,∞)

{| −λ (t) S (t) I (t) |, | λ (t) S (t) I (t)− εE (t) |, | εE (t)− γ (t) I (t) |, | γ (t) I (t) |}

≤ sup
t∈[0,∞)

{λmax | S (t) I (t) | , λmax | S (t) I (t) | + ε | E (t) |,

ε | E (t) | + γmax | I (t) |, γmax | I (t) |}

≤ sup
t∈[0,∞)

{λmaxN | S (t) | , (λmaxN + ε) | E (t) | , (ε+ γmax) | I (t) | , γmax | I (t) |}

≤ sup
t∈[0,∞)

{λmaxN | S (t) | , λmaxN | E (t) | + ε | E (t) | , ε | I (t) | + γmax | I (t) | ,

γmax | R (t) |}

≤ N (λmax + ε+ γmax) sup
t∈[0,∞)

{ | S (t) |, | E (t) |, | I (t) |, | R (t) |}

≤ N (λmax + γmax + ε) || z (t) ||∞ . (2.11)

by the boundedness of S (t) , E (t) , I (t) and R (t) and the transmission and

recovery coefficients. Thus the conditions for Theorem 1.5 are satisfied and the proof

is complete.

2.1.4 Global uniqueness of solutions

Theorem 2.13 ([1] , [2]) There exists a unique solution for all time t ∈ [ 0,∞), for

the initial value problem given by the differential equations 2.2

Proof.

First choose an interval [0, τ ] on which the Banach’s fixed point theorem is applicable.
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Now, suppose that there exist two different solutions in the interval [0,∞), say, z (t) =

(S (t) , E (t) , I (t) , R (t)) and z̃ (t) =
(
S̃ (t) , Ẽ (t) , Ĩ (t) , R̃ (t)

)
.

Then,

sup
t∈[0, τ ]

∣∣∣S (t)− S̃ (t)
∣∣∣

= sup
t∈[0, τ ]

∣∣∣∣∫ t

0

(
λ (z) S̃ (z)Ĩ (z)− λ (z)S (z) I (z)

)
dz

∣∣∣∣
≤ sup

t∈[0, τ ]

λmax

∫ t

0

∣∣∣S̃ (z)
∣∣∣ ∣∣∣Ĩ (z)− I (z)

∣∣∣+ |I (z)|
∣∣∣S (z)− S̃ (z)

∣∣∣ dz
≤ sup

t∈[0, τ ]

λmax

∫ t

0

N
∣∣∣Ĩ (z)− I (z)

∣∣∣+N
∣∣∣S (z)− S̃ (z)

∣∣∣ dz
≤ sup

t∈[0, τ ]

λmaxN t
{∣∣∣Ĩ (t)− I (t)

∣∣∣+
∣∣∣S (t)− S̃ (t)

∣∣∣}
≤ 2λmaxN τ

∣∣∣∣∣∣z (t)− z̃ (t)
∣∣∣∣∣∣
∞
. (2.12)

Similarly, we obtain,

sup
t∈[0, τ ]

∣∣∣E (t)− Ẽ (t)
∣∣∣

= sup
t∈[0, τ ]

∣∣∣∣∫ t

0

λ (z)
(
S (z) I (z)− S̃ (z)Ĩ (z)

)
dz

∣∣∣∣+ sup
t∈[0, τ ]

∣∣∣∣∫ t

0

ε
(
E (z)− Ẽ (z)

)
dz

∣∣∣∣
≤ sup

t∈[0, τ ]

λmax tN
{∣∣∣Ĩ (t)− I (t)

∣∣∣+
∣∣∣S (t)− S̃ (t)

∣∣∣}+ sup
t∈[0, τ ]

ε t
{∣∣∣Ẽ (t)− E (t)

∣∣∣}
≤ (λmaxN + ε) τ

∣∣∣∣∣∣z (t)− z̃ (t)
∣∣∣∣∣∣
∞

≤ (2λmax + ε)Nτ
∣∣∣∣∣∣z (t)− z̃ (t)

∣∣∣∣∣∣
∞

(2.13)



22

sup
t∈[0, τ ]

∣∣∣I (t)− Ĩ (t)
∣∣∣

= sup
t∈[0, τ ]

∣∣∣∣∫ t

0

ε
(
E (z)− Ẽ (z)

)
dz

∣∣∣∣+ sup
t∈[0, τ ]

∣∣∣∣∫ t

0

γ (z)
(
I (z)− Ĩ (z)

)
dz

∣∣∣∣
≤ sup

t∈[0, τ ]

ε t
∣∣∣Ẽ (t)− E (t)

∣∣∣+ sup
t∈[0, τ ]

γmax t
∣∣∣Ĩ (t)− I (t)

∣∣∣
≤ (γmax + ε) τ

∣∣∣∣∣∣z (t)− z̃ (t)
∣∣∣∣∣∣
∞

≤ (γmax + ε)Nτ
∣∣∣∣∣∣z (t)− z̃ (t)

∣∣∣∣∣∣
∞
. (2.14)

Furthermore,

sup
t∈[0, τ ]

∣∣∣R (t)− R̃ (t)
∣∣∣ = sup

t∈[0, τ ]

∣∣∣∣∫ t

0

γ (z)
(
I (z)− Ĩ (z)

)
dz

∣∣∣∣
≤ γmaxNτ

∣∣∣∣∣∣z (t)− z̃ (t)
∣∣∣∣∣∣
∞
. (2.15)

Summarizing the steps above, we obtain,∣∣∣∣∣∣z (t)− z̃ (t)
∣∣∣∣∣∣
∞
≤ (2λmax + ε+ γmax)Nτ

∣∣∣∣∣∣z (t)− z̃ (t)
∣∣∣∣∣∣
∞
. (2.16)

By choosing the interval τ = 1
2(2λmax+ε+γmax)N

, we obtain the necessary contraction.

∣∣∣∣∣∣z (t)− z̃ (t)
∣∣∣∣∣∣
∞
≤ 1

2

∣∣∣∣∣∣z (t)− z̃ (t)
∣∣∣∣∣∣
∞
. (2.17)

This proves the uniqueness of the solution in the interval, [0, τ ].

We can now inductively derive the contraction for each interval, [kτ, (k + 1) τ ] for all

k ∈ N. This proves the uniqueness of the solutions for all time t ≥ 0.
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2.1.5 Continuous dependence on initial conditions

We have stated a simple definition of well posedness in the previous section. todo

quote the section.We now prove the dependence on initial conditions.

To prove the well posedness, we consider the perturbed initial value problem,

S
′

a (t) = −λa (t) Sa (t) Ia (t) ,

E
′

a (t) = λa (t) Sa (t) Ia (t)− εEa (t) ,

I
′

a (t) = εEa (t)− γa (t) Ia (t) ,

R
′

a (t) = γaIa (t)


(2.18)

with initial conditions, Sa (0) = Sa,0 > 0, Ea (0) = Ea,0 ≥ 0, Ia (0) = Ia,0 > 0, Ra (0) =

Ra,0 ≥ 0

and

S
′

b (t) = −λb (t) Sb (t) Ib (t)

E
′

b (t) = λb (t) Sb (t) Ib (t)− εEb (t)

I
′

b (t) = εEb (t)− γb (t) Ib (t)

R
′

b (t) = γbIb (t)


(2.19)

with initial conditions, Sb (0) = Sb,0 > 0, Eb (0) = Eb,0 ≥ 0, Ib (0) = Ib,0 > 0, Rb (0) =

Rb,0 ≥ 0.

Here we consider the transmission rate λa and λb and the recovery rate, γa and

γb have small differences, as well as the initial conditions have small perturbations.

We proceed to prove that this lead to solutions that have small differences in short

intervals of time [0, T ] as in [2].
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Theorem 2.14 ([2](Theorem 3)) Let za (t) =


Sa (t)
Ea (t)
Ia (t)
Ra (t)

 and zb (t) =


Sb (t)
Eb (t)
Ib (t)
Rb (t)

 be

the solutions of 2.18 and 2.19.

Define a function

g (t) := || za (0)− zb (0) ||∞ +N2
a t || λa (t)− λb (t) ||∞ +Na t || γa (t)− γb (t) ||∞

and the constant, KGB := {max {λmax,a, λmax,b }NaNb + max {γmax,b, γmax,a}+ ε}

Then, || za (t)−zb (t) ||∞≤ g (t) eKGB t holds for arbitrary t ∈ [0, T ] with given T ≥ 0.

Proof.

We see from 2.2 that, Na = Sa (0) + Ea (0) + Ia (0) +Ra (0) and

Nb = Sb (0) + Eb (0) + Ib (0) +Rb (0) holds for all t ∈ [0, T ].

We recall the inequality,

|x1y1 − x2y2| ≤ |x1| |y1 − y2|+ |y2| |x1 − x2| (2.20)

In all the derivations below, we apply the triangle inequality, the inequality 2.20 and

the boundedness of the functions,S (t) , E (t) , I (t) and R (t).
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1. First we estimate |Sa (t)− Sb (t)| and obtain,

|Sa (t)− Sb (t)|

≤ |Sa (0)− Sb (0)|+
∫ t

0

|λa (τ)Sa (τ) Ia (τ)− λb (τ)Sb (τ) Ib (τ)| dτ

≤ | Sa (0)− Sb (0) | +
∫ t

0

| λa (τ)Sa (τ) Ia (τ)− λb (τ)Sa (τ) Ia (τ) | dτ

+

∫ t

0

| λb (τ)Sa (τ) Ia (τ)− λb (τ)Sb (τ) Ia (τ) | dτ

+

∫ t

0

| λb (τ)Sb (τ) Ia (τ)− λb (τ)Sb (τ) Ib (τ) | dτ

≤ |Sa (0)− Sb (0)|+N2
a t ||λa (t)− λb (t)||∞

+ max {λmax,ax, λmax,b }Na

∫ t

0

|Sa (τ)− Sb (τ)| dτ

+ max {λmax,a, λmax,b }Nb

∫ t

0

|Ia (τ)− Ib (τ)| dτ (2.21)

for any t ∈ [0, T ].

2. For |Ea (t)− Eb (t)| we have,

|Ea (t)− Eb (t)|

≤ |Ea (0)− Eb (0)|+
∫ t

0

|λa (τ)Ea (τ) Ia (τ)− λb (τ)Eb (τ) Ib (τ)| dτ

+

∫ t

0

|εEa (τ)− εEb (τ)| dτ

Define equation

I :=
∫ t

0
|λa (τ)Sa (τ) Ia (τ)− λb (τ)Sb (τ) Ib (τ)| dτ

and
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We see that,

I ≤ |Ia (0)− Ib (0)|+N2
a t ||λa (t)− λb (t)||∞

+ max {λmax,a, λmax,b }Na

∫ t

0

|Sa (τ)− Sb (τ)| dτ

+ max {λmax,a, λmax,b }Nb

∫ t

0

|Ia (τ)− Ib (τ)| dτ

and Thus we obtain

|Ea (t)− Eb (t)|

≤ |Ea (0)− Eb (0)|+N2
a t ||λa (t)− λb (t)||∞

+ max {λmax,a, λmax,b }Na

∫ t

0

|Sa (τ)− Sb (τ)| dτ

+ max {λmax,a, λmax,b }Nb

∫ t

0

|Ia (τ)− Ib (τ)| dτ

+ ε

∫ t

0

|Ea (τ)− Eb (τ) | dτ (2.22)

for any t ∈ [0, T ].

3. Now we estimate |Ia (t)− Ib (t)|.

|Ia (t)− Ib (t)|

≤ |Ia (0)− Ib (0)|+
∫ t

0

|εaEa (τ)− εbEb (τ)| dτ

+

∫ t

0

|γaIa (τ)− γbIb (τ)| dτ

Define equation

I :=
∫ t

0
| γaIa (τ)− γbIb (τ) | dτ .
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We see that,

II ≤
∫ t

0

| γa (τ) Ia (τ)− γb (τ) Ia (τ) | dτ +

∫ t

0

∣∣ γb (τ) Ia (τ)− γb(τ)Ib (τ)
∣∣ dτ

≤ Na t || γa (t)− γb (t) ||∞ + max {γmax,b, γmax,a}
∫ t

0

| Ia (τ)− Ib (τ) | dτ

Thus, we obtain

|Ia (t)− Ib (t)|

≤ |Ia (0)− Ib (0)|+ ε

∫ t

0

|Ea (τ)− Eb (τ) | dτ

+Na t | γa − γb |+ max {γb, γa}
∫ t

0

| Ia (τ)− Ib (τ) | dτ (2.23)

for any t ∈ [0, T ].

4. Similarly, we estimate, |Ra (t)−Rb (t)|

|Ra (t)−Rb (t)|

≤ |Ra (0)−Rb (0)|+
∫ t

0

|γa (τ) Ia (τ)− γb (τ) Ib (τ)| dτ

≤ |Ra (0)−Rb (0)|+
∫ t

0

| γa (τ) Ia (τ)− γb (τ) Ia (τ) | dτ

+

∫ t

0

| γb (τ) Ia (τ)− γb (τ) Ib (τ) | dτ

≤ |Ra (0)−Rb (0)|

+Na t || γa (t)− γb (t) ||∞

+ max {γmax,b, γmax,a}
∫ t

0

| Ia (τ)− Ib (τ) | dτ (2.24)

for any t ∈ [0, T ].
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Finally from |Sa (t)− Sb (t)| , |Ea (t)− Eb (t)| |Ia (t)− Ib (t)| , |Ra (t)−Rb (t)| we find,

||za (t)− zb (t)||∞

||za (t)− zb (t)||∞

≤ ||za (0)− zb (0)||∞ +N2
a t ||λa (t)− λb (t)||∞

+Na t || γa (t)− γb (t) ||∞

+ max {λmax,a, λmax,b }NaNb

∫ t

0

||za (τ)− zb (τ)||∞ dτ

+ ε

∫ t

0

||za (τ)− zb (τ)||∞ dτ

+ max {γmax,b, γmax,a}
∫ t

0

||za (τ)− zb (τ)||∞ dτ (2.25)

for any t ∈ [0, T ].

Define the functions,

u (t) := ||za (t)− zb (t)||∞

g (t) := ||za (0)− zb (0)||∞ +N2
a t |λa − λb|+Na t | γa − γb |

f (t) := {max {λmax,a, λmax,b }NaNb + max {γmax,b, γmax,a}+ ε} := KGB

We see that the assumptions of Theorem 3 are fulfilled and

||za (t)− zb (t)||∞ ≤ g (t) eKGB t (2.26)

for any t ∈ [0, T ].

2.1.6 Long time behavior of solutions

In this section, we derive some monotonicity properties and the long time behaviour

of our solutions.
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Theorem 2.15 ([2]) We see the following behavior for S (t), E (t), I (t) and R (t)

1. S (t) decreases monotonically from S (0) > 0. There exists S∗ ≥ 0 such that

limt→∞ S (t) = S∗ . Further, it holds that S∗ > 0.

2. R (t) increases monotonically from R (0) ≥ 0. There exists R∗ ≥ 0 such that

limt→∞R (t) = R∗ .

3. I is Lebesgue-integrable on [0,∞) and limt→∞ I (t) = 0.

4. limt→∞E (t) = 0.

Proof. [2]

1. S
′
(t) = −λ (t)S (t) I (t) , and by Lemma 2.10, we know that since S

′
(t) < 0

since λ (t) > 0. By the boundedness of S (t) , therefore, 0 ≤ S (t) ≤ S0 . Thus,

S : [0,∞)→ [0,∞) monotonically decreases and is bounded below by 0.

To prove that limt→∞ S (t) exists , we divide the S
′

equation by R
′

,

S
′
(t)

R′ (t)
= −λ (t)

γ (t)
S (t) ≥ −λmax

γmin
S (t) .

By separation of variables,

S
′
(t)

S (0)
≥ −λmax

γmin
R

′
(t)

Integrating, we obtain,

S (t) ≥ S (0) e
−
λmax
γmin

(R(t)−R(0))

≥ S0e
−
λmax
γmin

(R(t)−R0)

≥ 0 (2.27)

for all t ≥ 0.

Thus, S∗ := limt→∞ S (t) ≥ 0 exists for all t ≥ 0. Since S0e
−
λmax
γmin

(R(t)−R0)

≥

S0e
−
λmax
γmin

N

> 0, we have, S∗ > 0.
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2. R
′
(t) = γ (t) I (t) ≥ 0 for all t ≥ 0 and 0 ≤ R (t) ≤ N by Lemma 2.10.

Therefore, R : [0,∞) → [0,∞) is monotonically increasing and is bounded

above by N . Therefore, it follows that R∗ := limt→∞R (t) ≥ 0 exists.

3. By assumption, λ (t) ≥ 0 and from Lemma 2.10. , S, I : [0,∞) → [0,∞) ≥ 0

and are bounded above by N .

Therefore, ∫ ∞
0

S
′
(τ) dτ = S∗ − S0 =

∫ ∞
0

−λ (τ)S (τ) I (τ) dτ∫ ∞
0

λ (τ)S (τ) I (τ) dτ = S0 − S∗ ≥ λminS
∗
∫ t

0

I (τ) dτ (2.28)

Therefore, I is Lebesgue-integrable on [0,∞) and limt→∞ I (t) = 0.

4. From property 3 and from I
′
(t) = εE (t)− γ (t) I (t), we see that,

limt→∞E (t) = 0.

Based on the monotonicity properties and the boundedness of S, I and R, we can

draw the following biological conclusions.[1]

1. Some number of susceptibles always escape the infection at the end of the

epidemic.

2. The epidemic ends not because the suseptibles are exhausted.

3. The disease eventually dies out and the infectious population tends to zero after

a long period of time.

4. Since the infectious population increases initially, there must be a period of time

after which the change in I becomes negative. In other words, the epidemic first

rises, the declines after reaching the maximum.
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2.1.7 Basic Reproduction Number

The basic reproduction number, R0 [1] in the SEIR model, is defined by,

R0 (t) := λ (t) ε (t)
1

γ (t) ε (t)
· S (t) =

λ (t)

γ (t)
· S (t) .

From the non negativity and boundedness of λ (t) and γ (t) , we see that ,

0 ≤ λmin
γmax

· S0 ≤ R0 (t) ≤ λmax
γmin

· S0 (2.29)

2.2 Discrete SEIR model with time dependent coefficients

We now examine the time discrete SEIR model with time dependent transmission and

recovery rate . We assume that a time interval [0, T ) has been divided into a strictly

increasing sequence {tj}j=Mj=1 such that t1 = 0 and tM = T . We represent f (tj) by fj

for any time dependent function f .

In this model we state a fully explicit form ,

∆Sj
∆tj

=
Sj+1 − Sj
tj+1 − tj

= −λj+1SjIj,

∆Ej
∆tj

=
Ej+1 − Ej
tj+1 − tj

= λj+1SjIj − εEj

∆Ij
∆tj

=
Ij+1 − Ij,
tj+1 − tj

= εEj − γj+1Ij,

∆Rj

∆tj
=
Rj+1 −Rj
tj+1 − tj

= γj+1Ij


(2.30)

and a fully implicit form as in [1]

∆Sj
∆tj

=
Sj+1 − Sj
tj+1 − tj

= −λj+1Sj+1Ij+1,

∆Ej
∆tj

=
Ej+1 − Ej
tj+1 − tj

= λj+1Sj+1Ij+1 − εEj+1,

∆Ij
∆tj

=
Ij+1 − Ij
tj+1 − tj

= εEj+1 − γj+1Ij+1,

∆Rj

∆tj
=
Rj+1 −Rj
tj+1 − tj

= γj+1Ij+1


(2.31)



32

for all j ∈ {1, . . . ,M − 1}. Both of these satisfy,

N = Sj+1 + Ej+1 + Ij+1 +Rj+1 = Sj + Ej + Ij +Rj. (2.32)

We first show that the fully explicit form reduces to a set of linear equations and the

fully implicit form has non-linear nature. From equation 2.30, the fully explicit form,

Sj+1 = Sj − λj+1SjIj∆tj = Sj − λj+1 SjIj (tj+1 − tj) ,

Ej+1 = Ej + (λj+1SjIj + εEj) ∆tj = Ej + (λj+1SjIj + εEj) (tj+1 − tj) ,

Ij+1 = Ij + (εEj − γj+1Ij) ∆tj = Ij + (εEj − γj+1Ij) (tj+1 − tj) ,

Rj+1 = Rj + γj+1Ij∆tj = Rj + γj+1Ij (tj+1 − tj)


(2.33)

is linear. From equation 2.31, the fully implicit form, appears to be in the nonlinear

form below.

Sj+1 =
Sj

(1 + λj+1Ij+1 (tj+1 − tj))
,

Ej+1 =
Ej + λj+1Sj+1Ij+1 (tj+1 − tj)

(1 + ε (tj+1 − tj))
,

Ij+1 =
Ij + εEj+1 (tj+1 − tj)
(1 + γj+1 (tj+1 − tj))

,

Rj+1 = Rj + γj+1Ij+1 (tj+1 − tj)


(2.34)

for j ∈ {1, . . . ,M − 1}

2.2.1 Unique Solvability

The time discrete implicit form given in 2.34 is uniquely solvable for every j ∈

{1, . . . ,M − 1}. If we replace Ej+1in the Ij+1 equation with we find that,
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Ij+1 =
Ij + εEj+1 (tj+1 − tj)
(1 + γj+1 (tj+1 − tj))

=

Ij + ε

(
Ej + λj+1Sj+1Ij+1 (tj+1 − tj)

(1 + ε (tj+1 − tj))

)
(tj+1 − tj)

(1 + γj+1 (tj+1 − tj))

=
Ij (1 + ε (tj+1 − tj)) + ε (Ej + λj+1Sj+1Ij+1 (tj+1 − tj)) (tj+1 − tj)

(1 + ε (tj+1 − tj)) (1 + γj+1 (tj+1 − tj))
.

We now replace Sj+1 using equation 2.70

Ij+1 =

Ij (1 + ε∆tj+1) + ε∆tj+1

(
Ej + λj+1

Sj
(1 + λj+1Ij+1∆tj+1)

Ij+1∆tj+1

)
(1 + ε∆tj+1) (1 + γj+1∆tj+1)

.

(2.35)

Rearranging, we have,

Ij+1 [1 + λj+1Ij+1∆tj+1] (1 + ε∆tj+1) (1 + γj+1∆tj+1)

= Ij+1

(
Ijλj+1∆tj+1 + ελj+1Ij∆

2tj+1 + εEjλj+1∆2tj+1 + εSjλj+1∆2tj+1

)
+ Ij (1 + ε∆tj+1) + ε∆tj+1Ej.

I2
j+1

[
λj+1∆tj+1 + γj+1λj+1∆2tj+1 + λj+1ε∆

2tj+1 + λj+1γj+1ε∆
3tj+1

]
+ Ij+1

[
1 + γj+1∆tj+1 + ε∆tj+1 + εγj+1∆2tj+1

]
− Ij+1

[(
Ijλj+1∆tj+1 + ελj+1Ij∆

2tj+1 + εEjλj+1∆2tj+1 + εSjλj+1∆2tj+1

) ]
= Ij (1 + ε∆tj+1) + ε∆tj+1Ej. (2.36)

Now we define,

Aj+1 :=
[
λj+1∆tj+1 + γj+1λj+1∆2tj+1 + λj+1ε∆

2tj+1 + λj+1γj+1ε∆
3tj+1

]
,

Bj+1 :=
1

2

[
1 + ∆tj+1 (γj+1 + ε− Ijλj+1) + ∆2tj+1 (εγj+1 − ελj+1Ij − ελj+1Ej − ελj+1Sj)

]


(2.37)
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Thus Equation 2.36 becomes,

Aj+1I
2
j+1 + 2Bj+1Ij+1 − Ij (1 + ε∆tj+1)− ε∆tj+1Ej = 0 (2.38)

So that,

Ij+1 =
−Bj+1

Aj+1

+

√
B2
j+1

A2
j+1

+
Ij (1 + ε∆tj+1) + ε∆tj+1Ej

Aj+1

(2.39)

Since Ij+1 ≥ 0 for all j ∈ {1, . . . ,M − 1}

2.2.2 Monotonicity and Long Time Behavior

Theorem 2.16 For the time discrete implicit form given in equation 2.31, the fol-

lowing hold

1. 0 ≤ Ij ≤ N for all j ∈ {1, . . . ,M − 1}.

2. 0 ≤ Ej ≤ N for all j ∈ {1, . . . ,M − 1}.

3. 0 ≤ Sj ≤ N for all j ∈ {1, . . . ,M−1} and Sj+1 ≤ Sj for all j ∈ {1, . . . ,M−1}.

4. 0 ≤ Rj ≤ N for all j ∈ {1, . . . ,M−1} and Rj+1 ≥ Rj for all j ∈ {1, . . . ,M−1}.

5. limj→∞ Ij = 0.

6. limj→∞Ej = 0.

Proof

1. By assumption, Ij > 0 for all j ∈ {1, . . . ,M − 1}.Thus, by 2.31, Ij ≥ 0 and

from 2.32 , Ij ≤ N for all j ∈ {1, . . . ,M − 1}.

2. By property 1 and by equation 2.32 , Ej ≥ 0 and , Ej ≤ N for all j ∈

{1, . . . ,M − 1}.
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3. By assumption, Sj > 0 for all j ∈ {1, . . . ,M − 1}. Thus, Sj ≥ 0 and by

Property 1) and from 2.32 , Sj ≤ N for all j ∈ {1, . . . ,M − 1}. Further ,

from 2.32, Sj+1 =
Sj

1 + λj+1Ij+1 (tj+1 − tj)
≤ Sj, since Ij+1 ≥ 0, λj+1 > 0 and

tj+1 − tj > 0.

4. By properties 1, 2 and from equation 2.32 , 0 ≤ Rj ≤ N for all j ∈ {1, . . . ,M −

1}. Further, from equation 2.32, Rj+1 = Rj + γj+1Ij+1 (tj+1 − tj) ≥ Rj , since

γj+1 , tj+1 − tj > 0 by assumption.

5. Since Rj+1 is monotonically increasing and bounded above by N . there exists

a positive R∗ , such that limj→∞Rj = R∗.

Further, Rj+1 −Rj = γj+1Ij+1 (tj+1 − tj) implies, Ij+1 =
Rj+1 −Rj

γj+1 (tj+1 − tj)
.

Therefore, limj→∞ Ij = limj→∞
Rj+1−Rj

γj+1 (tj+1−tj) = 0.

6. From property 5 and equation 2.32, we can conclude that limj→∞Ej = 0.

2.2.3 Basic Reproduction Number

The basic reproduction number,R0 (tk) [1] in the time-discrete SEIR model, is defined

by,

R0 (tk) = λ (tk) ε (tk)
1

γ (tk) ε (tk)
· S (tk) =

λ (tk)

γ (tk)
· S (tk) . (2.40)

for arbitrary k ∈ {1, · · · ,M}. From the non negativity and boundedness of λ (tk)

and γ (tk) , we see that ,

0 ≤ λmin
γmax

· S0 ≤ R0 (tk) ≤
λmax
γmin

· S0 (2.41)
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2.2.4 Final Size Formula

The final size formula gives the fraction of susceptibles that escaped the infection at

the end of the epidemic. Since ,

S (t) = S (0) e−
λ
γ

(R(t)−R(0)) = S0e
−λ
γ

(R(t)−R0)

S∗ := lim
t→∞

S (t) = lim
t→∞

S0e
−λ
γ

(R(t)−R0).

Therefore,

S∗

S0

= lim
t→∞

e−
λ
γ

(R(t)−R0).

2.3 SEIR model with vaccination

2.3.1 Assumptions

In this model, the compartments remain the same as in the SEIR model. A fraction

of the susceptibles are directly placed to the recovered compartment on vaccination.

We do not assume a loss of immunity as in the previous cases. So, all vaccianted

individuals are moved to the R compartment and remain there for all time. The

fraction of individuals vaccinated is also considered a function of time in our model.

Since the total population remains a constant over all time t ≥ 0,

we have , N (t) = S (t) + E (t) + I (t) +R (t).

S
λ (t) I (t)S (t)

E
εE (t)

I
γ (t) I (t)

R

ρ (t)S (t)

We now state the assumptions of the model below.

1. The total population N is fixed over time.
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2. The total population is divided into homogeneous groups, with S (t) represent-

ing Susceptible population, E (t) Latent population, I (t) Infectious population

and R (t) Recovered population at time t. Since the total population is a con-

stant, N (t) = S (t) + E (t) + I (t) +R (t) for all time t ∈ [0,∞).

3. The time varying transmission coefficient λ (t) is Lipschitz continuous and is

continuously differentiable for all t ∈ [0,∞). It holds that 0 < λmin ≤ λ (t) ≤

λmax , for all t ∈ [0,∞) , where λmin is the lowest and λmax is the highest value

λ achieves.

4. The latency period remains a constant and is independent of time.

5. We consider a time varying vaccination coefficient ρ (t) which is also Lipschitz

continuous and is continuously differentiable for all t ∈ [0,∞). It holds that

0 ≤ ρmin ≤ ρ (t) ≤ ρmax , for all t ∈ [0,∞) , where ρmin is the lowest and ρmax

is the highest value ρ achieves.

6. The time varying recovery coefficient γ (t) is Lipschitz continuous and is con-

tinuously differentiable for all t ∈ [0,∞). It holds that 0 < γmin ≤ γ (t) ≤ γmax

, for all t ∈ [0,∞) , where γmin is the lowest and γmax is the highest value γ

achieves.

The differential equations for the SEIR model with vaccination are,

S
′
(t) = −λ (t) S (t) I (t)− ρ (t) S (t) ,

E
′
(t) = λ (t) S (t) I (t)− εE (t) ,

I
′
(t) = εE (t)− γ (t) I (t) ,

R
′
(t) = γ (t) I (t) + ρ (t) S (t) ,

N (t) = S (t) + E (t) + I (t) +R (t)



(2.42)
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The initial conditions for the system of equations are,

N (t) := N0 = N

S (0) := S0 > 0, I (0) := I0 > 0, E (0) := E0 ≥ 0, R (0) := R0 ≥ 0

2.3.2 Nonnegativity and boundedness

We first find the feasible region for the solutions of the system of differential equations

2.42. Since the equation for E and I are same as the previous model, we prove that

S and R are non negative functions of t.

Lemma 2.17 Each solution of the system given by 2.42 is bounded below by 0.

Proof

1. We use separation of variables and write the S equations as,

S
′
(t)

S (t)
= −λ (t) I (t)− ρ (t) . (2.43)

Integrating,

ln

(
S (t)

S (0)

)
= −

(∫ t

0

λ (τ) I (τ) dτ +

∫ t

0

ρ (τ) dτ

)
S (t) = S (0) e−

∫ t
0 (λ(τ)I(τ)+ρ(τ))dτ . (2.44)

Where S (0) is the initial condition on S (t) , corresponding to the initial popu-

lation in the S compartment. Since S (0) ≥ 0 , we see that S (t) ≥ 0 at all time

t ≥ 0.

2. Since R
′
(t) = γ (t) I (t) + ρ (t) S (t), integration yields,

R (t) = R0 +

∫ t

0

γ (τ) I (τ) dτ +

∫ t

0

ρ (t) S (t) dτ. (2.45)

SinceI (t) ≥ 0S (t) ≥ 0 and γ (t) > 0 ρ (t) ≥ 0 , we know R (t) ≥ 0 for all t ≥ 0.
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We now state the boundedness theorem for the solutions.

Theorem 2.18 For each solution of the system given by 2.42,

1. 0 ≤ S (t) ≤ N

2. 0 ≤ E (t) ≤ N

3. 0 ≤ I (t) ≤ N

4. 0 ≤ R (t) ≤ N

For all t ≥ 0.

2.3.3 Global existence of solutions

We define the solution vector,

z (t) = (S (t) , E (t) , I (t) , R (t))

z (0) = z0 = (S (0) , E (0) , I (0) , R (0))

and z
′
(t) = G (t, z (t)).

We state the global existence of solutions as follows.

Theorem 2.19 ([1], [2]) At least one solution to the differential equations 2.42 exist

for all time t ∈ [ 0,∞).

Proof.

We define a functionG (t, z (t)) : [0,∞)×R3 → R3 as


−λ (t) S (t) I (t)− ρ (t) S (t)
λ (t) S (t) I (t)− εE (t)
εE (t)− γ (t) I (t)

γ (t) I (t) + ρ (t) S (t)

.

We first prove that G is Lipschitz continuouous using the property that the upper

bounds of the coefficients exist amd the upper bounds of S, E, I and R are N .
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Consider z1 (t) = (S1 (t) , E1 (t) , I1 (t) , R1 (t)) and z2 (t) = (S2 (t) , E2 (t) , I2 (t) , R2 (t))

| G (t, z1 (t))−G (t, z2 (t)) |

=



| λ2 (t)S2 (t) I2 (t)− λ1 (t)S1 (t) I1 (t) + ρ2 (t)S2 (t)− ρ1 (t)S1 (t) |

| λ1 (t)S1 (t) I1 (t)− λ2 (t)S2 (t) I2 (t)− εE1 (t) + εE2 (t) |

| εE1 (t)− εE2 (t)− γ1 (t) I1 (t) + γ2 (t) I2 (t) |

| γ1 (t) I1 (t)− γ2 (t) I2 (t) + ρ1 (t) S1 (t)− ρ2 (t) S2 (t) |



≤



| λ2 (t)S2 (t) I2 (t)− λ1 (t)S1 (t) I1 (t) | + | ρ2 (t)S2 (t)− ρ1 (t)S1 (t) |

| λ1 (t)S1 (t) I1 (t)
E1 (t)

E1 (t)
− λ2 (t)S2 (t) I2 (t)

E2 (t)

E2 (t)
| − | εE1 (t)− εE2 (t) |

| εE1 (t)
I1 (t)

I1 (t)
− εE2 (t)

I2 (t)

I2 (t)
| − | γ1 (t) I1 (t)− γ2 (t) I2 (t) |

| γ1 (t) I1 (t)− γ2 (t) I2 (t) | + | ρ1 (t)S1 (t)− ρ2 (t)S2 (t) |



≤ | λmax + γmax + ε+ ρmax |


| N | | S1 (t)− S2 (t) |
| N | | E1 (t)− E1 (t) |
| N | | I1 (t)− I2 (t) |
| N | | R1 (t)−R2 (t) |



= N (λmax + γmax + ε+ ρmax)


| S1 (t)− S2 (t) |
| E1 (t)− E2 (t) |
| I1 (t)− I2 (t) |
| R1 (t)−R2 (t) |


= N (λmax + γmax + ε+ ρmax) | z1 (t)− z2 (t) | . (2.46)
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Thus G is Lipschitz continuouous in z (t).

Now we consider the supremum norm,

|| G (t, z (t)) ||∞

= sup
t∈[0,∞)

{| −λ (t) S (t) I (t)− ρ (t) S (t) |, | λ (t) S (t) I (t)− εE (t) |,

| εE (t)− γ (t) I (t) |, | γ (t) I (t) + ρ (t)S (t) |}

≤ sup
t∈[0,∞)

{λmax | S (t) I (t) | +ρmax | S (t) |, λmax | S (t) I (t) | +ε | E (t) |,

ε | E (t) | +γmax | I (t) |, γmax | I (t) | +ρmax | S (t) |}

≤ sup
t∈[0,∞)

{λmaxN | S (t) | , (λmaxN + ε) | E (t) | , (ε+ γmax) | I (t) | ,

(γmax + ρmax) | R (t) |}

≤ N (λmax + ε+ γmax + ρmax) sup
t∈[0,∞)

{ | S (t) |, | E (t) |, | I (t) |, | R (t) |}

≤ N (λmax + ε+ γmax + ρmax) || z (t) ||∞ . (2.47)

by the boundedness of S (t) , E (t) , I (t) and R (t) and the transmission and recov-

ery coefficients. Thus the conditions for Theorem 1.5 are satisfied and the proof is

complete.

2.3.4 Global uniqueness of solutions

Theorem 2.20 ([1] , [2]) There exists a unique solution for all time t ∈ [ 0,∞), for

the initial value problem given by the differential equations 2.42

Proof.

First choose an interval [0, τ ] on which the Banach’s fixed point theorem is applicable.
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Now, suppose that there exist two different solutions in the interval [0,∞), say,

z (t) = (S (t) , E (t) , I (t) , R (t)) and z̃ (t) =
(
S̃ (t) , Ẽ (t) , Ĩ (t) , R̃ (t)

)
. Then,

sup
t∈[0, τ ]

∣∣∣S (t)− S̃ (t)
∣∣∣

= sup
t∈[0, τ ]

∣∣∣∣∫ t

0

(
λ (z) S̃ (z)Ĩ (z)− λ (z)S (z) I (z)

)
dz

∣∣∣∣
+ sup

t∈[0, τ ]

∣∣∣∣∫ t

0

(
ρ (z) S̃ (z)− ρ (z)S (z)

)
dz

∣∣∣∣
≤ sup

t∈[0, τ ]

λmax

∫ t

0

∣∣∣S̃ (z)
∣∣∣ ∣∣∣Ĩ (z)− I (z)

∣∣∣+ |I (z)|
∣∣∣S (z)− S̃ (z)

∣∣∣ dz
+ sup

t∈[0, τ ]

ρmax

∫ t

0

∣∣∣S̃ (z)− S (z)
∣∣∣ dz

≤ sup
t∈[0, τ ]

λmax

∫ t

0

N
∣∣∣Ĩ (z)− I (z)

∣∣∣+N
∣∣∣S (z)− S̃ (z)

∣∣∣ dz
+ sup

t∈[0, τ ]

ρmax

∫ t

0

∣∣∣S̃ (z)− S (z)
∣∣∣ dz

≤ sup
t∈[0, τ ]

λmaxN t
{∣∣∣Ĩ (t)− I (t)

∣∣∣+
∣∣∣S (t)− S̃ (t)

∣∣∣}+ sup
t∈[0, τ ]

ρmax t
{∣∣∣S̃ (z)− S (z)

∣∣∣}
≤ (2λmax + ρmax) N τ

∣∣∣∣∣∣z (t)− z̃ (t)
∣∣∣∣∣∣
∞
. (2.48)

Similarly, we obtain,

sup
t∈[0, τ ]

∣∣∣E (t)− Ẽ (t)
∣∣∣

= sup
t∈[0, τ ]

∣∣∣∣∫ t

0

λ (z)
(
S (z) I (z)− S̃ (z)Ĩ (z)

)
dz

∣∣∣∣+ sup
t∈[0, τ ]

∣∣∣∣∫ t

0

ε
(
E (z)− Ẽ (z)

)
dz

∣∣∣∣
≤ sup

t∈[0, τ ]

λmax tN
{∣∣∣Ĩ (t)− I (t)

∣∣∣+
∣∣∣S (t)− S̃ (t)

∣∣∣}+ sup
t∈[0, τ ]

ε t
{∣∣∣Ẽ (t)− E (t)

∣∣∣}
≤ (λmaxN + ε) τ

∣∣∣∣∣∣z (t)− z̃ (t)
∣∣∣∣∣∣
∞

≤ (2λmax + ε)Nτ
∣∣∣∣∣∣z (t)− z̃ (t)

∣∣∣∣∣∣
∞

(2.49)
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sup
t∈[0, τ ]

∣∣∣I (t)− Ĩ (t)
∣∣∣

= sup
t∈[0, τ ]

∣∣∣∣∫ t

0

ε
(
E (z)− Ẽ (z)

)
dz

∣∣∣∣+ sup
t∈[0, τ ]

∣∣∣∣∫ t

0

γ (z)
(
I (z)− Ĩ (z)

)
dz

∣∣∣∣
≤ sup

t∈[0, τ ]

ε t
∣∣∣Ẽ (t)− E (t)

∣∣∣+ sup
t∈[0, τ ]

γmax t
∣∣∣Ĩ (t)− I (t)

∣∣∣
≤ (γmax + ε) τ

∣∣∣∣∣∣z (t)− z̃ (t)
∣∣∣∣∣∣
∞

≤ (γmax + ε)Nτ
∣∣∣∣∣∣z (t)− z̃ (t)

∣∣∣∣∣∣
∞
. (2.50)

Furthermore,

sup
t∈[0, τ ]

∣∣∣R (t)− R̃ (t)
∣∣∣ = sup

t∈[0, τ ]

∣∣∣∣∫ t

0

γ (z)
(
I (z)− Ĩ (z)

)
dz

∣∣∣∣
+ sup

t∈[0, τ ]

∣∣∣∣∫ t

0

ρ (z)
(
S (z) S̃ (z)

)
dz

∣∣∣∣
≤ (γmax + ρmax)Nτ

∣∣∣∣∣∣z (t)− z̃ (t)
∣∣∣∣∣∣
∞
. (2.51)

Summarizing the steps above, we obtain,∣∣∣∣∣∣z (t)− z̃ (t)
∣∣∣∣∣∣
∞
≤ (2λmax + ε+ γmax + ρmax)Nτ

∣∣∣∣∣∣z (t)− z̃ (t)
∣∣∣∣∣∣
∞
. (2.52)

By choosing the interval τ = 1
2(2λmax+ε+γmax+ρmax)N

, we obtain the necessary contrac-

tion. ∣∣∣∣∣∣z (t)− z̃ (t)
∣∣∣∣∣∣
∞
≤ 1

2

∣∣∣∣∣∣z (t)− z̃ (t)
∣∣∣∣∣∣
∞
. (2.53)
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This proves the uniqueness of the solution in the interval, [0, τ ].

We can now inductively derive the contraction for each interval, [kτ, (k + 1) τ ] for all

k ∈ N. This proves the uniqueness of the solutions for all time t ≥ 0.

2.3.5 Continuous dependence on initial conditions

We have stated a simple definition of well posedness in the previous section. We now

prove the dependence on initial conditions for this model.

To prove the well posedness, we consider the perturbed initial value problem,

S
′

a (t) = −λa (t) Sa (t) Ia (t)− ρa Sa (t) ,

E
′

a (t) = λa (t) Sa (t) Ia (t)− εEa (t) ,

I
′

a (t) = εEa (t)− γa (t) Ia (t) ,

R
′

a (t) = γaIa (t) + ρa Sa (t)


(2.54)

with initial conditions, Sa (0) = Sa,0 > 0, Ea (0) = Ea,0 ≥ 0, Ia (0) = Ia,0 > 0, Ra (0) =

Ra,0 ≥ 0 and

S
′

b (t) = −λb (t) Sb (t) Ib (t)− ρb Sb (t) ,

E
′

b (t) = λb (t) Sb (t) Ib (t)− εEb (t) ,

I
′

b (t) = εEb (t)− γb (t) Ib (t) ,

R
′

b (t) = γbIb (t) + ρb Sb (t)


(2.55)

with initial conditions, Sb (0) = Sb,0 > 0, Eb (0) = Eb,0 ≥ 0, Ib (0) = Ib,0 > 0, Rb (0) =

Rb,0 ≥ 0.

Here we consider the transmission rates λa and λb , the vaccination rates ρa and ρb
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and the recovery rates, γa and γb have small differences, as well as the initial condi-

tions have small perturbations. We proceed to prove that this lead to solutions that

have small differences in short intervals of time [0, T ].

Theorem 2.21 ([2](Theorem 3)) Let za (t) =


Sa (t)
Ea (t)
Ia (t)
Ra (t)

 and zb (t) =


Sb (t)
Eb (t)
Ib (t)
Rb (t)

 be

the solutions of 2.54 and 2.55 .

Define a function

g (t) := || za (0) − zb (0) ||∞ + N2
a t || λa (t) − λb (t) ||∞ + Na t || γa (t) − γb (t) ||∞

+Na t || ρa − ρb ||∞ and the constant,

KGB := {max{λmax,a, λmax,b}NaNb + max {γmax,b, γmax,a}+ ε+ max { ρmax,a, ρmax,b }}

Then, || za (t)−zb (t) ||∞≤ g (t) eKGB t holds for arbitrary t ∈ [0, T ] with given T ≥ 0.

Proof.

We see from 2.42 that, Na = Sa (0) + Ea (0) + Ia (0) +Ra (0) and

Nb = Sb (0) + Eb (0) + Ib (0) +Rb (0) holds for all t ∈ [0, T ].

We recall the inequality,

|x1y1 − x2y2| ≤ |x1| |y1 − y2|+ |y2| |x1 − x2| (2.56)

In all the derivations below, we apply the triangle inequality, the inequality 2.56 and

the boundedness of the functions,S (t) , E (t) , I (t) and R (t).

1. First we estimate |Sa (t)− Sb (t)| and obtain,

|Sa (t)− Sb (t)|

≤ |Sa (0)− Sb (0)|+
∫ t

0

|λa (τ)Sa (τ) Ia (τ)− λb (τ)Sb (τ) Ib (τ)| dτ

+

∫ t

0

|ρa (τ)Sa (τ)− ρb (τ)Sb (τ)| dτ

(2.57)
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Define equation

I :=
∫ t

0
|λa (τ)Sa (τ) Ia (τ)− λb (τ)Sb (τ) Ib (τ)| dτ

and

II :=
∫ t

0
| ρaSa (τ)− ρbSb (τ) | dτ .

We see that,

I ≤
∫ t

0

| λa (τ)Sa (τ) Ia (τ)− λb (τ)Sa (τ) Ia (τ) | dτ

+

∫ t

0

| λb (τ)Sa (τ) Ia (τ)− λb (τ)Sb (τ) Ia (τ) | dτ

+

∫ t

0

| λb (τ)Sb (τ) Ia (τ)− λb (τ)Sb (τ) Ib (τ) | dτ

≤ N2
a t ||λa (t)− λb (t)||∞

+ max {λmax,a, λmax,b }Na

∫ t

0

|Sa (τ)− Sb (τ)| dτ

+ max {λmax,a, λmax,b }Nb

∫ t

0

|Ia (τ)− Ib (τ)| dτ (2.58)

for any t ∈ [0, T ].

II ≤
∫ t

0

| ρa (τ)Sa (τ)− ρb (τ)Sa (τ) | dτ +

∫ t

0

∣∣ ρb (τ)Sa (τ)− ρb(τ)Sb (τ)
∣∣ dτ

≤ Na t || ρa (t)− ρb (t) ||∞ + max {ρmax,b, ρmax,a}
∫ t

0

|Sa (τ)− Sb (τ) | dτ
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Thus, adding I and II , we obtain,

|Sa (t)− Sb (t)|

≤ |Sa (0)− Sb (0)|+N2
a t ||λa (t)− λb (t)||∞

+ max {λmax,a, λmax,b }Na

∫ t

0

|Sa (τ)− Sb (τ)| dτ

+ max {λmax,a, λmax,b }Nb

∫ t

0

|Ia (τ)− Ib (τ)| dτ

+Na t || ρa (t)− ρb (t) ||∞ + max {ρmax,b, ρmax,a}
∫ t

0

|Sa (τ)− Sb (τ) | dτ

(2.59)

for any t ∈ [0, T ].

2. For |Ea (t)− Eb (t)| we have,

|Ea (t)− Eb (t)|

≤ |Ea (0)− Eb (0)|+
∫ t

0

|λa (τ)Ea (τ) Ia (τ)− λb (τ)Eb (τ) Ib (τ)| dτ

+

∫ t

0

|εEa (τ)− εEb (τ)| dτ

Define equation

I :=
∫ t

0
|λa (τ)Sa (τ) Ia (τ)− λb (τ)Sb (τ) Ib (τ)| dτ

We see that,

I ≤ |Ia (0)− Ib (0)|+N2
a t ||λa (t)− λb (t)||∞

+ max {λmax,a, λmax,b }Na

∫ t

0

|Sa (τ)− Sb (τ)| dτ

+ max {λmax,a, λmax,b }Nb

∫ t

0

|Ia (τ)− Ib (τ)| dτ
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We obtain,

|Ea (t)− Eb (t)|

≤ |Ea (0)− Eb (0)|+N2
a t ||λa (t)− λb (t)||∞

+ max {λmax,a, λmax,b }Na

∫ t

0

|Sa (τ)− Sb (τ)| dτ

+ max {λmax,a, λmax,b }Nb

∫ t

0

|Ia (τ)− Ib (τ)| dτ

+ ε

∫ t

0

|Ea (τ)− Eb (τ) | dτ (2.60)

for any t ∈ [0, T ].

3. Now we estimate |Ia (t)− Ib (t)|.

|Ia (t)− Ib (t)|

≤ |Ia (0)− Ib (0)|+
∫ t

0

|εEa (τ)− εEb (τ)| dτ

+

∫ t

0

|γaIa (τ)− γbIb (τ)| dτ

Define equation

I :=
∫ t

0
| γaIa (τ)− γbIb (τ) | dτ .

We see that,

I ≤
∫ t

0

| γa (τ) Ia (τ)− γb (τ) Ia (τ) | dτ +

∫ t

0

∣∣ γb (τ) Ia (τ)− γb(τ)Ib (τ)
∣∣ dτ

≤ Na t || γa (t)− γb (t) ||∞ + max {γmax,b, γmax,a}
∫ t

0

| Ia (τ)− Ib (τ) | dτ
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Thus, we obtain

|Ia (t)− Ib (t)|

≤ |Ia (0)− Ib (0)|+ ε

∫ t

0

|Ea (τ)− Eb (τ)| dτ

+Na t | γa − γb |+ max {γb, γa}
∫ t

0

| Ia (τ)− Ib (τ) | dτ (2.61)

for any t ∈ [0, T ].

4. Similarly we estimate |Ra (t)−Rb (t)|

|Ra (t)−Rb (t)|

≤ |Ra (0)−Rb (0)|+
∫ t

0

|γa (τ) Ia (τ)− γb (τ) Ib (τ)| dτ

+

∫ t

0

|ρa (τ)Sa (τ)− ρb (τ)Sb (τ)| dτ

≤ |Ra (0)−Rb (0)|+
∫ t

0

| γa (τ) Ia (τ)− γb (τ) Ia (τ) | dτ

+

∫ t

0

| γb (τ) Ia (τ)− γb (τ) Ib (τ) | dτ

+

∫ t

0

| ρa (τ)Sa (τ)− ρb (τ)Sa (τ)| dτ +

∫ t

0

∣∣ ρb (τ)Sa (τ)− ρb(τ)Sb (τ)
∣∣ dτ

≤ |Ra (0)−Rb (0)|

+Na t || γa (t)− γb (t) ||∞

+ max {γmax,b, γmax,a}
∫ t

0

| Ia (τ)− Ib (τ) | dτ

+Na t || ρa (t)− ρb (t) ||∞

+ max {ρmax,b, ρmax,a}
∫ t

0

|Sa (τ)− Sb (τ) | dτ (2.62)
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for any t ∈ [0, T ].

Finally from |Sa (t)− Sb (t)| , |Ea (t)− Eb (t)| |Ia (t)− Ib (t)| , |Ra (t)−Rb (t)| we find,

||za (t)− zb (t)||∞

||za (t)− zb (t)||∞

≤ ||za (0)− zb (0)||∞ +N2
a t ||λa (t)− λb (t)||∞

+Na t || γa (t)− γb (t) ||∞ +Na t || ρa (t)− ρb (t) ||∞

+ max {λmax,a, λmax,b }NaNb

∫ t

0

||za (τ)− zb (τ)||∞ dτ

+ ε

∫ t

0

||za (τ)− zb (τ)||∞ dτ

+ max {γmax,b, γmax,a}
∫ t

0

||za (τ)− zb (τ)||∞ dτ

+ max {ρmax,b, ρmax,a}
∫ t

0

||za (τ)− zb (τ)||∞ dτ (2.63)

for any t ∈ [0, T ].

Define the functions,

u (t) := ||za (t)− zb (t)||∞

g (t) := ||za (0)− zb (0)||∞ +N2
a t |λa − λb|+Na t | γa − γb |+Na t | ρa − ρb |

f (t) := {max {λmax,a, λmax,b }NaNb + max {γmax,b, γmax,a}

+ ε+ max { ρmax,a, ρmax,b }} := KGB

We see that the assumptions of Theorem 3 are fulfilled and

||za (t)− zb (t)||∞ ≤ g (t) eKGB t (2.64)
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for any t ∈ [0, T ].

2.3.6 Long time behavior of solutions

In this section, we derive some monotonicity properties and the long time behaviour

of our solutions.

Theorem 2.22 [2] We see the following behavior for S (t), E (t), I (t) and R (t)

1. S (t) decreases monotonically from S (0) > 0. There exists S∗ ≥ 0 such that

limt→∞ S (t) = S∗. Further, it holds that S∗ > 0.

2. R (t) increases monotonically from R (0) ≥ 0. There exists R∗ ≥ 0 such that

limt→∞R (t) = R∗ .

3. I is Lebesgue-integrable on [0,∞) and limt→∞ I (t) = 0.

4. limt→∞E (t) = 0.

Proof.

1. We know that , S
′
(t) = −λ (t)S (t) I (t) − ρ (t)S (t) . By Lemma 2.17, we

know that S
′
(t) < 0 since λ (t) > 0 and ρ (t) ≥ 0. By the boundedness of S (t)

therefore, 0 ≤ S (t) ≤ S0 . Thus, S : [0,∞) → [0,∞) monotonically decreases

and is bounded below by 0.

S
′
(t) = −λ (t)S (t) I (t)− ρ (t)S (t).

So, S
′
(t) = − (λ (t) I (t) + ρ (t))S (t) ≥ − (λmax I (t) + ρmax)S (t).

Therefore,
S

′
(t)

S (t)
≥ − (λmax I (t) + ρmax).

Integrating,

S (t) ≥ S0 · exp
(
−
(
λmax

∫ t
0
I (t) dt+ ρmaxt

))
> 0 for all t ≥ 0. Hence it holds

that S∗ > 0. Note that the monotonicity of S (t) ensures that S (t) < S0 for all

t > 0. Hence S∗ < S0.
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2. R
′
(t) = γ (t) I (t) + ρ (t)S (t) ≥ 0 for all t ≥ 0 and 0 ≤ R (t) ≤ N by Lemma

2.17. Therefore, R : [0,∞)→ [0,∞) is monotonically increasing and is bounded

above by N . Therefore, it follows that R∗ := limt→∞R (t) ≥ 0 exists.

3. By assumption, λ (t) ≥ 0 and from Lemma 2.17, S, I : [0,∞)→ [0,∞) ≥ 0 and

are bounded above by N .

Therefore,∫ ∞
0

S
′
(τ) dτ = S∗ − S0 =

∫ ∞
0

−λ (τ)S (τ) I (τ) dτ +

∫ ∞
0

−ρ (τ)S (τ) dτ∫ ∞
0

λ (τ)S (τ) I (τ) dτ = S0 − S∗ −
∫ ∞

0

ρ (τ)S (τ) dτ

≥ λminS
∗
∫ t

0

I (τ) dτ

Since
∫∞

0
ρ (τ)S (τ) dτ ≤ ρmaxS0 , S0 − S∗ −

∫∞
0
ρ (τ)S (τ) dτ > 0. Therefore,

I is Lebesgue-integrable on [0,∞) and limt→∞ I (t) = 0.

4. From property 3 and from I
′
(t) = εE (t)− γ (t) I (t), we see that,

limt→∞E (t) = 0.

Based on the monotonicity properties and the boundedness of S, I and R, we can

draw the following biological conclusions.[1]

1. Some number of susceptibles always escape the infection at the end of the

epidemic.

2. The epidemic ends not because the suseptibles are exhausted.

3. The disease eventually dies out and the infectious population tends to zero after

a long period of time otherwise.

4. Vaccination can reduce the number of susceptibles but not stop the infection as

long as there are infectious individuals.
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5. Since the infectiousfect population increases initially, there must be a period of

time after which the change in I becomes negative. In other words, the epidemic

first rises, then declines after reaching the maximum.

2.3.7 Basic Reproduction Number

The basic reproduction number, R0 [1] in the SEIR model, is defined by,

R0 (t) := λ (t) ε (t)
1

γ (t) ε (t)
· S (tk) =

λ (t)

γ (t)
· S (t) .

From the non negativity and boundedness of λ (t) and γ (t) , we see that as in the

previous case,

0 ≤ λmin
γmax

· S0 ≤ R0 (t) ≤ λmax
γmin

· S0 (2.65)

2.4 Discrete SEIR model with vaccination

We now examine the time discrete SEIR model with vaccination and time dependent

transmission and recovery rate. We assume that a time interval [0, T ) has been

divided into a strictly increasing sequence {tj}j=Mj=1 such that t1 = 0 and tM = T . We

represent f (tj) by fj for any time dependent function f .

In this model we state a fully explicit form ,

∆Sj
∆tj

=
Sj+1 − Sj
tj+1 − tj

= −λj+1SjIj − ρj+1Sj,

∆Ej
∆tj

=
Ej+1 − Ej
tj+1 − tj

= λj+1SjIj − εEj,

∆Ij
∆tj

=
Ij+1 − Ij
tj+1 − tj

= εEj − γj+1Ij,

∆Rj

∆tj
=
Rj+1 −Rj
tj+1 − tj

= γj+1Ij + ρj+1Sj


(2.66)
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and a fully implicit form as in [1]

∆Sj
∆tj

=
Sj+1 − Sj
tj+1 − tj

= −λj+1Sj+1Ij+1 − ρj+1Sj+1,

∆Ej
∆tj

=
Ej+1 − Ej
tj+1 − tj

= λj+1Sj+1Ij+1 − εEj+1,

∆Ij
∆tj

=
Ij+1 − Ij
tj+1 − tj

= εEj+1 − γj+1Ij+1,

∆Rj

∆tj
=
Rj+1 −Rj
tj+1 − tj

= γj+1Ij+1 + ρj+1Sj+1


(2.67)

for all j ∈ {1, . . . ,M − 1}. Both of these satisfy,

N = Sj+1 + Ej+1 + Ij+1 +Rj+1 = Sj + Ej + Ij +Rj. (2.68)

We first show that the fully explicit form reduces to a set of linear equations and the

fully implicit form has non-linear nature. From equation 2.66, the fully explicit form,

Sj+1 = Sj − (λj+1SjIj + ρj+1Sj) ∆tj = Sj − (λj+1SjIj + ρj+1Sj) (tj+1 − tj) ,

Ej+1 = Ej + (λj+1SjIj + εEj) ∆tj = Ej + (λj+1SjIj + εEj) (tj+1 − tj) ,

Ij+1 = Ij + (εEj − γj+1Ij) ∆tj = Ij + (εEj − γj+1Ij) (tj+1 − tj) ,

Rj+1 = Rj + (γj+1Ij + ρj+1Sj) ∆tj = Rj + (γj+1Ij + ρj+1Sj) (tj+1 − tj)


(2.69)

is linear. From equation 2.67, the fully implicit form, appears to be in the nonlinear
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form below.

Sj+1 =
Sj

(1 + (λj+1Ij+1 + ρj+1) (tj+1 − tj))
,

Ej+1 =
Ej + λj+1Sj+1Ij+1 (tj+1 − tj)

(1 + ε (tj+1 − tj))
,

Ij+1 =
Ij + εEj+1 (tj+1 − tj)
(1 + γj+1 (tj+1 − tj))

,

Rj+1 = Rj + (γj+1Ij+1 + ρj+1Sj+1) (tj+1 − tj)


(2.70)

for j ∈ {1, . . . ,M − 1}

2.4.1 Unique Solvability

The time discrete implicit form given in 2.70 is uniquely solvable for every j ∈

{1, . . . ,M − 1}. If we replace Ej+1in the Ij+1 equation with we find that,

Ij+1 =
Ij + εEj+1 (tj+1 − tj)
(1 + γj+1 (tj+1 − tj))

=

Ij + ε

(
Ej + λj+1Sj+1Ij+1 (tj+1 − tj)

(1 + ε (tj+1 − tj))

)
(tj+1 − tj)

(1 + γj+1 (tj+1 − tj))

=
Ij (1 + ε (tj+1 − tj)) + ε (Ej + λj+1Sj+1Ij+1 (tj+1 − tj)) (tj+1 − tj)

(1 + ε (tj+1 − tj)) (1 + γj+1 (tj+1 − tj))
.

We now replace Sj+1 using equation 2.70

Ij+1 =

Ij (1 + ε∆tj+1) + ε∆tj+1

(
Ej + λj+1

Sj
(1 + (λj+1Ij+1 + ρj+1) ∆tj+1)

Ij+1∆tj+1

)
(1 + ε∆tj+1) (1 + γj+1∆tj+1)

.

(2.71)

Rearranging, we have,

Ij+1 [1 + (λj+1Ij+1 + ρj+1) ∆tj+1] (1 + ε∆tj+1) (1 + γj+1∆tj+1)

= Ij+1

(
Ijλj+1∆tj+1 + ελj+1Ij∆

2tj+1 + εEjλj+1∆2tj+1 + εSjλj+1∆2tj+1

)
+ Ij

(
1 + ε∆tj+1 + ρj+1∆tj+1 + ερj+1∆2tj+1

)
+ ε∆tj+1Ej + ερj+1∆2tj+1Ej

.
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That is,

I2
j+1

[
λj+1∆tj+1 + γj+1λj+1∆2tj+1 + λj+1ε∆

2tj+1 + λj+1γj+1ε∆
3tj+1 + ρj+1γj+1ε∆

3tj+1

]
+ Ij+1 [ 1 + γj+1∆tj+1 + ε∆tj+1 + ρj+1∆tj+1 + ρj+1γj+1∆2tj+1

+ εγj+1∆2tj+1 + ρj+1ε∆
2tj+1 + ρj+1γj+1ε∆

3tj+1 ]

− Ij+1

[(
Ijλj+1∆tj+1 + ελj+1Ij∆

2tj+1 + εEjλj+1∆2tj+1 + εSjλj+1∆2tj+1

) ]
= Ij

(
1 + ε∆tj+1 + ρj+1∆tj+1 + ερj+1∆2tj+1

)
+ ερj+1∆2tj+1Ej + ε∆tj+1Ej. (2.72)

Now we define,

Aj+1 :=
[
λj+1∆tj+1 + γj+1λj+1∆2tj+1 + λj+1ε∆

2tj+1 + λj+1γj+1ε∆
3tj+1 + ρj+1γj+1ε∆

3tj+1

]
,

Dj+1 := εγj+1 + ερj+1 + ρj+1γj+1 − ελj+1Ij − ελj+1Ej − ελj+1Sj,

Bj+1 :=
1

2

[
1 + ∆tj+1 (γj+1 + ρj+1 + ε− Ijλj+1) + ∆2tj+1Dj+1 + ∆3tj+1ρj+1γj+1ε

]
,

Cj+1 := −
(
1 + ε∆tj+1 + ρj+1∆tj+1 + ερj+1∆2tj+1

)
Ij − ε∆tj+1 + ερj+1∆2tj+1Ej


(2.73)

Then Equation 2.72 becomes,

Aj+1I
2
j+1 + 2Bj+1Ij+1 − Cj+1 = 0. (2.74)

So that,

Ij+1 =
−Bj+1

Aj+1

+

√
B2
j+1

A2
j+1

+
Ij (1 + ε∆2tj+1) + ε∆tj+1Ej

Aj+1

(2.75)

Since Ij+1 ≥ 0 for all j ∈ {1, . . . ,M − 1}

2.4.2 Monotonicity and Long Time Behavior

Theorem 2.23 [2] For the time discrete implicit form given in equation 2.67 , the
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following hold

1. 0 ≤ Ij ≤ N for all j ∈ {1, . . . ,M − 1}.

2. 0 ≤ Ej ≤ N for all j ∈ {1, . . . ,M − 1}.

3. 0 ≤ Sj ≤ N for all j ∈ {1, . . . ,M −1} and Sj+1 ≤ Sj for all j ∈ {1, . . . ,M −1}.

4. 0 ≤ Rj ≤ N for all j ∈ {1, . . . ,M−1} and Rj+1 ≥ Rj for all j ∈ {1, . . . ,M−1}.

5. limj→∞ Ij = 0.

6. limj→∞Ej = 0.

Proof

1. By assumption, Ij > 0 for all j ∈ {1, . . . ,M − 1}.Thus, by 2.67, Ij ≥ 0 and

from 2.68 , Ij ≤ N for all j ∈ {1, . . . ,M − 1}.

2. By property 1 ,2 and by equation 2.68 , Ej ≥ 0 and , Ej ≤ N for all j ∈

{1, . . . ,M − 1}.

3. By assumption, Sj > 0 for all j ∈ {1, . . . ,M − 1}. Thus, Sj ≥ 0 and by

Property 1) and from 2.68 , Sj ≤ N for all j ∈ {1, . . . ,M − 1}. Further , from

2.70, Sj+1 =
Sj

1 + (λj+1Ij+1 + ρj+1) (tj+1 − tj)
≤ Sj, since Ij+1 ≥ 0, λj+1 > 0

and tj+1 − tj > 0.

4. By properties 1, 2 and 3 and from equation 2.68 , 0 ≤ Rj ≤ N for all j ∈

{1, . . . ,M − 1}. Further, from equation 2.70,

Rj+1 = Rj +(γj+1Ij+1 + ρj+1Sj+1) (tj+1 − tj) ≥ Rj , since γj+1, ρj+1, tj+1− tj >

0 by assumption.

5. Since Rj+1 is monotonically increasing and bounded above by N . there exists

a positive R∗ , such that limj→∞Rj = R∗.
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Further, Rj+1 −Rj = (γj+1Ij+1 + ρj+1Sj+1) (tj+1 − tj) implies,

Ij+1 =
Rj+1 −Rj

γj+1 (tj+1 − tj)
− ρj+1

γj+1

Sj+1.

Therefore, limj→∞ Ij = 0 due to the non negative property of Ij.

6. From property 5 and equation 2.70, we can conclude that limj→∞Ej = 0.

2.4.3 Basic Reproduction Number

The basic reproduction number,R0 (tk) [1] in the time-discrete SEIR model, is defined

by,

R0 (tk) = λ (tk) ε (tk)
1

γ (tk) ε (tk)
· S (tk) =

λ (tk)

γ (tk)
· S (tk) . (2.76)

for arbitrary k ∈ {1, · · · ,M}. From the non negativity and boundedness of λ (tk)

and γ (tk) , we see that ,

0 ≤ λmin
γmax

· S0 ≤ R0 (tk) ≤
λmax
γmin

· S0 (2.77)

2.5 A model with quarantine and unreported infections

A model with quarantine is studied in [3]. There is no latency for the disease in

this model. However there is incubation period for the disease, the disease symp-

toms are not immediately apparent in the individuals exposed to the virus. However,

such individuals could also transmit the disease to others. The reported infectious

compartment represent those individuals who are quarantined on confirmation of in-

fection. Those individuals that are asymptomatic or who do not report infection are

in the unreported compartment.

A diagram representing the model is given below.[3]. Note that the E compartment

here stands for the ”Exposed” to infection compartment containing infectious individ-

uals and the I compartment stands for the ”Infected and Reported” (Quarantined and
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so not infectious) compartment. The U compartment contains infectious individuals

corresponding to the people that are not quarantined (asymptomatic /unreported).

S
λS (E + U)

E

(1− f)σE

U

fσE

I
γI

R

γU

Compartment S Susceptible, E Exposed , I Reported infected, U Unreported

infected and R Recovered. We here replace the constant coefficients with time de-

pendent coefficients. The system of differential equations for this model is [3].

S
′
(t) = −λ (t) S (t) [E (t) + U (t)] ,

E
′
(t) = λ (t) S (t) [E (t) + U (t)]− σ (t)E (t) ,

I
′
(t) = σ (t) f E (t)− γ (t) I (t) ,

U
′
(t) = σ (t) (1− f) E (t)− γ (t)U (t) ,

R
′
(t) = γ (t) [E (t) + U (t)] ,

N (t) = S (t) + E (t) + I (t) + U (t) +R (t)



(2.78)
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The initial conditions for the system of equations are,

N (t) := N0 = N

S (0) := S0 > 0, I (0) := I0 ≥ 0, E (0) := E0 > 0, U (0) := U0 ≥ 0, R (0) := R0 ≥ 0

We can prove the non negativity property and boundedness of this model using

the fact that the total population N does not change during all time and the total

population in each of the compartment is less than or equal to N . However here we

wish to state the conditions for an outbreak to occur assuming the non-negativity of

meaningful solutions.

The condition for an outbreak given in [3] is that E
′
(t) + U

′
(t) + I

′
(t) > 0.

So assuming that there exists a σmax and a σmin such that σmin ≤ σ (t) ≤ σmax,

an outbreak occurs if, λ (t) S (t) [E (t) + U (t)] − γ (t) [I (t) + U (t)] > 0. So an

outbreak does not occur when λ (t) S (t) [E (t) + U (t)] ≤ γ (t) [I (t) + U (t)].

1. This could be the case when E (t) = U (t) = I (t) = 0 , that is the trivial

solution where there are no infections.

2. When there are infections, E (t) + U (t) ≤ ( I (t) + U (t) )
γ (t)

λ (t)
· 1

S (t)
ensures

that there is no outbreak.

2.5.1 Basic Reproduction Number

The condition two above stated differently gives the basic reproduction number of this

model. When
γ (t)

λ (t)
· 1

S (t)
= 1, E (t) ≤ I (t), gives the condition for no outbreak. This

implies that when more infected individuals are quarantined than that are exposed

to the infection, an outbreak does not happen. Thus, the basic reproduction number

can be estimated by,

0 ≤ λmin
γmax

· S0 ≤ R0 (t) :=
λ (t)

γ (t)
· S (t) ≤ λmax

γmin
· S0 (2.79)
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Then, in terms of the basic reproduction number R0 (t), the condition for no

outbreak is,

R0 (t)E (t) + (R0 (t)− 1) U (t) ≤ I (t) . (2.80)
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CHAPTER 3

ANALYSIS OF THE MODELS

3.1 Analysis of discrete and continuous SEIR models

In this section we formulate the difference between the solutions of the time discrete

and the time continuous problem formulations. We state the assumptions below.[2]

1. Let the considered time interval be [0, T ] with t1 = 0 and tM = T .

2. Let the initial conditions of the time continuous and the time discrete models

coincide.

3. Let the solution functions S,E, I, R : [0, T ] → [0,∞) be twice continuously

differentiable.

4. Let the time-varying transmission rate λ : [0, T ]→ [0,∞) and the time-varying

recovery rate γ : [0, T ]→ [0,∞) be once continuously differentiable.

5. Let the time-varying transmission and recovery rates be bounded, i.e., there

are nonnegative constants, λmin, λmax, γmin, γmax, such that, 0 < λmin ≤ λ (t) ≤

λmax < 1 and 0 < γmin ≤ γ (t) ≤ γmax < 1 for all t ∈ [0, T ].

6. The latent period ε is a nonnegative constant measured relative to the time

period ∆p.

7. Choose ∆p < min

{
1

4 (λmax + γmax)
, 1

}
≤ 1 for all p ∈ N and set

∆ := maxp∈N ∆p.

Theorem 3.24 ([2]) If the assumptions given above are satisfied by the SEIR model,

and if the differences between the actual value and the approximating functions can be
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ignored, the difference between the solutions of the continuous problem formulation

and the time discrete problem formulation satisfies ,

||z (tp+1)− z̃p+1||∞ ≤ Cloc .∆
2
p+1. (3.1)

Time-discrete solutions are denoted as Sp, Ep, Ip, Rp at time tp and time-continuous

solutions as S (tp) , E (tp) , R (tp) , S (tp). We first estimate the local errors between

time-continuous and time-discrete solutions. We then consider the propagation of the

error in time and then find the cumulative error.

For examining the local differences, by the assumptions, (tp, Sp) = (tp, S (tp)) ,

(tp, Ep) = (tp, E (tp)) , (tp, Ip) = (tp, I (tp)) , (tp, Rp) = (tp, R (tp)) hold for arbi-

trary p ∈ {1, ...,M − 1} on the time interval [tp, tp+1].

We denote the time discrete solutions at p+1 by S̃p+1, Ẽp+1, Ĩp+1, R̃p+1 and (tp+1 − tp)

by ∆p+1.

Proof

1. First we evaluate the difference in S between the models. It holds that,

S̃p+1 =
Sp

1 + λp+1Ĩp+1∆p+1

= S (tp)−
λp+1Ĩp+1∆p+1S (tp)

1 + λp+1Ĩp+1∆p+1

.

Therefore,∣∣∣S (tp+1)− S̃p+1

∣∣∣
=

∣∣∣∣∣S (tp+1)− S (tp) +
λp+1Ĩp+1∆p+1S (tp)

1 + λp+1Ĩp+1∆p+1

∣∣∣∣∣
=

∣∣∣∣∣
∫ tp+1

tp

S
′
(τ) dτ +

λp+1Ĩp+1∆p+1S (tp)

1 + λp+1Ĩp+1∆p+1

∣∣∣∣∣
=

∣∣∣∣∣
∫ tp+1

tp

S
′
(τ) dτ + ∆p+1S

′
(tp)−∆p+1S

′
(tp) +

λp+1Ĩp+1∆p+1S (tp)

1 + λp+1Ĩp+1∆p+1

∣∣∣∣∣
≤

∣∣∣∣∣
∫ tp+1

tp

S
′
(τ) dτ −∆p+1S

′
(tp)

∣∣∣∣∣+

∣∣∣∣∣∆p+1S
′
(tp) +

λp+1Ĩp+1∆p+1S (tp)

1 + λp+1Ĩp+1∆p+1

∣∣∣∣∣
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by triangle inequality.

Let IS,1 :=
∣∣∣∫ tp+1

tp
S

′
(τ) dτ −∆p+1S

′
(tp)
∣∣∣ and IIS,1 :=

∣∣∣∣∣∆p+1S
′
(tp) +

λp+1Ĩp+1∆p+1S (tp)

1 + λp+1Ĩp+1∆p+1

∣∣∣∣∣.
We evaluate IS,1 =

∣∣∣∫ tp+1

tp

{
S

′
(τ)− S ′

(tp)
}
dτ
∣∣∣ =

∣∣∣∣∫ tp+1

tp
(τ − tp)

S
′
(τ)− S ′

(tp)

τ − tp
dτ

∣∣∣∣.
By the mean value theorem of calculus, there exists ξS,1 ∈ (tp, tp+1) such that,∣∣S ′′

(ξS,1)
∣∣ =

∣∣∣∣S ′
(τ)− S ′

(tp)

τ − tp

∣∣∣∣ ≤ ∣∣∣∣S ′′
(t)
∣∣∣∣
∞. This yields,

IS,1 =
∣∣∣∣∣∣S ′′

(t)
∣∣∣∣∣∣
∞

∫ tp+1

tp

(τ − tp) dτ =
1

2
∆2
p+1

∣∣∣∣∣∣S ′′
(t)
∣∣∣∣∣∣
∞
. (3.2)

Now we evaluate

IIS,1 =

∣∣∣∣∣∆p+1S
′
(tp) +

λp+1Ĩp+1∆p+1S (tp)

1 + λp+1Ĩp+1∆p+1

∣∣∣∣∣
=

∣∣∣∣∣−λp∆p+1I (tp)S (tp) +
λp+1Ĩp+1∆p+1S (tp)

1 + λp+1Ĩp+1∆p+1

∣∣∣∣∣
= |∆p+1S (tp)| .

∣∣∣∣∣−λpI (tp) +
λp+1Ĩp+1

1 + λp+1Ĩp+1∆p+1

∣∣∣∣∣
= ∆p+1.

∣∣∣∣∣∣
−λpI (tp)

(
1 + λp+1Ĩp+1∆p+1

)
+ λp+1Ĩp+1

1 + λp+1Ĩp+1

∣∣∣∣∣∣
= ∆p+1.

∣∣∣−λpI (tp)
(

1 + λp+1Ĩp+1∆p+1

)
+ λp+1Ĩp+1

∣∣∣
= ∆p+1.

∣∣∣λp+1Ĩp+1 − λpI (tp) .
{

1 + ∆p+1λp+1Ĩp+1

}∣∣∣
= ∆p+1.

∣∣∣λp+1Ĩp+1 − λpI (tp)
∣∣∣+ ∆p+1.

∣∣∣λpI (tp)λp+1Ĩp+1

∣∣∣
= ∆p+1.

∣∣∣λp+1Ĩp+1 − λpI (tp)
∣∣∣+ ∆2

p+1.λ
2
maxN

2. (3.3)

We now define, IIIS,1 := ∆p+1.
∣∣∣λp+1Ĩp+1 − λpI (tp)

∣∣∣ and estimate it.

We plugin Ĩp+1 =
Ip + εẼp+1∆p+1

(1 + γp+1∆p+1)
and obtain,
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IIIS,1 = ∆p+1.

∣∣∣∣∣λp+1
Ip + εẼp+1∆p+1

(1 + γp+1∆p+1)
− λpI (tp)

∣∣∣∣∣
= ∆p+1

∣∣∣∣∣λpI (tp)− λp+1
Ip + εẼp+1∆p+1

(1 + γp+1∆p+1)

∣∣∣∣∣
= ∆p+1 |I (tp)| .

∣∣∣∣∣λp − λp+1.
I (tp) + εẼp+1∆p+1

(1 + γp+1∆p+1) I (tp)

∣∣∣∣∣
= ∆p+1 |I (tp)| .

∣∣∣∣∣λp. (1 + γp+1) ∆p+1I (tp)− λp+1.I (tp)− εẼp+1∆p+1

(1 + γp+1∆p+1) I (tp)

∣∣∣∣∣
= ∆p+1 |I (tp)| .

∣∣∣∣∣λp∆p+1I (tp) + λpγp+1∆p+1I (tp)− λp+1.I (tp)− εẼp+1∆p+1

(1 + γp+1∆p+1) I (tp)

∣∣∣∣∣
≤ ∆p+1N.

∣∣∣∣∣λp∆p+1I (tp) + λpγp+1∆p+1I (tp)− λp+1.I (tp)− εẼp+1∆p+1

(1 + γp+1∆p+1) I (tp)

∣∣∣∣∣
≤ ∆p+1N.

∣∣∣∣∣∆p+1 {λp.I (tp) + λp.γmax.I (tp)− λp+1.I (tp)} − εẼp+1∆p+1

(1 + γp+1∆p+1) I (tp)

∣∣∣∣∣
≤ 1

1 + γmax
. |∆p+1 {λp.I (tp)− λp+1.I (tp)} −∆p+1N {ε− λmaxγmax}| .

by the boundedness property of γ (t) , λ (t) and E, I. We now apply the triangle

inequality to obtain,

IIIS,1 ≤
∆2
p+1

1 + γmax

{
|I (tp)|

∣∣∣∣{λp − λp+1}
∆p+1

∣∣∣∣+

∣∣∣∣N {ε− λmaxγmax}∆p+1

∣∣∣∣}
≤

∆2
p+1

1 + γmax
.N

{∣∣∣∣{λp − λp+1}
∆p+1

∣∣∣∣+

∣∣∣∣{ε− λmaxγmax}∆p+1

∣∣∣∣} .

By the mean value theorem of calculus, there exists ξλ,1 ∈ [tp, tp+1] such that,∣∣λ′
(ξλ,1)

∣∣ =

∣∣∣∣λp+1 − λp
tp+1 − tp

∣∣∣∣ ≤ ∣∣∣∣λ′
(t)
∣∣∣∣
∞ holds. Hence by the boundedness prop-

erty and triangle inequality again,
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IIIS,1 ≤
∆2
p+1N

1 + γmax

{∣∣∣∣∣∣λ′
(t)
∣∣∣∣∣∣
∞

+ {ε+ λmaxγmax}
}
.

(3.4)

Therefore,∣∣∣S (tp+1)− S̃p+1

∣∣∣
≤ 1

2
∆2
p+1

∣∣∣∣∣∣S ′′
(t)
∣∣∣∣∣∣
∞

+ ∆2
p+1.λ

2
maxN

2 +
∆2
p+1N

1 + γmax

{∣∣∣∣∣∣λ′
(t)
∣∣∣∣∣∣
∞

+ {ε+ λmaxγmax}
}

= ∆2
p+1

{
1

2

∣∣∣∣∣∣S ′′
(t)
∣∣∣∣∣∣
∞

+ λ2
maxN

2 +
N

1 + γmax

{∣∣∣∣∣∣λ′
(t)
∣∣∣∣∣∣
∞

+ {ε+ λmaxγmax}
}}

.

(3.5)

We define Cloc,S := 1
2

∣∣∣∣S ′′
(t)
∣∣∣∣
∞+λ2

maxN
2+

N

1 + γmax

{∣∣∣∣λ′
(t)
∣∣∣∣
∞ + {ε+ λmaxγmax}

}
.

Thus,
∣∣∣S (tp+1)− S̃p+1

∣∣∣ ≤ ∆2
p+1.Cloc,S holds true.

2. We now estimate the difference in E between the two models.

Ẽp+1 = λp+1S̃p+1Ĩp+1−εẼp+1Ẽp+1 =
Ep + λp+1S̃p+1Ĩp+1∆p+1

(1 + ε∆p+1)
=
E (tp) + λp+1S̃p+1Ĩp+1∆p+1

(1 + ε∆p+1)

= E (tp)−
E (tp) ε∆p+1

(1 + ε∆p+1)
+
λp+1S̃p+1Ĩp+1∆p+1

(1 + ε∆p+1)

By the application of triangle inequality and mean value theorem as in the case

of the previous case, we have,
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∣∣∣E (tp+1)− Ẽp+1

∣∣∣
=

∣∣∣∣∣E (tp+1)− E (tp) +
E (tp) ε∆p+1 − λp+1S̃p+1Ĩp+1∆p+1

(1 + ε∆p+1)

∣∣∣∣∣
=

∣∣∣∣∣
∫ tp+1

tp

E
′
(τ) dτ − E (tp) ε∆p+1 − λp+1S̃p+1Ĩp+1∆p+1

(1 + ε∆p+1)

∣∣∣∣∣
≤

∣∣∣∣∣
∫ tp+1

tp

E
′
(τ) dτ − E ′

(tp) ∆p+1

∣∣∣∣∣
+

∣∣∣∣∣E ′
(tp) ∆p+1 +

E (tp) ε∆p+1 − λp+1S̃p+1Ĩp+1∆p+1

(1 + ε∆p+1)

∣∣∣∣∣

≤
∆2
p+1

2

∣∣∣∣∣∣E ′′
(t)
∣∣∣∣∣∣
∞

+

∣∣∣∣∣E ′
(tp) ∆p+1 +

E (tp) ε∆p+1 − λp+1S̃p+1Ĩp+1∆p+1

(1 + ε∆p+1)

∣∣∣∣∣ .
(3.6)

We define, IE,1 :=

∣∣∣∣∣E ′
(tp) ∆p+1 +

E (tp) ε∆p+1 − λp+1S̃p+1Ĩp+1∆p+1

(1 + ε∆p+1)

∣∣∣∣∣.



68

We plugin E
′
(tp) = λpS (tp) I (tp)− εE (tp). Thus, we further obtain,

IE,1

=

∣∣∣∣∣λpS (tp) I (tp) ∆p+1 − εE (tp) ∆p+1 +
E (tp) ε∆p+1 − λp+1S̃p+1Ĩp+1∆p+1

(1 + ε∆p+1)

∣∣∣∣∣
= ∆p+1

∣∣∣∣∣λpS (tp) I (tp)− εE (tp) +
E (tp) ε− λp+1S̃p+1Ĩp+1

(1 + ε∆p+1)

∣∣∣∣∣
≤ ∆p+1

∣∣∣∣∣λpS (tp) I (tp)−
λp+1S̃p+1Ĩp+1

(1 + ε∆p+1)

∣∣∣∣∣+ ∆p+1

∣∣∣∣ E (tp) ε

(1 + ε∆p+1)
− εE (tp)

∣∣∣∣
≤ ∆p+1

∣∣∣λpS (tp) I (tp) . (1 + ε∆p+1)− λp+1S̃p+1Ĩp+1

∣∣∣
+ ∆p+1

∣∣∣∣ E (tp) ε

(1 + ε∆p+1)
− εE (tp)

∣∣∣∣
≤ ∆p+1

∣∣∣λpS (tp) I (tp)− λp+1S̃p+1Ĩp+1

∣∣∣+
∣∣λpS (tp) I (tp) ε.∆

2
p+1

∣∣+
+ ∆p+1

∣∣ε2E (tp) ∆p+1

∣∣
≤ ∆p+1

∣∣∣λpS (tp) I (tp)− λp+1S̃p+1Ĩp+1

∣∣∣+ λmaxεN
2∆2

p+1 +N∆2
p+1ε

2. (3.7)

We define, IE,2 := ∆p+1

∣∣∣λpS (tp) I (tp)− λp+1S̃p+1Ĩp+1

∣∣∣ and plugin

Ĩp+1 =
I (tp) + εẼp+1∆p+1

1 + γp+1∆p+1

IE,2

≤ ∆p+1

∣∣∣λpS (tp) I (tp)− λp+1S̃p+1I (tp)
∣∣∣+ ∆p+1 |λpS (tp) I (tp) γp+1∆p+1|

+ ∆p+1

∣∣∣λp+1S̃p+1εẼp+1∆p+1

∣∣∣
≤ ∆p+1

∣∣∣λpS (tp) I (tp)− λp+1S̃p+1I (tp)
∣∣∣+ λmaxγmaxN

2∆2
p+1 + λmaxεN

2∆2
p+1.

(3.8)
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We now substitute for S̃p+1 and obtain,

IE,2

≤ ∆p+1

∣∣∣λpS (tp) I (tp)− λp+1S̃p+1I (tp)
∣∣∣+ λmaxγmaxN

2∆2
p+1 + λmaxεN

2∆2
p+1

≤ ∆p+1N
2 |λp − λp+1|+

∣∣∣λpλp+1Ĩp+1∆p+1

∣∣∣+ λmaxγmaxN
2∆2

p+1 + λmaxεN
2∆2

p+1

≤ ∆p+1N
2
∣∣∣∣∣∣λ (t)

′
∣∣∣∣∣∣
∞

+ λ2
maxN∆2

p+1

+ λmaxγmaxN
2∆2

p+1 + λmaxεN
2∆2

p+1

= ∆2
p+1N

2
∣∣∣∣∣∣λ′

(t)
∣∣∣∣∣∣
∞

+N2∆2
p+1 (λmaxγmax + λmaxε) +Nλ2

max∆
2
p+1. (3.9)

Thus, ∣∣∣E (tp+1)− Ẽp+1

∣∣∣
≤

∆2
p+1

2

∣∣∣∣∣∣E ′′
(t)
∣∣∣∣∣∣
∞

+ ∆2
p+1N

2
∣∣∣∣∣∣λ (t)

′
∣∣∣∣∣∣
∞

+N∆2
p+1

(
λ2
max + ε2

)
+N2∆2

p+1 (λmaxγmax + 2λmaxε+ λmax) . (3.10)

Define

Cloc,E :=
1

2

∣∣∣∣∣∣E ′′
(t)
∣∣∣∣∣∣
∞

+N2
∣∣∣∣∣∣λ (t)

′
∣∣∣∣∣∣
∞

+N
(
λ2
max + ε2

)
+N2 (λmaxγmax + 2λmax ε + λmax)

Thus, ∣∣∣E (tp+1)− Ẽp+1

∣∣∣ ≤ ∆2
p+1Cloc,E. (3.11)
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3. Next we estimate the difference in I between the two models. We note that,

Ĩp+1 =
Ip + εẼp+1∆p+1

(1 + γp+1∆p+1)
=

I (tp)

(1 + γp+1∆p+1)
+

εẼp+1∆p+1

(1 + γp+1∆p+1)

= I (tp)−
I (tp) γp+1∆p+1

(1 + γp+1∆p+1)
+

εẼp+1∆p+1

(1 + γp+1∆p+1)
.

Hence,∣∣∣I (tp+1)− Ĩp+1

∣∣∣
=

∣∣∣∣∣I (tp+1)− I (tp) +
I (tp) γp+1∆p+1

(1 + γp+1∆p+1)
− εẼp+1∆p+1

(1 + γp+1∆p+1)

∣∣∣∣∣
=

∣∣∣∣∣
∫ tp+1

tp

I
′
(τ) dτ +

I (tp) γp+1∆p+1

(1 + γp+1∆p+1)
− εẼp+1∆p+1

(1 + γp+1∆p+1)

∣∣∣∣∣
≤

∣∣∣∣∣
∫ tp+1

tp

I
′
(τ) dτ − I ′

(tp) ∆p+1

∣∣∣∣∣+

∣∣∣∣∣I ′
(tp) ∆p+1 +

I (tp) γp+1∆p+1

(1 + γp+1∆p+1)
− εẼp+1∆p+1

(1 + γp+1∆p+1)

∣∣∣∣∣
≤

∆2
p+1

2
.
∣∣∣∣∣∣I ′′

(t)
∣∣∣∣∣∣
∞

+

∣∣∣∣∣I ′
(tp) ∆p+1 +

I (tp) γp+1∆p+1

(1 + γp+1∆p+1)
− εẼp+1∆p+1

(1 + γp+1∆p+1)

∣∣∣∣∣ .
(3.12)

By following the same argument as in the previous cases.

We now define, II,1 :=

∣∣∣∣∣I ′
(tp) ∆p+1 +

I (tp) γp+1∆p+1

(1 + γp+1∆p+1)
− εẼp+1∆p+1

(1 + γp+1∆p+1)

∣∣∣∣∣ and
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plugin, I
′
(tp) = εE (tp)− γpI (tp). Hence,

II,1

=

∣∣∣∣∣εE (tp) ∆p+1 − γpI (tp) ∆p+1 +
I (tp) γp+1∆p+1

(1 + γp+1∆p+1)
− εẼp+1∆p+1

(1 + γp+1∆p+1)

∣∣∣∣∣
=

∣∣∣∣∣εE (tp) ∆p+1 −
εẼp+1∆p+1

(1 + γp+1∆p+1)
+
I (tp) γp+1∆p+1

(1 + γp+1∆p+1)
− γpI (tp) ∆p+1

∣∣∣∣∣
= ∆p+1

∣∣∣∣∣εE (tp)−
εẼp+1

(1 + γp+1∆p+1)
+

I (tp) γp+1

(1 + γp+1∆p+1)
− γpI (tp)

∣∣∣∣∣
= ∆p+1

∣∣∣∣∣ε
{
E (tp)−

Ẽp+1

(1 + γp+1∆p+1)

}
+ I (tp)

{
γp+1

(1 + γp+1∆p+1)
− γp

}∣∣∣∣∣
= ∆p+1

∣∣∣∣∣ε
{
E (tp) . (1 + γp+1∆p+1)− Ẽp+1

(1 + γp+1∆p+1)

}
+ I (tp)

{
γp+1 − γp. (1 + γp+1∆p+1)

(1 + γp+1∆p+1)

}∣∣∣∣∣
≤ ∆p+1

{∣∣∣ε(E (tp)− Ẽp+1

)∣∣∣+ |εE (tp) γp+1∆p+1|+ |I (tp) (γp+1 − γp)|+ |I (tp) γp+1∆p+1|
}

≤ ∆p+1

∣∣∣ε(E (tp)− Ẽp+1

)∣∣∣+ εγmaxN∆2
p+1 + ∆p+1 |I (tp) (γp+1 − γp)|+Nγmax∆

2
p+1

≤ ∆p+1

∣∣∣ε(E (tp)− Ẽp+1

)∣∣∣+ εγmaxN∆2
p+1 + ∆2

p+1N
∣∣∣∣∣∣γ′

(t)
∣∣∣∣∣∣
∞

+Nγmax∆
2
p+1.

(3.13)

We now plugin, Ẽp+1 =
E (tp) + λp+1S̃p+1Ĩp + 1∆p+1

1 + ε∆p+1

into Equation 3.13, and
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obtain

II,1

≤ ∆p+1 |∆p+1εE (tp)|+ ∆p+1

∣∣∣λp+1S̃p+1Ĩp+1∆p+1

∣∣∣
+ εγmaxN∆2

p+1 + ∆2
p+1N

∣∣∣∣∣∣γ′
(t)
∣∣∣∣∣∣
∞

+Nγmax∆
2
p+1

= Nε∆2
p+1 + λmaxN

2∆2
p+1 + εγmaxN∆2

p+1 + ∆2
p+1N

∣∣∣∣∣∣γ′
(t)
∣∣∣∣∣∣
∞

+Nγmax∆
2
p+1

= N∆2
p+1 (ε+ γmax + εγmax) + λmaxN

2∆2
p+1 + ∆2

p+1N
∣∣∣∣∣∣γ′

(t)
∣∣∣∣∣∣
∞
.

(3.14)

Thus,∣∣∣I (tp+1)− Ĩp+1

∣∣∣
≤

∆2
p+1

2

∣∣∣∣∣∣I ′′
(t)
∣∣∣∣∣∣
∞

+ ∆2
p+1N

∣∣∣∣∣∣γ′
(t)
∣∣∣∣∣∣
∞

+N∆2
p+1 (ε+ γmax + εγmax) + λmaxN

2∆2
p+1

(3.15)

Define Cloc,I :=
1

2

∣∣∣∣I ′′
(t)
∣∣∣∣
∞ + N

∣∣∣∣γ′
(t)
∣∣∣∣
∞ + N (ε+ γmax + εγmax) + λmaxN

2.

Thus, ∣∣∣I (tp+1)− Ĩp+1

∣∣∣ ≤ ∆2
p+1Cloc,I. (3.16)

4. Finally, we estimate the difference in R between the two models. We note that,

R̃p+1 = Rp + γp+1Ĩj+1 (tp+1 − tp) = Rp + γp+1Ĩp+1∆p+1.
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Hence,∣∣∣R (tp+1)− R̃p+1

∣∣∣
=
∣∣∣R (tp+1)−R (tp)− γp+1Ĩp+1∆p+1

∣∣∣
=

∣∣∣∣∣
∫ tp+1

tp

R
′
(τ) dτ − γp+1Ĩp+1∆p+1

∣∣∣∣∣
≤

∣∣∣∣∣
∫ tp+1

tp

R
′
(τ) dτ −R′

(tp) ∆p+1

∣∣∣∣∣+
∣∣∣R′

(tp) ∆p+1 − γp+1Ĩp+1∆p+1

∣∣∣
≤

∆2
p+1

2

∣∣∣∣∣∣R′′
(t)
∣∣∣∣∣∣
∞

+
∣∣∣R′

(tp) ∆p+1 − γp+1Ĩp+1∆p+1

∣∣∣ . (3.17)

Define IR,1 :=
∣∣∣R′

(tp) ∆p+1 − γp+1Ĩp+1∆p+1

∣∣∣ and plugin R
′
(tp) = γpI (tp) and

Ĩp+1 =
I (tp) + εẼp+1∆p+1

(1 + γp+1∆p+1)
to obtain,

IR,1

=
∣∣∣γpI (tp))∆p+1 − γp+1Ĩp+1∆p+1

∣∣∣
= ∆p+1

∣∣∣γpI (tp)− γp+1Ĩp+1

∣∣∣
= ∆p+1

∣∣∣∣∣γpI (tp)− γp+1
I (tp) + εẼp+1∆p+1

(1 + γp+1∆p+1)

∣∣∣∣∣
≤ ∆p+1 |γpI (tp)− γp+1I (tp)|+ ∆2

p+1 |γpγp+1I (tp)|+ ∆2
p+1

∣∣∣ε γp+1Ẽp+1

∣∣∣
≤ ∆2

p+1N
∣∣∣∣∣∣γ′

(t)
∣∣∣∣∣∣
∞

+ ∆2
p+1Nγ

2
max + ∆2

p+1Nε γmax.

(3.18)
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Thus,∣∣∣R (tp+1)− R̃p+1

∣∣∣
≤

∆2
p+1

2

∣∣∣∣∣∣R′′
(t)
∣∣∣∣∣∣
∞

+ ∆2
p+1N

∣∣∣∣∣∣γ′
(t)
∣∣∣∣∣∣
∞

+ ∆2
p+1Nγ

2
max + ∆2

p+1Nε γmax

=
∆2
p+1

2

∣∣∣∣∣∣R′′
(t)
∣∣∣∣∣∣
∞

+ ∆2
p+1N

∣∣∣∣∣∣γ′
(t)
∣∣∣∣∣∣
∞

+ ∆2
p+1N

(
γ2
max + ε γmax

)
. (3.19)

Define Cloc,R :=
1

2

∣∣∣∣R′′
(t)
∣∣∣∣
∞ +N

∣∣∣∣γ′
(t)
∣∣∣∣
∞ +N (γ2

max + ε γmax).

Thus, ∣∣∣R (tp+1)− R̃p+1

∣∣∣ ≤ ∆2
p+1Cloc,R (3.20)

Now define Cloc := max {Cloc,S, Cloc,E, Cloc,I, Cloc,R}.

Then it holds that,

||z (tp+1)− z̃p+1||∞ ≤ Cloc .∆
2
p+1 (3.21)

for local errors in time intervals, [tp, tp+1]. If the same assumptions are valid, the

difference between the time continuous and time discrete solutions can be determined

in the same way for the SEIR model with vaccination.

3.1.1 Error due to approximation

We now proceed to modify Theorem 3.26 ?? to account for the errors from the discrete

solution, Sp, Ep, Ip, Rp not coinciding exactly with the time-continuous solution. We

therefore examine how the procedural errors such as S (tp)−Sp, E (tp)−Ep, I (tp)−Ip,

R (tp)−Rp propagate to the next step in time.

From Theorem 2.19 , Equation 61, we see that,

zp+1 − z (tp+1) = zp − z (tp) + ∆p+1. {G (tp+1, zp+1)−G (tp+1, z (tp))} holds.

This implies,
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||zp+1 − z (tp+1)||∞ ≤ ||zp − z (tp)||∞+∆p+1. ||G (tp+1, zp+1)−G (tp+1, z (tp))||∞ holds.

We now proceed to estimate, ||G (tp+1, zp+1)−G (tp+1, z (tp))||∞.

||G (tp+1, zp+1)−G (tp+1, z (tp))||∞

=

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣


λp+1 {S (tp+1) I (tp+1)− Sp+1Ip+1}
λp+1 {S (tp+1) I (tp+1)− Sp+1Ip+1}+ ε {Ep+1 − E (tp+1)}

ε {Ep+1 − E (tp+1)}+ γp+1 {Ip+1 − I (tp+1)}
γp+1 {Ip+1 − I (tp+1)}


∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
∞

≤

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣


λp+1

{
||Ip+1 − I (tp+1)||∞ + ||Sp+1 − S (tp+1)||∞

}
λp+1

{
||Ip+1 − I (tp+1)||∞ + ||Sp+1 − S (tp+1)||∞

}
+ ε
{
||Ep+1 − E (tp+1)||∞

}
ε
{
||Ep+1 − E (tp+1)||∞

}
+ γp+1

∣∣|{Ip+1 − I (tp+1)||∞
}

γp+1

∣∣|{Ip+1 − I (tp+1)||∞
}


∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
∞

≤ 2. (λmax + γmax + ε) ||zp+1 − z (tp+1)||∞ . (3.22)

This implies that,

||zp+1 − z (tp+1)||∞ ≤ zp − z (tp) + ∆p+1.2. (λmax + γmax + ε) ||zp+1 − z (tp+1)||∞.

Hence, we conclude that,

||zp+1 − z (tp+1)||∞ ≤
1

1− 2. (λmax + γmax + ε) ∆
||zp − z (tp)||∞.

with ∆ := maxp∈{1,··· ,M−1}∆p+1 <
1

4. (λmax + γmax + ε)
, by assumption.

Next we want to modify the upper error bound between the time discrete and time

continuous solutions. We state the modified theorem here,

Theorem 3.25 [2] If the assumptions given above are satisfied by the SEIR model,

and including the differences between the actual value and the approximating func-

tions, the difference between the solutions of the continuous problem formulation and
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the time discrete problem formulation satisfies ,

||z (tp+1)− z̃p+1||∞ ≤ Cloc .∆.

{(
1

1− 2. (λmax + γmax + ε) ∆

)p
− 1

}
. (3.23)

We use Mathematical Induction to prove the theorem. At first we find that,

||z2 − z (t2)||∞ ≤ ||z2 − z̃ (t2)||∞ + ||z̃ (t2)− z (t2)||∞

≤ 1

1− 2. (λmax + γmax + ε) ∆
||z1 − z (t1)||∞ + Cloc .∆

2 = Cloc .∆
2.

holds for p = 1 , by the assumption that the initial conditions coincide for the time

discrete and time continuous models. For p = 2 , we obtain,

||z3 − z (t3)||∞ ≤ ||z3 − z̃ (t3)||∞ + ||z̃ (t3)− z (t3)||∞

≤ 1

1− 2. (λmax + γmax + ε) ∆
||z2 − z (t2)||∞ + Cloc .∆

2

≤ 1

1− 2. (λmax + γmax + ε) ∆
Cloc .∆

2 + Cloc .∆
2

= Cloc .∆
2.

{
j=3−2∑
j=0

(
1

1− 2. (λmax + γmax + ε) ∆

)j}
.

Now we assume that for arbitrary p ∈ {1, · · · ,M − 2} ,

||zp − z (tp)||∞ ≤ Cloc .∆
2.

{∑p−1
j=0

(
1

1− 2. (λmax + γmax + ε) ∆

)j}
is valid.
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This yields,

||zp+2 − z (tp+2)||∞ ≤ ||zp+2 − z̃ (tp+2)||∞ + ||z̃ (tp+2)− z (tp+2)||∞

≤ 1

1− 2. (λmax + γmax + ε) ∆
||zp+1 − z (tp+1)||∞ + Cloc .∆

2

≤ ∆2.

{
p−1∑
j=0

(
1

1− 2. (λmax + γmax + ε) ∆

)j}
+ Cloc .∆

2

≤ Cloc .∆
2.

{
1 +

p−1∑
j=0

(
1

1− 2. (λmax + γmax + ε) ∆

)j+1
}

= Cloc .∆
2.

{
p∑
j=0

(
1

1− 2. (λmax + γmax + ε) ∆

)j+1
}
.

We now apply the geometric series to the sum to obtain,

||zp+1 − z (tp+1)||∞ ≤ Cloc .∆
2.

{
p∑
j=0

(
1

1− 2. (λmax + γmax + ε) ∆

)j+1
}

= Cloc .∆
2 .

(
1

1− 2. (λmax + γmax + ε) ∆

)p
− 1(

1

1− 2. (λmax + γmax + ε) ∆

)
− 1

If we assume that ∆ <
1

4. (λmax + γmax + ε)
,

we may assume that,
∆

(1− 2. (λmax + γmax + ε) ∆)− 1
≤ 1 and hence it follows that,

||z (tp+1)− z̃p+1||∞ ≤ Cloc .∆.

{(
1

1− 2. (λmax + γmax + ε) ∆

)p
− 1

}
. (3.24)

Thus, our proof is complete.

We can similarly find the errors due to approximation for the time discrete SEIR

model with vaccination.
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3.2 Numerical Examples

3.2.1 Data Preprocessing

We obtain the real world data for a time interval j = 1 to j = M . We preprocess

the real world data and obtain the cumulative confirmed infected, susceptible and

recovered people as follows. For our examples we use the COVID-19 data published by

CDC and State of Tennessee The data of total cases , total death and total recovered

are obtained from [5]. Let {Ij}Mj=1 represent the cumulative number of confirmed

infected individuals, {Rj}Mj=1 the cumulative number of recovered individuals and

{Dj}Mj=1 the cumulative number of deaths. Let us represent the preprocessed data

by, S̃j, Ẽj, Ĩj, R̃j.

Table 1: Numerical Algorithm for Data preprocessing
Inputs -Population size N

-Cumulative confirmed cases sequence Ij
M
j=1

-Cumulative recovered individuals sequence Rj
M
j=1

-Cumulative number of deaths sequence Dj
M
j=1

-New confirmed cases sequence cj
M
j=1

-latent period n

Step 1 -Calculate Ẽj using equation 3.25 starting from day n+ 1.

Step 1 -Calculate R̃j ,Ĩj and S̃j using equation 3.26.

Outputs - Sequences {Ẽj}Mj=n , {R̃j}Mj=n , {Ĩj}Mj=n , {S̃j}Mj=n

To begin with we may assume the disease latency period to be n units of time.

Let ci be the number of new confirmed cases at time period i. We calculate the

cumulative number of individuals in the latent compartment E as follows,

Ẽj =

j∑
i=j−n

ci (3.25)
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Then,

R̃j = Rj +Dj

Ĩj = Ij − R̃j

S̃j = N − Ẽj − Ĩj − R̃j


(3.26)

The data we obtained is recorded every day. So the units of time in our case is

number of days.
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3.2.2 Calculating the time varying transmission and recovery coefficients

We now proceed to calculate the time varying transmission and recovery coefficients

from the real world data, using the implicit discrete form given by equations 2.70.

Assuming that S̃j+1 , Ĩj+1 6= 0, after the data preprocessing.

λ̃j+1 =

S̃j

S̃j+1

− 1

Ĩj+1 ∆tj
=

S̃j − S̃j+1

S̃j+1Ĩj+1 ∆tj
(3.27)

γ̃j+1 =
R̃j+1 − R̃j

Ĩj+1 ∆tj
(3.28)

Here the assumption is that the latent period input is converted into the same

units of time as the other sequences input. Also the time sequences are more granular

than the latent period.

We now present a numerical algorithm to calculate the sequences of transmission and

recovery coefficients from the preprocessed real world data.

The figures below show the transmission and recovery coefficients calculated from

real world data for Tennessee state from the data using the above given algorithm.

We have used the mean latent period, 5 days in these calculations. Since we are not

approximating these curves to any time continuous functions, we are using the data

directly in the next step.
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Table 2: Numerical Algorithm for Calculating the Coefficients

Inputs -Population size N
-Cumulative confirmed cases sequence Ij

M
j=1

-Cumulative recovered individuals sequence Rj
M
j=1

-Cumulative number of deaths sequence Dj
M
j=1

-New confirmed cases sequence cj
M
j=1

-latent period n
Step 1 -Calculate all ∆j+1 = tj+1 − tj for j ∈ {1, · · · ,M}
Step 2 -Use the previous algorithm to calculate the sequences, Ẽj , R̃j ,Ĩj and S̃j
Step 4 -Calculate λ̃j+1 ,γ̃j+1 using equations 3.27 and 3.28 for j ∈ {1, · · · ,M}

Outputs - Sequences {λ̃j}Mj=2 , {γ̃j}Mj=2
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Figure 1: Transmission coefficient - calculated from data
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Figure 2: Recovery coefficient - calculated from data
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3.2.3 Time discrete implicit SEIR form

We have added here plots below are for data from the Tennessee state [5] and from

the Michigan state [6].

We use the sequences of coefficients and the preprocessed data from above sections

in the time discrete implicit SEIR scheme given by equations 2.70. Here we give the

numerical algorithm implement this scheme.

Table 3: Numerical Algorithm for Time discrete implicit SEIR model
Inputs -Population size N

- Initial values S0 = Sn, E0 = En, I0 = I0, R0 = In
- The sequences, λ̃j ,γ̃j
- Latency period n

Step 1 - Calculate all ∆j+1 = tj+1 − tj for j ∈ {n, · · · ,M}
Step 2 - Compute Ij+1 using the preprocessed data and equations

2.37, 2.38 and 2.39 for j ∈ {n, · · · ,M − 1}
Step 4 - Compute Sj+1 , Ej+1 and Rj+1 using equation 2.34
Outputs - Sequences {Sj}Mj=n, {Ej}Mj=n, {Ij}Mj=n, {Rj}Mj=n
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Figure 3: Real world data and time discrete implicit form calculated infected population
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Figure 4: Real world data and time discrete implicit form calculated recovered population
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Figure 5: Real world data and time discrete implicit form calculated infected population for

Michigan
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Figure 6: Real world data and time discrete implicit form calculated recovered population

for Michigan
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3.2.4 Calculation of basic reproduction number

We can numerically calculate the time discrete basic reproduction number R0 (tj)

readily from equation 2.76. Here we plot the time discrete basic reproduction number

versus time.
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Figure 7: Basic reproduction number - calculated from data - Tennessee
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Figure 8: Basic reproduction number - calculated from data - Michigan
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CHAPTER 4

CONCLUSIONS AND FUTURE WORK

In the previous chapters we studied different mathematical models for epidemics. We

arrived at some conclusions about the long time behavior of epidemic diseases. In

this chapter we list the most important biological conclusions and also make further

conclusions about the models and describe how the models are modified to suit various

scenarios. We also list the future work that can be done in this area of discrete models.

The most important concept introduced in this thesis following [2] is that the

time discrete implicit form of the differential equations representing the mathematical

model can be used to understand the behavior of the disease with better accuracy.

We also find the concept of coefficients being time dependent functions from [2]. We

have developed the theory of an SEIR model and an SEIR model with vaccination

introduced.

We have made the following biological conclusions about an epidemic in Chapter

2 , based on the long time behavior of the solutions.

1. Some number of susceptibles always escape the infection at the end of the

epidemic.

2. The epidemic ends not because the suseptibles are exhausted.

3. The disease eventually dies out and the infectious population tends to zero after

a long period of time.

4. The epidemic first rises, then declines after reaching the maximum.

We also estimated the basic reproduction number for the disease. From the model

with vaccination, we concluded that, vaccination can reduce the number of suscep-

tibles but not stop the infection as long as there are infectious individuals. We con-

cluded that when more individuals are quarantined than exposed to infection, there

will be no outbreak.
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We developed the numerical algorithms that works on the published data and

plot the curves to compare the actual data to that predicted by the implicit discrete

SEIR model. Thus, using the model we can answer many questions that are usually

expected to be answered from the mathematical models about the time line of the

disease.

4.1 Future Work

It should be noted that we have depended on the actual data of the transmission

and recovery coefficient and have not approximated the data to a mathematical func-

tion. The first important future work is to approximate the coefficients by Parameter

Estimation [2] , [1].

We have also not developed the numerical algorithms for the models with vacci-

nation or quarantine . We could study the conditions for outbreak [3] in detail for

each model in detail. We could also try to answer the questions about the rate of

vaccinations required and effectiveness of quarantine by developing the corresponding

numerical algorithms for the models.

There are also more complex time continuous or piece-wise models involving the

incubation period [8] denoting the asymptomatic infections used for COVID-19. How-

ever in most cases, the change of population is ignored since the change in population

is negligible compared to total population. However we could still develop the theory

of a model with change in population which could be applied when the change of

population is comparable to total population.
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