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ABSTRACT

Carbonyl compounds are important to study because of their biological and industrial

significance. A database of critical point descriptors for valence-shell charge concentrations

and depletions of carbon atoms in a range of aldehydes, ketones, imides, and amides has

been created. For each critical point, the database contains data related to the probability

distribution of electrons (value of the total electron density, ρ , at bond critical points which

have been correlated with bond strength). This includes, data related to the curvature of ρ at

maxima and minima in carbon’s valence shell of charge concentration (VSCC) (∇2ρ(r) and

Hessian eigen values, which have been correlated with chemical reactivity). For both types

of critical points, radii from the enveloped carbon nucleus are included in the database.

Artificial neural networks (ANNs) are strong tools for predicting nonlinear functions,

and they are used in this study to both leverage charge density-based descriptors and learn

about their relative chemical significance. An ANN prediction scheme was developed for

the spectroscopic properties and interaction energies of carbonyl compounds, based on the

topological properties of electron density obtained from QTAIM (The input data necessary

for training and testing the proposed ANN scheme was data obtained from Quantum Theory

of Atoms In Molecules.). In 2009, Balabin and Lomakina [1] used three-layer feed-forward

artificial neural networks, with back propagation, to predict density functional theory (DFT)

energies that are comparable to those obtained with large basis set using lower-level energy

values as training data. These studies, and others, indicate that data-mining techniques, used

in conjunction with artificial neural networks, can be productively applied in the prediction

of properties that would otherwise be computationally expensive and time-consuming to

calculate.

For our study, we have selected 225 small systems of carbonyl group-containing

molecules as a training set, with each molecule containing 18 bond critical point descriptors

and 30 Laplacian critical point descriptors. These properties were used to train ANN for
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predicting C=O stretching frequencies and 13C chemical shifts. Additional properties, such

as intermolecular interaction energies with nucleophiles are also estimated. Predictions are

made using the Laplacian critical point data, as well as the bond critical point data, both

separately and combined. The study was carried out using the leave-one-out cross

validation method. Expected Mean Absolute Percent Errors (MAPE) and Mean Absolute

Errors (MAE) are compared between these three data sets. The calculated MAPE for neural

network predictions of 13C shifts and C=O stretching frequencies are 1.38, 0.53. MAEs for

neural network predictions of covalent and van der Waals interaction energies are 3.44

kcal/mol and 4.78 kcal/mol. Here, all molecular wave functions have been generated using

Gaussian 09 [2], and electron density analysis is done using programs AIMAll [3] and

DenProp [4].

For the stretch-test we chose the E. coli. enzyme D-fructose-6-phosphate aldolase (FSA)

[5], which catalyzes a nucleophilic addition reaction of a carbon nucleophile (ketone) to a

carbon electrophile (aldehyde). The covalent interaction energy between a nucleophile and

an electrophile within the binding pocket of an enzyme (FSA) is predicted by our ANN

with an absolute error of 3.2 kcal/mol.
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CHAPTER 1

Introduction

Chemists have been trying to develop more and more realistic and valuable models of

atoms and molecules for centuries. In the early 1800s, Dalton described atoms as tiny,

inseparable, indestructible particles which have certain mass, size, and chemical behavior.

Later, J. J. Thompson determined that atoms are composed of spheres of evenly distributed

positive and negative charges. This became popular as the “plum pudding” model of the

atom.

Rutherford, Bohr, Schrödinger, and others extended and enhanced the earlier models to

give us our current working model of the atom. The noticeable point is that models change

and progress over time. Today we have a wide collection of molecular models available to

mimic and study the processes and interactions that take place at atomic level. Due to

advances in computer and software technologies over the last few decades, computational

chemists routinely perform formerly unattainable simulations. Computer technology also

enables advanced data analysis approaches to be used, and facilitates visualization methods

that greatly enhance our understanding of the chemical world.

Chemistry permeates every aspect of our life, from the advancement of new drugs, to

the food that we eat, and materials we use on a day-to-day basis. Chemistry depend on

empirical information based on creative and strenuous experimentation that leads to

discoveries of compounds and materials with the desired properties as well as evermore

efficient methods to synthesize them. Many innovations in chemistry are guided by

searching huge databases of computational or experimental molecular structures and

properties by using ideas based on chemical similarity [6]. The structure and properties of

molecules can be obtained from quantum mechanics. So, chemical discovery should be

based on fundamental quantum principles. Indeed, quantum-mechanical calculations and

machine-learning (ML) have currently been merged and are aiming towards the goal of
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sped-up discovery of chemicals with desired properties [7, 8, 9].

The motivation behind our study is to explore the use of ML methods to maximally

leverage high-resolution topological information of molecular fragments to efficiently and

accurately model arbitrarily complex chemical systems. In order to prove this principle,

small chemical systems containing carbonyl compounds have been selected as a training set.

An additional enzyme active site has been modeled with a cluster and used as a

biomolecular application test. Carbonyl compounds were chosen for our study because of

their biological importance, as the carbonyl group is present in all amino acids, nucleic

acids, natural esters, reducing sugars etc. [10, 11, 12]. The probability of finding a carbonyl

group in a binding site in protein-ligand interaction studies is also high [13].

In this study, we attempt to predict chemical properties of a test molecule by utilizing

the knowledge of chemical information (training data) for similar molecules. This can be

achieved using ML algorithms [14]. Specifically, artificial neural networks (ANN) possess

this capability [15]. The chemical properties and biological activity of compounds can be

studied using their molecular and electronic structure information derived from

quantum-mechanical calculations. We postulate that useful predictions of chemical

properties can be made efficiently based only on the electronic structure represented by a

small number of variables containing condensed chemical information obtained from the

theory of Quantum Theory of Atoms in Molecules (QTAIM) developed by Prof. Richard F.

W. Bader et al. [16].

1.1 Background of Machine-Learning in Molecular Modeling

A much-quoted description of ML by Arthur Samuel in 1959 is “it is a field of study

that gives computers the ability to learn without being explicitly programmed ” [17]. ML

systems are those which learn from data to build a model, and that model is then applied for

further studies. Instead of being particularly programmed to solve a unique problem, these
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algorithms depend on given data to produce statements about new data. The simplest

example for a ML algorithm would be regression: based on finite number of examples, a

function is inferred which enables predictions for new samples.

ML is commonly categorized into four types: supervised, semi-supervised,

unsupervised, and reinforcement learning [14]. Although all ML types have been applied in

chemical research, supervised learning has so far been used most frequently [14], and we

have also used supervised algorithms in our study. This popularity may be due to its

heuristic and intuitive approach to learning, which is similar to scientist’s way of gaining

insights into structure-property relationships. In supervised prediction model, examples are

pairs of input x and label y, for example molecules and their energy and the task is to

predict the label of new examples, that is, to learn the function f:x → y. If x and y are

continuous variables, the mapping is a regression; if they are discrete, then it is a

classification [14]. To train and optimize model f, we can utilize a large group of supervised

ML algorithms to approximate the output value for a given input. There are many ML

algorithms exist, however the ones utilized most frequently in the cheminformatics belong

to two large families, kernel-based ML [18] and ANN [19].

ML has been successfully employed in a wide variety of fields, including recommender

systems [20], brain computer interfaces [21], robotics [22], web searching [23], spam filters

[24], credit scoring [25], stock trading [26], drug design [27], cheminformatics [28], speech

recognition [29], image recognition [30], and many other applications. In a similar manner,

the application of data mining and machine-learning tools in different fields of science,

especially in many branches of theoretical and computational chemistry, has been emerging

in the last few years (for reviews, see Refs. [7, 14, 31, 32]).

The concept of “chemical space” proposes a representation of the molecules and their

properties in form of a geographical map [33]. And this theoretically possible chemical

space is astronomically vast. To get such a map, one initially creates a property space by
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assigning dimensions to series of molecular descriptors. Each molecule is placed in this

multidimensional property space utilizing the descriptor values as positional coordinates, as

first presented by Pearlman and Smith [34]. A huge number of various molecular

descriptors exist, and any combination of these descriptors might be chosen to create a

property space formally having tens to hundreds of different dimensions, from which a

chemical space can be derived. Given some molecule, represented by its number of

electrons and set of nuclei at their equilibrium geometries, one can commonly predict its

observable properties using ab initio quantum chemical methods such as CCSD(T) in a

sufficiently large basis. This is possible for small molecules, and density functional theory

(DFT) can be used even though it is less reliable for larger ones. But even DFT is not fast

enough to search the entire chemical compound space, the size of which increases in

combination with the number of atoms and distinct elements. Hence, a significant problem

is to search chemical compound space to find new drugs with desired functionalities.

The fundamental property of a molecule is its ground-state energy. In addition, there are

also many interesting properties at the ground-state configuration, for example, ionization

potentials, dipole moments, and vibrational frequencies. Some of these properties can be

extracted from the same electronic structure calculation from which the molecule’s energy

was obtained, while others need some extra computation. Given the impossibility of

computing desired properties of all possible molecules, it is interesting to inquire whether a

ML algorithm trained on known examples can be used to predict the properties of all

possible molecules at significantly lower computational cost [35]. Provided that this is true,

chemical compound space can be searched orders of magnitude faster. Various groups are

therefore formulating procedures to do this.

For example, Rupp and co-workers [7] successfully developed a ML model based on

nonlinear statistical regression for the prediction of atomization energies of organic

molecules. The atomization energy is an important molecular property which gives
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information on the stability of a molecule with respect to the atoms that constitute it. These

energy values can be obtained experimentally [36], or by using computational methods [37].

The molecules considered for their study were obtained from a generated database (GDB), a

library which contains 109 stable and synthetically accessible organic molecules. To build

their model, a subset containing 7165 small organic molecules was obtained from the GDB,

each contained up to seven “heavy” atoms that include C, N, O, or S, and were all saturated

with hydrogen atoms. Each molecule was represented in the form of a matrix, which

contains information of atomic coordinates and nuclear charges, called the Coulomb matrix.

The mean absolute errors (MAE) were found to be reduced from 17 kcal/mol to 10 kcal/mol

when they increased the size of the training set from 500 to 7000 molecules. They found

that training on information from 15% of the molecules allows predictions for the remaining

85% with an accuracy of approximately 15 kcal/mol. The best result in their work was

getting errors close to ≈ 10 kcal/mol without doing quantum- mechanical calculations.

Their method by-passed solving the Schrödinger equation and reduced calculation time by

several orders of magnitude to only several seconds per molecule.

A subsequent publication from Hansen et al. [31], studied atomization energies of

molecules in their ground-state equilibrium geometry. In this study, they tried to improve

the ML prediction accuracies of atomization energies using more precise and suitable ML

approaches compared to the one explored by Rupp et al. As in Rupp et al., this group used

the same dataset containing 7165 molecules represented in the form of the Coulomb matrix.

In order to apply ML, a molecule’s structural information needs to be represented in an

appropriate form, a vector of numbers. Hansen et al. encountered two difficulties while

doing the vectorial representation of structural information. First, the dimensionalities of

the Coulomb matrices are different from molecule to molecule due to changes in the

number of atoms present in each molecule. The second issue was that there is no particular

ordering of atoms in the Coulomb matrix. Therefore, one can obtain many different
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Coulomb matrices for the same molecule, while the energies of these configurations remain

the same. To solve the first problem, each matrix was padded with zeros, which made the

size of Coulomb matrices of all the molecules equal. To overcome the second problem, they

investigated three representations derived from the Coulomb matrix, and these

representations included eigen-spectrum representation, sorted Coulomb matrices, and

randomly sorted Coulomb matrices.

In the eigen-spectrum representation, each molecule was encoded as a vector of

eigenvalues which is invariant in terms of permutations of rows and columns of the matrix.

It also reduced the dimensionality of the matrix. In sorted Coulomb matrices, a unique

ordering of the atoms was done by rearranging the matrix in such a way that the rows of the

matrix were ordered based on their norm. They have used Eucledian L2- norm, in which the

square root of the sum of the squared vectors is calculated. To generate randomly sorted

training data, the Coulomb matrix was constructed based on a random ordering of the atoms

with a vector containing the norm of each row. ML algorithms were trained on the three

kinds of datasets mentioned above to predict atomization energies. Their results indicated

that the prediction performance was influenced by the representation of a molecule. Among

these three representations of molecular data, randomly sorted Coulomb matrices reduced

the prediction error from 10 kcal/mol to 3 kcal/mol.

In 2013, Montavon and Rupp developed a ML model that simultaneously predicts a

variety of molecular electronic properties from a single query [38]. The predicted properties

include atomization energy, polarizability, ionization potential, electron affinity, and

excitation energies. In their model, an artificial neural network was trained on a database of

ab initio calculation results for 7000 stable small organic molecules. Once the neural

network had been trained, the prediction of properties for a molecule was made in

approximately 100 milliseconds rather than spending hours or days for making reliable

quantum-chemical computations. They also observed a systematic reduction of errors
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correlating with an increase in training set size. There are several examples of

machine-learning applications in the approximation of Gibbs energies of formation [39],

ionization energies [40], electron affinities [41], and many other properties such as

biological properties [42], and chromatographic properties [43].

Applying ML algorithms in the field of computer-aided drug design has a long history

[44, 28], notably in quantitative structure-activity relationship (QSAR) applications [45]. In

QSAR, the biological activity of a compound is predicted as output using various physical,

chemical, and topological properties as input data. In the early 2000s, the literature shows

that a wide variety of descriptors were used in QSAR analysis [46, 47, 48]. QSAR has

several different applications, namely toxicity prediction [49, 50, 51], physical property

prediction, biological activity prediction, antiviral activity prediction, and inhibitor

predictions for cancer treatment [52].

Patra et al. [53], used ANN to develop a QSAR model which was then used to predict

new potent drug candidates for diabetes mellitus. In the case of diabetes mellitus, chronic

formation of cataracts is possible and it is important to inhibit the aldose reductase (AR)

enzyme in the presence of anti-oxidants. In our study, we have also chosen the E. Coli.

enzyme D-fructose-6-phosphate aldolase (FSA) as a proof-of-principle test which will be

explained in the Discussion section. They chose flavonoids for their study because of their

promising AR inhibitory effect and because they are also strong anti-oxidants. They tried to

predict the aldose reductase inhibition and strong anti-oxidant activities of flavonoids. In

their study, different flavonoids were used to train the network. The training data contained

two kinds of molecular descriptors, namely electronegativity (which is an empirical

parameter) and molar volume of functional groups, to find the biological activity of the

compounds. In contrast, our approach uses measurable or computed well-defined physical

properties to train ANNs. In general, an ANN contains one input layer, one or more hidden

layers, and an output layer [54]. Neurons in the input layer respond to training data that is



8

provided into the network and passes the weighted output to the hidden layer. The output

neurons receive the weighted output from the hidden layer and produces the final output of

the network. The predictions of the network can be improved by adjusting different

parameters [55]. More details regarding the architecture of ANN and different parameters

of the network will be discussed in Section 1.6. Patra et al. have done several experiments

by changing one of the parameters, specifically the number of neurons present in the hidden

layer, to yield better predictions. They found that better predictions were observed when

they used 8 hidden neurons. After studying 6561 compounds, they found 10 compounds

which exhibit both the AR inhibition and anti-oxidant effects. But, it was not confirmed

experimentally.

In 2007, Galicia et al. [56], tried to predict the anti-nociceptive activity of several

morphinan molecules (configurationally related to morphine) using QSAR analysis.

Different quantum chemical and structural descriptors, such as sum of atomic distances

between atoms of molecules, were used to model its biological activity. Initially, they used

multiple linear regression modeling to select the most relevant QSAR model and then

applied ANN to optimize the training results to improve the predicted results. A total of 37

compounds containing a total of 1488 molecular descriptors, which included quantum

chemistry descriptors, were used to train the model. Once the multiple linear regression

model was built, those were optimized using a feed-forward neural network.

From these studies, one overarching lesson is that it is very important to choose suitable

descriptors to represent a molecule in the best possible way to yield better predictions from

ML algorithms. A successful QSAR model predicts not only the biological activity of a

compound, but also gives information on what kind of properties (descriptors) were

important to build a better model. Our research will likewise shed light on whether bond

topological data or valence shell charge concentration (VSCC) topological data are more

predictive of the spectroscopic properties and interaction energies that we consider for
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carbonyl compounds. Both types of data are routinely calculated or measured, by numerous

groups around the world, without a clear understanding of which type of data is best suited

to different chemical situations.

Nantasenamat et al. [57], made a comparative investigation of three types of descriptors

in the predictions of spectral properties. They were the first group that tried to

computationally predict the spectral properties of green fluorescent protein (GFP), which is

an autofluorescent protein containing 238 amino acid residues obtained from the outer

dermal layer of the Pacific Northwest Jellyfish. Within the context of molecular orbital

theory, the absorption peaks result from an electronic transition between highest occupied

molecular orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO). This

electronic transition is accompanied by a charge transfer that leads to a change in the

electron density distribution. The authors used non-observable HOMO and LUMO energies

as training data in the predictions of the desired properties. Three software programs

namely RECON [58], E-DRAGON [59], and Spartan’04 [60] were used to produce

different descriptors accounting for electron densities, orbital energies, and quantum

chemical properties. The predictive ability of these three kinds of descriptors obtained from

these programs were evaluated by training the ANN using default network parameters.

After comparing their predictive performance, they concluded that the quantum chemical

descriptors produced by Spartan’04 gave better predictions.

Use of QTAIM descriptors in the construction of QSAR

In rational drug design, the property or biological activity of a compound is to be

predicted from the molecular structure. This has led the field of quantitative structure

activity/property relationship (QSAR/QSPR) to evolve new ways to encode chemical

structure for use with advanced chemometric and ML methods [61]. These methods should

create a model that is easy to understand. It is best accomplished by representing the 3D
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molecular structure in an efficient and unique way. Although a variety of descriptors have

been suggested to define molecules in a QSPR manner, it is important to select appropriate

kinds of descriptors that relate to the property being studied. In our study, the focus is on

investigation of the potential applicability of topological descriptors that are well-defined

within the Quantum Theory of Atoms In Molecules (QTAIM) [62] as training data to

predict chemical properties using ML algorithms. Previous research has shown the

successful applications of QTAIM descriptors in ML [63].

Alsberg et al. [64] was the earliest group to attempt a new approach called struQT to

represent the molecular structure using QTAIM descriptors for use in QSAR/QSPR

modeling. In this approach, each molecule was again represented in the form of a matrix,

but where each row contained bond critical point (BCP) information in terms of spatial and

electronic properties. Spatial properties include XYZ coordinates of the BCP, whereas the

electronic properties include the values of electron density, ρ , the Laplacian (∇2ρ), and the

ellipticity parameters. These parameters are those most commonly reported in the literature

to summarize the nature of the corresponding bond. For example, electron density at BCP

determines the bond order, the Laplacian of the electron density distinguishes two broad

classes of bonds (shared vs closed-shell interactions), and the ellipticity detects the σ or π

character of a bond. The applicability of this kind of new structure representation was tested

by Alsberg et al. to predict the wavelength (λmax) of the UV absorption maximum of the

first excitation for a set of anthocyanidin compounds. A total of 18 compounds were

considered in their study, among which three compounds were used as a validation set.

After performing partial least squares regression analysis, the model was applied on the

three unseen validation samples. The three mean absolute errors for validation samples

6’-Hydroxyflavylium, 4’-Dihydroxyflavylim, 5,7,3’,4’,5’-Tetrahydroxyflavylium are 43.9,

0.01, and 5.2 nm respectively. They pointed out that the first compound was an exceptional

case based on previous studies, due to which these errors were highly deviated.
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The molecular property pKa (−logKa) has several applications in different areas, such

as medicinal chemistry, biochemistry, pharmaceutical chemistry, and drug development

[65]. It is important to calculate these values to determine whether the drug molecule will

diffuse through the membranes and various physical barriers such as blood-brain barriers, or

not. Popelier and Chaudhry [66] developed a QSAR model using QTAIM descriptors to

estimate the pKa values of a set of aliphatic carboxylic acids, anilines and phenols. The

acid-ionization constants, Ka, of compounds are important in terms of determining their

pharmacokinetic properties such as protonation states of weak acids and bases at

physiological pH levels. Two QSAR models were constructed using the partial least squares

methods. The first model was based on topological descriptors and the second one was

based on bond lengths. Topological properties such as electron density, the Laplacian, and

ellipticity values evaluated at BCP were included in the descriptor matrix for each of the

acid, aniline, and phenol molecules. The second, empirical descriptor matrix was

constructed using equilibrium bond lengths. A set of 40 carboxylic acids, 36 anilines, and

19 phenols were used in this study. The best model was obtained when they used BCP

descriptors, as demonstrated by comparison of correlation coefficient (r2) and the

cross-validated correlation quotient (q2) values.

Predicting NMR Chemical Shifts

Buttingsrud et al. [67], investigated the ability of descriptors based on BCPs in the

electron density for predicting theoretically computed proton chemical shifts in a series of

substituted benzene compounds. Based on these compounds, four different datasets were

created with varying complexity. Datasets 1 and 2 were constructed with only either fluoro-

or chloro-substituted benzene compounds. Dataset 3 was prepared with both fluoro- and

chloro-substituted benzene rings. The final dataset was obtained by using benzene

compounds substituted with various electron-withdrawing and donating groups such as
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cyano, formyl, amino, hydroxy, methoxy, and methyl groups. The BCP values of electron

density, the Laplacian, and ellipticity were used as descriptors with a partial least square

regression to develop a QSPR model.

For each dataset, five different models were created based on the number of BCPs used

to generate the model. The simplest model was created using only the descriptors of a BCP

between the hydrogen atom of interest and the benzene ring. The next model included

BCPs connected to the carbon atom bonded to the studied hydrogen atom. Similarly, three

more models were built by including more bonds further away from the hydrogen atom.

These models were compared to determine whether the most local BCP information is

sufficient enough for accurate predictions, or if including more distant bonds is necessary.

The results were quantified by root mean squared error of prediction (RMSEP) and

cross-validated squared correlation coefficient (q2) values.

The simplest model for fluoro-substituted benzene compounds (dataset 1) gave good

predictions (q2 = 0.98) of chemical shifts. A very minor improvement in these results was

observed by including the additional BCPs to build the model. In chloro-substituted

compounds, the simplest model gave poor results (q2 = 0.1) and these results were

improved (q2 = 0.95) by including more BCPs. For dataset 3, better results (q2 = 0.7) were

observed when the simplest model was used and these were improved after adding more

critical points. Finally, the regression with the simplest model was (q2 = 0.91) improved

when they added more BCPs for complex dataset. These studies show the potential of using

BCP properties to accurately predict molecular properties, but also that the local properties

chosen were not sufficient to obtain the best predictions.

Use of QTAIM bond properties in the construction of QSPR

Buttingsrud et al. [68] tested the validity of using BCP properties-based descriptors for

building a reliable QSPR model to predict atomic polar tensors (a matrix of gradients of the
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molecular dipole moment). Several other studies also showed that the descriptors obtained

from QTAIM can be successfully used in the field of QSAR/QSPR. Popelier and coworkers

[69] developed a method called quantum topological molecular similarity (QTMS) that has

been tested for its capability of producing predictive QSAR models. This method starts with

the construction of a vector using properties determined at the BCPs. The properties include

the electron density at the BCP (ρBCP), three principal curvatures evaluated at the BCP

(λ1,λ2, and λ3), the Laplacian of ρBCP, bond ellipticity (ε), and the kinetic energy densities

(K(r),G(r)) at the BCP. The versatility of BCP descriptors has been demonstrated by its

ability to predict several physicochemical and pharmacological properties. For example,

QTMS descriptors were used for the prediction of hepatocyte toxicity of phenols [70],

prediction of basicities of 125 pyridine derivatives [71], prediction of toxicity of aromatic

aldehydes to the ecologically important species Tetrahymena pyriformis [72], the

ecotoxicological hazards of nitroaromatics to the species Saccharomyces cerevisiae [73],

and many more. To the best of our knowledge, no groups have yet investigated

QSAR/QSPR or ML approaches to predicting chemical reactivity using descriptors or

training data comprised of VSCC topological data (critical points in ∇2ρ).

Density Functional Theory (DFT)

The idea of using the electron density as the fundamental descriptor for electronic

structure calculations has its roots in 1927 with the theories of Thomas [74] and Fermi [75].

Yet it was not until 1964 that Hohenberg and Kohn provided the mathematical foundations

for using the electron density to replace the wavefunction as the main descriptor for a

system of electrons [76]. Their important results are outlined as two theorems that are the

foundation of DFT, and for which Walter Kohn received the Nobel prize in 1998 [77]. The

results from the Hohenberg-Kohn theorems are comparable to wavefunction theory results,

but with the electron density playing the prominent role instead of the wavefunction. From
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the computational point of view, the DFT emerges as a transformative method due to its

excellent balance of speed and accuracy. In addition, these methods offer great advantages

for large systems like polymers, proteins, etc... The number of publications on “density

functional theory” has been growing at an astonishing rate. These methods account for

about 90 percent of computational chemistry publications; from applications in biochemistry,

to materials science [78].

In recent years DFT has been widely used for investigating the chemical properties

of different kinds of molecules [79, 80, 81, 82]. In comparison to many other traditional

quantum-mechanical techniques, DFT-based calculations give very satisfactory results and

use less computational time. Kohn and Hohenberg [76] postulated the existence of a unique

functional which determines the ground state energy from the density, exactly. This theorem

was the foundation of DFT and launched a global search for the most accurate and general

purpose functional.

In a simplified form DFT methods divide the total electronic energy into separate terms

according to

E = ET +EV +EJ +EXC (1)

where ET is the kinetic energy for each electron, EV is the potential energy associated

with nucleus-electron attraction and nucleus-nucleus repulsion, EJ is the electron-electron

repulsion, and EXC is the exchange-correlation which corrects overestimation of electron-

electron repulsion. All four energy terms in Eq. (1), except for the nucleus-nucleus repulsion,

are functions of the electron density. The key success of DFT lies heavily on the formulation

of EXC, which is approximated by integrals including primarily the spin densities. The EXC

can be expressed as the sum of the two separate parts:

EXC = EX +EC (2)
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In Eq. (2), EX is the exchange energy corresponding to same-spin electron-electron

interactions and EC is the correlation energy corresponding to mixed-spin electron-electron

interactions. There are many forms of several functionals which have been developed and

implemented to analyze chemical properties of molecules [83]. Some functionals were

developed from fundamental quantum mechanics, and some were developed by fitting them

to experimental results. These distinct kinds of approaches are attributed to ab initio and

semiempirical DFT methods, respectively.

The selection of an appropriate exchange-correlation functional relies greatly upon the

system of interest and the availability of computational resources. These functionals are

divided into four general categories: local density approximation (LDA) [76, 84],

generalized gradient approximation (GGA) [85, 86, 87], meta-GGA [88], and hybrid

functionals [89]. Some of the commonly used functionals are B3LYP [86, 89], B3P86

[90, 86], and PW91 [91]. The B3LYP method utilizes a three-parameter formulation (3)

developed by Axel D. Becke (B) [85] combined with the correlation formula defined by

Lee, Yang, and Parr (LYP) [86, 89]. The B3LYP is called a hybrid [92] functional since it

combines Hartree-Fock exchange with one or more exchange and correlation functionals in

a weighted fashion. In this work B3LYP was chosen because hybrid functionals represent

the most frequently used approach, accounting for nearly 75% of all DFT functionals cited

in recent literature over the past 20 years.

1.2 Quantum Theory of Atoms in Molecules (QTAIM)

The Quantum Theory of Atoms In Molecules was pioneered by Richard Bader and

co-workers beginning in the early 1980s [93]. It continues to be developed and extended.

For over a century, the transferability of both atomic and functional group properties has

been experimentally confirmed [94]. In addition, the evidence that atoms and functional

groups act similarly from one molecule to another molecule has been serving in the
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advancement of chemistry [95]. Indeed, this is the underlying basis for the utility of the

Periodic Table and the organization of Organic Chemistry text books into chapters on the

different functional groups. However, it is necessary to define and understand an atom

within a molecule if we are to employ the Schrödinger equation or the quantum theories

described thus far. The QTAIM provides a solution, partitioning a molecular system into

constituent atoms, based on the electron density. A molecule can be divided into a set of

atoms using the topology of the electron density. Atomic properties, such as energy, dipole

moment and charge, can then be obtained by integrating their respective operators over the

atomic volumes. The resulting atomic properties can be added up to get the value of that

property for the whole system. The power of QTAIM is that it is possible to uniquely divide

any electronic property into individual atomic contributions [93].

One of the fundamental postulates of quantum mechanics is that the wavefunction (ψ) is

the central quantity, which contains all the dynamic information about a molecular system.

Analysis of the wavefunction is not always simple due to the high dimensionality when

treating a many-particle system. One property that can be obtained from the wavefunction

is the electron density, which forms the fundamental basis of the theory of atoms in

molecules in addition to its foundational role in DFT, the latter being limited to molecules

and isolated atoms. QTAIM provides proper definitions for valuable chemical entities such

as atoms, bonds, and functional groups. This theory is established around a quantum

observable, the electronic charge density. It evolved as a theory of molecular and condensed

phase electronic structure, in which inter-atomic surfaces are defined to be where the

gradient of electron density radiates outward from BCPs. These are called zero-flux

surfaces. Volumes defined by such surfaces are identified by properties that are well-defined

and additive. For example, the energy of a molecule is given by the sum of energies of

regions bounded by zero-flux surfaces. These distinct volumes partition the charge density

of a molecule into space-filling regions, each of which typically surrounds a single nucleus,
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which is often called the “topological atom” , or simply “atom” .

QTAIM is a powerful tool in the prediction of molecular properties and reactivity based

on their structures [62]. The central idea of the theory lies in the partitioning of electron

density, which can be determined experimentally using X-ray diffraction or calculated using

quantum mechanics [96]. The mathematical analysis of the electron density’s topology is an

important part of QTAIM and it can be conveniently described using its gradient vector field

and critical points [97]. The electron density, ρ(r), and its critical points provide complete

information of molecular structure and bonding [93]. The electron density can be analysed

in terms of the stationary points in its gradient field, (i.e. minima, maxima and saddle

points), which are called critical points. The gradient of the electron density is zero at such

points.

The characterisation of a critical point in the electron density distribution is done by

studying the Hessian matrix. The Hessian matrix is a 3x3 array of nine second derivatives

of ρ(r), which are evaluated at the critical point rc. The matrix is denoted by H(rc) and

written as:

H(rc) =


∂ 2ρ

∂x2
∂ 2ρ

∂x∂y
∂ 2ρ

∂x∂ z

∂ 2ρ

∂y∂x
∂ 2ρ

∂y2
∂ 2ρ

∂y∂ z

∂ 2ρ

∂ z∂x
∂ 2ρ

∂ z∂y
∂ 2ρ

∂ z2

 (3)

As the Hessian matrix is real and symmetric, it can be diagonalized to obtain the

associated eigenvalues and eigenvectors. The procedure of finding the eigenvectors defines

the axes of a new coordinate system where the off-diagonal elements of H(rc) are all zero.

We are only interested in critical points with non-zero eigenvalues. The associated matrix is

denoted by:
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H(rc) =


∂ 2ρ

∂x2 0 0

0 ∂ 2ρ

∂y2 0

0 0 ∂ 2ρ

∂ z2

=


λ1 0 0

0 λ2 0

0 0 λ3

 (4)

where λ1,λ2, and λ3 are the eigenvalues of the Hessian matrix.

The critical points are classified based on their rank (number of non-zero eigenvalues)

and signature (sum of the signs of eigenvalues) of non-zero eigenvalues of the Hessian

matrix evaluated at the critical point. The four types of stable critical points in ρ having

three non-zero eigenvalues are:

• (3,-3) = Nuclear attractor (NA), 3 negative curvatures: ρ is a local maximum,

• (3,-1) = Bond critical point (BCP), a saddle point: ρ is a maximum in two dimensions

and a minimum in one,

• (3, +3) = Cage critical point (CCP), ρ is a local minimum,

• (3, +1) = Ring critical point (RCP), a saddle point: ρ is a minimum in two dimensions

and a maximum in one.

BCPs are topologically well-defined points that play an important role in describing

the molecular structure. They establish the presence of bonding between the atoms via

either sharing of valence electrons, ionic, or van der Waals (non-covalent) interactions [98].

Previous studies have shown that the characteristics of a bond, such as bond order, bond

energy, and bond π character, can be obtained by studying several properties of the electron

density at the BCP [99, 100, 101]. The two broad classes of bonds can also be classified

based on the values of the Laplacian of the electron density at the BCP. For example, BCPs

with relatively high ρ(rc) values and a negative Laplacian value indicate a shared (covalent)

interaction, whereas BCPs with a relatively low ρ(rc) value, and a positive value indicate a

closed-shell (ionic, or van der Waals) interaction [100].
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In 1923 G. N. Lewis proposed a generalized theory of chemical bonding (an acid-base

theory) based on the behavior of electron pairs [102]. According to Lewis and related models

such as the Valence Shell Electron Pair Repulsion Model (VSEPR) [103, 104], there are

bonding and nonbonding pairs of electrons in the valence shell of an atom. The electrons in

the outermost shell of an atom are called valence electrons, and they are important to study

when characterizing the chemical properties of an atom. But these electron pairs cannot

be seen in the topology of the electron density. The desired properties can be obtained by

studying the information-rich and derived function of the electron density, the Laplacian

∇2ρ(r). In 1984, Bader, MacDougall, and Lau were the first to use topological properties

of the Laplacian in relation to models of electronic structure and chemical reactivity. This

led to a physical basis for the VSEPR model [105] as well as orbital models of chemical

reactivity. The Laplacian of the electron density can be written as:

∇
2
ρ =

∂ 2ρ

∂x2 +
∂ 2ρ

∂y2 +
∂ 2ρ

∂ z2 (5)

In general, the Laplacian of a function measures whether the function is locally

concentrated or depleted, which can be easily proved via finite difference formulae. Thus,

the Laplacian of a scalar field, such as the charge density, enables one to determine the

regions where the field is locally concentrated (∇2ρ(r) < 0) and depleted (∇2ρ(r) > 0).

Connections to the Lewis model of electron pairing was introduced into the QTAIM theory

through this property. The Laplacian of the charge density also recovers the electronic shell

structure of an isolated atom in terms of an alternating pairs of shells of charge

concentration followed by charge depletion [106, 107, 98].

The outermost shell of an atom is called valence shell and it is divided into two regions.

The inner region of the valence shell is the valence shell of charge concentration (VSCC),

whereas the outer region is called the valence shell of charge depletion (VSCD). For a free

atom, the VSCC contains a sphere over whose surface electronic charge is maximally and
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uniformly concentrated. This VSCC is distorted once an atom enters into chemical

combination with other atoms. The distorted shell of charge concentration has maxima,

minima, and saddle points. The maxima have been shown to correspond to the localized

pairs of electrons, which are assumed in the Lewis model [98, 108, 109].

Lewis extended the Brønsted-Lowry acid-base theory [110] and defined an acid as an

electron-pair acceptor (electrophile), and a base as an electron-pair donor (nucleophile).

The Laplacian, defined in terms of charge concentrations and depletions, can also predict

the sites of nucleophilic and electrophilic attack in a variety of systems [108]. These sites of

attack in a molecule correlate respectively with the sites of maximum charge concentration

and charge depletion in the VSCCs of reacting atoms. A local charge concentration

corresponds to a nucleophilic reactive site (Lewis base), whereas a charge depletion

corresponds to an electrophilic reactive site (Lewis acid). The Lewis model encompasses

many types of chemical reactivity through the concept of acid-base reactions. The trajectory

of Lewis acid-base reactions can also be predicted by aligning the local maxima (lumps) in

the VSCC of a base with the local minima (holes) in the VSCC of an acid [111]. Figure 1

shows a sample VSCC of carbonyl carbon of acetone.

Figure 1: The VSCC of carbonyl carbon of acetone
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During the late 1970s and 1980s, Burgi and Dunitz explained the principle of structure

correlation [111]. They collected as many structures as possible containing the structural

fragments of interest. Each structure provided a snapshot of the fragment in a specific

environment, and these were then ordered into a sequence corresponding to a gradual

deformation of the fragment corresponding roughly to evolution along a “reaction path”.

This method has been applied to map several reaction paths[111]. For example, from crystal

structures containing an amino nitrogen (nucleophile) in the proximity of a carbonyl group

(electrophile), they found that N approaches C=O at an average angle of 110◦ during a

simulated nucleophilic addition reaction. These observations were interpreted as implying a

preferred angle of approximately 110◦ for the approach of the nucleophilic nitrogen lone

pair to the electrophilic carbonyl carbon.

The full topology of the Laplacian is usually studied in terms of critical points to reveal

hidden features of electron density such as electron shells. As with BCPs, at each critical

point ∇(∇2ρ(r))=0, and they are defined by their rank and signature. The Laplacian also

has four kinds of non-degenerate critical points of the rank 3: maxima (3, -3), minima (3,

+3), and two types of saddle points (3, +1) and (3, -1). But now, since negative Laplacian

indicates concentration, (3,+3) and (3,-1) CPs correspond to maximum concentration (lumps)

and minimum concentration (holes) in the VSCC, respectively. The four types of stable

critical points in the Laplacian having three non-zero eigenvalues are:

• (3, +3) = local minimum, bonded and non-bonded charge concentrations,

• (3, +1) = a saddle point, linking charge concentrations by unique pair of gradient

paths,

• (3, -3) = local maximum, charge depletion, often seen in VSCDs, but absent in VSCCs.

• (3, -1) = a ring critical point, found at point of least charge concentration within a

VSCC.
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According to Bader et al. [105] (3, +1) critical points in -∇2ρ correspond to regions

of charge deficit on carbon atom and these critical points corresponds to the centers of

nucleophilic attack. They found that the carbonyl carbons in formaldehyde and acrolein

contain (3, +1) critical points, which form angles of 111 and 109◦ with the C=O bond axis.

Based on these topological features, they predicted that the carbonyl carbon is approached

by a nucleophile at angle of approximately 110◦ with the C=O bond axis, in excellent

agreement with the crystallographic studies of Burgi and Dunitz [111]. They also found the

same pattern of critical points in the valence-shell charge concentration of acetaldehyde.

Advantages of Using QTAIM Descriptors

In the development of new drugs, it is argued that better modeling can be accomplished

on the basis of well-defined physical descriptors [112]. The suggested descriptors should

have simple physicochemical interpretations and provide valuable physicochemical insight.

The descriptors derived from the topological analysis of the electron density which are

experimentally accessible scalar fields, fundamentally related to all molecular ground-state

properties. The electron density is an important property of atoms, molecules, and

condensed phases of matter. On the basis of DFT, Hohenberg-Kohn proposed a theorem

which is basically the reversal of Schrödinger’s statement: the ground-state charge density

maps to a unique ground-state wavefunction, from which one can recover the number of

electrons in the system (N), as well as external potential (Vext(r)), the potential of the

interaction between the electrons and nuclei. Since the ground-state wavefunction is

uniquely determined by the ground-state charge density, so are all observable properties of

the system, including the ground-state molecular energy. This study demonstrates how few

electron density descriptors can be used to predict spectroscopic properties and interaction

energies.

The idea of molecular similarity permeates much of medicinal chemistry, particularly in
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the conceptualization of new drug molecules[113]. The observations laid out earlier raise

the question of whether molecular similarity can be evaluated objectively. Similarity is a

relational concept that can only be formulated for a given quality or property, such as

molecular geometry, molecular weight and empirical formula. There is no shortage of

molecular similarity studies applied to various properties, whether amino acid sequences,

chemical 2D graphs, geometric superimpositions, or molecular electron density

superimpositions. But what approach captures the maximum extent of molecular similarity,

and why? Is the response to this inquiry is a function of the issue or is it universal? It is

argued in this work that the appropriate response is unique: the molecular electronic density

captures and determines all the properties of the molecule. In practice, however, the

functional relationship between the density and several properties is frequently unknown or

known only approximately. The properties derived from the topology of the electron density

hold much guarantee, as their choice eliminates a significant source of modeling uncertainty.

The properties derived from the electron density can produce strong correlations that can be

used to predict the properties of unknown compounds. At the same time, valuable

physicochemical insight is shown by these density-derived properties. The charge density

can also be obtained experimentally [114], and as evidenced by the success of DFT, it

contains necessary information embedded in it.

In general, it is possible to obtain valuable information not only from the properties of a

molecule as a whole, but also from the properties of an atom within that molecule [115].

This information helps researchers better understand the specific role an atom plays in that

molecule’s chemistry. The concept of studying the properties of a molecule based on the

properties of individual atoms within that molecule is one of the cornerstones of the

chemistry [116]. There are many different methods used to obtain the properties of a part of

a molecule, which often produce conflicting results. The reason is that they are based on

methods that apply arbitrary conditions to the partitioning of the molecular wavefunction.
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Researchers have no way to test the validity of the results obtained when using such

arbitrary methods. Fortunately, QTAIM provides new insights into the chemistry of atoms

by looking from a different perspective. This approach allows one to partition a molecular

property into its atomic contributions in a non-arbitrary manner, based on the physics of an

open system [93]. These principles can then be utilized by researchers to interpret observed

chemical behavior as a function of the individual atomic contributions.

With the ever-increasing quality of experimental data, more and finer details of the

electron density are observed using the most widely used Stewart–Hansen–Coppens

multipole model [117, 118]. The model also provides the means for observing a high

degree of atom transferability in similar chemical environments and for building

pseudoatom databases. Due to the transferability of atomic fragments, excellent agreement

with the measured density can be achieved by simple addition of fragment densities from

data bases such as Koritsanszky et al. [119].

1.3 Introduction to Aldehydes and Ketones

The carbonyl group (C=O) is among the most important functional groups in organic

chemistry due to its ubiquitous presence in natural products and its versatile reactivity [120].

If the carbonyl group is united with only hydrogens or carbon atoms, then the compounds

are known as aldehydes or ketones (Figure 2). In aldehydes, at least one hydrogen atom is

bonded to the carbonyl group and these are shown by the general formula RCHO. In

ketones, two carbon atoms bond to the carbonyl group and these are shown by the formula

RCOR’ (either or both R or R’ may be aliphatic or aromatic) [121].
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Figure 2: Structure of an aldehyde and ketone

Aldehydes and ketones have great importance in both biological chemistry (they are

found in proteins, carbohydrates, starch, and DNA) [122] and in synthetic organic chemistry

[123]. Carbonyl compounds contain a polarized reactive carbon-oxygen double bond which

creates a partial positive charge on the carbonyl carbon atom and a partial negative charge

on the oxygen atom. Due to this electron rich doubly bonded C=O group, the molecule is

able to participate in a variety of chemical reactions such as oxidation, reduction,

condensation, and addition reactions.

The carbonyl group acquires electrophilicity from both the resonance and inductive

effects [120]. One of the resonance structures in Figure 3 show a positive charge on the

carbon atom, indicating that the carbon atom is electron deficient. The inductive effect is an

electronic effect due to the polarization of sigma bonds within a molecule, which in turn is

due to the difference in electronegativity between the atoms. This effect also shows that the

carbon atom is deficient in electron density. As a result, this carbon atom is electrophilic in

nature and is susceptible to attack by a nucleophile (Nu). Figure 3 depicts all three effects.

O O

neutral form ylide formResonance

(A)

O

Induction

(B)

C
O

R R'
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C
O

R'

Nu

R

(C)

Figure 3: (A) Resonance effect, (B) Inductive effect, explicitly showing the bond polarity
with partial charges, (C) Nucleophilic addition
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The most important bioorganic reactions of carbohydrates, peptides, carboxylic acid

esters and anhydrides, acetals and hemiacetals, ketals and hemiketals, proteins, and lipids

involve nucleophilic addition to the C=O group [124]. In these reactions, the nucleophile

attacks positively polarized carbon atoms of the C=O group at an angle of approximately

110◦ to the plane of the carbonyl group and transforms sp2 hybridized C into sp3 C by

forming a tetrahedral carbon complex as product, transition-state, or intermediate [125]. As

a stretch test of our proposed ML model for predicting interaction energies, a nucleophilic

addition reaction of a carbon nucleophile (ketone) to a carbon electrophile (aldehyde),

catalyzed by an enzyme, is described later in the dissertation.

After analysing high-resolution crystal structures of small molecules, Bürgi, Dunitz and

Shefter [111] noted that the interaction occurs between nucleophiles and carbonyl groups

with a preference for attacking angles ranging from 102◦ to 114◦. Their work focused on

studying the addition reaction pathways of a nucleophile (O or N) to a carbonyl group.

Figure 4 demonstrates this angle of nucleophilic attack. The probability of addition will be

influenced by the angle of nucleophilic approach during an intermolecular interaction. In

general, aldehydes are more reactive compared to ketones toward nucleophilic attack, which

can be explained in terms of both steric and electronic effects.

Figure 4: The angle of nucleophilic attack on carbonyl group
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Steric effects. Ketones have two alkyl groups which contribute to steric hindrance in the

transition state. Whereas in aldehydes, the transition state is less crowded because of the

presence of only one alkyl group, and therefore has a lower energy barrier to addition.

Electronic effects. Alkyl groups are electron-donating groups. Ketones contain two alkyl

groups and thus can stabilize the ylide resonant structure’s positive charge on the carbon

atom of the carbonyl group. Whereas in aldehydes, the positive charge is less stabilized

compared to ketones since there is only one electron donating group.

Chemical Reactivity

The first theorem of Density Functional Theory (DFT) [76] states that “all properties of

all states are formally determined by the ground state charge density of a system” . Hence it

should be possible to locate where the electrophilic or nucleophilic attack will occur in a

molecule merely based on the ground state charge density distribution. Chemical reactivity

can also be studied based on the properties of the electronic charge distributions. We have

already briefly discussed how the Lewis and VSPER models were connected to the

properties of the local charge concentrations of the Laplacian distribution [108]. However,

the Lewis model encompasses chemical reactivity as well, through the concept of acid-base

reactions [126]. The positions of local charge concentrations and depletions that correspond

to sites of nucleophilic and electrophilic reactive sites, respectively, are identified as critical

points in the VSCC of the base and the acid. The alignment of a charge concentration on the

base with a charge depletion on the acid predicts the geometry of approach of the reactants.

This also enables one to predict the angle of nucleophilic attack. The location of holes in the

VSCC of a carbonyl carbon determines the position of nucleophilic attack at this atom

[108]. These geometric predictions are consistent with our studies of interaction energies

discussed later.
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1.4 Spectroscopic Properties of Aldehydes and Ketones

Aldehydes and ketones have unique IR (infrared) and NMR (nuclear magnetic resonance)

spectral properties. Sir William Herschel was one of the first scientists who observed infrared

radiation in the early 19th century [127]. However, it was only in the early 20th century

when chemists started taking advantage of this technique [128]. A common example of a

molecule with a carbonyl group is acetone, whose IR spectrum is shown in Figure 5. The

carbonyl stretching frequency is at 1716 cm−1, and is labeled as A in the figure.

Figure 5: The infrared spectrum of acetone

1.4.1 IR Spectroscopy

IR spectroscopy is one of the most widely used spectroscopic techniques for the

characterization of materials in different areas of research [129]. It became one of the

crucial interrogative tools in chemistry, physics, biology, and material sciences, whenever

structural characterization is of prime importance [130]. An interesting quality of IR

spectroscopy is ability to study samples in any state, such as powders, crystals, semicrystals,

liquids, pastes, films, fibers, and gases [131].
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IR spectroscopy is a widely used method in analytical chemistry for structural

characterization of molecules [132]. In many applications of IR spectroscopy, not only

qualitative but quantitative analysis is also needed, for example to determine the

concentration of molecular species. It has a wide range of applications from analyzing

small molecules to complex samples in various fields including pharmaceutical [133], food

[134], textile industries [135], biomedical research [136], forensic sciences [137], and

disease detection [138, 139]. It is based on the vibrations of the bonds in a molecule. IR

spectra are considered as molecular fingerprints since each molecule produces a unique

infrared spectrum. A characteristic absorbance frequency is observed for specific functional

groups. Carbonyl groups usually appear at about 1700 cm−1.

The exact position of the peak depends on the chemical environment of the C=O

functional group. The fluctuation of peak position, called a frequency shift [129], occurs

due to the gradual change in the vibrational frequencies of a chemical bond. For example,

conjugation of carbonyl group with more electronegative substituents tends to increase the

vibrational frequency to a higher energy value, a blue shift. Whereas substituents which

donate π electron density into the carbonyl group tend to lower the vibrational frequency to

a lower energy value, a red shift. Peak assignments of an IR spectrum to a specific carbonyl

functional group is not an easy task. Thus, IR spectroscopy must be combined with other

spectroscopic methods such as NMR spectroscopy (which we will also discuss in Section

1.4.2) to identify the differences between carbonyl functional groups [140].

The vibrational modes of a molecule are detected experimentally using infrared

spectroscopy. This helps in determining the molecular structure and environment. To

acquire such valuable information, it is essential to find out what vibrational motion belongs

to each peak in the spectrum. This process of assigning peaks is quite difficult because of

the vast number of closely spaced peaks observed even in simple molecules. To help this

process, theoretical calculations of vibrational frequencies are required, and these are
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mostly computed from quantum-mechanical calculations using the harmonic oscillator

approximation [141]. The harmonic oscillator approximation is extensively used for

calculating molecular vibrational frequencies because more accurate methods need very

large amounts of computational time.

Fundamentally, the harmonic vibrational frequencies ignore the effects of vibrational

anharmonicity, due to which the calculated frequencies tend to be 10% larger than the

experimental frequencies [142]. One possible solution to this problem can be using a

scaling factor [143], which brings theory into better agreement with experiment. Numerous

solutions have been recommended to adjust the calculated vibrational frequencies for better

agreement with experiment [144, 145]. These consist of rescaling all the computed

frequencies with a single scale factor [145], rescaling the high and low frequencies

individually with different scale factors [146], and rescaling the appropriate force constants

in the Hessian matrix [147]. Although scaling factors improve agreement in the

high-frequency region, they lead to higher differences between calculated and experiment

frequencies in the lower frequency region. Therefore, in our study we have chosen to use

the uncorrected harmonic frequencies from the ab initio calculations.

1.4.2 13C NMR Spectroscopy

The first NMR experiment was done by Rabi in early 1937 [148], and the first

application of NMR in bulk materials were performed, respectively, by the Purcell group on

paraffin [149]. Since then, 13C NMR spectroscopy has become an indispensable tool for all

areas of chemistry. The important role of this technique arises from the valuable

information that can be extracted, which spans both structure and dynamics [150]. In this

technique, the molecules are identified and characterized based on the chemical shifts in the

frequency of radiation emitted during transitions between spin states of the nuclei present in

the compound [151]. The basic information that one can obtain from NMR spectroscopy
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are chemical shifts, coupling constants, and relaxation rates [152]. The chemical

environment of a given nucleus can be determined by finding the values of chemical shifts

and coupling constants to other peaks. The comparison of computed chemical shifts with

experimentally-determined chemical shifts provides valuable information in deducing the

correct structure of an unknown compound [153]. In recent years, the theoretical calculation

of NMR properties significantly enhanced the experimental work [154]. Similarly,

comparison of a synthesized compound’s 13C NMR spectrum with a theoretically calculated

spectrum can reveal the success of the synthesis in synthetic organic chemistry [155].

In NMR spectroscopy, we use a quantity called the chemical shift, which is the change

of nuclear shielding of a target nucleus with respect to a reference nucleus [156]. For

example, tetramethylsilane (TMS) is used as a reference molecule in both 1H and 13C NMR

studies. In this case, the frequencies of nuclei in a spectrometer are obtained by comparing

and normalizing the frequencies against the frequency of TMS in the spectrometer [157].

Chemical shifts are determined and expressed relative to the reference molecule in the

dimensionless unit of parts-per-million (ppm). Normally, 13C NMR spectra are recorded

across the range of 0-210 ppm. The resonance of the single type of carbon-13 nucleus in

TMS appears at 0.0 ppm, which is used as the reference standard. The environment of the

resonating nucleus influences the frequency of the resonance. For example, electron

withdrawing groups move chemical shifts to higher frequency values (downfield shift),

whereas electron donation groups to lower frequency values (upfield shift) [157]. In 13C

NMR spectroscopy, carbonyl carbons of both aldehydes and ketones have characteristic

frequency shifts in the range of 190-200 ppm and 205-220 ppm, respectively.

In general, carbon chemical shifts can be estimated from large databases of compounds

with known chemical shifts [158]. For obtaining chemical shifts of a small molecule, there

are a few options that can be considered. These options include: finding a similar

compound with known chemical shifts from the database; deriving rules from chemical
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shifts of known compounds in the database with varying substituents; and training

machine-learning methods using known chemical shifts.

Predicted chemical spectra can be used in assisting the structural elucidation of an

unknown compound [159]. In a similar way, these spectra can be used to reduce the number

of structure verification experiments by filtering possible stereoisomers [160]. Another

application is the calculation of chemical properties such as LogP, which is a component of

Lipinski’s Rule of 5 used to predict drug-likeness of a compound based on predicted

chemical shifts [161]. In 1984, Kalchhauser and Robien introduced a computer program

called CSEARCH for the analysis of 13C NMR spectra [162]. This program predicts and

automatically assigns carbon chemical shifts. A database containing 8000 spectra was

created from the literature. Here chemical shifts are predicted based on the HOSE

(Hierarchical Organisation of Spherical Environments) code approach [163]. In this

approach, the program starts at the carbon atom whose chemical shift is to be predicted,

looks one bond away from this carbon and tries to search for this environment in the

database. If this is successful, then it moves to further atoms until it reaches the boundary of

the molecule.

Satoh et al. [164] introduced a 13C NMR chemical shift prediction system

CAST/CNMR. This system is based on a database containing 733 compounds and their

three-dimensional structural information, along with NMR chemical shift data. Chemical

shifts are predicted by comparing the structural information of a query molecule within the

database. In the prediction procedure, CAST/CNMR searches the database and finds

molecules having similar partial structures around the carbon of interest in the query

structure. The predicted shift is the average of all the 13C NMR shift values of the hit

molecules.
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Previously Used Methods in Predicting Chemical Shifts

Some widely used methods for predicting chemical shifts include empirical methods, ab

initio calculations, and machine-learning methods such as artificial neural networks

(ANNs).

Ab initio methods

Electronic structure calculations of magnetic behavior in molecules are present in the

literature dating back to 1937 [165]. In the early 1950s, Ramsey presented a series of

pioneering papers delineating equations used to compute NMR parameters [166]. Over the

following years, several methods to calculate NMR parameters evolved within the quantum

chemistry community which were of great interest to experimentalists [167, 168]. In

general, two major approaches are used for the calculations, which include

wavefunction-based methods and Density Functional Theory-based methods. Ab initio

calculations determine 13C NMR chemical shifts by computing magnetic properties of a

given substance. The gauge-including atomic orbital (GIAO) [154] method is one of the

commonly used approaches for calculating nuclear magnetic shielding tensors. It has been

proven in many instances that the results obtained by using GIAO were more accurate

compared to the ones calculated with other approaches [169]. DFT methods usually

produce good results at relatively low computational cost [170]. Due to this, DFT methods

have been used in the study of metal complexes [171], large organic compounds [172], and

organometallic compounds [173], where ab initio methods are cost-prohibitive.

In 2007, Bagno and Saielli [152] summarized computational work using the Amsterdam

Density Functional (ADF) suite [174] and Gaussian 03 [175] to find chemical shifts of

different chemical elements in various compounds. In 2002, Giampaolo et al. [176]

performed Hartree-Fock calculations of 13C NMR chemical shift of low-polarity

compounds. These calculations were used as a tool to support the structural interpretation



34

of NMR data of low-polarity natural products. In their method, GIAO-calculated chemical

shift values of optimized structures were used to draw linear correlation plots of calculated

versus experimental data. They obtained linear correlation coefficient (r) of around 0.995.

Another example is given by Cimino et al. [177], who investigated the application of

different quantum chemistry approaches and basis sets in calculating the 13C NMR

chemical shifts of 15 low-polarity natural products. The corrected mean absolute error

(CMAE) for about 50 different chemical shift calculations was reported to range from 1.49

ppm to 3.35 ppm.

Database methods

Empirical methods relating atomic structural descriptors to 13C NMR chemical shifts

have been used to accurately predict the 13C NMR spectra for compounds whose chemical

shifts are not known. These approaches rely on large data sets of known compounds with

assigned chemical shifts. The advancement in modern computer systems makes it possible

to store and search among large numbers of chemical structures along with their chemical

shifts. Examples include Spectral Database for Organic Compounds [178] (≈ 130,000 13C

chemical shifts), CSEARCH database [179] (≈ 4,000,000 13C chemical shifts),

ACD/CNMR (≈ 2,160,000 13C chemical shifts), NMRShiftDB [180] (≈ 200,000 13C

chemical shifts), and BIORAD KnowItAll database (≈ 3,500,000 13C chemical shifts). To

predict the chemical shift for each carbon atom, the database is searched for structures

containing carbon atoms with a similar chemical environment. The most challenging part in

this method is to find the best way of encoding the chemical environment of an atom that

can be easily searched. Examples include the Hierarchically Ordered Spherical description

of Environment code (HOSE) [163] and SMILES [181] code. However, there are some

drawbacks in using each of these methods, which include the size of the database and its

access time. The storage space needs to be increased with increasing number of molecules
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represented, which in turn increases the access time.

Machine-Learning Methods

Previous studies have shown that machine-learning approaches, such as artificial neural

networks (ANNs), have the capability to predict 13C NMR chemical shifts with impressive

accuracy [182, 183]. ANNs have been used to predict chemical shifts of several different

classes of compounds such as alkanes [184], acrylonitrile co-polymers [185], trisaccharides

[186], and many more small organic molecules [187].

1.5 Interaction Energies

It is found that there are four kinds of interactions in nature, which include strong

interactions, weak interactions, electromagnetic interactions, and gravitational forces. The

strong and weak interactions occur because of short-range forces, which can be seen

between protons, neutrons and other fundamental particles. Gravitational forces are present

with all mass systems. According to general theory of relativity, this interaction emerges

from the distortion of space. The electromagnetic interactions occur between atomic and

sub-atomic systems, which results in the formation of atoms and molecules.

Among these four interactions, only electromagnetic interactions are essentially

important to molecular systems, in which the interaction range of strong and weak forces is

very short (<10−5 nm) and gravitational forces are very weak. The formation of covalent

and noncovalent bonds in chemistry are due to both classical and quantum-mechanical

electromagnetic interactions. According to molecular quantum mechanics, covalent

chemical bonding between a pair of interacting atoms occur due to the overlap of partially

filled occupied orbitals. These interactions were first illustrated by Heitler and London in

1927 [188].

There is another type of interaction between molecules, which results in the formation
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of molecular complexes. Because there are no breaking or making of covalent bonds in

formation of these complexes, these are called as noncovalent interactions, or van der Waals

interactions [189]. These interactions are generally found in molecular clusters and

biomolecular systems which play an important role in processes such as phase changes,

protein folding, molecular recognition, and enzyme-substrate binding. These interactions

are usually weak in comparison to covalent interactions. For large molecules, they can be

intramolecular as well as intermolecular. However, in comparison to covalent interactions,

and because of their weakness, the noncovalent intramolecular interactions are difficult to

model accurately. Therefore, it is important to study new methods of modeling noncovalent

intermolecular interactions, which have importance in many fields of chemistry and physics.

Noncovalent intermolecular interactions are classified into four kinds: electrostatic,

induction, dispersion, and exchange. The first one is originated from interaction between

two permanent multipoles (electrostatic), the second one from interaction between a

permanent multipole and an induced multipole (induction), the third one from interaction

between instantaneous multipoles (dispersion), and the last one from the overlap of

occupied orbitals (exchange). The sum of these four different intermolecular energies yields

the total intermolecular interaction energy.

The calculation of interaction energies between proteins and ligands in drug design is

very important and is used to find the strength of drug binding between, for example, a

protein and a ligand. There are several different methods available in calculating these

energies. However, some of these methods are extremely expensive and time-consuming.

There are 3 primary methods for calculating interaction energies: empirical force-field

methods, semi-empirical methods, and ab initio methods. Among these, the most accurate

method and also the most time-consuming is ab initio, based on solving the Schrödinger

equation. These interactions can be studied in two different approaches in ab initio schemes:

the supermolecular method and the perturbation method. In the perturbation method, the
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interaction energy is evaluated using perturbation theory which treats the interaction

between subsystem wavefunctions as perturbations on each other. In the supermolecular

method, the interaction energy is obtained from the difference between the energies of the

complex and the total energy of the isolated molecules. Among these two methods,

supermolecular method is the most widely used for calculating interaction energies. As

such, we have used the supermolecular method to calculate interaction energies in our study.

1.6 Artificial Neural Networks (ANN)

ANNs are inspired by biological nervous systems [190] found in animals as shown in

Figure 6. The algorithms try to mimic the brain and are programmed to function like

biological neural systems [191]. Biological neurons consist of a cell body which contains a

nucleus that governs the cell activity. To the left of cell 1, many fine threads called dendrites

or receivers are shown in Figure 6. These provide input signals to the cell. To the right in

Figure 6, one longer thread called an axon or transmitter is shown. This carries the output

signals to cell 2. Impulses can be transmitted unchanged or modified by synapses. A

synapse, which is the junction between the neurons, can change the strength of the

connection between neurons and cause excitation or inhibition of another neuron. The result

is an intelligent brain that possesses capabilities of learning, prediction, and recognition.
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Figure 6: Representation of a natural neuron

It is important to remember that neurons in the ANN are an abstract representation of

biological neurons. ANN consists of inputs for the neuron, associate weights for the inputs,

transfer functions for the neuron, and the output of the neuron (Figure 7).

Figure 7: Representation of an artificial neuron

A collection of these neurons forms an artificial neural network as shown in Figure 8.

Over the past decade, ANNs have had huge success in machine-learning and data-mining
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applications [192]. Some examples of applications include medical diagnoses, risk

evaluation of insurance and loan applicants, image classification, and predicting the

structure of chemical compounds [193].

Figure 8: Representation of an artificial neural network

The most important property of ANNs is the ability of a network to “learn” from

its environment and improve its performance. As a result, the method is often referred

to as Machine-Learning (ML) [194]. The ANN consists of an input layer, one or more

hidden layers, and an output layer. The input signal propagates layer-by-layer in the forward

direction and these networks are commonly called multilayer perceptrons (MLP) [194]. MLP

with the back-propagation learning method is one of the most successfully used methods

in chemistry and drug design because of its well-defined and explicit set of equations for

weight corrections. This is a supervised learning algorithm in which the network is trained

with training data, and where the expected outputs are provided to train the algorithm [194].

The learning consists of both a forward pass and a backward pass. In the forward pass,

the input vector is applied to the input layer and these input values are modified by a fixed
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weight, and its effect passes through the network layer-by-layer. Finally, output produced

by the network is compared with the desired output to calculate the error signal. This error

signal is then back-propagated in the backward pass to adjust the weights in such a way

that the actual output value moves closer to the desired output value according to an error

correction rule. One complete forward and backward pass through the network is called an

epoch.

The following section describes the back-propagation algorithm. Figure 8 demonstrates

signal propagating through the network, where symbols i1 and i2 represent input neurons, h1

and h2 represent hidden neurons, o1 and o2 represent output neurons, and w1−w8 represent

weights of connections between layers. Primarily, these weights are initialized with random

values. In the forward pass, the total net input to each hidden layer neuron (neth1 and neth2 )

and activation function (outh1 and outh2) are calculated by formulae in Equations 6 through

9. Here we show calculations for only one neuron [195].

neth1 = w1× i1 +w2× i2 +b1 (6)

outh1 =
1

1+ e−neth1
(7)

This process will be repeated for output layer neurons, using outputs obtained from

hidden layer neurons as inputs. The output for o1 neuron is calculated by [195],

neto1 = w5×outh1 +w6×outh2 +b2 (8)

outo1 =
1

1+ e−neto1
(9)

We can now calculate the error for each output neuron using Equation 10 [195]. Once

the output is calculated from all the output neurons, then the total error will be calculated
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using Equation 11 [195],

Eo1 =
1
2
(targeto1−outo1)

2 (10)

Etotal = Eo1 +Eo2 (11)

In the backward pass, all the weights are updated to minimize the error for each output

neuron. By applying the chain rule, we can calculate how the change in w5 will affect the

total error by doing partial differentiation of total error with respect to w5 [195].

∂Etotal

∂w5
=

∂Etotal

∂outo1

× ∂outo1

∂neto1

× ∂neto1

∂w5
(12)

Alternatively, we have
∂Etotal

∂outo1

and
∂outo1

∂neto1

which can be written as
∂Etotal

∂neto1

, also known as

δo1. Substituting these in Equation 12 yields

∂Etotal

∂w5
= δo1×

∂neto1

∂w5
(13)

To reduce the error, the value of
∂Etotal

∂w5
is subtracted from the current weight (w5). The

updated weight for w5 is w+5, which is then calculated by [196],

w+
5 = w5−η× ∂Etotal

∂w5
(14)

In equation 14, η is the learning-rate parameter [195] and its value ranges between 0

and 1. This parameter controls the magnitude of the changes applied to the weights. The

above-mentioned procedure will be followed to calculate the total net input to each hidden

layer neuron, activation functions, and errors for each output neuron, and the weights will

be adjusted by repeating equations 6 through 14 until all the neurons get updated weights.
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The ANN generates a model which depends on the architecture, that is, the number of

layers, the number of neurons in each layer, and the way neurons are connected. The

topology or architecture of a network is related to the number of neurons in the hidden layer.

It has a significant effect on the prediction accuracy and hence should be optimized. The

performance of the ANNs depends on several parameters, which include learning rate (η),

momentum (m), number of epochs (N), number of hidden layers (HL), and number of

hidden neurons (H) [195]. These parameters are defined and discussed below.

Learning Rate

The learning rate controls the magnitude of the changes made to the weights in each

iteration of training and its value ranges between 0 and 1. This parameter needs to be

carefully tuned. If the learning rate is too large, there is a chance of overshooting a good

answer, and then on the next iteration it will be undershooting and get into an oscillating

pattern where training never converges. If the learning rate is small, then the training is

slow, which causes a smaller change in the weights and the optimization takes longer. The

momentum parameter finds the amount of influence from the previous iteration on the

present one and its purpose also to speed up the training process with the reduced risk of

oscillating.

Epoch

During the process of training, many examples of relevant input/output combinations are

presented to the network. Each example consisting of a pair with the input values and the

corresponding target output values. The patterns are sequentially presented to the network

in an iterative manner; the weights being updated during the process to adapt the network to

the required behavior. This process of iteration continues until the connection weight values

allow the network to perform the desired mapping. Each presentation of the whole pattern
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set is called as an epoch.

1.7 Computational Chemistry in Drug Design

The maintenance and further advancement of a strong and powerful drug discovery

pipeline is important for fighting against new diseases. The process of discovering and

developing new therapeutic solutions is extremely complex, expensive, and time consuming.

The typical discovery and development of a drug, from lead identification to clinical trials,

can take approximately 14-15 years of time with a total cost of 2.6 billion US dollars [197].

The human body is complex chemical machinery since it contains thousands of

chemicals, from many classes of compounds, such as carbohydrates, proteins, fats, etc.., all

of which can undergo many possible chemical changes. These reactions also interact with

each other in numerous systems. Every process in the body is a kind of chemical

transformation that leads to pain, movements, thought processes, feelings, and many more

complex and simple changes. The human body has also been equipped with all the essential

chemical components, numerous enzymes and neurotransmitters for the balanced and

appropriate working of all the life-maintaining processes. Still, sometimes bioprocesses fail

to act due to various exogenous or endogenous factors. Thus, administering external aids,

which we call drugs or medicines, becomes necessary to restore the normal functioning.

Due to recent developments, such as combinatorial chemistry and high-throughput

screening technology, drug developers have created an environment to expedite the drug

discovery process by allowing vast libraries of compounds to be screened and synthesized

in a shorter amount of time [198, 199]. However, because of low efficiency and high failure

rates in drug discovery, several different approaches are usually pursued simultaneously.

Computer-aided drug design (CADD) is among the augmented approaches for reaching

medicinal goals.

Drug design research has gained significant insights from computational approaches
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[200]. The drug discovery process involves several different steps in order for a drug to

reach the market, and these are discussed in the later sections. These steps include target

identification and validation, lead identification and optimization, and finally pre-clinical

and clinical development. In a drug discovery pipeline, CADD is used to filter-out small

sets of active compounds from large compound libraries. It is used to guide the optimization

of lead compounds and also to design novel compounds. CADD can be classified into two

categories; namely structure-based and ligand-based methods.

1.7.1 Structure-Based Computer Aided Drug Design (SBDD)

The growing availability of structural information and inexpensive high-performance

computing platforms have expanded the applicability of SBDD methods and provided a

more rational initial point for the long process of drug discovery and development. This

process is iterative and advances through multiple cycles before an optimized ligand enters

Phase I clinical trials. In general, these methods are defined by the application of

computational algorithms in combination with experimental data, either to evaluate the

binding in terms of affinity, or to design novel molecules that are anticipated to bind the

target molecule with specificity and affinity. Successes have been reported for many

compounds that went through clinical trials and received FDA approval to enter the market

[201]. In the early 1990s one of the first HIV-1 protease targeted drugs, Saquinavir, was

developed using SBDD methods [202]. Amprenavir is another HIV-1 protease targeted

drug, which was also developed using SBDD [203].

Target Identification and Validation

The first step in the drug discovery process is the identification of drug targets which

can be enzymes, ion channels, various types of receptors, transporters or various other

targets. A drug shows its therapeutic action when it binds to its biological targets, called



45

receptors. Receptors are often proteins which contain an active site, or binding site, where

the binding of a drug molecule (ligand) occurs. In order to design a good ligand, it is

important and challenging to know the atomic-level structure of the receptor and identify

active sites of the target protein. Target identification can be achieved using genomic and

proteomic approaches, which are considered as laborious and time-consuming [204]. To

overcome this problem, computational methods have been developed as a useful alternative.

A detailed computerized 3D model of a protein’s structure enables one to extensively study

the structure and dynamics of its potential drug receptors.

Structure-based drug design depends on the ability to determine and analyze the 3D

structures of target proteins, which can be obtained experimentally through X-ray

crystallography or NMR techniques. After the structure is determined, it is often saved

(entered) to a public database. The Protein Data Bank (PDB) [205] and The Cambridge

Structural Database (CSD) [206] are among the most commonly used databases for storing

and obtaining protein structures that can be used for docking studies. PDB contains

approximately 120,000 protein structures determined mainly using X-ray crystallography,

but also some using NMR spectroscopy. X-ray crystallographic study is possible only when

the target protein can be crystallized. However, some proteins, such as membrane proteins,

are not easily crystallized [207]. Thus, experimental methods are not always successful in

finding their structures. In these circumstances, computational methods play a prominent

role [208, 209]. These are based on comparative modeling of target proteins in which target

structure is predicted based on a template with a similar sequence; i.e., proteins with nearly

identical sequences have very similar structures. There are various programs and web

servers available that automate the comparative modeling process; e.g., PSIPRED [210] and

MODELER [211].

In the absence of experimentally determined structures, the potential drug target’s

binding site and molecular function could be obtained via structural comparison with a
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well-characterized protein for which the structure and biochemical function are known.

Sequence comparison is one of the existing methods used to find the alignments between a

nucleotide or protein sequence against a database containing experimental 3D structures of

known protein sequences. Once the homologous (similar sequence) protein is identified,

then the 3D model of the target protein will be constructed. There are several computer

programs available that perform the process of comparative modeling automatically,

providing a foundation for drug design by structure. Homology modeling, ab initio folding,

and threading approaches are a few of the methods used for protein structure predictions

[207].

Once a 3D structure of the protein is obtained, then the next important step in SBDD is

to find the binding pocket on that protein. The binding site information is often obtained

from co-crystal structures of the target protein or a closely related protein with a bound

ligand. If the co-crystal structure is not available, then computational methods like

POCKET, SURFNET, Q-SITEFINDER, etc... can also be used for binding pocket

identification [212, 213]. These methods can be divided into three classes: 1) geometric

methods that use geometric algorithms to identify the cavities on a protein’s surface, 2)

energy-based approaches that calculate van der Waals, electrostatic, hydrogen binding,

hydrophobic, and hydrophilic interaction energies of probes with the pocket, and 3)

molecular dynamics-based methods that use multiple conformations of the target protein to

predict likely binding sites. After identifying the binding pocket, one important

characteristic called binding pocket volume needs to be calculated. This information will

give insight on excluding ligands which are too bulky to fit in the pocket during the lead

identification process.
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Molecular Docking

In addition to finding a target protein, it is also necessary to find the optimal interaction

mode between the potential receptor and the small molecule probes (ligand molecules). The

term docking is used for computational schemes that attempt to predict the structure of an

intermolecular complex formed between a receptor and a ligand. Details of how these

intermolecular complexes form are necessary for successful drug design. Most of the time,

the receptor is a protein, and the ligand can either be another protein or a small molecule

such as a potential drug.

Molecular docking is one of the widely used techniques in lead optimization and “hit”

identification [214]. The molecular docking approach can be used to model the interaction

between a target protein and a ligand molecule at the atomic level. This allows us to

characterize the behavior of ligand molecules in the binding site of target proteins. The first

docking program, DOCK, was developed by the Kuntz group in 1982 [215]. It worked

based on optimizing the degree of structural complementarity between the target protein

and ligand molecule.

Docking methods can be classified as either rigid body or flexible, based on the

representation of protein (receptor) and ligand molecules during the docking process. In the

early studies, ligand-receptor binding mechanisms were based on the lock-and-key theory

proposed by Fischer, in which both the ligand and receptor were considered as rigid bodies.

Then Koshland took the lock-and-key theory a step further with induced-fit theory

[216, 217]. This theory stated that the binding site of the receptor was continually reshaped

during protein-ligand interactions. It also suggested that the ligand should be considered as

flexible during docking. As a result, the binding events could be characterized more

accurately compared to rigid-body docking. Usually, rigid-body docking simulations are

applied to screen a large database during an initial virtual screening process. However,

flexible docking methods are still necessary for optimizing ligand poses obtained from an
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initial rigid docking procedure. With the availability of faster computers and also

inexpensive clusters of computers, flexible docking procedures are becoming more

commonplace. Some example programs that include ligand flexibility are Glide [218],

FRED [219], AutoDock [220], GOLD [221], and FlexX [222], but these are just a few

examples of many available docking programs. Some of the successful docking applications

in drug discovery campaigns that used docking software include: FK506 immunophilin in

2006 using DOCK, aurora kinases inhibitors in 2006, cytochrome P450 inhibitors in 2011,

and falcipain inhibitors in 2011 using Glide.

Docking algorithms produce a vast number of potential poses of the ligand bound to the

receptor. A scoring function distinguishes the correct poses from incorrect poses in a

reasonable amount of computation time. These functions estimate the binding affinity

between the protein and ligand rather than calculating it based on some assumptions and

simplifications. These functions can be classified as: force-field-based, empirical, or

knowledge-based scoring functions. After identifying the target protein, it is necessary to

confirm whether the correct target has been identified or not. Validation processes such as

reliable and suitable animal models, or gene targeting and expression tools, help researchers

find any unwanted or adverse reactions due to binding of the drug to a secondary target.

Lead Identification and Optimization

A lead compound is a chemical compound having the basic structural requirements for

showing the necessary pharmacological or biological activity. The identification of lead

compounds and optimization of pharmacological properties are the focal points of

early-state drug discovery. Currently, most pharmaceutical industries use high-throughput

screening (HTS) as a means to identify new lead compounds [223]. Using HTS, active

compounds such as antibodies or genes which regulate a specific biomolecular pathway

may be identified [223]. Although HTS is a commonly used method in the pharmaceutical
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industry, there are some disadvantages of this method [223]; namely the high cost and

time-demanding nature of the process have led to the increasing employment of SBDD with

the use of complementary computational methods. A lead compound should also have

many possible structural variations for further improvement of the binding, or for further

enhanced action. Increasing the affinity of a drug molecule towards its target protein will

enhance its potency. Binding affinities can be calculated from running ensembles of

molecular dynamics simulations. High throughput docking, informatics, and docking

simulations are a few computer-based techniques that help to identify a lead compound.

Once a small molecule has been identified as a lead compound, it must be evaluated

before going to the next stages. It is essential to realize that the ranking given by the scoring

function is not always indicative of a true binding constant, since the model of

protein-ligand interaction is intrinsically an approximation. Furthermore, both the protein

and ligand flexibility as well as solvent effects are not accurately described. In general,

several molecules that score well during the docking run are also examined in further tests

since even the top-scored molecules could fail the in vitro assays. Lead compounds are first

assessed using computer visualization tools and can often be optimized for increased

affinity. Leads are also examined for oral availability using Lipinski’s “Rule of 5”, which

states that possible leads should have less than five hydrogen bond donors and less than ten

hydrogen bond acceptors, a molecular weight less than 500 Da, and a calculated log of the

partition coefficient less than 5 [224]. There are also other factors such as chemical and

metabolic stability and the ease of synthesis can also play an important role in making the

decision to proceed with a particular lead candidate. Finally, lead compounds reach into the

wet lab for biochemical evaluation.
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1.7.2 Ligand-Based Computer Aided Drug Design (LBDD)

The ligand-based drug design method relies on knowledge of ligand molecules that

interact with a target of interest. The structures of the ligand molecules that are known to

interact with the target protein are collected and used as reference structures in these

methods. The major goal of this approach is to identify and extract the important

physicochemical properties responsible for these interactions, and also discard the

information which is not relevant to the interactions. This method is also considered as an

indirect approach for drug discovery since it does not require the structural information of

the target of interest. Some popular approaches of LBDD are pharmacophore modeling,

molecular similarity search, and quantitative structure-activity relationship (QSAR)

modeling [225].

LBDD techniques apply different computational algorithms for describing properties of

ligand molecules based on the biological function to be predicted. Molecular properties or

descriptors can be structural as well as physicochemical, depending on the complexity of

the problem. The molecular descriptors can be defined in terms of geometry, volume,

surface area, molecular weight, ring content, bond distances, bond angles, interatomic

distances, electronegativities, topological charge indices, polarizabilities, functional group

composition, aromaticity indices, solubility, octanol/water partition coefficient, partial

charges, number of hydrogen bond donors etc. . . [226, 227, 228, 229, 230]. These

descriptors can themselves be obtained in several different ways, such as

quantum-mechanical calculations, molecular mechanics, or graph theoretical methods.

Based on “dimensionality” of the chemical representation of these descriptors, they are

classified as: one-dimensional (1D), which includes scalar physicochemical properties such

as molecular weight; two-dimensional (2D) molecular constitution-derived descriptors; and

three-dimensional (3D) molecular conformation-derived descriptors.
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Pharmacophore Modeling

The concept of a pharmacophore was first introduced by Ehrlich in 1909 [231]. A

pharmacophore is a partial molecular framework that carries the essential features

responsible for the biological activity of a drug compound. The pharmacophore model can

be established in either a ligand-based or structure-based manner. Pharmacophore models

may be built using only knowledge of the structural features of active ligand molecules

when limited or no structural information of target protein is available. In cases where 3D

structural information of the target protein is known, then the active site information can

also be used in producing the models. The pharmacophore can be defined using structural

features such as acidic groups, basic groups, hydrogen bond acceptors, hydrogen bond

donors, partial charges, aliphatic hydrophobic moieties, and aromatic hydrophobic moieties.

However, the models built using hydrogen bond donors and acceptors, plus acidic or basic

residues are found to be most effective [232]. There are several programs such as DISCO,

GASP etc. . . available to generate pharmacophore models [233]. The overexpression of

murine double minute 2 oncoprotein (MDM2), which inhibits p53 tumor supressor, is

responsible for approximately 50% of all human cancers. Reactivation of MDM2-p53

integration has been appeared to be a novel approach for improving caner cell death.

Bowman et al. [234] generated a pharmacophore model based on hydrogen-bond donor

sites and hydrophobic sites of the active site of MDM2. They used snapshots from a

molecular dynamic simulation of MDM2 bound to p53 tumor suppressor. The resulting

structures were used in generating the pharmacophore model. A virtual screening of a

library containing 35,000 compounds determined 27 hits. After testing in a binding assay,

four compounds were identified as true hits.
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Molecular Similarity Searches

Molecular fingerprints are a way of representing a molecule’s structure in digital form.

Binary digits represent either presence or absence of particular features in the molecule.

The fingerprint method allows rapid structural comparison between molecular structures. In

molecular similarity searches, fingerprint methods are used to find novel compounds based

on the knowledge of physical and chemical similarity to known drugs for the target protein.

These similarity search methods are simple yet effective, since molecules with similar

structure behave similar in terms of binding properties [6]. For example, a

G-protein-coupled receptor GPR30 specific agonist which activates GPR30 was developed

using similarity searches.

Quantitative Structure-Activity Relationship (QSAR)

QSAR is a computational method that finds a mathematical relation between structural

features of the ligand molecules that bind to a target, and their corresponding biological

activity [235, 236]. Molecules with similar structures are presumed to have similar

biological activity within this method [237]. QSAR models have been used successfully on

several drug targets, such as renin [238], thrombin [239], and carbonic anhydrase [240].

Several different kinds of 2D and 3D QSAR models were developed over the last decades.

These methods differ in terms of the chemical descriptors and mathematical approaches

used in creating the models. QSAR relationships can also be used to predict the activity of

new drug molecules.

In order to assess the activity of drug molecules, many different physical and chemical

properties can be used. Among these, half-maximal inhibitory concentrations (IC50) and

inhibition constants (Ki) are the most commonly used measures. IC50 values are used to

measure a drug’s efficacy; it is the amount of drug necessary to inhibit a biological process

by half. Whereas Ki values are equilibrium constants used to quantify the inhibitory potency
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of the inhibitor. QSAR models can be used to study the positive or negative influence of a

specific descriptor of a drug molecule on its activity. In classical 2D QSAR models,

physical and chemical properties such as geometric, steric, electronic, and hydrophobic

features of compounds are correlated with their biological activity. Whereas in 3D QSAR

models, in addition to features used in 2D models, quantum chemical features are also used.

In recent years, various machine-learning algorithms are also being used in the development

of QSAR models [241].

QSAR models are built by collecting a group of active ligands which bind to the desired

target protein, and then their activities are identified via literature searches, database

screening, and high-throughput screening experiments. The next step is to find the structural

or physicochemical properties most affecting biological activity. Later, a mathematical

model is generated to find the relationship between those properties and their biological

activity. Finally, the model is applied to predict the activity of test compounds in the

database. The success of a QSAR model depends on selecting the descriptors that result in a

mathematical relationship that is successful in predicting biological activity. It is also

important to use a chemically diverse sampling space as the training set in order to develop

a suitable model, so that potential hits will not be missed while screening the library.

Statistical methods such as multivariable linear regression are used in linear QSAR models

when the activity/descriptor relation is linear. This helps one to pick molecular descriptors

that are important in predicting the biological activity of interest. However, the relation is

not always linear. In that scenario, machine-learning tools such as artificial neural networks

(ANNs) are used to generate QSAR models [45]. After finding the right descriptors to build

the QSAR model, these models can be validated using cross-validation methods. Some

successful applications of QSAR in drug discovery include Zolmitriptan, Norfloxacin, and

Losartan [242].
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Virtual Screening

Ligand-based virtual screening approaches are used when there is little or no structural

information available for the therapeutic target [243]. These tools require knowledge of

active ligand molecules with some biological activity against a target. Ligand-based

approaches include compound classification methods and machine-learning algorithms.

Virtual screening (VS) can be done using chemical similarity searches and virtual docking,

or by identifying compounds by predicted biological activity through QSAR studies or

pharmacophore modeling. In VS, libraries of commercially available drug-like compounds

are computationally screened against a database containing targets of known structure. The

compounds which are predicted to bind well to the target are experimentally tested [244].

The screening process produces a small set of molecules called hits, and these are

subjected to ranking methods. The ranking procedure compares the similarity between hits

and a query compound. The similarity may be in terms of biological activity or the optimal

docking pose for each ligand bound to the target protein. Usually, these initial hits are

subjected to higher level computational techniques for further screening procedures. This

procedure may not produce a drug compound which is ready for clinical studies, but at least

it provides insight into leads that have not previously been associated with a target. The

money-saving advantage of utilizing computational schemes in the lead optimization phase

of drug development is significant since it reduces the number of compounds that must by

synthesized and tested in vitro [245].

Virtual screening utilizes high-performance computing to accelerate the screening

process of large chemical databases when finding the ligand molecules to be synthesized

[246]. In order to perform VS, a library must be designed that includes a wide variety of

sizes and features. There are three kinds available; general libraries designed to screen

against any target, targeted libraries which can be used for specific target, and focused

libraries designed for a family of related targets. For example, Fink et al. [247] generated a
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database, referred to as GDB, containing 26.4 million possible organic structures using C,

N, O, and F atoms up to 11 atoms in total. Later, a database called GDB-13 was created by

Blum and coworkers in 2009. This database includes C, N, O, S and Cl atoms and contains

around 930 million compounds. These databases are frequently used in performing VS.

Similarly, apart from developing a ligand database for VS, it is also important to

represent molecular structure in a way that can be efficiently read and stored by computer

systems. In 1985, Weinninger [181] designed a chemical notation method called SMILES

(Simplified Molecular Input Line Entry System) based on the principles of molecular graph

theory. This method permits rigorous structure representation by use of a very small and

natural grammar. This is one of the most commonly used methods for storage and retrieval

of compounds across multiple computer platforms.

Drug Metabolism and ADMET Properties

In addition to finding target proteins and lead compounds, optimizing drug metabolism

and pharmacokinetic properties such as ADMET (absorption, distribution, metabolism,

excretion, and toxicity) are also important for the success of any drug candidate. After lead

discovery and optimization, there is significant consideration given to improving the

compound’s ADMET properties without losing its therapeutic activity. The prediction of a

ligand molecule’s ADMET properties can help in decision-making and provide valuable

information in the development of a computational model. There are several different in

silico methods available for evaluating ADMET properties of ligand molecules based on

simple empirical rules. These methods include structure-based ones to study the interaction

of a lead compound with the target proteins involved, and also some ligand-based ones to

study key properties using quantitative structure property relation (QSPR) models.

The absorption of a drug molecule depends both on its permeability through the

intestine walls and also on its solubility in water [248]. Thus, predictions of permeability
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and solubility are important in lead optimization [249]. An orally administered drug with

poor solubility and high dissolution rate will be excreted without entering the blood stream.

This causes the drug to be incapable of producing the desired action and can even cause

biological side-effects. To find the solubility experimentally, it requires the drug to be

synthesized which is a time-consuming process. However, predicting solubility

computationally is fast, thus reducing costs and also time. Various statistical and

mathematical models have been developed in the last few decades and are available for

calculating ADMET properties to predict the behavior of lead compounds.

1.8 Aims and Thesis Content

The primary aim of this project was to develop an ANN model trained on electron

density properties to predict a broad range of molecular properties of carbonyl compounds.

As a proof of principle, our initial plan was to use the bond critical point data and key

charge density descriptors based on topological features in the Laplacian of the charge

density to train ANNs for the prediction of desired properties. The goal is to predict both

the spectroscopic properties and interaction energies between carbonyl compounds and a

model nucleophile. Optimization of this approach constitutes the major part of this thesis.

In Chapter 2, the methodology for obtaining descriptors from quantum- mechanical

calculations is described along with the procedure followed to develop the ANN models.

Chapter 3 briefly introduces the important features of QTAIM employed in this work, as

well as documenting the results in terms of MAPEs obtained in predicting the required

properties. The second overarching goal of evaluating the relative and relevant information

content of the topological properties of the total charge density vs. its Laplacian distribution

is also discussed. Finally, included are some application of these models for larger systems

like proteins.
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CHAPTER 2

Methodology

All the calculations reported in this dissertation were executed on the MTSU

Department of Chemistry’s Linux-based VOLTRON 19-node cluster. Among 19 nodes,

there are 10 nodes each with 2X quad-core Intel Xeon E5450 3.0 GHz cpus and 48 GB of

RAM. The remaining 9 nodes, each contains 2 X 12-core AMD Opteron 6348 2.8 GHz

cpus and 128 GB of RAM.

2.1 Electronic Structure Methods

Spartan’10 [250] was used to build structures of carbonyl compounds including

aldehydes, ketones, imides, and amides in order to obtain initial cartesian coordinates of all

nuclei prior to geometry optimization using ab initio methods. All ab initio electronic

structure calculations were carried out using the Gaussian09 program [2]; the level of

theory utilized was Density Functional Theory (DFT) treatment of electron correlation,

using the B3LYP (B=Becke, 3=three-parameter, and LYP=Lee-Yang-Parr) hybrid

functional [86, 89]. This level of theory was used to obtaining fully optimized geometries

and relative energies of carbonyl compounds in their ground state [86, 89]. The widely used

B3LYP was used in our study because it is considered to be one of the most well-balanced

and accurate functionals for a wide variety of applications [79, 80, 81, 82]. The Pople

split-valence double-ζ basis set (6-31+G*) [251, 252, 253] was employed to describe the

atoms of the carbonyl compounds. After obtaining the optimized geometry coordinates,

single-point wavefunctions were calculated using M05-2X [254] hybrid meta functional

with the 6-311++G** basis set [251].

The geometry optimizations of the carbonyl+fluoride complexes, as well as the isolated

molecules, were carried out using standard convergence criteria of 10−8 au at the SCF

(self-consistent field) level with the B3LYP/6-31+G* set. The convergence criteria of Max
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Force=4.5D-4, RMS Force=3.0D-4, Max Disp=1.8D-3, and RMS Disp=1.2D-3 was used

for geometry optimization. The optimized geometries and relative covalent interaction

energies were calculated using C1-F1 bond distance of 1.7 Å, F1-C1-O1 angle of 110◦, and

F1-C1-O1-C2 dihedral angle of 90◦, as the starting geometry parameters. (See Figure 9,

where the atoms of a carbonyl compounds are shown with labelling scheme.) To obtain van

der Waals interaction energies, geometry optimizations were started using C1- F1 bond

distance of 3.4 Å, F1-C1-O1 angle of 145◦, and the F1-C1-O1-C2 dihedral angle of 90◦.

The rest of the carbonyl compound’s geometry used starting values obtained for the isolated

molecule.

Figure 9: Labelling scheme for the series of carbonyl compounds (hydrogens not shown)

2.2 Electron Density Analysis

The typical approach to quantum chemistry utilizes the wave function ψ as the central

quantity. The reason is that once we obtain ψ we can get all dynamical information about

this specific state of our target system. A standard example of this approach is the

Hartree-Fock approximation. However, the utilization of these quantum-mechanical

calculations on macromolecules continues to pose a great challenge for computational

chemists. The major limitation of ab initio methods is the scaling problem, since the

computational cost of these methods increases considerably as the size of the system
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increases. For instance, HF calculation scales as N4 since it depends on 4N variables, three

spatial and one spin variable for each of the N electrons. The systems we are studying in

chemistry contain many atoms and many more electrons. Hence, any wave function based

approach quickly reaches an unmanageable size. To circumvent this problem, one can

obtain the energy and other properties of interest from a less complicated quantity, the

electron density, as the central variable. This is the idea at the heart of DFT.

The electron density is a physical observable through which many chemical and

physical properties of the system can be related. It can be determined by experimental

methods such as X-ray diffraction [114], or it may come from ab initio calculations [255].

The past decade has witnessed enormous methodological developments in X-ray

crystallography which has become the preferred technique for the determination of

structures of biological macromolecules at atomic scale by taking benefit from the major

advances in scientific fields as diverse as biochemistry, molecular biology, computer

science, synchrotron physics, and lately robotics. Today, X-ray crystallography can address

the determination of complex three dimensional structures of macromolecules, very rapidly.

Presently, more than 25 crystal structures are deposited daily in the Protein Data Bank

(http://www.rcsb.org) [256].

With the development of quantum chemistry, computationally obtaining the electron

density of molecular systems is becoming a routine task. In our study, we obtained the

electron density from quantum chemistry calculations. After obtaining the wave function

files from the above mentioned calculations, they were imported into AIMQB, the driver for

QTAIM calculations, and the results were visualized using AIMStudio [3]. Topological

analysis of the electron density in the carbonyl compounds, within the formalism of Bader’s

Quantum Theory of Atoms In Molecules (QTAIM) method, was carried out with the

AIMAll [257] package to determine the position of the BCPs around the carbonyl carbon.

The determination of electron density properties such as electron density at the BCP (ρBCP),
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the three principal curvatures evaluated at the BCP (λ1,λ2, and λ3), the Laplacian of the

charge density at the BCP (∇2ρBCP), and distance of the BCP from carbonyl carbon nucleus

were derived from the AIMAll output files. The topological properties of the Laplacian of

the charge density, LCP data, were determined using the program Denprop [4]. The above

mentioned electron density properties were extracted using an in-house Python script.

In this study, we examined a set of 225 carbonyl compounds composed of 108

aldehydes, 86 ketones, 25 amides, and 6 imides. Their molecular structures are shown in

Appendix A. The corresponding experimental 13C Nuclear Magnetic Resonance (NMR)

chemical shifts (ppm) and C=O vibrational stretching frequency values (cm−1) were

collected from a spectral database of organic compounds library (SDBS) provided by the

Japanese National Institute of Advanced Industrial Science and Technology (AIST) [178].

This website provides several different kinds of spectra for a large number of organic

compounds recorded by different techniques. The interaction energies (4Eint) between

carbonyl compounds and fluoride ion (F−) were calculated using the supermolecular

approach,

4Einteraction = Einteracting reactants−ECC−EF (15)

where Einteracting reactants , ECC, and EF are total energies of the interacting reactants,

carbonyl compound, and nucleophile, respectively.

2.3 Development of the ANN Model

The machine-learning package WEKA (version 3.6.13) [258] was used in the Artificial

Neural Network (ANN) predictions of 13C chemical shifts and C=O vibrational frequencies

of carbonyl compounds, as well as for predictions of interaction energies of

carbonyl+fluoride complexes. WEKA stands for Waikato Environment for Knowledge

Analysis. This program was developed at the University of Waikato in New Zealand, and
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the software is freely available [258]. In this study, the multilayer perceptron method, based

on the back-propagation algorithm, has been used (discussed in Section 1.6). Our network

(I-H-O) had an input layer (I), a hidden layer (H) and an output layer (O). The neural

network configuration in this study is as shown in Figure 10. Each layer contains a certain

number of artificial neurons, which are equal to the number of input and output values.

While training our network with the BCP data, for example, the configuration of our

network can be described by the short notation 18-9-1, where each number specifies the

number of neurons in one layer starting from the input layer. For training the network with

LCP data, and combined BCP and LCP data, the configurations were 30-15-1 and 48-24-1,

respectively.
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There are several different parameters that can be adjusted to yield better predictions.

These parameters include learning rate (η), momentum (m), number of epochs (N), number

of hidden layers (HL) and number of hidden neurons (H). We have tested several network

configurations by changing these parameters. In the initial neural network experiments, to

train the model, we used default parameters of WEKA: specifically, η=0.3, m=0.2, N=500,

and H=a, where (a=[number of input neurons+number of output neurons]/2). Later, we

performed several experiments by changing parameters one at a time. Initially, η was

changed from 0.001 to 0.300 with an increment of 0.001 while keeping other parameters

constant. Once we obtained the best η value, it was then held constant and other parameters

such as momentum, number of epochs, and number of hidden layer neurons were changed

to find their optimum parameters.

The performance of the trained model on the test dataset is a good indication of its

capacity to predict out-of-sample events of the study domain. Thus, an important step in the

ANN model development process is the splitting of available data into training, test and

validation datasets. We used the leave-one-out cross-validation technique, in which the

whole dataset was divided into 225 samples, 224 samples were used for training and one

sample for testing. This process is repeated 225 times, with each sub-sample used exactly

once as the testing sample.

2.4 Datasets

The critical point data for all the studied molecules were collected in a matrix, D, of

dimension (225 x nc), where nc is the number of critical point data per molecule. Thus, each

row of D contains critical point data (di) of one molecule. A total of nine separate datasets,

with each dataset containing critical point descriptors for all 225 molecules, were used to

train ANNs to predict 13C chemical shifts, C=O stretching frequencies, and the interaction

energy values. The nine datasets include three of each of the following: bond critical points
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(BCPs), Laplacian critical points (LCPs), and combined (BCP and LCP) datasets. Each of

the previously mentioned datasets also contains one of the following: a class label for

experimental 13C chemical shifts, C=O stretching frequencies, or theoretical interaction

energy values. A sample BCP and LCP input data of 2-methylbutanal molecule with 13C

chemical shift value as a class label can be seen in Tables 1 and 2, respectively.

Figures 11 and 12 show the two kinds of critical points considered in this study. Figure

11 contains the molecular graph of 2-methylbutanal in which the bond critical points in the

gradient field of ρ are denoted as green spheres. The critical point properties around the C1

atom of the C1-O2 carbonyl group are collected in Tables 1 and 2.

Table 1: Sample BCP input data for 2-methylbutanal

Distance (au) from

carbonyl C
λ1(au) λ2(au) λ3(au) ρ(au) ∇2ρ(au) 13C shift (ppm)

0.78 -1.050 -1.020 2.050 0.405 -0.019 205.2

1.48 -0.497 -0.473 0.361 0.253 -0.609

1.36 -0.728 -0.722 0.511 0.273 -0.939

Table 2: Sample LCP input data for 2-methylbutanal

Distance (au) from

carbonyl C
λ1(au) λ2(au) λ3(au) ρ(au) ∇2ρ(au) 13C shift (ppm)

1.035 -1.084 -0.663 9.877 0.046 0.135 205.2

1.035 -1.120 -0.669 9.839 0.050 0.135

0.954 4.769 5.138 25.911 -1.085 0.298

0.980 6.479 6.729 18.622 -1.213 0.299

0.984 5.229 9.111 17.177 -1.069 0.433
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Figure 12 shows (3, -1) critical points in the gradient field of ∇2ρ located above and

below the C1 atom in pink spheres and (3, +3) critical points in blue sphere around the C1

atom. Only these types of critical points were used in this study because of the following

considerations.

The topology of the Laplacian of the charge density allows one to recover the chemical

model of localized bonded and non-bonded electron pairs and to characterize local

concentrations and depletions of the electronic distribution. A local charge depletion in the

valence-shell of an atom is defined by a minimum in ∇2ρ , a (3, -1) critical point. Whereas a

local charge concentration within the VSCC is defined by a (3, +3) critical point [105]. It

has already been shown that the regions of local charge concentration and depletion as

defined by the Laplacian of ρ , correctly predict the sites of electrophilic and nucleophilic

attack, respectively, in a variety of systems [259, 260]. Thus, we made an attempt to use

these critical point properties of carbonyl compounds to train our ANN for predicting the

spectroscopic properties and interaction energies.

Figure 11: Molecular graph of 2-methylbutanal
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Prediction Performance

In our study, the performances of ANNs were measured in terms of the mean absolute

error (MAE) and mean absolute percent error (MAPE) as follows:

MAE =
1
n

n

∑
i=1
|Pi−Ai| (16)

MAPE =
1
n

n

∑
i=1

|Pi−Ai|
Ai

×100 (17)

In the above-mentioned equations, n represents the number of samples in the dataset, Ai

denotes the actual value and Pi represents the predicted value obtained from the ANN

output.
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CHAPTER 3

Results and Discussion

3.1 Using Artificial Neural Networks in Conjunction with Topological Analysis of

Charge Distributions

The primary over-arching goal of this dissertation is to test the hypothesis that

topological properties of the electron density of molecules can be used to train artificial

neural networks (ANNs) to efficiently predict a broad range of molecular properties. As a

proof of principle, we have investigated the abilities of bond critical point data, as well as

key charge density descriptors based on topological features in the Laplacian of the charge

density [105], to train ANNs for the prediction of spectral properties and interaction

energies of carbonyl compounds. In addition to predicting spectral and interaction

properties, the secondary over-arching goal of the dissertation is an attempt to gauge the

different information content in these two scalar distributions; ρ and ∇2ρ . This goal will be

discussed in Section 3.3.

Within the context of the Quantum Theory of Atoms In Molecules, QTAIM, the

properties of electron density (ρ) contains the necessary and sufficient information to define

molecular structure and characterize bonding properties [261, 262]. The topological theory

of molecular structure has demonstrated connection between topological properties of a

molecule’s charge distribution and the fundamental concepts underlying the idea of

molecular structure, and it has also added the mathematical power of René Thom’s

Catastrophe Theory to describe the possible mechanisms of structural change [261]. As

mentioned earlier, QTAIM defines molecular structure and its change in terms of the

morphology of the molecular charge distribution. From this topological definition of

molecular structure, one can also obtain the bond paths which connect the atoms [93]. The

characterization of the bond paths (which are also called atomic interaction lines in cases

where non-covalent interactions exist) using well-defined properties such as ellipticity and



69

bond-bending, adds further correspondence between topological properties of molecular

charge distributions and familiar chemical models such as π-bonding delocalization and

bond strain [100, 263].

The properties of the electron density evaluated at the BCP, including the density,

Laplacian, and distance to the nuclei have all been used previously to extract chemical

information on the bond such as its strength, order, polarity etc.. According to Bader et al.,

the properties at this point can summarize the interaction between two atoms. For example,

the strength of the bond or bond order can be correlated with the magnitude of the electron

density at the BCP [100]. In general, the electron density at the BCP for covalent bonds is

more than 0.20 au, but less than 0.10 au for closed shell interactions including ionic, van der

Waals and hydrogen bonding. A study by Grabowski [264] evaluated the properties at BCPs

in systems with a large variety of hydrogen bonding interactions ranging from extremely

strong to extremely weak interactions in various chemical environments. He found that

these parameters correlate well with the strength of the bond.

One of the most valuable electronic properties at the BCP is the Laplacian of electron

density, ∇2ρ(r). The sign of the Laplacian of ρ(r) determines regions of electronic charge

concentration (∇2ρ(r) < 0) and depletion (∇2ρ(r) > 0). Covalent bonds are commonly

associated with the overlap of the valence shell charge concentrations of bonded atoms,

producing an accumulation of charge at the BCP, thus represented by a negative ∇2ρ(r).

On the other hand, in closed-shell interactions (ionic bonds or hydrogen bonds or van der

Waals), the interaction occurs between two electronic systems with the outermost electronic

shells filled, and these are characterized by a positive ∇2ρ(r).

The Laplacian of the charge density also plays an important role throughout the QTAIM,

being secondary only to the central role of the charge density itself. As shown in Figure 13,

it recovers the shell model of electronic structure in terms of a corresponding number of

pairs of alternating shells of charge concentration (∇2ρ(r)< 0) and depletion (∇2ρ(r)> 0)
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associated with each quantum shell. The topology of the Laplacian of the electron density

does provide a faithful mapping of the bonded and non-bonded electron pairs as anticipated

on the basis of the Lewis model. For any given Lewis structure, the successful and widely

used VSEPR model predicts the arrangement of shared and unshared electron pairs around

the atom. Bader et al. [105], Bader and MacDougall [108], and MacDougall [109] in the

studies of molecular geometry and reactivity observed that the number and relative sizes of

the maxima in the VSCC of bonded atoms, as determined by finding the extrema in the

Laplacian, correlate directly with the localized bonded and nonbonded pairs of electrons

evoked in the Lewis and Gillespies’s VSEPR models of the electronic structure of the atom.

Thus, one can conclude that the Laplacian of the charge density does provide the physical

basis for the Lewis and VSEPR models [265, 93]. The properties of the Laplacian of charge

density reproduces not just the geometrical aspects of the Lewis model, but additionally

recovers a physical basis for his definition of acid-base reactions. A nonbonded charge

concentration is a Lewis base or nucleophile, while a charge depletion is a Lewis acid or

electrophile. In the event that two reactants approach each other in a Lewis acid-base-type

reaction, their relative orientation can be anticipated by corresponding topological features

in the Laplacian functions of their electron density. Charge concentrations of one molecule

can be considered to be complementary to depletions of the other. As a result, local features

of the Laplacian can be utilized as probable descriptors and predictors of molecular

recognition and complementarity.
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Figure 13: A contour diagram of the Laplacian distribution in formaldehyde. The dashed
(solid) lines denote regions of charge concentration (depletion). Starting at a zero contour,
contour values change in steps of ±2x10n, ±4x10n, and ±8x10n with n beginning at -3 and
increasing in steps of unity. The pink spheres represent (3,-1) critical points and yellow
spheres represent (3,+3) critical points.

Molecular orbitals (in particular, the Highest Occupied Molecular Orbital, or HOMO,

and the Lowest Unoccupied Molecular Orbital, or LUMO) and their properties are very

useful and important parameters for quantum chemistry and have been extremely successful

in rationalizing trends in molecular structure and chemical reactivity [266]. The frontier

(HOMO/LUMO) molecular orbital model demonstrates the procedure in which the

molecule interacts with other species [267]. The classification of molecules as electron

donors and acceptors were first suggested by Gilbert Lewis in 1923 [102]. Accordingly,

such electron acceptors and donors are generally referred to as “Lewis acids and bases”.

Translating the idea of Lewis acidity and basicity into terms of molecular orbitals, Lewis

acids are electrophilic molecules that have a low lying LUMO, while Lewis bases are

nucleophilic and have a high energy HOMO. Koopmans’ theorem [268] suggests that the

HOMO energy is associated with the corresponding ionization potential in a molecule.

Similarly, it suggests that the LUMO energy is associated with electron affinity. This
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assumption is valid only in the context of restricted Hartree-Fock theory in which it is

assumed that the orbitals of the ion are similar to those of neutral molecule (the frozen

orbital approximation).

Local properties are greatly desirable in establishing a reactivity-oriented description of

molecular systems. Electron density distribution is essential for understanding chemical

reactivity, and nucleophilic or electrophilic attacks can be rationalized based on electrostatic

interactions. Moreover, the change in electron density under the influence of an approaching

reagent is also of major importance. In 1954 Fukui et al. [269] have observed for the first

time the importance of frontier orbitals (HOMO and LUMO) as principal factors governing

both electrophilic and nucleophilic reactions. They developed the frontier electron theory of

reactivity in conjugated molecules. This theory was successfully applied to electrophilic,

nucleophilic, and radical reactions in various aromatic and other conjugated molecules, and

simple justification for this theory was also given. This theory begins with the reasonable

idea that the less tightly bound electrons in a molecule should have greater reactivity

influence than the more tightly bound electrons.

Finally, one considers the HOMO-LUMO gap, i.e., the energy difference between

HOMO and LUMO, as a principal quantity in molecular orbital theory. The gap between

HOMO and LUMO has been used as a conventional measure of kinetic stability

[270, 271, 272]. A large HOMO-LUMO gap indicates high kinetic stability and low

chemical reactivity. Since it is energetically not favorable to extract electrons from a

low-lying HOMO or add electrons to a high-lying LUMO. From the previously given

examples in several studies [108], it was clear that the regions of charge concentration and

depletion in the Laplacian distribution correspond with the regions where HOMO and

LUMO are concentrated, respectively. It was demonstrated that the charge concentrations

determine the sites of electrophilic attack which correlate with the regions where HOMO is

most concentrated whereas the charge depletions (holes) determine the sites of nucleophilic



73

attack which correlate with the regions of space where the LUMO is most concentrated.

Molecular orbitals are mathematically arbitrary and cannot be experimentally observed.

While the Laplacian of the charge density is observable experimentally.

Information Content in the Topologies of (ρ(r)) and (∇2ρ(r))

As we have described in section 1.2, the topological properties of ρ(r) recover the

conventional network of bonds in molecules, and even some of their characteristics, such as

partial π -character; in essence the molecular structure. Whereas the topological properties

of ∇2ρ seem more closely connected to models that relate the electronic configuration and

distribution of electronic charge to the shape and reactive properties of molecules; in

essence; key aspects of the electronic structure. Molecular properties such as vibrational

frequencies and NMR chemical shifts are dependent of both molecular and electronic

structure, as does chemical reactivity. Nevertheless, it can be instructive to learn which is

dominant for a given molecular property. A second over-arching goal of this dissertation is

to employ machine-learning to evaluate the relative and relevant information content of the

topological properties of the total charge density (ρ) vs. its Laplacian distribution (∇2ρ).

3.2 Predicting Spectroscopic Properties Using Artificial Neural Networks

The carbonyl stretching frequencies are influenced by both inductive and resonance

effects. The frequency increases when electron-withdrawing substituents are added and

decreases with electron-donating substituents. Since the stretching frequencies are directly

proportional to the bond force constants, increase in wave numbers indicate higher formal

bond orders of the carbonyl bond. A study conducted by Nummert et al. have shown

that the infrared carbonyl stretching frequency of compounds is sensitive to changes in

the substituents [273]. They have inspected 22 phenyl esters of substituted benzoic acids.

For instance, it was observed that the frequency increased from 1742.6 cm−1 to 1749.0
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and 1746.9 cm−1 when substituent is an electron withdrawing groups such as CN and F,

respectively. Whereas the frequency decreased from 1742.6 cm−1 to 1741.9 and 1740.7

cm−1 when substituent is electron donating group like CH3 and NH2, respectively. The

properties of the electron density at a BCP provide information on bond order, bond energy,

and bond character [99], so we expect there to be a relation between the BCP properties and

stretching frequencies.

The 13C NMR chemical shift is the position of the signal in an NMR spectrum relative

to a standard, usually tetramethylsilane. The position of this signal is essential for structure

elucidation of organic molecules by NMR. Different chemical shifts will be observed for

different carbon-13 nuclei in the functional groups within a molecule, depending on their

bonds and the atoms attached. Electron density near the nucleus is one of the factors which

cause chemical shifts to be increased or decreased. Lower chemical shift values can be

observed when neighboring atoms have high electron density and there are electron-donors

bonded to the atom, shielding the probed nucleus from an external magnetic field. Higher

chemical shift values can be observed when the electron density near the probed nucleus

is lowered by electron-withdrawing substituents. Nummert et al. [274] performed a study

on the influence of substituent effects on the carbonyl carbon 13C NMR chemical shifts

in substituted phenyl benzoates. They found that the chemical shift value decreased when

they used electron donating substituents and the value increased with the electron donating

substituents. Since chemical shifts are dependent on the electron density, we expect these

chemical shifts will be accurately predicted when we train the ANNs with properties of

electron density; but which properties?

To test whether the critical point descriptors of the charge density and/or the Laplacian

of the charge density are relevant and crucial towards the prediction of spectral properties

of carbonyl compounds, we again used critical point descriptors as a training set in our

model. A total of 225 carbonyl compounds (see Appendix A) belonging to aldehydes,
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ketones, amides, and imide functional groups were selected, and their experimental values

of 13C chemical shifts and C=O stretching frequencies were collected from the website of

SDBS [178]. To maintain the structural diversity, we tried to include carbonyl compounds

containing several different side chains in their structure. The chemical structures of 225

molecules were obtained by varying the substituents of carbonyl compounds RCOR’. Those

substituents include electron withdrawing groups (EWGs), electron donating groups (EDGs),

and neutral atoms. Different combinations of substituents were used to build the molecules

required for our study. Some examples of EWGs include CF3, CCl3, NO2, CN, F, Cl. EDGs

include CH3, OCH3, OH, OR, and CH2. The neutral group example is H. In our study, we

have included molecules for which experimental NMR and IR values are available in SDBS.

The number of atoms in the molecules ranges from 7 to 31 atoms.

The artificial neural network (ANN) requires the numerical description of the chemical

environment of the carbon atom of interest for predicting 13C NMR chemical shifts. An

appropriate description should meet certain conditions to be considered as input data for

neural network. Thus, the input vector for each molecule should be constant in length for

describing their properties. The ANN model was developed to predict chemical properties

of carbonyl compounds based on the critical point data of charge density and its Laplacian

distribution. Considering that 225 compounds were studied in this work, the dimensions

of the data matrix D for LCP, BCP, and combined datasets are (225x30), (225x18), and

(225x48), respectively. This matrix was used as an input for the prediction of different

properties of carbonyl compounds.

As mentioned in section 1.6, there are several different parameters in ANNs that can be

adjusted to yield better predictions. In the initial artificial neural network experiments, we

used default parameters of WEKA, such as η=0.3, m=0.2, N=500, H=a. To evaluate the

ability of the model to predict spectroscopic properties, the mean absolute percent errors

(MAPEs) were used as a measure of prediction error. These errors were calculated using
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equation 17 and are presented in Table 3.
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Optimization of Machine-Learning Parameters

The fundamental issue in utilizing ANNs is the parameter tuning. However, there is no

precise method to select optimal parameters for the ANNs [55]. For that reason, we

designed a set of experiments to study the influence of different parameters on the

performance of the ANNs trained with the back-propagation algorithm: the learning rate,

momentum, number of epochs, number of neurons in the hidden layer. The learning rate

was varied between 0.001 and 0.3 with an increment of 0.001, and we have used the

following combinations of momentum, number of epochs, and number of hidden layer

neurons, respectively: (0.1-1.0:1.0), (500-3000:100), and (10-20:1). In the above-mentioned

combinations, the first two numbers show the range and last number shows the step size.

Effect of Training Data on Prediction Accuracy

The dataset contains a total of 225 carbonyl compounds among which 108 aldehydes, 86

ketones, 6 imides, and 25 amides. We performed three experiments to create different ANN

models. From these experiments, we assume that the performance of the model will be

influenced by the size of the training set and type of compounds included in the training set.

Experiment 1

Our dataset contains four types of carbonyl compounds. From this, four types of

datasets were prepared to develop the ANN models using the combination of compounds

shown in Table 4. We followed the same procedure as mentioned above to develop the

model with optimized parameters. Once the parameters were optimized, the model then

applied to the test data to predict the desired properties of molecules present in the test data.

For example, dataset 1 contains 117 compounds which include ketones, imides, and amides.

We used leave-one-out cross-validation technique, in which the whole dataset was divided

into 117 samples, 116 samples were used for training and one sample for testing. This
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process is repeated 117 times, with each sub-sample used as the testing sample exactly once.

During this process, the parameters have been optimized as in the above-mentioned

procedure. Once we obtained the network with optimal parameters, it is then applied to the

test data containing aldehydes to predict the required properties. The similar procedure was

followed for the remaining datasets in this experiment and the calculated MAPE is

presented in Table 5.

Table 4: The combination of compounds used in the dataset to create the ANN model

Datasets Compounds used to develop the ANN model Test data
1 Ketones, imides, amides Aldehydes
2 Aldehydes, imides, amides Ketones
3 Aldehydes, ketones, amides Imides
4 Aldehydes, ketones, imides Amides

Experiment 2

In this experiment we used a larger dataset to train the model compared to the other two

experiments. Here the network was trained on all four kinds of compounds. The dataset

containing 225 molecules was divided into 225 samples. Among which 224 samples were

used as a training set and one sample as a testing sample. The MAPE data are shown in

Table 5.

Experiment 3

During the process of developing the model, the ANN was trained on only one kind of

compound and predicted the properties of similar kinds of molecules only. For example,

dataset 1 contains 108 compounds which are aldehydes. We used leave-one-out

cross-validation technique, in which the whole dataset was divided into 108 samples, 107

samples were used for training and one sample for testing. This process is repeated 108

times, with each sub-sample used exactly once as the testing sample. During this process,
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the parameters are optimized as in the above-mentioned procedure. A similar procedure was

followed for remaining datasets in this experiment and the calculated MAPE data are

included in Table 5. The optimum parameters for predicting 13C NMR shifts and C=O

stretching frequencies for all three experiments are shown in Table 6.
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Table 6: Comparison of optimized parameters used in all the three experiments in the
prediction of spectroscopic properties

E
xp

1

Type Property
LCP BCP Combined

η a N b H c η a N b H c η a N b H c

aldehydes
NMR 0.016 2500 6 0.124 900 5 0.012 1000 5

IR 0.062 500 7 0.036 1900 11 0.006 500 5

ketones
NMR 0.016 500 5 0.060 1500 9 0.004 600 5

IR 0.077 800 7 0.163 3100 12 0.009 500 7

imides
NMR 0.024 600 6 0.052 3200 9 0.014 800 17

IR 0.005 1400 9 0.121 500 12 0.006 1100 15

amides
NMR 0.007 1200 6 0.067 1400 9 0.004 1100 10

IR 0.004 500 9 0.031 500 5 0.004 600 11

E
xp

2 NMR 0.019 900 5 0.041 2500 17 0.006 2300 10

IR 0.040 500 6 0.052 2500 16 0.014 500 11

E
xp

3

aldehydes
NMR 0.012 500 8 0.009 500 10 0.006 500 11

IR 0.004 1200 7 0.045 2500 9 0.009 500 7

ketones
NMR 0.012 500 6 0.011 2100 4 0.004 800 8

IR 0.008 600 5 0.013 1000 5 0.004 600 10

imides
NMR 0.023 500 4 0.021 500 6 0.037 500 1

IR 0.001 500 4 0.027 500 5 0.015 500 1

amides
NMR 0.148 700 4 0.057 1300 6 0.042 500 6

IR 0.001 500 1 0.008 500 5 0.001 500 2

aLearning rate
bNumber of epochs
cNumber of hidden neurons
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Discussion of The Results

As the first step, we trained our ANN model using default parameters (η=0.3, m=0.2,

N=500, and H=a) to predict 13C NMR chemical shifts of carbonyl compounds. Producing

an optimal ANN model is an important part of modeling with artificial neural networks,

which is needed to harness the maximum benefit from the computational intelligence of the

network. The accuracy of the results improved for all the three experiments after tuning the

parameters (Table 6) when compared to using default parameters of the network. We

observed that the accuracy of the models improved with optimal parameters compared to

default parameters of the network. For this purpose, we performed several experiments by

changing the parameters one at a time as discussed in section 2.3. After tuning the

parameters, the models produced a maximum of 37% reduction in the MAPEs when

compared to ANN trained using default parameters.

To investigate whether the accuracy of the model is influenced by the type of molecules

included in the training set, the ANN was trained using three different ways (see section

3.2). After comparing the MAPEs of three experiments, we found that the models

performed better when the ANN was trained on all four kinds of carbonyl compounds

before applying on the test data. We observed higher MAPEs in experiment 1, where the

model was applied on test data containing new kind of carbonyl compounds which were not

seen by the network as compared to the other two experiments. After comparing the results

between the three experiments, experiment 2 gave smaller MAPEs of 1.54, 1.45, and 1.38

for predicting 13C chemical shifts when the ANN trained on BCP, LCP, and combined

datasets respectively. A slightly higher MAPEs were obtained when ANN was trained using

BCP datasets in the predictions of NMR shifts. We also observed that in most cases

combined dataset improved the prediction accuracy of the network. As we expected, the

LCP dataset provided more accurate results for predicting 13C chemical shifts, since the

values of chemical shift depends on the chemical environment of a given nucleus and this
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information is well captured in the Laplacian of the charge density. These findings are

comparable with other ML models developed specifically for predicting chemical shifts.

For example, the Meiler et al. group [187] used artificial neural networks for predicting 13C

chemical shifts trained on 1.3 million molecules and achieved a root mean square deviation

(RMSD) of 1.3 ppm. They have developed descriptors based on the atom types and the

chemical environments of all atoms numerically. Atom types were determined using their

element number, hybridization state, and number of bonded hydrogen atoms. The chemical

environments of carbon atoms were described by sorting the atoms in spheres and counting

the occurrence of every atom type in each sphere. In our approach we achieved RMSDs of

4.0 ppm, 4.4 ppm, 3.9 ppm, when we used LCP, BCP, and combined datasets respectively to

train the ANN. These results are obtained using only 225 molecules.

For the second test we trained our ANN on the same datasets (BCP, LCP, and combined)

for predicting C=O stretching frequencies. We obtained similar results in terms of

prediction accuracies as observed in NMR chemical shift predictions. The MAPEs were

reduced by using optimized parameters when compared to default parameters. For example,

the network with the tuned parameters produced a maximum of 28% reduction in the

MAPEs when compared to ANN trained using default parameters. In experiment 2 for

predicting C=O stretching frequencies, we got MAPEs of 0.53, 0.56, and 0.54 when the

model trained using BCP, LCP, and combined datasets, respectively.

Summary

In this study, the employed ANN model was able to predict spectroscopic properties

such as C=O stretching frequencies and 13C NMR chemical shifts of carbonyl compounds

with acceptable accuracy. The NMR chemical shifts were predicted more accurately when

we used the Laplacian critical point descriptors as compared to charge density only

descriptors. For C=O stretching frequencies, bond critical point descriptors provided more
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accurate results in comparison with the Laplacian critical point descriptors. This intuitively

supports the initial hypothesis that different sets of topological data may be better suited for

predicting different molecular properties. Stretching frequencies are primarily associated

with molecular structure, as BCPs are defined by topological properties in ρ(r). Whereas

chemical shifts are primarily associated with electronic structure, which are coarsely related

to topological properties of ∇2ρ(r). Since neither of these types of molecular properties are

exclusively related to molecular or electronic structure, it makes sense that the combined

dataset gave more accurate results compared to when we used separate datasets. These

applications of ANNs have shown that it is possible to predict spectroscopic properties with

a minimum amount of input data (30 numerical descriptors for LCP and 18 for BCP). In a

study conducted by the Meiler group [187] for predicting NMR shifts using ANNs, the

network was trained on 180 descriptors. For future studies, the accuracy of our model can

be improved by providing more topological data which can easily be added to our current

descriptors. Apart from adding chemical insight into the information contained in different

types of experimentally accessible topological data, a significant reduction in prediction

times is also potentially a major benefit of the current method. After creating the ANN

model by training only once, which takes about few hours on a computer with i7 processor

and 8 GB RAM, they run a prediction about several times faster (within few seconds) and

independent of direct access to the datasets.

Another important conclusion which can be drawn from ML models is recognizing that

the important descriptors strongly correlated with different spectroscopic and chemical

properties. In this study, both BCP properties and the LCP properties are used and

compared to one another. After reviewing the results in terms of MAPE, BCP properties

have highest contribution to predicting C=O stretching frequencies, whereas the Laplacian

critical points have highest contribution to predicting 13C chemical shifts. In conclusion,

this study shows that ANN trained on QTAIM properties is potentially applicable for the
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fast and reliable prediction of spectroscopic properties of carbonyl compounds.

3.3 Predicting Covalent and Van der Waals Interaction Energies Using ANNs

The predictions of spectral properties were a proof-of-principle experiments, whereas

the intermolecular interactions for large molecules is the major goal of our study as it plays a

key role in computational chemistry applications in the drug design process. The prediction

of protein-ligand binding energies is of central interest in CADD, but it is still difficult to

accomplish a high degree of accuracy. Here, we report the prediction of both covalent and

van der Waals intereaction energies using ANNs trained on ρ and/or ∇2ρ critical point

descriptors. A nucleophilic addition reaction between a fluoride ion and a carbonyl group was

taken as an initial model for a chemical interaction in our investigation, and the interaction

energies (4Eint) were calculated for both strong (covalent bond formation) and weak (van

der Waals) interactions for our set of 225 carbonyl-containing molecules. Here we used a

supermolecular approach [275] in calculating4Eint values between carbonyl-containing

molecules and fluoride ion using the following equation:

4Einteraction = ECC + F−−ECC−EF− (18)

where ECC + F− , ECC, and EF− are total energies of the interacting reactants (carbonyl

compound+F− complex) and non-interacting (free), carbonyl compound, and nucleophile

(fluoride ion), respectively.

Initially, acetone interacting with fluoride ion was taken as an example for finding the

initial coordinates to be used in calculating interaction energies for 225 molecules in our

dataset. For this, the equilibrium geometry and relative energy of each isolated monomer,

and the total energy of the complex, were obtained via geometry optimizations at B3LYP,

HF, and MP2 levels of theory [276] using the 6-31+G* basis set [251, 252, 253]. We took

the bond distance of C1-F1 (RC1−F1) as the reaction coordinate, while the remaining
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parameters of the complex geometry were optimized (keeping the coordinate RC1−F1 fixed

at different values in the range of 1.3 ≤ RC1−F1 ≤ 3.5 Å with the step size of 0.1 Å). At

each RC1−F1 coordinate, both the F1-C1-O1 angle of 90◦ and F1-C1-O1-C2 dihedral angle

of 90◦ were used as starting parameters for geometry optimizations (Figure 14). These

partial geometry optimizations of the complex (CC+ F−) were also performed at B3LYP,

HF, and MP2 levels using the same 6-31+G* basis set. Figure 15 shows the interaction

energy plotted as a function of the distance between carbonyl C and fluoride ion.
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Figure 14: Geometry used in the current study
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Figure 15: Interaction energy curve of acetone and F− interaction calculated with the
6-31+G* basis set using different levels of theory.
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From these calculations we observed two stationary points at the C1-F1 distances in the

neighborhood of 1.7 Å and 3.4 Å. The optimized geometries around 1.7 Å distance all show

that the angle of the nucleophilic approach (∠FCO) is around 111 ± 1 ◦, as shown in

studies by Burgi and Dunitz [111]. They have analysed six crystal structures with

intramolecular interactions between N and C=O. The angle of 107± 6◦ was observed in

their studies. The long range interactions all occurred at a nucleophilic approach with an

average angle of 146 ± 1 ◦. The product formed between the carbonyl C and fluoride ion at

a bond distance of 1.7 Å is conventionally called a “covalent interaction” (see Figure 16),

even though the properties at the BCP are characteristic of a closed-shell interaction. This

has been observed for most “covalent” bonds to fluorine, as in F2 and CH3F [108, 98]. The

other equilibrium geometry, formed at 3.4 Å, is a van der Waals interaction (see Figure 17).

Figure 16: A contour diagram of the Laplacian distribution of covalent interaction between
acetone and fluoride ion. The fluoride ion approaches C=O bond axis at angle of 110◦. The
dashed (solid) lines denote regions of charge concentration (depletion). Starting at a zero
contour, contour values change in steps of ±2x10n, ±4x10n, and ±8x10n with n beginning
at -3 and increasing in steps of one.
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Figure 17: A contour diagram of the Laplacian distribution of the van der Waals interaction
between acetone and fluoride ion. The fluoride ion approaches C=O bond axis at angle of
145◦. The dashed (solid) lines denote regions of charge concentration (depletion). Starting
at a zero contour, contour values change in steps of ±2x10n, ±4x10n, and ±8x10n with n
beginning at -3 and increasing in steps of one.

For calculating covalent 4Eint values of 225 molecules in the dataset, based on our

initial studies for acetone reported above, we started our calculations using the F1-C1 bond

distance of 1.7 Å, the F1-C1-O1 angle of 110◦, and the F1-C1-O1-C2 dihedral angle of 90◦

as a starting geometry. Then, full geometry optimizations were performed. For calculating

van der Waals 4Eint values, and again based on our initial studies for acetone reported

above,we used the F1-C1 bond distance of 3.4 Å, the F1-C1-O1 angle of 145◦, and the

F1-C1-O1-C2 dihedral angle of 90◦ as a starting geometry. These energies were extracted

using an in-house Python script and used as a class label in the dataset to train the ANN.

The BCP, LCP, and combined datasets used in this work are the same as those that were

used to develop models for predicting spectroscopic properties (Section 3.2), but here the

theoretical interaction energy is used as training property (class label). We performed the

same three experiments mentioned in the section 3.2. For all three experiments, the mean
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absolute errors (MAEs) were calculated using Equation 16. The MAEs of predicted4Eint

values are summarized in Table 7. These results were obtained with the default parameters,

η=0.3, m=0.2, N=500, H=a to train the ANN. Among these three experiments, the second

and third experiments performed well in comparison to the first experiment. To improve

the accuracy of predictions, we again performed several experiments as described in the

Section 3.2 by changing the parameters of the ANN one at a time. The obtained results are

presented in Table 8. Also, the optimum parameters obtained after tuning the network are

shown in Table 9.

We also compared these results in terms of MAPEs. The best MAPEs for predicting

covalent and van der Waals 4Eint values obtained in experiment 2 are 6.4 % and 9.2 %

when the network was trained on LCP and BCP datasets, respectively. In general, the

interaction energies are much harder to predict than spectroscopic properties. For instance,

Hartree-Fock overestimates the binding energy of H2 by more than 100%!

In the study by Jenness et al. [277], the authors evaluated various theoretical approaches

for calculating 4Eint values between a water molecule and a series of linear acenes,

particularly benzene, anthracene, pentacene, heptacene, and nonacene. They explored

long-range interactions between these molecules. The theoretical methods included in their

study are DFT-SAPT [278], Grimme et al. [279, 280] schemes of DFT-D2, DFT-D3, and

the van der Waals density functionals (vdW-DF) of Lundqvist et al. [281]. These results

were compared to those from wave function-based methods such as second-order

Møller-Plesset perturbation theory (MP2) [282], coupled-cluster with single, double, and

perturbative triple excitations (CCSD(T)) [283, 284, 285], and the spin-component-scaled

MP2 (SCS-MP2)[286]. All the calculations were carried out with the MOLPRO ab initio

package (version 2009.1)[287]. The calculated interaction energies between water and, the

listed acenes, using the DFT-SAPT method, are -3.20, -3.34, -3.21, -3.21, and -3.21

kcal/mol, respectively. The mean absolute errors relative to the DFT-SAPT method were
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calculated for all the other methods. For example, MAEs of 1.76, 0.38, 3.41, 0.16, 3.44,

0.03, and 0.14 kcal/mol were obtained for the same systems using PBE, PBE+D2, revPBE,

revPBE+D2, BLYP, BLYP+D2, and vdW-DF1 methods, respectively. In our study, on all

225 carbonyl compounds, we obtained MAEs for predicted van der Waals4Eint values of

4.80, 5.06, and 4.78 kcal/mol when we trained ANN with BCP, LCP, and combined datasets,

respectively. In an another study, Bose and co-workers [288] employed ML to predict

4Eint values in water clusters. In the case of water dimer and trimer 4Eint values, the

reported root mean square errors (RMSE) are 0.12 and 0.34 kcal/mol, respectively. Our

optimal predictions for van der Waals 4Eint values have RMSEs of 6.46, 6.53, and 6.17

kcal/mol when we trained ANN on BCP, LCP, and combined datasets, respectively.

Interpretation of Results

In this part of our investigation, we again found support for our initial hypothesis that

different types of topological data are better-suited to predicting certain molecular

properties. In this case,4Eint values, which are intuitively related to models of electronic

structure (such as HOMO-LUMO gap, partial atomic charges, resonance etc...) are found to

be more accurately predicted by LCP properties in comparison with BCP descriptors. As

discussed in earlier studies [265], the Laplacian of electron density recovers both the

Lewis-VSPER model of electron pairs and chemical reactivity through the concept of

acid-base reaction. These discoveries are based on physical observables. Science is based

on observable things. Chemists used molecular orbital models (HOMO and/or LUMO) to

predict where the nucleophilic attack occurs. These are purely imaginary and are not

measurable. But, in QTAIM, we can use charge concentrations and depletions in the

VSCCs of the respective base and acid atoms to predict the positions of nucleophilic attack.

In our study, we are using observable properties to train the model.

It is unclear why the combined data set was not best in predicting interaction energies.
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We also found that the smaller values of learning rate coefficients provided better results.

This tells us that the network learns better when we take smaller steps to adjust the weights.

The performance of the network can be improved in several ways. In general, the ANN

will make better predictions if the network is trained well. This can be achieved by

increasing the size of the training set, or providing more information for each molecule in

terms of its descriptors. We only used topological data for a single atom. We could

augment our training data by including topological information from the nearby atoms, thus

taking into account substituent effects directly, rather than indirectly. As we have seen, the

type of descriptor is also important. There may be other types of topological data, which we

have not considered, that result in more accurate predictions of other molecular properties.

In addition, as reported by the majority of researchers in this area, non-topological

descriptors are also useful. Many of these are not experimentally observable, or uniquely

defined, such as HOMO-LUMO gaps, and they would not contribute to the second

over-arching goal of this study: assessing the informational content of different types of

topological data. The ANN performance can also be improved by changing different

parameters of the network, such as learning-rate, number of hidden layers, number of

hidden layer neurons, and number of epochs. In our study, we have improved the predicted

accuracy of the model by changing these parameters of the network.

After comparing the performance of our model in terms of MAEs with other methods,

such as first-principle electronic structure calculations and ML methods, we have noticed

that our model is in reasonable agreement with other studies. In addition to predicting

4Eint values, we are also interested in testing our model on larger systems, such as proteins

which is an important goal of computational drug design. The application of ab initio

electronic structure calculations utilizing wave function-based approaches to describe

intermolecular interactions in biomolecular systems is challenging because the systems are

large. Quantum-mechanical methods for calculating 4Eint values are computationally
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expensive and scale poorly with respect to the system size, e.g., coupled cluster singles

doubles (CCSD) scale as N6, and MP2 scales as N5, where N represents a measure of the

system size [289, 290]. For that reason, there is a need to find an alternative approach that

can provide excellent accuracy at lower computational cost and time. With this goal in

mind, in the following section we extend our study to calculation of the4Eint values within

the drug binding pocket of an enzyme.

3.4 Leveraging Machine-Learning with Small Molecules to Predict Ligand

Interactions with Large Molecules

One of the essential properties of all living organisms is the process of metabolism, by

which organic compounds are synthesized and broken down. The metabolism of a whole

cell is a remarkably complex system, yet it can be divided into subsystems and pathways,

which are comprised of multiple biochemical reactions that change one compound into

another. Metabolic reactions are like any other chemical reaction, which involve

consumption of substrates and production of products. Many essential reactions in

metabolism are too slow on their own, and to serve their biological roles these reactions

need to be sped up by biological catalysts called enzymes. For example, the enzyme

orotidine 5’-phosphate decarboxylase enhances the rate of the decarboxylation reaction of

orotic acid by 1017 times [291], otherwise it would take 78 million years to complete in

neutral aqueous solution at room temperature!

Enzymes speed up the reaction rate by reducing the activation energy, selectively

binding to the substrate, and modifying it into products [292]. Initially, the substrate binds

to the enzyme at the active site and starts the catalytic process. The active site is the specific

region of an enzyme which communicates directly with the substrate. In regular enzymatic

reactions, substrates transform to products after passing through the transition state. During

this process, the electron distribution in various chemical bonds of the substrate molecule
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are altered in a way that eventually leads to the formation of products. There are two

commonly-used models for enzyme-substrate interaction: the lock-and-key model and the

induced-fit model. In the lock-and-key model, the substrate exactly fits in the active site of

an enzyme [293]. Whereas in induced-fit model, the confirmations of both the enzyme and

substrate molecules alter upon binding of the substrate [294].

In the study of biochemical processes, understanding mechanism of enzyme-catalysed

reactions is extremely important. This knowledge helps to develop new drugs and design

novel protein catalysts. The proof-of-principle test of our ANN model for predicting

interaction energies of reacting molecules involved small molecules, which did not require

large amounts of computational time for even the most accurate ab initio method that we

used (MP2). However, calculations on enzymes containing 16,000 or more atoms at the

MP2 level of theory is computational prohibitive. In addition, anything approaching an

“exact” calculation, such as Complete active space self-consistent field (CAS-SCF), is

essentially impossible. For a “stretch-test” of the usefulness of our ANN model for

predicting interaction energies of large molecules, based on small molecules, we have

chosen to model the active site of the E. coli enzyme D-fructose-6-phosphate aldolase

(FSA) [5], which catalyzes a nucleophilic addition reaction of a carbon nucleophile (ketone)

to a carbon electrophile (aldehyde). Aldolases are lyases that typically catalyse one of the

most fundamental reactions in organic chemistry: the addition of a keto donor to an

aldehyde acceptor molecule, resulting in the formation of a new carbon-carbon bond. In

biological systems, aldol condensation and cleavage reactions play crucial roles in sugar

metabolic pathways such as glycolysis and gluconeogenesis. Glycolysis is a cytoplasmic

pathway which extracts energy from glucose by splitting into three-carbon compounds

called pyruvates, and generating energy.

The calculation of interaction energies for nucleophilic addition reactions within the

binding pocket of an enzyme is computationally demanding. CPU time for a single
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interaction energy calculation within the binding pocket of an enzyme on our VOLTRON

cluster (168 processors) can take up to 7 hours, or even days, depending on the size of the

enzyme, the level of electronic structure theory used, and the degree of statistical sampling

that is required for thermodynamic purposes. Since, we obtained promising results of

MAEs of around 3.44 kcal/mol in predicting the interaction energies of nucleophilic

addition reactions of small molecules, we attempted to apply the same methodology in

predicting interaction energies within the binding pocket of an enzyme. The ANN model

we have developed uses only very local properties that are experimentally accessible. In

future, we can easily add transferable fragment densities available at pseudo-atom databases

developed by Koritsanzsky et al. [119] to increase the speed.

In this investigation, the training data for our ANN model is limited to the topological

properties of a single atom; the carbonyl carbon. Thus, in principle, the size of the enzyme

is irrelevant to our model. The properties of the entire system are reflected in the charge

distributions of the atoms directly involved in the reaction. This is related to the

fundamental principle of DFT, in which any property of the system of interacting particles

can be obtained as a functional of the ground state density. The interaction energies are

calculated using the following method:

4Einteraction = Epocket+reactants(CC+F−)−Epocket+CC−Epocket+F−+Epocket (19)

where Einteraction , Epocket+reactants, Epocket+CC, Epocket+F− , and Epocket are the interaction

energy of the reactants in the binding pocket, total energies of the interacting reactants in

the pocket, carbonyl compound in the pocket, nucleophile in the pocket, and just the pocket,

respectively.

The molecule 3-hydroxypropanal that we are interested in studying as the substrate in

the binding pocket of the FSA enzyme is shown Figure 18. This molecule was used as a

substrate since this class of enzymes are highly selective catalysts which speed up only
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specific reactions [295]. The topological properties of electron density of

3-hydroxypropanal in the binding pocket of an enzyme were computed in terms of bond

critical points and Laplacian critical points in the VSCC of the carbonyl carbon. As

discussed in Chapter 2 and Section 3.1, this critical point data was used as test data for

predicting the interaction energies of fluoride ion and the carbonyl carbon of

3-hydroxypropanal within the binding pocket of the FSA enzyme.

Figure 18: The binding pocket of FSA with substrate 3-hydroxypropanal (H-atoms omitted)

Computational Procedure Used for the Stretch-Test

The initial coordinates for the binding pocket of the chosen macromolecule, which in

our stretch-test is the FSA enzyme, were taken from Protein Data Bank website (entry code:

1L6W) [5, 256]. In nature, this protein often has glycerol as a bound ligand, and which is

the case in the single-crystal X-ray diffraction structure used in our stretch-test [296]. In our

stretch-test model, the 3-hydroxypropanal ligand was placed in the FSA pocket by

preserving the key ligand-receptor contacts where glycerol is found in the crystal structure.

For example, one hydroxyl group in glycerol hydrogen-bonds to residues Asn 28 and Asp 6.
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We maintained the same bonding between the hydroxyl group of 3-hydroxypropanal and

these active site residues as a starting geometry similar to glycerol in the pocket.

In equation 19, the energy Epocket was obtained by performing geometry optimization of

the binding pocket while keeping the pocket cluster fixed in the experimental arrangement.

The energy Epocket+CC was obtained by performing a complete geometry optimization of

the 3-hydroxypropanal within the fixed binding pocket. During this calculation, the

3-hydroxypropanal was allowed to move, while the rest of the pocket molecules were fixed.

Because, a tradeoff between accuracy and computational cost is unavoidable, we performed

calculations for obtaining interaction energies by neglecting the conformational flexibility

of the binding pocket of protein. Typically, interaction energies calculated with such an

approach have average deviations from experiment of 2 kcal/mol or more [297, 298].

Epocket+F− was obtained following the same procedure, i.e., by placing nucleophile in the

pocket and allowing it to move, while the active-site pocket cluster was fixed. The energy

Epocket+reactants was obtained by performing geometry optimization of the reactants within

the pocket. During this calculation, the reactants were allowed to move, while the pocket

geometry was fixed. All these calculations were performed at the same B3LYP/6-31+G*

level of theory as previously mentioned in Section 3.3.

Stretch-Test Results

To explore whether the ANN model that was developed for predicting small-molecule

interaction energies can be “stretched” and used for estimation/prediction of interaction

energies of arbitrarily large molecules, instead of computing the interaction energy of the

substrate reacting with the nucleophile within the binding pocket of an enzyme using a very

expensive and time-consuming ab initio quantum mechanics, we employ our previously

described ANN. In this stretch-test, the ANN model is tested on critical point descriptors

generated when the carbonyl-containing 3-hydroxypropanal is located inside the enzyme
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pocket. Although the descriptors of the active site cluster are calculated via ab initio

methods, the ANN greatly speeds up the interaction energy predictions.

Quantum-mechanical calculations of such energies are extremely computationally intensive

jobs for most biological systems, with 10-100 thousand atoms present in a typical enzyme.

Nucleic acids, which can also be drug targets, can have billions of atoms in one

chromosome.

Just as the energy changes in chemistry are only a small fractions of the total energy of

the system, so the changes induced by the interactions between atoms in the charge density

are only small ‘ripples’ in the total density. However, these small changes are amplified and

made evident in the Laplacian of the charge density which can be extracted in terms of the

Laplacian charge density critical points. The Laplacian distribution of 3-hydroxypropanal

inside the binding pocket of the enzyme is shown in Figure 19. We can observe that most of

the bonding charge concentration is on oxygen, in addition to its lone pair concentrations. It

is also obvious that there is a substantial depletion in the regions above and below the

carbon. A nucleophile can find facile reaction, attacking the carbon from above the

molecular plane. The position of the (3, +1) critical point with respect to the C=O bond axis

provides a possible angle of attack for the nucleophile of 110.2◦, which is the same angle of

approach of a nucleophile to a carbonyl found in experiment [111] and it can be observed in

Figure 20.
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For calculating interaction energy (4Eint) values between 3-hydroxypropanal and

fluoride ion inside the binding pocket of the FSA enzyme, we used a similar starting

geometry parameters as mentioned in Section 3.3. After performing the geometry

optimizations, for the covalent interaction, the nucleophile approached carbonyl C at an

angle of around 110.2◦ and at a C-F distance of 1.6 Å as shown Figure 20. In Table 10 we

compare ab initio calculated covalent interaction energy and the ANN predicted energy

when we used the three kinds of datasets (BCP, LCP, and combined) as mentioned in

Section 2.4. The predicted values were obtained when we used optimized parameters of the

network. These results tells us that the ANN trained on LCP data produced smaller errors

when compared to the other two datasets.

Table 10: Comparison of covalent4Eint in the binding pocket of the FSA enzyme

DFT/B3LYP/6-31+G*
ab initio calculated (kcal/mol)

ANN predicted (kcal/mol)

BCP LCP Combined

-22.7 -11.9 -19.7 -14.9

For calculating the van der Waals4Eint values, again we used similar starting geometry

parameters used in Section 3.3. During this geometry optimization, instead of interacting

with the ligand carbonyl, the fluoride ion nucleophile approached the carbonyl carbon of

second residue (labeled as residue-2, Figure 21) of the pocket cluster. This kind of

interactions has significance in the drug discovery process. Many enzymes modify the

mechanism by which a reaction continues by making covalent bonds to the ligand

molecules. The chemically reactive groups on the surface of the binding pocket of an

enzyme’s active site are often directly involved in converting ligands to product molecules.

There are various examples of enzyme-catalyzed reactions that undergo mechanisms

involving the formation of a covalent intermediate between the enzyme and the ligand

molecule. One familiar example is the formation of a Schiff base by the condensation of an

amine with a carbonyl. As such, we decided to design new calculations that would test the
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applicability of our model given these new constraints.

Cluster Used As A Model of the Binding Pocket

The binding pocket model contains five residues and these residues are labeled as

residue-1 through residue-5 (Figure 21). Here, we considered the whole cluster as a carbonyl

compound and tried to predict the interaction energy between the cluster and the fluoride ion.

All the residues contain carbonyl groups, however we chose the C=O group of residue-2 to

model the nucleophilic addition reaction, since this group is involved in interactions with the

ligand molecule. Before performing geometry optimizations, hydrogen atoms were added to

cap the amino acid fragments in the active site cluster. van der Waals4Eint values between

fluoride ion and carbonyl C of the pocket were calculated using the equation 20:

4Einteraction = Ecluster+F−−Ecluster−EF− (20)

where Ecluster+F− , Ecluster, and EF− are total energies of the interacting (cluster+F−

complex) and non-interacting reactants, cluster, and nucleophile (fluoride ion), respectively.

The energy of the cluster, Ecluster, was obtained from the geometry optimization of the

cluster. These calculations were carried out by keeping the whole cluster frozen except for

the C=O bond of residue-2. In order to obtain the total energy of the complex, Ecluster+F− ,

geometry optimization was performed with the whole cluster fixed except for carbon,

oxygen, and fluoride ion. The LCPs and BCPs of the carbonyl carbon were computed and

used as a test dataset for predicting the van der Waals 4Eint values. The ANN predicted

energies as compared with the calculated ones are shown in Table 11. These results show

that the BCP data is better for predicting van der Waals4Eint values and it is hard to make

any conclusions on this. Although, B3LYP is not accurate for calculating these energies, we

are not trying to predict these energies using DFT. In our study, we are trying to predict

these energies using ML trained on charge density descriptors. Future research could
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investigate whether charge density descriptors derived from functionals that are better in

predicting van der Waals energies provide a better training data for ML.

Figure 21: Labeling scheme used for binding pocket wall

Table 11: Comparison of van der Waals4Eint values between FSA binding pocket and the
nucleophile

DFT/B3LYP/6-31+G*
ab initio calculated (kcal/mol)

ANN predicted (kcal/mol)

BCP LCP Combined

-27.6 -38.6 -39.3 -42.7

Constructing Molecular Charge Densities From Databases

The QTAIM descriptors used here are often determined by experimentally via X-ray

diffraction techniques, since there are high-resolution electron charge density studies on

numerous crystal structures, and Bader’s QTAIM theory is often applied to extract important

chemical information. This has grown into a new area of research termed “Quantum

Crystallography” [299, 300]. The term “quantum crystallography” was first introduced
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by Massa, Huang, and Karle in 1995 for methods that take advantage of “crystallographic

information to enhance quantum-mechanical calculations and the information derived from

them” [301]. There are conferences dedicated almost exlusively to this field, Sagamore

and European Charge Density meetings. Koritsanszky and Coppens [302], in a review

of applications of the topological analysis to high-resolution X-ray densities, have shown

numerous examples where the BCP and LCP descriptors were obtained reliably from X-ray

diffraction experiments. The experimental determination of charge density distribution is

a challenging and complex task. For instance, it is not always possible to find a crystal

good enough for such investigations. Furthermore, incomplete collection of X-ray scattering

intensities, especially at high diffraction angle, can hinder the data refinement process. For

these and other reasons, such as high-temperature conditions, diffraction data quality is

frequently not sufficient to get reliable charge density results.

Among the possible models suggested in the literature, the multipolar expansion is by

far the most selected one. According to Stewart [303], the total electron density could be

projected onto atom-centered electron density approximations (pseudoatoms). Later, the

development of the popular Hansen-Coppens (HC) formalism [117] offered highly effective

tools to extract accurate charge density distributions from high-resolution experimental

X-ray and electron diffraction data. In the Hansen-Coppens formalism, the atomic electron

density is divided into three components

ρκ(r) = Pcρc(r)+Pvκ
3
ρv(κr)+

lmax

∑
l=0

κ
′3Rl(κ

′
r)

l

∑
m=0

Plm±dlm±(θ ,φ) (21)

where ρc and ρv are the spherically-averaged core and valence electron densities, respectively.

The parameter κ represents the contraction or expansion of the spherical valence shell. The

last part indicates the aspherical contributions to the valence density (deformation density).

The parameter κ
′

represents the contraction or expansion of the deformation functions.
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The valence deformation density is expanded in density functions made up of a radial part

Rl(κ
′
r) and the density-normalized spherical harmonic functions dlm(θ ,φ).

Due to systematic experimental errors, constraints in multipole pseudoatom model,

or lack of precise “phase angle” for scattered radiation, as well as large unpredictability

of hydrogen atom positions from thermal motion, the confidence in experimental charge

density might be compromised [304, 305, 306]. This is particularly problematic in the case

of macromolecules, which, as discussed above, has great importance from biological point

of view. Due to the much larger number of electrons, they are generally also harder to

model using computational methods. Consequently, an effort was undertaken to determine

whether it was possible to reproduce the charge density of larger systems based on the

rapidly expanding number of high-quality data sets for an ever increasing database of

small molecules, that could serve as a giving the starting point for assessing electrostatic

properties and topological analysis of new molecules with limited data. One solution

came in 1991, when Brock et al. [307] explored the transferability of atomic multipolar

parameters (pseudoatom-based models) between various molecules. Indeed, the impetus

for this transferability of models of atoms, and fragments of molecules, is rooted in the

very nature of organic chemistry, where functional groups are presumed to have largely

transferable properties between molecules in a given class of compounds, such as carbonyl

compounds, gave the idea that atoms under identical chemical conditions frequently do not

differ much in terms of charge density description, when present in different molecules.

These perceptions started the production of databases of aspherical atom models. At

present, we have three established databases available. Volkov et al. [308, 309] developed a

considerably more modern pseudoatom database, which can be used to generate accurate

charge distributions, as well its Laplacian, from just the nuclear coordinates of an X-ray

experiment. Figure 22 presents an example, where the total charge density of the 11-mer

polypeptide cyclosporin A is accurately predicted by rapidly construction, starting only



110

from nuclear coordinates and the atomic database. No ab initio calculation was required

to obtain the Laplacian distribution for cyclosporin A [310]. The “holes in the VSCC ” of

carbonyl carbons as defined by MacDougall and Bader [311] can also be seen, and these

appear similar to the very accurate ab initio calculations we performed (Figure 1).
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CHAPTER 4

Conclusions

The use of artificial neural networks (ANNs) is now well-established across science,

particularly in chemistry. ANNs possess numerous advantages in terms of speed,

convenience, and suitability for circumstances in which no sufficient analytical model is

available. Use of Machine-Learning (ML) to enhance or replace conventional

quantum-mechanical calculations has been rising in the last few years. The main advantage

is that the computational cost of training a neural network is a fraction of the cost of DFT

calculations, which are in turn post-Hartree-Fock methods such as MP2, MP3, and CCSD.

With this in mind, we have proposed an ANN-based model to map a relationship between

QTAIM descriptors and spectroscopic properties and interaction energies of carbonyl

compounds in aldehydes, ketones, imides, and amides.

We have introduced a ML model, trained on a database of a small number of key

electron density properties for few hundreds of carbonyl group containing molecules. Our

model predicts spectroscopic properties and interaction energies with surprising accuracy,

given the small set of training data per molecule, compared to the thousands of integrals that

must be calculated in any ab initio method. In this study, ANNs trained on two kinds of

descriptors to select the optimal ones for predicting each property. Electron density bond

critical point descriptors and topological features of the Laplacian of the charge density

distribution were used to train the model. We find that our ML approach is able to predict

C=O stretching frequencies, NMR shifts, and interaction energies of various carbonyl

compounds in a highly reliable manner. The excellent accuracy is combined with high

computational efficiency, reducing the overall computation time by several orders of

magnitude. With extensive experiments, for predicting C=O stretching frequencies and

NMR shifts, our best models produced mean absolute percent errors of 0.52 and 1.45 when

the models were trained on LCP and BCP datasets, respectively. We also found that smaller
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learning rates produced better results.

Our model produced mean absolute errors of 3.5 kcal/mol and 4.8 kcal/mol for

predicting covalent interaction energies and van der Waals interaction energies when we

trained our ANNs on combined datasets. Thus, the presented model could be efficiently

employed for predicting spectroscopic properties and interaction energy values (4Eint) that

we are looking for. In this proof-of-principle investigation, we have studied spectroscopic

properties and 4Eint values of smaller chemical systems containing less than 30 atoms.

However, much larger systems can be handled by our ML approach at little additional cost.

Furthermore, we demonstrate the ability of ANNs to selected properties of macromolecules

based only on the information contained in single atom. For a “stretch test” of performance

of our ANN model, we obtained an absolute error of 3.1 kcal/mol while predicting the

covalent interaction energy for a nucleophilic addition reaction between 3-hydroxypropanal

and fluoride ion within the binding pocket of the D-Fructose-6-phosphate aldolase enzyme.

This error can be reduced in future studies by increasing the size of the dataset or by

including more descriptors of the neighboring atoms. The above findings are not restricted

to the predictions of the studied properties, but can also be applied in a broader sense.

Finally, the present research confirms the fact that ANNs can be trained from a modest

amount of data to accurately predict the required properties. We believe that we can

improve this model further by increasing the size of the dataset or by including more

descriptors. Current work is underway to expand and test our ANN approach for the

prediction of NMR shifts, C=O stretching frequencies, and4Eint values with an expanded

set of chemical descriptors, if necessary, to obtain results with greater accuracy. We believe

that the proposed method can also be extended to other functional groups. In this study, as a

proof-of-principle we have selected fluoride ion as a nucleophile. However in future studies,

we can apply the same methodology for other nucleophiles by incorporating their LCP

descriptors in the dataset. A natural extension to this work can be creation of a database
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containing both the BCP and LCP descriptors of atoms from various functional groups.

Using the database, the required ANN models can be developed for the prediction of both

spectroscopic properties and4Eint values.
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