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ABSTRACT 

 

This thesis presents work on a human following robot for detecting falls in the home of 

the elderly. The goal is to have a robot that can detect a human, follow the human in a 

cluttered space, and determine when the human falls. A Raspberry Pi based Robot known 

as Fall Detection Robot (FADER) that had been developed in the Real-time and Embedded 

Control, Computing, and Communication (REC3) Lab at Middle Tennessee State University 

is used, and a number of adjustments are made to its design including adding a Pi Camera 

and an Arduino microcontroller board. Computer vision deep learning-based object 

detection is used as the means of detecting the human, and linear regression and 

threshold-based algorithms are used to estimate the distance to the human, navigate and 

to determine falls. The advantages of using FADER for fall detection include its being 

mobile, the user not being required to be involved for the technology to work, and its 

being non-invasive with respect to the user’s body. Furthermore, FADER is low-cost and 

easily manufacturable. Results show that the modified FADER functions with a high 

precision of 100% but low sensitivity of 42%.  
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CHAPTER I: INTRODUCTION 
 

Human life expectancy has been on the increase around the world[1], [2]. Japan, for 

example, in 2013, achieved a life expectancy of “80.1 years for men and 86.4 years for 

women”[3], which was the “. . .world’s longest. . .”[3].  Furthermore, it has been shown 

that from 1950 to 2010 the survival rates for people aged from 60 -80 years was 

accelerating [4]. In the US, it is stated that the number of older adults will grow “from 35 

million in 2000 to an estimated 74 million in 2030”[5]. Whilst a lot of the aged or aging 

population live with family members or in retirement/nursing homes, there are some who 

also live alone. In the US, “12 million seniors live alone”[6] Furthermore, falls are known 

to occur. In fact, it has been shown that “Yearly incidence of falls among the elderly 

population aged over 65 years is 30-50% globally” [7]. In the US, there are so many  falls 

every year that result in a total cost of 34 Billion Dollars[6].  When an elderly person lives 

with family or in a nursing home, falls can be quickly detected, and they can get help. 

However, in cases where they live alone, help may not be forthcoming for a long time. 

Yet, medicine says that the best time for an injured person to get help is within the first 

hour after the injury occurs: also known as the golden hour. Therefore, there is a need to 

constantly monitor the state and being of elderly members of the population in a way 

that also does not contravene their privacy.  Our approach is to develop a human-

following robot that can track and follow the elderly in their homes, can detect if they fall 

and can then signal for help.  
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 There are a number of options that have been developed or are being developed to 

monitor for falls in the home of the elderly. Such options include fall detection using 

wireless signals in the home, and fall detection using sensors on the body of the elderly 

person. Sensors on the bodies may be invasive and require the participation of the elderly. 

On the other hand, using wireless signals in the homes of the elderly have been shown to 

have low accuracy and are non-social. We have chosen to use a following robot because 

it is non-invasive with respect to the body of the elderly person. Furthermore, the robot 

can be non-participatory for detection and tracking. By ‘non-participatory,’ we mean that 

it does not require any action on the part of the person in order for it to carry out its 

monitoring. Moreover, the robot is portable. In this approach, computer vision, 

specifically object detection is used to detect and then follow the human being. First, work 

was done on the control and navigation of the current mobile prototype in a one-

dimensional(1-D) space using object detection. This was done with deep learning running 

on the Raspberry Pi and using the Raspberry Pi camera. This allows the robot to detect 

objects and then move towards or away from them. Furthermore, in moving away from 

a target(person), the robot might back up close to another object, e.g., wall, thus 

preventing proper avoidance. The solution to this is to use an ultrasonic Ping)))TM sensor 

to avoid the robot hitting the object. 

 The general scope of this thesis is to develop a robot to detect, track and follow a human 

in a cluttered home environment. Our goals are met when the robot can detect humans, 
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navigate and follow a human, avoid obstacles/objects in the space, detect a human fall, 

and can communicate when the fall is detected.  

The rest of the thesis is divided into four chapters. A review of some previous work in 

both robotics and fall detection is done in Chapter 2. Chapter 3 covers the methodology. 

The Rapsberry Pi and Arduino based Fall Detection Robot (FADER) uses computer-vision 

based deep learning object detection to detect a human in a space and then follow the 

person. Distance estimation, one-dimensional and two-dimensional navigation and fall 

detection are all covered in this chapter. Chapter 4 give the results from both our 

preliminary and extended laboratory tests, evaluates them using performance measures 

and discusses the implications of our results. Chapter 5 concludes the thesis with future 

work. 
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CHAPTER II: LITERATURE REVIEW 

 

This thesis is about a mobile robot. The Merriam-Webster dictionary defines ‘Robot’ as 

“a machine that resembles a living creature in being capable of moving independently (as 

by walking or rolling on wheels) and performing complex actions (such as grasping and 

moving objects)”[8]. The word ‘robot’ was first used by the playwright Karl Capek in his 

play “R.U.R.,” (translated as Rossum’s Universal Robots), which premiered in 1921[9], 

[10]. Another recent definition that emphasizes embodiment[10] states that a robot “is a 

physically embodied artificially intelligent agent that can take actions that have effects on 

the physical world”[11]. While there are so many discussions today around what is and 

what is not a robot, these definitions are useful for our considerations. 

We see this work as occupying the intersection of a number of fields, including social 

robots, human following robots, and robots in the household. We shall discuss these fields 

and review some works in them next.  

 

A. Social Robots 

The field of social robots deal with robots that are in the household and interact with 

humans[12]. This field is increasingly under consideration, especially with respect to two 

aspects of our population: children and the elderly. Social robots are being viewed for 

opportunities around education and learning for children[13], and also for care, 

community, and companionship for the elderly[14], [15].   
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B. Human Following Robots 

Human following robots are currently being used in a number of areas in our world today 

as well as being proposed for use in other sectors too. These sectors include service areas, 

household, travel, and shopping to name a few. The key issues to consider in a human 

following robot include detecting the target person, preventing permanent loss of the 

target person, determining the distance from detected person, and navigating with 

respect to the target person. Research in human following robots often works on one or 

more of these issues. We would review some of these research works next.  

In 2015,  [16] in their work showed that they had developed a human following robot that 

used a laser range finder to detect the shins of the person to be followed. The laser range 

finder also allowed the robot to avoid obstacles. The robot consisted of Kobuki Yujin 

robot, the Hokuyo UST-20LX laser range scanner, a Dell PC and web-camera. Tests on the 

robot in two environments resulted in an efficiency of 83% and 66% respectively. The 

second environment was more complex than the first environment.  

In 2017, [17] presented work in which they had a robotic cart that could be controlled 

using a smartphone or could automatically follow a person using ultrasonic sensors. The 

cart consisted of an Arduino Mega 2560, six HC-SR04 ultrasonic sensors, four wheels, with 

two of them controlled by 12V DC motors and the two others on springs, a Bluetooth 

module and a 2kg 12 V, 6.4 Ah battery. The maximum load the cart could carry was 80 kg 
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but at that load it travelled at a very slow speed so it was recommended to only be used 

with a load of 40 kg to allow a speed of 1m/s. The control application was coded to be run 

on the smartphone using the Android Studio and used the Bluetooth module to 

communicate with the microcontroller and to select which mode the robot operates in.  

Also in 2017, [18] presented their work on integrating a stereo vision based convolutional 

neural network (CNN) tracker with a person-following robot. The CNN tracker allows the 

robot to consistently be able to follow the target person even when the person is 

occluded or steps out of sight. The CNN was trained using RGB and stereo depth images 

and the training is done online and in real-time. The robot used was a Pioneer 3AT robot 

and two stereo cameras were used namely: Point Grey Bumblebee and ZED stereo 

camera. The robot follows the target using a PID based controller while the CNN trains 

based on images received. If the person is lost, the robot is then able to reproduce the 

expected path of the user and follow that to check and retrieve the person.    

Additionally in 2017, [19] presented their work on a new algorithm known as Selected 

Online Ada-Boosting(SOAB) that builds on the Online Ada-Boosting (OAB) algorithm and 

with images from a stereo camera which allows a mobile robot to be more resilient in 

person-following. According to the paper, using SOAB, a mobile robot can handle 

situations including the target picking or wearing a bag, sitting, squatting,  illumination, 

the target facing the side, partial and complete occlusion, the target standing beside 

someone with the same clothes or having such a person pass in front of them, and the 

target changing their appearance. The robot used in the paper is Pioneer 3AT robot which 
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was described as “a four wheeled differential drive robot with an on-board computer”. 

The paper further stated that the robot is “configured with a Point Grey Bumblebee Stereo 

Camera which acts as the only sensor on the robot to sense its environment”.  

 

C. Robots in the Household 

Robots in the household carry out a number of roles and would likely take on more diverse 

roles in the future[12]. For robots who are required to navigate in the household, one of 

the most important things is a way to plan a path. We would review some recent works 

in this area next.  

In 2017, [20] presented work in which they had implemented an omnidirectional mobile 

system that could be added to a home robot and which together with gesture recognition 

brought added function that  allowed the robot to follow the user, approach the user and 

avoid obstacles in its path.  A Kinect sensor was used. Notably, the paper stated that “the 

omnidirectional wheel used by the power subsystem can help the robot to do translation 

and spin movement that is difficult for the traditional two-wheeled robot. Among them, 

the translation movement allow the robot to avoid obstacle in the path faster and more 

flexible, while the spin movement allow the robot to lock user with large angle rotation 

when user is turning around in a short time, so that the target can always be located within 

the sight of Kinect camera.”  
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In 2018, [21]  presented their work developing an improved navigation model for a 

human-following robot indoors. Even though there was no physical testing or 

experimentation, the work uses Microsoft Robotics Developer Studio 4 (MRDS) for 

implementation and tests using Virtual Simulation Environment scenarios. The model 

uses a “depth camera, a limited array of proximity sensors and an active IR marker 

tracking system”. A fusion algorithm is used with these sensors. 

Other works related to indoor navigation for robots include [22]–[24].  

 

FALL DETECTION 
 

A fall can be defined as “an unexpected event in which the participant comes to rest on 

the ground, floor, or lower level”[25].  One can classify falls into two groups: fatal and non-

fatal. Factors that increase the risk of a fall include age[25]. Thus, the older a person is, 

the more they are at the risk of a fall[26]. In fact, the “Yearly incidence of falls among the 

elderly population aged over 65 years is 30-50% globally”[7]. On the other hand, human 

life expectancy is increasing globally. From 1950 to 2010, the survival rates for people 

aged from 60 -80 years was accelerating and the percentage of people aged 65 and older 

is expected to reach 21% by 2050 [4], [27]. Therefore, it is expected that an increase in 

life expectancy would be accompanied by an increased risk of falls.  

In the US, statistics echo the global trend. According to the CDC, in 2017, there were 

36,338 deaths due to unintentional falls[28]. Of these, 31,190 (approximately 86%) were 
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aged 65 and above[28]. Furthermore, given that the total population was 50,858,679, this 

was equal to a crude death rate of 61.33 for every 100,000 people[28]. Additionally, there 

were 8,591,683 injuries due to unintentional/undetermined falls[29]. Of these, 2,970,720 

(approximately 35%) were aged 65 and above[29]. Furthermore, given that the total 

population was 50,858,679, this was equal to a crude fall rate of 5,841.13 for every 

100,000 people[29]. Projections are that the number of falls will continue to increase with 

estimations that by 2030 we would have over 61,000 and maybe as high as 100,000 fatal 

falls yearly[30]–[32]  Costs due to all falls have risen from 34 Billion Dollars in 2013 to over 

50 Billion Dollars in 2015 and are projected to rise as high as 67.7 Billion Dollars by 2020 

[6], [33]–[35].  

Another aspect is the non-fatal consequences of falls. Falls can cause broken bones and 

head injuries; sometimes, they are indicative of or caused by severe illnesses such as 

stroke. Sadly, falls often signal the “beginning of the end” of an older person’s life. If the 

elderly person remains on the ground for an hour or more after falling, the victims may 

suffer from many medical complications such as dehydration, pressure sores, pneumonia, 

hypothermia, internal bleeding, and permanent damage to the brain, and half of the 

people die within 6 months[36]–[38]. A psychological effect also referred to as ‘post-fall 

syndrome’ with indicators including fear of falling, “…loss of confidence, loss of  muscle  

and  control,  problems  with balance,  and  walking  disorders …”; depression, reduced 

quality of life, and increased medical and familial costs are also possible non-fatal 

consequences of falls [39]–[41]. 
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When elderly people live in a nursing home or with family, a fall can quickly be detected, 

and they can get help soon. However, not all elderly people live with other people. In the 

US at least 12 Million elderly people live alone[6]. Unfortunately, it has also been shown 

that when such elderly people fall, they may not get help as soon as possible[6]. This is a 

challenge as “ An immediate response after a collapse has been shown to be key to soften 

the most serious consequences of falls”[35] and “…there is a close relationship  between  

the  delay  in  assisting  to  the  injury  and the mortality rate”[27].  There has therefore 

been a lot of research into technology for fall detection in order to ensure that the elderly 

person gets help as soon as possible after the fall. 

 

FALL DETECTION SYSTEMS 
 

According to [42], “A typical fall detection system has two major functional components: 

the detection component and the communication component… the detection component 

detects falls and the communication component communicates with emergency contact 

after fall detection.” [43] showed a general schematic for how fall detection systems work 

dividing the system into three parts: “sense(sensing), analysis and communication”. This 

schematic is shown in Figure 1. 

A primary concern in fall detection systems is usually the way to differentiate falls from 

other normal occurrences of the human body referred to often as Activities of Daily Living 

(ADL). In considering fall detection methods/ technologies, we see that virtually all of 

these technologies use sensors in one form or the other. In addition to this, we observe 
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Fig. 1. General schematic of a fall detection system [43]. 

 

the following characteristics: participation, invasiveness and mobility. Participation refers 

to whether the technology requires the elderly person to be involved in the operation of 

the technology. Examples of participatory technologies are wearable sensors that the 

elderly person must remember to have on their person every time they are moving. 

Invasiveness refers to whether the technology infringes on the body or privacy of the 

elderly person. With respect to privacy, the typical example given for such an invasive 

technology are cameras. Mobility refers to how easy to transfer the technology to 

another environment and have it function. We discuss each if these characteristics in the 

sections below.  

In considering fall detection systems, two of the most important metrics used are 

sensitivity (also referred to as recall) and specificity[6], [27]. According to [27],  “Sensitivity 

represents the capacity to detect a fall and it is calculated as the ratio of true positives 

and the sum of true positives and false negatives. Specificity identifies the ability to avoid 
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detection of a normal event as a fall and it is calculated as the ratio of true negatives and 

the sum of true negatives and false positives.”   

We also see in quite a number of fall detection systems the application of machine 

learning techniques both traditional and more recently Neural Networks and their many 

iterations.  

[6]classifies fall detection methods into two general groups: wearable and non-wearable 

technologies. We would look at the various methods under each group and discuss them 

in the following sections. 

 

A. Wearable Technologies for Fall Detection 
 

These technologies require the user to wear the detection sensor(s) on their body. 

Examples of these technologies are smartphones, RFID, transportable mobility sensors 

(e.g. accelerometer, galvanometers and magnetometers).  

A1. Sensors for Fall Detection 

For years, fall detection was carried out by having the elderly person wear sensor(s) on 

their body. Such sensors include accelerometers, gyroscopes to mention a few. In a 

number of cases, different sensor types are combined. For example, accelerometers, 

gyroscopes and magnetometers are combined in an inertial measurement unit (IMU)[44]. 

One of the advantages of sensors for wearables is that they are becoming more 

ubiquitous, more powerful, cheaper while at the same time using less computational 
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power. The main disadvantage of wearable sensors is that they require the participation 

of users every time i.e. the elderly person need to remember to always have the sensors 

on their body. However, there is no guarantee that this will be done. Also, recently, [6] 

had this to say about wearable sensors for fall detection: 

“…years of medical research has shown that wearable devices do not work well for the 

elderly. Seniors are typically encumbered by wearable technologies, and many of them 

suffer from memory problems and hence may forget to wear or charge their devices. 

Furthermore, those sensors can be dangerous; recently an elderly woman got strangled 

with her fall detection pendant…”.  

We would review some of the work that has been done over the years in wearable sensors 

for fall detection.  

In 2009, [45] presented work that utilized two nodes containing a tri-axial accelerometer 

and a tri-axial gyroscope each for fall detection. The project sought to detect falls in a 

more effective way that reduced false positives due to sitting down fast and false 

negatives from falling on stairs rising from the use of accelerometers alone. The system 

developed was quite effective dealing with general type of falls but still had some issues 

“when people fall against walls ending with a sitting position” (false negatives) or “quickly 

lying down” such as in bed (false positives). Results showed a sensitivity of 91% and a 

specificity of 92%.   
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In 2013, [46] presented work that combined a waist mounted triaxial accelerometer with 

an Artificial Neural Network(ANN). The system was used to both gather the initial data 

that was used to train the ANN, and then to carry out the fall detection. During fall 

detection, data from the accelerometer was “pre-treated” and then fed into the trained 

ANN to determine whether it was a fall or not. When a fall is detected, a computer receves 

an alarm.  Results presented included a specificity of 98.6% and a sensitivity of 98.4%. As 

part of testing, a subject had the system for an extended period to ensure that false 

alarms were not an issue.  

In work first presented in 2015 [36], we see the use of a triaxial accelerometer, triaxial  

gyroscope, and  triaxial magnetometer in a combined unit referred to as an “Attitude and 

Heading Reference System (AHRS)”. This allowed the location of the device in space, and 

together with algorithms, including the orientation filter, was used for fall detection.  An 

update was presented in 2016[27], with the addition of a barometer and a complimentary 

filter to further improve the efficiency by allowing the detection of syncopes and 

backward falls that end with the person sitting.  

In similar work proposed in 2017, [47] also used an AHRS to carry out fall detection. The 

AHRS was to be mounted on the waist of the user with the aim of detecting all kinds of 

falls. Other parts of the system included an “ARM microcontroller, a bypass button, a LCD 

module, GPS, GSM/GPRS and a battery”. Both adhoc data fusion and Kalman filter 

algorithms were to be used to remove noise and for detection. When a fall is detected, a 



15 
 

 

notification containing the location of the person (using GPS) is sent to the notice is sent 

to a designated guardian’s phone as well as to a hospital website. 

Work presented in 2017 by [26] shows the gathering of a dataset using Shimmer sensors 

including triaxial accelerometers, triaxial gyrometer, magnetometers, pressure and 

temperature sensors placed on the body of subjects to form a wireless body area sensor 

network (WBASN). The dataset was classified based on age and weight and then three 

machine learning techniques namely Support Vector Machine (SVM), k -Nearest Neighbor 

(KNN) and Neural Network (NN) were tested. The results showed KNN to be the most 

accurate with a sensitivity of 94% and a specificity of 96.23%.  

 

A2. Smartphones for Fall Detection 

Smartphones are often considered for use in Fall Detection systems because they contain 

sensors such as accelerometers and galvanometers already built-in, together with the 

opportunity to have a software application that can utilize the readings from the sensors. 

The main advantage of smartphone systems therefore is having both the detection 

component and the communication component in a single compact unit. As stated by  

[44], smartphones “feature embedded motion sensors, increasingly powerful 

microprocessors, considerable memory capacity, open source operating systems, and 

telecommunication services, making them ideal candidates for easily programmable and 
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customizable fall detection”.   We would review some of the recent smartphone-based 

detection systems. 

[42] in 2010 reported the development of a fall detection system that would run on any 

mobile phone provided the phone has an accelerometer. According to the authors, this 

was the first proposal and implementation of the mobile phone as a platform for fall 

detection. The system which was named PerFallD was implemented on an Android G1 

phone which contained an accelerometer, 98MB RAM, 70MB of internal storage and a 

1150mAh rechargeable lithium ion battery. PerFallD’s algorithm included an alarm that 

sounds once a fall is detected and the user has a period to turn off the alarm barring which 

the system reached out to already saved emergency contacts. Results after showed the 

waist as the optimal position for mounting the phone running PerFallD with false 

negatives at 2.67% and false positives at 8.7%. Limitations include detection of slow falls. 

[48] in their presented research carried out fall detection using a waist mounted 

smartphone with a built-in accelerometer. The system classified the movement of a 

person in real-time. The smartphone used ran the Android operating system, had a “1GHz 

Snapdragon CPU” and a “built-in tri-accelerometer”. Acceleration due to body motion and 

gravity were used and with their developed algorithms, they were able to classify body 

motion “into five different patterns: vertical activity, lying, sitting or static standing, 

horizontal activity and fall.”  Furthermore, when a fall is detected, an alarm is sent using 

Multimedia Messaging Service (MMS) which contains the "time, map of suspected fall 

location and GPS coordinate".  The main limitation of the system developed was that the 
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smartphone has to be on waist to work. So, it would not work if it is elsewhere on the 

body including the person's hand.  

[49] work utilize the accelerometer and GPS module of a waist-mounted smartphone to 

detect falls both indoors and outdoors with a reported accuracy of 94%. They are 

especially able to pinpoint the direction (left, right, backwards, forwards) of fall using the 

acceleration changes on the X, Y and Z axes. They were also able to differentiate between 

falling and jumping, sitting, standing, walking and running.  

[43] surveyed existing smartphone-based solutions for fall detection and prevention. The 

paper discussed the trends in smartphone-based solutions under the three phases: 

sensing, analysis and communication. The survey showed that the most commonly used 

sensor in smartphone-based systems was the tri-axial accelerometer. In a group of 

reviewed solutions, the paper also notes that GPS receiver and the gyroscope were the 

next most commonly used sensors after the accelerometer. It also showed that most 

smartphone-based systems used a Threshold-Based Algorithm (TBA) because such an 

algorithm is “less complex and hence require the lowest computational power…, which 

helps to reduce battery power consumption…”. TBAs could use adaptive or predefined 

thresholds. The survey also pointed out that with the increasing computational power 

available in smartphones, it had become possible to run Machine Learning (ML) 

algorithms on them and gave examples of such projects. Having detected a fall, most 

systems request confirmation from the person being observed and/or send information 

to the established external contact. Requesting confirmation helps to prevent acting on 
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false positives and where possible allows the system to continue to improve itself over 

time. Methods for informing about falls include audible alarms, Short Message Service 

(SMS), Multimedia Messaging Service (MMS), automatic voice calls, emails, and Twitter 

messages. Challenges of smartphone-based solutions highlighted include quality of 

smartphone sensors, energy consumption and battery life, and smartphone placement 

and usability issues. The paper also discusses the possibility of having a smartphone 

operate in a mode where it is not mounted on the user’s body yet it can detect things 

happening in the environment. 

[50] carried out a survey of fall detection solutions that specifically used the Android 

Operating System. Fifty-six works presented between 2009 and 2014 were reviewed. 

Results showed that the solutions’ general architecture could be classified as body-worn 

(i.e. wearable) or context-aware; the systems consisted of either smartphones alone, 

smartphone together with external sensors, or specific devices; the android devices used 

(mainly smartphones) functioned as one or more of the sensor, data analyzer for fall 

detection, communication gateway or the remote monitoring unit; sensors used included 

accelerometers (built-in and external), tri-axial accelerometers(built-in and external), 

magnetic sensors, magnetometers, orientation sensors, gyroscopes, Doppler sensor, 

sensor tags with inertial units, barometers, temperature and humidity sensors, cameras, 

microphones, and visual sensors; and the algorithms used could be classified into two 

groups namely Pattern Recognition Methods(PRM) and Threshold Based Detection (TBD). 

Pattern Recognition Methods “…employ data bases, training phases and AI (Artificial 
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Intelligence) solutions.”. PRMs also include machine learning techniques including neural 

networks. The paper then proceeded to present a system developed for monitoring 

elderly people with early dementia.  The developed system provided a platform with the 

option of utilizing any of five algorithms previously developed by other researchers, using 

preferred user data, and in case of a confirmed fall, notifying approved contacts as well 

as recording the location of the person.   

[51] in work presented in 2015 utilized the acceleration sensor and orientation sensor on 

a smartphone to detect falls among the elderly. Information gotten from the sensor was 

converted into character strings and then to check for a fall, a string matching algorithm 

using the Longest Common Subsequence (LCS) is used to compare a character string with 

an already known string. The known string referred to as the “feature string” is achieved 

by extracting a common feature from a training set of falls. When a fall is detected, a 

contact person can be contacted either by SMSs or instant messages. The system 

developed also gave the option to manually adjust system settings to “turn on/off the fall 

alarm, select the alarm music, set the alarm time, choose an emergency contact person, 

and pre-type the help message.” Results were presented were tested using two metrics: 

sensitivity and specificity. The paper defines these as follows: Sensitivity indicates the 

ability to identify fall events correctly, and specificity indicates the ability to exclude non-

fall events correctly. Sensitivity was 89% and specificity was 98%. Moreover, it was 

possible to update the feature string as new falls were detected.  
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Also in 2015, [44] presented ongoing work that sought to use both thresholds and 

machine learning to carry out fall detection. The smartphone used was an iPhone4 which 

had built-in tri-axial accelerometer, gyroscope and magnetometer. The paper presented 

the initial work that had been done using thresholds.  Unlike some previous work, the 

iPhone4 used was put in the left pocket of the user. This was expected to be more 

comfortable than say the waist. Using the measurements from the smartphone’s sensors, 

five ADLs were detected and differentiated namely: “…comfortable walking, …stand-to-

seated posture, … seated-to-standing posture, …pivoting at the waist to pick up an object, 

and …stand-to-seated-to-laying transition”.  

In 2017, [52] applied machine learning, specifically a k-Nearest Neighbor(kNN) classifier, 

to the data gathered using a smartphone’s accelerometer. The triaxial data from the 

accelerometer was first run through a TBA which had thresholds on magnitude and time. 

After this, the kNN classifier was then used in a bid to improve the accuracy of the 

algorithm. Moreover, the system developed also had a part that “monitors the activation 

level of the sensor and aims keeping battery consumption as low as possible and another 

that adjusts the model to the user activity patterns.”. The results showed a sensitivity of 

97.53% and a specificity of 94.89%. The paper concluded that “a machine learning 

classifier definitely improves the detection performance of a threshold based algorithm”.   

More recently, in 2018, [53] presented work using the values gathered by accelerometer, 

gyroscope, distance, direction and light sensors in a smartphone for action recognition 

and fall detection. By ‘actions’, the paper is referring to what in other papers were 
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referred to as ADL. Actions detected included falling, walking, running, moving up and 

down stairs and sitting. Depending on the source of the data, either the Kalman Filter or 

the Mean Filter was used. Also, what part of the algorithm was used or run depended on 

the location of the smartphone. The algorithm developed is reported to have 90% 

accuracy.  

Other smartphone-based solutions not discussed above include [54],. Also [41] presents 

a smartwatch based solution that makes use of the watch’s triaxial accelerometer.  

 

A3. Radio-frequency Identification (RFID) for Fall Detection 

Fall detection systems have been proposed that use wearable RFID.  

In 2010, [55] presented work in which they inserted RFID modules, consisting of an active 

tag and a passive reader,  into slippers and combined this with several passive tags affixed 

to the floor at different locations and active readers and a computer. Together this system 

was referred to as a “RFID Gait Monitoring System (RGMS)”. The system worked by 

monitoring the stride length of the user: a stride length less than 25cm was deemed 

indicative of an abnormal gait and an alarm was sent to caregivers. The system provided 

both “quantitative and graphical feedback” from both slippers.  

In 2013, [56] showed the development of a system that used a wearable RFID tag, consisting of a 

triaxial accelerometer and a microprocessor,  to detect when elderly people exited their beds as 

a way of preventing falls. RFID Antennae were placed around the room and powered the RFID tag. 

The algorithm used for determining the activities of the user was based on conditional random 
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fields (CRFs) which are a class of machine learning classifiers. The activities of the user were 

classified into lying, sitting, out-of-bed. While this was not directly fall detection, the system was 

used with the aim of allowing caregivers to quickly respond to a situation and prevent a fall. 

 

B. Non-wearable Technologies for Fall Detection 

 

These technologies do not require the user to have anything on their bodies. Instead they 

are deployed in the environment of the user and carry out their detection in this way. 

Thus their main advantage is that they do not require the participation of the user [37].  

They are referred to by various names including external sensors[57] and passive 

sensors[6]. 

 

B1. Camera/Depth Sensor for Fall Detection 

Cameras/Depth Sensors are perhaps the most popular form of non-wearable 

technologies for fall detection. Their main advantage lies in their being non-participatory. 

Furthermore, there has been increasing development in the field of computer vision over 

the recent years. However, the main challenges/disadvantages faced when using 

cameras/depth sensors for fall detection are those of  invasiveness of the  privacy kind 

[58] and Occlusion[57]. We shall review some work in this field next. 

In their 2010 work, [59] proposes a realtime video based detection that uses a 

combination of the subject’s posture (skeleton information) and shape to determine if a 
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fall has occurred. A detected fall is confirmed using “inactivity of a person for a period of 

time”.  Preliminary testing was done using OpenCV and a single camera. Forward, 

backward and sideways falls were compared with ADLs like walking running and 

squatting. Results gave a detection rate of 90.9%, a false alarm rate of 6.25% and an 

execution time of 4.21 seconds.  

Moreover, [60] also presented work that used the location of a subject’s head and the 

location of a subject’s feet as seen by a single camera to detect falls. The work considered 

six possible fall scenarios namely: backward fall, forward fall, lateral fall to the right, 

lateral fall to the left, syncope and neutral. They also compared falls with ADLs specifically 

walking, bending and seating. Results showed a recognition rate of 96%.  

In 2012, [61] presented a posture based fall detection system for use on an elderly system 

who lives alone. Human features and posture were extracted using background 

subtraction, ellipse fitting and projection histogram. The extracted postures were then 

classified using a directed acyclic graph support vector machine. This classification was 

combined with information about the floor to conclusively determine if a fall had 

occurred. Tests resulted in a fall detection rate of 97.08% and a false detection rate of 

0.8%. 

In work presented in [62], [63], researchers developed a fall detection system that used a 

specially designed stereo vision system, a field programmable gate array(FPGA) and a 

digital signal processor(DSP) and a wireless communication module. The stereo vision 

system consists of two detectors and unlike typical cameras, delivers “asynchronous 
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events”.  The papers highlight that this is a solution to the privacy concern typically 

associated with camera fall detection systems. The FPGA is used for stereo matching and 

the DSP runs a neural network. Tests showed a fall detection rate greater than 96% with 

false positives less than 5%.  The communication module is used to send the information 

when fall is detected.   

 

B2. Radio Frequency (RF) Technologies for Fall Detection 

These are another very common group of non-wearable technologies for fall detection. 

Unlike cameras, these technologies are said to be less invasive with respect to privacy 

since the actual image of the subject is not used. We will review some of such works next. 

[58] in 2012 presented work that uses a Doppler sensor to detect trip and fall. According 

to the paper, the Doppler sensor “emits microwaves, and outputs an electric signal 

according to the Doppler frequency, which is the difference in frequency between the 

transmitted wave from the sensor and the reflected wave from a moving object”. A Fast 

Fourier Transform (FFT) is then used to distinguish signals representing falls from those 

representing six other ADLs namely: walking, shaking arm and hand, working with hands, 

stationary posture, standing up, and empty room. The paper defines a trip and fall as 

“Falling after walking a straight line”. An embedded computer, the BeagleBoard-xM, 

running the Android Operating System is used to process the signals. Evaluation was 

carried out first by testing in a single direction, then in multiple directions (front, left, 
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right, opposite) and with multiple people. In a single direction, true positives were at 90% 

while the largest false positive was at 1.9% which occurred when nobody was in the room. 

In multiple directions, maximum true positive was 96% while the largest false positive was 

6.6% which occurred when the subject was walking in the right direction. With multiple 

participants, maximum true positive was also 96%.  

[6] in 2019, presented work that applied a convolutional neural network (CNN) and a state 

machine to RF signals for fall detection. The project, called  Aryokee, was said to present 

the “first CNN architecture for RF-based fall detection”,  could be applied to new 

environments and people, and could determine when a subject fell, stood up and how 

long a fall occurred for and can be used in situations with multiple people. Over 40 ADLs 

were considered side by side with different fall types including “falling forward, 

backward, on position, and sideways”.  The fall types were expanded upon based on their 

causes resulting in eighteen different fall classifications. For testing, the authors used over 

140 people in 57 different environments and results showed a recall of 94% and a 

precision of 92%.  

 

B3. Other Non-wearable Technologies for Fall Detection 

[38] in work presented in 2011 utilized several boxes containing accelerometers which 

were mounted on the floor. The project named ‘eHome’ utilized Fast Fourier Transform 

and other algorithms to extract specific details from the vibrations detected by the 
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network of boxes. This information was then sent to a server which used other algorithms 

to determine if a fall had occurred based on a determined threshold. The project also 

provided a way to crosscheck if the subject was alright, after a fall is supposedly 

discovered, by prompting the user on a touchscreen and also monitoring other sensors in 

the room for activity before sending notice to points of contact who can take further 

action. In extensive testing in the laboratory and considering different types of floors, 

eHome achieved a sensitivity of 87% and a specificity of 97.7% for a specified fall scenario.  

 

C. Hybrid Technologies for Fall Detection 
 

While there have been wearable and non-wearable solutions for fall detection, in a 

number of cases, fall detection systems combine a number of solutions both within and 

across the groups. This in certain cases allows the leveraging of the advantages that the 

individual solutions may have, to counterbalance the disadvantages of other solutions.   

We review some of such hybrid solutions below. 

We have the proposal and development of “wireless sensor networks” defined as a 

combination of “networks of wearable sensors (i.e. body sensor networks) and networks 

of ambient sensors´.  

[40] in 2014 presented a solution that consisted of tri-axial accelerometer(s), active RFID 

tags and an RFID reader. The tri-axial accelerometer(s) (the study does not state how 

many) is integrated into the RFID tag which is then worn on the user. Information received 
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by the RFID reader from the tag is then analyzed using Machine learning to detect if one 

of six fall postures, namely “…frontal fall, back fall, left fall, right fall, kneel fall, and hip 

fall”, occurs.  

[64] in their work combined a Kinect (depth sensor/camera, non-wearable) and a 

smartphone(wearable). The smartphone’s accelerometer is used to detect if a fall has 

occurred by comparing its tilt angle (TA) and signal vector magnitude(SVM) with 

determined thresholds: 40 degrees and 2.5g respectively. The Kinect is mounted in a fixed 

location in the room and utilizes information from the user/subject’s skeletal frame. The 

skeletal information is extracted from both the color and depth information provided by 

the Kinect. Two key metrics are used to determine a fall: head speed and the head height. 

As with the smartphone, thresholds are used to determine if the user has fallen. A head 

speed greater than 0.2m/s and a head height lower than 50 cm are considered to mean 

the user has fallen. Information from both the smartphone’s accelerometer and the 

Kinect are sent to a web server which then integrates them. The main advantage of this 

work is that it reduces cases of false positives from each separate detection method by 

combining them. In a case presented in the paper, the researchers were able to 

distinguish between a case of sitting down and a fall because of the added layer provided 

by the Kinect’s skeletal information. Where a fall is detected, information including the 

location of the user is sent to the “family, friends, or help center of the subject 

immediately” 
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In 2018, [39] presented a fall detection system that combined a Kinect (depth 

sensor/camera, non-wearable) and an accelerometer(wearable). The system was event-

driven and combined depth maps from the Kinect with readings from the accelerometer. 

In line with the event-driven approach, readings from the accelerometer that were likely 

to indicate a fall triggered the depth map from the Kinect to confirm whether a fall has 

occurred. Furthermore, two positions for the Kinect were considered. In the first case, the 

Kinect was mounted on a pan-tilt on the ceiling. This allowed the Kinect to be moved thus 

increasing the total possible viewing area of the depth sensor. In the second case, the 

Kinect was mounted on the wall and faced the user. Classifiers are used on both the 

accelerometer data and the depth images to determine falls. Results showed a very high 

sensitivity and specificity with the wall mounted Kinect facing the User having slightly 

better results than the ceiling mounted Kinect. However, the best results were gotten 

when both the wall mounted and ceiling mounted Kinects were used.  

 

D. Similar Work 
 

In 2017, [65] improved on previous work working with a mobile robot(Kobuki), a Kinect 

sensor, a side sensor(Hokuyo URG - 04LX)  for determining distance and a PC. The robot 

followed the elderly person in their household.  In their work, they made use of the 

skeletal based detection from the Kinect combined with determined thresholds to tell if 

a fall has occurred. The mobile robot followed the elderly person in the space using the 

information from the side sensor while the Kinect Sensor focused on the fall detection. 
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Furthermore, an obstacle avoidance approach was implemented. In testing, the following 

approach was considered effective while they concluded that their obstacle avoidance 

approach was not satisfactory. Not much was said about the fall detection except that in 

a previous work they had found that by moving the sensor instead of having it fixed 

resulted in an 80% improvement. 
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CHAPTER III: METHODOLOGY 
 

We start with the problem of following just one person in a mildly occluded space. While 

not all-embracing, this approach still has real-world relevance. This is because as we 

stated in previous chapters, a substantial number of seniors do live alone. Such seniors 

are likely more at risk if they fall than seniors who live in communities, retirement homes, 

with family or even with other seniors.  

Our prototype builds on an existing prototype robot controlled by a Raspberry-Pi and two 

motor drivers. We are using Computer Vision based Object detection as the detection 

methodology. In computer vision, there are number of possible options for person 

detection including Face Detection/Recognition and Object Detection. While Face 

Recognition provides the opportunity for customization, it is our opinion that based on 

what is currently available the effort required to retrain the model for every single new 

person makes it difficult. Object detection on the other hand, currently once trained can 

detect people as a class and, since we are looking at navigation in a space with only one 

human, is sufficient for our purpose. We discuss this further in sections below.  

 

A. Existing Robot Prototype 
 

Our existing robot prototype was built at the Real-time and Embedded Control, 

Computing, and Communication (REC3) Lab, Middle Tennessee State University (MTSU) 

by a student, Christopher Secrest, and is named the Fall Detection Robot (FADER). Initially, 
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FADER consisted of a 3D printed frame, four DC motors with encoders, a three cell 4000 

mAh 12 V battery, a Raspberry Pi 2 Model B, two L298 motor drivers, an ultrasonic 

(Ping)))TM) sensor and two passive infra-red (PIR) sensors. The four DC motors functioned 

as the wheels of the robot. Each of the motors is a RF-370CA-15370 metal-brush motor 

with an operating range of 3V – 12V and a nominal voltage of 12V. The Raspberry Pi served 

as the brain of the robot and was programmed using the Python programming language. 

In programming the Raspberry Pi using Python, the following libraries and modules were 

used: pigpio, RPI.GPIO and time. The pigpio is a library that allows control of the Raspberry 

Pi’s GPIO, PRI.GPIO is a module that is also for control of the Raspberry Pi’s GPIO and the 

time module allows use of the sleep method to handle pauses in the program. 

Furthermore, the L298 motor drivers allowed the control of the DC motors. The L298, as 

an IC, consisted of the H-Bridge and allowed it to be able to control the DC motors. Each 

L298 motor driver could thus control two DC motors at a time. Distance readings from 

the ultrasonic (Ping)))TM) sensor are used to set up a threshold-based algorithm for the 

robot’s navigation. The PIR sensors are used to orient the robot. Signals from both PIR 

sensors are interpreted by the control program and then instructions are sent to the 

motors allowing the robot to orient itself. The battery provides power supply for the 

Raspberry Pi, motors, motor drivers, sensors, and is rechargeable. Figure 2 shows a 

picture of FADER while Figure 3 shows the circuitry of FADER electronic connections. As 

discussed in sections below, we eventually made a number of changes to the initial 

prototype. A table showing the list of parts for FADER is given in the Appendix. 
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Fig. 2. FADER robot (initial prototype). 

 

 

 

 

Fig. 3. FADER circuitry. 
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B. Computer Vision Based Object Detection 
 

We decided to use the Raspberry Pi Camera as the main medium for human detection. 

This allows us to take advantage of the current advances in computer vision and machine 

learning. 

The Rapsberry Pi Camera comes in two types: the regular which is referred to as the 

Camera Module and which works with visible light, and the infrared which is referred to 

as the Pi NoIR and works with infrared light[66]–[68]. The main difference between the 

two camera types is that the Pi NoIR has no infrared filter thus allowing us take pictures 

in the dark, when infrared lighting is available[67]. This was a preferred feature for us 

since such would allow us to carry out detection even in the dark, if necessary. However, 

we tested both camera module types and compared the images they took. We found that 

the images were comparable in normal lighting. Figure 4 shows the two camera types and 

the images we took. Because the images were comparable and because of the advantage 

of the Pi NoIR camera, we chose to use the Pi NoIR camera. The Pi NoIR camera was 

mounted on FADER and then connected to the Raspberry Pi using a camera and display 

extender.  

Specifically, we are using deep learning to run object detection on the Pi Camera. A lot of 

computer vision solutions today use OpenCV which is the de facto open source library for 

computer visions as well as Neural Networks. Our approach makes use of OpenCV and 

Neural Networks together with other methods as discussed in this section.  
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Fig. 4. Regular Camera Module, and Pi NoIR Camera Module and the pictures taken 
with them respectively. 

 

In discussing computer vision for detection, various uses exist including person tracking, 

skeletal tracking (also known as pose annotation), Face Detection, Face Recognition and 

Object Detection. Each of these areas have different techniques that are used to carry 

them out. Today with machine learning, each of these uses is becoming far more 

advanced than what was available in past years. Each of these options was considered for 

our current requirements and we explored specifically Face Detection, Face Recognition 

and Object Detection. Face Detection occurs when a computer can detect a face in a 

picture or video. In order to achieve this, the computer is usually “trained” using a positive 

dataset and a negative dataset. The positive dataset contains many (hundreds- 

thousands) pictures with faces while the negative dataset contains many (hundreds- 

thousands) pictures without faces. Once a machine has been trained, it is able to detect 

a face in a picture or video. One of the disadvantages of this method that we encountered 

was its ineffectiveness in low lighting. Face Recognition goes one step beyond Face 
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Detection by allowing the computer to recognize specific individuals. Whereas Face 

Detection can only detect a face without necessarily identifying who it is, Face 

Recognition allows the identifying of the face that is detected. In its own case, Face 

Recognition requires training the machine with the images of the specific person(s) that 

are to be recognized. As a result, even though specificity improves, Face Recognition has 

the disadvantage of being more computationally intensive as well as requiring ‘retraining’ 

every time a new person has to be recognized. Object Detection allows the detection of 

objects based on previously trained networks. Objects to be detected are referred to as 

classes. In Object detection, it is possible to have a class that is for humans. Advantages 

of this method include our not needing to retrain the machine for every new item/object 

as already pretrained networks can work as well as the fact that it detects not just humans 

but as many objects that have been trained as classes, which offers the best of both 

worlds especially when considering navigation in the home. We chose Object Detection 

for our project because of this. To carry out our object detection, we settled on a deep 

learning architecture. Simply put, the difference between traditional machine learning 

and deep learning is that deep learning uses several layers of machine learning with a 

previous layer feeding the succeeding layer. Moreover, in deep learning we can have 

convolutional neural networks (CNN) which have been pre-trained on image datasets 

function as the backbone architecture or base network to the detection framework[69], 

[70]. So, though quite a simplification, we can say that deep learning object detection has 

two parts: the CNN referred to as the base network/backbone architecture and an object 

detection framework[69], [70]. Figure 5 shows a picture of some one stage deep learning 
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detection frameworks. There are three options that were considered for the object 

detection framework, the Faster Region Convolutional Neural Networks (Faster R-

CNN)[71], Single Shot Detectors(SSD)[72], and You Only Look Once(YOLO)[73]. While 

Faster R-CNN is a two stage detector, YOLO and SSD are one stage detectors. Faster R-

CNN has the advantage of being known as the most accurate of the three methods. 

However, it is quite slow in running. It is therefore most suitable for tasks where speed is 

not a premium, but accuracy is priced. YOLO has the fastest speed of the three 

frameworks but has a lower accuracy. Furthermore, currently implementations of YOLO 

on a device with limited resources like the Raspberry Pi without GPU support is far from 

satisfactory with most projects opting for the YOLO tiny variant[74]–[78]. SSD, which was 

developed by Google, occupies a sort of middle road between both Faster R-CNN and 

YOLO in terms of accuracy and speed. Also, it has been implemented on the Raspberry Pi. 

Therefore, even though the speed of YOLO would have been preferred for our application, 

we are using SSD. The backbone architecture we are using for the SSD framework is 

MobileNets [79] which was also developed by Google. MobileNets is especially good for 

mobile or embedded systems which have constrained resources and was shown to have 

“significantly reduced computation cost as well as the number of parameters without 

significant loss in classification accuracy”[69]. The model we are using after training and 

finetuning by [80] had 21 total classes it could detect including the background[81].  When 

running our software, we surround the object detected with a bounding box as well as 

print a label at the top of the bounding box telling what the object is and showing the 

percentage of certainty. The percentage of certainty, confidence level, further improves 
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the control that can be exercised during navigation since it is also possible to use this 

value to handle false positives and false negatives especially in areas where lighting is of 

concern.  

 

 

Fig. 5. Some one stage deep learning frameworks [69]. 

 

False positives occur when the software detects a person where there is no one and false 

negatives occur when a person is present, but the software detects something else. Both 

scenarios have unwanted implications for our research and the general application of 

human-following robots. This is because if false positives and false negatives are not dealt 

with, the robot cannot be effective enough. As previously stated, we have noticed that in 

certain cases, the prevalence of false negatives is high. The percentages/confidence level 

provide a possible solution to this conundrum.  It is therefore possible to finetune the 

robot’s response based on the results from the object detection as it is being run. The 

robot will simply be instructed to disregard detections that are below a certain 
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percentage. Figure 6 shows an image taken by the Pi Camera with deep learning object 

detection running during initial tests. The tests were carried out using a Raspberry Pi 3 

Model B which eventually replaced the original Raspberry Pi 2 Model B which was in 

FADER. The code was written in Python 3.0. In addition to pigpio, RPI.GPIO and time, the 

following libraries and modules were used: imutils[82], math, numpy, argparse, cv2, and 

serial.  

 

 

Fig. 6. Object Detection running on the Pi Camera. 

 

C. Navigation in One-Dimensional(1-D) Space (the Distance Estimation Problem) 
 

With object detection running on the Pi Camera on FADER, we were able to detect a total 

of 20 classes in addition to the background[70]. However, for our starting purposes, we 
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are only focusing on the “person” class. So, we ignore all the other classes and only focus 

on the person class for navigation. This also works because for our initial tasks, we are 

considering only one person in a room fairly free of obstructions.  With the person 

detection sorted, we set about considering a suitable method for distance estimation. 

Generally, in distance calculation, it is required to either calibrate the camera or have a 

reference object whose dimensions are known in the image/video. We could not use the 

later method since for our purposes, the robot would not always have a reference object 

in its scope. However, we noticed that the dimensions of the bounding box which is drawn 

around the detected object generally changed depending on how far or close the object 

is to the robot. Specifically, the width of the bounding box increased the closer the object 

was to the robot while it reduced the farther away the object was from the robot. Figure 

7 shows the relationship of distance to the width of the bounding box for a person with a 

given height of 5 feet 10 inches and body width of 20.5 inches. The Pi Camera is slightly 

inclined on the robot to allow its field of view to include the standing human.  As shown 

in the figure, when the robot is at a distance of six feet or greater the relationship is 

approximately linear. A similar effect is seen when comparing the distance to the height 

of the bounding box as shown in Figure 8. However, in our tests we found that the 

bounding box did not always cover the complete height of the subject even when the 

closeness of the subject to the camera was not a factor.  
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Fig. 7. Width of bounding box versus horizontal distance. 

 

 

 

Fig. 8. Height of bounding box versus horizontal distance. 

 

For distance estimation in one-dimensional space, first we used the raw values of the 

width of the bounding box to set limits. This worked adequately and the robot was able 
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to operate in the three states which we discuss below. Next, we carried out a linear 

regression analysis using Microsoft Excel to get a formal mathematical relationship 

between the distance and the width of the bounding box, and between the distance and 

the height of the bounding box. Tables 1 and 2 show the results of the regression analysis 

including the coefficients and the ANOVA results. The following equations were thus 

derived: 

D = 17.1838 - 0.0924W ………………………………………………………………………………  (3.1) 

D = 23.0591 - 0.0686H ………………………………………………………………………………  (3.2) 

where D is the horizontal distance to the camera in feet 

 W is the width of the bounding box in pixels 

 H is the height of the bounding box in pixels 

 

TABLE 1  REGRESSION ANALYSIS ON WIDTH OF BOUNDING BOX AND HORIZONTAL 
DISTANCE      

 

SUMMARY OUTPUT

Regression Statistics

Multiple R 0.93155509

R Square 0.86779488

Adjusted R Square 0.86307327

Standard Error 1.62878958

Observations 30

ANOVA

df SS MS F Significance F

Regression 1 487.5922463 487.5922 183.7920945 7.95374E-14

Residual 28 74.28275373 2.652955

Total 29 561.875

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%Lower 95.0% Upper 95.0%

Intercept 17.1837949 0.689521015 24.92135 1.17898E-20 15.77137517 18.596215 15.7713752 18.5962147

Width of Bounding Box -0.0924083 0.00681628 -13.557 7.95374E-14 -0.106370789 -0.078446 -0.1063708 -0.07844575
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TABLE 2  REGRESSION ANALYSIS ON HEIGHT OF BOUNDING BOX AND HORIZONTAL 
DISTANCE 

 

 

Having estimated distance using the two approaches highlighted above, (i.e. raw 

bounding box dimensions, and regression analysis), FADER operates in one of three 

states: approaching, waiting and retreating.  In ‘approaching’, the robot is at a distance 

that is too far away from the person detected and so it moves towards the person until it 

reaches a predetermined distance at which it stops and just waits (second state). This 

second state is a distance range within which FADER does not move and keeps observing 

the detected individual. If the person moves closer causing the distance between them to 

be less than the preset distance, FADER retreats thus increasing the distance between 

them until it reaches the preset distance again (third state).  The pseudocode for this is 

shown next 

1. Obtain Image from Pi Camera 

2. Run object detection on frame 

SUMMARY OUTPUT

Regression Statistics

Multiple R 0.981904003

R Square 0.964135472

Adjusted R Square 0.962939988

Standard Error 0.902950867

Observations 32

ANOVA

df SS MS F Significance F

Regression 1 657.5403919 657.5404 806.4811 3.07019E-23

Residual 30 24.45960806 0.81532

Total 31 682

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0%Upper 95.0%

Intercept 23.0591015 0.54535546 42.2827 2.67E-28 21.94533706 24.172866 21.9453371 24.1728659

Height of Bounding Box -0.068570576 0.002414575 -28.3986 3.07E-23 -0.0735018 -0.063639 -0.0735018 -0.0636394
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3. Dismiss detections with confidence levels lower than set value 

4. Evaluate object detected in frame 

5. If object detected is not human 

5a. Discard Detection 

5b. Go back to 4 

6. If object detected is human:  

6a. Obtain the dimensions of the bounding box 

6b. Estimate distance using the regression formula 

6c. If distance is less than 6 feet 

i. Retreat 

              6d. If distance is greater than 12 feet 

i. Approach 

             6e.  If distance is between 6 feet and 12 feet 

i. Do nothing 

7. Return to Number 1 

While the values obtained for distance are not exact, they are mostly useful as an estimate 

that allow FADER to decide whether to approach, not move or retreat. In most cases, we 

do not need this preciseness. 



44 
 

 

D. Navigation in Two-Dimensional (2-D) Space 
 

For 2-D navigation, FADER has to also be able to track the user’s movement in the plane 

perpendicular to the initial plane used during 1-D navigation. Assuming that FADER starts 

in a ‘waiting’ state of the 1-D navigation; when the user moves in the perpendicular plane, 

FADER then turns or pivots to face the user again at which point the navigation becomes 

a 1-D navigation problem once again. FADER then returns to one of the three states 

discussed previously: approaching, waiting and retreating.  

2-D Navigation = Tracking + Turning/Pivoting + 1- D Navigation 

 

Tracking 
 

 To enable FADER to track the user in the perpendicular plane, we used the x-coordinates 

of centers of the frame and the bounding box drawn around the detected person. The 

entire displayed frame of the camera is 400 by 300 with the origin being the top leftmost 

point. The origin has coordinates of 0 by 0.  This makes the coordinates of the center of 

the frame 200 by 150.  Furthermore, since the center of the bounding box is a way to 

approximate the center of the detected person, by comparing the x-coordinates of the 

center of the bounding box and the center of the frame, we can tell how far away the 

person is from the center of the frame and in what direction. The aim is to keep the user 

close to the center or within an acceptable range.  

To calculate the center of the bounding box (xc, yc) we use the following equations:  
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xc = (x1 + x2) / 2  

yc = (y1 + y2) / 2 

where the coordinates (x1, y1) represent the top leftmost point of the bounding box and 

(x2 , y2 ) represent the lowest rightmost point of the bounding box.  

 

Pivoting/Turning 
 

Once we have determined how far from the center the person is, we determine if the 

robot needs to pivot to keep the user closer to the center of the frame. For FADER, we set 

a threshold of 100 units to the right and 50 units to the left. If the user is out of this range, 

then we pivot right or left respectively. The Pseudocode for this is shown below. (Xc, Yc) 

represent the coordinates of the center of the frame while (xc, yc ) represent the center of 

the bounding box which is approximately the center of the person detected.  

1. Calculate xc – Xc 

2. If (xc – Xc) is less than -50: 

2a. Pivot Left 

2b. Go back to 1 

3. If (xc – Xc) is greater than 100:  

3a. Pivot Right 



46 
 

 

3b. Go back to 1 

4. If (xc – Xc) is greater than -50 but less than 100 

4a. Do nothing 

5. Continue to 1-D Navigation 

 

Adjustments to FADER Design 
 

While working on two-dimensional navigation, we encountered a number of challenges 

including non-responsiveness and losing of the human target. To correct for this, we had 

to make a number of adjustments to the design of FADER. The following changes were 

made: 

1) Adding an Arduino Uno: We added an Arduino UNO to handle the motor control. 

In the initial FADER prototype, the Raspberry Pi handled everything including 

sending individual navigation instructions to each of the four DC wheels through 

its GPIO pins. With the addition of deep learning based computer vision to FADER, 

still having the Raspberry Pi sending individual instructions to the DC wheels 

seriously slowed down the response time of the robot. Given that the Raspberry 

Pi 3 is a resource constrained device, running the Object Detection on it was 

already pushing its limits. We therefore decided to add an Arduino Uno to handle 

sending individual commands to the DC motors. The Raspberry Pi and Arduino 

communicated via serial port and functioned in Master-Slave configuration.  
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According to the Arduino website [83], the Uno is based on the ATmega328P 

microcontroller and has 14 digital input/output (I/O) pins and 6 analog pins.  [83] 

further stated that six of the 14 digital I/O pins can be used as pulse width 

modulation (PWM) outputs. Figure 9 shows the specifications of the Arduino 

board.  In controlling the DC motor, we need at least three pins per motor, one of 

which will be for sending the PWM instructions.  The Raspberry Pi continued to be 

programmed in Python while we coded the Uno on the Arduino IDE which has its 

own language. According to the Arduino website, the Arduino programming  

language is “merely a set of C/C++ functions that can be called from your 

code”[84].  

2) Restricting Motor Control: We also found that sending individual separate 

instructions to each of the four DC Motors increased the complexity especially 

when the robot has to pivot to make a turn either left or right. To reduce this 

complexity, we combined the two wheels on each side of the robot, sending them 

instructions from the same pins. This way instead of needing at least twelve pins 

in total, we needed just six. This freed up pins on the Arduino for other possible 

uses. 

3) Encoder Use: Each of the DC motors on FADER had a quadrature encoder.  

Encoders often can be used to tell how far a wheel has moved [85]. We consulted 

information on similar motors to the ones used in the existing FADER prototype. 

The quadrature encoders had two outputs and connections for power and ground.  
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Fig. 9. Specifications of the Arduino UNO [83]. 

 

 

However, for our purposes, we only used one of the outputs. To use the encoders, 

we had to manually calibrate motors/encoders. We needed to know how many 

counts the encoder made per circumference of each wheel. To find this out, we 
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carried out tests as suggested by [85]. First, we calculated the diameter and 

circumference of each wheel. Next, we wrote a short Arduino program that prints 

the encoder count to the screen. By moving each wheel one complete cycle, the 

distance of one circumference, we were able to determine the encoder count per 

circumference and also then calculate the encoder count per inches. This allowed 

to be able to estimate how far each wheel robot has gone and stop the robot when 

needed. Figures 10 and 11 show the Arduino code written for testing and an 

example of the serial output showing the encoder count; while Tables 3 and 4 

show the counts per circumference for each wheel, and the average counts per 

inches for each wheel.  

Based on our calculations, we arrived at an average value of 818 encoder counts 

per circumference and an average circumference length of 8.38 inches for the 

robot wheels. We used these values in our motor control code on the Arduino. 

4) Separate Power Supply: We noticed during testing and using the encoders that 

different wheels seemed to be running at different speeds. To ensure that the 

problem was not due to noise, we included a separate power supply for the 

Raspberry Pi. The Raspberry Pi is powered by a power-bank while the motor 

wheels continued to be powered by the three cell 4000 mAh 12 V battery. While 

this reduced the discrepancy in the in the wheel speeds, we eventually had to 

manually correct for the remaining discrepancy in the Arduino Motor Code.  

5) Seeking Function: After implementing adjustments 1 – 4, we commenced testing 

of two-dimensional navigation. While FADER functioned well and was able to 
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Fig. 10. Arduino Code for Encoder Count. 

 

follow a user in the test space, we noticed that it lost the user once the user 

stepped out of the field of view of the Pi Camera. To correct for this, we created a 

separate function for seeking the user If the user is lost. If a user is lost the robot 
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Fig. 11. Serial output showing the encoder count. 

 

TABLE 3  COUNTS PER CIRCUMFERENCE FOR EACH WHEEL 

 

 

TABLE 4 AVERAGE COUNTS PER INCHES, AND MILLIMETERS, FOR EACH WHEEL 

 

 

pivots in the last direction in which the user was heading and continues pivoting 

in that direction in a 360°. If the distance to the user was estimated to be greater 

than six feet (6 ft.), then the robot moves forward before starting to pivot in the 

Motor 1 2 3 4 5 6 7 8 9 10 Average Counts/Circumference

RightFrontMotor 812 818 816 818 816 820 818 818 822 826 818.4

RightBackMotor 814 818 820 816 819 814 824 818 818 824 818.5

LeftFrontMotor 813 814 822 822 815 824 818 818 822 820 818.8

LeftBackMotor 822 818 816 820 818 814 818 818 818 818 818

Motor Diameter(In) Diameter(mm) Circumference(In) Circumference(mm) Average Counts/In Average Count/mm

RightFrontMotor 2.667 67.73 8.378627607 212.7800704 97.67709443 3.846224876

RightBackMotor 2.653 67.33 8.33464531 211.5234334 98.20453895 3.869547629

LeftFrontMotor 2.669 67.78 8.384910792 212.9371501 97.6516054 3.845266079

LeftBackMotor 2.664 67.67 8.369202829 212.5915749 97.73929688 3.847753612
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direction the user was heading in. Once the user is reacquired, the robot estimates 

the distance and based on the distance either waits, or approaches or retreats or 

pivots.  

Other actions that we carried out included reducing or removing wait periods. Upon 

testing, FADER functioned satisfactorily and was able to follow a human in an open space 

(both free of obstacles and with a few obstacles). We tested with the human moving in a 

clockwise pattern, and in a random fashion as well. One of the main constraints we 

continue to encounter is the time of detection. Because deep learning is computationally 

intensive and the Raspberry Pi is resource constrained, detection time is currently 1.5 

seconds. As such, if a subject moves too fast the robot would lose them.  However, since 

our target are the elderly, we do not think they would move too fast for the robot to lose 

them.  Figure 12 shows the modified FADER. 

 

 

Fig. 12. Modified FADER. 

 



53 
 

 

E. Fall Detection 
 

After sorting out 2-D navigation, we proceeded to fall detection. The first thing we did 

was to run the deep learning object detection on some random videos downloaded from 

Youtube with people falling to see if the software still recognized people when they fell. 

We found that the software worked in a number of cases.  

After doing this, we recorded videos of people in the lab space moving and simulating 

falling in the lab space. Falls were simulated in five positions: lying flat on the back, lying 

flat on the stomach, lying on the right side, lying on the left side and slumping to a seating 

position with the back rested against the wall.    Figures 13 and 14 show images of these 

videos. 

We annotated the videos with our object detection software. The aim was twofold: to see 

if the software recognized a person in that position, and to see if there were any 

generalizable characteristics to the detections.  Figures 15-20 show that the object 

detection software recognized people in the various positions tried. The confidence 

values as percentages are also shown. 

From the annotation, we noticed that the ratio of the width to the height of the bounding 

box changes from typically less than one to close to or greater than one when a person 

falls. In fact this is one of the metrics used by [39] in their fall detection. The exception 

was when the person was in the position: slumping to a seating position with the back 
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rested against the wall. Figure 21-26 show the positions with the confidence percentages 

and the ratio values. 

 

 

Fig. 13. Moving and Simulating Falls in the Lab (Person 1). 

 

In further annotation, we also calculated the x, y coordinates of the center of the 

bounding box, which approximates the center of the detected person, to see what 

happened to these values during a fall. We found that the y-coordinate’s value changes 

and increases. Furthermore, since the person is falling, the y-coordinate value of the 

center of the bounding box would be greater than the y-coordinate value of the center of 

the frame.  
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Fig. 14. Moving and Simulating Falls in the Lab (Person 2). 

 

Therefore, our analysis allowed us to use these two metrics for setting a threshold for fall 

detection: 

1. Ratio of width to height of the bounding box greater than 0.8 

2. Y-coordinate of the center of the detected person greater than y-coordinate of 

center of frame.  
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Fig. 15. Person Detections with Confidence (Person 1, Walking & Fall Position 1). 

 

    

Fig. 16. Person Detections with Confidence (Person 1, Fall Positions 2 & 3). 
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Fig. 17. Person Detections with Confidence (Person 1, Fall Positions 4 & 5). 

 

  

Fig. 18. Person Detections with Confidence (Person 2, Walking & Fall Position 1). 
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Fig. 19. Person Detections with Confidence (Person 2, Fall Positions 2 & 3). 

 

  

Fig. 20. Person Detections with Confidence (Person 2, Fall Positions 4 & 5). 
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Fig. 21. Moving Ratio = 0.35, Fall Ratios = 2.46, 3.21 (Person 1). 

 

With these results, we added a new function in our Python code that tests for a fall. The 

fall testing is done in two stages as shown in the pseudocode below. Stage 1 is a 

preliminary determination and then Stage 2 serves to conclusively prove that a fall has 

occurred. Yc represents the y-coordinate of the center of the camera frame and yc 

represents y-coordinate of the center of the bounding box which is approximately the 

center of the person detected. 
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Fig. 22. Fall Ratios = 1.55, 1.70; Fall Ratio = 1.71 (Person 1). 

 

 

    

Fig. 23. Fall Ratio = 2.15; Fall Ratio = 0.78 (Person 1). 
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Fig. 24. Moving Ratio = 0.40; Fall Ratio = 0.83, 1.03 (Person 2). 

 

  

Fig. 25. Fall Ratio = 0.99; Fall Ratios = 1.22, 1.12 (Person 2). 
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Fig. 26. Fall Ratios = 2.21, 1.51; Fall Ratio = 1.03 (Person 2). 

 

1. Calculate ratio = width of bounding box divided by height of bounding box 

2. Calculate yc 

3. If ratio is greater than 0.8, and yc is greater than (Yc + 50) 

3a. Call Fall Function 

3b. In fall function, repeat detection 

3c. If human is detected, calculate ratio and yc 

3d. If ratio is greater than 0.8 

3di. If yc is greater than (Yc + 60) 

 Notify that ‘Fall is detected’ 

3dii. If yc is less than or equal to (Yc + 60) 
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 Return to Main Function. 

3e. If ratio is less than or equal to 0.8 

 3ei. Return to Main Function 

4.  If ratio is less than or equal to 0.8, or yc is less than or equal to (Yc + 50) 

4a. Do nothing 

5. Continue to 1-D Navigation. 

 

F. FADER and the Ping)))TM Sensor 
 

One of the main challenges with using computer vision on FADER is that when moving 

away from an approaching human, the robot needs a way to be able to detect if it is 

backing into another object or a wall. This is the use to which we have repurposed the 

ultrasonic Ping)))TM sensor on the FADER. The PING)))TM sensor is now at the rear of FADER 

while the Pi Camera is placed in front of it. When FADER is in the retreating state and is 

backing up, we use the ultrasonic Ping)))TM sensor to ensure that it does not hit the wall 

for example. If while backing up from a person, FADER gets closer than three feet to a 

wall or another object, the ultrasonic Ping)))TM sensor detects the wall or object and the 

FADER is able to turn to the side to avoid hitting the object or wall. Thus, the ultrasonic 

Ping)))TM sensor prevents the robot from hitting an object or wall while the Pi Camera 

allows it to maintain its focus on the person detected. 

We discuss our initial test results and ongoing results in the next chapter.  
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CHAPTER IV: RESULTS AND DISCUSSION 

 

A. Initial Evaluation Tests 
 

Having set our initial thresholds to be used for comparing ratio, and the y-coordinates of 

the center of the detected person, we set about testing in the lab. For our initial tests, we 

used Person 1 from our earlier annotation sessions. Person 1 took a two minute 50 second 

walk around the lab and for the last twenty seconds simulated a fall. FADER was able to 

follow Person 1 around the entire space as well as detect conclusively, by passing through 

the two stages we set, that a fall had occurred. The notifications “Testing Fall Now” and 

“Fall Detected” were both printed to the screen of the Raspberry Pi computer. “Testing 

Fall Now” is printed when the robot passes through the preliminary stage while “Fall 

Detected” is printed when the Robot conclusively determines that a fall has occurred. 

Figures 29 and 30 below show the view from both the Rapsberry Pi screen and from a 

recording in the space. It should be noted that we are only showing the very last frame 

FADER processes before the fall is detected. While FADER continues to process 

subsequent frames as seen by the multiple “Fall Detected” notifications. 

  

B.  Test with Other Participants 
 

In total we have had six participants come to the lab space and carry out different 

Activities of Daily Living and simulate falls in different environments and positions. Two 
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of the tests took place a lab space with more obstacles while the rest took place in a lab 

space with chairs at the side and a few obstacles, mainly at the center of the room.   

 

  

Fig. 27. FADER Detecting a Fall and Computer Screen showing FADER detects the fall 
activity. 

 

In some cases, FADER conclusively detected a fall passing through the two stages; in other 

cases, FADER only detected the preliminary fall stage; and in other cases, FADER did not 

detect the fall. We present the results next. 

Participant 1 is a black male with height 5 feet 8.5 Inches. We carried out two tests in a 

different Lab space which had more obstacles. For test 1, participant walked around, 

stood and then simulated two falls, lying on his back in both cases. While FADER 

responded appropriately to the walking and standing, in the case of the two falls, FADER 

only passed through one preliminary stage of fall detection. There were no conclusive 

detections. Instead, FADER executed the Seeking Function in both cases. For test 2, the 
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participant walked, stood and then simulated two falls, lying on his side in both cases (he 

faced FADER in one case). FADER responded appropriately to the walking and standing 

but there were no detections in either fall cases.  

Participant 2 is a white female of height 5 feet 7 inches. In the test session, the participant 

stood, walked around, approached FADER, then simulated a fall lying on her back. FADER 

responded appropriately in all the ADL cases but did not detect a fall at all executing the 

Seeking Function instead.  Next the participant crawled around, then stood upside down. 

In both ADL cases, FADER responded appropriately either approaching or retreating 

depending on the distance. Next the participant simulated falling in two positions. In the 

first position, she lay on her back and then in position two she lay on her side facing 

FADER. While FADER did not detect the participant in the first position, executing the 

Seeking Function instead, it conclusively detected the fall in the second position passing 

through both the preliminary and final fall detection stages. Next, Participant 2 stood up 

again at which point FADER detected that she had stood up and began to follow her as 

required. She simulated another fall this time lying on her stomach facing FADER. In this 

case, FADER did not detect her at all and executed the Seeking Function. Participant 2 

crawled again with FADER responding appropriately and then simulated another fall this 

time lying on her side with her back to FADER. Initially FADER did not respond but after 

she moved forward while maintaining the same position, FADER conclusively detected 

the fall passing through both stages. 
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Participant 3 is a black male of height 5 feet 8 inches. In the test session the participant 

walked and then simulated a fall lying flat on his back. While walking, FADER responded 

appropriately approaching and seeking as needed. In the fall position, FADER repeatedly 

passed through the preliminary stage of fall detection without conclusively determining 

that a fall had occurred. However just as participant 3 was standing up, FADER 

conclusively determined it was a fall. Next, participant walked and then simulated 

another fall lying on his side facing FADER. This time FADER responded correctly, and also 

conclusively detected the fall. Next, Participant 3 walked and simulated a fall lying on his 

side with his back to FADER. This time, FADER only reached the preliminary stage of Fall 

Detection. Furthermore, it had drawn too close to the participant.  

Participant 4 is a Middle Eastern male of height 5 feet 8 inches. In the test session 

Participant 4 walked back and forth, moved towards FADER, and stood. In all ADL cases, 

FADER responded appropriately. Next, the participant simulated a fall by lying on his side 

with his back to FADER. FADER conclusively detected a fall passing through both stages of 

detection. When Participant 4 stood up and walked, FADER also detected this and 

followed as required. Next, Participant 4 simulated a fall lying on his side facing FADER. In 

this case, FADER conclusively detected a fall passing through both stages of detection. 

Lastly, Participant 4 Simulated a fall lying on his stomach. In this position, FADER did not 

detect a fall. Instead it executed the Seeking Function.  

Participant 5 is a black female of height 5 feet 3 inches. In the test session, the participant 

walked, then half-bent and then stood. FADER responding appropriately to the walking 
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but lost the participant when she half bent leading it to execute the Seeking Function. It 

then reacquired her when she stood up. Next, she fully bent, and FADER recognized her 

this time and appropriately responded. Participant 5 then went on to execute the 

following fall simulations: lying down on her side, lying down on her stomach, lying down 

on her side diagonally, lying down on her side facing FADER. In all of these positions, 

FADER did not detect the fall, executing the Seeking Function instead, and reacquiring her 

when she stood up. Next Participant 5 lay down on her side with her back to FADER and 

then also turned to face it. FADER responding by first executing the Seeking Function 

moving towards her then passing the preliminary stage of Fall Detection. It remained in 

this stage even when she turned to face it.  

Participant 6 is a black female of height 5 feet 2.8 inches. In this test session, FADER 

followed participant 6 while she was moving. It briefly lost her when it misidentified a 

sweater on a chair as a person while executing the Seeking Function.  However, it 

discarded that detection within seven seconds and continued till it reacquired her. 

Participant 6 first simulated a fall lying on her stomach. FADER executed the Seeking 

Function and then detected her when she raised her head while still in the fall position. It 

entered the preliminary stage of fall detection but exited it and then approached her, 

coming too close and then reentering the preliminary stage of fall detection.  In the next 

instance, while executing the Seeking Function to track Participant 6, FADER misidentified 

the same sweater as before as a human but once again corrected itself. We also had to 

abort the next instance where participant 6 lay down on her side facing FADER because 
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FADER got caught in a chair. We restarted the same fall simulation and this time FADER 

completely detected a fall. Lastly, Participant 6 simulated a fall lying on her side with her 

back to FADER. In this case, FADER originally entered the preliminary stage of fall 

detection before exiting and moving towards the participant. 

Tables 5-7 summarize the results of the seven tests sessions we had with the participants. 

 

TABLE 5  PARTICIPANTS AND TEST SESSION BREAKDOWN 
 

Height Gender Skin Color Location of Session Time of Total Session 

Person 1 5 ft 7 in Male Black DSB 150 6 min 55 sec 

Person 1 5 ft 7 in Male Black DSB 150 3 min 32 sec 

Person 2 5 ft 7 in Female White DSB 122 7 min 54 sec 

Person 3 5 ft 8 in Male Black DSB 122 5 min 57 sec 

Person 4 5 ft 8 in Male Middle 

Eastern 

DSB 122 4 min 56 sec 

Person 5 5 ft 3 in Female Black DSB 122 12 min 24 sec 

Person 6 5 ft 2.8 in Female Black DSB 122 16 min 14 sec 

 
 
 

These results as summarized in Tables 5 -7 show that FADER responds to 22 out of 23 ADL 

cases correctly and does not misinterpret any of them as the user falling. The case of the 

half-bend is the exception to this and even in that case FADER merely does not detect the 
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target as human and so concludes that the human has stepped out of view and executes 

the Seeking Function.  

 

TABLE 6 DIFFERENT ADLS CARRIED OUT BY PARTICIPANTS AND FADER’S RESPONSE 

ADL Total 
Number 

Responded 
Appropriately  

Did Not 
Respond 
Appropriately 

Misclassified as 
a Fall 

Comment  

Walking 
(Approaching) 

3 3 0 0 Participants 
often walked 
or stood in 
between fall 
simulations, 
but we are 
counting all 
instances as 
one. 

Walking 
(Retreating) 

7 7 0 0 

Standing 7 7 0 0 

Half-Bend 1 0 1 0 Executed 
Seeking 
Function. 

Full Bend 2 2 0 0   

Crawling 2 2 0 0   

Standing 
Upside Down 

1 1 0 0   

 
 

Out of 24 simulated falls, FADER correctly deduced the first stage of a fall 13 times but 

then only conclusively determined a fall 7 times. Twelve out of the remaining seventeen 

times, FADER executed the Seeking Function continuously which means it did not detect 

a human in the frame before it. The issue therefore is not that FADER did not recognize a 

fallen human in those cases but that it did not recognize a human at all. Of the remaining 

five cases, FADER remained in the preliminary detection stage four times; and in only one 
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case does FADER move towards the person instead of conclusively detecting a fall (this 

case is marked in the “Did Something Else” column in Table 7. 

 
TABLE 7 DIFFERENT FALL TYPES SIMULATED AND FADER’S RESPONSE 

 

 

In evaluating real-world fall detection, [37] discusses a number of performance measures 

based on the possible outcome of true positives, true negatives, false positives and false 

negatives. The measures included Sensitivity, Specificity, False Positive Rate Over Time, 

Precision, Negative Predictive Value, Accuracy, F-Measure, Informedness, Markedness, 

Matthews Correlation Coefficient.  

We will be evaluating FADER based on Sensitivity, Precision and the F-Measure together 

with the definitions and equations presented by [37].  This is because [37] concluded that 

 
 
 
FALL TYPE 

 
 
 
TOTAL 

FADER RESPONSE 

 
Executed Initial 
Stage 

 
Completely 
Detected Fall 

 
Executed Seeking 
Function 

 
Did Something 
Else 

Lying on stomach 4 1 - 3 - 

Lying on back 5 2 1 3 - 

Lying on side facing 
FADER 

7 5 4 2 - 

Lying on side with 
back to FADER 

5 5 2 - 1 

Lying on side 2 - - 2 - 

Lying on side 
diagonally 

1 - - 1 - 
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these three measures are the measures to be focused on when considering real-world 

Fall Detection. Here is a quote from the paper: 

 Sensitivity and precision together quantify the ability to detect falls 

and avoid false alarms, therefore providing a complete portrayal of 

performance. In addition to sensitivity and precision it is important 

to have a single measure which can quantify the trade-off between 

them. PR AUC is one possible option; however it considers the 

performance of multiple sub-optimum versions of the system as the 

system’s parameters are adjusted. Since only the optimised system 

can be deployed, it is the optimised version which should be the 

focal point of the evaluation. F-measure, the harmonic mean of 

sensitivity and precision, appears to be the most suitable single 

measure for objective comparison. This trio of measures has two 

major advantages in robustness: (1) it does not rely on non-falls and 

(2) it is resistant to issues surrounding wear time and time in the 

capture area. 

 

First,  we consider the outcomes  as defined by [37]:  

True Positive (TP)—Correctly detected fall  

True Negative (TN)—Non-fall movement not detected as a fall  

False Positive (FP)—Classified as a fall when none occurred 
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False Negative (FN)—A fall which was not detected 

 

We however note that while [37] considers fall detection as a binary classification, a 

positive case or a negative case; in the case of our experiments, we give a score of 0.5 to 

the cases where FADER reached the initial stage of fall detection but did not completely 

detect the fall.  

TP = 7 + (0.5*6) = 10 

TN = 23  

FP = 0  

FN = 11 + (0.5*6) = 14 

 

B1. Sensitivity (also known as recall and true positive rate):  

This was defined the proportion of falls which are correctly detected. 

 

Sensitivity = TP /(TP+FN) 

                   = 10/ (10+ 14)  

                    = 0.417 

 
 

B2. Precision (also known as positive predictive value)  

This was defined as the proportion of alarms which are true falls 

Precision = TP /(TP+FP)  

                  = 10/ (10+ 0)  

                  = 1 
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B3. F-Measure (also known as F-Score) 

This was defined as the harmonic mean of sensitivity and precision.  

[37] further states that the F-measure “considers all outcomes except true negatives (non-

falls). In fall detection, the priorities are detected falls (TP), missed falls (FN) and false 

alarms (FP). F-measure considers all of these outcomes and therefore provides a good 

overview of performance”.  

 

F-Measure = 2 * [(Precision * sensitivity)/ (Precision + Sensitivity)]  

                     = 2*[(0.417*1)/ (0.417+1)  

                     = 2 *(0.417/1.417) 

                     = 0.589 

 

C.  Improvements of Results 
 

While it has a high precision of 100%, FADER currently has a low sensitivity of 41.7%. This 

is due to its not detecting humans in some fallen positions. It is however consistently spot 

on when it conclusively detects a fall.  

We propose two possible solutions to improve FADER’s sensitivity: 

1. Carry out transfer learning to adapt our current deep learning model to detect people 

in more fall positions as people.  

2. Currently the Pi camera is in a fixed position on FADER. Implementing a servo that 

allows the camera to turn and also move up and down might allow the human to be 
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detected. As previously stated, [65] found that replacing a fixed sensor with an active one 

resulted in an 80% improvement. This could substantially reduce the number of false 

negatives that FADER has.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



76 
 

 

CHAPTER V: CONCLUSION AND FUTURE WORK 
 

Robots today have the potential to become more ubiquitous as social robots that live in 

our households and provide care, support and companionship. 

We have presented in this thesis preliminary work on the development of a computer 

vision based human following robot for fall detection in the home of the elderly.  

Our Robot, FADER, is Raspberry-Pi and Arduino Based, mobile, can sufficiently follow a 

person in a mildly occluded space without permanent loss; and can detect falls. While we 

initially considered other non-vision-based options due to potential concerns about 

privacy; we eventually decided to have the robot operate as an isolated system, i.e., 

without connection to the internet. Thus, we are able to address the privacy concern and 

yet take advantage of the advances in the field of computer vision. We considered two Pi 

Camera options and after testing chose the Pi NoIR because of its promise for functioning 

in the dark whilst remaining robust in normal conditions. We implemented deep-learning 

based object detection on the Raspberry Pi and the Pi Camera. We achieved Distance 

Estimation, based on Linear Regression using Microsoft Excel. We implemented a 

threshold-based algorithm based on estimated distance for one-dimensional navigation. 

We made hardware adjustments to the existing robot prototype. We achieved two-

dimensional navigation as a linear combination of tracking, pivoting and one-dimensional 

navigation. We tested and realized two representative metrics for Fall Detection namely: 

the ratio of width to the height the bounding box, and the Y-Coordinate of Center of 
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Person. We implemented Threshold-Based Algorithms using the above metrics to test Fall 

Detection. We carried out tests with different people and different environments to test 

our system and have proven that it is possible to use a mobile robot to follow a human in 

an occluded space and to detect falls. 

Our current results show Fall Detection Robot (FADER) has a perfect precision of 100% 

but a low sensitivity of 42%. Future work is being done to improve this. 

Compared to other works, FADER has the following advantages: 

• It is mobile/portable 

• It is non-participatory 

• It is non-invasive with respect to the body 

• It is designed as an isolated system. This takes care of non-invasiveness with 

respect to privacy 

• It is low-cost and easily assembled 

It is not difficult to envisage a future where FADER is deployed in the home of seniors 

across the world and functions as a platform for many more functions including offering 

quick response for when the seniors fall thus extending the length and quality of their 

lives.  

As proposed in the previous chapter, future work would focus first on improving the 

sensitivity of FADER by either training a new detection model with a person class that 

detects more people in fallen positions, or by introducing a servo motor that allows the 
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Pi Camera to be move both vertically and horizontally, thus adjusting the angles at which 

a tracked person is being viewed.  We would also in future work add infrared lighting to 

FADER and test it a dark environment thus fully maximizing the potential of the Pi NoIR 

camera.  

Moreover, additional work would focus on considering when multiple people and many 

more household objects are in the space and how that could affect FADER’s detection[57]. 

Possible approaches for detection in such a space include reinforcement learning 

algorithms. 

Also, while the notification of fall detection currently happens on the screen, work would 

focus on the notification of the external responder either by SMS or by the use of Near 

Field Communication. These two approaches are preferred because they allow us to 

preserve the ‘no connection to the internet’ rule that protects the privacy of FADER’s 

potential users. 
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APPENDIX A: LIST OF PARTS FOR FADER 
 

TABLE 8 LIST OF PARTS FOR FADER 

S/N PARTS Quantity 

1 Rapsberry Pi 3 Model B 1 

2 Pi Camera v2 1 

3 DC Motors 4 

4 LiPo Battery (3 cell 4000 mAh 12 V) 1 

5 L298 motor drivers 2 

6 Arduino UNO 1 

7 Ultrasonic Ping Sensor 1 

8 Power Bank (10000mAh) 1 

9 Plastic wheels 4 

10 Raspberry Camera & Display Extender 1 

11 LiPo Battery Voltage Tester  1 

12 15 W DC/DC Converter 1 

13 3D Printed Frame - 

 


