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ABSTRACT

As the Internet becomes increasingly crucial to distributing information, Internet cen-

sorship has become more pervasive and advanced. A common way to circumvent Internet

censorship is Tor, a network that provides anonymity by routing traffic through various

servers around the world before it reaches its destination. However, adversaries are capable

of identifying and censoring access to Tor due to identifying features in its traffic. Meek, a

traffic obfuscation method, protects Tor users from censorship by hiding Tor traffic inside

an HTTPS connection to a permitted host. This approach provides a defense against censors

using basic deep packet inspection (DPI), but machine learning attacks using side-channel

information against Meek pose a significant threat to its ability to obfuscate traffic. In this

thesis, we develop a method to 1. efficiently gather reproducible packet captures from

both normal HTTPS and Meek traffic, 2. aggregate statistical signatures from these packet

captures, and 3. train a generative adversarial network (GAN) to minimally modify statistical

signatures in a way that hinders classification. Our GAN successfully decreases the efficacy

of trained classifiers, increasing their mean false positive rate (FPR) from 0.183 to 0.834 and

decreasing their mean area under the precision-recall curve (PR-AUC) from 0.990 to 0.414.
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CHAPTER I

Introduction

Internet censorship has become a global issue. Freedom on the Net 2018 [17] claims that

Internet freedom around the world has been on the decline for eight consecutive years. This

global rise in censorship creates a need for anti-censorship technology capable of neutralizing

this threat. Tor is commonly used to circumvent censorship, but is subject to censorship

itself. Traffic obfuscation is capable of mitigating censorship against Tor, but recent attacks

have exposed weaknesses in existing traffic obfuscation methods. Traffic obfuscation can

be modeled as a conflict between an adversary attempting to detect unwanted traffic and

a user attempting to modify their traffic in a way that circumvents this [11]. Adversarial

neural networks represent this model well, and present an opportunity to improve traffic

obfuscation methods.

Though it was designed as an anonymity network, Tor [10] is frequently used to cir-

cumvent censorship. Consequently, access to Tor is frequently targeted or blocked by

adversaries performing censorship such as China [37] and Iran [2]. In response, the Tor

Project supports numerous “pluggable transports” that employ traffic obfuscation to circum-

vent blocking [33] including Meek [14], a pluggable transport that uses domain fronting to

circumvent censorship.

Domain fronting works by hiding traffic to a forbidden host (such as a censored web-

site or Tor bridge) inside the encrypted payload of traffic to an allowed host (such as

google.com). In Meek, the forbidden host is a Tor bridge, and the permitted host is usually

some major service hosted on the same platform, such as ajax.aspnetcdn.com when

using meek-azure. Because the payload and destination of Meek traffic are encrypted, the

use of DPI for censorship is mitigated as the censor lacks the ability to observe a packet’s

metadata fields. Such an approach requires the censor to block both the forbidden and

allowed domains. This exploits censors’ unwillingness to block a high profile website
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such as google.com or amazon.com, an action that could disrupt business or cause civil

unrest [36].

Despite its immunity to simple metadata-based filtering, Meek is not entirely unde-

tectable. Wang et al. [39] were able to detect Meek traffic from regular HTTPS traffic

with a FPR as low as 0.00006 using machine learning to train a classification model over

side-channel features such as packet sizes and inter-arrival times. As computational power

increases, the use of ML to perform censorship becomes increasingly feasible. This presents

a significant threat to the efficacy of traffic obfuscation methods, and Internet censorship

circumvention in general. In order to address this threat, traffic obfuscation methods must

operate with awareness of identifiable statistical features present in their behavior, and work

to correct these features.

Generative Adversarial Networks (GANs) have a very similar model to that of traffic

obfuscation. GANs are typically composed of two components: a generator and a discrimi-

nator [15]. The goal of the generator is to generate realistic looking data, while the goal of

the discriminator is to determine whether this synthetic data is real or fake. By training the

generator and discriminator in unison, each can learn from the other until an equilibrium is

reached. In this work, the generator plays the role of the obfuscator, while the discriminator

plays the role of the censor. In this work, we aim to evaluate the efficacy of GANs by

modifying statistical signatures of Meek traffic in a way that makes them seem more similar

to regular HTTPS traffic.

1.1 Contributions

In this thesis, we

1. Develop a framework to efficiently and reproducibly capture web browsing traffic in

order to generate large datasets.

2. Aggregate statistical signatures of side-channel features in network traffic captures.

3. Demonstrate a feature-space attack that modifies statistical signatures of Meek traffic
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in a way that makes them similar to regular HTTPS signatures.

4. Evaluate effectiveness of this feature-space attack against machine learning attacks.

This thesis is organized as follows. In Chapter II, we discuss Tor, traffic obfuscation,

and adversarial machine learning. In Chapter III, we outline related work. In Chapter IV,

we describe our data collection framework used to generate the dataset for our experiments.

In Chapter V, we describe the process used to extract aggregated statistical signatures from

captured packets. In Chapter VI, we describe our adversarial approach to modifying Meek

statistical signatures to look more like those from regular HTTPS. In Chapter VII, we

describe our evaluation process, and present the results of our adversarial approach. In

Chapter VIII, we discuss our results. This thesis ends with conclusions in Chapter IX.
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CHAPTER II

Background

In this chapter, we discuss Tor, an anonymous communication network. We then discuss

censorship against Tor and methods to evade censorship. Next, we introduce various methods

of traffic obfuscation. Finally, we discuss adversarial machine learning.

2.1 Tor

Tor is a “circuit-based low-latency anonymous communication service” that operates

using a system called “onion routing” [10]. The Tor network is composed of nodes (called

onion routers) that forward traffic through the network. To communicate over Tor, clients

first choose a path through the network i.e., a circuit. This circuit is chosen using the

consensus, which is the list of all public onion routers in the Tor network. Tor circuits

are typically composed of 3 onion routers: the entry guard, the middle relay, and the exit

node. The role of entry guard is typically assigned to powerful onion routers with high

bandwidth. While relays and entry guards require very low risk to run, exit nodes are

particularly dangerous to operate, as they transmit traffic out of the Tor network, and may

be liable for the traffic they transmit. Once the circuit is constructed, fixed-size cells are

then transmitted to and from the client through this path, with layers of symmetric keys

used to ensure that each relay is only aware of the cell’s previous source, and the onion

router to forward traffic to. Tor provides anonymity to both clients and servers, if the server

is configured to act as a Tor hidden service. When using Tor, traffic is not sent directly to

its destination, but through a series of relays. This allows users to hide their traffic’s true

destination from traffic inspection, making it a useful tool against censorship.

2.2 Censorship

Tor’s anonymity and privacy applications have made it a target for blocking. Because

the IP addresses of most onion routers are listed publically in the consensus, some censors

simply block all or most IPs listed in the consensus [40]. The Tor Project aims to solve
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this problem using bridges, onion routers that are not listed in the consensus. However, the

Chinese government is known to probe and block hosts suspected of running Tor bridges [12],

making them similarly weak to IP blocking. Tor traffic may also be blocked via DPI, as the

Transport Layer Security (TLS) headers used by Tor have a unique fingerprint [40]. Winter

et al. discovered that the Great Firewall of China (GFC) “identifies Tor connections by

searching for the cipher list sent by Tor clients” [40], an unencrypted metadata field sent

during the TLS client hello which uniquely identifies Tor [40]. The Tor Project continues to

address identifiable signatures in Tor traffic [29], as well as obfuscation methods to prevent

blocking of Tor traffic.

2.3 Traffic Obfuscation

The goal of traffic obfuscation is to make it difficult or impossible for any entity capable

of monitoring network traffic (monitors) to fingerprint or extract useful information from

the traffic. In the context of Tor, obfuscation is frequently used to prevent monitors from

being able to determine that Tor is being used. There are many methods of obfuscating

network traffic. The details of an obfuscation method rely on the specific threat model used,

or assumptions about the adversary. Dixon et al. classify traffic obfuscation methods as

encryption, randomization, mimicry, and tunneling [11].

2.3.1 Payload Encryption

Payload encryption methods such as TLS are effective methods to prevent monitors from

gaining any information about traffic’s payload. However, payload encryption methods are

not sufficient to prevent censorship, because the traffic will still have metadata fields such as

IP addresses, domain names, or TLS fingerprints that identify the traffic’s true destination

or protocol [11]. TLS 1.3 can mitigate this problem somewhat by encrypting the Subject

Name Indicator (SNI) [5] in the TLS headers (ESNI), but a client must still make a DNS

request for the host before using ESNI. Encrypted DNS solutions such as DNS over TLS

and DNS over HTTPS exist [42], but censors could potentially disallow these protocols. In
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the end, traffic must have a destination IP address, which must be unencrypted in order for

networking to function. This introduces at least one point of blocking.

2.3.2 Randomization

One method of obfuscating network traffic is to randomize traffic metadata in a way that

the censor’s automated DPI engine fails to classify it, treats it as an unknown protocol, and

ignores it [11]. This type of obfuscation operates under the assumption that the adversary is

only blacklisting forbidden traffic, because if the adversary is whitelisting specific traffic

classes, randomized traffic will be immediately discarded [11]. However, whitelisting of

traffic protocols is not common, as enumerating all types of permitted traffic can be very

difficult.

Obfsproxy is a randomizing obfuscator based on ScrambleSuit [41]. Obfsproxy traffic is

encrypted with AES and then shaped with a packet morpher and delayer. As a result, it is

difficult to identify obfsproxy traffic as any specific protocol.

2.3.3 Protocol mimicry

Protocol mimicry is a form of obfuscation that masks traffic as a permitted protocol [11].

Mimicry-based forms of obfuscation usually do not attempt to produce legitimate forms

of the target protocol, just traffic that looks similar. Examples of this include prepending

HTTP headers to Tor traffic [9], disguising traffic as Skype traffic [26], or general traffic

transformations such as Format-Transforming Encryption (FTE) [22]. However, protocol

mimicry may “deviate, often significantly, from that of messages conforming to the cover

protocol” [11] which makes them easier to identify by an adversary using DPI.

2.3.4 Tunneling

Tunneling is an obfuscation method that transmits traffic inside another, more permissible

protocol. This includes any protocols such as HTTPS proxies and VPNs [11]. Meek, the

tunneling protocol we examine in this work, tunnels traffic inside an HTTPS connection

with modified host headers, in order to spoof the traffic’s destination. Tunneling obfuscation
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Figure 1: Meek Architecture [14]

methods differ from protocol mimicry obfuscators, because they follow the cover protocol.

However, tunneled network traffic may have traffic characteristics that differ from typical

use of the cover protocol. For example, Meek traffic (transmitted over HTTPS) exhibits

different packet sizes and inter-arrival times than typical HTTPS traffic [14].

2.4 Adversarial Machine Learning

Machine learning algorithms are known to be vulnerable to adversarial examples [7].

Adversarial examples are inputs that have been created or perturbed in a way that causes

a model to misclassify them; for example, an image of a cat may be modified with small

perturbations such that a human still recognizes it as a cat, but a neural network recognizes

it as something entirely different, such as a dog.

There exists a form of adversarial neural network called an Adversarial Transformation

Network (ATN), in which the generator applies minimal transformations to an input in

order to cause the discriminator to misclassify it [3]. These neural networks are effective at

producing adversarial data from regular data, and effectively changing the class of a piece

of a data from the point of view of the classifier. For this reason, we believe ATNs are very

well-suited to traffic obfuscation problems.
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CHAPTER III

Related Work

3.1 Network Traffic Obfuscation

In “Blocking-resistant communication through domain fronting”, Fifield et al. compare

packet lengths and connection duration in regular HTTPS traffic with those in Meek traf-

fic [14]. They compare HTTPS connections to Google servers from the Lawrence Berkeley

National Laboratory dataset with Meek traffic transmitted using Google App Engine as

the front domain. Fifield et al. found that while normal traffic and Meek traffic have a

similar number of zero-length packets (mostly ACKs), Meek packet sizes exhibit “small

peaks at a few specific lengths, and a lack of short payloads of around 50 bytes”. Fifield

at al. speculate these differences can be attributed to the fixed cell size of the underlying

Tor traffic. Additionally, Meek traffic showed longer connections, due to the aggressive

use of HTTP keepalive. However, despite the fact that Meek exhibits longer connection

durations, a censor may not be willing to interrupt these connections, because they may

represent downloads or other high-value connections. Additionally, Meek is resilient to

broken connections, because it uses a session ID header to identify its connection. While

Fifield et al. acknowledge that these features represent a way to potentially differentiate

Meek traffic from HTTPS traffic, they note that “Circumvention traffic need not be per-

fectly indistinguishable, only indistinguishable enough that that blocking it causes more

and costlier false positives than the censor can accept”. Meek’s utility relies on censors’

unwillingness to create false positives in their censorship, due to either collateral damage, or

the sheer cost of false positives in an environment with large volumes of traffic.

3.2 Detection of Network Traffic Obfuscation

In “Seeing through Network-Protocol Obfuscation”, Wang et al. investigate various

methods to differentiate obfuscated traffic from non-obfuscated traffic [39]. Notably, they

use machine learning to identify Meek traffic. Their approach trains various models using
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the following features, measured over the first 30 packets of a connection:

• Minimum, average, maximum shannon entropy of payloads in each direction

• Histogram of logarithmically binned TCP ACK inter-arrival times in each direction

• Percentage of TCP ACK packets sent in each direction

• 5 most common packet payload lengths in each direction

The entropy-based features are less useful for Meek traffic, since HTTPS and Meek

traffic is typically either encrypted (very high entropy) or empty, zero-entropy ACKs. It

provides more utility for other obfuscation methods such as obfs4. TCP ACK inter-arrival

times and the percentage of TCP ACK packets in each direction are used due to an observed

high areP ACK frequency in Meek traffic.

The authors’ best model, a decision tree, achieves a false positive rate of 0.00006 when

comparing automatically generated Meek traffic (over Google App Engine) with a dataset of

14 million flows. Additionally, the small feature set used by this attack makes it a promising

approach as DPI-based censorship becomes increasingly powerful.

The scripts used to generate traffic for the results presented by Wang et al. are open

source. We improve on their data collection method by introducing a parallel work queue

system, and implementing more robust error handling and failsafes to ensure that if a failure

occurs while collecting data, that failure is handled gracefully and repeated if the error can

not be recovered from.

In “Meek-Based Tor Traffic Identification with Hidden Markov Model”, Yao et al.

distinguish Meek traffic from regular HTTPS traffic using a Hidden Markov Model trained

over packet sizes and inter-packet timings [43]. Yao et al. do not describe their Meek

data collection process. Overall, their approach further demonstrates the potential for

machine-learning based attacks on Meek’s obfuscation.
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Shahbar et al. also analyze Meek traffic and find that it is identifiable from other types

of traffic with an FPR of 0 [35]. However, they do not describe their Meek data collection

process or classification model in detail.

Nasr et al. performed flow correlation on Tor traffic, including Tor over Meek [28]. They

show that Meek does not provide any protection against flow correlation attacks. They also

note that “DeepCorr has a significantly lower performance in the presence of obfs4 with

IAT=1”. In obfs4, IAT=1 enables obfuscation of inter-arrival times via probabilistic packet

delays. This gives confidence to the notion that traffic shaping techniques could be effective

for evading flow correlation in addition to censorship. Nasr et al. use the Alexa top 50k as

datapoints for their experiments. In this work, we only analyze over the Alexa top 10k.

Verma et al. use adversarial machine learning to modify high-level packet characteristics,

in order to fool classifiers into misclassifying traffic protocols [38]. They note that many

obfuscated protocols can be identified via statistical signatures, but do not implement

measures to modify or perturb these statistical signatures. They also claim that obfuscation

techniques such as increasing packet sizes artificially, introducing additional packets (known

as chaff), or delaying packets can be modeled as transformations of a statistical signature.

They train a GAN using the Carlini-Wagner L2 algorithm to apply perturbations to statistical

signatures in order to fool a classifier into misclassifying signatures as different protocols

(BULK, DATABASE, MAIL, SERVICES, P2P, WWW). Their adversarial modifications

decrease the accuracy of trained classifiers between 1% and 48%.

In this work, we use similar techniques to modify the traffic characteristics of Meek

traffic. We also base our features and adversarial transformations on statistical signatures, but

our technique operates over frequency histograms, while Verma et al.’s operates over even

higher-level statistical features such as mean and quartile packet sizes and inter-arrival times,

as described in [27]. Our approach allows for potentially more flexible transformations.

Additionally, our model operates over Meek and HTTPS traffic, while Verma et al. focus on
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protocol misclassification. Finally, we evaluate our adversarial models using differences

in PR-AUC and FPR, metrics that focus on censorship feasibility, while Verma et al. use

accuracy as a primary metric.

3.3 Adversarial Machine Learning

In this work, we use StarGAN as a basis for our adversarial model [6]. StarGAN was

originally designed for applying specific features to images over multiple datasets. StarGAN

was chosen due to being a state of the art adversarial transformer, since the complex

underlying generator and discriminator can be replaced with simple dense neural networks.

Our use of StarGAN comes primarily from its training process. StarGAN optimizes for

both transformation that fools a classifier and reconstruction, making it well-suited to traffic

obfuscation problems. One concern with transforming traffic based on a pattern would be

converting it back to its original format at the server. Without including extra metadata in

existing traffic, a server could transform the given signature back to its original class, and

determine which bytes are important that way.
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CHAPTER IV

Data Collection

Efficiently training machine learning models requires large datasets in order to ensure the

model is exposed to a diverse set of inputs within the target domain. To meet this demand,

we develop a data collection framework capable of capturing regular HTTPS and Meek

flows efficiently and in a controlled environment. Previous work analyzing Meek traffic

uses sequential scripts [35], [39] or does not appear to describe their Meek data collection

process [28], [43].

4.1 Container-based Supporting Tools

We use Docker [18] to allow our data collection process to be performed in parallel, and

in a reproducible environment. Docker is a platform based on reproducible environments

known as containers [18].

A major benefit of Docker in a research environment is that it can be used to promote

reproducible research. A file called Dockerfile defines the Linux distribution, dependen-

cies, and environment variables used to control the environment in which our data collection

program runs. By controlling for as many variables as possible, our data collection process

produces datasets that only vary based on network conditions, and changes in the websites

requested such as time-sensitive content or language changes based on the IP address of the

exit node.

Our data collection method is composed of two categories of containers: a work queue

and workers. The work queue manages a queue of data collection work, and allows the

workers to request work over an HTTP interface. Each work item in the queue contains a

URL and a proxy type. Workers navigate to URLs using the given proxy type, and produce

packet captures for each piece of work. Proxy types include “normal”, which uses no proxy,

and “tor”, which uses Tor over Meek. We use docker-compose [19] to start one instance of

the work queue, and 5 instances of the workers. This master-worker architecture allows our
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data collection process to scale linearly, until a bottleneck such as memory or network usage

is reached.

4.2 Data Collection Process

During data collection, each worker repeats the process shown in Figure 2. Overall,

the data collections process produces a report containing information about all captured

traffic (report.json) and a PCAP file for each website visit performed. An example of

the data stored in report.json can be seen in Figure 3. The field filename is generated

from random bytes, and start time and end time are Unix timestamps in nanoseconds.

success is set to false if an error if the worker fails to perform a request. This allows the

work to be added back into the queue and repeated in another work request.

4.3 Datasets

We collect datasets from a residential desktop (H), a university office desktop (U),

and an Amazon Web Service (AWS) server (A). Datasets H and U were collected using

Docker installed on NixOS hosts, while dataset A was generated using an AWS m5.2xlarge

instance provisioned by docker-machine. Each dataset contains 20000 samples, created

by navigating to the top 10000 websites of the Alexa top 1M dataset [1] using both regular

HTTPS and Meek using the meek-azure bridge from Tor Browser. Datasets H and U were

collected in Middle Tennessee, while dataset A was generated from the AWS us-east-1

region (North Virginia) [34].

4.4 Bias

Our datasets contain HTTPS traffic generated with and without Meek. However, HTTPS

traffic does not encompass the scope of all Meek traffic. We only collect traffic from

connections to the homepages of popular websites, but Tor Browser users may navigate to

other pages, use hidden services, or communicate using other protocols. Our data collection

framework may be extended to include hidden services, but is not suited to non-web traffic.
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1. Request a piece of work by sending a POST /work/get to the work queue

2. If there is no more work, the work queue will respond with a 204 status code, and
the worker will shut down

3. Send a start message to the tcpdump manager, and wait for a response. The
tcpdump manager will start tcpdump, and wait for it to print its initial message.
This ensures that tcpdump is fully started before any traffic is generated.

4. If the given piece of work specifies to use Meek, start Tor/Meek, and then wait
for 10 seconds to ensure Tor has been properly initialized, and to reduce load on
the Meek bridge. Using test traffic to test whether Meek/Tor has started would
add noise to the data collection process, and potentially cause bias.

5. Start Firefox using Selenium.

6. Command Firefox to navigate to the given URL using Selenium.

7. Wait for either an element with a common tag (<script>) to load, or a 60 second
timeout. This is done to speed up the data collection process and avoid getting
stuck on pages that never finish loading.

8. Thoroughly shut down processes in the reverse order that they were started

(a) Firefox

(b) Tor/Meek

(c) tcpdump

9. Send a report to the work queue containing information about the work done, and
the filename of the generated PCAP file.

Figure 2: Worker program algorithm
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{"success":true,"work_type":"tor","work":{"index":1,"url":"google.com","

filename":"05

aa7fa3350ffe82135ad2fa4518b19158b372c6762165ec9f49791ca0824971.pcap"},"

type_index":1,"start_time":1581563645608065792,"finish_time

":1581563750744979712}

{"success":true,"work_type":"tor","work":{"index":2,"url":"youtube.com","

filename":"27370324

e5a8eb171f9059f2d63b381d8cea6f6aafa81d9241695b1ebae0dda5.pcap"},"

type_index":1,"start_time":1581563845072464384,"finish_time

":1581563945478068736}

{"success":true,"work_type":"tor","work":{"index":3,"url":"facebook.com","

filename":"82

b2be4051755ac716faaf0d40cef8b967836197d3d989a65260f81909839ab9.pcap"},"

type_index":1,"start_time":1581563845167630848,"finish_time

":1581563946218956544}

{"success":true,"work_type":"tor","work":{"index":5,"url":"wikipedia.org","

filename":"5

c620e7838f3ceeea7d4aa877cb921c583ad8fb4a58edf3240ee30da0e5859c6.pcap"},"

type_index":1,"start_time":1581563845221189632,"finish_time

":1581563946530061056}

{"success":true,"work_type":"tor","work":{"index":1,"url":"google.com","

filename":"09

f30f27f3b4d97c221a665029cfd28e5b139b3e6167bee52a65e70e5642e0ec.pcap"},"

type_index":1,"start_time":1581563844856229888,"finish_time

":1581563947734976512}

Figure 3: report.json, as generated by our data collection process
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CHAPTER V

Feature Extraction

5.1 Goals

In this work, we analyze the following side-channel traffic features:

• TCP payload sizes

• Per-direction packet inter-arrival times.

We ignore basic packet metadata such as IP addresses or TLS parameters. While Meek traffic

may have distinct values for these features compared to the wide variety of HTTPS clients on

the Internet, we assume that these basic fields could be trivially modified. The side-channel

features we analyze are acknowledged in the original implementation of Meek [14] and used

by Wang et al. [39], Nasr et al. [28], and Yao et al. [43] to identify Meek. These features are

identifiable weaknesses in Meek, but their statistical distribution may be modified through

traffic shaping techniques; for example, Verma et al. [38] propose inserting extra data (chaff)

into packets or delaying packet transmission in order to match a distribution generated by

an adversarial neural network. HTTPOS [23] applies a similar technique to HTTP traffic.

5.2 Process

We use Zeek, a DPI engine, to aggregate packets from each PCAP into a set of HTTPS

connections [30]. We then associate each packet with an HTTPS connection using its source

IP, destination IP, source port, destination port, and timestamp. All packets unrelated to

HTTPS connections are ignored. As much more information is found in smaller payload

lengths and inter-arrival times than larger ones, we aggregate these features into logarithmic

bins. For TCP payload lengths, we use bins of size 10 from 0 to 100 bytes, size 100 from

100 to 1000 bytes, size 1000 from 1000 to 10000 bytes, and a single bin for packets larger

than 10000 bytes. For packet inter-arrival times, we use bins of size 1 from 0 to 10 ms, size

10 from 10 to 100 ms, size 100 from 100 to 1000 ms, and a single bin for inter-arrival times
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Table 1: An example of features generated for a single flow (rounded to 3 decimal places)

Class URL First Packet
Length

Inter-arrival
time (to
client)

Inter-arrival
time (from
client)

tor google.com true 0.427, 0.002,
0.0, 0.175,
0.048, 0.0,
0.034, 0.002,
0.005, 0.002,
0.007, 0.012,
0.01, 0.002,
0.01, 0.007,
0.007, 0.0,
0.0, 0.209,
0.041, 0.0,
0.0, 0.0, 0.0,
0.0, 0.0, 0.0,
0.0

0.601, 0.012,
0.0, 0.0, 0.0,
0.0, 0.004,
0.0, 0.0, 0.0,
0.181, 0.012,
0.0, 0.004,
0.008,
0.0, 0.0,
0.0, 0.004,
0.025, 0.0,
0.0, 0.012,
0.021, 0.008,
0.004, 0.033,
0.021, 0.049

0.684, 0.017,
0.0, 0.0, 0.0,
0.0, 0.0, 0.0,
0.0, 0.006,
0.017, 0.0,
0.011, 0.006,
0.006, 0.011,
0.006, 0.0,
0.0, 0.017,
0.011, 0.0,
0.017, 0.023,
0.011, 0.011,
0.034, 0.034,
0.075

above 1000ms. These bin sizes are similar to those used by Wang et al. [39]. An example of

these features can be seen in Table 1, which shows features generated from navigating to

google.com over Meek.

5.3 Visualization

Figures 4, 5, and 6 show the average frequencies of TCP payload sizes, inter-arrival times

from the client, and inter-arrival times to the client, respectively over the home traffic dataset

(H) as defined in Section 4.3. Inter-arrival times represent the time between two packets sent

in the same direction. One difference between normal HTTPS and Meek traffic can be seen

in Figure 4 where Meek traffic has a much larger proportion of packets with payload size

between 60 and 70 bytes. Additionally, The inter-arrival times of Meek traffic in Figure 5

and Figure 6 seem to indicate a higher latency in Meek traffic. Our observed differences in

TCP payload length distribution differ from the TCP payload length distribution measured
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Figure 4: Average TCP payload length frequency

by Fifield et al. [14], where Meek traffic exhibited a much larger number of payloads around

1400 bytes and a lack of payloads around 50 bytes. This may be due to a difference in data

sources [14] or modifications to Meek [13]. Fifield et al. [14] compared Google traffic from

Lawrence Berkeley National Laboratory to traffic generated by navigating to the Alexa top

500 over Meek. Since Meek’s creation, it has introduced many changes such as HTTP/2

support [13], which can result in different traffic characteristics [24].
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CHAPTER VI

Feature Space Attack

While typical GANs contain a generator, which generates adversarial data from noise,

our model uses a transformer, which transforms a traffic signature from one class to another.

This model is similar to an adversarial transformation network [3]. We use StarGAN [6]

as a basis for our model. StarGAN is an adversarial transformation model that transforms

images by selectively applying features from various domains and datasets. While StarGAN

can support modifying any number of features, we only modify one binary feature: whether

the traffic signature represents Meek traffic or normal HTTPS traffic. This allows us to

significantly simplify StarGAN while still taking advantage of its powerful adversarial

transformation features.

6.1 Architecture

In our model, we replace StarGAN’s complex, multi-layered convolutional layers with

a simple fully-connected hidden layer. While convolutional neural networks are useful

for image classification tasks [21], our traffic signatures are simple and can be classified

using a small number of parameters. The discriminator accepts a signature, contains a

single fully-connected hidden layer of size 16, and outputs a label Y (the probability that

the signature represents a Meek flow), and a source S (the probability that a signature was

modified using a transformer). The transformer accepts a signature (X) and a target class,

contains a single fully-connected hidden layer of size 128, and outputs a modified signature

(X ′). The transformer contains a larger hidden layer in order to avoid losing information

during reconstruction.

6.2 Training

We train our model using a modified version of the StarGAN training process. For each

training iteration, we train the discriminator using the following steps:

1. Retrieve a batch of 16 signatures X and labels Y from the training set. A label is 0 if
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Figure 7: Training process for our GAN, adapted from the original figure in [6].

the flow is a regular flow, and 1 if the flow is Meek.

2. Predict the flow’s label and source, and calculate loss for the predictions. BCE is

binary cross-entropy.

Ypredicted,Spredicted = D(X)

DLosscls = BCE(Y,Ypredicted)

Dlosssrc =−mean(Spredicted)

3. Generate 16 random labels Yrandom

4. Use T to transform X given Yrandom

X ′ = T (X ,Yrandom)

5. Calculate loss for the discriminator’s source prediction over the transformed signatures.

Class is ignored here, because the class of traffic does not matter if it is determined to
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be fake.

S′predicted = D(X ′)

Dloss′src = mean(S′predicted)

6. Calculate gradient penalty loss DLossgp, as defined in [6].

7. Calculate the final loss function for the discriminator.

Dloss = DLosssrc +Dlosscls +DLoss′src +10DLossgp

8. Perform gradient descent over the discriminator’s weights to minimize DLoss using

the Adam optimizer [20].

Every 5 iterations, we perform a transformer training iteration. This method is used by

StarGAN based on [16] to prevent the transformer from overfitting too quickly.

We train the transformer using the following steps:

1. Calculate loss for the discriminator’s label and source prediction over the transformed

signatures.

Y ′predicted,S
′
predicted = D(X ′)

T Losscls = BCE(Yrandom,Y ′predicted)

T Losssrc =−mean(S′predicted)

2. Calculate the perturbation loss. This measures the mean absolute distance between

unmodified and transformed traffic.

T Losspert = mean(|X−X ′|)
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3. Transform the transformed signature back to its original class using the transformer,

and measure the mean absolute difference between the original and reconstructed

signature.

Xrec = T (X ′,Y )

T Lossrec = mean(|X−Xrec|)

4. Calculate the final loss function for the transformer.

T Loss = T Losscls +T Losssrc +10T Losspert +10T lossrec

5. Perform gradient descent over the transformer’s weights to minimize T Loss using the

Adam optimizer [20].

The signatures generated by our transformer represent a new distribution of packet sizes

and timings that, if matched, would make Meek traffic appear similar to regular HTTPS

traffic. However, introducing delays or extra data into a traffic stream in order to match this

distribution introduces overhead [38]. In order to minimize this, we introduce an additional

objective into our transformer’s loss function called perturbation loss, defined above in step

2 of the training process. This measures the mean absolute difference between the original

signature and the transformed signature. By introducing perturbation loss, we train the

transformer to make minimal modifications to the traffic signature while simultaneously

fooling the discriminator. By minimizing changes made by the transformer, we reduce the

amount of work a traffic shaping method would have to do to modify the Meek traffic stream

in order to fool classifiers.

In order to reduce overfitting, a situation in which neural networks generalize poorly

due to relying on noise present in the training set, we introduce early stopping measures [4].
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Our training process iterates repeatedly over the training set until both the discriminator loss

DLoss and transformer loss T Loss have not decreased by 0.0001 over 2000 batches. This is

to ensure that D and T cease training when they have reached an equilibrium.
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CHAPTER VII

Results

7.1 Evaluation

To avoid biasing our experiments by evaluating models using data that they have been

trained on, we split datasets H, U , A (defined in Section 4.3) into three parts:

• 30% GAN training set (Gtrain)

• 20% Classifier training set (Ctrain)

• 50% Classifier testing set (Ctest)

These splits are chosen to provide a larger amount of data for testing, because both the

GAN and classifier reach convergence with very little data.

Our training and evaluation process is composed of 8 steps:

1. Train the Discriminator (D) and Transformer (T ) using Gtrain, as described in Sec-

tion 6.2.

2. Train a neural network classifier and decision tree with Ctrain

3. Split the classifier training set into two equally sized sets

Ctrain1,Ctrain2 = split(Ctrain)

4. Transform Ctrain2 set into the opposite class using the transformer, while retaining the

original (unmodified labels). This is to simulate an adversary who is aware of the
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traffic modification scheme, and aims to classify modified traffic as its original class.

Xtrain2,Ytrain2 =Ctrain2

X ′train2 = T (Xtrain2,1−Ytrain2)

C′train2 = X ′train2.Ytrain2

C′train =Ctrain1
⋃

C′train2

5. Train a neural network classifier over C′train

6. Evaluate the PR-AUC and FPR of all classifiers over Ctest

7. Transform Ctest using T

C′test = T (Ctest)

8. Evaluate the PR-AUC and FPR of all classifiers over C′test

The neural network classifiers are fully connected neural networks that accept a signature,

contain a hidden layer identical to the discriminator, and output the probability that the

signature represents Meek traffic. The decision tree is the default decision tree provided by

scikit-learn [31], which is identical to the best-performing classifier type in Wang et al. [39].

To avoid overfitting when training C, we separate Ctrain into a smaller Ctrain with 90%

of its original size, and Cval containing 10% of Ctrain. Each epoch, we evaluate the loss of N

using Cval to calculate the validation loss. If the validation loss has not decreased by 0.001

in 5 epochs (full iterations over Ctrain), we stop training the classifier.

We evaluate classifiers using PR-AUC and FPR. PR-AUC is a particularly useful metric

when dealing with a domain in which the number of negative samples vastly outweighs the

number of positive samples [8]. This suits traffic obfuscation well, as most Internet users do

not use Meek. Additionally, PR-AUC takes prediction confidence into account, and graphs

precision vs recall based on a classifier’s ability to confidently provide predictions [8]. FPR
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is commonly used when evaluating obfuscation methods, as falsely blocking a connection

can cause degraded network performance [39]. Additionally, existing work [39] uses PR-

AUC and FPR to measure obfuscator classification performance, allowing our work to be

more readily comparable.

Finally, to increase confidence in our results, we use a method similar to K-fold validation.

We shuffle each dataset, then repeat the training and evaluation process using all 6 orderings

of Gtrain, Ctrain, and Ctest . Our final results are the average of each evaluation metric over all

orderings.

7.2 Results

The effects of our transformer on classifier PR-AUC and FPR are shown in Tables 2

and 3 respectively. “Naive NN” is the neural network classifier trained only on unmodified

signatures, while “Informed NN” is the neural network classifier trained on both unmodified

and modified signatures. Our transformer successfully hinders all tested classifiers on all

datasets.

Figure 8 shows the average changes in classifier PR-AUC across all datasets. On average,

the naı̈ve neural network and decision tree achieve near perfect baseline, while the informed

neural network is unable to achieve this. Figures 9, 10, and 11 show changes in classifier

PR-AUC for the home, university, and AWS datasets, respectively. While the results for

the naı̈ve neural network and decision tree are mostly consistent across all locations, the

home dataset performs worse pre-transformation and better post-transformation. Of the

three datasets, dataset H has the slowest internet connection, which may affect this.

Figure 12 shows the average changes in FPR across all datasets. The naı̈ve neural network

and decision tree have a near-perfect baseline, while the informed neural network has

difficulty learning the dataset. The results of transforming data on the naı̈ve neural network

and decision tree demonstrate that identifying Meek traffic with the desired modifications

made would be completely infeasible from a censor’s point of view, due to the massive
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number of false positives. Figures 13, 14, and 15 show differences in false positive rates for

the home, university, and AWS datasets, respectively. The baseline and transformed results

for the naı̈ve neural network remain entirely consistent, while the results for the informed

neural network and decision tree vary. Again, the informed neural network performs poorly

on dataset H in Figure 13, likely due to differences in internet speed.

Table 2: Effect of transformer on PR-AUC

Data Classifier Baseline Modified
set PR-AUC PR-AUC

H Naive NN 0.999 0.309
Informed NN 0.915 0.583
Decision Tree 0.998 0.476

U Naive NN 1.000 0.309
Informed NN 0.999 0.428
Decision Tree 1.000 0.503

A Naive NN 1.000 0.309
Informed NN 0.999 0.309
Decision Tree 0.999 0.503

Avg Naive NN 1.000 0.309
Informed NN 0.971 0.440
Decision Tree 0.999 0.494

In Figures 16, 17, and 18, we show an example of our features over dataset H. These

graphs visualize normal signatures from dataset Hnormal and transformed Meek signatures

(T (Hmeek)), with a transformer T that has been trained on the entirety of dataset H. Com-

pared to Figures 4, 5, and 6, the differences between modified Meek and Normal traffic are

much less pronounced. One notable traffic signature modification can be seen in Figure 16,

where the difference in payload lengths between 60 bytes and 70 bytes has been reduced.

Modified Meek inter-arrival times, shown in Figures 17 and 18 are much closer to those of

normal traffic, and the frequency of inter-arrival times above 1000 ms has been reduced.
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Table 3: Effect of transformer on FPR

Data Classifier Baseline FPR Modified FPR

H Naive NN 0.005 1.000
Informed NN 0.654 0.667
Decision Tree 0.001 0.999

U Naive NN 0.000 1.000
Informed NN 0.351 0.501
Decision Tree 0.000 1.000

A Naive NN 0.002 1.000
Informed NN 0.630 0.833
Decision Tree 0.001 0.510

Avg Naive NN 0.002 1.000
Informed NN 0.545 0.667
Decision Tree 0.001 0.836
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Figure 8: Average PR-AUC differences over all datasets



31
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Näıve NN Informed NN Decision Tree
0

0.2

0.4

0.6

0.8

1.0

P
R

-A
U

C

1.0 0.999 1.0

0.309

0.428

0.503

Unmodified

Transformed

Figure 10: Average PR-AUC changes over dataset U



33
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CHAPTER VIII

Discussion

The baseline classification results in Figures 2 and 3 show that Meek is easily identifiable

using machine learning attacks. In every case, our classifiers trained on unmodified data

achieved PR-AUC above 0.998 and FPR below 0.005. Wang et al. [39], Yao et al. [43],

and Nasr et al. [28] also achieve impressive classification results. However, this strength

can also be a weakness. Machine learning models are prone to overfitting [4], making

them sensitive to perturbation. For example, over all datasets, the naive neural network

achieves a PR-AUC of 1.00 on unmodified data while the informed neural network achieves

a PR-AUC of 0.971. However, when classifying modified data, the neural network trained

with unmodified data achieves a PR-AUC of 0.309, while the neural network trained using

both unmodified and modified data achieves a PR-AUC of 0.440. However, the informed

neural network tends to perform poorly in terms of false positive rate compared to the naı̈ve

neural network. This may be due to irreconcilable noise caused by conflicting information

between the unmodified and modified training set.

Because we ignore hostnames, we lose some identifiable features. During training, we

compare Meek traffic to all regular HTTPS traffic, rather than with HTTPS traffic to the

Meek fronting host. For example, the meek-azure bridge uses ajax.aspnetcdn.com as

the fronting host [32]. This host typically serves “popular third party JavaScript libraries

such as jQuery” [25]. Traffic that mimics average HTTPS traffic to all domains may appear

unusual to an adversary compared to typical traffic through this host. In this work, we

assume that an increase in false positive rate is sufficient to make classification of Meek

traffic less feasible, but future work may target hosts on the Content Delivery Network

(CDN) used for domain fronting during data collection.

Additionally, our dataset lacks geographical diversity. All traffic was generated from the

Eastern US, and models generated from this data may not be useful to Meek users in other
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countries. While the Alexa top 1M dataset [1] contains websites from around the world,

the data collection workers are set to use an English locale, which may result in latency

differences compared to requesting the webpages in other languages.
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CHAPTER IX

Conclusions

In this work, we develop a data collection framework capable of efficiently producing

reproducible packet captures of Meek and normal HTTPS traffic. We evaluate multiple

classification methods over this captured traffic and train classifiers capable of identifying

Meek. We then show that our adversarial modification scheme is capable of modifying

traffic signatures in a way that reduces average classifier PR-AUC from 0.990 to 0.414 and

increases average classifier FPR from 0.183 to 0.834.

While we focus on Meek and normal HTTPS traffic in this work, our adversarial

modification scheme and data collection framework can potentially be applied to any Tor

pluggable transport in order to identify and correct for weaknesses. In the future, adversarial

models could be applied to shape traffic in real-time in order to improve any obfuscation

method that relies on protocol mimicry or tunneling.

As adversaries performing censorship become more advanced, researchers developing

obfuscation methods must become aware of their capabilities. Performing classification and

transformation simultaneously using adversarial machine learning can allow researchers to

model theoretical capabilities of both the censor and the obfuscator.

9.1 Future Work

Adversarial techniques show great promise as a method of evading censorship, fin-

gerprinting, and flow correlation. We intend to pursue this field of research further, and

eventually build tools that allow users to take advantage of adversarially trained traffic

shaping to improve their privacy.

9.1.1 Adversarial Traffic Shaper

One possible approach to this would be an extension to Meek that modifies either the

transmitted traffic or the traffic transmission strategy to produce HTTPS flows with traffic

characteristics similar to those of typical HTTPS traffic. If successful, this could provide an
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additional layer of protection to Meek users. However, there are numerous problems that

must be solved before this becomes feasible. These issues include practical implementation,

bias, and efficiency.

Our results show that the effectiveness of classifiers can be hindered when adversarial

techniques are used to modify high-level features of Meek traffic. However, applying our

methods to actual traffic would require mapping high-level modifications of traffic features

to low-level traffic scheduling and shaping algorithms. This presents an opportunity for

future work.

Another potential concern of a potential adversarial traffic-shaper for Meek is that all

machine learning algorithms have bias. Regular HTTPS traffic likely has very different

characteristics in Tennessee than it does in China, for example, so if a Meek user in mainland

china used an American model, the traffic still might be anomalous. This could be due to

differences in network infrastructure, websites visited, popular software, and a variety of

other factors. Tailoring a machine learning model for traffic shaping in a specific situation

would require generating new data and training new models for different areas. This opens

up new areas of research about the granularity required to have an effective model against

censorship, and the transferability of models. Generating datasets may also be difficult if

Meek is being censored already. A possible solution may involve decentralized networks

to share examples of regular traffic characteristics to mimic, but this comes with problems

such as bad actors, and also privacy concerns.

Traffic shaping that performs actions such as injecting additional packets and payloads,

or delaying packets introduces some level of overhead to an obfuscation method. Given that

Tor and Meek introduce significant overhead already, any additional may further decrease

usability. We attempt to address this potential concern by minimizing modification to high

level features, though an implementation of this transformation may need to operate under

different constraints.



45

CHAPTER X

Availability

All code used to produce the results in this work including the traffic generation frame-

work, feature extractor, and machine learning code is open source, and can be accessed at

https://github.com/starfys/packet captor sakura

The project is split into three directories:

• data collection

• data generator

• analysis

data collection contains code used to generate new Tor/Meek datasets. Users can

modify docker-compose.yml to point to a folder on their machine, then run make scale

to run the data collection process with 5 workers. The number of workers used can be

modified by changing CAPTURE SCALE in Makefile. The dependencies required to run

programs in this directory are Docker and Make.

data generator contains code to extract features from data generated by data collection.

The command to run data generator is cargo run --release -- DATA DIR OUTPUT DIR

where DATA DIR is the directory containing report.json and PCAP files, and OUTPUT DIR

is the directory the program should output features to. data generator will output 2 files

containing binary, packed floating point values, and a JSON file describing the data’s shape.

The dependencies required to run data generator are a Rust toolchain and Zeek.

analysis contains the neural network code, and the code used to generate this paper’s

figures. The only modification required to make this code work on an arbitrary dataset

(generated by data generator) are changing the hardcoded dataset paths. analysis

requires Python 3, and has a list of Python dependencies in requirements.txt. In

https://github.com/starfys/packet_captor_sakura
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requirements.txt, pytorchWithoutCuda can be replaced with pytorch to utilize CUDA

acceleration.
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