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ABSTRACT 

It is critical to develop a trustworthy system for cyber physic systems (CPS), such 

as unmanned aerial vehicle and robotic systems. However, it is challenging to develop 

trustworthy systems due to complicated system behavior and unknown or even hostile 

external environments that are in general unstable. It becomes even worse because of the 

integration of error detection and handling code in the system to react to unknown events 

or exceptions. To facilitate the development of trustworthy systems in CPS, we proposed 

a framework that allows developers to monitor system behavior at runtime easily. The 

framework is built around runtime verification tools and could detect any deviation from 

system behavior that is specified in state diagrams. One benefit of our framework is that 

it separates the monitoring code from system code that achieves the required 

functionalities. This creates a cleaner and modular system.  A case study of a Lego EV3 

robot is conducted to evaluate our framework. 
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CHAPTER I 

INTRODUCTION 

 A cyber-physical system (CPS) is a mechanism that is controlled or monitored 

by computer-based algorithms, tightly integrated with the Internet and its users.  [1] 

Cyber physical systems are becoming more and more popular in our daily life, from 

autonomous car on highway, robotics on manufactures and warehouses, to unmanned 

aerial vehicle (UAV) in battle fields to perform different predefined services.  Due to the 

increasing prevalence of CPS, our safety and security depends on their trustworthy 

operation. Any uncaught hardware failure and software malfunction may result in the loss 

of life or huge financial loss, especially in critical areas such as military operations, 

medical equipments, or power plants. This poses a challenging issue to create a 

trustworthy systems for CPS. 

Traditionally, formal methods have placed an important role to ensure 

trustworthiness with high confidence in the past years. Model checking [2], theorem 

proving [3], static analysis [4] are the typical formal approaches to ensuring the trusted 

and high assurance software intensive and resilient systems. However, these approaches 

all have drawbacks. Model checking suffers the state space explosion problem, especially 

in the presence of concurrency and unbounded types. Although many heuristic methods 

have been developed, such as abstraction and partial-order reduction, scalability is still an 

issue when model checking large scale systems. Theorem proving based on deductive 

reasoning often requires human interaction and has limited applicability due to 

undecidability of many underlying theories. Yet another technique, with a limited set of 

generic errors, static analysis may output false positives sometimes. On the other hand, 
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testing can function in a systematic manner while offering great benefits in the 

identification of programming logic errors with incompleteness.  

 

In contrast, runtime verification [5] as a light weighted formal approach to detect 

errors at runtime provides a complementary, dynamic and scalable validation technique 

for large software intensive systems. Traditionally, error detection and handling is mixed 

with normal code, which tends to lead to sloppier spaghetti code although it is a common 

and valid approach. This reduces the confidence on software and therefore decrease 

trustworthiness of the system. Aspect-oriented programming (AOP) [6] was proposed to 

increase modularity by allowing the separation of cross-cutting concerns, which is done 

by weaving additional behavior to existing code in the form of advice without the need to 

modify the code itself. Runtime verification, on the other hand, uses the information 

extracted from a running system to detect and possibly react to observed behaviors 

satisfying or violating certain properties.  Aspect-oriented programming is a natural 

choice for runtime verification to weave code to an existing system so that required 

information can be extracted during execution from a system without modifying it. 

In this thesis, a framework is developed to improve trustworthiness of robotic 

systems using aspect-oriented programming and runtime verification by validating its 

behavior defined in state diagrams. Traditionally, robotic systems require an abnormally 

large amount of extra code to detect and possibly handle misbehavior in a unstable or 

even hostile environment, which ultimately introduces an extra layer of difficulty to the 

systems in both development and future modification. Our framework avoids this issue 

by separating property verification and error handling from the primary system code and 
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therefore results in a more modular and organized set of code.  During development, 

source code is divided into two categories representing the primary system code and the 

RV code, which is weaved into primary system code through aspect-oriented 

programming.  This allows developers to focus on the actual tasks of the robot rather than 

worry about directly including code to prepare for every possible situation.  With a fully 

functional system, developers can then easily shift focus back to runtime verification with 

little to no modification of the primary source code.  If both components are correct, the 

system will perform its tasks and attempt to detect and handle failures. 

Our framework can reduce the work to extract state related information from a 

running system for property verification by providing an abstraction to state related 

information. State representations and transitions are typically more complicated than a 

simple method call, so this abstraction is needed to ease RV and property development.  

Once this abstraction is achieved, the logic is almost directly if not directly matched to 

the state diagram of the system when writing property formula, therefore improving the 

readability of the RV portion. 

 Overall, the primary goal of the research is centered around improving 

trustworthiness of a system with better organization through modularization of behavior 

monitoring and handling.  The headaches presented by the unique challenges during 

robotics development should be reduced once overcoming the slight learning curve of the 

concept and tools in RV development.  Ensuring reliability of systems is a crucial factor 

in many cases, and helping developers do so with this approach will hopefully prove 

useful for many applications. 
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The rest of the thesis is organized as the following: Chapter 2 introduces required 

background knowledge and tools such as linear temporal logic, AspectJ, JavaMop, and 

LeJOS. Chapter 3 explains our framework and case study in detail. Chapter 4 discusses 

our experiment result of our case study. Chapter 5 gives the summary of our work. 
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CHAPTER II 

BACKGROUND 

In this chapter, we will review required preliminary knowledge for the thesis. It 

includes linear temporal logic (LTL), AspectJ [7], JavaMop [8], and leJOS EV3 [9]. 

Linear temporal logic is a modal temporal logic with modalities referring to time. In our 

work, properties of system behaviors to be monitored at runtime are specified as LTL 

formula. AspectJ is an aspect-oriented programming extension created for the Java 

programming language. It allows programmers to weave cross-cutting concerns into Java 

program without modifying it. JavaMop is a runtime verification tool developed to 

monitor system behaviors during its execution. The LeJOS is a tiny Java virtual machine 

providing support to develop and execute Java program in LEGO EV3 robotics.  The rest 

of the chapter will cover these topics in detail. 

 

Section 2.1: Propositional Logic 

 Logic is a key concept in many fields, and computer science is centered around its 

usage.  Considering that programs are essentially just a listing of actions to be processed 

by a machine, including at least basic logic is critical to ensuring correct actions are 

performed, and propositional logic helps fulfill this need. 

 Propositional logic gives users the means to evaluate the truthfulness of a 

compound statement.  It provides basic operators as shown in Table 2.1. The AND, OR, 

NOT, IMPLIES, and EQUIVALENCE operators allow users to build and evaluate 

statements in a simple yet powerful way.  Furthermore, Table 2.1 also shows the result of 

every possible combination of operand value combinations and their evaluations for each 
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basic usage of the propositional operators.  For example, if Op1 (one atomic statement) is 

true and the second atomic statement Op2 is false, the compound statement of Op1 or 

Op2 is true because it follows the or rule of at least one operand is true. 

In computer science, propositional logic is crucial to developing software.  

Statements help control the overall flow of a program; from if/else statements to while 

and for loops, propositional logic is the central focus of these constructs in programs.  If a 

developer only wants a loop to execute ten times, then a structure such as a counter 

variable along with a conditional statement such as count < 10 is needed and a way to 

increment the counter (from 0 to 10) count++ (where ++ says to increment the count by 1 

at every loop). 

 

 

Table 2.1. Truth table for basic propositional logic. 

Op1 Op2 

Not 

Op1 

Op1 

And 

Op2 

Op1 Or 

Op2 

Op1 Implies 

Op2 Op1 Equivalent Op2 

F F T F F T T 

F T T F T T F 

T F F F T F F 

T T F T T T T 
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Controlling the flow of actions in a program in this way is critical for various 

other reasons to.  For example, consider the if/else statement in Figure 2.1.  If this 

represented a part of an online banking program that allowed users to access their bank 

accounts and transfer money to other accounts, it is fairly obvious why it is important to 

have at least basic logic in programs.  Looking at the if statement portion, two separate 

methods are the deciding factors as to whether or not the user can transfer money from 

the one bank account to another.  Connecting the two functions IsValidUser() and 

HasAccess(…) is an AND operator to provide some basic security to the 

TransferMoney(…) method.  As demonstrated, if both methods have to be true in order 

for the requested transfer to be processed, otherwise the request will be flagged as an 

unauthorized action.  Without this basic logic, the money transfer would be open to 

anyone. 

 

Figure 2.1. Basic logic in program for a bank account example. 

 This example is not particularly complex, but it does show the basic idea of the 

usage of logic in computer science.  Multiple other propositional logic operators exist as 

shown in Table 2.1, and they can be combined to make complex conditions for 

programming constructs.  Table 2.1 simply shows the basic usage of all of the 

propositional logic operators, along with all possible combinations of the operator values 

and the statement results.  Looking at the example from Figure 2.1 and Table 2.1 you 

can see all of the combinations of true (T) and false (F) and which combination results in 
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a true statement meaning the money transfer is authorized.  Again, these operators can be 

combined with each other to form more complex statements, and Op1 and Op2 from 

Table 2.1 also represents statements in themselves. [10] 

Section 2.2: Linear Temporal Logic 

 Logic is clearly a crucial tool for computer science, but basic propositional logic 

alone lacks key qualities necessary for representing properties across multiple states.  In 

general, propositional logic is centered around determining if a statement is true or false 

based on one set state.  This is where linear temporal logic takes over.  Linear temporal 

logic extends propositional logic to include time and state sequence based logic to 

describe state properties over an infinite sequence of states or a finite set of states with 

the final one assumed as repeating infinitely. 

Looking back at Figure 2.1, the simple if/else statement will technically cover the 

logic needed for basic security, but it does not account for system failures or malicious 

attacks on the system.  For example, how does the system recognize that the user always 

has access to the bank account?  How does the system know when a session expired?  

Linear temporal logic helps with these time and sequence based logic issues, that basic 

propositional logic alone cannot easily handle. 

With runtime verification, it is important to track the flow of the state changes as 

the system runs through its procedure.  This trace of states is represented by a sequence 

of states over an infinite duration.  Realistically, this means that over time, a group of 

state points will represent the overall flow of the system, and it is important in the context 

of runtime verification to ensure that this flow of state transitions over time matches the 
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expected flow given a fully functional system.  Linear temporal logic extends 

propositional logic to handle such issues.  As the name implies, it is logic associated with 

a linear time scale. It introduces the concept of future and past aspects and operators to 

handle time based logic.  The primary past operators include ‘previously’, ‘since’, and 

‘eventually in the past’, and the base future operators includes ‘eventually’, ‘next’, ‘until’, 

and ‘always’.  Table 2.2 gives a general description of each operator.  Note any reference 

to ‘p’ and ‘q’ each represent a generic property of a given system. [11,12,13,14,15] 

Table 2.2. Linear temporal logic operators (p and q as the operands). 

[] p 

p remains true at every time point in 

the future 

<> p p is true eventually in the future 

o p p is true in the next time point 

p U q p remains true until q becomes true 

<*> p p was true at some point in the past 

(*) p p was true in the previous time point 

p S q 

q was true in some past point, and 

from that point, p has remained true 

 

Section 2.2.1 Always Operator 

First, the unary operator always, represented by the LTL formula ‘[] p’, ensures a 

certain property remains true for the entire sequence of states.  For example, given a 
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system that monitors for blockages in a water pipe required a property such as: [] 

(water_remains_flowing).  Upon system initialization, the assumption is that water will 

continue to flow through the pipe forever in every state.  If, however, the system at any 

point in time after sensing a water flow stops reading a flow, then a violation of the logic 

occurs and hence the statement is false as shown in Figure 2.2.  As shown in this 

example, the ‘[] p’ can refer to a subset of time rather than the entire state trace, but it 

requires a combination of other logic operators. [11, 12, 13, 14, 15] 

[] (water_remains_flowing)

TP1 TP2 TP3 TP4 TP5

T T T Twater_remains_flowing True/Validated

...

T T

T Twater_remains_flowing T TFalse False/Violated

START

 

Figure 2.2. Water-flow example: state sequences that validate/violate [] p. 

Section 2.2.2: Eventually Operator 

Next, the LTL formula ‘<> p’ referred to as eventually formula p is true.  Usage 

of this formula means that at some point in the future in the state trace, a given property 

will eventually become true.  For example, the water flow example is modified to:  <> 

water_remains_flowing.  The statement remains true if the system reads a water flow at 

some point after initialization and before termination of the system as shown in Figure 

2.3. If the system reads the water flow at any given time point after the initiation, the 

statement is true even if the system detects a blockage sometime before the termination. 

[11, 12, 13, 14, 15] 
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<> (water_remains_flowing)

TP1 TP2 TP3 TP4 TP5

water_remains_flowing True/Validated

...

T

water_remains_flowing False/Violated

FALSE FALSE

FALSE

START

 

Figure 2.3.  Water-flow example: state sequences that validate/violate <> p. 

Section 2.2.3: Next Operator  

 Another major part of LTL is the next formula represented by the ‘X p’.  This 

formula will only be true if in the next state, the property is satisfied.  Using the water 

flow example again, X (water_remains_flowing) requires that the following state should 

be that the water_remains_flowing is satisfied as shown in Figure 2.4. [11,12,13,14,15] 

X (water_remains_flowing)

TP1 TP2 TP3 TP4 TP5

Twater_remains_flowing True/Validated

water_remains_flowing False/Violated
T

...

FALSE

FALSE FALSE

FALSE

START

Figure 2.4. Water-flow example: state sequences that validate/violate Xp 

Section 2.2.4: Until Operator  

 Last, the until LTL formula, represented by ‘p U q’ provides one of the more 

useful features of LTL.  The until formula holds if formula p is true in each of the 

following states until a state that makes formula q true.  Looking back at the water flow 
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example, a good modification would be:  water_remains_flowing U valve_locked.  This 

extension to the water flow example shows that the until operator can bend the base logic 

to some extent to fit a more specific need as shown in Figure 2.5.  If any of the three 

previous LTL formula examples were the only ones used, the system would lack the 

direct ability to handle a blockage versus a valve shutoff.  Utilizing the until operator in 

this scenario gives a direct and simple approach to handling the logic. [11, 12, 13, 14, 15] 

T

water_remains_flowing U valve_locked

TP1 TP2 TP3 TP4 TP5

water_remains_flowing T

T T Tvalve_locked

T

TP1 TP2 TP3 TP4 TP5

water_remains_flowing 

valve_locked

True/Validated

False/Violated

T

T T

FALSE

FALSE

...

...

FALSE

FALSE FALSE

FALSE

START

START

 

Figure 2.5. Until LTL formula example using p U q. 

Section 2.2.5: Conclusion and Example 

 Given the main LTL operators, more complex formulas can be developed to cover 

a given property of a system.  Looking back at the water flow example, imagine an extra 

property:  water remains flowing in the pipe until a blockage occurs or the valve is locked 

and a system alarm is immediately after the water stops flowing to notify workers.  Given 
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the language of this property, it should be clear that a combination of the LTL properties 

is needed to cover this case.  Figure 2.6 shows the LTL formula to cover this.  

(water_remains_flowing U (blockage || valve_locked)) && X alarm_raised

T

TP1 TP2 TP3 TP4 TP5

water_remains_flowing T

valve_locked

True/Validated
FALSE

FALSE

...

START

T T Tblockage FALSE

Talarm_raised FALSE FALSE

T

T

TP1 TP2 TP3 TP4 TP5

water_remains_flowing T

valve_locked

False/Violated
FALSE

FALSE

...

START

T T Tblockage FALSE

alarm_raised FALSE

T

 

Figure 2.6: Full LTL formula for larger water flow example.  

Ultimately, linear temporal logic is an ideal concept for ensuring a system 

functions properly, and it is a major contributing factor to tools such as JavaMOP.  Linear 

temporal logic alone, however, does not provide the full solution to solving runtime 

verification problems.  Other constructs are needed in collaboration with LTL to help 

ensure a reliable system. [11,12,13,14,15] 
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Section 2.3 Aspect Oriented Programming 

 Object oriented programming solved many organizational issues associated with 

procedural programming.  Related methods and variables/properties are grouped together 

into a set object through encapsulation; along with concepts such as polymorphism and 

inheritance, code is structured in a logical and organized way.  Object oriented 

programing alone, however, does not solve all organization issues, especially crosscutting 

concerns. 

Some methods are designed to be used across multiple layers and sections of an 

application; when this usage spans across multiple sections of an application it ultimately 

affects those sections in one way or another.  This is the core concept of cross cutting 

concerns.  Any changes to such a method may clearly introduce many problems into a 

system, and centralizing it when possible would help reduce this problem.  Imagine a 

system with 100 separate types of classes, and each class contained a variable called ID 

that must remain a specific value.  If we want the system to log an error and attempt to 

reset it to the appropriate value every time the variable ID is changed during any point in 

execution.  Since the variable ID may be modified in lots of different locations in 

different classes, implementing such requirement will need changes in multiple locations 

of multiple classes and causes redundant and spaghetti code.  Aspect oriented programing 

was proposed to answer this challenging issue of crosscutting concerns. Rather than 

writing 100 separate logging and recovery methods, AOP allows programmers to 

implement the crosscutting concern in one location only, which makes development and 

maintenance much easier. 
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 The basic concept in AOP is join points. A join point is a candidate point in the 

program execution of the application where a crosscutting concern can be plugged in. This 

point could be variables being modified, methods being called, and methods being 

executed. AOP takes full advantage of these join points.  The basic idea is to perform some 

form of action before or after a given join point in the execution.  At first glance, this seems 

like something doable in a standard OOD structure with a simple method call, but in 

situations where crosscutting concerns are an issue, messy code is inevitable without AOP.  

AOP allows for modularization of this base method by linking a pointcut in an aspect with 

a set of join points in the execution of this program.  Only one method would have to be 

written, and it would be out of site from the primary code which separates secondary 

actions from primary ones. [16, 17] 

Section 2.3.1 AspectJ Background 

 In order to include AOP concepts in Java programs, an appendage to Java called 

AspectJ was developed to provide developers all of the necessary AOP structures.  

AspectJ includes all the key pieces required for AOP such as aspects, pointcuts, and 

advice along with the allowance of standard Java code.  AspectJ is simply Java with a 

couple of added syntax structures.  AspectJ specific code goes into separate aj files and 

are later weaved into the primary system code during the final compile.  AspectJ code can 

also be included in pre-compiled jar files. [16, 17] 
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Section 2.3.2 Join Points and Pointcuts in AspectJ 

 Various types of join points in a program’s execution exist, and in AOP, the goal 

is to provide additional and modularized actions before and/or after multiple join points 

when needed.  This is particularly useful during cross-cutting concerns, and in order to 

link these new actions, pointcuts in AspectJ provide a direct linking to one or more join 

points in the system where the AspectJ code will be weaved.  Pointcuts essentially tell the 

AspectJ compiler the methods or variables we are interested in, and various options are 

available to restrict pointcuts to more specific points in execution of the system.  For 

example, it might be desirable to have a pointcut for a method with the same signature 

across all classes except one.  Using basic logic and AspectJ syntax, this can easily be 

achieved. 

Various join points can be defined in AspectJ, but for our purposes the primary 

ones used in our work are: call, set, cflowbelow, and execution. In addition, AspectJ has 

operators like within, args, this, and target to impose restrictions on join points.  Call and 

execution are the options that tells which method call/execution based join point you 

want to capture with the given signature, and set does the same except rather than 

pointing to a method, it looks at when a specific variable changes.  (See Figure 2.7) If 

any method or variable linked by these options are called or changed, new code from 

AspectJ is also executed depending on other options included.  
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pointcut reqCredPC(Login loginObj) : call(public void Login.requestCred()); 

 

pointcut userNamePC(Login loginObj) : set(private String Login.userName); 

 

Figure 2.7. Example call and set pointcuts from Figure 2.5. 

 Next, cflowbelow allows for a capture of the control flow of the join point set of a 

given pointcut, and within captures all join points in a given section of the main code.  

These options can be combined with various other options and logic to restrict the overall 

join point capture.  For example, if a given method is called in two other methods but 

only one of those are needed for capturing, the within option will allow you to specify 

which section is preferred for the focus.  As far as the AspectJ portion is concerned, one 

of these join points would be ignored even though the call signature matches.  This 

structure clearly gives developers more power of the overall control flow of the join point 

captures. 

 The last main option set in an AspectJ pointcut are the args, this, and target 

options.  The args option helps expose a reference to the given arguments from a method 

call/execution, and allows for concepts such pre-processing of a set of arguments.  The 

operators this and target, on the other hand, aims to expose either the currently or target 

executing object.  This helps give access to a full object during the advice execution.  

Given this object, advice execution could perform roughly any action that an instance of 

the object could accomplish.  All public methods and properties are exposed for usage in 

this case. [16,17] 

 



18 

 

Section 2.3.3 Advice with AspectJ 

Advice in AspectJ houses the direct action taken after a certain pointcut is 

triggered.  Further ordering of the execution of the advice is set such as after, before, or 

around meaning that the advice will run after, before, or around the join points linked in 

the pointcut. (Figure 2.8) The around keyword represents both after and before, but this 

option is never used in my research.  If the pointcut gives the advice access to things such 

as method arguments or a target object, then the advice may prove more useful depending 

on the application.  Whether simple system logs, pre-processing, or some advanced 

method structures are included in the advice, it is still essentially just another function. 

[16,17] 

before(Login loginObj): openDBConnPC (loginObj){ 

 log("Begin openDBConn"); 

} 

 

after(Login userNamePC): reqCredPC (loginObj){ 

 log("userName set"); 

} 
 

Figure 2.8. Example before and after advice. 

Section 2.3.4 Aspect and AspectJ 

Last, the aspect is the container that houses all of the AspectJ related code.  Just 

like with Java classes, the aspect key word is used to show the type of structure.  Aspects 

roughly follow the same general Java syntax in classes, however, rather than just 
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bundling related methods and properties, the aspect groups pointcuts and their associated 

advice as seen in Figure 2.9.  Unlike standard classes, however, aspects act similar to 

singletons.  Aspects are not directly instantiated as individual objects, and they are not 

directly callable as a standard object.  Methods and variables are declarable and usable 

within these aspects, but interaction between the main system classes and the aspect is 

structured somewhat as an observer.  The main system performs its process without any 

direct knowledge of the aspect, while the aspect essentially listens for points of interest in 

execution and intervenes when needed by running separate advice.   

Section 2.3.5 AspectJ/Java Example 

Request user 

credentials

Login Class

Open DB 

connection to 

verify 

credentials 

from DB

Verify that 

the 

credentials 

match

Setup user 

session if 

matched 

credentials

Invalid 

credentials – 

tell user

System 

Logger Class

Log initial 

user visit

Log database 

connection 

attempt and 

status

Log 

successful/

unsuccessful 

login

 

Figure 2.9. Crosscutting example – basic logging for a login system. 

 Through general object-oriented programming, the example from Figure 2.9 

would simply have an object for the login system and one for the system logger, and the 
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login object would simply call logging methods from the system logger object as shown 

in Figure 2.11.  Considering this example is small, the issues associated with this 

structure may not be as apparent as it should, so imagine if hundreds more additional 

object types were introduced into the system which all used the same system logger class.  

The primary objective of each object structure would be cluttered with excessive calls of 

the logger classes which in many ways diminish the quality of encapsulation and 

abstraction intended with object oriented programming.  This is where aspect oriented 

programming comes in.  Aspect oriented programming aims to separate out those pieces 

to alleviate the issues caused by cross-cutting concerns.  Looking back at Figure 2.9, the 

login object would not directly call the methods from the system logger object in an 

aspect oriented structure.  In fact, the system logger object would technically not exist as 

an object.  It would exist as a separate entity in an aspect.  To provide the linking between 

the two, join points from the login class need to be included in pointcuts within the aspect 

along with associated logging based advice.  Clearly, this form of modularization allows 

this single aspect to intertwine itself with other classes without direct integration into the 

separate classes.  With all of the system logging concerns separated from the other class, 

it is easier to maintain a fairly clean implementation of the main objective in the login 

class along with any other classes introduced in the future.  
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public class SystemLogger{ 

 public SystemLogger(){ 

  // ... 

 } 

 public void log(String msg){ 

  // Log message in file 

 } 

} 
 

Figure 2.10. SystemLogger class for AspectJ/JavaMOP.  

The original structure from Figure 2.9 is still maintained but in a post-compile 

rather than cluttering source files.  Various tools exist to accomplish this structure, but 

our primary choice due to its Java base and the easy integration with JavaMOP is 

AspectJ. 

 In our case, AspectJ provides a fairly straightforward approach to separating error 

checking and handling from the base system source files pre-compile.  AspectJ has three 

base structures:  pointcuts, advice, and an aspect.  A full example of an aspect is given in 

Figure 2.12 and is associated with the Login class presented from Figure 2.9.  Initially, 

however, it is better to break it down into its individual pieces. [16,17]  
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public class Login{ 

 private String username; 

 private String password; 

 private SystemLogger sysLog; 

  

 public Login(){ 

  sysLog = new SystemLogger(); 

  // Other constructor stuff... 

 } 

 public void requestCred(){ 

  // Enter method log 

  sysLog.log("Begin requestCred"); 

  // Some other work... 

  // End method log 

  sysLog.log("End requestCred"); 

 } 

 public void openDBConn(String dbName, String pass){ 

  //Enter method log 

  sysLog.log("Begin openDBConn"); 

  // Some other work... 

  // Enter method log 

  sysLog.log("End openDBConn"); 

 } 

 public boolean verifyCred(){ 

  // Enter method log 

  sysLog.log("Begin verifyCred"); 

  //some other work... 

  // End method log 
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  sysLog.log("End verifyCred"); 

 } 

 public void setupSession(){ 

  // Enter method log 

  sysLog.log("Begin setupSession"); 

  // Some other work... 

  // End method log 

  sysLog.log("End setupSession"); 

 } 

} 

 
 

Figure 2.11. Login class example. 
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public aspect LogAsp{ 

 private void log(String msg){ 

  //Log message in file... 

 } 

  

 // Trigger each time after the userName variable in the Login class is 

// changed 

 pointcut userNamePC(Login loginObj) :  

set(private String Login.userName) && target(loginObj); 

 after(Login loginObj): userNamePC (loginObj){ 

  log("userName set -- after"); 

 } 

  

 // Trigger each time after the userName variable in the Login class is 

// changed 

 pointcut passWordPC(Login loginObj) :  

set(private String Login.passWord)&& target(loginObj); 

 after(Login loginObj): passWordPC (loginObj){ 

  log("passWord set -- after"); 

 } 

  

 // Trigger each time (before and after) the requestCred method in the 

// login class is called 

 pointcut reqCredPC(Login loginObj) :  

call(public void Login.requestCred())&& target(loginObj); 

 before(Login loginObj): reqCredPC (loginObj){ 

  log("Begin requestCred -- before"); 

 } 

 after(Login loginObj): reqCredPC (loginObj){ 

  log("End requestCred -- before"); 

 } 

  

 // Trigger each time (before and after) the openDBConn method in the 

// login class is called 

pointcut openDBConnPC(Login loginObj,String dbArg,String passArg) : 

call(public void Login.openDBConn(String, String))  

  && target(loginObj) && args(dbArg, passArg); 

 before(Login loginObj,String dbArg,String passArg):  

openDBConnPC (loginObj,dbArg,passArg){ 

  log("Begin openDBConn -- before"); 

 } 

 after(Login loginObj,String dbArg,String passArg):  

openDBConnPC (loginObj,dbArg,passArg){ 

  log("End openDBConn -- after"); 

 } 

   

Figure 2.12. Login Aspect for Figure 2.11. 
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Section 2.4 JavaMOP 

 JavaMOP is a monitor oriented programming tool centered around detecting and 

handling events and logic violations.  JavaMOP is a Java based tool that ultimately 

compiles to AspectJ and is intended to simplify various runtime verification needs.  It 

borrows the concepts from AspectJ too in its structure, but rather than pointcuts, advice, 

and aspects, JavaMOP uses a similar structure with a different naming.  It includes 

monitors, events, logic statements, violation handlers, and various other options, and it 

remains in a modularized structure independent of the main system code pre-compile. 

 Like an aspect, a monitor is the main container for all event handlers needed for 

the specific runtime verification application property.  It is also essentially treated as a 

singleton.  As shown in Figure 2.13, no key words directly exist to signal that the 

structure is a monitor.  Simply providing the name of the monitor along with roughly the 

standard Java method syntax, is enough to tell the JavaMOP compiler that it is a monitor; 

a key word is not used since it is directly implied being in a “*.mop” file too.  A monitor 

also represents the grouping of events for a section of the state checking.  Multiple 

monitors are needed to cover the entire state diagram structure. 

 Furthermore, typically the largest portion of the monitor are the events.  Events 

are ultimately the same as the pointcuts and advice used in AspectJ, but they are a 

compact combination of the two for easier and cleaner development.  The “event” 

keyword is used to signal a new event to be defined.  Included with this is the name of the 

event along with before or after as in an advice and the options for the pointcut of the 

event as shown in Figure 2.12. Like the pointcut/advice structure, if the event is triggered 
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based on the given options, the advice of the event is executed.  Events in monitors also 

go a step further than in AspectJ.  When events are triggered, the monitor internally 

tracks this event sequence which allows for further logic application such as linear 

temporal logic. 

JavaMOP monitors allow for various forms of logic handling of events, but in this 

research, we are specifically focused on the usage of linear temporal logic within 

JavaMOP.  As shown in Figure 2.13, defining an LTL definition for the monitor is 

straightforward.  Simply using the key word “ltl:” followed by the LTL statement is all 

that is needed to apply LTL logic to the monitor.  The LTL statement used is centered 

around the triggered events in the monitor; and the event names are used throughout the 

LTL statement to assist with RV purposes.  Given that the result of an LTL statement 

boils down to a simple true or false, JavaMOP also provides a method to handle any false 

returns from the LTL.  The key word used to handle this is “@violation”.  When a 

violation is triggered, the insinuation is that the event sequence does not match the 

expected sequence, and error handling should take over at this point to ensure the correct 

performance of the system.   
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import java.io.*; 

import java.util.*; 

 

LogMonitor(Login loginObj){ 

 Login loginObj; // Reference to Login object 

 private log(String msg){ 

  // Log message in file... 

 } 

  

 event usernameEvent after(Login loginObj): set(private String Login.username){ 

  log("username set"); 

 } 

 event passwordEvent after(Login loginObj): set(private String Login.password){ 

  log("password set"); 

 } 

 event reqCredEvent before (Login loginObj):call(public void Login.requestCred()){ 

  log("Begin requestCred"); 

 } 

 event openDBConnEvent before(Login loginObj) : call(public void 

Login.openDBConn(String, String)) 

 && args(dbArg, passArg){ 

  log("Begin openDBConn"); 

 } 

 event verifyCredEvent_true after(Login loginObj) returning (boolean res): 

  call(public boolean Login.verifyCred()) && condition(res){ 

   log("After verifyCred -- True"); 

 } 

 event verifyCredEvent_false after(Login loginObj) returning (boolean res): 

  call(public boolean Login.verifyCred()) && condition(!res){ 
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   log("After verifyCred -- False"); 

 } 

 event setupSessionEvent before(Login loginObj): call(public void Login.setupSession()){ 

  log("Begin setupSession"); 

 } 

 ltl: setupSessionEvent =>(*)verifyCredEvent_true 

 @violation{ 

  // Perform recovery or just log the issue 

  __RESET; 

 } 

} 

 
 

Figure 2.13. JavaMOP example – roughly represents the AspectJ example 

 In some cases, it is appropriate to simply report the error triggered in logging, but 

it is always best at this point to provide a method to do everything possible to ensure the 

system remains in a stable state.  A decent comparison would be to the try-catch structure 

implemented in various languages.  If a problem occurs, try to fix it if possible, and 

utilize the knowledge of the error reported to handle the specific problem. [18,19,20] 

Section 2.5: LeJOS – Lego EV3 

 In order to test the runtime verification structure, it is important to have an actual 

system to apply the RV centered code to.  In this case, we used a soccer playing LEGO 

EV3 robot with a Java based API called LeJOS.  LeJOS is an open-source API that 

provides a way to control and use the robot’s sensors and motors.  Unfortunately, it is 
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only in beta version 0.9.1, but it works well enough for our testing purposes with RV.  

The LEGO EV3 robots have many sensor and motor options, but in our case we focus on 

three separate sensors and three motors.  The sensors: inferred, sonar, and compass all 

have their own classes as shown in Table 2.3, and the motors: two large motors and a 

small arm motor have their own associated classes. [21] 

Table 2.3: LeJOS sensor and motor Java classes. 

Sensors/Motors Class 

Sonar Sensor EV3UltrasonicSensor 

IR Sensor HiTechnicIRSeekerV2 

Compass Sensor HiTechnicCompass 

Arm Motor UnregulatedMotor 

Movement Motors RegulatedMotor 

 

Sensor initialization in LeJOS has a basic setup.  Each sensor is connected to a 

port on the EV3 brick as shown in Figure 16, and each sensor has an associated port 

number used by the sensor constructors.  Four sensor ports labeled SensorPort.S1 to 

SensorPort.S4 help the sensor classes link to the sensor hardware for value pinging.  

Once the sensor is linked to the proper class object, the sensor object will provide a 

SampleProvider object based on the requested sensor mode provided by the sensor 

classes.  Some sensors have multiple modes; for example, the inferred sensor has both an 

unmodulated and modulate IR mode, and the HiTechnicIRSeekerV2 will provide two 

separate SampleProvider objects.  Given the SampleProviders, calling the 
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fetchSample(float[] sample, int offset) method of the SampleProvider will populate an 

array of sample reads from the sensors.  With this data along with a few other separate 

properties, the robot is able to determine its current state. 

 Next, LeJOS links motors to ports similar to how sensors are handled in the 

initialization phase.  Motors, however, have their own four ports listed as MotorPort.A to 

MotorPort.D . The classes used for the two types of motors are listed in Table 2.3.  After 

initialization, the newest version of LeJOS attempts to match the class structure to the 

hardware structure as close as it can with a chassis structure as shown in Figure 16.  Most 

of these supporting objects are purely used during the initialization phase.  With this 

chassis structure, a MovePilot is created, which is ultimately another supporting object to 

the main Navigator.  The MovePilot helps the Navigator interact with the motors and 

objects initialized in order to traverse waypoint and grid motion.  Any usage of the 

motors after initialization is, for the most part, only used through the Navigator which 

abstracts a large amount of detail to ensure ease of use through waypoint tactics. 

 The Navigator is one of the most important objects for our robot. Internally, the 

Navigator tracks the current position of the robot based on a Cartesian coordinate grid; 

this abstracts out the tedious mathematics required to track the robot’s position.  

Unfortunately, as of LeJOS version 0.9.1, the CompassPilot has been deprecated for no 

clear reason, and it is unclear if it will be added back in some way in future updates.  

Luckily, the MovePilot is a good enough backup; it looks purely at the tachometer 

readings from the large motors attached to the main wheels of the robot.  The tachometer 

simply provides the MovePilot with revolutions or the wheels per minute to track general 
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movement for the Navigator.  Utilizing this information, the Navigator is capable of 

tracking the overall position returned by its PoseProvider object. [9, 21] 

 While LeJOS is a powerful API, it does have its issues due to its beta state.  Other 

than the deprecated CompassPilot, the intended usage structure of the API is not as well 

documented as it would be in a non-open source API.  For example, it is possible to over-

ping a sensor without any warning; rather than provide an internal delay, the API 

assumes that the user will provide a delay between pings to avoid a read of invalid 

values.  Furthermore, the Navigator does not follow the 0 to 360 degree turn values with 

the Navigator as it does with a raw compass reading; it goes on a 0 to 180 and -180 to 0 

degree turn reading.  Also, the inferred sensor API only reads in 30 degree increments 

which can result in inaccurate readings depending on the location of the IR soccer ball.  

These problems in combination with common surrounding interference and a lack of 

detailed API documentation adds to the challenge of setting up this testing environment, 

but these problems are expected in an open-source beta API.  Thanks to trial and error, a 

decent portion of these issues are non-existent, but it turns out that some of these 

naturally occurring issues makes some of the runtime verification testing easier since the 

goal of this research is to attempt recovery during error. 

Given that LeJOS is just a Java based API, it is no different than writing any other Java 

program.  It is more backend oriented rather than frontend and graphics, but no true 

language extensions such as what is included in AspectJ and JavaMOP are made for 

LeJOS.  Overall, LeJOS is simply a set of Java classes that help developers interact with 

the robot. 
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CHAPTER III 

FRAMEWORK TO MONITOR BEHAVIOR OF ROBOTICS AT RUNTIME 

Section 3.1: Architecture of the Framework 

As a cyber-physical system, robotic systems are becoming more and more 

popular, and used in variant occasions such as warehouses, manufactures, and military 

battle fields.  However, robotics systems are also fragile systems that inevitably 

experience some form of failure during runtime due to hardware failures and hostile 

environments.  These failures range from an unexpected change in environment to a 

complete system crash.  Manufacturing companies, the military, and various other fields 

rely on continuously functioning systems; even one error could lead to loss of profit in a 

worst-case scenario loss of life. Regardless of how minor or major the problem may be, it 

is important to detect and recover from these failures at an early stage so that it can 

continue performing predefined missions. However, it is challenging to develop a 

“perfect” system that we can have high confidence in it, especially due to the mixing of 

error detection and handling with normal system code and crosscutting concerns. 

In this thesis, we proposed an approach to increase our confidence in the robotic 

system by monitoring robotics behavior when it is working on its mission. The monitor is 

separated from functionality code of the robotic system, therefore improves the 

modularization of the system. In addition, the monitor allows robotics to detect behaviors 

that deviates from missions defined in a state diagram at an early stage so that actions can 

be taken to continue its predefined mission.  
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The overall architecture of our approach is shown in Figure 3.1. Robotic systems 

are implemented in LeJOS to achieve its mission. A state diagram is developed to define 

the behavior of a robotics by specifying its states and events, actions, or conditions that 

trigger the change of states. From this state diagram, system properties can be defined as 

LTL formula to describe allowed behavior. Any violation of these properties indicates an 

error or a deviation from predefined behavior. For example, properties can specify the 

allowed sequences of states when it performs its mission. It can also specify the set of 

events that lead to a specific state. All these properties are specified based on the state 

diagram only. It is not related with the implementation of the robotic system.    
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Figure 3.1.  Architecture of our framework 

The core components of our approach in Figure 3.1 are: state checker, event 

generator, and monitor properties in JavaMop. The state checker component is used to 
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decide the current state of the robotics at runtime based on the state diagram and the 

implementation of the robotic system. The event generator component is designed to 

generate events that are used to define properties in JavaMop. Properties defined in 

JavaMop is built on events, and each event is defined as a pointcut in AspectJ to 

represent an action or an occurrence recognized by AspectJ. Such events should not be 

generated by robotic system since we want to separate functionality code from 

monitoring code, i.e. non-functionality code. Therefore, event generator component is 

essential in our framework. It extracts events from robotic system through monitoring 

code that is weaved into functionality using AspectJ.  

Overall, both state checker and event generator components are integrated into the 

runtime verification system as a layer between the robot’s source code, and the main 

JavaMOP event and LTL code. These components follow the state diagram structure to 

ultimately generate individual events. These events are used to develop LTL to help 

monitor the system behavior in the separate JavaMOP code.  Both components and 

JavaMOP code are ultimately weaved together into robotic systems through the AspectJ 

compiler leaving one simple jar file ready for execution on the robotic system. 

 Our approach organizes the system code into a cleaner and more modularized 

structure.  Error detection and handling code is separated from the code of base system 

functionality. Provided that a developer follows this framework, it should be clear which 

parts of the source code is part of runtime verification and which parts are primary 

system functions.   
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To illustrate different components in our framework, we introduce a simple case 

study of a soccer scenario. In the soccer field, there is only one LEGO soccer robot, one 

ball, and one gate. The soccer robot will first search the ball. After finding the ball, the 

soccer robot will dribble the ball towards the gate, and shoot the ball when it is close 

enough to the gate.  

The rest of the chapter is organized as follows: Section 3.2 discusses the state 

diagram and implementation of the soccer robot. Section 3.3 presents the state checker 

component to facilitate event generation. Section 3.4 discusses the event generator that 

extracts events needed for monitor from the soccer robot. Section 3.5 shows how to 

specify behavior properties and construct monitors from it. Section 3.6 gives instruction 

to weave different components into one executable file. 

Section 3.2: Soccer Robot 

 An individual soccer robot is developed to illustrate the framework and 

demonstrates the benefits. The mission of the soccer robot is to find the ball, dribble the 

ball to the gate and shoot when it is close enough. The Lego EV3 robots in combination 

with the Java based LeJOS API provides the perfect system set to demonstrate this 

approach.  Considering the beta state of LeJOS and the sensitive nature of sensors 

included in the Lego EV3 kit, errors happens constantly, and they give an ample amount 

of testing possibilities for this innovative approach of runtime verification of state 

diagrams in robotics. 
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Section 3.2.1: State Diagram of Soccer Robot 

 The soccer robot’s task is to find the ball and attempt a single goal shot. As seen 

in Figure 3.2, eight possible states and twelve possible state transitions exist in the state 

diagram. The initial state is Init Motors/Sensors and the final state is Game Over.  The 

robot must follow this diagram strictly.  Any improper jump from one state to another 

state that are not represented in the diagram should be flagged as an error and should be 

handled immediately.  

Init Motors/
Sensors

Init Motors/
Sensors

Game 
Over
Game 
Over

Turn To 
Goal

Kick Ball 
at Goal

Continue 
Playing?

Dribble 
Ball to 
Goal

Go To Ball
Turn To 

Ball

Initiallized Ball in Front Ball Close

Ball Not in Front

Ready to 
Goto Goal

Shot Possible

Shot Possible

Ball Not in Front

Ball Kicked

Game 
not Over

Max Goal Attempts 
Reached

Ball Not in Dribble Range

 

Figure 3.2. State diagram of the LEGO soccer robot 

 Initially, the robot and all its links to sensors and motors are setup and upon 

success starts the soccer playing process.  From there, the robot must look for the ball 

using a combination of its I.R. and sonar sensors to detect the location of the I.R. emitting 
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ball.  When the ball is found, the robot should move forward to the ball until it is within 

the robot’s arms or the ball is no longer in front.  If the robot has the ball, it should find 

and go to the goal while dribbling the ball, and if at any point the robot no longer has the 

ball, it must re-search for it.  When the robot is within range of the goal, it must kick the 

ball to the goal and then go back to looking for the ball if the current test allows for 

multiple attempts. This entire process is viewable in Figure 3.3 to Figure 3.8. 

 

Figure 3.3. Init Motors/Sensors and Turn to Ball states  

 

Figure 3.4. Turn to Ball  
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Figure 3.5. Go to Ball state 

 

Figure 3.6. Turn to Goal state. 

 

Figure 3.7. Dribble Ball to Goal 
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Figure 3.8. Kick Ball at Goal 

Section 3.2.2: Implementation of the Soccer Robot 

 As with all robotic systems, a combination of sensors, motors, and software make 

up the entire soccer playing robot.  The sensors and other components are standard Lego 

and Hitechnic brand hardware, and the software used for development is a third-party 

Java API called LeJOS.  As shown in a frontal view of this robotic system in Figure 3.9, 

this robot can detect an I.R. ball along with loosely grabbing it within the side arms. 

 

Figure 3.9. EV3 soccer robot. 

 Various sensors are available with the Lego EV3 robot bundles, but only a few 

are necessary for this soccer robot.  As shown in Figure 3.10, these sensors include I.R. 
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(both modulated and unmodulated), sonar, compass, two large tachometer-equipped 

motors, and one small arm motor.  These sensors and motors work together to ultimately 

allow the system to play soccer.  Together, they form a complex system, but 

understanding the details of the individual pieces is important. 

 

Figure 3.10. Sensor/motor placement and structure of the general soccer robot. 

 First, basic 360-degree motion is made possible with the two main motors up 

front along with a pivot point marble in the back.  Speed, acceleration, and direction are 

all directly manageable on these motors through the Navigator class; additionally, these 

motors partially track the system’s position through internal tachometers.  The smaller 

motor contains comparable properties but lacks the same power level.  Even with lower 

strength, the smaller motor in combination with the momentum of the whole robot is 

more than enough to kick the ball, so it is sufficient for our purposes as an arm. 
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 Next, the inferred sensor is by far the most important part of the robot for this 

testing environment.  The I.R. soccer ball emits an I.R. signal in all directions, and with 

the I.R. sensor the robot can detect a rough angle of the location of the ball (Figure 3.12) 

in relation to the sensor as shown in Figure 3.11.  If the ball is not within the 270 degree 

I.R. span, the robot simply turns until a signal is found.  This sensor also has two modes 

called modulated and unmodulated I.R. Modulated I.R. helps reduce interference such as 

florescent lighting, however, it sometimes has trouble finding the ball from a longer 

distance.  Unmodulated I.R. on the other hand drastically increases the range of the 

sensor, yet it decreases accuracy of the angle.  When combined, these two I.R. readings 

make up for each other’s weaknesses and provides a relatively ideal I.R. reading in many 

situations and states. 

 

 

Figure 3.11. IR Sensor angle detection (Borrowed from Hitechnic and modified). 
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Figure 3.12. IR emitting soccer ball. 

 In addition to I.R., this robot utilizes a sonar sensor to track the ball location.  

When the ball is very close to the robot, the I.R. sensor typically fails, and the robot must 

rely on the sonar to indicate if it has the ball.  Sonar is also able to detect other objects 

such as walls in order to avoid them.  In combination with the I.R. sensor, the robot can 

improve ball location detection accuracy by simply combining the values from all sensors 

into basic logic. 

 With the combination of these sensors and motors, this robot has the ability to 

perform all soccer related tasks required by the state diagram.  Hardware alone, however, 

is not all that is needed.  A key component of a robotic system is the software component, 

and the LeJOS API makes it easier to develop software to control soccer robot’s 

behavior.  With the help of the LeJOS API, developing software that interacts with the 

Lego EV3 hardware is relatively straightforward.  In the soccer robot, five classes were 

developed to dictate the actions of the soccer robot:  SoccerGlobals, MotionControl, 

SensorControl, PlayerInit, and Kicker as shown in Figure 3.13.  In this case, only one 

instance of each object exists per robot, and each has their own purpose. 
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 First, SoccerGlobals is not exactly a standard object, but it provides a direct way 

to share constant properties across all the other classes such as the goal location.  Only 

constant variable properties are contained within this class and nothing more.  Next, the 

two core classes of the robot are MotionControl and SensorControl.  MotionControl 

provides an abstracted wrapper around the navigation tools of the LeJOS API.  Direct 

soccer robot related methods help hide the underlying calls to lower level motor 

movements, which provides a clearer representation of the actions of this specific robot.  

The class SensorControl on the other hand, only focuses on sensor related tasks such as 

reading the location of the ball.  The SensorControl class is ultimately a higher-level view 

of sensor readings and usage. 

 The Kicker class integrates both SensorControl and MotionControl classes to 

ultimately play the soccer game from a kicker’s perspective.  It utilizes the higher-level 

methods provided within both classes to interact with underlying hardware, sensors, and 

drivers.  All specific properties to the given robot structure are setup here too.  

Furthermore, the PlayerInit class simply initializes the Kicker class or the Goalie class 

depending on the type of robot selected by the user. 

 With these classes, the robot can play a simple game of soccer with modularized 

code and abstracted views of hardware control.  This setup also makes it easier and 

cleaner to develop runtime verification structures.  The abstract view allows for cleaner 

mapping to pointcuts and events and ultimately eases development as modularization was 

designed to do. 
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Kicker

+ Kicker()

- mainMC : MotorController

- continuePlaying : boolean

- mainSC : SensorController

- currBallIR : float []
- currBallSonar : float

+ Play() : void

+ BallClose() : boolean

+ FindBall : boolean

+ GetBallAngle() : float

+ GotoGoal(boolean) : boolean

+ GotoBall() : boolean

+ TurnToBall() : boolean

+ BallInBufferAngleRange() : boolean

+ BallInFront() : boolean

+ HasBall : boolean

+ KickBall() : void

PlayerInit

+ main(String[])

Globals

+ GOAL_LOCATION : Waypoint
+ GOAL_RANGE_THRESHOLD : double
+ IR_UNMOD : int
+ IR_MOD : int

+ TURN_FAIL_SAFE_LIMIT

+ SONAR_CLOSE_READING : float

+ FIND_BALL_TRY_MAX : int

+ SONAR_IN_ARM_READING : float

+ MAX_MOTOR_SPEED : float

+ SONAR_ERROR_VAL : float
+ BUFFER_ANGLE : float

MotorController

- compassPose : CompassPoseProvider

+ MotorController(Port, Port, Port, Port)

- chassis : Chasis

- rightMotor : EV3LargeRegulatedMotor
- leftMotor : EV3LargeRegulatedMotor

- wheel2 : Wheel
- wheel1 : Wheel

- roboNav : Navigator
- arm : UnregulatedMotor

- trackWidth : float
- wheelDiam : float

- roboPos : PoseProvider
- movePilot : MovePilot

- compassDF : DirectionFinderAdapter
- compassSP : SampleProvider
- compassSamples : float[]
- compass : HiTechnicCompass

- lastGotoWayPoint : Waypoint

+ GotoPoint(float, float, float, boolean) : 
void

+ Turn(double, float) : void

+ GoForward(double) : void

+ SetTurnSpeed(double) : void

+ GetPos() : Pose
+ SetForwardSpeed(double) : void

+ MoveArm(float[],int) : void
+ InRange(Waypoint, float) : boolean
+ IsSamePos(Waypoint) : boolean

+ RobotTurning() : boolean
+ RobotMoving() : boolean
+ InGoalRange() : boolean

+ ArmMoving() : boolean

+ GetRobotX() : float
+ Stop() : boolean

+ GetRobotY() : flaot
+ GetRobotHeading() : float

SensorController

- irSP : SampleProvider[]

+ SensorController(Port, Port)

- sonarSensor

- irSensor : HiTechnicIRSeekerV2
- sonarSamples
- sonarSP

- irSamples : float[]

- ballDirUnMod : float
- ballDirMod : float

- sonarRead : float

+ FlushSensors() : void

+ GetLastModIR() : float

+ GetIR(int, float[]) : boolean

+ GetLastSonar() : float
+ GetSonar() : float

+ GetLastUnModIR : float

 

Figure 3.13. Class diagram of soccer playing robot. 
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Section 3.3: State Checker Component 

The purpose of the state checker component is to decide the current state of the 

soccer robot based on the values reading from various sensors and status of the motor. 

The implementation of the soccer robot doesn’t track its state change since it is irrelevant 

to its mission of playing soccer. Therefore, being able to check the current state of the 

system is crucial to monitor its behavior based on the state diagram. The state checker 

component provides key helper functions to achieve this. 

In the state checker component, two enum classes as shown in Figure 3.14 are 

defined: State and ChangeEvent. The State enum class explicitly specifies all possible 

states allowed in the soccer robot; and the ChangeEvent enum class defines flags for 

sensors. Each flag indicates the current value from the corresponding sensor is different 

from previous reading.  The ChangeEvent class could be used to help directly notify the 

state checker what has changed most recently.  At the moment it is not fully utilized in 

this implementation, but some cases do require it. 

package stateTools; 

 

// State status options 

public enum State { 

 INIT, TURN_TO_BALL, GOTO_BALL, TURN_TO_GOAL, DRIBBLE_TO_GOAL, 

 KICK_BALL_TO_GOAL, GAME_OVER 

} 

 

package stateTools; 

 

public enum ChangeEvent { 

 NONE, IR_MOD, IR_UNMOD,SONAR 

} 

Figure 3.14. State and ChangeEvent enum classes 



46 

 

The most important portion of the state checker component is the StateCheck 

class in StateCheck.java.  This class provides a way to check the current state of the 

soccer robot based on the state diagram from Figure 3.2, and Figure 3.15 gives a full list 

of states of the soccer robot that we want to monitor. 

 

Figure 3.15. Possible robot states from StateCheck. 

In this class, only two methods are intended for use directly outside of the 

StateCheck class:  GetState and PrintState.  As the name implies, GetState() methods 

returns the current state of the soccer robot, and PrintState() method print out the current 

state. These two methods together facilitate the mapping in the event generator 

component from the robot’s partial state into a full state associated with the state 

diagram. It is also helpful to log state information for viewing during runtime. 

As shown in Figure 3.16, the GetState method takes in a ChangeEvent and 

Kicker object, and returns a State object.  The Kicker object is the primary object 

controlling the physical actions of the soccer robot, and a reference to it is passed to this 

method to expose the necessary methods to gather current sensor data.  This sensor data 

is collectively analyzed to determine the current state of the robot, and the resulting 

analysis generates a state to return back to the event generator for further processing. 
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There are six main properties that this method aims to gather to determine the state of the 

robot. 

public static State GetState(ChangeEvent bifTriggered, Kicker 

currMK){ 

  sonarRead = currMK.getSensorControl().getLastSonar(); 

  if(bifTriggered != null) 

   ballInFront = true; 

  else 

   ballInFront = false; 

   

  // NOTE: this assumes that sonar is up to date 

  ballClose = BallClose(sonarRead); 

  ballKickable = BallKickable(sonarRead); 

   

   

  inGoalRange = currMK.getMotionControl().inGoalRange(); 

  robotMoving = currMK.getMotionControl().robotMoving(); 

  robotTurning = currMK.getMotionControl().robotTurning(); 

   

   

  boolean inTurnToBallState = TurnToBallState(currMK); 

  boolean inGotoBallState = GotoBallState(currMK); 

  boolean inTurnToGoalState = TurnToGoalState(currMK); 

  boolean inDribbleBallState = DribbleBallState(currMK); 

  boolean inKickBallAtGoal = KickBallAtGoal(currMK); 

   

  if(inTurnToBallState) 

   return State.TURN_TO_BALL; 

  else if(inGotoBallState) 

   return State.GOTO_BALL; 

  else if(inTurnToGoalState) 

   return State.TURN_TO_GOAL; 

  else if(inDribbleBallState) 

   return State.DRIBBLE_TO_GOAL; 

  else if(inKickBallAtGoal) 

   return State.KICK_BALL_TO_GOAL; 

  else 

   return State.INIT; 

 

 } 

  

Figure 3.16. GetState method 
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The first, and most important boolean flag from the StateCheck class in the 

GetState method from Figure 3.16 is the ballInFront.  This is required knowledge across 

most of the states, and it is crucial that this is accurate.  A read of zero degrees on either 

of the IR pings or a “close” reading from the sonar will set this property as true.  

Furthermore, these sensors are at a high risk of receiving invalid values due to 

oversampling in a short period of time, which is what this overall structure aims to 

prevent.  The solution to this issue results in technically old values obtained through 

GetState.  Ideally, the sensors could be re-pinged at any given time, but in this case the 

most recent pings are used, and the event generator helps ensure that the last pings were 

performed as close as possible to the call to GetState.  If everything runs smoothly, the 

time difference is mostly negligible considering the realistic speed of the ball and robot.   

The remaining boolean flags are ballClose, ballKickable, inGoalRange, 

robotMoving and robotTurning. These flags are used to indicate the soccer robot’s status 

as well as the status of the external environment. All these flags should be update through 

the parameter Kicker class. As the name implies, ballClose indicates if ball is close 

enough to the soccer robot. The flag ballKickable indicates if the soccer robot can kick 

the ball. Both ballClose and ballKickable require a ballInFront status along with a 

specified closeness distance based on the sonar. The flag inGoalRange indicates if the 

soccer robot is within a certain distance from the goal, which then triggers the kick to the 

goal. The flag robotMoving and robotTurning indicate if the soccer robot is in the process 

of moving or making turns, respectively.   
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 Lastly, the other methods in StateCheck directly provide a flag for which state the 

robot is in and all are checked until the correct state is determined.  These include: 

TurnToBallState(…), GotoBallState(…), TurnToGoalState(…), DribbleBallState(…), 

KickBallAtGoal(…) which are directly called for the current state check.  These 

functions are at the core of the event generator.  For example, as shown in Figure 3.17, 

the TurnToBallState function looks at properties associated with being in a turn-to-ball 

state.  In this state, the ball should not be in front, close, or kickable.  This is simply 

checking the current state of the robot to report back to the overall requestor which in 

most cases is the RobotStateMachine aspect.  The nested if statement as shown in Figure 

3.18 from the GetState function reports the actual state of the robot, and the significance 

of the ordering is not necessarily important in many cases.  However, this ordering gains 

importance when handling unusual behavior from the robot.  Since each test for a state is 

performed sequentially, a very small window of time exists for the robot to shift its state 

during the check, meaning the appearance of being in multiple states at once is possible.  

Setting the precedence for earlier states in the state diagram during testing appeared to 

significantly improve reliability of state reporting; this makes sense partly because the 

probability of the robot being in a given state in our case decreases as it continues to the 

end of the flow of the state chart.  The return of State.INIT is the only exception to this 

since it should occur only once at most, so it effectively functions as an error flag. 
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public static boolean TurnToBallState(Kicker currMK){ 

if(!ballInFront && !ballClose && !ballKickable) 

  return true; 

 else 

  return false; 

} 

Figure 3.17. TurnToBallState method in StateCheck 

if(inTurnToBallState) 

return State.TURN_TO_BALL; 

else if(inGotoBallState) 

 return State.GOTO_BALL; 

else if(inTurnToGoalState) 

 return State.TURN_TO_GOAL; 

else if(inDribbleBallState) 

 return State.DRIBBLE_TO_GOAL; 

else if(inKickBallAtGoal) 

 return State.KICK_BALL_TO_GOAL; 

else 

 return State.INIT; 

Figure 3.18. Nested-if in StateCheck.GetState(…) 

These specific state check methods are linked as events in the JavaMOP portion 

of the project as events, but the calls within StateCheck are ignored since that would 

generate too many useless events.  The event generator helps reduce these state events to 

the bare minimum needed to accurately represent the robot’s state at any given time 

point. 
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Section 3.4:  Event Generator 

 The state checker component helps extract the current state of the soccer robot, 

but this class is just a helper to the event generator component.  The event generator 

component is an AspectJ aspect that determines when a state event or sensor event should 

occur and therefore pass these events to the property monitor, which is implemented in 

JavaMOP and separated from the implementation of the soccer robot. 

Section 3.4.1 RobotStateMachine Aspect Overview 

 To help dictate when certain events are triggered, the RoboStateMachine aspect 

was developed to act as a middle-man between the robot and the JavaMOP proporty 

monitor.  Robotic sensors tend to require constant value checking for accurate up-to-date 

information for the robot, and they are generally not represented in binary form, meaning 

they are not directly represented as events.  Therefore, only including a direct pointcut to 

a sensor value change to represent a sensor event is clearly the wrong approach due to 

serious performance issues along with potentially unpredictable behavior.  Instead, when 

sensor value pointcuts are triggered, this aspect sets internal flags for sub-state tracking 

and proceeds with a full state event generation if all appropriate partial-state values have 

been obtained from the sensors.  If a state check is performed, the resulting state will be 

generated and captured by one of more of the JavaMOP property monitors. 

Section 3.4.2:  RobotStateMachine Pointcuts 

 RobotStateMachine aspect defineds several pointcuts as shown in Figure 3.19. 

The pointcut BallInFrontPC specifies join points as point whenever the method 
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Kicker::BallInFront() is invoked. Similarly, the pointcut ballClosePC specifies join 

points as point whenever the method Kicker::ballClose() is invoked. The other pointcuts 

irModChange_BIF, irUnModChange_BIF, sonarCharng_BIF and sonarCharng_BIF are 

built around changes of values read from three different sensors within method 

Kicker::BallInFront() or Kicker::ballClose9). These three sensors are modulated IR, 

unmodulated IR, and sonar sensors. With these values, along with a couple of other 

properties, the StateCheck object can determine the current state of the robot. This aspect 

also defines other types of pointcuts and events such as entrance/exit of a state in some 

situations.   

Although there are multiple pointcuts defined in the aspect, we should pay more 

attention to: irModChange_BIF, irUnModChange_BIF, and sonarCharng_BIF since they 

represent the change of the core values of the states and will ultimately trigger a state 

check.  The others are simply there for performance reasons with AspectJ with 

cflowbelow calls, testing, or forcing violations for JavaMOP. 
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pointcut BallInFrontPC(Kicker MK) : call(public boolean Kicker.BallInFront()) && target(MK); 

pointcut ballClosePC(Kicker MK) : call(public boolean Kicker.BallClose()) && target(MK); 

pointcut irModChange_BIF(Kicker MK) : cflowbelow(BallInFrontPC(MK)) && set(float 

SensorController.ballDirMod)&& within(SensorController); 

pointcut irUnModChange_BIF(Kicker MK) : cflowbelow(BallInFrontPC(MK)) && set(float 

SensorController.ballDirUnMod)&& within(SensorController); 

pointcut sonarChange_BIF(Kicker MK) : cflowbelow(BallInFrontPC(MK)) && set(float 

SensorController.sonarRead)&& within(SensorController); 

pointcut sonarChange_BC(Kicker MK) : cflowbelow(ballClosePC(MK)) && set(float 

SensorController.sonarRead)&& within(SensorController); 

  

Figure 3.19. Pointcuts Defined in RobotStateMachine aspect 

Section 3.4.3:  RobotStateMachine Advice and Supporting Methods 

 Advices defined in RobotStateMachine for pointcuts irModChange_BIF, 

irUnModChange_BIF, sonarCharng_BIF and sonarCharng_BIF are similar. Therefore, 

we only discuss the advice for pointcut irModChange_BIF as shown in Figure 3.21. IR 

and sonar sensors are checked on a regular basis within the LeJOS code, and give all 

necessary values to allow a valid state check. The irModChange_BIF advice is executed 

every time a value is gathered from the IR sensor. The purpose of the advice is to 

generate events that represent entering or exiting a state. To do so, we introduce two 

variables. One as a flag to indicate if the appropriate condition such as if a ball is in front 

or if a ball is too close is true or false based on the new reading from the sensor. 

Appropriate flags for this will help determine the correct time to signal a state event.  

And the second introduced variable is to track the sensor that triggers the checking of 

state.   
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After set the values for both introduced variables, the advice checks if the robot is 

ready to check its state, which is represented by the return value of the helper method 

readyForStateCheck() defined in the aspect. If yes, it will gather the current state of the 

robot represented by the StateCheck object, and passes as arguments to another helper 

method generateStateEvent(…), which, as shown in Figure 3.24, is defined in the aspect 

to call corresponding Gen_ methods in StateCheck class. After that, it resets all variables 

and flags. If the robot is not ready to check its state, nothing happens. 

As shown in next section, every time a Gen_ method in StateCheck class is 

invoked, a state event that represents the state change will be generated in our behavior 

monitor.  These events form an event trace in the monitor and allows a relatively 

straightforward property check of any point in the state diagram. With this strictly 

controlled structure combination of RoboStateMachine and StateCheck, it is far less 

chaotic and are more accurate to the realistic state of the robot.  In some cases, it is 

desirable to trigger other events to make up for a lack of calls from the soccer code.  This 

structure easily allows for that and only requires a modification of the aspect code rather 

than the soccer.  Furthermore, the overall flow of this process is partly controlled in the 

advice sections associated with the previously mentioned pointcuts as shown in Figure 

3.20.  The state check is triggered only when the core advice sections have been 

executed, and therefore set the appropriate flags. 

 Abstracting out the state generation parts from the soccer code and monitor code 

allows for a clean modularization approach.  The base idea is that the soccer code is 

strictly setup to play soccer with little care about error checking and correcting within it.  
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The JavaMOP parts are centered around ensuring that behavior of the robot correctly 

match the given state diagram. It does not have a direct concern of the exact sub-states of 

the robot.  It just retrieves an abstracted view of the robot.  It does, however, require a 

little more handling detail during violation handling, but it is negligible compared to the 

complexities that would be required for event generation if only JavaMOP was used.  

RoboStateMachine and StateCheck pre-process raw data into a relatively easy to follow 

event listing which is captured in JavaMOP.  This design provides a powerful runtime 

verification method with a small footprint on performance. 
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// IR -- Mod advice, handle change in IR MOD value (after new ping) 

 after(Kicker MK, float newIrMod) :irModChange_BIF(MK) && args(newIrMod){ 

  irModSet = true; 

  if(newIrMod == 0){ 

   bifFlag = true; 

   bifTrigger = ChangeEvent.IR_MOD; 

  } 

  if(readyForStateCheck(MK)){ 

   State currState = StateCheck.GetState(bifTrigger, MK); 

   MK.generateStateEvent(currState,MK); 

   resetStatePreCheck(); 

  } 

 } 

   

// IR -- Un-Mod advice, handle change in IR UN-MOD value (after new ping) 

after(Kicker MK, float newIrUnMod):irUnModChange_BIF(MK) && args(newIrUnMod){ 

 irUnModSet = true; 

 ***ADVICE SECTION – SAME AS irUnModChange_BIF*** 

} 

// Sonar -- Sonar advice, handle change in Sonar value (after new ping) 

after(Kicker MK, float newSonar):sonarChange_BIF(MK) && args(newSonar){ 

 sonarSet = true; 

 ***ADVICE SECTION – SAME AS irUnModChange_BIF*** 

} 

 
 

Figure 3.20. RobotStateMachine advice 
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// Generate the current state on-demand here rather than directly from state check method 

public void Kicker.generateStateEvent(State currState, Kicker currMK){ 

 if(currState != lastState){ 

  switch(currState){ 

   case TURN_TO_BALL: 

    StateCheck.Gen_TurnToBallState(currMK); 

    lastState = currState; 

    break; 

   case GOTO_BALL: 

    StateCheck.Gen_GotoBallState(currMK); 

    lastState = currState; 

    break; 

   case TURN_TO_GOAL: 

    StateCheck.Gen_TurnToGoalState(currMK); 

    lastState = currState; 

    break; 

   case DRIBBLE_TO_GOAL: 

    StateCheck.Gen_DribbleBallState(currMK); 

    lastState = currState; 

    break; 

   case KICK_BALL_TO_GOAL: 

    StateCheck.Gen_KickBallAtGoal(currMK); 

    lastState = currState; 

    break; 

   default: 

    break; 

  } 

 } 

} 
 

Figure 3.21. RobotStateMachine supporting methods 
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Section 3.5 Monitoring System Behavior 

 The ultimate goal of this research is to monitor system behavior defined in state 

diagrams during its execution. System behavior is specified as a set of LTL formula 

derived from state diagrams. Each LTL formula indicates an important pattern of 

behavior that the robot must follow. The StateCheck class and RobotStateMachine aspect 

discussed in previous sections provide necessary scaffold for our monitor by facilitating 

the generation of state events whenever the robot enters a new state.  

The monitor for each LTL formula is specified and generated by JavaMOP and 

weaved into robot code using AspectJ. To specify monitor in JavaMOP, we need to 

specify the LTL formula based on events and definition of these events as appropriate 

pointcuts. In general, there are two types of events we may need: events that represent 

entering a new state and events that represent actions of transitions in state diagrams. The 

former events can be defined as pointcuts in corresponding Gen_ method defined in 

StateCheck class. For example, as shown in Figure 3.22, turn_to_ball_state_true event 

occurs if the method Gen_TurnToBallState() is called. Occurrence of event 

turn_to_ball_state_true implies that the robot now enters into state turn_to_ball_state. 

This is possible because of the RobotStateMachine aspect, which calls 

Gen_TurnToBallState() whenever it detects that the robot enters into TurnToBallState 

state. This is independent of how soccer robot is implemented. 
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event turn_to_ball_state after(Kicker MK) returning(boolean res) : 
call(public boolean StateCheck.Gen_TurnToBallState(Kicker))  
&& args(MK) 

{  //advice 
} 

Figure 3.22 Definition of event turn_to_ball_state_true 

 

The latter events that represent actions of transitions in state diagrams can be defined as 

pointcuts of corresponding join points based on the nature of the action. For example, as 

shown in Figure 3.23, we can have two different events defined for the call of method 

Kicker.KickBall(): one represents before the action kick ball and one represents after the 

action kick ball. Such event definitions requires the knowledge of robot code.  

event kick_ball_before before(Kicker MK): 
call(public void Kicker.KickBall()) && target(MK) 

{  //advice 
} 

 

event kick_ball_after after(Kicker MK): 
call(public void Kicker.KickBall()) && target(MK) 

{  //advice 
} 

Figure 3.23: Definition of events KickBall 

 In our experiment, 7 separate properties were developed for the soccer robot directly 

utilizing the event generator and tested (See Chapter 5 for results). These properties are:  

the initialization property, ball-in-front until after-kick, ball close at kick, IR always 

reads a value, go to goal until in range, and eventually kicks ball.  Some of these 

properties are challenging if not impossible to test under normal circumstances, so some 

code modifications were made to force a property violation to see how this system would 
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handle such a situation. We will discuss these properties one by one in the rest of this 

section. 

Section 3.5.1:  Initialization Property 

 For the soccer robot to perform any kind of task, it is critical to ensure that all 

motors and sensors have been initialized.  The initialization property, as shown in Figure 

3.24 is design for this purpose. In this monitor, we defined several events: ready_true, 

ready_false, and play_before. The events ready_true and ready_false represents the call 

to method Kicker.Ready(), which checks if motor and sensors are initialized successfully. 

The only difference among these two events lies in the boolean value returned from the 

method. The play_before event represents the time before method Kicker.play() is 

invoked. The LTL formula to be monitored is: [](play_before -> <*> ready_true), which 

implies that it is always true that when play_before occurs, event ready_true must occur 

sometime in the past. This formula  guarantees that the robot is ready to leave the first 

state in the state diagram only after the motor and sensors are initialized successfully, and 

a violation will trigger a separate set of code in JavaMOP as shown in the violation 

section.  Rather than attempting to proceed through the other states and failing later, the 

property monitor will attempt to fix the problem before going any further.  In some cases, 

the LeJOS library will fail to initialize the motors and/or sensors possibly due to 

disconnected wiring, but for testing purposes, one of the sensor cables were pulled out 

temporarily.  The monitor will recognize that the robot is attempting to transition to a 

turn-to-ball state without proper sensor/motor setups, and will attempt to recover before 

releasing the robot to regular operation. 
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event ready_true after(Kicker MK) returning(boolean res): 
call(public boolean Kicker.Ready()) && condition(res) && target(MK) 

{  /*advice*/ }  
  

event ready_false after(Kicker MK) returning(boolean res): 
call(public boolean Kicker.Ready()) && condition(!res) && target(MK) 

{  /*advice*/ } 
  

event play_before before(Kicker MK): 
call(public void Kicker.Play()) && target(MK) 

{  /*advice*/ } 
  

ltl: [](play_before => <*> ready_true) 
 @violation{ 

while(!currMK.Ready()){ 
 System.out.println("Please plug in all cables correctly, then press any 
button."); 
 Button.waitForAnyPress(); 

currMK.Init(); 
  } 
  __RESET; 
 } 
 

Figure 3.24. Init.mop 

Section 3.5.2: Ball in Front After Turn Until Kick 

When the robot successfully turns to the ball, we anticipate the ball remaining 

directly in front of the robot under normal circumstances, but various situations may 

cause a violation of this property.  The ball’s battery could die, leaving the robot 

somewhat blind or some other force could move the ball. 

To monitor this property, four separate events were utilized as shown in Figure 

3.25, and the LTL to be checked adds a layer of complexity yet still retains a relatively 

simplistic structure thanks to the event generator: [](turn_to_ball_state_true => 

o(ballinfront_true U kick_ball_after)). The event turn_to_ball_state_true indicates that 
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the soccer robot is in turn_to_ball state, while the events ballinfront_true and 

ballinfront_false indicates if ball is in front of the robot or not. The event kick_ball_after 

represents the action of kicking ball. If the property is violated, which typically means 

ball is removed from its previous detected position either by opponents or teammates, the 

soccer robot starts searching for the ball. The advantages of the event generator should be 

especially clear with this property.  Once the definition of events are provided by 

associating them to join points of method calls and value changes of variables deciding 

states, the LTL logic is drastically simplified.  It ultimately utilizes abstraction to make 

error checking and correction setup simpler.  
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BallInFrontAfterTurnUntilKick(Kicker MK) { 

Kicker currMK = null; // Allows for usage of MK in the ltl violation 

 event turn_to_ball_state_true after(Kicker MK) returning(boolean res) : 

   call(public boolean StateCheck.Gen_TurnToBallState(Kicker)) && condition(res) 

   && args(MK){/* Advice */} 

 event ballinfront_true after(Kicker MK) returning(boolean res): 

  call(public boolean Kicker.BallInFront()) && condition(res) && target(MK){/* Advice */} 

  

 event ballinfront_false after(Kicker MK) returning(boolean res): 

  call(public boolean Kicker.BallInFront()) && condition(!res) && target(MK){ /* Advice */} 

event kick_ball_after after(Kicker MK): 

  call(public void Kicker.KickBall()) && target(MK){ /* Advice */} 

  

 ltl: [](turn_to_ball_state_true => o(ballinfront_true U kick_ball_after)) 

 @violation { 

  while(!currMK.FindBall()); 

  __RESET; 

 } 

} 

 

 

  

Figure 3.25. BallInFrontAfterTurnUntilKick.mop 
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Section 3.5.3:  Ball Close at Kick 

 When the robot is preparing to kick the ball, it must have the ball, so ensuring this 

is clearly important.  As shown in Figure 3.26, if the LTL: [](kick_ball_before => (*) 

kick_ball_state_true) is violated, the monitor attempts to find the ball before the kick is 

actually performed, and then it has to re-position itself for a proper shot.  In general, this 

property monitor maintains the same general approach as the others.  If a violation occurs 

at its given point in the state diagram, it back tracks to an earlier point in the state 

diagram.  Even during a violation, the robot should generally remain within the rules of 

the state diagram too. (See Figure 3.26) 

BallCloseAtKick(Kicker MK) { 

 Kicker currMK = null; 

 event kick_ball_state_true after(Kicker MK) returning(boolean res) : 

call(public boolean StateCheck.Gen_KickBallAtGoal(Kicker)) && condition(res) 

&& args(MK){ /* Advice */} 

  

 event kick_ball_before before(Kicker MK): 

  call(public void Kicker.KickBall()) && target(MK){ /* Advice */} 

  

 ltl: kick_ball_before => (*) kick_ball_state_true 

 @violation{ 

  while(!currMK.FindBall()){} 

  currMK.GotoGoal(true); 

  __RESET; 

 } 

} 

 
 

Figure 3.26. BallCloseAtKick.mop 
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Section 3.5.4:  IR Always Reads a Value 

 After all the sensors are properly initialized, the robot should always have some 

valid value.  It must be from UnMod and/or Mod IR; and this is the case because the ball 

should always be emitting a signal, and the sensor should always be able to pick it up 

except in the dead-zone directly behind it.  If the ball is directly behind it, the violation 

will flush the sensors and then force the robot to turn a little to try to pick up the signal of 

the IR ball again.  If the ball is turned off or the cable for IR is unplugged it will try to 

recover until it gets a signal.  The LTL for this property is simple:  [](ir_read_true). (See 

Figure 3.27) Once the sensors are initialized, it is expected that an IR signal is read.  If 

not, one of the previously mentioned errors probably occurred.  If it fails, the violation 

code continuously flushes the IR sensor and retries a pull of the values. 
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AlwaysIR(Kicker MK) { 

 SensorController currSC = null; // Allows for usage of SC in the ltl violation 

 Kicker currMK = null; 

 event ir_read_true after(SensorController SC)  returning(boolean res): 

  call(public boolean SensorController.GetIR(int,float[])) && condition(res) && target(SC){ 

   currSC = SC; 

} 

  

 event ir_read_false after(SensorController SC) returning(boolean res): 

call(public boolean SensorController.GetIR(int,float[])) && condition(!res) && 

target(SC){ 

   currSC = SC; 

  } 

 ltl: [] ir_read_true 

 @violation { 

  while(currSC.GetIR(Globals.IR_MOD,tmpIR)){  

   currSC.FlushSensors(); 

   System.out.println("Flush IR Loop"); 

  } 

  __RESET; 

 } 

} 

 
 

Figure 3.27. AlwaysIR.mop 
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Section 3.5.5:  Goes to Goal Until in Range of Goal 

 For additional complexity, rather than going to a specific point every time and 

shooting to the goal, the robot heads in the direction of the given goal point, and kicks the 

ball once it is within a scorable radius from the goal.  Once the robot starts turning to the 

goal with the ball, it is expected that the robot will then dribble the ball to the goal until at 

least being within range of it.  The robot should never lose the ball in this process, and 

would therefore raise a violation if such an event occurred.  The LTL for this property as 

shown in Figure 3.28 is [](turn_to_goal_state_true => o(dribble_ball_state_true U 

goto_goal_true)).  Note that a successful goto_goal_true event mainly means that the 

robot is in range of the goal.  The property maybe violated if the ball is taken away 

during the dribble to goal phase, and the robot goes into violation handling mode. 

 



68 

 

GoToGoalUntilInRange(Kicker MK) { 

 Kicker currMK = null; 

 event dribble_ball_state_true after(Kicker MK) returning(boolean res): 

call(public boolean StateCheck.Gen_DribbleBallState(Kicker)) && condition(res) 

&& args(MK){ currMK = MK;} 

  

 event turn_to_goal_state_true after(Kicker MK) returning(boolean res): 

call(public boolean StateCheck.Gen_TurnToGoalState(Kicker)) && condition(res) 

&& args(MK){currMK = MK;} 

 event goto_goal_true after(Kicker MK) returning(boolean res): 

call(public boolean Kicker.GotoGoal(boolean)) && condition(res) && 

target(MK){/*Advice*/} 

 event goto_goal_false after(Kicker MK) returning(boolean res): 

call(public boolean Kicker.GotoGoal(boolean)) && condition(!res) && 

target(MK){/*Advice*/} 

 event kick_ball_state_true after(Kicker MK) returning(boolean res) : 

call(public boolean StateCheck.Gen_KickBallAtGoal(Kicker)) && condition(res) && 

args(MK){/*Advice*/} 

 ltl: [](turn_to_goal_state_true => o(dribble_ball_state_true U goto_goal_true)) 

 @violation{ 

  currMK.KickBall(); 

  __RESET; 

 } 

} 

 

   
 

Figure 3.28. GoToGoalUntilInRange.mop 
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Section 3.5.6: Kicks to Goal Eventually 

 Finally, the ultimate task of the robot is to kick the ball to the goal, so some time 

from the beginning of the execution of the code to the ending, the robot must kick the ball 

to the goal.  The LTL for this given property is (game_over => <*> 

kick_ball_state_true) and (game_over => <*>kick_ball).  Once a game over occurs, 

sometime in the past the robot has to have been in a kick-ball state and have completed a 

kick successfully.  A violation is challenging to force without any code manipulation, so 

to force it, the kick method was simply taken out.  If the violation occurs, the robot will 

essentially determine what is left to do and attempt to finish the overall process.  In most 

testing situations, all the robot should have to do is to kick the ball unless the ball is 

completely moved. The full code can be viewed in Figure 3.29.    
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EventuallyKicksToGoal(Kicker MK) { 

 Kicker currMK = null; 

 event kick_ball after(Kicker MK): 

  call(public void Kicker.KickBall()) && target(MK){ currMK = MK;} 

 event game_over before(Kicker MK): 

  call(public void Kicker.GameOver()) && target(MK){currMK = MK;} 

 event kick_ball_state_true after(Kicker MK) returning(boolean res): 

call(public boolean StateCheck.KickBallAtGoal(Kicker)) && condition(res) && args(MK){ 

   currMK = MK; 

    Logger.log(LogFile.EVENTUALLY_KICKS,"kick_ball_state_true"); 

   } 

 ltl: (game_over => <*> kick_ball_state_true) and (game_over => <*>kick_ball) 

 @violation{ 

  currMK.KickBall(); 

  currMK.SetBallKickedAtGoal(currMK.BallInFront()); 

  __RESET; 

 } 

} 

 

 
 

Figure 3.29. EventuallyKicksToGoal.mop 

 

 

 

 



71 

 

Section 3.6: Final Compiling/Weaving 

 Using the event generator with JavaMOP property monitoring is straightforward.  

When developing JavaMOP property monitoring code, all a developer must know at this 

point is the signature of the state related methods (and maybe a couple of other methods), 

the state chart diagram, and of course LTL formula derived from the state chart diagram.  

This allows the developer to focus mostly on the higher-level view of how the property 

should be structured rather than being distracted by the lower-level implementation 

details. 

Weaving new JavaMOP code in with the event generator is straightforward too.  

It simply weaves the following pieces of code into soccer robot code using AspectJ 

compiler ajc: Java and AspectJ code of our framework (StateCechk.java, 

RobotStateMachine.aj and other support files) and monitor code generated from LTL 

formula using JavaMOP . As a result, a single runnable jar file will be generated.  An 

example of generating executable to monitor LTL forumla specified in 

AlwaysIRMonitorAspect.aj is shown in Figure 3.30.  The command-line options to the 

ajc weaver are provided to specify the runtime libraries it needs: ev3classes.jar for LeJOS 

library, aspectjrt.jar for AspectJ library, rv-monitor-rt.jar for RVMonitor library needed 

by JavaMop and StateTools.jar for our framework.  This allows us to monitor one 

property per time. If we want to monitor another property, just replace 

AlwaysIRMonitorAspect.aj with another property file. It is also possible to monitor 

multiple properties at the same time by providing multiple *.aj files that contain different 

LTL formula. 



72 

 

ajc -1.6 RoboStateMachine.aj -cp "ev3classes.jar" -inpath "./PlayerInit.jar;aspectjrt.jar;rv-

monitor-rt.jar;StateTools.jar;"  AlwaysIRMonitorAspect.aj -outjar test2.jar 

Figure 3.30. Command to weave monitor into robot code 
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CHAPTER IV 

RESULTS 

 This chapter describes the results we have on the case study by monitoring all 

properties discussed in Section 3.5. Three measurements were taken to evaluate the 

effectiveness of our approach:  code size change with additional RV code, time cost 

related with runtime verification code, and finally the resulting event sequence for each 

given property. As shown in the rest of the chapter, consistent patterns exist for each 

property monitor and event generator appendage to the base soccer code. 

Section 4.1: Change of Code Size 

 In many cases, it is crucial for systems to retain minimal code due to space 

restrictions, especially in cyber physic systems like robotics, and it may not even be 

possible to integrate this event generator and monitoring method into any given system.  

For this given research, the rough size of the PlayerInit.jar file (pure soccer code without 

RV parts), is roughly 10 KB, but on average the additional RV significantly increases the 

size to an average of roughly 400KB from 12KB.  This can be viewed in Figure 4.1.  As 

shown in this table, the size change is drastic from the original code, but it stays relatively 

the same across each property because the libraries associated with AspecJ and JavaMOP 

account for the vast majority of it.  One route not tried in this research is the application 

of this concept on much larger programs.  In this case, the soccer robot code is relatively 

small, and larger projects may not see this drastic of a difference depending on how much 

RV code is needed.  For example, if the same basic sensors are used in much larger 
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projects, the event-generator may not change in size by much, and any dependencies 

associated with JavaMOP and AspectJ would remain constant.  Ultimately, however, 

most modern systems should be able to handle the size change.  Even our Lego EV3 

system has very limited storage and no problems occurred due to storage limits. 

 

Figure 4.1. RV file size impact; the ordering is: NO-RV, Init, AlwaysIR, 

BallCloseAtKick, BallInFrontAfterTurnUntilKick, EventuallyKicksToGoal, 

GoToGoalUntilInRange 

Section 4.2:  Runtime Overhead  of Monitor 

 Robotic systems are reactive computing systems that are required to provide real-

time response to changes in the external environment. Runtime verification code 

introduced to monitor system behavior during its execution incurs runtime overhead. 

Such runtime overhead is typically caused by two actions: intercepting pointcuts in 

AspectJ, and detecting and handling property violation in monitor. We need to make sure 
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the runtime overhead of our monitor doesn’t affect the robotics to complete its predefined 

mission. This section will analyze the runtime overhead of the monitor for each property 

discussed in the previous chapter. 

To gather runtime overhead of runtime verification code, a time logger class was 

developed and used.  When an event or pointcut is linked with a method or a value 

change, new code from the advice sections will be weaved before or after the method call 

or value change.  To capture this overhead, the log method in the Logger class was 

inserted around the method calls where appropriate; this ultimately captures the overhead 

associated with the runtime verification parts.  If a method such as Play() have drastically 

different timing on its own without RV, due to external factors such as missing the ball 

on a first go-to-ball, then the log method calls were placed to avoid this uncertainty while 

still capturing the RV part.  Note, however, that all prints to screen were disabled for 

these runs.  As with any system logging, printing to screen gives excessive time delays 

unimportant to this measurement.  Based on the data we gathered, even with a high size 

change, the runtime overhead of the monitor added to the system is relatively low.  The 

Lego EV3 robot contains relatively low processing power, but performance based on the 

time recordings wasn’t impacted too heavily on average.  Given these results, developers 

who utilize this RV method shouldn’t see too much of an impact on processing time.  

From Figures 4.2 to 4.9, each graph represents the timing of all possible recordings to 

capture additional RV processing time.  The first box and whisker plot for all of these 

figures is the original processing time of the specified section before the introduction of 

the RV code.  For each test set (each figure), the logging statements in the base soccer 



76 

 

code were left unchanged with the RV code weaved in.  If the logging statements are 

placed correctly, this ultimately captures the change since the RV code is integrated 

between the logging statements.  In addition, other than the first plot in each figure, all 

the plots represent when an event in one of the monitors is linked with the specified 

method call or value; and each box also represents multiple runs of the same code.  These 

repeated runs were performed until the processing time appeared to have hit peak points 

from lowest to highest.  Only a few exceptions exist, however; some additional 

recordings for things like ball-close and ball-in-front were included across all because 

pointcuts exist in the event generator. 

 

Figure 4.2.  RV time impact attached before Play method (1st is without RV). 

 In Figure 4.2, only the Init monitor has an event for before the Play method, so 

only one additional box was included in this graph.  This recording only captures the 

transition from a call to Play and the start of it rather than timing the entire method 

because it avoids random values due to unpredictable nature of the soccer sequence.  The 

time it takes ultimately get to the goal with the ball is not fully consistent, and therefore 

useless data.  The box shows that the timing has a tendency to be on the higher end with 
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additional RV code, but the additional RV code clearly doesn’t add too much additional 

processing time since it appears to peak at about 22ms with a median around 10ms. 

 

Figure 4.3.  RV time impact attached to the Kick method (1st is without RV). 

 Next, Figure 4.3 displays full recordings of the Kick method since it is mostly 

consistent as the first box plot shows, without any RV code it basically stays around 4.8 

seconds.  Both the BallInFrontAfterTurnUntilKick and BallCloseAtKick monitors (same 

order as the graph) have an associated event with the KickBall method.  The central 

tendency for both still come close to the runs without RV code, the max going to about 

5.2 seconds.  As for some recordings being lower than the no-RV set is most likely due to 

a slight malfunction in the way the LeJOS API handles the delay or arm movement 

methods, which is part of the method and not the RV parts. 
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Figure 4.4.  RV time impact attached to the Ball Close method (1st is without RV). 

 The BallClose method in Figure 4.4 is called in various places throughout the 

soccer code and a pointcut exists the event generator.  No JavaMOP events exist for this 

method in the monitors, but it is still an important recording since RV code is associated 

with it.  The ordering for the graph is: AlwaysIR, GotoGoalUntilInRange, 

BallCloseAtKick, EventuallyKicksToGoal, HasBallAfterGotoUntilKick, and Init.  All of 

them have a central tendency not too far off from the no-RV run with a median around 

100ms to 200ms additional runtime.  However, BallCloseAtKick and 

EventuallyKicksToGoal have clear spikes with nearly 3 to 5 additional seconds added to 

runtime.  The addition of those two monitors most likely resulted in more usage of the 

sonar at faster rates, which typically hurts performance of the sonar.  The LeJOS API 

may even have some level of internal recovery for this that may cause rare delays, but 

this is not explicitly stated anywhere.  In general though, these are simply outliers. 
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Figure 4.5.  RV time impact attached to the Game-Over method (1st is without RV). 

For Figure 4.5 only the EventuallyKicksToGoal monitor is linked to the 

GameOver method.  Based on the graph, the rough range of additional processing time 

when RV is included is around 10ms to 60ms with a central tendency hovering around 

40ms total.  Note that these measurements include the runtime of the GameOver method. 

 

Figure 4.6.  RV time impact attached to the Ball-In-Front method (1st is without RV). 
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 Based on Figure 4.6, the rough range of additional processing time added on 

from the RV code pushed the total to around 100ms more than the no-RV version.  

BallInFront is another method with a pointcut in the event generator, and for the most 

part the RV addition didn’t make too bad of an impact on the runtime.  The somewhat 

drastic outlier points from the 3rd to the 6th plots stem from the same problem in Figure 

4.5.  Over pinging the sonar (and in this case also the IR) sensors may cause some strange 

yet rare behavior.  It is important to reiterate that the LeJOS API is a beta version, and at 

the moment momentum on development has slowed, so bizarre behavior such as this may 

be more of a LeJOS API problem more so than an RV addition problem.  

 Figures 4.7 to 4.9 are all linked with the value changes in sensors and monitored 

by the event generator.  All runs of the monitors show a relatively consistent pattern for 

most recordings.  IR MOD readings contain many outlier times, but the overall central 

tendency of the time is roughly the same as the version without RV code.  IR UNMOD 

clearly has some more tendency to be affected by the additional RV code, but the impact 

is usually only around 25ms.  Lastly, other than a few very rare outlier points in Figure 

4.9, sonar basically not affected by the additional RV code.  When an over-ping happens, 

however, it will obviously have a substantial hit in performance by about 3 to 5 seconds, 

but again this is a very rare situation based on the data.  These sensor reading points 

represent hundreds of data points per plot, so these outlier points are clearly very rare. 



81 

 

 

Figure 4.7.  RV time impact attached to the IR Modulated method (1st is without RV). 

 

Figure 4.8.  RV time impact attached to the IR Unmodulated method (1st is without RV). 



82 

 

 

Figure 4.9.  RV time impact attached to the IR Sonar method (1st is without RV). 

In general, for the first set of measurements from Figures 4.2 to 4.6 other than a few 

outliers, the general impact on processing time is minimal given the processing power of 

the system.  Even the bigger looking plots such as the ones from Figures 4.2 and 4.5 the 

additional processing time for the play and game over methods only around 20ms.  In 

some applications, 20ms might be too great of impact, but in most cases, this is 

negligible.  Central tendencies of the time all hover relatively close to the runs without 

any RV code as shown in Figures 4.3, 4.4, and 4.6. The next set of recordings from 

Figures 4.7 to 4.9 directly impact sensor readings.  These sensor value changes are the 

key to the event generator structure, and have the highest likelihood for the higher 

outliers.  When IR or sonar is read, a state check may or may not happen, so additional 

RV code has nearly a non-existent impact on processing time until enough data is 

collected to perform a state check.  A state check would ideally occur around once every 

three sensor readings since it will occur when these three provide valid values. 
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Unmodulated IR seems to have taken the biggest impact on the general processing time, 

which implies that state checks occur more frequently after reading in this value as shown 

in Figure 4.8.  Impact on sonar in Figure 4.9 contains some drastic outliers, but it 

appears that this is just an initialization impact during the first read. 

Section 4.3:  Property Monitor Outputs 

 Finally, each individual property monitor will generate its own event sequence, 

and that sequence is what is checked internally by the JavaMOP property monitors.  In 

Figures 4.10 to Figure 4.7, the event sequence can be seen during test runs.  These event 

listings also include the parts where violations were attempted, and are not official 

events.  

Without Violation With Violation 

ready_true EVENT ready_false EVENT 

Play Before EVENT Play Before EVENT 

  !!!Init LTL Violated!!! 

Figure 4.10. Event sequences for the Init property monitor. 

First, we will examine the event sequence for the Init property monitor.  The Init 

property is relatively simple.  It ensures that the Ready method, which ensures the 

preparedness of the robot’s sensors and motors, returns true before the robot begins 

playing.  In Figure 4.10, it simply shows just that.  It tries to ensure that the robot’s 

sensors and motors are properly setup.  Note too that the points in any violation runs that 

say something to the extent of “!!!...Violated!!!” is when the violation occurs in the 

sequence and is therefore where the violation handler takes over.  The LTL for this 

property is: [](play_before => <*> ready_true).  In other words the ready_true event 
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must appear sometime before the play event (linked to the Play method).  To violate this 

for testing, part of the Init method was commented out, and therefore some of the 

sensors/motors were not started, which caused a violation in this sequence.  It attempts to 

recover itself by attempting to initialize everything again. 

  

  

 

 

 

 

 

Figure 4.11. Event sequences for the GoToGoalUntilInRange property monitor. 

Second, as Figure 4.11 shows we will now look at the GoToGoalUntilInRange 

property monitor.  As the sequence shows, on the correct side, the robot made its way to 

the goal until at least the in_goal_range event was true. Note too that the dribble state 

occurred before the turn state due to the robot thinking it was in the correct goal heading 

until it started to move.  Most of the time this is ok, but occasionally the LeJOS API 

navigator will get a bad read from the compass until a moment of forward motion.  In the 

violation sequence, the robot clearly tried to kick the ball before it was in the range of the 

goal.  Hence a lack of in_goal_range events. 

Without Violation With Violation 

dribble_ball_state_true dribble_ball_state_true 

turn_to_goal_state_true dribble_ball_state_true 

dribble_ball_state_true turn_to_goal_state_true 

in_goal_range_true EVENT dribble_ball_state_true 

in_goal_range_true EVENT kick_ball_state_true 

in_goal_range_true EVENT !!!GoToGoalUntilInRange LTL Violated!!! 

in_goal_range_true EVENT   

in_goal_range_true EVENT   

in_goal_range_true EVENT   

in_goal_range_true EVENT   

in_goal_range_true EVENT   

in_goal_range_true EVENT   

in_goal_range_true EVENT   

in_goal_range_true EVENT   

in_goal_range_true EVENT   
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Next, in Figure 4.12, we examine the EventuallyKicksToGoal property.  The 

overall goal of the robot is to make a shot to the goal, so it is critical to ensure a 

completed kick before the end of the execution of the full sequence.  In this scenario, if a 

kick_ball_state_true event occurs prior to a game over, no violation should occur.  In this 

case, to force a violation, the KickBall method was simply never called, and the game 

was allowed to finish.  Therefore, the RV code took over and made the kick. 

Without Violation With Violation 

kick_ball game_over EVENT 

kick_ball_state_true !!!EventuallyKicksToGoal LTL Violated!!! 

game_over EVENT kick_ball_state_true 

 

Figure 4.12. Event sequences for the EventuallyKicksToGoal property monitor. 

 Another relatively simple property as shown in Figure 4.13 is the ball be close to 

the robot prior to the kick.  With the successful run, the ball will eventually get close to 

the robot and stay that way until the actual kick recorded as kick_ball_before.  To force 

this violation, the call to KickBall() was made at the beginning of Play().  Therefore, the 

event sequence is so short; everything is handled in violation section and therefore no 

events were triggered beyond that.   
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Without Violation With Violation 

ballclose_false kick_ball_before 

… !!!BallCloseAtKick LTL Violated!!! 

ballclose_false   

ballclose_true   

…   

ballclose_true   

kick_ball_state_true   

ballclose_true   

kick_ball_before   

ballclose_false   

 

Figure 4.13. Event sequences for the BallCloseAtKick property monitor. 

Additionally, Figure 4.14 shows the event sequences for the AlwaysIR property, 

which simply ensures that the robot always reads an IR value.  Turning the IR ball off is a 

simple way to force a violation, and it is clear in this example where this happened.  Note 

the “…” part of the listing simply represents hundreds of the same event wrapped around 

it. 
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Without Violation With Violation 

IR_read_TRUE_EVENT IR_read_TRUE_EVENT 

IR_read_TRUE_EVENT IR_read_TRUE_EVENT 

IR_read_TRUE_EVENT IR_read_TRUE_EVENT 

IR_read_TRUE_EVENT IR_read_TRUE_EVENT 

… … 
IR_read_TRUE_EVENT IR_read_TRUE_EVENT 

IR_read_TRUE_EVENT IR_read_TRUE_EVENT 

IR_read_TRUE_EVENT IR_read_FALSE_EVENT 

  
!!!IR Read Fail LTL 
FAIL!!! 

  IR_read_TRUE_EVENT 

  IR_read_FALSE_EVENT 

  
!!!IR Read Fail LTL 
FAIL!!! 

  IR_read_FALSE_EVENT 

  
!!!IR Read Fail LTL 
FAIL!!! 

  IR_read_FALSE_EVENT 

  
!!!IR Read Fail LTL 
FAIL!!! 

  IR_read_FALSE_EVENT 

  
!!!IR Read Fail LTL 
FAIL!!! 

  IR_read_FALSE_EVENT 

  
!!!IR Read Fail LTL 
FAIL!!! 

  IR_read_TRUE_EVENT 

  IR_read_TRUE_EVENT 

  IR_read_TRUE_EVENT 

  IR_read_TRUE_EVENT 

  IR_read_TRUE_EVENT 

  IR_read_TRUE_EVENT 

 

Figure 4.14. Event sequences for the AlwaysIR property monitor. 
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Finally, BallInFrontAfterTurnUntilKick is the most complicated property for our 

example and the event sequences are shown in Figure 4.15.  When the run is successful, 

upon a successful turn_to_ball state, the ball remains in front until the kick_ball_after 

event.  Note that it is ok for the last ball_in_front event because in our case we only care 

if the ball is in front at least until the kick.  It doesn’t really matter if it is in front at the 

end of the process. 

Ultimately, the results of this all of these tests from run time recording to event 

sequence recordings were successful, and show the potential of this event generator 

approach.  Additional yet minimal delays are inevitable, but in most cases, it has very 

little impact on the performance of even this low-powered robotic system. 
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Without Violation With Violation 

turn_to_ball_state_true turn_to_ball_state_true 

ballinfront_true ballinfront_false 

ballinfront_true 
!!!HasBallUntilAfterKick LTL 
FAIL!!! 

... ballinfront_false 

ballinfront_true ballinfront_true 

ballinfront_true ballinfront_true 

kick_ball_after ballinfront_true 

ballinfront_true ballinfront_true 

  ballinfront_true 

  turn_to_ball_state_true 

  ballinfront_false 

  
!!!HasBallUntilAfterKick LTL 
FAIL!!! 

  ballinfront_false 

  ballinfront_true 

  ballinfront_true 

  ... 
  ballinfront_true 

  ballinfront_true 

  turn_to_ball_state_true 

  ballinfront_false 

  
!!!HasBallUntilAfterKick LTL 
FAIL!!! 

  ballinfront_true 

  ballinfront_true 

  ... 
  ballinfront_true 

  ballinfront_true 

  kick_ball_after 

  ballinfront_true 

 

Figure 4.15. Event sequences for the BallInFrontAfterTurnUntilKick property monitor. 
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CHAPTER V 

SUMMARY 

 In this research, we proposed our framework to monitor behavior of robotic 

systems at runtime based on its defined state chart diagrams. This facilitates the 

development of a trustworthy system in robotics. Our framework contains two major 

parts: an event generator and property monitoring structure. Our framework has its pros 

and cons.  Up front without any previous knowledge of runtime verification, the learning 

curve can be a bit steep simply because of some unique syntax and logic structures 

presented in LTL, JavaMOP, and AspectJ. But once the general flow is understood, the 

process should be straightforward.  In addition, separating out error detection and 

handling parts from the direct base code feels unnatural at first since the normal approach 

in software development would be to fill the base code with various calls and 

conditionals to ensure everything runs smoothly. 

 In our experiment of soccer robot, we faced challenging issues. Most issues in 

fact came not from those concepts/structures but from the robot hardware and the third-

party beta API LeJOS.  Issues include things such as: IR sensor failure from different 

lighting, the sonar sensor occasionally failing to detect the ball when directly in front of 

it, poor documentation in some key parts of LeJOS, and various other things.  These 

problems, however, help highlight the need for the integration of this research into other 

systems.  Failure of this robot lacks wide reaching consequences, but what if larger scale 

military robotics or medical robotics fail in similar but larger scale ways?  A simple 
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malfunction of a system like that could result in serious issues, and this research aims to 

help developers easily ensure that such events are minimized. 

 Even with a high increase in the jar file size in our experiment, the general 

performance hit is minimal.  The processing power of these EV3 robots is minimal, and it 

is still able to handle the monitoring code.  It all comes down to trade-offs for each 

individual situation.  In systems with strictly limited memory, this approach may not be 

plausible, and in some cases the additional code may overload the system depending on 

the situation.  Modern computing power, however, should easily handle this. 
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APPENDIX A 

soccerPlayers/PlayerInit.java 

package soccerPlayers; 

 

import java.io.FileNotFoundException; 

 

import lejos.hardware.motor.EV3LargeRegulatedMotor; 

import lejos.hardware.port.MotorPort; 

import lejos.hardware.port.SensorPort; 

import lejos.hardware.sensor.EV3GyroSensor; 

import lejos.hardware.sensor.HiTechnicCompass; 

import lejos.robotics.DirectionFinderAdapter; 

import lejos.robotics.Gyroscope; 

import lejos.robotics.GyroscopeAdapter; 

import lejos.robotics.RegulatedMotor; 

import lejos.robotics.SampleProvider; 

import lejos.robotics.chassis.Chassis; 

import lejos.robotics.chassis.Wheel; 

import lejos.robotics.chassis.WheeledChassis; 

import lejos.robotics.localization.CompassPoseProvider; 

import lejos.robotics.localization.PoseProvider; 

import lejos.robotics.navigation.MovePilot; 

import lejos.robotics.navigation.Navigator; 

import lejos.robotics.navigation.Pose; 

import lejos.robotics.navigation.Waypoint; 

import lejos.utility.Delay; 

import lejos.utility.GyroDirectionFinder; 

import soccerControllers.Globals; 

import soccerControllers.MotorController; 

import soccerControllers.SensorController; 

import loggingTools.*; 

 

 

public class Kicker { 

 private MotorController mainMC = null; 

 private  SensorController mainSC = null; 

 private float[] currBallIR; 

 private float currBallSonar; 

 private boolean continuePlaying = true; 

 private boolean ballKickedAtGoal = false; 

  

 public Kicker(){ 
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  Init(); 

  currBallIR = new float[2]; 

  boolean ready = Ready(); 

 } 

  

 public void Init() { 

mainMC = new MotorController(MotorPort.A,MotorPort.D, 

MotorPort.C, SensorPort.S1); 

mainSC = new SensorController(SensorPort.S3,SensorPort.S2); 

 } 

  

 public boolean Ready() { 

return mainMC != null && mainMC.MotorsReady() && mainSC != null 

&& mainSC.SensorsReady(); 

 } 

  

 public  MotorController GetMotorController(){ 

  return mainMC; 

 } 

  

 public  SensorController GetSensorController(){ 

  return mainSC; 

 } 

  

 public void SetBallKickedAtGoal(boolean kicked) { 

  ballKickedAtGoal = kicked; 

 } 

  

  

 public void GameOver() { 

  System.out.println("GAME OVER"); 

 } 

  

 public void Play(){ 

  mainSC.FlushSensors(); 

  boolean bif = false; 

  boolean hasBall = false; 

  boolean tmp = false; 

  boolean gotoGoalStatus = false; 

   

  while(!ballKickedAtGoal){ 

   if(FindBall()){ 

    hasBall = this.HasBall(); 

    gotoGoalStatus = GotoGoal(true); 

    if(gotoGoalStatus){ 
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System.out.println("GOTO GOAL SUCCESS"); 

     this.KickBall(); 

     bif = this.BallInFront(); 

     SetBallKickedAtGoal(bif); 

    } 

    else{ 

     System.out.println("Lost BALL!"); 

    } 

   } 

  } 

  GameOver(); 

 } 

  

  

  

 // Wonders for the ball until it has the ball in it's arms 

 public  boolean FindBall(){ 

  boolean gotoBallSuccess = false; 

  int findTrys = 0; 

  do{ 

   TurnToBall(); 

   findTrys++; 

   if(findTrys > Globals.FIND_BALL_TRY_MAX) 

    return false; 

    gotoBallSuccess = GotoBall(); 

  }while(!gotoBallSuccess); 

   

  return true; 

 } 

  

 public  boolean TurnToBall(){ 

  Pose currPos; 

  float avgBallAngle = 0; 

  float lastBallAngle = 0; 

  float currTurnSpeed = 0; 

  int newTurnCount = 0; 

   

  boolean bif = false; 

  bif = BallInFront(); 

  if(bif){ 

   return true; 

  } 

    

  do{ 

   currPos = mainMC.GetPos(); 
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   avgBallAngle = GetBallAngle(); 

   if(avgBallAngle < 0) 

    avgBallAngle -= 10.0; 

   else if(avgBallAngle > 0) 

    avgBallAngle += 10.0; 

     

   currTurnSpeed = 25; 

   mainMC.SetTurnSpeed(currTurnSpeed); 

   if(lastBallAngle != avgBallAngle || newTurnCount >= 

 Globals.TURN_FAIL_SAFE_LIMIT){ 

    mainMC.Turn(currTurnSpeed, avgBallAngle*-1); 

    newTurnCount = 0; 

   } 

    

    

   lastBallAngle = avgBallAngle; 

   newTurnCount++; 

   bif = BallInFront(); 

    

  }while(!bif); 

  return true; 

 } 

  

 public  float GetBallAngle(){ 

  float finalAngle = (float) 0.0; 

  int numAngleVals = 0; 

  mainSC.GetIR(Globals.IR_UNMOD,currBallIR); 

  mainSC.GetIR(Globals.IR_MOD,currBallIR); 

   

  if(!Float.isNaN(currBallIR[Globals.IR_MOD])){ 

   finalAngle += currBallIR[Globals.IR_MOD]; 

   numAngleVals++; 

  } 

  if(!Float.isNaN(currBallIR[Globals.IR_UNMOD])){ 

   finalAngle += currBallIR[Globals.IR_UNMOD]; 

   numAngleVals++; 

  } 

   

  // No valid angle returned, use a default 180 

  // to try to get the ball in range of IR 

  if(numAngleVals == 0){ 

   finalAngle = 180; 

   numAngleVals = 1; 

  } 
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  return (float) (finalAngle/2.0); 

 } 

  

  

 public  boolean BallInFront(){ 

  boolean ballClose = false; 

  mainSC.GetIR(Globals.IR_UNMOD,currBallIR); 

  mainSC.GetIR(Globals.IR_MOD,currBallIR); 

  ballClose = BallClose(); 

  currBallSonar = mainSC.GetSonar(); 

    

if(currBallIR[Globals.IR_UNMOD] == 0 || currBallIR[Globals.IR_MOD] 

== 0) 

   return true; 

  else if(ballClose) 

   return true; 

  else 

   return false; 

 } 

  

 public  boolean BallClose(){ 

  currBallSonar = mainSC.GetSonar(); 

  return (currBallSonar <= Globals.SONAR_CLOSE_READING && 

currBallSonar != Globals.SONAR_ERROR_VAL); 

 } 

  

 public  boolean HasBall(){ 

  currBallSonar = mainSC.GetSonar(); 

  return (currBallSonar <= Globals.SONAR_IN_ARM_READING); 

 } 

  

 public  boolean GotoBall(){ 

  float lastSonar = 0; 

  currBallSonar = mainSC.GetSonar(); 

  lastSonar = currBallSonar; 

  boolean hasBall = false; 

  boolean bif = false; 

   

   

  if(currBallSonar != Globals.SONAR_ERROR_VAL &&  

  !Float.isInfinite(currBallSonar)) 

   mainMC.GoForward(7); 

  else 

   mainMC.GoForward(7); 
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  do{ 

   currBallSonar = mainSC.GetSonar(); 

  if(currBallSonar < lastSonar &&  

  !Float.isInfinite(currBallSonar) && currBallSonar  

  != Globals.SONAR_ERROR_VAL) 

mainMC.SetForwardSpeed((float)(((currBallSonar/360.0)*Globals.MAX_MOTO

R_SPEED) + 1)); 

   lastSonar = currBallSonar; 

   hasBall = HasBall(); 

   bif = BallInFront(); 

  }while(bif && !hasBall); 

  hasBall = HasBall(); 

  return hasBall; 

 } 

  

 public  boolean BallInBufferAngleRange(){ 

  float avgBallAngle = GetBallAngle(); 

   

 return (avgBallAngle >= (-1.0*Globals.BUFFER_ANGLE) && 

avgBallAngle <= Globals.BUFFER_ANGLE); 

 } 

  

 public  boolean GotoGoal(boolean withBall){ 

  boolean ballClose = false; 

  float prevHeading = -1; 

  float currHeading = 9999; 

  boolean bif = false; 

   

  mainMC.SetForwardSpeed(Globals.MAX_MOTOR_SPEED/3); 

  mainMC.SetTurnSpeed(Globals.MAX_MOTOR_SPEED/3); 

  Waypoint goalLoc = Globals.GOAL_LOCATION; 

  mainMC.GotoPoint(goalLoc.x, goalLoc.y, Float.NaN, false); 

 

  while(!mainMC.InGoalRange()){ 

   ballClose = BallClose(); 

   if(withBall){ 

    currHeading = mainMC.GetRobotHeading(); 

    bif = BallInFront(); 

    if(!bif){ 

     return false; 

    } 

    if(ballClose){ 

     //Dribble 

    } 

   } 
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  } 

  return true; 

 } 

  

  

 public void KickBall(){ 

  float[] kickBallSeq = {0,1000,1,1000}; 

  mainMC.GoForward(Globals.MAX_MOTOR_SPEED); 

  Delay.msDelay(2000); 

  mainMC.MoveArm(kickBallSeq, 100); 

  mainMC.Stop(); 

 } 

  

  

 public void DribbleBall() { 

  mainMC.SetArmPower(35); 

  mainMC.OpenArm(200); 

  mainMC.CloseArm(200); 

 } 

} 
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APPENDIX B 

soccerPlayers/Kicker.java 

package soccerPlayers; 

 

import loggingTools.LogFile; 

import loggingTools.Logger; 

 

public class PlayerInit { 

 public static void main(String[] args) { 

  Kicker currKicker = new Kicker(); 

  currKicker.Play(); 

 } 

 

} 
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APPENDIX C 

 soccerControllers/Globals.java 

package soccerControllers; 

 

import lejos.robotics.navigation.Waypoint; 

 

public class Globals { 

 public final static Waypoint GOAL_LOCATION = new Waypoint(100,-100); 

 public final static double GOAL_RANGE_THRESHOLD = 70; 

 public final static int IR_UNMOD = 0; 

 public final static int IR_MOD = 1; 

 public final static float SONAR_CLOSE_READING = (float) 0.19; 

 public final static float SONAR_IN_ARM_READING = (float) 0.07; 

 public final static float SONAR_ERROR_VAL = 0; 

 public final static float BUFFER_ANGLE = 30; 

 public final static float MAX_MOTOR_SPEED = 30; 

 public final static int FIND_BALL_TRY_MAX = 20; 

 public final static int TURN_FAIL_SAFE_LIMIT = 15; 

} 
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APPENDIX D  

soccerControllers/MotorController.java 

package soccerControllers; 

 

import lejos.hardware.Button; 

import lejos.hardware.motor.EV3LargeRegulatedMotor; 

import lejos.hardware.motor.UnregulatedMotor; 

import lejos.hardware.port.MotorPort; 

import lejos.hardware.port.Port; 

import lejos.hardware.port.TachoMotorPort; 

import lejos.hardware.sensor.HiTechnicCompass; 

import lejos.robotics.DirectionFinderAdapter; 

import lejos.robotics.SampleProvider; 

import lejos.robotics.chassis.Chassis; 

import lejos.robotics.chassis.Wheel; 

import lejos.robotics.chassis.WheeledChassis; 

import lejos.robotics.localization.CompassPoseProvider; 

import lejos.robotics.localization.PoseProvider; 

import lejos.robotics.navigation.MovePilot; 

import lejos.robotics.navigation.Navigator; 

import lejos.robotics.navigation.Pose; 

import lejos.robotics.navigation.Waypoint; 

import lejos.utility.Delay; 

 

 

public class MotorController { 

 private EV3LargeRegulatedMotor leftMotor; // direct left motor controller 

 private EV3LargeRegulatedMotor rightMotor; // direct right motor controller 

 private UnregulatedMotor arm;    // direct arm 

controller 

 private Navigator roboNav;     // Primary navigator 

 private MovePilot movePilot; 

 private PoseProvider roboPos; 

  

  

 private HiTechnicCompass compass;   // Compass for angles in 

navigator 

 private float[] compassSamples;    // compass sample 

values 

 private SampleProvider compassSP;   // compass sample provider 

 private DirectionFinderAdapter compassDF; 
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 private float wheelDiam = (float) /*3.3*/4.746; 

 private float trackWidth = (float) 6.6 /*7.6*/; 

  

  

 private Wheel wheel1; 

 private Wheel wheel2; 

 private Chassis chassis; 

  

 private CompassPoseProvider compassPose; 

 private Waypoint lastGotoWayPoint; 

  

  

  

 /* Constructor for the MotorController 

  * Parameters:  

  *  1. MotorPort leftMotorPort 

  *   * The port for the left robot motor (A-D) 

  *  2. MotorPort rightMotorPort 

  *   * The port for the right robot motor (A-D) 

  *  3. MotorPort arm 

  *   * The port for the robot motor arm (A-D) 

  * Result:  All motors are initialized, unless incorrect ports are given 

  */ 

 public MotorController(Port leftMotorPort,Port rightMotorPort, Port armPort,Port 

compassPort){ 

  Init(leftMotorPort,rightMotorPort,armPort,compassPort); 

 } 

  

 public void Init(Port leftMotorPort,Port rightMotorPort, Port armPort,Port 

compassPort) { 

  leftMotor = new EV3LargeRegulatedMotor(leftMotorPort); 

  rightMotor = new EV3LargeRegulatedMotor(rightMotorPort); 

  arm = new UnregulatedMotor(armPort); 

   

  compass = new HiTechnicCompass(compassPort); 

   

  compassSamples = new float[5]; 

  compassSP = compass.getAngleMode(); 

  compassDF = new DirectionFinderAdapter(compassSP); 

  wheel1 = WheeledChassis.modelWheel(leftMotor,  

  wheelDiam).offset(-1*trackWidth); 

  wheel2 = WheeledChassis.modelWheel(rightMotor, 

wheelDiam ).offset(trackWidth); 

  chassis = new WheeledChassis(new Wheel[] { wheel1, wheel2  

  }, WheeledChassis.TYPE_DIFFERENTIAL); 
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  movePilot = new MovePilot(chassis); 

compassPose = new  

CompassPoseProvider(movePilot,compassDF); 

  roboNav = new Navigator(movePilot); 

  roboPos = roboNav.getPoseProvider(); 

   

  lastGotoWayPoint = new Waypoint(0,0,0); 

 } 

  

 public boolean MotorsReady() { 

  if(leftMotor == null || rightMotor == null || arm == null) 

   return false; 

  return true; 

 } 

  

  

  

 public void GotoPoint(float xPos, float yPos, float heading, boolean blocking){ 

  boolean newPointGiven = false; 

  Pose currPos = roboPos.getPose(); 

   

  roboNav.clearPath(); 

   

  if(lastGotoWayPoint.getX() != xPos || lastGotoWayPoint.getY() != yPos || 

lastGotoWayPoint.getHeading() != heading){ 

   newPointGiven = true; 

  } 

  else if(!roboNav.isMoving() && currPos.getX() != xPos && 

currPos.getY() != yPos && currPos.getHeading() != heading){ 

   newPointGiven = true; 

  } 

  

  if(newPointGiven){ 

   roboNav.clearPath(); 

   if(!Float.isNaN(heading)){ 

    roboNav.goTo(xPos, yPos, heading); 

   } 

   else{ 

    roboNav.goTo(xPos, yPos); 

   } 

    

   // Block return until the robot is at the requested spot if requested 

   if(blocking){ 

    roboNav.waitForStop(); 

   } 
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  } 

   

 } 

  

 public void GoForward(double speed){ 

  SetForwardSpeed(speed); 

  movePilot.forward(); 

 } 

  

 public Pose GetPos(){ 

  return roboPos.getPose(); 

 } 

   

 public void SetForwardSpeed(double speed){ 

  movePilot.setLinearSpeed(speed); 

 } 

  

 public void SetTurnSpeed(double speed){ 

  movePilot.setAngularSpeed(speed); 

 } 

  

 public void Turn(double speed, float angle){ 

  SetTurnSpeed(speed); 

  movePilot.rotate(angle); 

 } 

  

 public boolean RobotTurning(){ 

  float leftMotorSpeed = leftMotor.getRotationSpeed(); 

  float rightMotorSpeed = rightMotor.getRotationSpeed(); 

   

  if(leftMotorSpeed > 0 && rightMotorSpeed < 0) 

   return true; 

  else if(leftMotorSpeed < 0 && rightMotorSpeed > 0) 

   return true; 

  else 

   return false; 

 } 

  

 public boolean RobotMoving(){ 

  return movePilot.isMoving(); 

 } 

  

  

 public boolean InGoalRange(){ 

  double distToGoal = Math.sqrt( 
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    Math.pow(Globals.GOAL_LOCATION.getX() - 

GetRobotX(),2) + Math.pow(Globals.GOAL_LOCATION.getY() - GetRobotY(),2) 

    ); 

   

  if(distToGoal <= Globals.GOAL_RANGE_THRESHOLD) 

   return true; 

   

  return false; 

   

 } 

  

 public boolean IsSamePos(Waypoint otherPoint){ 

  Pose currPos = GetPos(); 

  return otherPoint.x == currPos.getX() && otherPoint.y == currPos.getY(); 

 } 

  

 public boolean InRange(Waypoint refPoint, float thresDist){ 

  Pose currPos = GetPos(); 

  return refPoint.distance(currPos.getX(), currPos.getY()) <= thresDist; 

 } 

  

 public void MoveArm(float[] armPosSeq, int speed){ 

  arm.setPower(speed); 

  for(int i = 0; i < armPosSeq.length;i+=2){ 

   if(armPosSeq[i] == 0) 

    arm.forward(); 

   else 

    arm.backward(); 

   Delay.msDelay((long) armPosSeq[i+1]); 

  } 

 } 

  

 public boolean ArmMoving(){ 

  return arm.isMoving(); 

 } 

 public void Stop(){ 

  roboNav.clearPath(); 

  roboNav.stop(); 

 } 

  

  

  

  

 public float GetRobotX(){ 

  return GetPos().getX(); 
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 } 

  

 public float GetRobotY(){ 

  return GetPos().getY(); 

 } 

  

 public float GetRobotHeading(){ 

  return GetPos().getHeading(); 

 } 

  

 public void OpenArm(int armDelay) { 

  arm.backward(); 

  Delay.msDelay(armDelay); 

 } 

  

 public void CloseArm(int armDelay) { 

  arm.forward(); 

  Delay.msDelay(armDelay); 

 } 

  

 public void SetArmPower(int power) { 

  arm.setPower(power); 

 } 

  

} 
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APPENDIX E 

soccerControllers/SensorController.java 

package soccerControllers; 

 

import lejos.hardware.port.Port; 

import lejos.hardware.sensor.EV3UltrasonicSensor; 

import lejos.hardware.sensor.HiTechnicIRSeekerV2; 

import lejos.robotics.SampleProvider; 

import loggingTools.LogFile; 

import loggingTools.Logger; 

 

public class SensorController { 

 private EV3UltrasonicSensor sonarSensor; // Actual Sonar sensor 

 private SampleProvider sonarSP;    // Sonar Data Grabber 

 private float[] sonarSamples;    // Actual sonar values 

  

 private HiTechnicIRSeekerV2 irSensor;  // Actual IR Seeker 

 private SampleProvider irSP[];    // IR Data Grabber: 0 

-> unMod, 1 -> Mod 

 private float[] irSamples;     // Actual IR values 

  

 private float ballDirMod = 0; 

 private float ballDirUnMod = 0; 

 private float sonarRead = 0; 

  

  

  

 public SensorController(Port irPort, Port sonarPort){ 

  Init(irPort, sonarPort); 

 } 

  

  

 public void Init(Port irPort, Port sonarPort) { 

  sonarSensor = new EV3UltrasonicSensor(sonarPort); 

  sonarSP = sonarSensor.getDistanceMode(); 

  sonarSamples = new float[5]; 

   

  irSensor = new HiTechnicIRSeekerV2(irPort); 

  irSP = new SampleProvider[2]; 

  irSP[0] = irSensor.getUnmodulatedMode(); 

  irSP[1] = irSensor.getModulatedMode(); 

  irSamples = new float[5]; 
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 } 

  

  

 public boolean SensorsReady() { 

  if(irSensor == null || sonarSensor == null) 

   return false; 

  return true; 

 } 

  

  

 public boolean GetIR(int mode,float[] irReturn){ 

  irSP[mode].fetchSample(irSamples, 0); 

  if(mode == Globals.IR_UNMOD) { 

   this.ballDirUnMod = irSamples[0]; 

  } 

  else { 

   this.ballDirMod = irSamples[0]; 

  } 

   

  irReturn[mode] = irSamples[0]; 

   

  return !Float.isNaN(irReturn[mode]); 

 } 

  

 public float GetSonar(){ 

  sonarSP.fetchSample(sonarSamples, 0); 

  this.sonarRead = sonarSamples[0]; 

  return sonarSamples[0]; 

 } 

  

 public float GetLastSonar(){ 

  return this.sonarRead; 

 } 

  

 public float GetLastModIR(){ 

  return this.ballDirMod; 

 } 

  

 public float GetLastUnModIR(){ 

  return this.ballDirUnMod; 

 } 

  

  

 public void FlushSensors(){ 

  float[] tmp = new float[2]; 
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  System.out.println("-----Flushing Sensors Start-----"); 

  if(!GetIR(Globals.IR_MOD,tmp)){ 

   System.out.println("IR_MOD -- NO BALL"); 

  } 

  if(!GetIR(Globals.IR_UNMOD,tmp)){ 

   System.out.println("IR_UNMOD -- NO BALL"); 

  } 

  if(GetSonar() == Globals.SONAR_ERROR_VAL){ 

   System.out.println("TMP Sonar Error"); 

  } 

  System.out.println("-----Flushing Sensors End-----"); 

 } 

} 
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APPENDIX F  

stateTools/ChangeEvent.java 

package stateTools; 

 

public enum ChangeEvent { 

 NONE, IR_MOD, IR_UNMOD,SONAR 

} 
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APPENDIX G 

 stateTools/State.java 

package stateTools; 

 

// State status options 

public enum State { 

 INIT, TURN_TO_BALL, GOTO_BALL, TURN_TO_GOAL, 

DRIBBLE_TO_GOAL, 

 KICK_BALL_TO_GOAL, GAME_OVER 

} 
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APPENDIX H 

 stateTools/StateCheck.java 

package stateTools; 

 

import soccerControllers.*; 

import soccerPlayers.*; 

 

 

// State status options 

 

  

public final class StateCheck{  

 public static boolean sonarSuccess = false; 

 public static boolean modIrSuccess = false; 

 public static boolean unModIrSuccess = false; 

  

 public static float irModRead = -1; 

 public static float irUnModRead = -1; 

 public static float sonarRead = -1; 

  

 public static boolean inGoalRange = false; 

 public static boolean ballInFront = false; 

 public static boolean ballClose = false; 

 public static boolean ballKickable = false; 

 public static boolean robotMoving = false; 

 public static boolean robotTurning = false; 

 public static boolean bifStateGen = false; 

 public static boolean hasBall = false; 

 public static boolean armMoving = false; 

  

  

 public static boolean BallInFront(float sonar, float irMod, float irUnMod){ 

  if(sonarRead < Globals.SONAR_CLOSE_READING){ 

   return true; 

  } 

  //************** IR Check -- Modulated*****************// 

  if(!Float.isNaN((irMod))){ 

   if(irMod == 0){ 

    return true; 

   } 

  } 
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  //************** IR Check -- UnModulated***************// 

  if(!Float.isNaN(irUnMod)){ 

   if(irUnMod == 0){ 

    return true; 

   } 

  } 

  return false; 

 } 

  

 public static boolean BallClose(float sonar){ 

  if(sonar < Globals.SONAR_CLOSE_READING) 

   return true; 

  return false; 

 } 

  

 public static boolean BallKickable(float sonar){ 

  if(sonar < Globals.SONAR_CLOSE_READING) 

   return true; 

  return false; 

 } 

  

 public static boolean HasBall(float sonar){ 

  return (sonar <= Globals.SONAR_IN_ARM_READING); 

 } 

  

 // NOTE: Returning true => that the robot should be in this state 

 public static boolean TurnToBallState(Kicker currMK){ 

  if(!ballInFront && !ballClose && !ballKickable) 

   return true; 

  else 

   return false; 

 } 

  

 // Going to ball state 

 public static boolean GotoBallState(Kicker currMK){ 

  // Check if the robot should remain in the goto ball state 

  if(ballInFront && /*robotMoving &&*/ !hasBall/*&& !ballClose*/) 

   return true; 

  else 

   return false; 

 } 

  

 // Turning to goal state 

 public static boolean TurnToGoalState(Kicker currMK){ 

  // Ball should remain in front of the robot while turning 
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  if(ballInFront && /*ballClose*/ hasBall&& robotTurning) 

   return true; 

  else 

   return false; 

 } 

  

  

 // !!!NOTE!!! --> NO LONGER DRIBBLE -- IT IS GOTO GOAL 

 public static boolean DribbleBallState(Kicker currMK){ 

  // Ball should be near and in front robot while moving to goal 

  if(!inGoalRange && ballInFront && ballClose /*&& armMoving*/) 

   return true; 

  else 

   return false; 

 } 

  

  

 // Kick state 

 public static boolean KickBallAtGoal(Kicker currMK){ 

// Ball should be with the robot and in the goal range until kick 

  if(inGoalRange && ballInFront && ballClose) 

   return true; 

  else 

   return false; 

 } 

  

  

  

 //****** GEN **************** 

 // NOTE: Returning true => that the robot should be in this state 

 public static boolean Gen_TurnToBallState(Kicker currMK){ 

  return StateCheck.TurnToBallState(currMK); 

 } 

  

 // Going to ball state 

 public static boolean Gen_GotoBallState(Kicker currMK){ 

  return StateCheck.GotoBallState(currMK); 

 } 

  

 // Turning to goal state 

 public static boolean Gen_TurnToGoalState(Kicker currMK){ 

  return StateCheck.TurnToGoalState(currMK); 

 } 
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 // !!!NOTE!!! --> NO LONGER DRIBBLE -- IT IS GOTO GOAL 

 public static boolean Gen_DribbleBallState(Kicker currMK){ 

  return StateCheck.DribbleBallState(currMK); 

 } 

  

  

 // Kick state 

 public static boolean Gen_KickBallAtGoal(Kicker currMK){ 

  return StateCheck.KickBallAtGoal(currMK); 

 } 

 //****** GEN **************** 

  

  

  

 // Get the state of the robot 

 // NOTE: This may be the incorrect way of doing this -- depending on what is 

needed 

 public static State GetState(ChangeEvent bifTriggered, Kicker currMK){ 

  

  //System.out.println("*PERFORMING STATE CHECK*"); 

   

  sonarRead = currMK.GetSensorController().GetLastSonar(); 

  // If any sensor reads as ball in front, then set the 

  // appropriote flags 

  if(bifTriggered != null) 

   ballInFront = true; 

  else 

   ballInFront = false; 

   

  // NOTE: this assumes that sonar is up to date 

  ballClose = BallClose(sonarRead); 

  ballKickable = BallKickable(sonarRead); 

  hasBall = HasBall(sonarRead); 

   

   

  inGoalRange = currMK.GetMotorController().InGoalRange(); 

  robotMoving = currMK.GetMotorController().RobotMoving(); 

  robotTurning = currMK.GetMotorController().RobotTurning(); 

  armMoving = currMK.GetMotorController().ArmMoving(); 

   

   

  boolean inTurnToBallState = TurnToBallState(currMK); 

  boolean inGotoBallState = GotoBallState(currMK); 

  boolean inTurnToGoalState = TurnToGoalState(currMK); 

  boolean inDribbleBallState = DribbleBallState(currMK); 
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  boolean inKickBallAtGoal = KickBallAtGoal(currMK); 

   

  //System.out.println("STATE INFO: "+ballInFront+" , "+robotMoving +" 

, "+hasBall); 

   

   

  if(inTurnToBallState) 

   return State.TURN_TO_BALL; 

  else if(inGotoBallState) 

   return State.GOTO_BALL; 

  else if(inTurnToGoalState) 

   return State.TURN_TO_GOAL; 

  else if(inDribbleBallState) 

   return State.DRIBBLE_TO_GOAL; 

  else if(inKickBallAtGoal) 

   return State.KICK_BALL_TO_GOAL; 

  else 

   return State.INIT; 

 

 } 

  

 // Print the current state of the robot 

 public static void PrintState(State currState){ 

  switch(currState){ 

   case TURN_TO_BALL: 

System.out.println("In -TURN_TO_BALL- State"); 

    break; 

   case TURN_TO_GOAL: 

System.out.println("In -TURN_TO_GOAL- State"); 

    break; 

   case GOTO_BALL: 

    System.out.println("In -GOTO_BALL- State"); 

    break; 

   case DRIBBLE_TO_GOAL: 

System.out.println("In -DRIBBLE_TO_GOAL- State"); 

    break; 

   case KICK_BALL_TO_GOAL: 

System.out.println("In -KICK_BALL_TO_GOAL- State"); 

    break; 

   case INIT: 

     

    break; 

   default: 

    System.out.println("UNDEFINED STATE"); 

    break; 
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  } 

 } 

} 
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APPENDIX I 

 RobotStateMachine.aj 

/* Developer: Taylor Harvin 

 * Date Last Changed: 8/14/2016 

 * Purpose: Provide state properties of the robot 

 * 

 */ 

 

import soccerControllers.*; 

import soccerPlayers.*; 

import stateTools.*; 

import lejos.robotics.navigation.Waypoint; 

import lejos.robotics.RegulatedMotor; 

import lejos.hardware.motor.UnregulatedMotor; 

import lejos.robotics.navigation.Navigator; 

import lejos.hardware.sensor.EV3UltrasonicSensor; 

import lejos.hardware.sensor.HiTechnicCompass; 

import lejos.hardware.sensor.HiTechnicIRSeekerV2; 

import lejos.robotics.SampleProvider; 

import lejos.utility.Delay; 

 

 

aspect RoboStateMachine{ 

 private long lastStateCheck = System.currentTimeMillis(); 

 private final long PING_TIME_LIMIT = 10000; 

 private boolean sonarSet = false; 

 private boolean irModSet = false; 

 private boolean irUnModSet = false; 

 private boolean armOpen = false; 

 private ChangeEvent bifTrigger = null; 

  

 private static State lastState = State.GAME_OVER; 

  

 //*************PC Flags************************ 

 private boolean bifFlag = false; 

 private boolean bcFlag = false; 

 private boolean bKickable = false; 

 //********************************************* 

  

  

 // Enough information is set to do a valid state check 

 public boolean readyForStateCheck(Kicker MK){ 
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  // All sensor values are set -- allow state check 

  // Otherwise -- look at the  

  if(sonarSet && irModSet && irUnModSet) 

   return true; 

  else if(sonarSet && MK.GetSensorController().GetLastSonar() <= 

Globals.SONAR_IN_ARM_READING) 

   return true; 

  else if(irModSet && MK.GetSensorController().GetLastModIR() == 0) 

   return true; 

  else if(irUnModSet && MK.GetSensorController().GetLastUnModIR() 

== 0) 

   return true; 

  else 

   return false; 

 } 

  

 public void resetStatePreCheck(){ 

  sonarSet = false; 

  irModSet = false; 

  irUnModSet = false; 

   

  bifFlag = false; 

  bcFlag = false; 

  bKickable = false; 

  bifTrigger = null; 

 } 

  

 // Generate the ball in front true event on-demand rather than through Kicker 

 public void Kicker.generateBallInFrontState(){ 

  //System.out.println("Generated BIF"); 

 } 

  

 // Check the current ball in front state from the Kicker (without triggering any 

events) 

 public boolean Kicker.checkBallInFront(Kicker currMK){ 

  return currMK.BallInFront(); 

 } 

  

  

 // Generate the ball close true event on-demand rather than through Kicker 

 public void Kicker.generateBallCloseState(){ 

  //System.out.println("Generated Ball Close"); 

 } 
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 // Check the current ball close state from the Kicker (without triggering any 

events) 

 public boolean Kicker.checkBallClose(Kicker currMK){ 

  return currMK.BallClose(); 

 } 

  

  

  

  

  

  

  

  

  

  

 // Generate the current state on-demand here rather than directly from state check 

method 

 public void Kicker.generateStateEvent(State currState, Kicker currMK){ 

  if(currState != lastState){ 

   switch(currState){ 

    case TURN_TO_BALL: 

     //System.out.println("GEN TURN_TO_BALL"); 

     // NOTE: Ensure that wonder event is triggered 

before BIF 

     StateCheck.Gen_TurnToBallState(currMK); 

     lastState = currState; 

     break; 

    case GOTO_BALL: 

     //System.out.println("GEN GOTO_BALL"); 

     StateCheck.Gen_GotoBallState(currMK); 

     lastState = currState; 

     break; 

    case TURN_TO_GOAL: 

     //System.out.println("GEN TURN_TO_GOAL"); 

     StateCheck.Gen_TurnToGoalState(currMK); 

     lastState = currState; 

     break; 

    case DRIBBLE_TO_GOAL: 

     //System.out.println("GEN 

DRIBBLE_TO_GOAL"); 

     StateCheck.Gen_DribbleBallState(currMK); 

     lastState = currState; 

     break; 

    case KICK_BALL_TO_GOAL: 

     //FORCE MOVE BALL 
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      //System.out.println("!!!MOVE BALL 

NOW!!!"); 

      //Delay.msDelay(5000); 

     // FORCE MOVE BALL 

      

     //System.out.println("GEN BALL CLOSE"); 

     //currMK.BallClose(); 

     //System.out.println("GEN 

KICK_BALL_TO_GOAL"); 

     StateCheck.Gen_KickBallAtGoal(currMK); 

     lastState = currState; 

     break; 

    default: 

     //System.out.println(currState); 

     //System.out.println("GEN NONE"); 

     break; 

   } 

    

  } 

   

 } 

  

  

  

  

  

  

 //POINTCUT 

SECTION***************************************************************

*********** 

 // General pointcut to allow for access to Kicker object for other pointcuts 

(through cflowbelow) 

 //pointcut PlayPC(Kicker MK) : call(public void Kicker.Play()) && target(MK); 

 pointcut BallInFrontPC(Kicker MK) : call(public boolean Kicker.BallInFront()) 

&& target(MK); 

 pointcut ballClosePC(Kicker MK) : call(public boolean Kicker.BallClose()) && 

target(MK); 

 //pointcut ballKickablePC(Kicker MK) : call(public boolean 

Kicker.ballKickable(boolean)) && target(MK); 

 //ADVICE 

SECTION***************************************************************

************** 
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 //BIF -- Cflow 

Section******************************************************************

************ 

 // IR -- Mod advice, handle change in IR MOD value (after new ping) 

 pointcut irModChange_BIF(Kicker MK) : cflowbelow(BallInFrontPC(MK)) && 

set(float SensorController.ballDirMod)&& within(SensorController); 

 // IR -- Mod advice, handle change in IR MOD value (after new ping) 

 after(Kicker MK, float newIrMod) :irModChange_BIF(MK) && 

args(newIrMod){ 

  irModSet = true; 

   

   

  if(newIrMod == 0){ 

   bifFlag = true; 

   bifTrigger = ChangeEvent.IR_MOD; 

  } 

   

  if(/*bifFlag ||*/ readyForStateCheck(MK)){ 

   //System.out.println("***IR MOD Changed BIF***"); 

   State currState = StateCheck.GetState(bifTrigger, MK); 

   MK.generateStateEvent(currState,MK); 

   //StateCheck.PrintState(currState); 

   resetStatePreCheck(); 

  } 

 } 

  

  

 // IR -- Un-Mod advice, handle change in IR UN-MOD value (after new ping) 

 pointcut irUnModChange_BIF(Kicker MK) : cflowbelow(BallInFrontPC(MK)) 

&& set(float SensorController.ballDirUnMod)&& within(SensorController); 

 // IR -- Un-Mod advice, handle change in IR UN-MOD value (after new ping) 

 after(Kicker MK, float newIrUnMod):irUnModChange_BIF(MK) && 

args(newIrUnMod){ 

  irUnModSet = true; 

   

  if(newIrUnMod == 0){ 

   bifFlag = true; 

   bifTrigger = ChangeEvent.IR_UNMOD; 

  } 

    

  if(/*bifFlag ||*/ readyForStateCheck(MK)){ 

   //System.out.println("***IR UN-MOD Changed BIF***"); 

   //StateCheck.GetState(ChangeEvent.IR_UNMOD, MK); 

   State currState = StateCheck.GetState(bifTrigger, MK); 

   MK.generateStateEvent(currState,MK); 
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   //StateCheck.PrintState(currState); 

   resetStatePreCheck(); 

  } 

 } 

  

 // Sonar -- Sonar advice, handle change in Sonar value (after new ping) 

 pointcut sonarChange_BIF(Kicker MK) : cflowbelow(BallInFrontPC(MK)) && 

set(float SensorController.sonarRead)&& within(SensorController); 

 // Sonar -- Sonar advice, handle change in Sonar value (after new ping) 

 after(Kicker MK, float newSonar):sonarChange_BIF(MK) && args(newSonar){ 

  sonarSet = true; 

   

  if(newSonar <= Globals.SONAR_IN_ARM_READING){ 

   bifFlag = true; 

   bifTrigger = ChangeEvent.SONAR; 

  } 

   

  if(bifFlag || readyForStateCheck(MK)){ 

   //System.out.println("***Sonar Changed BIF***"); 

   State currState = StateCheck.GetState(bifTrigger, MK); 

   MK.generateStateEvent(currState,MK); 

   //StateCheck.PrintState(currState); 

   resetStatePreCheck(); 

  } 

 } 

 //****************************************************************

************************************ 

  

  

 //Ball Close -- Cflow 

Section******************************************************************

************ 

  

 // Sonar -- Sonar advice, handle change in Sonar value (after new ping) 

 pointcut sonarChange_BC(Kicker MK) : cflowbelow(ballClosePC(MK)) && 

set(float SensorController.sonarRead)&& within(SensorController); 

 // Sonar -- Sonar advice, handle change in Sonar value (after new ping) 

 after(Kicker MK, float newSonar):sonarChange_BC(MK) && args(newSonar){ 

  sonarSet = true; 

   

  if(newSonar <= Globals.SONAR_IN_ARM_READING){ 

   bifFlag = true; 

   bifTrigger = ChangeEvent.SONAR; 

  } 
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  if(bifFlag || readyForStateCheck(MK)){ 

   //System.out.println("***Sonar Changed BC***"); 

   State currState = StateCheck.GetState(bifTrigger, MK); 

   MK.generateStateEvent(currState,MK); 

   //StateCheck.PrintState(currState); 

   resetStatePreCheck(); 

  } 

 } 

 //****************************************************************

************************************************************* 

  

  

 // Sonar -- Sonar advice, handle change in Sonar value (after new ping) 

 //pointcut sonarChange_bk(Kicker MK) : cflowbelow(ballKickablePC(MK)) && 

set(float SensorController.sonarRead)&& within(SensorController); 

 // Sonar -- Sonar advice, handle change in Sonar value (after new ping) 

 /*after(Kicker MK, float newSonar):sonarChange_bk(MK) && args(newSonar){ 

  sonarSet = true; 

   

  if(newSonar <= Globals.SONAR_IN_ARM_READING){ 

   bifFlag = true; 

   bifTrigger = ChangeEvent.SONAR; 

  } 

   

  if(bifFlag || readyForStateCheck(MK)){ 

   //System.out.println("***Sonar Changed BK***"); 

   State currState = StateCheck.GetState(bifTrigger, MK); 

   MK.generateStateEvent(currState,MK); 

   //StateCheck.PrintState(currState); 

   resetStatePreCheck(); 

  } 

 }*/ 

 //****************************************************************

************************************************************* 

  

  

  

 // Trigger needed events for after turn to ball state 

 //pointcut turnto_ball_state_exit(Kicker MK) : call(public boolean 

Kicker.TurnToBall()) && this(MK); 

 //after(Kicker MK):turnto_ball_state_exit(MK){ 

  //System.out.println("TURN Event EXIT"); 

   

  //************BIF FAIL TEST************** 

  /*System.out.println("MOVE BALL FOR FAIL -- NOW!"); 
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  //Delay.msDelay(5000); 

  //System.out.println("Delay Finished!");*/ 

  //*************************************** 

   

  // Generate ballinfront_true event if the ball is in front 

  //if(MK.checkBallInFront(MK)) 

   //MK.generateBallInFrontState(); 

 //} 

  

  

 // ARM************************************** 

 /*pointcut openArmPC(MotorController MC) : call(public void 

MotorController.openArm(int)) && target(MC); 

 after(MotorController MC):openArmPC(MC){ 

  System.out.println("***Arm Open***"); 

  armOpen = true; 

 } 

 pointcut closeArmPC(MotorController MC) : call(public void 

MotorController.closeArm(int)) && target(MC); 

 after(MotorController MC):closeArmPC(MC){ 

  System.out.println("***Arm Close***"); 

  armOpen = false; 

 }*/ 

 //****************************************** 

 

} 
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APPENDIX J 

AlwaysIR.mop 

// From LTL 5  

// 5. 

//package mop; 

 

import java.io.*; 

import java.util.*; 

import soccerPlayers.*; 

import soccerControllers.*; 

import loggingTools.*; 

 

AlwaysIR(Kicker MK) { 

 SensorController currSC = null; // Allows for usage of SC in the ltl violation 

 Kicker currMK = null; 

  

 /*event play_before before(Kicker MK): 

  call(public void Kicker.Play()) && target(MK){ 

   System.out.println("Before Play EVENT"); 

  

 Logger.log(LogFile.ALWAYS_IR_EVENTS,"Before_Play_EVENT"); 

   currMK = MK; 

 }*/ 

  

  

 // Handle for the turntoball event 

 event ir_read_true after(SensorController SC)  returning(boolean res): 

  call(public boolean SensorController.GetIR(int,float[])) && condition(res) 

&& target(SC){ 

   currSC = SC; 

   //System.out.println("IR read TRUE EVENT"); 

  

 //Logger.log(LogFile.ALWAYS_IR_EVENTS,"IR_read_TRUE_EVENT"); 

 } 

  

 event ir_read_false after(SensorController SC) returning(boolean res): 

  call(public boolean SensorController.GetIR(int,float[])) && 

condition(!res) && target(SC){ 

   currSC = SC; 

   //System.out.println("IR read FALSE EVENT"); 

  

 //Logger.log(LogFile.ALWAYS_IR_EVENTS,"IR_read_FALSE_EVENT"); 
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 } 

  

 ltl: [] ir_read_true 

 @violation { 

  //Logger.log(LogFile.ALWAYS_IR_EVENTS,"!!!IR Read Fail LTL 

FAIL!!!"); 

  /*System.out.println("!!!IR Read Fail LTL FAIL!!!");*/ 

  //System.out.println("Flush IR"); 

  //float[] tmpIR = new float[2]; 

  // Try to rest IR -- Loop forever if IR is in complete fail 

  //while(currSC.GetIR(Globals.IR_MOD,tmpIR)){  

   //currSC.FlushSensors(); 

   //System.out.println("Flush IR Loop"); 

  //} 

  // DO A DEFAULT 30 degree TURN for Find 

  //__RESET; 

 } 

} 
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APPENDIX K 

BallCloseAtKick.mop 

//package mop; 

 

import java.io.*; 

import java.util.*; 

import soccerPlayers.*; 

import soccerControllers.*; 

import loggingTools.*; 

import stateTools.*; 

 

BallCloseAtKick(Kicker MK) { 

 Kicker currMK = null; 

 event kick_ball_state_true after(Kicker MK) returning(boolean res) : 

   call(public boolean StateCheck.Gen_KickBallAtGoal(Kicker)) && 

condition(res) && args(MK){ 

    //System.out.println("Kick Event TEST TRUE"); 

   

 Logger.log(LogFile.BALL_CLOSE_AT_KICK,"kick_ball_state_true"); 

   } 

  

 event kick_ball_before before(Kicker MK): 

  call(public void Kicker.KickBall()) && target(MK){ 

   currMK = MK; 

   //System.out.println("Ball Close TRUE EVENT"); 

  

 Logger.log(LogFile.BALL_CLOSE_AT_KICK,"kick_ball_before"); 

 } 

  

 //ltl: [](kick_ball_state_true => ((<*>ballclose_true) and (!(*)ballclose_false))) 

 ltl: kick_ball_before => (*) kick_ball_state_true 

 @violation{ 

  Logger.log(LogFile.BALL_CLOSE_AT_KICK,"!!!BallCloseAtKick LTL 

Violated!!!"); 

  //System.out.println("!!!BallCloseAtKick LTL Violated!!!"); 

  //System.out.println("Re-attempt Find Ball "+currMK.FindBall()); 

  while(!currMK.FindBall()){ 

   System.out.println("Re-attempt Find Ball "+currMK.FindBall()); 

  } 

  currMK.GotoGoal(true); 

  __RESET; 

 } 
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} 
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APPENDIX L 

BallInFrontAfterTurnUntilKick.mop 

// From LTL 2  

// 2. 

 

//package mop; 

 

import java.io.*; 

import java.util.*; 

import soccerPlayers.*; 

import soccerControllers.*; 

import loggingTools.*; 

import stateTools.*; 

 

BallInFrontAfterTurnUntilKick(Kicker MK) { 

 Kicker currMK = null; // Allows for usage of MK in the ltl violation 

  

 // Handle for the Gotoball event 

 event turn_to_ball_state_true after(Kicker MK) returning(boolean res) : 

   call(public boolean StateCheck.Gen_TurnToBallState(Kicker)) 

&& condition(res) && args(MK){ 

    //System.out.println("turn_to_ball_state_true"); 

   

 Logger.log(LogFile.TURN_GTB,"turn_to_ball_state_true"); 

   } 

  

 

  

 event ballinfront_true after(Kicker MK) returning(boolean res): 

  call(public boolean Kicker.BallInFront()) && condition(res) && 

target(MK){ 

  currMK = MK; 

  Logger.log(LogFile.TURN_GTB,"ballinfront_true"); 

 } 

  

 event ballinfront_false after(Kicker MK) returning(boolean res): 

  call(public boolean Kicker.BallInFront()) && condition(!res) && 

target(MK){ 

  currMK = MK; 

  Logger.log(LogFile.TURN_GTB,"ballinfront_false"); 

 } 

  

  

 event kick_ball_after after(Kicker MK): 

  call(public void Kicker.KickBall()) && target(MK){ 
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   currMK = MK; 

   Logger.log(LogFile.TURN_GTB,"kick_ball_after"); 

 } 

  

 //ltl: [](Gotoball_true => o ballinfront_true) 

 ltl: [](turn_to_ball_state_true => o(ballinfront_true U kick_ball_after)) 

 //ltl: [](gotoball_state_true => o(Gen_DribbleBallState U kick_ball_after)) 

 @violation { 

  __RESET; 

  Logger.log(LogFile.TURN_GTB,"!!!HasBallUntilAfterKick LTL 

FAIL!!!"); 

  //System.out.println("!!!BallInFrontBetweenTurnAndKick LTL 

FAIL!!!"); 

  //System.out.println("Re-Attempting FindAndGrabBall"); 

  while(!currMK.FindBall()); 

  __RESET; 

 } 

} 
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APPENDIX M 

EventuallyKicksToGoal.mop 

//package mop; 

 

import java.io.*; 

import java.util.*; 

import soccerPlayers.*; 

import soccerControllers.*; 

import loggingTools.*; 

import stateTools.*; 

 

EventuallyKicksToGoal(Kicker MK) { 

 Kicker currMK = null; 

 event kick_ball after(Kicker MK): 

   call(public void Kicker.KickBall()) && target(MK){ 

    currMK = MK; 

    //System.out.println("Kick Event TRUE"); 

    Logger.log(LogFile.EVENTUALLY_KICKS,"kick_ball"); 

   } 

  

 event game_over before(Kicker MK): 

  call(public void Kicker.GameOver()) && target(MK){ 

   currMK = MK; 

   //System.out.println("GameOver EVENT"); 

   Logger.log(LogFile.EVENTUALLY_KICKS,"game_over 

EVENT"); 

 } 

  

  

 event kick_ball_state_true after(Kicker MK) returning(boolean res): 

   call(public boolean StateCheck.KickBallAtGoal(Kicker)) && 

condition(res) &&  !execution(State StateCheck.GetState(ChangeEvent, Kicker)) && 

args(MK){ 

    currMK = MK; 

    //System.out.println("dribble_ball_state_true TRUE"); 

   

 Logger.log(LogFile.EVENTUALLY_KICKS,"kick_ball_state_true"); 

   } 

  

  

 ltl: (game_over => <*> kick_ball_state_true) and (game_over => <*>kick_ball) 

 @violation{ 

  Logger.log(LogFile.EVENTUALLY_KICKS,"!!!EventuallyKicksToGoal 

LTL Violated!!!"); 

  System.out.println("!!!EventuallyKicksToGoal Violated!!!"); 
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  currMK.KickBall(); 

  currMK.SetBallKickedAtGoal(currMK.BallInFront()); 

  //__RESET; 

 } 

} 
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APPENDIX N 

GoToGoalUntilInRange.mop 

//package mop; 

 

import java.io.*; 

import java.util.*; 

import soccerPlayers.*; 

import soccerControllers.*; 

import loggingTools.*; 

import stateTools.*; 

 

GoToGoalUntilInRange(Kicker MK) { 

 Kicker currMK = null; 

 event dribble_ball_state_true after(Kicker MK) returning(boolean res): 

   call(public boolean StateCheck.Gen_DribbleBallState(Kicker)) 

&& condition(res) && args(MK){ 

    currMK = MK; 

    //System.out.println("dribble_ball_state_true TRUE"); 

   

 Logger.log(LogFile.GOTO_GOAL_UNTIL_IN_RANGE,"dribble_ball_state_tru

e"); 

   } 

  

 event turn_to_goal_state_true after(Kicker MK) returning(boolean res): 

   call(public boolean StateCheck.Gen_TurnToGoalState(Kicker)) 

&& condition(res) && args(MK){ 

    currMK = MK; 

    //System.out.println("turn_to_goal_state_true TRUE"); 

   

 Logger.log(LogFile.GOTO_GOAL_UNTIL_IN_RANGE,"turn_to_goal_state_tru

e"); 

   } 

  

   

 event goto_goal_true after(Kicker MK) returning(boolean res): 

  call(public boolean Kicker.GotoGoal(boolean)) && condition(res) && 

target(MK){ 

   //System.out.println("goto_goal_true EVENT"); 

  

 Logger.log(LogFile.GOTO_GOAL_UNTIL_IN_RANGE,"goto_goal_true 

EVENT"); 

 } 

 event goto_goal_false after(Kicker MK) returning(boolean res): 

  call(public boolean Kicker.GotoGoal(boolean)) && condition(!res) && 

target(MK){ 



139 

 

   //System.out.println("goto_goal_false EVENT"); 

  

 Logger.log(LogFile.GOTO_GOAL_UNTIL_IN_RANGE,"goto_goal_false 

EVENT"); 

 } 

  

 event kick_ball_state_true after(Kicker MK) returning(boolean res) : 

   call(public boolean StateCheck.Gen_KickBallAtGoal(Kicker)) && 

condition(res) && args(MK){ 

    //System.out.println("Kick Event TEST TRUE"); 

   

 Logger.log(LogFile.GOTO_GOAL_UNTIL_IN_RANGE,"kick_ball_state_true")

; 

   } 

  

  

 ltl: [](turn_to_goal_state_true => o(dribble_ball_state_true U goto_goal_true)) 

 @violation{ 

 

 Logger.log(LogFile.GOTO_GOAL_UNTIL_IN_RANGE,"!!!GoToGoalUntilInR

ange LTL Violated!!!"); 

  System.out.println("!!!GoToGoalUntilInRange Violated!!!"); 

  currMK.KickBall(); 

  __RESET; 

 } 

} 
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APPENDIX O 

Init.mop 

 

//package mop; 

 

import java.io.*; 

import java.util.*; 

import soccerPlayers.*; 

import soccerControllers.*; 

import loggingTools.*; 

import stateTools.*; 

import lejos.hardware.Button; 

 

Init(Kicker MK) { 

 Kicker currMK = null; 

  

 event ready_true after(Kicker MK) returning(boolean res): 

  call(public boolean Kicker.Ready()) && condition(res) && target(MK){ 

   currMK = MK; 

   //System.out.println("ready_true EVENT"); 

   Logger.log(LogFile.INIT,"ready_true EVENT"); 

 } 

  

 event ready_false after(Kicker MK) returning(boolean res): 

  call(public boolean Kicker.Ready()) && condition(!res) && target(MK){ 

   currMK = MK; 

   //System.out.println("ready_false EVENT"); 

   Logger.log(LogFile.INIT,"ready_false EVENT"); 

 } 

  

  

 event play_before before(Kicker MK): 

  call(public void Kicker.Play()) && target(MK){ 

   currMK = MK; 

   //System.out.println("Play Before EVENT"); 

   Logger.log(LogFile.INIT,"Play Before EVENT"); 

 } 

  

  

  

  

 ltl: [](play_before => <*> ready_true) 

 @violation{ 

  Logger.log(LogFile.INIT,"!!!Init LTL Violated!!!"); 

  System.out.println("!!!Init Violated!!!"); 
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  while(!currMK.Ready()){ 

   System.out.println("Please plug in all cables correctly, then press 

any button."); 

   Button.waitForAnyPress(); 

   currMK.Init(); 

  } 

   

  __RESET; 

 } 

} 
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APPENDIX P 

loggingTools/LogFile.java -- Logger.java 

package loggingTools; 

 

// State status options 

public enum LogFile { 

 ALL_EVENTS, TURN_GTB, GTB_TURN, GTB_TTG, ALWAYS_IR_TIME, 

ALWAYS_IR_EVENTS,HAS_BALL_AFTER_GOTO_BALL,BALL_CLOSE_AT_KI

CK,EVENTUALLY_KICKS,GOTO_GOAL_UNTIL_IN_RANGE,INIT,ROBO_STATE

_MACHINE 

} 

//---------------------------------------------------------------------------------------------------------- 

package loggingTools; 

 

 

import java.io.*; 

 

public class Logger{ 

 private static PrintWriter  outFile = null; 

 private static FileOutputStream outFileStream = null; 

 private static LogFile lastLogType; 

 private static long startTime = 0; 

 private static long endTime = 0; 

  

 public static void setFile(LogFile fileType) throws FileNotFoundException{ 

  outFileStream = new FileOutputStream(new File(fileType + ".out"),true); 

  //outFileStream = new FileOutputStream(new File("EventList.out"),true); 

 } 

  

 public static void log(LogFile fileType, String msg){ 

   

   

   

  try{ 

   setFile(fileType); 

   outFile = new PrintWriter (outFileStream); 

   if(lastLogType != fileType){ 

    lastLogType = fileType; 

    outFile.append("***FROM: "+fileType+" ***\n"); 

   } 
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   outFile.append(msg+"\n"); 

   //outFileStream.println(msg); 

  } 

  catch(FileNotFoundException e){ 

   //System.out.println("Error"); 

  } 

  outFile.close(); 

 } 

  

 public static void log_time(LogFile fileType,String msg,boolean isStart){ 

  if(isStart){ 

   startTime = System.currentTimeMillis(); 

  } 

  else{ 

   endTime = System.currentTimeMillis(); 

   long finalTime = (endTime - startTime); 

   log(fileType,msg+" : "+finalTime + "ms"); 

  } 

 } 

} 

 

 


